repo_id
stringlengths 15
86
| file_path
stringlengths 28
180
| content
stringlengths 1
1.75M
| __index_level_0__
int64 0
0
|
---|---|---|---|
hf_public_repos/datasets/.dvc | hf_public_repos/datasets/.dvc/plots/smooth.json | {
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
"data": {
"values": "<DVC_METRIC_DATA>"
},
"title": "<DVC_METRIC_TITLE>",
"mark": {
"type": "line"
},
"encoding": {
"x": {
"field": "<DVC_METRIC_X>",
"type": "quantitative",
"title": "<DVC_METRIC_X_LABEL>"
},
"y": {
"field": "<DVC_METRIC_Y>",
"type": "quantitative",
"title": "<DVC_METRIC_Y_LABEL>",
"scale": {
"zero": false
}
},
"color": {
"field": "rev",
"type": "nominal"
}
},
"transform": [
{
"loess": "<DVC_METRIC_Y>",
"on": "<DVC_METRIC_X>",
"groupby": [
"rev"
],
"bandwidth": 0.3
}
]
}
| 0 |
hf_public_repos/datasets/.dvc | hf_public_repos/datasets/.dvc/plots/scatter.json | {
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
"data": {
"values": "<DVC_METRIC_DATA>"
},
"title": "<DVC_METRIC_TITLE>",
"mark": "point",
"encoding": {
"x": {
"field": "<DVC_METRIC_X>",
"type": "quantitative",
"title": "<DVC_METRIC_X_LABEL>"
},
"y": {
"field": "<DVC_METRIC_Y>",
"type": "quantitative",
"title": "<DVC_METRIC_Y_LABEL>",
"scale": {
"zero": false
}
},
"color": {
"field": "rev",
"type": "nominal"
}
}
}
| 0 |
hf_public_repos/datasets/.dvc | hf_public_repos/datasets/.dvc/plots/confusion.json | {
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
"data": {
"values": "<DVC_METRIC_DATA>"
},
"title": "<DVC_METRIC_TITLE>",
"mark": "rect",
"encoding": {
"x": {
"field": "<DVC_METRIC_X>",
"type": "nominal",
"sort": "ascending",
"title": "<DVC_METRIC_X_LABEL>"
},
"y": {
"field": "<DVC_METRIC_Y>",
"type": "nominal",
"sort": "ascending",
"title": "<DVC_METRIC_Y_LABEL>"
},
"color": {
"aggregate": "count",
"type": "quantitative"
},
"facet": {
"field": "rev",
"type": "nominal"
}
}
}
| 0 |
hf_public_repos/datasets/.dvc | hf_public_repos/datasets/.dvc/plots/default.json | {
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
"data": {
"values": "<DVC_METRIC_DATA>"
},
"title": "<DVC_METRIC_TITLE>",
"mark": {
"type": "line"
},
"encoding": {
"x": {
"field": "<DVC_METRIC_X>",
"type": "quantitative",
"title": "<DVC_METRIC_X_LABEL>"
},
"y": {
"field": "<DVC_METRIC_Y>",
"type": "quantitative",
"title": "<DVC_METRIC_Y_LABEL>",
"scale": {
"zero": false
}
},
"color": {
"field": "rev",
"type": "nominal"
}
}
}
| 0 |
hf_public_repos/datasets | hf_public_repos/datasets/utils/release.py | # Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import re
import packaging.version
REPLACE_PATTERNS = {
"init": (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
"setup": (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
}
REPLACE_FILES = {
"init": "src/datasets/__init__.py",
"setup": "setup.py",
}
def update_version_in_file(fname, version, pattern):
"""Update the version in one file using a specific pattern."""
with open(fname, "r", encoding="utf-8", newline="\n") as f:
code = f.read()
re_pattern, replace = REPLACE_PATTERNS[pattern]
replace = replace.replace("VERSION", version)
code = re_pattern.sub(replace, code)
with open(fname, "w", encoding="utf-8", newline="\n") as f:
f.write(code)
def global_version_update(version):
"""Update the version in all needed files."""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(fname, version, pattern)
def get_version():
"""Reads the current version in the __init__."""
with open(REPLACE_FILES["init"], "r") as f:
code = f.read()
default_version = REPLACE_PATTERNS["init"][0].search(code).groups()[0]
return packaging.version.parse(default_version)
def pre_release_work(patch=False):
"""Do all the necessary pre-release steps."""
# First let's get the default version: base version if we are in dev, bump minor otherwise.
default_version = get_version()
if patch and default_version.is_devrelease:
raise ValueError("Can't create a patch version from the dev branch, checkout a released version!")
if default_version.is_devrelease:
default_version = default_version.base_version
elif patch:
default_version = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}"
else:
default_version = f"{default_version.major}.{default_version.minor + 1}.0"
# Now let's ask nicely if that's the right one.
version = input(f"Which version are you releasing? [{default_version}]")
if len(version) == 0:
version = default_version
print(f"Updating version to {version}.")
global_version_update(version)
def post_release_work():
"""Do all the necesarry post-release steps."""
# First let's get the current version
current_version = get_version()
dev_version = f"{current_version.major}.{current_version.minor + 1}.0.dev0"
current_version = current_version.base_version
# Check with the user we got that right.
version = input(f"Which version are we developing now? [{dev_version}]")
if len(version) == 0:
version = dev_version
print(f"Updating version to {version}.")
global_version_update(version)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether or not this is post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
args = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 0 |
hf_public_repos/datasets | hf_public_repos/datasets/notebooks/Overview.ipynb | # install datasets
!pip install datasets# Let's import the library. We typically only need at most two methods:
from datasets import list_datasets, load_dataset
from pprint import pprint# Currently available datasets
datasets = list_datasets()
print(f"🤩 Currently {len(datasets)} datasets are available on the hub:")
pprint(datasets[:100] + [f"{len(datasets) - 100} more..."], compact=True)# You can access various attributes of the datasets before downloading them
squad_dataset = list_datasets(with_details=True)[datasets.index('squad')]
pprint(squad_dataset.__dict__) # It's a simple python dataclass# Downloading and loading a dataset
dataset = load_dataset('squad', split='validation[:10%]')# Informations on the dataset (description, citation, size, splits, format...)
# are provided in `dataset.info` (a simple python dataclass) and also as direct attributes in the dataset object
pprint(dataset.info.__dict__)print(dataset)print(f"👉 Dataset len(dataset): {len(dataset)}")
print("\n👉 First item 'dataset[0]':")
pprint(dataset[0])# Or get slices with several examples:
print("\n👉Slice of the two items 'dataset[10:12]':")
pprint(dataset[10:12])# You can get a full column of the dataset by indexing with its name as a string:
print(dataset['question'][:10])print(dataset[0]['question'] == dataset['question'][0])
print(dataset[10:20]['context'] == dataset['context'][10:20])# You can inspect the dataset column names and types
print("Column names:")
pprint(dataset.column_names)
print("Features:")
pprint(dataset.features)# Datasets also have shapes informations
print("The number of rows", dataset.num_rows, "also available as len(dataset)", len(dataset))
print("The number of columns", dataset.num_columns)
print("The shape (rows, columns)", dataset.shape)# Let's print the length of each `context` string in our subset of the dataset
# (10% of the validation i.e. 1057 examples)
dataset.map(lambda example: print(len(example['context']), end=','))from datasets import logging
logging.set_verbosity_warning()
dataset.map(lambda example: print(len(example['context']), end=','))# Let's keep it verbose for our tutorial though
from datasets import logging
logging.set_verbosity_info()# Let's add a prefix 'My cute title: ' to each of our titles
def add_prefix_to_title(example):
example['title'] = 'My cute title: ' + example['title']
return example
prefixed_dataset = dataset.map(add_prefix_to_title)
print(prefixed_dataset.unique('title')) # `.unique()` is a super fast way to print the unique elemnts in a column (see the doc for all the methods)# Since the input example dict is updated with our function output dict,
# we can actually just return the updated 'title' field
titled_dataset = dataset.map(lambda example: {'title': 'My cutest title: ' + example['title']})
print(titled_dataset.unique('title'))# This will remove the 'title' column while doing the update (after having send it the the mapped function so you can use it in your function!)
less_columns_dataset = dataset.map(lambda example: {'new_title': 'Wouhahh: ' + example['title']}, remove_columns=['title'])
print(less_columns_dataset.column_names)
print(less_columns_dataset.unique('new_title'))# This will add the index in the dataset to the 'question' field
with_indices_dataset = dataset.map(lambda example, idx: {'question': f'{idx}: ' + example['question']},
with_indices=True)
pprint(with_indices_dataset['question'][:5])# Let's import a fast tokenizer that can work on batched inputs
# (the 'Fast' tokenizers in HuggingFace)
from transformers import BertTokenizerFast, logging as transformers_logging
transformers_logging.set_verbosity_warning()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased')# Now let's batch tokenize our dataset 'context'
encoded_dataset = dataset.map(lambda example: tokenizer(example['context']), batched=True)
print("encoded_dataset[0]")
pprint(encoded_dataset[0], compact=True)# we have added additional columns
pprint(encoded_dataset.column_names)# Let show a more complex processing with the full preparation of the SQuAD dataset
# for training a model from Transformers
def convert_to_features(batch):
# Tokenize contexts and questions (as pairs of inputs)
encodings = tokenizer(batch['context'], batch['question'], truncation=True)
# Compute start and end tokens for labels
start_positions, end_positions = [], []
for i, answer in enumerate(batch['answers']):
first_char = answer['answer_start'][0]
last_char = first_char + len(answer['text'][0]) - 1
start_positions.append(encodings.char_to_token(i, first_char))
end_positions.append(encodings.char_to_token(i, last_char))
encodings.update({'start_positions': start_positions, 'end_positions': end_positions})
return encodings
encoded_dataset = dataset.map(convert_to_features, batched=True)# Now our dataset comprise the labels for the start and end position
# as well as the offsets for converting back tokens
# in span of the original string for evaluation
print("column_names", encoded_dataset.column_names)
print("start_positions", encoded_dataset[:5]['start_positions'])image_dataset = load_dataset("cats_vs_dogs", split="train")
image_dataset[0]image_dataset[0]["image"]from datasets import load_dataset
audio_dataset = load_dataset("common_voice", "fi", split="train")
audio_dataset[0]audio_dataset[0]["audio"]["array"], audio_dataset[0]["audio"]["sampling_rate"]from datasets import Audio
audio_dataset = audio_dataset.cast_column("audio", Audio(sampling_rate=16_000))
audio_dataset[0]["audio"]["array"], audio_dataset[0]["audio"]["sampling_rate"]columns_to_return = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions']
# Uncomment whichever one is appropriate for you
# encoded_dataset.set_format(type='torch', columns=columns_to_return)
encoded_dataset.set_format(type='tensorflow', columns=columns_to_return)
# Our dataset indexing output is now ready for being used in a pytorch dataloader
pprint(encoded_dataset[1], compact=True)# Note that the columns are not removed from the dataset, just not returned when calling __getitem__
# Similarly the inner type of the dataset is not changed to torch.Tensor, the conversion and filtering is done on-the-fly when querying the dataset
print(encoded_dataset.column_names)# We can remove the formatting with `.reset_format()`
# or, identically, a call to `.set_format()` with no arguments
encoded_dataset.reset_format()
pprint(encoded_dataset[1], compact=True)# The current format can be checked with `.format`,
# which is a dict of the type and formatting
pprint(encoded_dataset.format)import torch
from datasets import load_dataset
from transformers import BertTokenizerFast
# Load our training dataset and tokenizer
dataset = load_dataset('squad')
tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased')
def get_correct_alignement(context, answer):
""" Some original examples in SQuAD have indices wrong by 1 or 2 character. We test and fix this here. """
gold_text = answer['text'][0]
start_idx = answer['answer_start'][0]
end_idx = start_idx + len(gold_text)
if context[start_idx:end_idx] == gold_text:
return start_idx, end_idx # When the gold label position is good
elif context[start_idx-1:end_idx-1] == gold_text:
return start_idx-1, end_idx-1 # When the gold label is off by one character
elif context[start_idx-2:end_idx-2] == gold_text:
return start_idx-2, end_idx-2 # When the gold label is off by two character
else:
raise ValueError()
# Tokenize our training dataset
def convert_to_features(example_batch):
# Tokenize contexts and questions (as pairs of inputs)
encodings = tokenizer(example_batch['context'], example_batch['question'], truncation=True)
# Compute start and end tokens for labels using Transformers's fast tokenizers alignement methods.
start_positions, end_positions = [], []
for i, (context, answer) in enumerate(zip(example_batch['context'], example_batch['answers'])):
start_idx, end_idx = get_correct_alignement(context, answer)
start_positions.append(encodings.char_to_token(i, start_idx))
end_positions.append(encodings.char_to_token(i, end_idx-1))
encodings.update({'start_positions': start_positions, 'end_positions': end_positions})
return encodings
encoded_dataset = dataset.map(convert_to_features, batched=True)
# Format our dataset to outputs torch.Tensor to train a pytorch model
columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions']
encoded_dataset.set_format(type='torch', columns=columns)
# Instantiate a PyTorch Dataloader around our dataset
# Let's do dynamic batching (pad on the fly with our own collate_fn)
def collate_fn(examples):
return tokenizer.pad(examples, return_tensors='pt')
dataloader = torch.utils.data.DataLoader(encoded_dataset['train'], collate_fn=collate_fn, batch_size=8)columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions']
# Let's do dynamic batching (pad on the fly with our own collate_fn)
def collate_fn(examples):
return tokenizer.pad(examples, return_tensors='np')
# to_tf_dataset() returns a tf.data.Dataset that we can pass straight to model.fit().
encoded_tf_dataset = encoded_dataset['train'].to_tf_dataset(
columns=columns,
collate_fn=collate_fn,
batch_size=8,
shuffle=True,
)# Let's load a pretrained Bert model and a simple optimizer
from transformers import AutoModelForQuestionAnswering
model = AutoModelForQuestionAnswering.from_pretrained('bert-base-cased', return_dict=True)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)# Now let's train our model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.train().to(device)
for i, batch in enumerate(dataloader):
batch.to(device)
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
model.zero_grad()
print(f'Step {i} - loss: {loss:.3}')
if i > 5:
break# Let's load a pretrained Bert model and a simple optimizer
from transformers import TFAutoModelForQuestionAnswering
import tensorflow as tf
model = TFAutoModelForQuestionAnswering.from_pretrained('bert-base-cased')
# No loss argument!
model.compile(optimizer=tf.keras.optimizers.Adam(1e-5))model.fit(encoded_tf_dataset, epochs=1, steps_per_epoch=3) | 0 |
hf_public_repos/datasets | hf_public_repos/datasets/notebooks/README.md | <!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# 🤗 Datasets Notebooks
You can find here a list of the official notebooks provided by Hugging Face.
Also, we would like to list here interesting content created by the community.
If you wrote some notebook(s) leveraging 🤗 Datasets and would like be listed here, please open a
Pull Request so it can be included under the Community notebooks.
## Hugging Face's notebooks 🤗
### Documentation notebooks
You can open any page of the documentation as a notebook in Colab (there is a button directly on said pages) but they are also listed here if you need them:
| Notebook | Description | | |
|:----------|:-------------|:-------------|------:|
| [Quickstart](https://github.com/huggingface/notebooks/blob/main/datasets_doc/en/quickstart.ipynb) | A quick presentation on integrating Datasets into a model training workflow |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/datasets_doc/en/quickstart.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/datasets_doc/en/quickstart.ipynb)|
| 0 |
hf_public_repos/datasets | hf_public_repos/datasets/benchmarks/benchmark_indices_mapping.py | import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
SPEED_TEST_N_EXAMPLES = 500_000
RESULTS_BASEPATH, RESULTS_FILENAME = os.path.split(__file__)
RESULTS_FILE_PATH = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def select(dataset: datasets.Dataset):
_ = dataset.select(range(0, len(dataset), 2))
@get_duration
def sort(dataset: datasets.Dataset):
_ = dataset.sort("numbers")
@get_duration
def shuffle(dataset: datasets.Dataset):
_ = dataset.shuffle()
@get_duration
def train_test_split(dataset: datasets.Dataset):
_ = dataset.train_test_split(0.1)
@get_duration
def shard(dataset: datasets.Dataset, num_shards=10):
for shard_id in range(num_shards):
_ = dataset.shard(num_shards, shard_id)
def benchmark_indices_mapping():
times = {"num examples": SPEED_TEST_N_EXAMPLES}
functions = (select, sort, shuffle, train_test_split, shard)
with tempfile.TemporaryDirectory() as tmp_dir:
print("generating dataset")
features = datasets.Features({"text": datasets.Value("string"), "numbers": datasets.Value("float32")})
dataset = generate_example_dataset(
os.path.join(tmp_dir, "dataset.arrow"), features, num_examples=SPEED_TEST_N_EXAMPLES
)
print("Functions")
for func in functions:
print(func.__name__)
times[func.__name__] = func(dataset)
with open(RESULTS_FILE_PATH, "wb") as f:
f.write(json.dumps(times).encode("utf-8"))
if __name__ == "__main__": # useful to run the profiler
benchmark_indices_mapping()
| 0 |
hf_public_repos/datasets | hf_public_repos/datasets/benchmarks/benchmark_array_xd.py | import json
import os
import tempfile
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features import Array2D
from utils import generate_examples, get_duration
SHAPE_TEST_1 = (30, 487)
SHAPE_TEST_2 = (36, 1024)
SPEED_TEST_SHAPE = (100, 100)
SPEED_TEST_N_EXAMPLES = 100
DEFAULT_FEATURES = datasets.Features(
{"text": Array2D(SHAPE_TEST_1, dtype="float32"), "image": Array2D(SHAPE_TEST_2, dtype="float32")}
)
RESULTS_BASEPATH, RESULTS_FILENAME = os.path.split(__file__)
RESULTS_FILE_PATH = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def write(my_features, dummy_data, tmp_dir):
with ArrowWriter(features=my_features, path=os.path.join(tmp_dir, "beta.arrow")) as writer:
for key, record in dummy_data:
example = my_features.encode_example(record)
writer.write(example)
num_examples, num_bytes = writer.finalize()
@get_duration
def read_unformated(feats, tmp_dir):
dataset = datasets.Dataset.from_file(
filename=os.path.join(tmp_dir, "beta.arrow"), info=datasets.DatasetInfo(features=feats)
)
for _ in dataset:
pass
@get_duration
def read_formatted_as_numpy(feats, tmp_dir):
dataset = datasets.Dataset.from_file(
filename=os.path.join(tmp_dir, "beta.arrow"), info=datasets.DatasetInfo(features=feats)
)
dataset.set_format("numpy")
for _ in dataset:
pass
@get_duration
def read_batch_unformated(feats, tmp_dir):
batch_size = 10
dataset = datasets.Dataset.from_file(
filename=os.path.join(tmp_dir, "beta.arrow"), info=datasets.DatasetInfo(features=feats)
)
for i in range(0, len(dataset), batch_size):
_ = dataset[i : i + batch_size]
@get_duration
def read_batch_formatted_as_numpy(feats, tmp_dir):
batch_size = 10
dataset = datasets.Dataset.from_file(
filename=os.path.join(tmp_dir, "beta.arrow"), info=datasets.DatasetInfo(features=feats)
)
dataset.set_format("numpy")
for i in range(0, len(dataset), batch_size):
_ = dataset[i : i + batch_size]
@get_duration
def read_col_unformated(feats, tmp_dir):
dataset = datasets.Dataset.from_file(
filename=os.path.join(tmp_dir, "beta.arrow"), info=datasets.DatasetInfo(features=feats)
)
for col in feats:
_ = dataset[col]
@get_duration
def read_col_formatted_as_numpy(feats, tmp_dir):
dataset = datasets.Dataset.from_file(
filename=os.path.join(tmp_dir, "beta.arrow"), info=datasets.DatasetInfo(features=feats)
)
dataset.set_format("numpy")
for col in feats:
_ = dataset[col]
def benchmark_array_xd():
times = {}
read_functions = (
read_unformated,
read_formatted_as_numpy,
read_batch_unformated,
read_batch_formatted_as_numpy,
read_col_unformated,
read_col_formatted_as_numpy,
)
with tempfile.TemporaryDirectory() as tmp_dir:
feats = datasets.Features({"image": Array2D(SPEED_TEST_SHAPE, dtype="float32")})
data = generate_examples(features=feats, num_examples=SPEED_TEST_N_EXAMPLES)
times["write_array2d"] = write(feats, data, tmp_dir)
for read_func in read_functions:
times[read_func.__name__ + " after write_array2d"] = read_func(feats, tmp_dir)
with tempfile.TemporaryDirectory() as tmp_dir:
# don't use fixed length for fair comparison
# feats = datasets.Features(
# {"image": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), SPEED_TEST_SHAPE[1]), SPEED_TEST_SHAPE[0])}
# )
feats = datasets.Features({"image": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))})
data = generate_examples(
features=feats, num_examples=SPEED_TEST_N_EXAMPLES, seq_shapes={"image": SPEED_TEST_SHAPE}
)
times["write_nested_sequence"] = write(feats, data, tmp_dir)
for read_func in read_functions:
times[read_func.__name__ + " after write_nested_sequence"] = read_func(feats, tmp_dir)
with tempfile.TemporaryDirectory() as tmp_dir:
# don't use fixed length for fair comparison
# feats = datasets.Features(
# {"image": datasets.Sequence(datasets.Value("float32"), SPEED_TEST_SHAPE[0] * SPEED_TEST_SHAPE[1])}
# )
feats = datasets.Features({"image": datasets.Sequence(datasets.Value("float32"))})
data = generate_examples(
features=feats,
num_examples=SPEED_TEST_N_EXAMPLES,
seq_shapes={"image": [SPEED_TEST_SHAPE[0] * SPEED_TEST_SHAPE[1]]},
)
times["write_flattened_sequence"] = write(feats, data, tmp_dir)
for read_func in read_functions:
times[read_func.__name__ + " after write_flattened_sequence"] = read_func(feats, tmp_dir)
with open(RESULTS_FILE_PATH, "wb") as f:
f.write(json.dumps(times).encode("utf-8"))
if __name__ == "__main__": # useful to run the profiler
benchmark_array_xd()
| 0 |
hf_public_repos/datasets | hf_public_repos/datasets/benchmarks/format.py | import json
import sys
def format_json_to_md(input_json_file, output_md_file):
with open(input_json_file, encoding="utf-8") as f:
results = json.load(f)
output_md = ["<details>", "<summary>Show updated benchmarks!</summary>", " "]
for benchmark_name in sorted(results):
benchmark_res = results[benchmark_name]
benchmark_file_name = benchmark_name.split("/")[-1]
output_md.append(f"### Benchmark: {benchmark_file_name}")
title = "| metric |"
lines = "|--------|"
value = "| new / old (diff) |"
for metric_name in sorted(benchmark_res):
metric_vals = benchmark_res[metric_name]
new_val = metric_vals["new"]
old_val = metric_vals.get("old", None)
dif_val = metric_vals.get("diff", None)
val_str = f" {new_val:f}" if isinstance(new_val, (int, float)) else "None"
if old_val is not None:
val_str += f" / {old_val:f}" if isinstance(old_val, (int, float)) else "None"
if dif_val is not None:
val_str += f" ({dif_val:f})" if isinstance(dif_val, (int, float)) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append("</details>")
with open(output_md_file, "w", encoding="utf-8") as f:
f.writelines("\n".join(output_md))
if __name__ == "__main__":
input_json_file = sys.argv[1]
output_md_file = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 0 |
hf_public_repos/datasets | hf_public_repos/datasets/benchmarks/benchmark_getitem_100B.py | import json
import os
from dataclasses import dataclass
import numpy as np
import pyarrow as pa
import datasets
from utils import get_duration
SPEED_TEST_N_EXAMPLES = 100_000_000_000
SPEED_TEST_CHUNK_SIZE = 10_000
RESULTS_BASEPATH, RESULTS_FILENAME = os.path.split(__file__)
RESULTS_FILE_PATH = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
def generate_100B_dataset(num_examples: int, chunk_size: int) -> datasets.Dataset:
table = pa.Table.from_pydict({"col": [0] * chunk_size})
table = pa.concat_tables([table] * (num_examples // chunk_size))
return datasets.Dataset(table, fingerprint="table_100B")
@dataclass
class RandIter:
low: int
high: int
size: int
seed: int
def __post_init__(self):
rng = np.random.default_rng(self.seed)
self._sampled_values = rng.integers(low=self.low, high=self.high, size=self.size).tolist()
def __iter__(self):
return iter(self._sampled_values)
def __len__(self):
return self.size
@get_duration
def get_first_row(dataset: datasets.Dataset):
_ = dataset[0]
@get_duration
def get_last_row(dataset: datasets.Dataset):
_ = dataset[-1]
@get_duration
def get_batch_of_1024_rows(dataset: datasets.Dataset):
_ = dataset[range(len(dataset) // 2, len(dataset) // 2 + 1024)]
@get_duration
def get_batch_of_1024_random_rows(dataset: datasets.Dataset):
_ = dataset[RandIter(0, len(dataset), 1024, seed=42)]
def benchmark_table_100B():
times = {"num examples": SPEED_TEST_N_EXAMPLES}
functions = (get_first_row, get_last_row, get_batch_of_1024_rows, get_batch_of_1024_random_rows)
print("generating dataset")
dataset = generate_100B_dataset(num_examples=SPEED_TEST_N_EXAMPLES, chunk_size=SPEED_TEST_CHUNK_SIZE)
print("Functions")
for func in functions:
print(func.__name__)
times[func.__name__] = func(dataset)
with open(RESULTS_FILE_PATH, "wb") as f:
f.write(json.dumps(times).encode("utf-8"))
if __name__ == "__main__": # useful to run the profiler
benchmark_table_100B()
| 0 |
hf_public_repos/datasets | hf_public_repos/datasets/benchmarks/benchmark_map_filter.py | import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
SPEED_TEST_N_EXAMPLES = 500_000
RESULTS_BASEPATH, RESULTS_FILENAME = os.path.split(__file__)
RESULTS_FILE_PATH = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def map(dataset: datasets.Dataset, **kwargs):
_ = dataset.map(**kwargs)
@get_duration
def filter(dataset: datasets.Dataset, **kwargs):
_ = dataset.filter(**kwargs)
def benchmark_map_filter():
times = {"num examples": SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
features = datasets.Features({"text": datasets.Value("string"), "numbers": datasets.Value("float32")})
dataset = generate_example_dataset(
os.path.join(tmp_dir, "dataset.arrow"), features, num_examples=SPEED_TEST_N_EXAMPLES
)
tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-cased", use_fast=True)
def tokenize(examples):
return tokenizer(examples["text"])
times["map identity"] = map(dataset)
times["map identity batched"] = map(dataset, batched=True)
times["map no-op batched"] = map(dataset, function=lambda x: None, batched=True)
with dataset.formatted_as(type="numpy"):
times["map no-op batched numpy"] = map(dataset, function=lambda x: None, batched=True)
with dataset.formatted_as(type="pandas"):
times["map no-op batched pandas"] = map(dataset, function=lambda x: None, batched=True)
with dataset.formatted_as(type="torch", columns="numbers"):
times["map no-op batched pytorch"] = map(dataset, function=lambda x: None, batched=True)
with dataset.formatted_as(type="tensorflow", columns="numbers"):
times["map no-op batched tensorflow"] = map(dataset, function=lambda x: None, batched=True)
times["map fast-tokenizer batched"] = map(dataset, function=tokenize, batched=True)
times["filter"] = filter(dataset)
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(RESULTS_FILE_PATH, "wb") as f:
f.write(json.dumps(times).encode("utf-8"))
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 0 |
hf_public_repos/datasets | hf_public_repos/datasets/benchmarks/utils.py | import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def get_duration(func):
def wrapper(*args, **kwargs):
starttime = timeit.default_timer()
_ = func(*args, **kwargs)
delta = timeit.default_timer() - starttime
return delta
wrapper.__name__ = func.__name__
return wrapper
def generate_examples(features: dict, num_examples=100, seq_shapes=None):
dummy_data = []
seq_shapes = seq_shapes or {}
for i in range(num_examples):
example = {}
for col_id, (k, v) in enumerate(features.items()):
if isinstance(v, _ArrayXD):
data = np.random.rand(*v.shape).astype(v.dtype)
elif isinstance(v, datasets.Value):
if v.dtype == "string":
data = "The small grey turtle was surprisingly fast when challenged."
else:
data = np.random.randint(10, size=1).astype(v.dtype).item()
elif isinstance(v, datasets.Sequence):
while isinstance(v, datasets.Sequence):
v = v.feature
shape = seq_shapes[k]
data = np.random.rand(*shape).astype(v.dtype)
example[k] = data
dummy_data.append((i, example))
return dummy_data
def generate_example_dataset(dataset_path, features, num_examples=100, seq_shapes=None):
dummy_data = generate_examples(features, num_examples=num_examples, seq_shapes=seq_shapes)
with ArrowWriter(features=features, path=dataset_path) as writer:
for key, record in dummy_data:
example = features.encode_example(record)
writer.write(example)
num_final_examples, num_bytes = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}."
)
dataset = datasets.Dataset.from_file(filename=dataset_path, info=datasets.DatasetInfo(features=features))
return dataset
| 0 |
hf_public_repos/datasets | hf_public_repos/datasets/benchmarks/benchmark_iterating.py | import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
SPEED_TEST_N_EXAMPLES = 50_000
SMALL_TEST = 5_000
RESULTS_BASEPATH, RESULTS_FILENAME = os.path.split(__file__)
RESULTS_FILE_PATH = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def read(dataset: datasets.Dataset, length):
for i in range(length):
_ = dataset[i]
@get_duration
def read_batch(dataset: datasets.Dataset, length, batch_size):
for i in range(0, len(dataset), batch_size):
_ = dataset[i : i + batch_size]
@get_duration
def read_formatted(dataset: datasets.Dataset, length, type):
with dataset.formatted_as(type=type):
for i in range(length):
_ = dataset[i]
@get_duration
def read_formatted_batch(dataset: datasets.Dataset, length, batch_size, type):
with dataset.formatted_as(type=type):
for i in range(0, length, batch_size):
_ = dataset[i : i + batch_size]
def benchmark_iterating():
times = {"num examples": SPEED_TEST_N_EXAMPLES}
functions = [
(read, {"length": SMALL_TEST}),
(read, {"length": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}),
(read_formatted, {"type": "numpy", "length": SMALL_TEST}),
(read_formatted, {"type": "pandas", "length": SMALL_TEST}),
(read_formatted, {"type": "torch", "length": SMALL_TEST}),
(read_formatted, {"type": "tensorflow", "length": SMALL_TEST}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}),
]
functions_shuffled = [
(read, {"length": SMALL_TEST}),
(read, {"length": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}),
(read_formatted, {"type": "numpy", "length": SMALL_TEST}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print("generating dataset")
features = datasets.Features(
{"list": datasets.Sequence(datasets.Value("float32")), "numbers": datasets.Value("float32")}
)
dataset = generate_example_dataset(
os.path.join(tmp_dir, "dataset.arrow"),
features,
num_examples=SPEED_TEST_N_EXAMPLES,
seq_shapes={"list": (100,)},
)
print("first set of iterations")
for func, kwargs in functions:
print(func.__name__, str(kwargs))
times[func.__name__ + " " + " ".join(str(v) for v in kwargs.values())] = func(dataset, **kwargs)
print("shuffling dataset")
dataset = dataset.shuffle()
print("Second set of iterations (after shuffling")
for func, kwargs in functions_shuffled:
print("shuffled ", func.__name__, str(kwargs))
times["shuffled " + func.__name__ + " " + " ".join(str(v) for v in kwargs.values())] = func(
dataset, **kwargs
)
with open(RESULTS_FILE_PATH, "wb") as f:
f.write(json.dumps(times).encode("utf-8"))
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 0 |
hf_public_repos/datasets/benchmarks | hf_public_repos/datasets/benchmarks/results/benchmark_indices_mapping.json | {"num examples": 500000, "select": 0.03741131999413483, "sort": 0.7371353159978753, "shuffle": 0.17655655200360343, "train_test_split": 0.29633847798686475, "shard": 0.01452581599005498} | 0 |
hf_public_repos/datasets/benchmarks | hf_public_repos/datasets/benchmarks/results/benchmark_array_xd.json | {"write_array2d": 0.14168284999323077, "read_unformated after write_array2d": 0.04353281999647152, "read_formatted_as_numpy after write_array2d": 0.1285462469968479, "read_batch_unformated after write_array2d": 0.023109222995117307, "read_batch_formatted_as_numpy after write_array2d": 0.011352884990628809, "read_col_unformated after write_array2d": 0.037052362007671036, "read_col_formatted_as_numpy after write_array2d": 0.007985618998645805, "write_nested_sequence": 1.4927163410029607, "read_unformated after write_nested_sequence": 0.28319963401008863, "read_formatted_as_numpy after write_nested_sequence": 0.419271487990045, "read_batch_unformated after write_nested_sequence": 0.3234798710036557, "read_batch_formatted_as_numpy after write_nested_sequence": 0.03850809299910907, "read_col_unformated after write_nested_sequence": 0.29384092400141526, "read_col_formatted_as_numpy after write_nested_sequence": 0.004250421989127062, "write_flattened_sequence": 1.4521546780015342, "read_unformated after write_flattened_sequence": 0.25513897799828555, "read_formatted_as_numpy after write_flattened_sequence": 0.07564631900459062, "read_batch_unformated after write_flattened_sequence": 0.2758980469952803, "read_batch_formatted_as_numpy after write_flattened_sequence": 0.011008214991306886, "read_col_unformated after write_flattened_sequence": 0.25848906899045687, "read_col_formatted_as_numpy after write_flattened_sequence": 0.004328447001171298} | 0 |
hf_public_repos/datasets/benchmarks | hf_public_repos/datasets/benchmarks/results/benchmark_map_filter.json | {"num examples": 500000, "map identity": 10.19139202599763, "map identity batched": 0.6804238399927272, "map no-op batched": 0.5342009569867514, "map no-op batched numpy": 0.5792830920108827, "map no-op batched pandas": 0.4343639040016569, "map no-op batched pytorch": 0.5403374370071106, "map no-op batched tensorflow": 1.3869360350072384, "map fast-tokenizer batched": 8.074308118986664, "filter": 1.841787679004483} | 0 |
hf_public_repos/datasets/benchmarks | hf_public_repos/datasets/benchmarks/results/benchmark_iterating.json | {"num examples": 50000, "read 5000": 0.2152090710005723, "read 50000": 2.077654693988734, "read_batch 50000 10": 1.5041199039987987, "read_batch 50000 100": 1.5411947140091797, "read_batch 50000 1000": 1.4684901159926085, "read_formatted numpy 5000": 4.584776938994764, "read_formatted pandas 5000": 3.7457121399929747, "read_formatted torch 5000": 4.565676491998602, "read_formatted tensorflow 5000": 5.269861594992108, "read_formatted_batch numpy 5000 10": 0.4242750950070331, "read_formatted_batch numpy 5000 1000": 0.007607111998368055, "shuffled read 5000": 0.22604441999283154, "shuffled read 50000": 2.268928524994408, "shuffled read_batch 50000 10": 55.44462437101174, "shuffled read_batch 50000 100": 6.876476717996411, "shuffled read_batch 50000 1000": 2.1420724369963864, "shuffled read_formatted numpy 5000": 4.8052272600034485, "shuffled read_formatted_batch numpy 5000 10": 6.500664097999106, "shuffled read_formatted_batch numpy 5000 1000": 0.0754691059992183} | 0 |
hf_public_repos/datasets/benchmarks | hf_public_repos/datasets/benchmarks/results/benchmark_getitem_100B.json | {"num examples": 100000000000, "get_first_row": 0.00019991099999927542, "get_last_row": 5.4411000000698095e-05, "get_batch_of_1024_rows": 0.0004897069999998394, "get_batch_of_1024_random_rows": 0.01800621099999944} | 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/builder.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""DatasetBuilder base class."""
import abc
import contextlib
import copy
import inspect
import os
import posixpath
import shutil
import textwrap
import time
import urllib
import warnings
from dataclasses import dataclass
from functools import partial
from pathlib import Path
from typing import Dict, Iterable, Mapping, Optional, Tuple, Union
import fsspec
import pyarrow as pa
from multiprocess import Pool
from tqdm.contrib.concurrent import thread_map
from . import config, utils
from .arrow_dataset import Dataset
from .arrow_reader import (
HF_GCP_BASE_URL,
ArrowReader,
DatasetNotOnHfGcsError,
MissingFilesOnHfGcsError,
ReadInstruction,
)
from .arrow_writer import ArrowWriter, BeamWriter, ParquetWriter, SchemaInferenceError
from .data_files import DataFilesDict, sanitize_patterns
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download.download_config import DownloadConfig
from .download.download_manager import DownloadManager, DownloadMode
from .download.mock_download_manager import MockDownloadManager
from .download.streaming_download_manager import StreamingDownloadManager, xopen
from .features import Features
from .filesystems import (
is_remote_filesystem,
rename,
)
from .fingerprint import Hasher
from .info import DatasetInfo, DatasetInfosDict, PostProcessedInfo
from .iterable_dataset import ArrowExamplesIterable, ExamplesIterable, IterableDataset
from .keyhash import DuplicatedKeysError
from .naming import INVALID_WINDOWS_CHARACTERS_IN_PATH, camelcase_to_snakecase
from .splits import Split, SplitDict, SplitGenerator, SplitInfo
from .streaming import extend_dataset_builder_for_streaming
from .utils import logging
from .utils.file_utils import cached_path, is_remote_url
from .utils.filelock import FileLock
from .utils.info_utils import VerificationMode, get_size_checksum_dict, verify_checksums, verify_splits
from .utils.py_utils import (
classproperty,
convert_file_size_to_int,
has_sufficient_disk_space,
iflatmap_unordered,
map_nested,
memoize,
size_str,
temporary_assignment,
)
from .utils.sharding import _number_of_shards_in_gen_kwargs, _split_gen_kwargs
logger = logging.get_logger(__name__)
class InvalidConfigName(ValueError):
pass
class DatasetBuildError(Exception):
pass
class ManualDownloadError(DatasetBuildError):
pass
class DatasetGenerationError(DatasetBuildError):
pass
class FileFormatError(DatasetBuildError):
pass
@dataclass
class BuilderConfig:
"""Base class for `DatasetBuilder` data configuration.
`DatasetBuilder` subclasses with data configuration options should subclass
`BuilderConfig` and add their own properties.
Attributes:
name (`str`, defaults to `default`):
The name of the configuration.
version (`Version` or `str`, defaults to `0.0.0`):
The version of the configuration.
data_dir (`str`, *optional*):
Path to the directory containing the source data.
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
description (`str`, *optional*):
A human description of the configuration.
"""
name: str = "default"
version: Optional[Union[utils.Version, str]] = utils.Version("0.0.0")
data_dir: Optional[str] = None
data_files: Optional[DataFilesDict] = None
description: Optional[str] = None
def __post_init__(self):
# The config name is used to name the cache directory.
for invalid_char in INVALID_WINDOWS_CHARACTERS_IN_PATH:
if invalid_char in self.name:
raise InvalidConfigName(
f"Bad characters from black list '{INVALID_WINDOWS_CHARACTERS_IN_PATH}' found in '{self.name}'. "
f"They could create issues when creating a directory for this config on Windows filesystem."
)
if self.data_files is not None and not isinstance(self.data_files, DataFilesDict):
raise ValueError(f"Expected a DataFilesDict in data_files but got {self.data_files}")
def __eq__(self, o):
# we need to override the default dataclass __eq__ since it doesn't check for
# other attributes that the ones of the signature.
if set(self.__dict__.keys()) != set(o.__dict__.keys()):
return False
return all((k, getattr(self, k)) == (k, getattr(o, k)) for k in self.__dict__.keys())
def create_config_id(
self,
config_kwargs: dict,
custom_features: Optional[Features] = None,
) -> str:
"""
The config id is used to build the cache directory.
By default it is equal to the config name.
However the name of a config is not sufficient to have a unique identifier for the dataset being generated
since it doesn't take into account:
- the config kwargs that can be used to overwrite attributes
- the custom features used to write the dataset
- the data_files for json/text/csv/pandas datasets
Therefore the config id is just the config name with an optional suffix based on these.
"""
# Possibly add a suffix to the name to handle custom features/data_files/config_kwargs
suffix: Optional[str] = None
config_kwargs_to_add_to_suffix = config_kwargs.copy()
# name and version are already used to build the cache directory
config_kwargs_to_add_to_suffix.pop("name", None)
config_kwargs_to_add_to_suffix.pop("version", None)
# data dir handling (when specified it points to the manually downloaded data):
# it was previously ignored before the introduction of config id because we didn't want
# to change the config name. Now it's fine to take it into account for the config id.
# config_kwargs_to_add_to_suffix.pop("data_dir", None)
if "data_dir" in config_kwargs_to_add_to_suffix:
if config_kwargs_to_add_to_suffix["data_dir"] is None:
config_kwargs_to_add_to_suffix.pop("data_dir", None)
else:
# canonicalize the data dir to avoid two paths to the same location having different
# hashes
data_dir = config_kwargs_to_add_to_suffix["data_dir"]
data_dir = os.path.normpath(data_dir)
config_kwargs_to_add_to_suffix["data_dir"] = data_dir
if config_kwargs_to_add_to_suffix:
# we don't care about the order of the kwargs
config_kwargs_to_add_to_suffix = {
k: config_kwargs_to_add_to_suffix[k] for k in sorted(config_kwargs_to_add_to_suffix)
}
if all(isinstance(v, (str, bool, int, float)) for v in config_kwargs_to_add_to_suffix.values()):
suffix = ",".join(
str(k) + "=" + urllib.parse.quote_plus(str(v)) for k, v in config_kwargs_to_add_to_suffix.items()
)
if len(suffix) > 32: # hash if too long
suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
else:
suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
if custom_features is not None:
m = Hasher()
if suffix:
m.update(suffix)
m.update(custom_features)
suffix = m.hexdigest()
if suffix:
config_id = self.name + "-" + suffix
if len(config_id) > config.MAX_DATASET_CONFIG_ID_READABLE_LENGTH:
config_id = self.name + "-" + Hasher.hash(suffix)
return config_id
else:
return self.name
class DatasetBuilder:
"""Abstract base class for all datasets.
`DatasetBuilder` has 3 key methods:
- [`DatasetBuilder.info`]: Documents the dataset, including feature
names, types, shapes, version, splits, citation, etc.
- [`DatasetBuilder.download_and_prepare`]: Downloads the source data
and writes it to disk.
- [`DatasetBuilder.as_dataset`]: Generates a [`Dataset`].
Some `DatasetBuilder`s expose multiple variants of the
dataset by defining a [`BuilderConfig`] subclass and accepting a
config object (or name) on construction. Configurable datasets expose a
pre-defined set of configurations in [`DatasetBuilder.builder_configs`].
Args:
cache_dir (`str`, *optional*):
Directory to cache data. Defaults to `"~/.cache/huggingface/datasets"`.
dataset_name (`str`, *optional*):
Name of the dataset, if different from the builder name. Useful for packaged builders
like csv, imagefolder, audiofolder, etc. to reflect the difference between datasets
that use the same packaged builder.
config_name (`str`, *optional*):
Name of the dataset configuration.
It affects the data generated on disk. Different configurations will have their own subdirectories and
versions.
If not provided, the default configuration is used (if it exists).
<Added version="2.3.0">
Parameter `name` was renamed to `config_name`.
</Added>
hash (`str`, *optional*):
Hash specific to the dataset code. Used to update the caching directory when the
dataset loading script code is updated (to avoid reusing old data).
The typical caching directory (defined in `self._relative_data_dir`) is `name/version/hash/`.
base_path (`str`, *optional*):
Base path for relative paths that are used to download files.
This can be a remote URL.
features ([`Features`], *optional*):
Features types to use with this dataset.
It can be used to change the [`Features`] types of a dataset, for example.
token (`str` or `bool`, *optional*):
String or boolean to use as Bearer token for remote files on the
Datasets Hub. If `True`, will get token from `"~/.huggingface"`.
repo_id (`str`, *optional*):
ID of the dataset repository.
Used to distinguish builders with the same name but not coming from the same namespace, for example "squad"
and "lhoestq/squad" repo IDs. In the latter, the builder name would be "lhoestq___squad".
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
For builders like "csv" or "json" that need the user to specify data files. They can be either
local or remote files. For convenience, you can use a `DataFilesDict`.
data_dir (`str`, *optional*):
Path to directory containing source data file(s).
Use only if `data_files` is not passed, in which case it is equivalent to passing
`os.path.join(data_dir, "**")` as `data_files`.
For builders that require manual download, it must be the path to the local directory containing the
manually downloaded data.
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the dataset file-system backend, if any.
writer_batch_size (`int`, *optional*):
Batch size used by the ArrowWriter.
It defines the number of samples that are kept in memory before writing them
and also the length of the arrow chunks.
None means that the ArrowWriter will use its default value.
name (`str`): Configuration name for the dataset.
<Deprecated version="2.3.0">
Use `config_name` instead.
</Deprecated>
**config_kwargs (additional keyword arguments): Keyword arguments to be passed to the corresponding builder
configuration class, set on the class attribute [`DatasetBuilder.BUILDER_CONFIG_CLASS`]. The builder
configuration class is [`BuilderConfig`] or a subclass of it.
"""
# Default version
VERSION = None # Default version set in BuilderConfig
# Class for the builder config.
BUILDER_CONFIG_CLASS = BuilderConfig
# Named configurations that modify the data generated by download_and_prepare.
BUILDER_CONFIGS = []
# Optional default config name to be used when name is None
DEFAULT_CONFIG_NAME = None
# Default batch size used by the ArrowWriter
# It defines the number of samples that are kept in memory before writing them
# and also the length of the arrow chunks
# None means that the ArrowWriter will use its default value
DEFAULT_WRITER_BATCH_SIZE = None
def __init__(
self,
cache_dir: Optional[str] = None,
dataset_name: Optional[str] = None,
config_name: Optional[str] = None,
hash: Optional[str] = None,
base_path: Optional[str] = None,
info: Optional[DatasetInfo] = None,
features: Optional[Features] = None,
token: Optional[Union[bool, str]] = None,
use_auth_token="deprecated",
repo_id: Optional[str] = None,
data_files: Optional[Union[str, list, dict, DataFilesDict]] = None,
data_dir: Optional[str] = None,
storage_options: Optional[dict] = None,
writer_batch_size: Optional[int] = None,
name="deprecated",
**config_kwargs,
):
if use_auth_token != "deprecated":
warnings.warn(
"'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n"
f"You can remove this warning by passing 'token={use_auth_token}' instead.",
FutureWarning,
)
token = use_auth_token
if name != "deprecated":
warnings.warn(
"Parameter 'name' was renamed to 'config_name' in version 2.3.0 and will be removed in 3.0.0.",
category=FutureWarning,
)
config_name = name
# DatasetBuilder name
self.name: str = camelcase_to_snakecase(self.__module__.split(".")[-1])
self.hash: Optional[str] = hash
self.base_path = base_path
self.token = token
# For backwards compatibility (e.g. if accessed in a dataset script)
self.use_auth_token = token
self.repo_id = repo_id
self.storage_options = storage_options or {}
self.dataset_name = camelcase_to_snakecase(dataset_name) if dataset_name else self.name
self._writer_batch_size = writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
if data_files is not None and not isinstance(data_files, DataFilesDict):
data_files = DataFilesDict.from_patterns(
sanitize_patterns(data_files),
base_path=base_path,
download_config=DownloadConfig(token=token, storage_options=self.storage_options),
)
# Prepare config: DatasetConfig contains name, version and description but can be extended by each dataset
if "features" in inspect.signature(self.BUILDER_CONFIG_CLASS.__init__).parameters and features is not None:
config_kwargs["features"] = features
if data_files is not None:
config_kwargs["data_files"] = data_files
if data_dir is not None:
config_kwargs["data_dir"] = data_dir
self.config, self.config_id = self._create_builder_config(
config_name=config_name,
custom_features=features,
**config_kwargs,
)
# prepare info: DatasetInfo are a standardized dataclass across all datasets
# Prefill datasetinfo
if info is None:
# TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense
info = self.get_exported_dataset_info()
info.update(self._info())
info.builder_name = self.name
info.dataset_name = self.dataset_name
info.config_name = self.config.name
info.version = self.config.version
self.info = info
# update info with user specified infos
if features is not None:
self.info.features = features
# Prepare data dirs:
# cache_dir can be a remote bucket on GCS or S3 (when using BeamBasedBuilder for distributed data processing)
self._cache_dir_root = str(cache_dir or config.HF_DATASETS_CACHE)
self._cache_dir_root = (
self._cache_dir_root if is_remote_url(self._cache_dir_root) else os.path.expanduser(self._cache_dir_root)
)
path_join = posixpath.join if is_remote_url(self._cache_dir_root) else os.path.join
self._cache_downloaded_dir = (
path_join(self._cache_dir_root, config.DOWNLOADED_DATASETS_DIR)
if cache_dir
else str(config.DOWNLOADED_DATASETS_PATH)
)
self._cache_downloaded_dir = (
self._cache_downloaded_dir
if is_remote_url(self._cache_downloaded_dir)
else os.path.expanduser(self._cache_downloaded_dir)
)
self._cache_dir = self._build_cache_dir()
if not is_remote_url(self._cache_dir_root):
os.makedirs(self._cache_dir_root, exist_ok=True)
lock_path = os.path.join(self._cache_dir_root, self._cache_dir.replace(os.sep, "_") + ".lock")
with FileLock(lock_path):
if os.path.exists(self._cache_dir): # check if data exist
if len(os.listdir(self._cache_dir)) > 0:
if os.path.exists(path_join(self._cache_dir, config.DATASET_INFO_FILENAME)):
logger.info("Overwrite dataset info from restored data version if exists.")
self.info = DatasetInfo.from_directory(self._cache_dir)
else: # dir exists but no data, remove the empty dir as data aren't available anymore
logger.warning(
f"Old caching folder {self._cache_dir} for dataset {self.dataset_name} exists but no data were found. Removing it. "
)
os.rmdir(self._cache_dir)
# Store in the cache by default unless the user specifies a custom output_dir to download_and_prepare
self._output_dir = self._cache_dir
self._fs: fsspec.AbstractFileSystem = fsspec.filesystem("file")
# Set download manager
self.dl_manager = None
# Set to True by "datasets-cli test" to generate file checksums for (deprecated) dataset_infos.json independently of verification_mode value.
self._record_infos = False
# Set in `.download_and_prepare` once the format of the generated dataset is known
self._file_format = None
# Enable streaming (e.g. it patches "open" to work with remote files)
extend_dataset_builder_for_streaming(self)
def __getstate__(self):
return self.__dict__
def __setstate__(self, d):
self.__dict__ = d
# Re-enable streaming, since patched functions are not kept when pickling
extend_dataset_builder_for_streaming(self)
# Must be set for datasets that use 'data_dir' functionality - the ones
# that require users to do additional steps to download the data
# (this is usually due to some external regulations / rules).
# This field should contain a string with user instructions, including
# the list of files that should be present. It will be
# displayed in the dataset documentation.
@property
def manual_download_instructions(self) -> Optional[str]:
return None
def _has_legacy_cache(self) -> bool:
"""Check for the old cache directory template {cache_dir}/{namespace}___{builder_name}"""
if (
self.__module__.startswith("datasets.")
and not is_remote_url(self._cache_dir_root)
and self.config.name == "default"
):
namespace = self.repo_id.split("/")[0] if self.repo_id and self.repo_id.count("/") > 0 else None
legacy_config_name = self.repo_id.replace("/", "--") if self.repo_id is not None else self.dataset_name
legacy_config_id = legacy_config_name + self.config_id[len(self.config.name) :]
legacy_cache_dir = os.path.join(
self._cache_dir_root,
self.name if namespace is None else f"{namespace}___{self.name}",
legacy_config_id,
)
return os.path.isdir(legacy_cache_dir)
return False
@classmethod
def get_all_exported_dataset_infos(cls) -> DatasetInfosDict:
"""Empty dict if doesn't exist
Example:
```py
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('rotten_tomatoes')
>>> ds_builder.get_all_exported_dataset_infos()
{'default': DatasetInfo(description="Movie Review Dataset.\nThis is a dataset of containing 5,331 positive and 5,331 negative processed\nsentences from Rotten Tomatoes movie reviews. This data was first used in Bo\nPang and Lillian Lee, ``Seeing stars: Exploiting class relationships for\nsentiment categorization with respect to rating scales.'', Proceedings of the\nACL, 2005.\n", citation='@InProceedings{Pang+Lee:05a,\n author = {Bo Pang and Lillian Lee},\n title = {Seeing stars: Exploiting class relationships for sentiment\n categorization with respect to rating scales},\n booktitle = {Proceedings of the ACL},\n year = 2005\n}\n', homepage='http://www.cs.cornell.edu/people/pabo/movie-review-data/', license='', features={'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None)}, post_processed=None, supervised_keys=SupervisedKeysData(input='', output=''), task_templates=[TextClassification(task='text-classification', text_column='text', label_column='label')], builder_name='rotten_tomatoes_movie_review', config_name='default', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=1074810, num_examples=8530, dataset_name='rotten_tomatoes_movie_review'), 'validation': SplitInfo(name='validation', num_bytes=134679, num_examples=1066, dataset_name='rotten_tomatoes_movie_review'), 'test': SplitInfo(name='test', num_bytes=135972, num_examples=1066, dataset_name='rotten_tomatoes_movie_review')}, download_checksums={'https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz': {'num_bytes': 487770, 'checksum': 'a05befe52aafda71d458d188a1c54506a998b1308613ba76bbda2e5029409ce9'}}, download_size=487770, post_processing_size=None, dataset_size=1345461, size_in_bytes=1833231)}
```
"""
return DatasetInfosDict.from_directory(cls.get_imported_module_dir())
def get_exported_dataset_info(self) -> DatasetInfo:
"""Empty `DatasetInfo` if doesn't exist
Example:
```py
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('rotten_tomatoes')
>>> ds_builder.get_exported_dataset_info()
DatasetInfo(description="Movie Review Dataset.\nThis is a dataset of containing 5,331 positive and 5,331 negative processed\nsentences from Rotten Tomatoes movie reviews. This data was first used in Bo\nPang and Lillian Lee, ``Seeing stars: Exploiting class relationships for\nsentiment categorization with respect to rating scales.'', Proceedings of the\nACL, 2005.\n", citation='@InProceedings{Pang+Lee:05a,\n author = {Bo Pang and Lillian Lee},\n title = {Seeing stars: Exploiting class relationships for sentiment\n categorization with respect to rating scales},\n booktitle = {Proceedings of the ACL},\n year = 2005\n}\n', homepage='http://www.cs.cornell.edu/people/pabo/movie-review-data/', license='', features={'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None)}, post_processed=None, supervised_keys=SupervisedKeysData(input='', output=''), task_templates=[TextClassification(task='text-classification', text_column='text', label_column='label')], builder_name='rotten_tomatoes_movie_review', config_name='default', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=1074810, num_examples=8530, dataset_name='rotten_tomatoes_movie_review'), 'validation': SplitInfo(name='validation', num_bytes=134679, num_examples=1066, dataset_name='rotten_tomatoes_movie_review'), 'test': SplitInfo(name='test', num_bytes=135972, num_examples=1066, dataset_name='rotten_tomatoes_movie_review')}, download_checksums={'https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz': {'num_bytes': 487770, 'checksum': 'a05befe52aafda71d458d188a1c54506a998b1308613ba76bbda2e5029409ce9'}}, download_size=487770, post_processing_size=None, dataset_size=1345461, size_in_bytes=1833231)
```
"""
return self.get_all_exported_dataset_infos().get(self.config.name, DatasetInfo())
def _create_builder_config(
self, config_name=None, custom_features=None, **config_kwargs
) -> Tuple[BuilderConfig, str]:
"""Create and validate BuilderConfig object as well as a unique config id for this config.
Raises ValueError if there are multiple builder configs and config_name and DEFAULT_CONFIG_NAME are None.
config_kwargs override the defaults kwargs in config
"""
builder_config = None
# try default config
if config_name is None and self.BUILDER_CONFIGS and not config_kwargs:
if self.DEFAULT_CONFIG_NAME is not None:
builder_config = self.builder_configs.get(self.DEFAULT_CONFIG_NAME)
logger.info(f"No config specified, defaulting to: {self.dataset_name}/{builder_config.name}")
else:
if len(self.BUILDER_CONFIGS) > 1:
example_of_usage = f"load_dataset('{self.dataset_name}', '{self.BUILDER_CONFIGS[0].name}')"
raise ValueError(
"Config name is missing."
f"\nPlease pick one among the available configs: {list(self.builder_configs.keys())}"
+ f"\nExample of usage:\n\t`{example_of_usage}`"
)
builder_config = self.BUILDER_CONFIGS[0]
logger.info(
f"No config specified, defaulting to the single config: {self.dataset_name}/{builder_config.name}"
)
# try to get config by name
if isinstance(config_name, str):
builder_config = self.builder_configs.get(config_name)
if builder_config is None and self.BUILDER_CONFIGS:
raise ValueError(
f"BuilderConfig '{config_name}' not found. Available: {list(self.builder_configs.keys())}"
)
# if not using an existing config, then create a new config on the fly
if not builder_config:
if config_name is not None:
config_kwargs["name"] = config_name
elif self.DEFAULT_CONFIG_NAME and not config_kwargs:
# Use DEFAULT_CONFIG_NAME only if no config_kwargs are passed
config_kwargs["name"] = self.DEFAULT_CONFIG_NAME
if "version" not in config_kwargs and hasattr(self, "VERSION") and self.VERSION:
config_kwargs["version"] = self.VERSION
builder_config = self.BUILDER_CONFIG_CLASS(**config_kwargs)
# otherwise use the config_kwargs to overwrite the attributes
else:
builder_config = copy.deepcopy(builder_config)
for key, value in config_kwargs.items():
if value is not None:
if not hasattr(builder_config, key):
raise ValueError(f"BuilderConfig {builder_config} doesn't have a '{key}' key.")
setattr(builder_config, key, value)
if not builder_config.name:
raise ValueError(f"BuilderConfig must have a name, got {builder_config.name}")
# compute the config id that is going to be used for caching
config_id = builder_config.create_config_id(
config_kwargs,
custom_features=custom_features,
)
is_custom = (config_id not in self.builder_configs) and config_id != "default"
if is_custom:
logger.info(f"Using custom data configuration {config_id}")
else:
if (
builder_config.name in self.builder_configs
and builder_config != self.builder_configs[builder_config.name]
):
raise ValueError(
"Cannot name a custom BuilderConfig the same as an available "
f"BuilderConfig. Change the name. Available BuilderConfigs: {list(self.builder_configs.keys())}"
)
if not builder_config.version:
raise ValueError(f"BuilderConfig {builder_config.name} must have a version")
return builder_config, config_id
@classproperty
@classmethod
@memoize()
def builder_configs(cls):
"""Dictionary of pre-defined configurations for this builder class."""
configs = {config.name: config for config in cls.BUILDER_CONFIGS}
if len(configs) != len(cls.BUILDER_CONFIGS):
names = [config.name for config in cls.BUILDER_CONFIGS]
raise ValueError(f"Names in BUILDER_CONFIGS must not be duplicated. Got {names}")
return configs
@property
def cache_dir(self):
return self._cache_dir
def _relative_data_dir(self, with_version=True, with_hash=True, is_local=True) -> str:
"""Relative path of this dataset in cache_dir:
Will be:
self.dataset_name/self.config.version/self.hash/
or if a repo_id with a namespace has been specified:
self.namespace___self.dataset_name/self.config.version/self.hash/
If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped.
"""
# Check for the legacy cache directory template (datasets<3.0.0)
if self._has_legacy_cache():
# use legacy names
dataset_name = self.name
config_name = self.repo_id.replace("/", "--") if self.repo_id is not None else self.dataset_name
config_id = config_name + self.config_id[len(self.config.name) :]
else:
dataset_name = self.dataset_name
config_name = self.config.name
config_id = self.config_id
path_join = os.path.join if is_local else posixpath.join
namespace = self.repo_id.split("/")[0] if self.repo_id and self.repo_id.count("/") > 0 else None
builder_data_dir = dataset_name if namespace is None else f"{namespace}___{dataset_name}"
builder_data_dir = path_join(builder_data_dir, config_id)
if with_version:
builder_data_dir = path_join(builder_data_dir, str(self.config.version))
if with_hash and self.hash and isinstance(self.hash, str):
builder_data_dir = path_join(builder_data_dir, self.hash)
return builder_data_dir
def _build_cache_dir(self):
"""Return the data directory for the current version."""
is_local = not is_remote_url(self._cache_dir_root)
path_join = os.path.join if is_local else posixpath.join
builder_data_dir = path_join(
self._cache_dir_root, self._relative_data_dir(with_version=False, is_local=is_local)
)
version_data_dir = path_join(
self._cache_dir_root, self._relative_data_dir(with_version=True, is_local=is_local)
)
def _other_versions_on_disk():
"""Returns previous versions on disk."""
if not os.path.exists(builder_data_dir):
return []
version_dirnames = []
for dir_name in os.listdir(builder_data_dir):
try:
version_dirnames.append((utils.Version(dir_name), dir_name))
except ValueError: # Invalid version (ex: incomplete data dir)
pass
version_dirnames.sort(reverse=True)
return version_dirnames
# Check and warn if other versions exist
if not is_remote_url(builder_data_dir):
version_dirs = _other_versions_on_disk()
if version_dirs:
other_version = version_dirs[0][0]
if other_version != self.config.version:
warn_msg = (
f"Found a different version {str(other_version)} of dataset {self.dataset_name} in "
f"cache_dir {self._cache_dir_root}. Using currently defined version "
f"{str(self.config.version)}."
)
logger.warning(warn_msg)
return version_data_dir
@abc.abstractmethod
def _info(self) -> DatasetInfo:
"""Construct the DatasetInfo object. See `DatasetInfo` for details.
Warning: This function is only called once and the result is cached for all
following .info() calls.
Returns:
info: (DatasetInfo) The dataset information
"""
raise NotImplementedError
@classmethod
def get_imported_module_dir(cls):
"""Return the path of the module of this class or subclass."""
return os.path.dirname(inspect.getfile(inspect.getmodule(cls)))
def _rename(self, src: str, dst: str):
rename(self._fs, src, dst)
def download_and_prepare(
self,
output_dir: Optional[str] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
verification_mode: Optional[Union[VerificationMode, str]] = None,
ignore_verifications="deprecated",
try_from_hf_gcs: bool = True,
dl_manager: Optional[DownloadManager] = None,
base_path: Optional[str] = None,
use_auth_token="deprecated",
file_format: str = "arrow",
max_shard_size: Optional[Union[int, str]] = None,
num_proc: Optional[int] = None,
storage_options: Optional[dict] = None,
**download_and_prepare_kwargs,
):
"""Downloads and prepares dataset for reading.
Args:
output_dir (`str`, *optional*):
Output directory for the dataset.
Default to this builder's `cache_dir`, which is inside `~/.cache/huggingface/datasets` by default.
<Added version="2.5.0"/>
download_config (`DownloadConfig`, *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, *optional*):
Select the download/generate mode, default to `REUSE_DATASET_IF_EXISTS`.
verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`):
Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...).
<Added version="2.9.1"/>
ignore_verifications (`bool`, defaults to `False`):
Ignore the verifications of the downloaded/processed dataset information (checksums/size/splits/...).
<Deprecated version="2.9.1">
`ignore_verifications` was deprecated in version 2.9.1 and will be removed in 3.0.0.
Please use `verification_mode` instead.
</Deprecated>
try_from_hf_gcs (`bool`):
If `True`, it will try to download the already prepared dataset from the HF Google cloud storage.
dl_manager (`DownloadManager`, *optional*):
Specific `DownloadManger` to use.
base_path (`str`, *optional*):
Base path for relative paths that are used to download files. This can be a remote url.
If not specified, the value of the `base_path` attribute (`self.base_path`) will be used instead.
use_auth_token (`Union[str, bool]`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If True, or not specified, will get token from ~/.huggingface.
<Deprecated version="2.7.1">
Pass `use_auth_token` to `load_dataset_builder` instead.
</Deprecated>
file_format (`str`, *optional*):
Format of the data files in which the dataset will be written.
Supported formats: "arrow", "parquet". Default to "arrow" format.
If the format is "parquet", then image and audio data are embedded into the Parquet files instead of pointing to local files.
<Added version="2.5.0"/>
max_shard_size (`Union[str, int]`, *optional*):
Maximum number of bytes written per shard, default is "500MB".
The size is based on uncompressed data size, so in practice your shard files may be smaller than
`max_shard_size` thanks to Parquet compression for example.
<Added version="2.5.0"/>
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.7.0"/>
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the caching file-system backend, if any.
<Added version="2.5.0"/>
**download_and_prepare_kwargs (additional keyword arguments): Keyword arguments.
Example:
Download and prepare the dataset as Arrow files that can be loaded as a Dataset using `builder.as_dataset()`:
```py
>>> from datasets import load_dataset_builder
>>> builder = load_dataset_builder("rotten_tomatoes")
>>> builder.download_and_prepare()
```
Download and prepare the dataset as sharded Parquet files locally:
```py
>>> from datasets import load_dataset_builder
>>> builder = load_dataset_builder("rotten_tomatoes")
>>> builder.download_and_prepare("./output_dir", file_format="parquet")
```
Download and prepare the dataset as sharded Parquet files in a cloud storage:
```py
>>> from datasets import load_dataset_builder
>>> storage_options = {"key": aws_access_key_id, "secret": aws_secret_access_key}
>>> builder = load_dataset_builder("rotten_tomatoes")
>>> builder.download_and_prepare("s3://my-bucket/my_rotten_tomatoes", storage_options=storage_options, file_format="parquet")
```
"""
if ignore_verifications != "deprecated":
verification_mode = VerificationMode.NO_CHECKS if ignore_verifications else VerificationMode.ALL_CHECKS
warnings.warn(
"'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.\n"
f"You can remove this warning by passing 'verification_mode={verification_mode.value}' instead.",
FutureWarning,
)
if use_auth_token != "deprecated":
warnings.warn(
"'use_auth_token' was deprecated in version 2.7.1 and will be removed in 3.0.0. Pass `token` to `load_dataset_builder` instead.",
FutureWarning,
)
token = use_auth_token
else:
token = self.token
output_dir = output_dir if output_dir is not None else self._cache_dir
# output_dir can be a remote bucket on GCS or S3 (when using BeamBasedBuilder for distributed data processing)
fs_token_paths = fsspec.get_fs_token_paths(output_dir, storage_options=storage_options)
self._fs: fsspec.AbstractFileSystem = fs_token_paths[0]
is_local = not is_remote_filesystem(self._fs)
self._output_dir = fs_token_paths[2][0] if is_local else self._fs.unstrip_protocol(fs_token_paths[2][0])
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS)
base_path = base_path if base_path is not None else self.base_path
if file_format is not None and file_format not in ["arrow", "parquet"]:
raise ValueError(f"Unsupported file_format: {file_format}. Expected 'arrow' or 'parquet'")
self._file_format = file_format
if self._fs._strip_protocol(self._output_dir) == "":
# We don't support the root directory, because it has no dirname,
# and we need a dirname to use a <dirname>.incomplete directory
# when the dataset is being written
raise RuntimeError(
f"Unable to download and prepare the dataset at the root {self._output_dir}. "
f"Please specify a subdirectory, e.g. '{self._output_dir + self.dataset_name}'"
)
if dl_manager is None:
if download_config is None:
download_config = DownloadConfig(
cache_dir=self._cache_downloaded_dir,
force_download=download_mode == DownloadMode.FORCE_REDOWNLOAD,
force_extract=download_mode == DownloadMode.FORCE_REDOWNLOAD,
use_etag=False,
num_proc=num_proc,
token=token,
storage_options=self.storage_options,
) # We don't use etag for data files to speed up the process
dl_manager = DownloadManager(
dataset_name=self.dataset_name,
download_config=download_config,
data_dir=self.config.data_dir,
base_path=base_path,
record_checksums=(self._record_infos or verification_mode == VerificationMode.ALL_CHECKS),
)
if (
isinstance(dl_manager, MockDownloadManager)
or not is_local
or file_format != "arrow"
or max_shard_size is not None
):
try_from_hf_gcs = False
self.dl_manager = dl_manager
# Prevent parallel local disk operations
if is_local:
# Create parent directory of the output_dir to put the lock file in there
Path(self._output_dir).parent.mkdir(parents=True, exist_ok=True)
lock_path = self._output_dir + "_builder.lock"
# File locking only with local paths; no file locking on GCS or S3
with FileLock(lock_path) if is_local else contextlib.nullcontext():
# Check if the data already exists
path_join = os.path.join if is_local else posixpath.join
data_exists = self._fs.exists(path_join(self._output_dir, config.DATASET_INFO_FILENAME))
if data_exists and download_mode == DownloadMode.REUSE_DATASET_IF_EXISTS:
logger.info(f"Found cached dataset {self.dataset_name} ({self._output_dir})")
# We need to update the info in case some splits were added in the meantime
# for example when calling load_dataset from multiple workers.
self.info = self._load_info()
self.download_post_processing_resources(dl_manager)
return
logger.info(f"Generating dataset {self.dataset_name} ({self._output_dir})")
if is_local: # if cache dir is local, check for available space
if not has_sufficient_disk_space(
self.info.size_in_bytes or 0, directory=Path(self._output_dir).parent
):
raise OSError(
f"Not enough disk space. Needed: {size_str(self.info.size_in_bytes or 0)} (download: {size_str(self.info.download_size or 0)}, generated: {size_str(self.info.dataset_size or 0)}, post-processed: {size_str(self.info.post_processing_size or 0)})"
)
@contextlib.contextmanager
def incomplete_dir(dirname):
"""Create temporary dir for dirname and rename on exit."""
if not is_local:
self._fs.makedirs(dirname, exist_ok=True)
yield dirname
else:
tmp_dir = dirname + ".incomplete"
os.makedirs(tmp_dir, exist_ok=True)
try:
yield tmp_dir
if os.path.isdir(dirname):
shutil.rmtree(dirname)
# LocalFileSystem.mv does copy + rm, it is more efficient to simply rename a local directory
shutil.move(tmp_dir, dirname)
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
# Print is intentional: we want this to always go to stdout so user has
# information needed to cancel download/preparation if needed.
# This comes right before the progress bar.
if self.info.size_in_bytes:
logger.info(
f"Downloading and preparing dataset {self.dataset_name}/{self.config.name} "
f"(download: {size_str(self.info.download_size)}, generated: {size_str(self.info.dataset_size)}, "
f"post-processed: {size_str(self.info.post_processing_size)}, "
f"total: {size_str(self.info.size_in_bytes)}) to {self._output_dir}..."
)
else:
_dest = self._fs._strip_protocol(self._output_dir) if is_local else self._output_dir
logger.info(f"Downloading and preparing dataset {self.dataset_name}/{self.config.name} to {_dest}...")
self._check_manual_download(dl_manager)
# Create a tmp dir and rename to self._output_dir on successful exit.
with incomplete_dir(self._output_dir) as tmp_output_dir:
# Temporarily assign _output_dir to tmp_data_dir to avoid having to forward
# it to every sub function.
with temporary_assignment(self, "_output_dir", tmp_output_dir):
# Try to download the already prepared dataset files
downloaded_from_gcs = False
if try_from_hf_gcs:
try:
self._download_prepared_from_hf_gcs(dl_manager.download_config)
downloaded_from_gcs = True
except (DatasetNotOnHfGcsError, MissingFilesOnHfGcsError):
logger.info("Dataset not on Hf google storage. Downloading and preparing it from source")
except ConnectionError:
logger.warning("HF google storage unreachable. Downloading and preparing it from source")
if not downloaded_from_gcs:
prepare_split_kwargs = {"file_format": file_format}
if max_shard_size is not None:
prepare_split_kwargs["max_shard_size"] = max_shard_size
if num_proc is not None:
prepare_split_kwargs["num_proc"] = num_proc
self._download_and_prepare(
dl_manager=dl_manager,
verification_mode=verification_mode,
**prepare_split_kwargs,
**download_and_prepare_kwargs,
)
# Sync info
self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
self.info.download_checksums = dl_manager.get_recorded_sizes_checksums()
self.info.size_in_bytes = self.info.dataset_size + self.info.download_size
# Save info
self._save_info()
# Download post processing resources
self.download_post_processing_resources(dl_manager)
logger.info(
f"Dataset {self.dataset_name} downloaded and prepared to {self._output_dir}. "
f"Subsequent calls will reuse this data."
)
def _check_manual_download(self, dl_manager):
if self.manual_download_instructions is not None and dl_manager.manual_dir is None:
raise ManualDownloadError(
textwrap.dedent(
f"""\
The dataset {self.dataset_name} with config {self.config.name} requires manual data.
Please follow the manual download instructions:
{self.manual_download_instructions}
Manual data can be loaded with:
datasets.load_dataset("{self.dataset_name}", data_dir="<path/to/manual/data>")"""
)
)
def _download_prepared_from_hf_gcs(self, download_config: DownloadConfig):
relative_data_dir = self._relative_data_dir(with_version=True, with_hash=False)
reader = ArrowReader(self._output_dir, self.info)
# use reader instructions to download the right files
reader.download_from_hf_gcs(download_config, relative_data_dir)
downloaded_info = DatasetInfo.from_directory(self._output_dir)
self.info.update(downloaded_info)
# download post processing resources
remote_cache_dir = HF_GCP_BASE_URL + "/" + relative_data_dir.replace(os.sep, "/")
for split in self.info.splits:
for resource_file_name in self._post_processing_resources(split).values():
if os.sep in resource_file_name:
raise ValueError(f"Resources shouldn't be in a sub-directory: {resource_file_name}")
try:
resource_path = cached_path(remote_cache_dir + "/" + resource_file_name)
shutil.move(resource_path, os.path.join(self._output_dir, resource_file_name))
except ConnectionError:
logger.info(f"Couldn't download resourse file {resource_file_name} from Hf google storage.")
logger.info("Dataset downloaded from Hf google storage.")
def _download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs):
"""Downloads and prepares dataset for reading.
This is the internal implementation to overwrite called when user calls
`download_and_prepare`. It should download all required data and generate
the pre-processed datasets files.
Args:
dl_manager ([`DownloadManager`]):
`DownloadManager` used to download and cache data.
verification_mode ([`VerificationMode`]):
if `ALL_CHECKS`, perform all the verifications including checksums.
if `BASIC_CHECKS`, do not perform checksums, only perform split tests.
if `NO_CHECKS`, do not perform any verification.
prepare_split_kwargs: Additional options, such as `file_format`, `max_shard_size`
"""
# Generating data for all splits
split_dict = SplitDict(dataset_name=self.dataset_name)
split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
# Checksums verification
if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums:
verify_checksums(
self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files"
)
# Build splits
for split_generator in split_generators:
if str(split_generator.split_info.name).lower() == "all":
raise ValueError(
"`all` is a special split keyword corresponding to the "
"union of all splits, so cannot be used as key in "
"._split_generator()."
)
logger.info(f"Generating {split_generator.split_info.name} split")
split_dict.add(split_generator.split_info)
try:
# Prepare split will record examples associated to the split
self._prepare_split(split_generator, **prepare_split_kwargs)
except OSError as e:
raise OSError(
"Cannot find data file. "
+ (self.manual_download_instructions or "")
+ "\nOriginal error:\n"
+ str(e)
) from None
# If check_duplicates is set to True , then except DuplicatedKeysError
except DuplicatedKeysError as e:
raise DuplicatedKeysError(
e.key,
e.duplicate_key_indices,
fix_msg=f"To avoid duplicate keys, please fix the dataset script {self.name}.py",
) from None
dl_manager.manage_extracted_files()
if verification_mode == VerificationMode.BASIC_CHECKS or verification_mode == VerificationMode.ALL_CHECKS:
verify_splits(self.info.splits, split_dict)
# Update the info object with the splits.
self.info.splits = split_dict
self.info.download_size = dl_manager.downloaded_size
def download_post_processing_resources(self, dl_manager):
for split in self.info.splits or []:
for resource_name, resource_file_name in self._post_processing_resources(split).items():
if not not is_remote_filesystem(self._fs):
raise NotImplementedError(f"Post processing is not supported on filesystem {self._fs}")
if os.sep in resource_file_name:
raise ValueError(f"Resources shouldn't be in a sub-directory: {resource_file_name}")
resource_path = os.path.join(self._output_dir, resource_file_name)
if not os.path.exists(resource_path):
downloaded_resource_path = self._download_post_processing_resources(
split, resource_name, dl_manager
)
if downloaded_resource_path:
logger.info(f"Downloaded post-processing resource {resource_name} as {resource_file_name}")
shutil.move(downloaded_resource_path, resource_path)
def _load_info(self) -> DatasetInfo:
return DatasetInfo.from_directory(self._output_dir, storage_options=self._fs.storage_options)
def _save_info(self):
is_local = not is_remote_filesystem(self._fs)
if is_local:
lock_path = self._output_dir + "_info.lock"
with FileLock(lock_path) if is_local else contextlib.nullcontext():
self.info.write_to_directory(self._output_dir, storage_options=self._fs.storage_options)
def _save_infos(self):
is_local = not is_remote_filesystem(self._fs)
if is_local:
lock_path = self._output_dir + "_infos.lock"
with FileLock(lock_path) if is_local else contextlib.nullcontext():
DatasetInfosDict(**{self.config.name: self.info}).write_to_directory(self.get_imported_module_dir())
def _make_split_generators_kwargs(self, prepare_split_kwargs):
"""Get kwargs for `self._split_generators()` from `prepare_split_kwargs`."""
del prepare_split_kwargs
return {}
def as_dataset(
self,
split: Optional[Split] = None,
run_post_process=True,
verification_mode: Optional[Union[VerificationMode, str]] = None,
ignore_verifications="deprecated",
in_memory=False,
) -> Union[Dataset, DatasetDict]:
"""Return a Dataset for the specified split.
Args:
split (`datasets.Split`):
Which subset of the data to return.
run_post_process (`bool`, defaults to `True`):
Whether to run post-processing dataset transforms and/or add
indexes.
verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`):
Verification mode determining the checks to run on the
downloaded/processed dataset information (checksums/size/splits/...).
<Added version="2.9.1"/>
ignore_verifications (`bool`, defaults to `False`):
Whether to ignore the verifications of the
downloaded/processed dataset information (checksums/size/splits/...).
<Deprecated version="2.9.1">
`ignore_verifications` was deprecated in version 2.9.1 and will be removed in 3.0.0.
Please use `verification_mode` instead.
</Deprecated>
in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
Returns:
datasets.Dataset
Example:
```py
>>> from datasets import load_dataset_builder
>>> builder = load_dataset_builder('rotten_tomatoes')
>>> builder.download_and_prepare()
>>> ds = builder.as_dataset(split='train')
>>> ds
Dataset({
features: ['text', 'label'],
num_rows: 8530
})
```
"""
if ignore_verifications != "deprecated":
verification_mode = verification_mode.NO_CHECKS if ignore_verifications else VerificationMode.ALL_CHECKS
warnings.warn(
"'ignore_verifications' was deprecated in favor of 'verification' in version 2.9.1 and will be removed in 3.0.0.\n"
f"You can remove this warning by passing 'verification_mode={verification_mode.value}' instead.",
FutureWarning,
)
if self._file_format is not None and self._file_format != "arrow":
raise FileFormatError('Loading a dataset not written in the "arrow" format is not supported.')
is_local = not is_remote_filesystem(self._fs)
if not is_local:
raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.")
if not os.path.exists(self._output_dir):
raise FileNotFoundError(
f"Dataset {self.dataset_name}: could not find data in {self._output_dir}. Please make sure to call "
"builder.download_and_prepare(), or use "
"datasets.load_dataset() before trying to access the Dataset object."
)
logger.debug(f'Constructing Dataset for split {split or ", ".join(self.info.splits)}, from {self._output_dir}')
# By default, return all splits
if split is None:
split = {s: s for s in self.info.splits}
verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS)
# Create a dataset for each of the given splits
datasets = map_nested(
partial(
self._build_single_dataset,
run_post_process=run_post_process,
verification_mode=verification_mode,
in_memory=in_memory,
),
split,
map_tuple=True,
disable_tqdm=True,
)
if isinstance(datasets, dict):
datasets = DatasetDict(datasets)
return datasets
def _build_single_dataset(
self,
split: Union[str, ReadInstruction, Split],
run_post_process: bool,
verification_mode: VerificationMode,
in_memory: bool = False,
):
"""as_dataset for a single split."""
if not isinstance(split, ReadInstruction):
split = str(split)
if split == "all":
split = "+".join(self.info.splits.keys())
split = Split(split)
# Build base dataset
ds = self._as_dataset(
split=split,
in_memory=in_memory,
)
if run_post_process:
for resource_file_name in self._post_processing_resources(split).values():
if os.sep in resource_file_name:
raise ValueError(f"Resources shouldn't be in a sub-directory: {resource_file_name}")
resources_paths = {
resource_name: os.path.join(self._output_dir, resource_file_name)
for resource_name, resource_file_name in self._post_processing_resources(split).items()
}
post_processed = self._post_process(ds, resources_paths)
if post_processed is not None:
ds = post_processed
recorded_checksums = {}
record_checksums = False
for resource_name, resource_path in resources_paths.items():
size_checksum = get_size_checksum_dict(resource_path)
recorded_checksums[resource_name] = size_checksum
if verification_mode == VerificationMode.ALL_CHECKS and record_checksums:
if self.info.post_processed is None or self.info.post_processed.resources_checksums is None:
expected_checksums = None
else:
expected_checksums = self.info.post_processed.resources_checksums.get(split)
verify_checksums(expected_checksums, recorded_checksums, "post processing resources")
if self.info.post_processed is None:
self.info.post_processed = PostProcessedInfo()
if self.info.post_processed.resources_checksums is None:
self.info.post_processed.resources_checksums = {}
self.info.post_processed.resources_checksums[str(split)] = recorded_checksums
self.info.post_processing_size = sum(
checksums_dict["num_bytes"]
for split_checksums_dicts in self.info.post_processed.resources_checksums.values()
for checksums_dict in split_checksums_dicts.values()
)
if self.info.dataset_size is not None and self.info.download_size is not None:
self.info.size_in_bytes = (
self.info.dataset_size + self.info.download_size + self.info.post_processing_size
)
self._save_info()
ds._info.post_processed = self.info.post_processed
ds._info.post_processing_size = self.info.post_processing_size
ds._info.size_in_bytes = self.info.size_in_bytes
if self.info.post_processed.features is not None:
if self.info.post_processed.features.type != ds.features.type:
raise ValueError(
f"Post-processed features info don't match the dataset:\nGot\n{self.info.post_processed.features}\nbut expected something like\n{ds.features}"
)
else:
ds.info.features = self.info.post_processed.features
return ds
def _as_dataset(self, split: Union[ReadInstruction, Split] = Split.TRAIN, in_memory: bool = False) -> Dataset:
"""Constructs a `Dataset`.
This is the internal implementation to overwrite called when user calls
`as_dataset`. It should read the pre-processed datasets files and generate
the `Dataset` object.
Args:
split (`datasets.Split`):
which subset of the data to read.
in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
Returns:
`Dataset`
"""
cache_dir = self._fs._strip_protocol(self._output_dir)
dataset_name = self.dataset_name
if self._has_legacy_cache():
dataset_name = self.name
dataset_kwargs = ArrowReader(cache_dir, self.info).read(
name=dataset_name,
instructions=split,
split_infos=self.info.splits.values(),
in_memory=in_memory,
)
fingerprint = self._get_dataset_fingerprint(split)
return Dataset(fingerprint=fingerprint, **dataset_kwargs)
def _get_dataset_fingerprint(self, split: Union[ReadInstruction, Split]) -> str:
"""The dataset fingerprint is the hash of the relative directory dataset_name/config_name/version/hash, as well as the split specs."""
hasher = Hasher()
hasher.update(self._relative_data_dir().replace(os.sep, "/"))
hasher.update(str(split)) # for example: train, train+test, train[:10%], test[:33%](pct1_dropremainder)
fingerprint = hasher.hexdigest()
return fingerprint
def as_streaming_dataset(
self,
split: Optional[str] = None,
base_path: Optional[str] = None,
) -> Union[Dict[str, IterableDataset], IterableDataset]:
is_local = not is_remote_filesystem(self._fs)
if not is_local:
raise NotImplementedError(
f"Loading a streaming dataset cached in a {type(self._fs).__name__} is not supported yet."
)
dl_manager = StreamingDownloadManager(
base_path=base_path or self.base_path,
download_config=DownloadConfig(token=self.token, storage_options=self.storage_options),
dataset_name=self.dataset_name,
data_dir=self.config.data_dir,
)
self._check_manual_download(dl_manager)
splits_generators = {sg.name: sg for sg in self._split_generators(dl_manager)}
# By default, return all splits
if split is None:
splits_generator = splits_generators
elif split in splits_generators:
splits_generator = splits_generators[split]
else:
raise ValueError(f"Bad split: {split}. Available splits: {list(splits_generators)}")
# Create a dataset for each of the given splits
datasets = map_nested(
self._as_streaming_dataset_single,
splits_generator,
map_tuple=True,
)
if isinstance(datasets, dict):
datasets = IterableDatasetDict(datasets)
return datasets
def _as_streaming_dataset_single(
self,
splits_generator,
) -> IterableDataset:
ex_iterable = self._get_examples_iterable_for_split(splits_generator)
# add auth to be able to access and decode audio/image files from private repositories.
token_per_repo_id = {self.repo_id: self.token} if self.repo_id else {}
return IterableDataset(
ex_iterable, info=self.info, split=splits_generator.name, token_per_repo_id=token_per_repo_id
)
def _post_process(self, dataset: Dataset, resources_paths: Mapping[str, str]) -> Optional[Dataset]:
"""Run dataset transforms or add indexes"""
return None
def _post_processing_resources(self, split: str) -> Dict[str, str]:
"""Mapping resource_name -> resource_file_name"""
return {}
def _download_post_processing_resources(
self, split: str, resource_name: str, dl_manager: DownloadManager
) -> Optional[str]:
"""Download the resource using the download manager and return the downloaded path."""
return None
@abc.abstractmethod
def _split_generators(self, dl_manager: DownloadManager):
"""Specify feature dictionary generators and dataset splits.
This function returns a list of `SplitGenerator`s defining how to generate
data and what splits to use.
Example:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={'file': 'train_data.zip'},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={'file': 'test_data.zip'},
),
]
The above code will first call `_generate_examples(file='train_data.zip')`
to write the train data, then `_generate_examples(file='test_data.zip')` to
write the test data.
Datasets are typically split into different subsets to be used at various
stages of training and evaluation.
Note that for datasets without a `VALIDATION` split, you can use a
fraction of the `TRAIN` data for evaluation as you iterate on your model
so as not to overfit to the `TEST` data.
For downloads and extractions, use the given `download_manager`.
Note that the `DownloadManager` caches downloads, so it is fine to have each
generator attempt to download the source data.
A good practice is to download all data in this function, and then
distribute the relevant parts to each split with the `gen_kwargs` argument
Args:
dl_manager (`DownloadManager`):
Download manager to download the data
Returns:
`list<SplitGenerator>`.
"""
raise NotImplementedError()
@abc.abstractmethod
def _prepare_split(
self,
split_generator: SplitGenerator,
file_format: str = "arrow",
max_shard_size: Optional[Union[str, int]] = None,
num_proc: Optional[int] = None,
**kwargs,
):
"""Generate the examples and record them on disk.
Args:
split_generator (`SplitGenerator`):
Split generator to process
file_format (`str`, *optional*):
format of the data files in which the dataset will be written.
Supported formats: "arrow", "parquet". Default to "arrow" format.
max_shard_size (`Union[str, int]`, *optional*):
Maximum number of bytes written per shard, default is "500MB".
The size is based on uncompressed data size, so in practice your shard files may be smaller than
`max_shard_size` thanks to Parquet compression for example.
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.7.0"/>
**kwargs: Additional kwargs forwarded from _download_and_prepare (ex:
beam pipeline)
"""
raise NotImplementedError()
def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable:
"""Generate the examples on the fly.
Args:
split_generator (`SplitGenerator`):
Split generator to process
"""
raise NotImplementedError()
class GeneratorBasedBuilder(DatasetBuilder):
"""Base class for datasets with data generation based on dict generators.
`GeneratorBasedBuilder` is a convenience class that abstracts away much
of the data writing and reading of `DatasetBuilder`. It expects subclasses to
implement generators of feature dictionaries across the dataset splits
(`_split_generators`). See the method docstrings for details.
"""
@abc.abstractmethod
def _generate_examples(self, **kwargs):
"""Default function generating examples for each `SplitGenerator`.
This function preprocess the examples from the raw data to the preprocessed
dataset files.
This function is called once for each `SplitGenerator` defined in
`_split_generators`. The examples yielded here will be written on
disk.
Args:
**kwargs (additional keyword arguments):
Arguments forwarded from the SplitGenerator.gen_kwargs
Yields:
key: `str` or `int`, a unique deterministic example identification key.
* Unique: An error will be raised if two examples are yield with the
same key.
* Deterministic: When generating the dataset twice, the same example
should have the same key.
Good keys can be the image id, or line number if examples are extracted
from a text file.
The key will be hashed and sorted to shuffle examples deterministically,
such as generating the dataset multiple times keep examples in the
same order.
example: `dict<str feature_name, feature_value>`, a feature dictionary
ready to be encoded and written to disk. The example will be
encoded with `self.info.features.encode_example({...})`.
"""
raise NotImplementedError()
def _prepare_split(
self,
split_generator: SplitGenerator,
check_duplicate_keys: bool,
file_format="arrow",
num_proc: Optional[int] = None,
max_shard_size: Optional[Union[int, str]] = None,
):
max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE)
is_local = not is_remote_filesystem(self._fs)
path_join = os.path.join if is_local else posixpath.join
if self.info.splits is not None:
split_info = self.info.splits[split_generator.name]
else:
split_info = split_generator.split_info
SUFFIX = "-JJJJJ-SSSSS-of-NNNNN"
fname = f"{self.dataset_name}-{split_generator.name}{SUFFIX}.{file_format}"
fpath = path_join(self._output_dir, fname)
if num_proc and num_proc > 1:
num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs)
if num_input_shards <= 1 and num_proc is not None:
logger.warning(
f"Setting num_proc from {num_proc} back to 1 for the {split_info.name} split to disable multiprocessing as it only contains one shard."
)
num_proc = 1
elif num_proc is not None and num_input_shards < num_proc:
logger.warning(
f"Setting num_proc from {num_proc} to {num_input_shards} for the {split_info.name} split as it only contains {num_input_shards} shards."
)
num_proc = num_input_shards
pbar = logging.tqdm(
disable=not logging.is_progress_bar_enabled(),
unit=" examples",
total=split_info.num_examples,
desc=f"Generating {split_info.name} split",
)
_prepare_split_args = {
"fpath": fpath,
"file_format": file_format,
"max_shard_size": max_shard_size,
"split_info": split_info,
"check_duplicate_keys": check_duplicate_keys,
}
if num_proc is None or num_proc == 1:
result = None
gen_kwargs = split_generator.gen_kwargs
job_id = 0
with pbar:
for job_id, done, content in self._prepare_split_single(
gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args
):
if done:
result = content
else:
pbar.update(content)
# wrapping everything into lists for consistency with the multiprocessed code path
assert result is not None, "Failed to retrieve results from prepare_split"
examples_per_job, bytes_per_job, features_per_job, shards_per_job, shard_lengths_per_job = [
[item] for item in result
]
else:
kwargs_per_job = [
{"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args}
for job_id, gen_kwargs in enumerate(
_split_gen_kwargs(split_generator.gen_kwargs, max_num_jobs=num_proc)
)
]
num_jobs = len(kwargs_per_job)
examples_per_job = [None] * num_jobs
bytes_per_job = [None] * num_jobs
features_per_job = [None] * num_jobs
shards_per_job = [None] * num_jobs
shard_lengths_per_job = [None] * num_jobs
with Pool(num_proc) as pool:
with pbar:
for job_id, done, content in iflatmap_unordered(
pool, self._prepare_split_single, kwargs_iterable=kwargs_per_job
):
if done:
# the content is the result of the job
(
examples_per_job[job_id],
bytes_per_job[job_id],
features_per_job[job_id],
shards_per_job[job_id],
shard_lengths_per_job[job_id],
) = content
else:
# the content is the number of examples progress update
pbar.update(content)
assert (
None not in examples_per_job
), f"Failed to retrieve results from prepare_split: result list {examples_per_job} still contains None - at least one worker failed to return its results"
total_shards = sum(shards_per_job)
total_num_examples = sum(examples_per_job)
total_num_bytes = sum(bytes_per_job)
features = features_per_job[0]
split_generator.split_info.num_examples = total_num_examples
split_generator.split_info.num_bytes = total_num_bytes
# should rename everything at the end
logger.debug(f"Renaming {total_shards} shards.")
if total_shards > 1:
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(shard_and_job: Tuple[int]):
shard_id, job_id = shard_and_job
global_shard_id = sum(shards_per_job[:job_id]) + shard_id
self._rename(
fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
fpath.replace("JJJJJ-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"),
)
shards_and_jobs = [
(shard_id, job_id)
for job_id, num_shards in enumerate(shards_per_job)
for shard_id in range(num_shards)
]
thread_map(_rename_shard, shards_and_jobs, disable=True, max_workers=64)
split_generator.split_info.shard_lengths = [
shard_length for shard_lengths in shard_lengths_per_job for shard_length in shard_lengths
]
else:
# don't use any pattern
shard_id, job_id = 0, 0
self._rename(
fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
fpath.replace(SUFFIX, ""),
)
if self.info.features is None:
self.info.features = features
def _prepare_split_single(
self,
gen_kwargs: dict,
fpath: str,
file_format: str,
max_shard_size: int,
split_info: SplitInfo,
check_duplicate_keys: bool,
job_id: int,
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
generator = self._generate_examples(**gen_kwargs)
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
embed_local_files = file_format == "parquet"
shard_lengths = []
total_num_examples, total_num_bytes = 0, 0
shard_id = 0
num_examples_progress_update = 0
try:
writer = writer_class(
features=self.info.features,
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
writer_batch_size=self._writer_batch_size,
hash_salt=split_info.name,
check_duplicates=check_duplicate_keys,
storage_options=self._fs.storage_options,
embed_local_files=embed_local_files,
)
try:
_time = time.time()
for key, record in generator:
if max_shard_size is not None and writer._num_bytes > max_shard_size:
num_examples, num_bytes = writer.finalize()
writer.close()
shard_lengths.append(num_examples)
total_num_examples += num_examples
total_num_bytes += num_bytes
shard_id += 1
writer = writer_class(
features=writer._features,
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
writer_batch_size=self._writer_batch_size,
hash_salt=split_info.name,
check_duplicates=check_duplicate_keys,
storage_options=self._fs.storage_options,
embed_local_files=embed_local_files,
)
example = self.info.features.encode_example(record) if self.info.features is not None else record
writer.write(example, key)
num_examples_progress_update += 1
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
_time = time.time()
yield job_id, False, num_examples_progress_update
num_examples_progress_update = 0
finally:
yield job_id, False, num_examples_progress_update
num_shards = shard_id + 1
num_examples, num_bytes = writer.finalize()
writer.close()
shard_lengths.append(num_examples)
total_num_examples += num_examples
total_num_bytes += num_bytes
except Exception as e:
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
e = e.__context__
raise DatasetGenerationError("An error occurred while generating the dataset") from e
yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs):
super()._download_and_prepare(
dl_manager,
verification_mode,
check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS
or verification_mode == VerificationMode.ALL_CHECKS,
**prepare_splits_kwargs,
)
def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable:
return ExamplesIterable(self._generate_examples, split_generator.gen_kwargs)
class ArrowBasedBuilder(DatasetBuilder):
"""Base class for datasets with data generation based on Arrow loading functions (CSV/JSON/Parquet)."""
@abc.abstractmethod
def _generate_tables(self, **kwargs):
"""Default function generating examples for each `SplitGenerator`.
This function preprocess the examples from the raw data to the preprocessed
dataset files.
This function is called once for each `SplitGenerator` defined in
`_split_generators`. The examples yielded here will be written on
disk.
Args:
**kwargs (additional keyword arguments):
Arguments forwarded from the SplitGenerator.gen_kwargs
Yields:
key: `str` or `int`, a unique deterministic example identification key.
* Unique: An error will be raised if two examples are yield with the
same key.
* Deterministic: When generating the dataset twice, the same example
should have the same key.
Good keys can be the image id, or line number if examples are extracted
from a text file.
The key will be hashed and sorted to shuffle examples deterministically,
such as generating the dataset multiple times keep examples in the
same order.
example: `pyarrow.Table`, a feature table
ready to be encoded and written to disk.
"""
raise NotImplementedError()
def _prepare_split(
self,
split_generator: SplitGenerator,
file_format: str = "arrow",
num_proc: Optional[int] = None,
max_shard_size: Optional[Union[str, int]] = None,
):
max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE)
is_local = not is_remote_filesystem(self._fs)
path_join = os.path.join if is_local else posixpath.join
try:
split_info = self.info.splits[split_generator.name]
except Exception:
split_info = split_generator.split_info
SUFFIX = "-JJJJJ-SSSSS-of-NNNNN"
fname = f"{self.dataset_name}-{split_generator.name}{SUFFIX}.{file_format}"
fpath = path_join(self._output_dir, fname)
if num_proc and num_proc > 1:
num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs)
if num_input_shards <= 1 and num_proc is not None:
logger.warning(
f"Setting num_proc from {num_proc} back to 1 for the {split_info.name} split to disable multiprocessing as it only contains one shard."
)
num_proc = 1
elif num_proc is not None and num_input_shards < num_proc:
logger.warning(
f"Setting num_proc from {num_proc} to {num_input_shards} for the {split_info.name} split as it only contains {num_input_shards} shards."
)
num_proc = num_input_shards
pbar = logging.tqdm(
disable=not logging.is_progress_bar_enabled(),
unit=" examples",
total=split_info.num_examples,
desc=f"Generating {split_info.name} split",
)
_prepare_split_args = {
"fpath": fpath,
"file_format": file_format,
"max_shard_size": max_shard_size,
}
if num_proc is None or num_proc == 1:
result = None
gen_kwargs = split_generator.gen_kwargs
job_id = 0
with pbar:
for job_id, done, content in self._prepare_split_single(
gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args
):
if done:
result = content
else:
pbar.update(content)
# wrapping everything into lists for consistency with the multiprocessed code path
assert result is not None, "Failed to retrieve results from prepare_split"
examples_per_job, bytes_per_job, features_per_job, shards_per_job, shard_lengths_per_job = [
[item] for item in result
]
else:
kwargs_per_job = [
{"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args}
for job_id, gen_kwargs in enumerate(
_split_gen_kwargs(split_generator.gen_kwargs, max_num_jobs=num_proc)
)
]
num_jobs = len(kwargs_per_job)
examples_per_job = [None] * num_jobs
bytes_per_job = [None] * num_jobs
features_per_job = [None] * num_jobs
shards_per_job = [None] * num_jobs
shard_lengths_per_job = [None] * num_jobs
with Pool(num_proc) as pool:
with pbar:
for job_id, done, content in iflatmap_unordered(
pool, self._prepare_split_single, kwargs_iterable=kwargs_per_job
):
if done:
# the content is the result of the job
(
examples_per_job[job_id],
bytes_per_job[job_id],
features_per_job[job_id],
shards_per_job[job_id],
shard_lengths_per_job[job_id],
) = content
else:
# the content is the number of examples progress update
pbar.update(content)
assert (
None not in examples_per_job
), f"Failed to retrieve results from prepare_split: result list {examples_per_job} still contains None - at least one worker failed to return its results"
total_shards = sum(shards_per_job)
total_num_examples = sum(examples_per_job)
total_num_bytes = sum(bytes_per_job)
features = features_per_job[0]
split_generator.split_info.num_examples = total_num_examples
split_generator.split_info.num_bytes = total_num_bytes
# should rename everything at the end
logger.debug(f"Renaming {total_shards} shards.")
if total_shards > 1:
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(shard_id_and_job: Tuple[int]):
shard_id, job_id = shard_id_and_job
global_shard_id = sum(shards_per_job[:job_id]) + shard_id
self._rename(
fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
fpath.replace("JJJJJ-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"),
)
shard_ids_and_jobs = [
(shard_id, job_id)
for job_id, num_shards in enumerate(shards_per_job)
for shard_id in range(num_shards)
]
thread_map(_rename_shard, shard_ids_and_jobs, disable=True, max_workers=64)
split_generator.split_info.shard_lengths = [
shard_length for shard_lengths in shard_lengths_per_job for shard_length in shard_lengths
]
else:
# don't use any pattern
shard_id, job_id = 0, 0
self._rename(
fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
fpath.replace(SUFFIX, ""),
)
if self.info.features is None:
self.info.features = features
def _prepare_split_single(
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
generator = self._generate_tables(**gen_kwargs)
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
embed_local_files = file_format == "parquet"
shard_lengths = []
total_num_examples, total_num_bytes = 0, 0
shard_id = 0
num_examples_progress_update = 0
try:
writer = writer_class(
features=self.info.features,
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
writer_batch_size=self._writer_batch_size,
storage_options=self._fs.storage_options,
embed_local_files=embed_local_files,
)
try:
_time = time.time()
for _, table in generator:
if max_shard_size is not None and writer._num_bytes > max_shard_size:
num_examples, num_bytes = writer.finalize()
writer.close()
shard_lengths.append(num_examples)
total_num_examples += num_examples
total_num_bytes += num_bytes
shard_id += 1
writer = writer_class(
features=writer._features,
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
writer_batch_size=self._writer_batch_size,
storage_options=self._fs.storage_options,
embed_local_files=embed_local_files,
)
writer.write_table(table)
num_examples_progress_update += len(table)
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
_time = time.time()
yield job_id, False, num_examples_progress_update
num_examples_progress_update = 0
finally:
yield job_id, False, num_examples_progress_update
num_shards = shard_id + 1
num_examples, num_bytes = writer.finalize()
writer.close()
shard_lengths.append(num_examples)
total_num_examples += num_examples
total_num_bytes += num_bytes
except Exception as e:
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
e = e.__context__
raise DatasetGenerationError("An error occurred while generating the dataset") from e
yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable:
return ArrowExamplesIterable(self._generate_tables, kwargs=split_generator.gen_kwargs)
class MissingBeamOptions(ValueError):
pass
class BeamBasedBuilder(DatasetBuilder):
"""Beam-based Builder."""
def __init__(self, *args, beam_runner=None, beam_options=None, **kwargs):
self._beam_runner = beam_runner
self._beam_options = beam_options
self._beam_writers = {} # {split: beam_writer} mapping.
super().__init__(*args, **kwargs)
def _make_split_generators_kwargs(self, prepare_split_kwargs):
# Pass `pipeline` into `_split_generators()` from `prepare_split_kwargs` if
# it's in the call signature of `_split_generators()`.
# This allows for global preprocessing in beam.
split_generators_kwargs = {}
split_generators_arg_names = inspect.signature(self._split_generators).parameters.keys()
if "pipeline" in split_generators_arg_names:
split_generators_kwargs["pipeline"] = prepare_split_kwargs["pipeline"]
return split_generators_kwargs
@abc.abstractmethod
def _build_pcollection(self, pipeline, **kwargs):
"""Build the beam pipeline examples for each `SplitGenerator`.
This function extracts examples from the raw data with parallel transforms
in a Beam pipeline. It is called once for each `SplitGenerator` defined in
`_split_generators`. The examples from the PCollection will be
encoded and written to disk.
<Tip warning={true}>
Warning: When running in a distributed setup, make sure that the data
which will be read (download_dir, manual_dir,...) and written (cache_dir)
can be accessed by the workers jobs. The data should be located in a
shared filesystem, like GCS.
</Tip>
Args:
pipeline ([`utils.beam_utils.BeamPipeline`]):
Apache Beam pipeline.
**kwargs (additional keyword arguments):
Arguments forwarded from the SplitGenerator.gen_kwargs.
Returns:
`beam.PCollection`: Apache Beam PCollection containing the
example to send to `self.info.features.encode_example(...)`.
Example:
```
def _build_pcollection(pipeline, extracted_dir=None):
return (
pipeline
| beam.Create(gfile.io.listdir(extracted_dir))
| beam.Map(_process_file)
)
```
"""
raise NotImplementedError()
def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs):
# Create the Beam pipeline and forward it to `_prepare_split`
import apache_beam as beam
import datasets.utils.beam_utils as beam_utils
beam_runner = self._beam_runner
beam_options = self._beam_options
if not beam_runner and not beam_options:
usage_example = f"load_dataset('{self.name}', '{self.config.name}', beam_runner='DirectRunner')"
raise MissingBeamOptions(
"Trying to generate a dataset using Apache Beam, yet no Beam Runner "
"or PipelineOptions() has been provided in `load_dataset` or in the "
"builder arguments. For big datasets it has to run on large-scale data "
"processing tools like Dataflow, Spark, etc. More information about "
"Apache Beam runners at "
"https://beam.apache.org/documentation/runners/capability-matrix/"
"\nIf you really want to run it locally because you feel like the "
"Dataset is small enough, you can use the local beam runner called "
"`DirectRunner` (you may run out of memory). \nExample of usage: "
f"\n\t`{usage_example}`"
)
if self._writer_batch_size is not None:
logger.warning(
"`writer_batch_size` is not supported for beam pipelines yet. Using the default chunk size for writing."
)
# Beam type checking assumes transforms multiple outputs are of same type,
# which is not our case. Plus it doesn't handle correctly all types, so we
# are better without it.
pipeline_options = {"pipeline_type_check": False}
if "num_proc" in prepare_splits_kwargs:
num_workers = prepare_splits_kwargs.pop("num_proc")
pipeline_options["direct_num_workers"] = num_workers
pipeline_options["num_workers"] = num_workers
pipeline_options["direct_running_mode"] = "multi_processing"
# TODO: Fix ModuleNotFoundError: No module named 'datasets_modules' when running multiprocessed DirectRunner
raise NotImplementedError("Using a DirectRunner with `num_proc` for multiprocessing it not supported yet.")
beam_options = beam_options or beam.options.pipeline_options.PipelineOptions.from_dictionary(pipeline_options)
# Use a single pipeline for all splits
pipeline = beam_utils.BeamPipeline(
runner=beam_runner,
options=beam_options,
)
super()._download_and_prepare(
dl_manager, verification_mode=VerificationMode.NO_CHECKS, pipeline=pipeline, **prepare_splits_kwargs
) # TODO handle verification_mode in beam datasets
# Run pipeline
pipeline_results = pipeline.run()
pipeline_results.wait_until_finish()
metrics = pipeline_results.metrics()
# Update `info.splits`.
split_dict = self.info.splits
for split_name, beam_writer in self._beam_writers.items():
m_filter = beam.metrics.MetricsFilter().with_namespace(namespace=split_name)
num_examples, num_bytes = beam_writer.finalize(metrics.query(m_filter))
split_info = split_dict[split_name]
split_info.num_examples = num_examples
split_info.num_bytes = num_bytes
if hasattr(beam_writer, "_shard_lengths") and len(beam_writer._shard_lengths) > 1:
# keep the -SSSSS-of-NNNNN pattern
split_info.shard_lengths = beam_writer._shard_lengths
else:
# don't use any pattern
file_format = prepare_splits_kwargs.get("file_format", "arrow")
src_fname = f"{self.dataset_name}-{split_name}-00000-of-00001.{file_format}"
dst_fname = f"{self.dataset_name}-{split_name}.{file_format}"
path_join = os.path.join if not is_remote_filesystem(self._fs) else posixpath.join
src_fpath = path_join(self._output_dir, src_fname)
dst_fpath = path_join(self._output_dir, dst_fname)
self._rename(src_fpath, dst_fpath)
def _save_info(self):
import apache_beam as beam
fs = beam.io.filesystems.FileSystems
path_join = os.path.join if not is_remote_filesystem(self._fs) else posixpath.join
with fs.create(path_join(self._output_dir, config.DATASET_INFO_FILENAME)) as f:
self.info._dump_info(f)
if self.info.license:
with fs.create(path_join(self._output_dir, config.LICENSE_FILENAME)) as f:
self.info._dump_license(f)
def _prepare_split(
self, split_generator, pipeline, file_format="arrow", max_shard_size: Optional[Union[str, int]] = None
):
import apache_beam as beam
if max_shard_size is not None:
raise NotImplementedError(
"max_shard_size is not supported for Beam datasets."
"Please set it to None to use the default Apache Beam sharding and get the best performance."
)
# To write examples in filesystem:
split_name = split_generator.split_info.name
fname = f"{self.dataset_name}-{split_name}.{file_format}"
path_join = os.path.join if not is_remote_filesystem(self._fs) else posixpath.join
fpath = path_join(self._output_dir, fname)
beam_writer = BeamWriter(
features=self.info.features, path=fpath, namespace=split_name, cache_dir=self._output_dir
)
self._beam_writers[split_name] = beam_writer
encode_example = self.info.features.encode_example
# Note: We need to wrap the pipeline in a PTransform to avoid re-using the
# same label names for each split
@beam.ptransform_fn
def _build_pcollection(pipeline):
"""PTransformation which build a single split."""
# Encode the PCollection
pcoll_examples = self._build_pcollection(pipeline, **split_generator.gen_kwargs)
pcoll_examples |= "Encode" >> beam.Map(lambda key_ex: (key_ex[0], encode_example(key_ex[1])))
return beam_writer.write_from_pcollection(pcoll_examples)
# Add the PCollection to the pipeline
_ = pipeline | split_name >> _build_pcollection() # pylint: disable=no-value-for-parameter max_bytes_per_shard
def as_streaming_dataset(
self,
split: Optional[str] = None,
) -> Union[Dict[str, IterableDataset], IterableDataset]:
self._request_info_from_hf_gcs()
datasets = {
split.name: IterableDataset(self._get_examples_iterable_for_split(split), info=self.info, split=split.name)
for split in self.info.splits.values()
}
if split:
try:
datasets = datasets[split]
except KeyError:
raise ValueError(f"Bad split: {split}. Available splits: {list(datasets)}")
if isinstance(datasets, dict):
datasets = IterableDatasetDict(datasets)
return datasets
def _get_examples_iterable_for_split(self, split: SplitInfo) -> ExamplesIterable:
return ExamplesIterable(self._generate_examples_from_hf_gcs, {"split": split})
def _generate_examples_from_hf_gcs(self, split: SplitInfo):
if split.shard_lengths:
num_shards = len(split.shard_lengths)
remote_prepared_urls = [
f"{self._remote_cache_dir_from_hf_gcs}/{self.name}-{split.name}-{shard_id:05d}-of-{num_shards:05d}.arrow"
for shard_id in range(num_shards)
]
else:
remote_prepared_urls = [f"{self._remote_cache_dir_from_hf_gcs}/{self.name}-{split.name}.arrow"]
key = 0
for remote_prepared_url in remote_prepared_urls:
with xopen(remote_prepared_url, "rb") as f:
with pa.ipc.open_stream(f) as reader:
for record_batch in reader:
for record in record_batch.to_pylist():
yield key, record
key += 1
def _request_info_from_hf_gcs(self):
from .download.streaming_download_manager import xopen
remote_dataset_info = f"{self._remote_cache_dir_from_hf_gcs}/{config.DATASET_INFO_FILENAME}"
try:
with xopen(remote_dataset_info) as f:
import json
_info = json.load(f)
except FileNotFoundError as err:
raise DatasetNotOnHfGcsError(err) from None
self.info.update(DatasetInfo.from_dict(_info))
@property
def _remote_cache_dir_from_hf_gcs(self):
relative_data_dir = self._relative_data_dir(with_hash=False)
return HF_GCP_BASE_URL + "/" + relative_data_dir.replace(os.sep, "/")
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/distributed.py | from typing import TypeVar
from .arrow_dataset import Dataset, _split_by_node_map_style_dataset
from .iterable_dataset import IterableDataset, _split_by_node_iterable_dataset
DatasetType = TypeVar("DatasetType", Dataset, IterableDataset)
def split_dataset_by_node(dataset: DatasetType, rank: int, world_size: int) -> DatasetType:
"""
Split a dataset for the node at rank `rank` in a pool of nodes of size `world_size`.
For map-style datasets:
Each node is assigned a chunk of data, e.g. rank 0 is given the first chunk of the dataset.
To maximize data loading throughput, chunks are made of contiguous data on disk if possible.
For iterable datasets:
If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.n_shards % world_size == 0`),
then the shards are evenly assigned across the nodes, which is the most optimized.
Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples.
Args:
dataset ([`Dataset`] or [`IterableDataset`]):
The dataset to split by node.
rank (`int`):
Rank of the current node.
world_size (`int`):
Total number of nodes.
Returns:
[`Dataset`] or [`IterableDataset`]: The dataset to be used on the node at rank `rank`.
"""
if isinstance(dataset, Dataset):
return _split_by_node_map_style_dataset(dataset, rank=rank, world_size=world_size)
else:
return _split_by_node_iterable_dataset(dataset, rank=rank, world_size=world_size)
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/__init__.py | # flake8: noqa
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__version__ = "2.14.1.dev0"
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
_arrow_dataset.concatenate_datasets = concatenate_datasets
_utils.DownloadConfig = DownloadConfig
_utils.DownloadManager = DownloadManager
_utils.DownloadMode = DownloadMode
_deprecated_download_manager.DownloadConfig = DownloadConfig
_deprecated_download_manager.DownloadMode = DownloadMode
_deprecated_download_manager.DownloadManager = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/config.py | import importlib
import importlib.metadata
import os
import platform
from pathlib import Path
from packaging import version
from .utils.logging import get_logger
logger = get_logger(__name__)
# Datasets
S3_DATASETS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/datasets"
CLOUDFRONT_DATASETS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/datasets"
REPO_DATASETS_URL = "https://raw.githubusercontent.com/huggingface/datasets/{revision}/datasets/{path}/{name}"
# Metrics
S3_METRICS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/metrics"
CLOUDFRONT_METRICS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/metric"
REPO_METRICS_URL = "https://raw.githubusercontent.com/huggingface/datasets/{revision}/metrics/{path}/{name}"
# Hub
HF_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co")
HUB_DATASETS_URL = HF_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}"
HUB_DEFAULT_VERSION = "main"
PY_VERSION = version.parse(platform.python_version())
# General environment variables accepted values for booleans
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
# Imports
DILL_VERSION = version.parse(importlib.metadata.version("dill"))
PANDAS_VERSION = version.parse(importlib.metadata.version("pandas"))
PYARROW_VERSION = version.parse(importlib.metadata.version("pyarrow"))
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_JAX", "AUTO").upper()
TORCH_VERSION = "N/A"
TORCH_AVAILABLE = False
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
TORCH_AVAILABLE = importlib.util.find_spec("torch") is not None
if TORCH_AVAILABLE:
try:
TORCH_VERSION = version.parse(importlib.metadata.version("torch"))
logger.info(f"PyTorch version {TORCH_VERSION} available.")
except importlib.metadata.PackageNotFoundError:
pass
else:
logger.info("Disabling PyTorch because USE_TF is set")
TF_VERSION = "N/A"
TF_AVAILABLE = False
if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
TF_AVAILABLE = importlib.util.find_spec("tensorflow") is not None
if TF_AVAILABLE:
# For the metadata, we have to look for both tensorflow and tensorflow-cpu
for package in [
"tensorflow",
"tensorflow-cpu",
"tensorflow-gpu",
"tf-nightly",
"tf-nightly-cpu",
"tf-nightly-gpu",
"intel-tensorflow",
"tensorflow-rocm",
"tensorflow-macos",
]:
try:
TF_VERSION = version.parse(importlib.metadata.version(package))
except importlib.metadata.PackageNotFoundError:
continue
else:
break
else:
TF_AVAILABLE = False
if TF_AVAILABLE:
if TF_VERSION.major < 2:
logger.info(f"TensorFlow found but with version {TF_VERSION}. `datasets` requires version 2 minimum.")
TF_AVAILABLE = False
else:
logger.info(f"TensorFlow version {TF_VERSION} available.")
else:
logger.info("Disabling Tensorflow because USE_TORCH is set")
JAX_VERSION = "N/A"
JAX_AVAILABLE = False
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
JAX_AVAILABLE = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("jaxlib") is not None
if JAX_AVAILABLE:
try:
JAX_VERSION = version.parse(importlib.metadata.version("jax"))
logger.info(f"JAX version {JAX_VERSION} available.")
except importlib.metadata.PackageNotFoundError:
pass
else:
logger.info("Disabling JAX because USE_JAX is set to False")
USE_BEAM = os.environ.get("USE_BEAM", "AUTO").upper()
BEAM_VERSION = "N/A"
BEAM_AVAILABLE = False
if USE_BEAM in ENV_VARS_TRUE_AND_AUTO_VALUES:
try:
BEAM_VERSION = version.parse(importlib.metadata.version("apache_beam"))
BEAM_AVAILABLE = True
logger.info(f"Apache Beam version {BEAM_VERSION} available.")
except importlib.metadata.PackageNotFoundError:
pass
else:
logger.info("Disabling Apache Beam because USE_BEAM is set to False")
# Optional tools for data loading
SQLALCHEMY_AVAILABLE = importlib.util.find_spec("sqlalchemy") is not None
# Optional tools for feature decoding
PIL_AVAILABLE = importlib.util.find_spec("PIL") is not None
IS_OPUS_SUPPORTED = importlib.util.find_spec("soundfile") is not None and version.parse(
importlib.import_module("soundfile").__libsndfile_version__
) >= version.parse("1.0.31")
IS_MP3_SUPPORTED = importlib.util.find_spec("soundfile") is not None and version.parse(
importlib.import_module("soundfile").__libsndfile_version__
) >= version.parse("1.1.0")
# Optional compression tools
RARFILE_AVAILABLE = importlib.util.find_spec("rarfile") is not None
ZSTANDARD_AVAILABLE = importlib.util.find_spec("zstandard") is not None
LZ4_AVAILABLE = importlib.util.find_spec("lz4") is not None
PY7ZR_AVAILABLE = importlib.util.find_spec("py7zr") is not None
# Cache location
DEFAULT_XDG_CACHE_HOME = "~/.cache"
XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME)
DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface")
HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME))
DEFAULT_HF_DATASETS_CACHE = os.path.join(HF_CACHE_HOME, "datasets")
HF_DATASETS_CACHE = Path(os.getenv("HF_DATASETS_CACHE", DEFAULT_HF_DATASETS_CACHE))
DEFAULT_HF_METRICS_CACHE = os.path.join(HF_CACHE_HOME, "metrics")
HF_METRICS_CACHE = Path(os.getenv("HF_METRICS_CACHE", DEFAULT_HF_METRICS_CACHE))
DEFAULT_HF_MODULES_CACHE = os.path.join(HF_CACHE_HOME, "modules")
HF_MODULES_CACHE = Path(os.getenv("HF_MODULES_CACHE", DEFAULT_HF_MODULES_CACHE))
DOWNLOADED_DATASETS_DIR = "downloads"
DEFAULT_DOWNLOADED_DATASETS_PATH = os.path.join(HF_DATASETS_CACHE, DOWNLOADED_DATASETS_DIR)
DOWNLOADED_DATASETS_PATH = Path(os.getenv("HF_DATASETS_DOWNLOADED_DATASETS_PATH", DEFAULT_DOWNLOADED_DATASETS_PATH))
EXTRACTED_DATASETS_DIR = "extracted"
DEFAULT_EXTRACTED_DATASETS_PATH = os.path.join(DEFAULT_DOWNLOADED_DATASETS_PATH, EXTRACTED_DATASETS_DIR)
EXTRACTED_DATASETS_PATH = Path(os.getenv("HF_DATASETS_EXTRACTED_DATASETS_PATH", DEFAULT_EXTRACTED_DATASETS_PATH))
# Download count for the website
HF_UPDATE_DOWNLOAD_COUNTS = (
os.environ.get("HF_UPDATE_DOWNLOAD_COUNTS", "AUTO").upper() in ENV_VARS_TRUE_AND_AUTO_VALUES
)
# Batch size constants. For more info, see:
# https://github.com/apache/arrow/blob/master/docs/source/cpp/arrays.rst#size-limitations-and-recommendations)
DEFAULT_MAX_BATCH_SIZE = 1000
# Size of the preloaded record batch in `Dataset.__iter__`
ARROW_READER_BATCH_SIZE_IN_DATASET_ITER = 10
# Pickling tables works only for small tables (<4GiB)
# For big tables, we write them on disk instead
MAX_TABLE_NBYTES_FOR_PICKLING = 4 << 30
# Max shard size in bytes (e.g. to shard parquet datasets in push_to_hub or download_and_prepare)
MAX_SHARD_SIZE = "500MB"
# Parquet configuration
PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS = 100
PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS = 100
PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS = 100
# Offline mode
HF_DATASETS_OFFLINE = os.environ.get("HF_DATASETS_OFFLINE", "AUTO").upper() in ENV_VARS_TRUE_VALUES
# In-memory
DEFAULT_IN_MEMORY_MAX_SIZE = 0 # Disabled
IN_MEMORY_MAX_SIZE = float(os.environ.get("HF_DATASETS_IN_MEMORY_MAX_SIZE", DEFAULT_IN_MEMORY_MAX_SIZE))
# File names
DATASET_ARROW_FILENAME = "dataset.arrow"
DATASET_INDICES_FILENAME = "indices.arrow"
DATASET_STATE_JSON_FILENAME = "state.json"
DATASET_INFO_FILENAME = "dataset_info.json"
DATASETDICT_INFOS_FILENAME = "dataset_infos.json"
LICENSE_FILENAME = "LICENSE"
METRIC_INFO_FILENAME = "metric_info.json"
DATASETDICT_JSON_FILENAME = "dataset_dict.json"
METADATA_CONFIGS_FIELD = "configs"
MODULE_NAME_FOR_DYNAMIC_MODULES = "datasets_modules"
MAX_DATASET_CONFIG_ID_READABLE_LENGTH = 255
# Streaming
STREAMING_READ_MAX_RETRIES = 20
STREAMING_READ_RETRY_INTERVAL = 5
# Datasets without script
DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 200
GLOBBED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 10
ARCHIVED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 200
# Progress bars
PBAR_REFRESH_TIME_INTERVAL = 0.05 # 20 progress updates per sec
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/load.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Access datasets."""
import filecmp
import importlib
import inspect
import json
import os
import posixpath
import shutil
import time
import warnings
from collections import Counter
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Dict, List, Mapping, Optional, Sequence, Tuple, Type, Union
import fsspec
import requests
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from . import config
from .arrow_dataset import Dataset
from .builder import BuilderConfig, DatasetBuilder
from .data_files import (
DEFAULT_PATTERNS_ALL,
DataFilesDict,
DataFilesList,
EmptyDatasetError,
get_data_patterns,
get_metadata_patterns,
sanitize_patterns,
)
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download.download_config import DownloadConfig
from .download.download_manager import DownloadMode
from .download.streaming_download_manager import StreamingDownloadManager, xbasename, xglob, xjoin
from .features import Features
from .filesystems import extract_path_from_uri, is_remote_filesystem
from .fingerprint import Hasher
from .info import DatasetInfo, DatasetInfosDict
from .iterable_dataset import IterableDataset
from .metric import Metric
from .naming import camelcase_to_snakecase, snakecase_to_camelcase
from .packaged_modules import (
_EXTENSION_TO_MODULE,
_MODULE_SUPPORTS_METADATA,
_MODULE_TO_EXTENSIONS,
_PACKAGED_DATASETS_MODULES,
_hash_python_lines,
)
from .splits import Split
from .utils.deprecation_utils import deprecated
from .utils.file_utils import (
OfflineModeIsEnabled,
_raise_if_offline_mode_is_enabled,
cached_path,
head_hf_s3,
hf_github_url,
init_hf_modules,
is_relative_path,
relative_to_absolute_path,
url_or_path_join,
)
from .utils.filelock import FileLock
from .utils.hub import hf_hub_url
from .utils.info_utils import VerificationMode, is_small_dataset
from .utils.logging import get_logger
from .utils.metadata import MetadataConfigs
from .utils.py_utils import get_imports
from .utils.version import Version
logger = get_logger(__name__)
ALL_ALLOWED_EXTENSIONS = list(_EXTENSION_TO_MODULE.keys()) + [".zip"]
def init_dynamic_modules(
name: str = config.MODULE_NAME_FOR_DYNAMIC_MODULES, hf_modules_cache: Optional[Union[Path, str]] = None
):
"""
Create a module with name `name` in which you can add dynamic modules
such as metrics or datasets. The module can be imported using its name.
The module is created in the HF_MODULE_CACHE directory by default (~/.cache/huggingface/modules) but it can
be overridden by specifying a path to another directory in `hf_modules_cache`.
"""
hf_modules_cache = init_hf_modules(hf_modules_cache)
dynamic_modules_path = os.path.join(hf_modules_cache, name)
os.makedirs(dynamic_modules_path, exist_ok=True)
if not os.path.exists(os.path.join(dynamic_modules_path, "__init__.py")):
with open(os.path.join(dynamic_modules_path, "__init__.py"), "w"):
pass
return dynamic_modules_path
def import_main_class(module_path, dataset=True) -> Optional[Union[Type[DatasetBuilder], Type[Metric]]]:
"""Import a module at module_path and return its main class:
- a DatasetBuilder if dataset is True
- a Metric if dataset is False
"""
module = importlib.import_module(module_path)
if dataset:
main_cls_type = DatasetBuilder
else:
main_cls_type = Metric
# Find the main class in our imported module
module_main_cls = None
for name, obj in module.__dict__.items():
if inspect.isclass(obj) and issubclass(obj, main_cls_type):
if inspect.isabstract(obj):
continue
module_main_cls = obj
obj_module = inspect.getmodule(obj)
if obj_module is not None and module == obj_module:
break
return module_main_cls
class _InitializeConfiguredDatasetBuilder:
"""
From https://stackoverflow.com/questions/4647566/pickle-a-dynamically-parameterized-sub-class
See also ConfiguredDatasetBuilder.__reduce__
When called with the param value as the only argument, returns an
un-initialized instance of the parameterized class. Subsequent __setstate__
will be called by pickle.
"""
def __call__(self, builder_cls, metadata_configs, default_config_name, name):
# make a simple object which has no complex __init__ (this one will do)
obj = _InitializeConfiguredDatasetBuilder()
obj.__class__ = configure_builder_class(
builder_cls, metadata_configs, default_config_name=default_config_name, dataset_name=name
)
return obj
def configure_builder_class(
builder_cls: Type[DatasetBuilder],
builder_configs: List[BuilderConfig],
default_config_name: Optional[str],
dataset_name: str,
) -> Type[DatasetBuilder]:
"""
Dynamically create a builder class with custom builder configs parsed from README.md file,
i.e. set BUILDER_CONFIGS class variable of a builder class to custom configs list.
"""
class ConfiguredDatasetBuilder(builder_cls):
BUILDER_CONFIGS = builder_configs
DEFAULT_CONFIG_NAME = default_config_name
__module__ = builder_cls.__module__ # so that the actual packaged builder can be imported
def __reduce__(self): # to make dynamically created class pickable, see _InitializeParameterizedDatasetBuilder
parent_builder_cls = self.__class__.__mro__[1]
return (
_InitializeConfiguredDatasetBuilder(),
(
parent_builder_cls,
self.BUILDER_CONFIGS,
self.DEFAULT_CONFIG_NAME,
self.dataset_name,
),
self.__dict__.copy(),
)
ConfiguredDatasetBuilder.__name__ = (
f"{builder_cls.__name__.lower().capitalize()}{snakecase_to_camelcase(dataset_name)}"
)
ConfiguredDatasetBuilder.__qualname__ = (
f"{builder_cls.__name__.lower().capitalize()}{snakecase_to_camelcase(dataset_name)}"
)
return ConfiguredDatasetBuilder
def get_dataset_builder_class(
dataset_module: "DatasetModule", dataset_name: Optional[str] = None
) -> Type[DatasetBuilder]:
builder_cls = import_main_class(dataset_module.module_path)
if dataset_module.builder_configs_parameters.builder_configs:
builder_cls = configure_builder_class(
builder_cls,
builder_configs=dataset_module.builder_configs_parameters.builder_configs,
default_config_name=dataset_module.builder_configs_parameters.default_config_name,
dataset_name=dataset_name,
)
return builder_cls
def files_to_hash(file_paths: List[str]) -> str:
"""
Convert a list of scripts or text files provided in file_paths into a hashed filename in a repeatable way.
"""
# List all python files in directories if directories are supplied as part of external imports
to_use_files: List[Union[Path, str]] = []
for file_path in file_paths:
if os.path.isdir(file_path):
to_use_files.extend(list(Path(file_path).rglob("*.[pP][yY]")))
else:
to_use_files.append(file_path)
# Get the code from all these files
lines = []
for file_path in to_use_files:
with open(file_path, encoding="utf-8") as f:
lines.extend(f.readlines())
return _hash_python_lines(lines)
def increase_load_count(name: str, resource_type: str):
"""Update the download count of a dataset or metric."""
if not config.HF_DATASETS_OFFLINE and config.HF_UPDATE_DOWNLOAD_COUNTS:
try:
head_hf_s3(name, filename=name + ".py", dataset=(resource_type == "dataset"))
except Exception:
pass
def _download_additional_modules(
name: str, base_path: str, imports: Tuple[str, str, str, str], download_config: Optional[DownloadConfig]
) -> List[Tuple[str, str]]:
"""
Download additional module for a module <name>.py at URL (or local path) <base_path>/<name>.py
The imports must have been parsed first using ``get_imports``.
If some modules need to be installed with pip, an error is raised showing how to install them.
This function return the list of downloaded modules as tuples (import_name, module_file_path).
The downloaded modules can then be moved into an importable directory with ``_copy_script_and_other_resources_in_importable_dir``.
"""
local_imports = []
library_imports = []
download_config = download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading extra modules"
for import_type, import_name, import_path, sub_directory in imports:
if import_type == "library":
library_imports.append((import_name, import_path)) # Import from a library
continue
if import_name == name:
raise ValueError(
f"Error in the {name} script, importing relative {import_name} module "
f"but {import_name} is the name of the script. "
f"Please change relative import {import_name} to another name and add a '# From: URL_OR_PATH' "
f"comment pointing to the original relative import file path."
)
if import_type == "internal":
url_or_filename = url_or_path_join(base_path, import_path + ".py")
elif import_type == "external":
url_or_filename = import_path
else:
raise ValueError("Wrong import_type")
local_import_path = cached_path(
url_or_filename,
download_config=download_config,
)
if sub_directory is not None:
local_import_path = os.path.join(local_import_path, sub_directory)
local_imports.append((import_name, local_import_path))
# Check library imports
needs_to_be_installed = {}
for library_import_name, library_import_path in library_imports:
try:
lib = importlib.import_module(library_import_name) # noqa F841
except ImportError:
if library_import_name not in needs_to_be_installed or library_import_path != library_import_name:
needs_to_be_installed[library_import_name] = library_import_path
if needs_to_be_installed:
_dependencies_str = "dependencies" if len(needs_to_be_installed) > 1 else "dependency"
_them_str = "them" if len(needs_to_be_installed) > 1 else "it"
if "sklearn" in needs_to_be_installed.keys():
needs_to_be_installed["sklearn"] = "scikit-learn"
raise ImportError(
f"To be able to use {name}, you need to install the following {_dependencies_str}: "
f"{', '.join(needs_to_be_installed)}.\nPlease install {_them_str} using 'pip install "
f"{' '.join(needs_to_be_installed.values())}' for instance."
)
return local_imports
def _copy_script_and_other_resources_in_importable_dir(
name: str,
importable_directory_path: str,
subdirectory_name: str,
original_local_path: str,
local_imports: List[Tuple[str, str]],
additional_files: List[Tuple[str, str]],
download_mode: Optional[Union[DownloadMode, str]],
) -> str:
"""Copy a script and its required imports to an importable directory
Args:
name (str): name of the resource to load
importable_directory_path (str): path to the loadable folder in the dynamic modules directory
subdirectory_name (str): name of the subdirectory in importable_directory_path in which to place the script
original_local_path (str): local path to the resource script
local_imports (List[Tuple[str, str]]): list of (destination_filename, import_file_to_copy)
additional_files (List[Tuple[str, str]]): list of (destination_filename, additional_file_to_copy)
download_mode (Optional[Union[DownloadMode, str]]): download mode
Return:
importable_local_file: path to an importable module with importlib.import_module
"""
# Define a directory with a unique name in our dataset or metric folder
# path is: ./datasets|metrics/dataset|metric_name/hash_from_code/script.py
# we use a hash as subdirectory_name to be able to have multiple versions of a dataset/metric processing file together
importable_subdirectory = os.path.join(importable_directory_path, subdirectory_name)
importable_local_file = os.path.join(importable_subdirectory, name + ".py")
# Prevent parallel disk operations
lock_path = importable_directory_path + ".lock"
with FileLock(lock_path):
# Create main dataset/metrics folder if needed
if download_mode == DownloadMode.FORCE_REDOWNLOAD and os.path.exists(importable_directory_path):
shutil.rmtree(importable_directory_path)
os.makedirs(importable_directory_path, exist_ok=True)
# add an __init__ file to the main dataset folder if needed
init_file_path = os.path.join(importable_directory_path, "__init__.py")
if not os.path.exists(init_file_path):
with open(init_file_path, "w"):
pass
# Create hash dataset folder if needed
os.makedirs(importable_subdirectory, exist_ok=True)
# add an __init__ file to the hash dataset folder if needed
init_file_path = os.path.join(importable_subdirectory, "__init__.py")
if not os.path.exists(init_file_path):
with open(init_file_path, "w"):
pass
# Copy dataset.py file in hash folder if needed
if not os.path.exists(importable_local_file):
shutil.copyfile(original_local_path, importable_local_file)
# Record metadata associating original dataset path with local unique folder
# Use os.path.splitext to split extension from importable_local_file
meta_path = os.path.splitext(importable_local_file)[0] + ".json"
if not os.path.exists(meta_path):
meta = {"original file path": original_local_path, "local file path": importable_local_file}
# the filename is *.py in our case, so better rename to filename.json instead of filename.py.json
with open(meta_path, "w", encoding="utf-8") as meta_file:
json.dump(meta, meta_file)
# Copy all the additional imports
for import_name, import_path in local_imports:
if os.path.isfile(import_path):
full_path_local_import = os.path.join(importable_subdirectory, import_name + ".py")
if not os.path.exists(full_path_local_import):
shutil.copyfile(import_path, full_path_local_import)
elif os.path.isdir(import_path):
full_path_local_import = os.path.join(importable_subdirectory, import_name)
if not os.path.exists(full_path_local_import):
shutil.copytree(import_path, full_path_local_import)
else:
raise ImportError(f"Error with local import at {import_path}")
# Copy additional files like dataset_infos.json file if needed
for file_name, original_path in additional_files:
destination_additional_path = os.path.join(importable_subdirectory, file_name)
if not os.path.exists(destination_additional_path) or not filecmp.cmp(
original_path, destination_additional_path
):
shutil.copyfile(original_path, destination_additional_path)
return importable_local_file
def _create_importable_file(
local_path: str,
local_imports: List[Tuple[str, str]],
additional_files: List[Tuple[str, str]],
dynamic_modules_path: str,
module_namespace: str,
name: str,
download_mode: DownloadMode,
) -> Tuple[str, str]:
importable_directory_path = os.path.join(dynamic_modules_path, module_namespace, name.replace("/", "--"))
Path(importable_directory_path).mkdir(parents=True, exist_ok=True)
(Path(importable_directory_path).parent / "__init__.py").touch(exist_ok=True)
hash = files_to_hash([local_path] + [loc[1] for loc in local_imports])
importable_local_file = _copy_script_and_other_resources_in_importable_dir(
name=name.split("/")[-1],
importable_directory_path=importable_directory_path,
subdirectory_name=hash,
original_local_path=local_path,
local_imports=local_imports,
additional_files=additional_files,
download_mode=download_mode,
)
logger.debug(f"Created importable dataset file at {importable_local_file}")
module_path = ".".join(
[os.path.basename(dynamic_modules_path), module_namespace, name.replace("/", "--"), hash, name.split("/")[-1]]
)
return module_path, hash
def infer_module_for_data_files_list(
data_files_list: DataFilesList, download_config: Optional[DownloadConfig] = None
) -> Optional[Tuple[str, str]]:
"""Infer module (and builder kwargs) from list of data files.
It picks the module based on the most common file extension.
In case of a draw ".parquet" is the favorite, and then alphabetical order.
Args:
data_files_list (DataFilesList): List of data files.
download_config (bool or str, optional): mainly use use_auth_token or storage_options to support different platforms and auth types.
Returns:
tuple[str, dict[str, Any]]: Tuple with
- inferred module name
- dict of builder kwargs
"""
extensions_counter = Counter(
"." + suffix.lower()
for filepath in data_files_list[: config.DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE]
for suffix in xbasename(filepath).split(".")[1:]
)
if extensions_counter:
def sort_key(ext_count: Tuple[str, int]) -> Tuple[int, bool]:
"""Sort by count and set ".parquet" as the favorite in case of a draw"""
ext, count = ext_count
return (count, ext == ".parquet", ext)
for ext, _ in sorted(extensions_counter.items(), key=sort_key, reverse=True):
if ext in _EXTENSION_TO_MODULE:
return _EXTENSION_TO_MODULE[ext]
elif ext == ".zip":
return infer_module_for_data_files_list_in_archives(data_files_list, download_config=download_config)
return None, {}
def infer_module_for_data_files_list_in_archives(
data_files_list: DataFilesList, download_config: Optional[DownloadConfig] = None
) -> Optional[Tuple[str, str]]:
"""Infer module (and builder kwargs) from list of archive data files.
Args:
data_files_list (DataFilesList): List of data files.
download_config (bool or str, optional): mainly use use_auth_token or storage_options to support different platforms and auth types.
Returns:
tuple[str, dict[str, Any]]: Tuple with
- inferred module name
- dict of builder kwargs
"""
archived_files = []
archive_files_counter = 0
for filepath in data_files_list:
if str(filepath).endswith(".zip"):
archive_files_counter += 1
if archive_files_counter > config.GLOBBED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE:
break
extracted = xjoin(StreamingDownloadManager().extract(filepath), "**")
archived_files += [
f.split("::")[0]
for f in xglob(extracted, recursive=True, download_config=download_config)[
: config.ARCHIVED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE
]
]
extensions_counter = Counter(
"." + suffix.lower() for filepath in archived_files for suffix in xbasename(filepath).split(".")[1:]
)
if extensions_counter:
most_common = extensions_counter.most_common(1)[0][0]
if most_common in _EXTENSION_TO_MODULE:
return _EXTENSION_TO_MODULE[most_common]
return None, {}
def infer_module_for_data_files(
data_files: DataFilesDict, path: Optional[str] = None, download_config: Optional[DownloadConfig] = None
) -> Tuple[Optional[str], Dict[str, Any]]:
"""Infer module (and builder kwargs) from data files. Raise if module names for different splits don't match.
Args:
data_files (DataFilesDict): List of data files.
path (str, optional): Dataset name or path.
DownloadConfig (bool or str, optional): for authenticate on the Hugging Face Hub for private remote files.
Returns:
tuple[str, dict[str, Any]]: Tuple with
- inferred module name
- builder kwargs
"""
split_modules = {
split: infer_module_for_data_files_list(data_files_list, download_config=download_config)
for split, data_files_list in data_files.items()
}
module_name, default_builder_kwargs = next(iter(split_modules.values()))
if any((module_name, default_builder_kwargs) != split_module for split_module in split_modules.values()):
raise ValueError(f"Couldn't infer the same data file format for all splits. Got {split_modules}")
if not module_name:
path = f" in {path}. " if path else ". "
raise FileNotFoundError(f"No (supported) data files or dataset script found{path}")
return module_name, default_builder_kwargs
def update_hash_with_config_parameters(hash: str, config_parameters: dict) -> str:
"""
Used to update hash of packaged modules which is used for creating unique cache directories to reflect
different config parameters which are passed in metadata from readme.
"""
params_to_exclude = {"config_name", "version", "description"}
params_to_add_to_hash = {
param: value for param, value in sorted(config_parameters.items()) if param not in params_to_exclude
}
m = Hasher()
m.update(hash)
m.update(params_to_add_to_hash)
return m.hexdigest()
def create_builder_configs_from_metadata_configs(
module_path: str,
metadata_configs: MetadataConfigs,
supports_metadata: bool,
base_path: Optional[str] = None,
default_builder_kwargs: Dict[str, Any] = None,
allowed_extensions: Optional[List[str]] = None,
) -> Tuple[List[BuilderConfig], str]:
builder_cls = import_main_class(module_path)
builder_config_cls = builder_cls.BUILDER_CONFIG_CLASS
default_config_name = metadata_configs.get_default_config_name()
builder_configs = []
base_path = base_path if base_path is not None else ""
for config_name, config_params in metadata_configs.items():
config_data_files = config_params.get("data_files")
config_data_dir = config_params.get("data_dir")
config_base_path = base_path + "/" + config_data_dir if config_data_dir else base_path
try:
config_patterns = (
sanitize_patterns(config_data_files)
if config_data_files is not None
else get_data_patterns(config_base_path)
)
config_data_files_dict = DataFilesDict.from_patterns(
config_patterns,
base_path=config_base_path,
allowed_extensions=ALL_ALLOWED_EXTENSIONS,
)
except EmptyDatasetError as e:
raise EmptyDatasetError(
f"Dataset at '{base_path}' doesn't contain data files matching the patterns for config '{config_name}',"
f" check `data_files` and `data_fir` parameters in the `configs` YAML field in README.md. "
) from e
if config_data_files is None and supports_metadata and config_patterns != DEFAULT_PATTERNS_ALL:
try:
config_metadata_patterns = get_metadata_patterns(base_path)
except FileNotFoundError:
config_metadata_patterns = None
if config_metadata_patterns is not None:
config_metadata_data_files_list = DataFilesList.from_patterns(
config_metadata_patterns, base_path=base_path
)
if config_metadata_data_files_list:
config_data_files_dict = DataFilesDict(
{
split: data_files_list + config_metadata_data_files_list
for split, data_files_list in config_data_files_dict.items()
}
)
ignored_params = [
param for param in config_params if not hasattr(builder_config_cls, param) and param != "default"
]
if ignored_params:
logger.warning(
f"Some datasets params were ignored: {ignored_params}. "
"Make sure to use only valid params for the dataset builder and to have "
"a up-to-date version of the `datasets` library."
)
builder_configs.append(
builder_config_cls(
name=config_name,
data_files=config_data_files_dict,
data_dir=config_data_dir,
**{
param: value
for param, value in {**default_builder_kwargs, **config_params}.items()
if hasattr(builder_config_cls, param) and param not in ("default", "data_files", "data_dir")
},
)
)
return builder_configs, default_config_name
@dataclass
class BuilderConfigsParameters:
"""Dataclass containing objects related to creation of builder configurations from yaml's metadata content.
Attributes:
metadata_configs (`MetadataConfigs`, *optional*):
Configs parsed from yaml's metadata.
builder_configs (`list[BuilderConfig]`, *optional*):
List of BuilderConfig objects created from metadata_configs above.
default_config_name (`str`):
Name of default config taken from yaml's metadata.
"""
metadata_configs: Optional[MetadataConfigs] = None
builder_configs: Optional[List[BuilderConfig]] = None
default_config_name: Optional[str] = None
@dataclass
class DatasetModule:
module_path: str
hash: str
builder_kwargs: dict
builder_configs_parameters: BuilderConfigsParameters = field(default_factory=BuilderConfigsParameters)
dataset_infos: Optional[DatasetInfosDict] = None
@dataclass
class MetricModule:
module_path: str
hash: str
class _DatasetModuleFactory:
def get_module(self) -> DatasetModule:
raise NotImplementedError
class _MetricModuleFactory:
def get_module(self) -> MetricModule:
raise NotImplementedError
class GithubMetricModuleFactory(_MetricModuleFactory):
"""Get the module of a metric. The metric script is downloaded from GitHub.
<Deprecated version="2.5.0">
Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate
</Deprecated>
"""
@deprecated("Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate")
def __init__(
self,
name: str,
revision: Optional[Union[str, Version]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
dynamic_modules_path: Optional[str] = None,
):
self.name = name
self.revision = revision
self.download_config = download_config.copy() if download_config else DownloadConfig()
if self.download_config.max_retries < 3:
self.download_config.max_retries = 3
self.download_mode = download_mode
self.dynamic_modules_path = dynamic_modules_path
assert self.name.count("/") == 0
increase_load_count(name, resource_type="metric")
def download_loading_script(self, revision: Optional[str]) -> str:
file_path = hf_github_url(path=self.name, name=self.name + ".py", revision=revision, dataset=False)
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading builder script"
return cached_path(file_path, download_config=download_config)
def get_module(self) -> MetricModule:
# get script and other files
revision = self.revision
try:
local_path = self.download_loading_script(revision)
revision = self.revision
except FileNotFoundError:
if revision is not None:
raise
else:
revision = "main"
local_path = self.download_loading_script(revision)
logger.warning(
f"Couldn't find a directory or a metric named '{self.name}' in this version. "
f"It was picked from the main branch on github instead."
)
imports = get_imports(local_path)
local_imports = _download_additional_modules(
name=self.name,
base_path=hf_github_url(path=self.name, name="", revision=revision, dataset=False),
imports=imports,
download_config=self.download_config,
)
# copy the script and the files in an importable directory
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
module_path, hash = _create_importable_file(
local_path=local_path,
local_imports=local_imports,
additional_files=[],
dynamic_modules_path=dynamic_modules_path,
module_namespace="metrics",
name=self.name,
download_mode=self.download_mode,
)
# make the new module to be noticed by the import system
importlib.invalidate_caches()
return MetricModule(module_path, hash)
class LocalMetricModuleFactory(_MetricModuleFactory):
"""Get the module of a local metric. The metric script is loaded from a local script.
<Deprecated version="2.5.0">
Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate
</Deprecated>
"""
@deprecated("Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate")
def __init__(
self,
path: str,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
dynamic_modules_path: Optional[str] = None,
):
self.path = path
self.name = Path(path).stem
self.download_config = download_config or DownloadConfig()
self.download_mode = download_mode
self.dynamic_modules_path = dynamic_modules_path
def get_module(self) -> MetricModule:
# get script and other files
imports = get_imports(self.path)
local_imports = _download_additional_modules(
name=self.name,
base_path=str(Path(self.path).parent),
imports=imports,
download_config=self.download_config,
)
# copy the script and the files in an importable directory
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
module_path, hash = _create_importable_file(
local_path=self.path,
local_imports=local_imports,
additional_files=[],
dynamic_modules_path=dynamic_modules_path,
module_namespace="metrics",
name=self.name,
download_mode=self.download_mode,
)
# make the new module to be noticed by the import system
importlib.invalidate_caches()
return MetricModule(module_path, hash)
class LocalDatasetModuleFactoryWithScript(_DatasetModuleFactory):
"""Get the module of a local dataset. The dataset script is loaded from a local script."""
def __init__(
self,
path: str,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
dynamic_modules_path: Optional[str] = None,
):
self.path = path
self.name = Path(path).stem
self.download_config = download_config or DownloadConfig()
self.download_mode = download_mode
self.dynamic_modules_path = dynamic_modules_path
def get_module(self) -> DatasetModule:
# get script and other files
dataset_infos_path = Path(self.path).parent / config.DATASETDICT_INFOS_FILENAME
dataset_readme_path = Path(self.path).parent / "README.md"
imports = get_imports(self.path)
local_imports = _download_additional_modules(
name=self.name,
base_path=str(Path(self.path).parent),
imports=imports,
download_config=self.download_config,
)
additional_files = []
if dataset_infos_path.is_file():
additional_files.append((config.DATASETDICT_INFOS_FILENAME, str(dataset_infos_path)))
if dataset_readme_path.is_file():
additional_files.append(("README.md", dataset_readme_path))
# copy the script and the files in an importable directory
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
module_path, hash = _create_importable_file(
local_path=self.path,
local_imports=local_imports,
additional_files=additional_files,
dynamic_modules_path=dynamic_modules_path,
module_namespace="datasets",
name=self.name,
download_mode=self.download_mode,
)
# make the new module to be noticed by the import system
importlib.invalidate_caches()
builder_kwargs = {"hash": hash, "base_path": str(Path(self.path).parent)}
return DatasetModule(module_path, hash, builder_kwargs)
class LocalDatasetModuleFactoryWithoutScript(_DatasetModuleFactory):
"""Get the module of a dataset loaded from the user's data files. The dataset builder module to use is inferred
from the data files extensions."""
def __init__(
self,
path: str,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, List, Dict]] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
):
if data_dir and os.path.isabs(data_dir):
raise ValueError(f"`data_dir` must be relative to a dataset directory's root: {path}")
self.path = Path(path).as_posix()
self.name = Path(path).stem
self.data_files = data_files
self.data_dir = data_dir
self.download_mode = download_mode
def get_module(self) -> DatasetModule:
readme_path = os.path.join(self.path, "README.md")
dataset_card_data = DatasetCard.load(readme_path).data if os.path.isfile(readme_path) else DatasetCardData()
metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
# even if metadata_configs_dict is not None (which means that we will resolve files for each config later)
# we cannot skip resolving all files because we need to infer module name by files extensions
base_path = Path(self.path, self.data_dir or "").expanduser().resolve().as_posix()
patterns = sanitize_patterns(self.data_files) if self.data_files is not None else get_data_patterns(base_path)
data_files = DataFilesDict.from_patterns(
patterns,
base_path=base_path,
allowed_extensions=ALL_ALLOWED_EXTENSIONS,
)
module_name, default_builder_kwargs = infer_module_for_data_files(
data_files=data_files,
path=self.path,
)
data_files = data_files.filter_extensions(_MODULE_TO_EXTENSIONS[module_name])
# Collect metadata files if the module supports them
supports_metadata = module_name in _MODULE_SUPPORTS_METADATA
if self.data_files is None and supports_metadata and patterns != DEFAULT_PATTERNS_ALL:
try:
metadata_patterns = get_metadata_patterns(base_path)
except FileNotFoundError:
metadata_patterns = None
if metadata_patterns is not None:
metadata_data_files_list = DataFilesList.from_patterns(metadata_patterns, base_path=base_path)
if metadata_data_files_list:
data_files = DataFilesDict(
{
split: data_files_list + metadata_data_files_list
for split, data_files_list in data_files.items()
}
)
module_path, hash = _PACKAGED_DATASETS_MODULES[module_name]
if metadata_configs:
builder_configs, default_config_name = create_builder_configs_from_metadata_configs(
module_path,
metadata_configs,
base_path=base_path,
supports_metadata=supports_metadata,
default_builder_kwargs=default_builder_kwargs,
)
else:
builder_configs, default_config_name = None, None
builder_kwargs = {
"hash": hash,
"base_path": self.path,
"dataset_name": camelcase_to_snakecase(Path(self.path).name),
}
if self.data_files is not None or not metadata_configs:
builder_kwargs["data_files"] = data_files
builder_kwargs.update(default_builder_kwargs) # from _EXTENSION_TO_MODULE
if os.path.isfile(os.path.join(self.path, config.DATASETDICT_INFOS_FILENAME)):
with open(os.path.join(self.path, config.DATASETDICT_INFOS_FILENAME), encoding="utf-8") as f:
legacy_dataset_infos = DatasetInfosDict(
{
config_name: DatasetInfo.from_dict(dataset_info_dict)
for config_name, dataset_info_dict in json.load(f).items()
}
)
legacy_dataset_infos.update(dataset_infos)
dataset_infos = legacy_dataset_infos
if default_config_name is None and len(dataset_infos) == 1:
default_config_name = next(iter(dataset_infos))
return DatasetModule(
module_path,
hash,
builder_kwargs,
dataset_infos=dataset_infos,
builder_configs_parameters=BuilderConfigsParameters(
metadata_configs=metadata_configs,
builder_configs=builder_configs,
default_config_name=default_config_name,
),
)
class PackagedDatasetModuleFactory(_DatasetModuleFactory):
"""Get the dataset builder module from the ones that are packaged with the library: csv, json, etc."""
def __init__(
self,
name: str,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, List, Dict]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
):
self.name = name
self.data_files = data_files
self.data_dir = data_dir
self.download_config = download_config
self.download_mode = download_mode
increase_load_count(name, resource_type="dataset")
def get_module(self) -> DatasetModule:
base_path = Path(self.data_dir or "").expanduser().resolve().as_posix()
patterns = sanitize_patterns(self.data_files) if self.data_files is not None else get_data_patterns(base_path)
data_files = DataFilesDict.from_patterns(
patterns,
download_config=self.download_config,
base_path=base_path,
)
supports_metadata = self.name in _MODULE_SUPPORTS_METADATA
if self.data_files is None and supports_metadata and patterns != DEFAULT_PATTERNS_ALL:
try:
metadata_patterns = get_metadata_patterns(base_path)
except FileNotFoundError:
metadata_patterns = None
if metadata_patterns is not None:
metadata_data_files_list = DataFilesList.from_patterns(
metadata_patterns, download_config=self.download_config, base_path=base_path
)
if metadata_data_files_list:
data_files = DataFilesDict(
{
split: data_files_list + metadata_data_files_list
for split, data_files_list in data_files.items()
}
)
module_path, hash = _PACKAGED_DATASETS_MODULES[self.name]
builder_kwargs = {
"hash": hash,
"data_files": data_files,
"dataset_name": self.name,
}
return DatasetModule(module_path, hash, builder_kwargs)
class HubDatasetModuleFactoryWithoutScript(_DatasetModuleFactory):
"""
Get the module of a dataset loaded from data files of a dataset repository.
The dataset builder module to use is inferred from the data files extensions.
"""
def __init__(
self,
name: str,
revision: Optional[Union[str, Version]] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, List, Dict]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
):
self.name = name
self.revision = revision
self.data_files = data_files
self.data_dir = data_dir
self.download_config = download_config or DownloadConfig()
self.download_mode = download_mode
increase_load_count(name, resource_type="dataset")
def get_module(self) -> DatasetModule:
hfh_dataset_info = HfApi(config.HF_ENDPOINT).dataset_info(
self.name,
revision=self.revision,
token=self.download_config.token,
timeout=100.0,
)
# even if metadata_configs is not None (which means that we will resolve files for each config later)
# we cannot skip resolving all files because we need to infer module name by files extensions
revision = hfh_dataset_info.sha # fix the revision in case there are new commits in the meantime
base_path = f"hf://datasets/{self.name}@{revision}/{self.data_dir or ''}".rstrip("/")
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading readme"
try:
dataset_readme_path = cached_path(
hf_hub_url(self.name, "README.md", revision=revision),
download_config=download_config,
)
dataset_card_data = DatasetCard.load(Path(dataset_readme_path)).data
except FileNotFoundError:
dataset_card_data = DatasetCardData()
metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
patterns = (
sanitize_patterns(self.data_files)
if self.data_files is not None
else get_data_patterns(base_path, download_config=self.download_config)
)
data_files = DataFilesDict.from_patterns(
patterns,
base_path=base_path,
allowed_extensions=ALL_ALLOWED_EXTENSIONS,
download_config=self.download_config,
)
module_name, default_builder_kwargs = infer_module_for_data_files(
data_files=data_files,
path=self.name,
download_config=self.download_config,
)
data_files = data_files.filter_extensions(_MODULE_TO_EXTENSIONS[module_name])
# Collect metadata files if the module supports them
supports_metadata = module_name in _MODULE_SUPPORTS_METADATA
if self.data_files is None and supports_metadata and patterns != DEFAULT_PATTERNS_ALL:
try:
metadata_patterns = get_metadata_patterns(base_path)
except FileNotFoundError:
metadata_patterns = None
if metadata_patterns is not None:
metadata_data_files_list = DataFilesList.from_patterns(
metadata_patterns, download_config=self.download_config, base_path=base_path
)
if metadata_data_files_list:
data_files = DataFilesDict(
{
split: data_files_list + metadata_data_files_list
for split, data_files_list in data_files.items()
}
)
module_path, hash = _PACKAGED_DATASETS_MODULES[module_name]
if metadata_configs:
builder_configs, default_config_name = create_builder_configs_from_metadata_configs(
module_path,
metadata_configs,
base_path=base_path,
supports_metadata=supports_metadata,
default_builder_kwargs=default_builder_kwargs,
)
else:
builder_configs, default_config_name = None, None
builder_kwargs = {
"hash": hash,
"base_path": hf_hub_url(self.name, "", revision=self.revision),
"repo_id": self.name,
"dataset_name": camelcase_to_snakecase(Path(self.name).name),
}
if self.data_files is not None or not metadata_configs:
builder_kwargs["data_files"] = data_files
builder_kwargs.update(default_builder_kwargs) # from _EXTENSION_TO_MODULE
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading metadata"
try:
dataset_infos_path = cached_path(
hf_hub_url(self.name, config.DATASETDICT_INFOS_FILENAME, revision=self.revision),
download_config=download_config,
)
with open(dataset_infos_path, encoding="utf-8") as f:
legacy_dataset_infos = DatasetInfosDict(
{
config_name: DatasetInfo.from_dict(dataset_info_dict)
for config_name, dataset_info_dict in json.load(f).items()
}
)
legacy_dataset_infos.update(dataset_infos)
dataset_infos = legacy_dataset_infos
except FileNotFoundError:
pass
if default_config_name is None and len(dataset_infos) == 1:
default_config_name = next(iter(dataset_infos))
return DatasetModule(
module_path,
hash,
builder_kwargs,
dataset_infos=dataset_infos,
builder_configs_parameters=BuilderConfigsParameters(
metadata_configs=metadata_configs,
builder_configs=builder_configs,
default_config_name=default_config_name,
),
)
class HubDatasetModuleFactoryWithScript(_DatasetModuleFactory):
"""
Get the module of a dataset from a dataset repository.
The dataset script comes from the script inside the dataset repository.
"""
def __init__(
self,
name: str,
revision: Optional[Union[str, Version]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
dynamic_modules_path: Optional[str] = None,
):
self.name = name
self.revision = revision
self.download_config = download_config or DownloadConfig()
self.download_mode = download_mode
self.dynamic_modules_path = dynamic_modules_path
increase_load_count(name, resource_type="dataset")
def download_loading_script(self) -> str:
file_path = hf_hub_url(repo_id=self.name, path=self.name.split("/")[-1] + ".py", revision=self.revision)
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading builder script"
return cached_path(file_path, download_config=download_config)
def download_dataset_infos_file(self) -> str:
dataset_infos = hf_hub_url(repo_id=self.name, path=config.DATASETDICT_INFOS_FILENAME, revision=self.revision)
# Download the dataset infos file if available
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading metadata"
try:
return cached_path(
dataset_infos,
download_config=download_config,
)
except (FileNotFoundError, ConnectionError):
return None
def download_dataset_readme_file(self) -> str:
readme_url = hf_hub_url(repo_id=self.name, path="README.md", revision=self.revision)
# Download the dataset infos file if available
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading readme"
try:
return cached_path(
readme_url,
download_config=download_config,
)
except (FileNotFoundError, ConnectionError):
return None
def get_module(self) -> DatasetModule:
# get script and other files
local_path = self.download_loading_script()
dataset_infos_path = self.download_dataset_infos_file()
dataset_readme_path = self.download_dataset_readme_file()
imports = get_imports(local_path)
local_imports = _download_additional_modules(
name=self.name,
base_path=hf_hub_url(repo_id=self.name, path="", revision=self.revision),
imports=imports,
download_config=self.download_config,
)
additional_files = []
if dataset_infos_path:
additional_files.append((config.DATASETDICT_INFOS_FILENAME, dataset_infos_path))
if dataset_readme_path:
additional_files.append(("README.md", dataset_readme_path))
# copy the script and the files in an importable directory
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
module_path, hash = _create_importable_file(
local_path=local_path,
local_imports=local_imports,
additional_files=additional_files,
dynamic_modules_path=dynamic_modules_path,
module_namespace="datasets",
name=self.name,
download_mode=self.download_mode,
)
# make the new module to be noticed by the import system
importlib.invalidate_caches()
builder_kwargs = {
"hash": hash,
"base_path": hf_hub_url(self.name, "", revision=self.revision),
"repo_id": self.name,
}
return DatasetModule(module_path, hash, builder_kwargs)
class CachedDatasetModuleFactory(_DatasetModuleFactory):
"""
Get the module of a dataset that has been loaded once already and cached.
The script that is loaded from the cache is the most recent one with a matching name.
"""
def __init__(
self,
name: str,
dynamic_modules_path: Optional[str] = None,
):
self.name = name
self.dynamic_modules_path = dynamic_modules_path
assert self.name.count("/") <= 1
def get_module(self) -> DatasetModule:
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
importable_directory_path = os.path.join(dynamic_modules_path, "datasets", self.name.replace("/", "--"))
hashes = (
[h for h in os.listdir(importable_directory_path) if len(h) == 64]
if os.path.isdir(importable_directory_path)
else None
)
if not hashes:
raise FileNotFoundError(f"Dataset {self.name} is not cached in {dynamic_modules_path}")
# get most recent
def _get_modification_time(module_hash):
return (Path(importable_directory_path) / module_hash / (self.name.split("/")[-1] + ".py")).stat().st_mtime
hash = sorted(hashes, key=_get_modification_time)[-1]
warning_msg = (
f"Using the latest cached version of the module from {os.path.join(importable_directory_path, hash)} "
f"(last modified on {time.ctime(_get_modification_time(hash))}) since it "
f"couldn't be found locally at {self.name}."
)
if not config.HF_DATASETS_OFFLINE:
warning_msg += ", or remotely on the Hugging Face Hub."
logger.warning(warning_msg)
# make the new module to be noticed by the import system
module_path = ".".join(
[
os.path.basename(dynamic_modules_path),
"datasets",
self.name.replace("/", "--"),
hash,
self.name.split("/")[-1],
]
)
importlib.invalidate_caches()
builder_kwargs = {
"hash": hash,
"repo_id": self.name,
}
return DatasetModule(module_path, hash, builder_kwargs)
class CachedMetricModuleFactory(_MetricModuleFactory):
"""
Get the module of a metric that has been loaded once already and cached.
The script that is loaded from the cache is the most recent one with a matching name.
<Deprecated version="2.5.0">
Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate
</Deprecated>
"""
@deprecated("Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate")
def __init__(
self,
name: str,
dynamic_modules_path: Optional[str] = None,
):
self.name = name
self.dynamic_modules_path = dynamic_modules_path
assert self.name.count("/") == 0
def get_module(self) -> MetricModule:
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
importable_directory_path = os.path.join(dynamic_modules_path, "metrics", self.name)
hashes = (
[h for h in os.listdir(importable_directory_path) if len(h) == 64]
if os.path.isdir(importable_directory_path)
else None
)
if not hashes:
raise FileNotFoundError(f"Metric {self.name} is not cached in {dynamic_modules_path}")
# get most recent
def _get_modification_time(module_hash):
return (Path(importable_directory_path) / module_hash / (self.name + ".py")).stat().st_mtime
hash = sorted(hashes, key=_get_modification_time)[-1]
logger.warning(
f"Using the latest cached version of the module from {os.path.join(importable_directory_path, hash)} "
f"(last modified on {time.ctime(_get_modification_time(hash))}) since it "
f"couldn't be found locally at {self.name}, or remotely on the Hugging Face Hub."
)
# make the new module to be noticed by the import system
module_path = ".".join([os.path.basename(dynamic_modules_path), "metrics", self.name, hash, self.name])
importlib.invalidate_caches()
return MetricModule(module_path, hash)
def dataset_module_factory(
path: str,
revision: Optional[Union[str, Version]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
dynamic_modules_path: Optional[str] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[Dict, List, str, DataFilesDict]] = None,
**download_kwargs,
) -> DatasetModule:
"""
Download/extract/cache a dataset module.
Dataset codes are cached inside the dynamic modules cache to allow easy import (avoid ugly sys.path tweaks).
Args:
path (str): Path or name of the dataset.
Depending on ``path``, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.
For local datasets:
- if ``path`` is a local directory (containing data files only)
-> load a generic dataset builder (csv, json, text etc.) based on the content of the directory
e.g. ``'./path/to/directory/with/my/csv/data'``.
- if ``path`` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory):
-> load the dataset builder from the dataset script
e.g. ``'./dataset/squad'`` or ``'./dataset/squad/squad.py'``.
For datasets on the Hugging Face Hub (list all available datasets with ``huggingface_hub.list_datasets()``)
- if ``path`` is a dataset repository on the HF hub (containing data files only)
-> load a generic dataset builder (csv, text etc.) based on the content of the repository
e.g. ``'username/dataset_name'``, a dataset repository on the HF hub containing your data files.
- if ``path`` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script in the dataset repository
e.g. ``glue``, ``squad``, ``'username/dataset_name'``, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`.
revision (:class:`~utils.Version` or :obj:`str`, optional): Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
download_config (:class:`DownloadConfig`, optional): Specific download configuration parameters.
download_mode (:class:`DownloadMode` or :obj:`str`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode.
dynamic_modules_path (Optional str, defaults to HF_MODULES_CACHE / "datasets_modules", i.e. ~/.cache/huggingface/modules/datasets_modules):
Optional path to the directory in which the dynamic modules are saved. It must have been initialized with :obj:`init_dynamic_modules`.
By default, the datasets and metrics are stored inside the `datasets_modules` module.
data_dir (:obj:`str`, optional): Directory with the data files. Used only if `data_files` is not specified,
in which case it's equal to pass `os.path.join(data_dir, "**")` as `data_files`.
data_files (:obj:`Union[Dict, List, str]`, optional): Defining the data_files of the dataset configuration.
**download_kwargs (additional keyword arguments): optional attributes for DownloadConfig() which will override
the attributes in download_config if supplied.
Returns:
DatasetModule
"""
if download_config is None:
download_config = DownloadConfig(**download_kwargs)
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
download_config.extract_compressed_file = True
download_config.force_extract = True
download_config.force_download = download_mode == DownloadMode.FORCE_REDOWNLOAD
filename = list(filter(lambda x: x, path.replace(os.sep, "/").split("/")))[-1]
if not filename.endswith(".py"):
filename = filename + ".py"
combined_path = os.path.join(path, filename)
# We have several ways to get a dataset builder:
#
# - if path is the name of a packaged dataset module
# -> use the packaged module (json, csv, etc.)
#
# - if os.path.join(path, name) is a local python file
# -> use the module from the python file
# - if path is a local directory (but no python file)
# -> use a packaged module (csv, text etc.) based on content of the directory
#
# - if path has one "/" and is dataset repository on the HF hub with a python file
# -> the module from the python file in the dataset repository
# - if path has one "/" and is dataset repository on the HF hub without a python file
# -> use a packaged module (csv, text etc.) based on content of the repository
# Try packaged
if path in _PACKAGED_DATASETS_MODULES:
return PackagedDatasetModuleFactory(
path,
data_dir=data_dir,
data_files=data_files,
download_config=download_config,
download_mode=download_mode,
).get_module()
# Try locally
elif path.endswith(filename):
if os.path.isfile(path):
return LocalDatasetModuleFactoryWithScript(
path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path
).get_module()
else:
raise FileNotFoundError(f"Couldn't find a dataset script at {relative_to_absolute_path(path)}")
elif os.path.isfile(combined_path):
return LocalDatasetModuleFactoryWithScript(
combined_path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path
).get_module()
elif os.path.isdir(path):
return LocalDatasetModuleFactoryWithoutScript(
path, data_dir=data_dir, data_files=data_files, download_mode=download_mode
).get_module()
# Try remotely
elif is_relative_path(path) and path.count("/") <= 1:
try:
_raise_if_offline_mode_is_enabled()
hf_api = HfApi(config.HF_ENDPOINT)
try:
dataset_info = hf_api.dataset_info(
repo_id=path,
revision=revision,
token=download_config.token,
timeout=100.0,
)
except Exception as e: # noqa catch any exception of hf_hub and consider that the dataset doesn't exist
if isinstance(
e,
(
OfflineModeIsEnabled,
requests.exceptions.ConnectTimeout,
requests.exceptions.ConnectionError,
),
):
raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({type(e).__name__})")
elif "404" in str(e):
msg = f"Dataset '{path}' doesn't exist on the Hub"
raise FileNotFoundError(msg + f" at revision '{revision}'" if revision else msg)
elif "401" in str(e):
msg = f"Dataset '{path}' doesn't exist on the Hub"
msg = msg + f" at revision '{revision}'" if revision else msg
raise FileNotFoundError(
msg + ". If the repo is private or gated, make sure to log in with `huggingface-cli login`."
)
else:
raise e
if filename in [sibling.rfilename for sibling in dataset_info.siblings]:
return HubDatasetModuleFactoryWithScript(
path,
revision=revision,
download_config=download_config,
download_mode=download_mode,
dynamic_modules_path=dynamic_modules_path,
).get_module()
else:
return HubDatasetModuleFactoryWithoutScript(
path,
revision=revision,
data_dir=data_dir,
data_files=data_files,
download_config=download_config,
download_mode=download_mode,
).get_module()
except (
Exception
) as e1: # noqa all the attempts failed, before raising the error we should check if the module is already cached.
try:
return CachedDatasetModuleFactory(path, dynamic_modules_path=dynamic_modules_path).get_module()
except Exception: # noqa if it's not in the cache, then it doesn't exist.
if isinstance(e1, OfflineModeIsEnabled):
raise ConnectionError(f"Couldn't reach the Hugging Face Hub for dataset '{path}': {e1}") from None
if isinstance(e1, EmptyDatasetError):
raise e1 from None
if isinstance(e1, FileNotFoundError):
raise FileNotFoundError(
f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. "
f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}"
) from None
raise e1 from None
else:
raise FileNotFoundError(
f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory."
)
@deprecated("Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate")
def metric_module_factory(
path: str,
revision: Optional[Union[str, Version]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
dynamic_modules_path: Optional[str] = None,
**download_kwargs,
) -> MetricModule:
"""
Download/extract/cache a metric module.
<Deprecated version="2.5.0">
Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate
</Deprecated>
Metrics codes are cached inside the dynamic modules cache to allow easy import (avoid ugly sys.path tweaks).
Args:
path (str): Path or name of the metric script.
- if ``path`` is a local metric script or a directory containing a local metric script (if the script has the same name as the directory):
-> load the module from the metric script
e.g. ``'./metrics/accuracy'`` or ``'./metrics/accuracy/accuracy.py'``.
- if ``path`` is a metric on the Hugging Face Hub (ex: `glue`, `squad`)
-> load the module from the metric script in the GitHub repository at huggingface/datasets
e.g. ``'accuracy'`` or ``'rouge'``.
revision (Optional ``Union[str, datasets.Version]``):
If specified, the module will be loaded from the datasets repository at this version.
By default:
- it is set to the local version of the lib.
- it will also try to load it from the main branch if it's not available at the local version of the lib.
Specifying a version that is different from your local version of the lib might cause compatibility issues.
download_config (:class:`DownloadConfig`, optional): Specific download configuration parameters.
download_mode (:class:`DownloadMode` or :obj:`str`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode.
dynamic_modules_path (Optional str, defaults to HF_MODULES_CACHE / "datasets_modules", i.e. ~/.cache/huggingface/modules/datasets_modules):
Optional path to the directory in which the dynamic modules are saved. It must have been initialized with :obj:`init_dynamic_modules`.
By default, the datasets and metrics are stored inside the `datasets_modules` module.
**download_kwargs (additional keyword arguments): optional attributes for DownloadConfig() which will override
the attributes in download_config if supplied.
Returns:
MetricModule
"""
with warnings.catch_warnings():
# Ignore equivalent warnings to the one already issued
warnings.filterwarnings("ignore", message=".*https://huggingface.co/docs/evaluate$", category=FutureWarning)
if download_config is None:
download_config = DownloadConfig(**download_kwargs)
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
download_config.extract_compressed_file = True
download_config.force_extract = True
filename = list(filter(lambda x: x, path.replace(os.sep, "/").split("/")))[-1]
if not filename.endswith(".py"):
filename = filename + ".py"
combined_path = os.path.join(path, filename)
# Try locally
if path.endswith(filename):
if os.path.isfile(path):
return LocalMetricModuleFactory(
path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path
).get_module()
else:
raise FileNotFoundError(f"Couldn't find a metric script at {relative_to_absolute_path(path)}")
elif os.path.isfile(combined_path):
return LocalMetricModuleFactory(
combined_path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path
).get_module()
elif is_relative_path(path) and path.count("/") == 0:
try:
return GithubMetricModuleFactory(
path,
revision=revision,
download_config=download_config,
download_mode=download_mode,
dynamic_modules_path=dynamic_modules_path,
).get_module()
except (
Exception
) as e1: # noqa all the attempts failed, before raising the error we should check if the module is already cached.
try:
return CachedMetricModuleFactory(path, dynamic_modules_path=dynamic_modules_path).get_module()
except Exception: # noqa if it's not in the cache, then it doesn't exist.
if not isinstance(e1, FileNotFoundError):
raise e1 from None
raise FileNotFoundError(
f"Couldn't find a metric script at {relative_to_absolute_path(combined_path)}. "
f"Metric '{path}' doesn't exist on the Hugging Face Hub either."
) from None
else:
raise FileNotFoundError(f"Couldn't find a metric script at {relative_to_absolute_path(combined_path)}.")
@deprecated("Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate")
def load_metric(
path: str,
config_name: Optional[str] = None,
process_id: int = 0,
num_process: int = 1,
cache_dir: Optional[str] = None,
experiment_id: Optional[str] = None,
keep_in_memory: bool = False,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
revision: Optional[Union[str, Version]] = None,
**metric_init_kwargs,
) -> Metric:
"""Load a `datasets.Metric`.
<Deprecated version="2.5.0">
Use `evaluate.load` instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
</Deprecated>
Args:
path (``str``):
path to the metric processing script with the metric builder. Can be either:
- a local path to processing script or the directory containing the script (if the script has the same name as the directory),
e.g. ``'./metrics/rouge'`` or ``'./metrics/rogue/rouge.py'``
- a metric identifier on the HuggingFace datasets repo (list all available metrics with ``datasets.list_metrics()``)
e.g. ``'rouge'`` or ``'bleu'``
config_name (:obj:`str`, optional): selecting a configuration for the metric (e.g. the GLUE metric has a configuration for each subset)
process_id (:obj:`int`, optional): for distributed evaluation: id of the process
num_process (:obj:`int`, optional): for distributed evaluation: total number of processes
cache_dir (Optional str): path to store the temporary predictions and references (default to `~/.cache/huggingface/metrics/`)
experiment_id (``str``): A specific experiment id. This is used if several distributed evaluations share the same file system.
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
keep_in_memory (bool): Whether to store the temporary results in memory (defaults to False)
download_config (Optional ``datasets.DownloadConfig``: specific download configuration parameters.
download_mode (:class:`DownloadMode` or :obj:`str`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode.
revision (Optional ``Union[str, datasets.Version]``): if specified, the module will be loaded from the datasets repository
at this version. By default, it is set to the local version of the lib. Specifying a version that is different from
your local version of the lib might cause compatibility issues.
Returns:
`datasets.Metric`
Example:
```py
>>> from datasets import load_metric
>>> accuracy = load_metric('accuracy')
>>> accuracy.compute(references=[1, 0], predictions=[1, 1])
{'accuracy': 0.5}
```
"""
with warnings.catch_warnings():
# Ignore equivalent warnings to the one already issued
warnings.filterwarnings("ignore", message=".*https://huggingface.co/docs/evaluate$", category=FutureWarning)
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
metric_module = metric_module_factory(
path, revision=revision, download_config=download_config, download_mode=download_mode
).module_path
metric_cls = import_main_class(metric_module, dataset=False)
metric = metric_cls(
config_name=config_name,
process_id=process_id,
num_process=num_process,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
experiment_id=experiment_id,
**metric_init_kwargs,
)
# Download and prepare resources for the metric
metric.download_and_prepare(download_config=download_config)
return metric
def load_dataset_builder(
path: str,
name: Optional[str] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
cache_dir: Optional[str] = None,
features: Optional[Features] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
use_auth_token="deprecated",
storage_options: Optional[Dict] = None,
**config_kwargs,
) -> DatasetBuilder:
"""Load a dataset builder from the Hugging Face Hub, or a local dataset. A dataset builder can be used to inspect general information that is required to build a dataset (cache directory, config, dataset info, etc.)
without downloading the dataset itself.
You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`].
A dataset is a directory that contains:
- some data files in generic formats (JSON, CSV, Parquet, text, etc.)
- and optionally a dataset script, if it requires some code to read the data files. This is used to load any kind of formats or structures.
Note that dataset scripts can also download and read data files from anywhere - in case your data files already exist online.
Args:
path (`str`):
Path or name of the dataset.
Depending on `path`, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.
For local datasets:
- if `path` is a local directory (containing data files only)
-> load a generic dataset builder (csv, json, text etc.) based on the content of the directory
e.g. `'./path/to/directory/with/my/csv/data'`.
- if `path` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script
e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`.
For datasets on the Hugging Face Hub (list all available datasets with [`huggingface_hub.list_datasets`])
- if `path` is a dataset repository on the HF hub (containing data files only)
-> load a generic dataset builder (csv, text etc.) based on the content of the repository
e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing your data files.
- if `path` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script in the dataset repository
e.g. `glue`, `squad`, `'username/dataset_name'`, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`.
name (`str`, *optional*):
Defining the name of the dataset configuration.
data_dir (`str`, *optional*):
Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`,
the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory.
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
cache_dir (`str`, *optional*):
Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
features ([`Features`], *optional*):
Set the features type to use for this dataset.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
revision ([`Version`] or `str`, *optional*):
Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
use_auth_token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
<Deprecated version="2.14.0">
`use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0.
</Deprecated>
storage_options (`dict`, *optional*, defaults to `None`):
**Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any.
<Added version="2.11.0"/>
**config_kwargs (additional keyword arguments):
Keyword arguments to be passed to the [`BuilderConfig`]
and used in the [`DatasetBuilder`].
Returns:
[`DatasetBuilder`]
Example:
```py
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('rotten_tomatoes')
>>> ds_builder.info.features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
```
"""
if use_auth_token != "deprecated":
warnings.warn(
"'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n"
f"You can remove this warning by passing 'token={use_auth_token}' instead.",
FutureWarning,
)
token = use_auth_token
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
if token is not None:
download_config = download_config.copy() if download_config else DownloadConfig()
download_config.token = token
dataset_module = dataset_module_factory(
path,
revision=revision,
download_config=download_config,
download_mode=download_mode,
data_dir=data_dir,
data_files=data_files,
)
# Get dataset builder class from the processing script
builder_kwargs = dataset_module.builder_kwargs
data_dir = builder_kwargs.pop("data_dir", data_dir)
data_files = builder_kwargs.pop("data_files", data_files)
config_name = builder_kwargs.pop(
"config_name", name or dataset_module.builder_configs_parameters.default_config_name
)
dataset_name = builder_kwargs.pop("dataset_name", None)
hash = builder_kwargs.pop("hash")
info = dataset_module.dataset_infos.get(config_name) if dataset_module.dataset_infos else None
if (
dataset_module.builder_configs_parameters.metadata_configs
and config_name in dataset_module.builder_configs_parameters.metadata_configs
):
hash = update_hash_with_config_parameters(
hash, dataset_module.builder_configs_parameters.metadata_configs[config_name]
)
if path in _PACKAGED_DATASETS_MODULES and data_files is None:
error_msg = f"Please specify the data files or data directory to load for the {path} dataset builder."
example_extensions = [
extension for extension in _EXTENSION_TO_MODULE if _EXTENSION_TO_MODULE[extension] == path
]
if example_extensions:
error_msg += f'\nFor example `data_files={{"train": "path/to/data/train/*.{example_extensions[0]}"}}`'
raise ValueError(error_msg)
builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name)
# Instantiate the dataset builder
builder_instance: DatasetBuilder = builder_cls(
cache_dir=cache_dir,
dataset_name=dataset_name,
config_name=config_name,
data_dir=data_dir,
data_files=data_files,
hash=hash,
info=info,
features=features,
token=token,
storage_options=storage_options,
**builder_kwargs,
**config_kwargs,
)
return builder_instance
def load_dataset(
path: str,
name: Optional[str] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
split: Optional[Union[str, Split]] = None,
cache_dir: Optional[str] = None,
features: Optional[Features] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
verification_mode: Optional[Union[VerificationMode, str]] = None,
ignore_verifications="deprecated",
keep_in_memory: Optional[bool] = None,
save_infos: bool = False,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
use_auth_token="deprecated",
task="deprecated",
streaming: bool = False,
num_proc: Optional[int] = None,
storage_options: Optional[Dict] = None,
**config_kwargs,
) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset]:
"""Load a dataset from the Hugging Face Hub, or a local dataset.
You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`].
A dataset is a directory that contains:
- some data files in generic formats (JSON, CSV, Parquet, text, etc.).
- and optionally a dataset script, if it requires some code to read the data files. This is used to load any kind of formats or structures.
Note that dataset scripts can also download and read data files from anywhere - in case your data files already exist online.
This function does the following under the hood:
1. Download and import in the library the dataset script from `path` if it's not already cached inside the library.
If the dataset has no dataset script, then a generic dataset script is imported instead (JSON, CSV, Parquet, text, etc.)
Dataset scripts are small python scripts that define dataset builders. They define the citation, info and format of the dataset,
contain the path or URL to the original data files and the code to load examples from the original data files.
You can find the complete list of datasets in the Datasets [Hub](https://huggingface.co/datasets).
2. Run the dataset script which will:
* Download the dataset file from the original URL (see the script) if it's not already available locally or cached.
* Process and cache the dataset in typed Arrow tables for caching.
Arrow table are arbitrarily long, typed tables which can store nested objects and be mapped to numpy/pandas/python generic types.
They can be directly accessed from disk, loaded in RAM or even streamed over the web.
3. Return a dataset built from the requested splits in `split` (default: all).
It also allows to load a dataset from a local directory or a dataset repository on the Hugging Face Hub without dataset script.
In this case, it automatically loads all the data files from the directory or the dataset repository.
Args:
path (`str`):
Path or name of the dataset.
Depending on `path`, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.
For local datasets:
- if `path` is a local directory (containing data files only)
-> load a generic dataset builder (csv, json, text etc.) based on the content of the directory
e.g. `'./path/to/directory/with/my/csv/data'`.
- if `path` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script
e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`.
For datasets on the Hugging Face Hub (list all available datasets with [`huggingface_hub.list_datasets`])
- if `path` is a dataset repository on the HF hub (containing data files only)
-> load a generic dataset builder (csv, text etc.) based on the content of the repository
e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing your data files.
- if `path` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script in the dataset repository
e.g. `glue`, `squad`, `'username/dataset_name'`, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`.
name (`str`, *optional*):
Defining the name of the dataset configuration.
data_dir (`str`, *optional*):
Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`,
the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory.
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
split (`Split` or `str`):
Which split of the data to load.
If `None`, will return a `dict` with all splits (typically `datasets.Split.TRAIN` and `datasets.Split.TEST`).
If given, will return a single Dataset.
Splits can be combined and specified like in tensorflow-datasets.
cache_dir (`str`, *optional*):
Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
features (`Features`, *optional*):
Set the features type to use for this dataset.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`):
Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...).
<Added version="2.9.1"/>
ignore_verifications (`bool`, defaults to `False`):
Ignore the verifications of the downloaded/processed dataset information (checksums/size/splits/...).
<Deprecated version="2.9.1">
`ignore_verifications` was deprecated in version 2.9.1 and will be removed in 3.0.0.
Please use `verification_mode` instead.
</Deprecated>
keep_in_memory (`bool`, defaults to `None`):
Whether to copy the dataset in-memory. If `None`, the dataset
will not be copied in-memory unless explicitly enabled by setting `datasets.config.IN_MEMORY_MAX_SIZE` to
nonzero. See more details in the [improve performance](../cache#improve-performance) section.
save_infos (`bool`, defaults to `False`):
Save the dataset information (checksums/size/splits/...).
revision ([`Version`] or `str`, *optional*):
Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
use_auth_token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
<Deprecated version="2.14.0">
`use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0.
</Deprecated>
task (`str`):
The task to prepare the dataset for during training and evaluation. Casts the dataset's [`Features`] to standardized column names and types as detailed in `datasets.tasks`.
<Deprecated version="2.13.0">
`task` was deprecated in version 2.13.0 and will be removed in 3.0.0.
</Deprecated>
streaming (`bool`, defaults to `False`):
If set to `True`, don't download the data files. Instead, it streams the data progressively while
iterating on the dataset. An [`IterableDataset`] or [`IterableDatasetDict`] is returned instead in this case.
Note that streaming works for datasets that use data formats that support being iterated over like txt, csv, jsonl for example.
Json files may be downloaded completely. Also streaming from remote zip or gzip files is supported but other compressed formats
like rar and xz are not yet supported. The tgz format doesn't allow streaming.
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.7.0"/>
storage_options (`dict`, *optional*, defaults to `None`):
**Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any.
<Added version="2.11.0"/>
**config_kwargs (additional keyword arguments):
Keyword arguments to be passed to the `BuilderConfig`
and used in the [`DatasetBuilder`].
Returns:
[`Dataset`] or [`DatasetDict`]:
- if `split` is not `None`: the dataset requested,
- if `split` is `None`, a [`~datasets.DatasetDict`] with each split.
or [`IterableDataset`] or [`IterableDatasetDict`]: if `streaming=True`
- if `split` is not `None`, the dataset is requested
- if `split` is `None`, a [`~datasets.streaming.IterableDatasetDict`] with each split.
Example:
Load a dataset from the Hugging Face Hub:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes', split='train')
# Map data files to splits
>>> data_files = {'train': 'train.csv', 'test': 'test.csv'}
>>> ds = load_dataset('namespace/your_dataset_name', data_files=data_files)
```
Load a local dataset:
```py
# Load a CSV file
>>> from datasets import load_dataset
>>> ds = load_dataset('csv', data_files='path/to/local/my_dataset.csv')
# Load a JSON file
>>> from datasets import load_dataset
>>> ds = load_dataset('json', data_files='path/to/local/my_dataset.json')
# Load from a local loading script
>>> from datasets import load_dataset
>>> ds = load_dataset('path/to/local/loading_script/loading_script.py', split='train')
```
Load an [`~datasets.IterableDataset`]:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes', split='train', streaming=True)
```
Load an image dataset with the `ImageFolder` dataset builder:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('imagefolder', data_dir='/path/to/images', split='train')
```
"""
if use_auth_token != "deprecated":
warnings.warn(
"'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n"
f"You can remove this warning by passing 'token={use_auth_token}' instead.",
FutureWarning,
)
token = use_auth_token
if ignore_verifications != "deprecated":
verification_mode = VerificationMode.NO_CHECKS if ignore_verifications else VerificationMode.ALL_CHECKS
warnings.warn(
"'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.\n"
f"You can remove this warning by passing 'verification_mode={verification_mode.value}' instead.",
FutureWarning,
)
if task != "deprecated":
warnings.warn(
"'task' was deprecated in version 2.13.0 and will be removed in 3.0.0.\n",
FutureWarning,
)
else:
task = None
if data_files is not None and not data_files:
raise ValueError(f"Empty 'data_files': '{data_files}'. It should be either non-empty or None (default).")
if Path(path, config.DATASET_STATE_JSON_FILENAME).exists():
raise ValueError(
"You are trying to load a dataset that was saved using `save_to_disk`. "
"Please use `load_from_disk` instead."
)
if streaming and num_proc is not None:
raise NotImplementedError(
"Loading a streaming dataset in parallel with `num_proc` is not implemented. "
"To parallelize streaming, you can wrap the dataset with a PyTorch DataLoader using `num_workers` > 1 instead."
)
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
verification_mode = VerificationMode(
(verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS
)
# Create a dataset builder
builder_instance = load_dataset_builder(
path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
cache_dir=cache_dir,
features=features,
download_config=download_config,
download_mode=download_mode,
revision=revision,
token=token,
storage_options=storage_options,
**config_kwargs,
)
# Return iterable dataset in case of streaming
if streaming:
return builder_instance.as_streaming_dataset(split=split)
# Some datasets are already processed on the HF google storage
# Don't try downloading from Google storage for the packaged datasets as text, json, csv or pandas
try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
# Download and prepare data
builder_instance.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
try_from_hf_gcs=try_from_hf_gcs,
num_proc=num_proc,
storage_options=storage_options,
)
# Build dataset for splits
keep_in_memory = (
keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
)
ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)
# Rename and cast features to match task schema
if task is not None:
# To avoid issuing the same warning twice
with warnings.catch_warnings():
warnings.simplefilter("ignore", FutureWarning)
ds = ds.prepare_for_task(task)
if save_infos:
builder_instance._save_infos()
return ds
def load_from_disk(
dataset_path: str, fs="deprecated", keep_in_memory: Optional[bool] = None, storage_options: Optional[dict] = None
) -> Union[Dataset, DatasetDict]:
"""
Loads a dataset that was previously saved using [`~Dataset.save_to_disk`] from a dataset directory, or
from a filesystem using any implementation of `fsspec.spec.AbstractFileSystem`.
Args:
dataset_path (`str`):
Path (e.g. `"dataset/train"`) or remote URI (e.g.
`"s3://my-bucket/dataset/train"`) of the [`Dataset`] or [`DatasetDict`] directory where the dataset will be
loaded from.
fs (`~filesystems.S3FileSystem` or `fsspec.spec.AbstractFileSystem`, *optional*):
Instance of the remote filesystem used to download the files from.
<Deprecated version="2.9.0">
`fs` was deprecated in version 2.9.0 and will be removed in 3.0.0.
Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`.
</Deprecated>
keep_in_memory (`bool`, defaults to `None`):
Whether to copy the dataset in-memory. If `None`, the dataset
will not be copied in-memory unless explicitly enabled by setting `datasets.config.IN_MEMORY_MAX_SIZE` to
nonzero. See more details in the [improve performance](../cache#improve-performance) section.
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.9.0"/>
Returns:
[`Dataset`] or [`DatasetDict`]:
- If `dataset_path` is a path of a dataset directory: the dataset requested.
- If `dataset_path` is a path of a dataset dict directory, a [`DatasetDict`] with each split.
Example:
```py
>>> from datasets import load_from_disk
>>> ds = load_from_disk('path/to/dataset/directory')
```
"""
if fs != "deprecated":
warnings.warn(
"'fs' was deprecated in favor of 'storage_options' in version 2.9.0 and will be removed in 3.0.0.\n"
"You can remove this warning by passing 'storage_options=fs.storage_options' instead.",
FutureWarning,
)
storage_options = fs.storage_options
fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options)
fs: fsspec.AbstractFileSystem = fs_token_paths[0]
# gets filesystem from dataset, either s3:// or file:// and adjusted dataset_path
if is_remote_filesystem(fs):
dest_dataset_path = extract_path_from_uri(dataset_path)
path_join = posixpath.join
else:
fs = fsspec.filesystem("file")
dest_dataset_path = dataset_path
path_join = os.path.join
if not fs.exists(dest_dataset_path):
raise FileNotFoundError(f"Directory {dataset_path} not found")
if fs.isfile(path_join(dest_dataset_path, config.DATASET_INFO_FILENAME)) and fs.isfile(
path_join(dest_dataset_path, config.DATASET_STATE_JSON_FILENAME)
):
return Dataset.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)
elif fs.isfile(path_join(dest_dataset_path, config.DATASETDICT_JSON_FILENAME)):
return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)
else:
raise FileNotFoundError(
f"Directory {dataset_path} is neither a `Dataset` directory nor a `DatasetDict` directory."
)
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/keyhash.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""
Hashing function for dataset keys using `hashlib.md5`
Requirements for the hash function:
- Provides a uniformly distributed hash from random space
- Adequately fast speed
- Working with multiple input types (in this case, `str`, `int` or `bytes`)
- Should be platform independent (generates same hash on different OS and systems)
The hashing function provides a unique 128-bit integer hash of the key provided.
The split name is being used here as the hash salt to avoid having same hashes
in different splits due to same keys
"""
import hashlib
from typing import Union
def _as_bytes(hash_data: Union[str, int, bytes]) -> bytes:
"""
Returns the input hash_data in its bytes form
Args:
hash_data: the hash salt/key to be converted to bytes
"""
if isinstance(hash_data, bytes):
# Data already in bytes, returns as it as
return hash_data
elif isinstance(hash_data, str):
# We keep the data as it as for it ot be later encoded to UTF-8
# However replace `\\` with `/` for Windows compatibility
hash_data = hash_data.replace("\\", "/")
elif isinstance(hash_data, int):
hash_data = str(hash_data)
else:
# If data is not of the required type, raise error
raise InvalidKeyError(hash_data)
return hash_data.encode("utf-8")
class InvalidKeyError(Exception):
"""Raises an error when given key is of invalid datatype."""
def __init__(self, hash_data):
self.prefix = "\nFAILURE TO GENERATE DATASET: Invalid key type detected"
self.err_msg = f"\nFound Key {hash_data} of type {type(hash_data)}"
self.suffix = "\nKeys should be either str, int or bytes type"
super().__init__(f"{self.prefix}{self.err_msg}{self.suffix}")
class DuplicatedKeysError(Exception):
"""Raise an error when duplicate key found."""
def __init__(self, key, duplicate_key_indices, fix_msg=""):
self.key = key
self.duplicate_key_indices = duplicate_key_indices
self.fix_msg = fix_msg
self.prefix = "Found multiple examples generated with the same key"
if len(duplicate_key_indices) <= 20:
self.err_msg = f"\nThe examples at index {', '.join(duplicate_key_indices)} have the key {key}"
else:
self.err_msg = f"\nThe examples at index {', '.join(duplicate_key_indices[:20])}... ({len(duplicate_key_indices) - 20} more) have the key {key}"
self.suffix = "\n" + fix_msg if fix_msg else ""
super().__init__(f"{self.prefix}{self.err_msg}{self.suffix}")
class KeyHasher:
"""KeyHasher class for providing hash using md5"""
def __init__(self, hash_salt: str):
self._split_md5 = hashlib.md5(_as_bytes(hash_salt))
def hash(self, key: Union[str, int, bytes]) -> int:
"""Returns 128-bits unique hash of input key
Args:
key: the input key to be hashed (should be str, int or bytes)
Returns: 128-bit int hash key"""
md5 = self._split_md5.copy()
byte_key = _as_bytes(key)
md5.update(byte_key)
# Convert to integer with hexadecimal conversion
return int(md5.hexdigest(), 16)
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/fingerprint.py | import inspect
import json
import os
import random
import shutil
import tempfile
import weakref
from functools import wraps
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import xxhash
from .info import DatasetInfo
from .naming import INVALID_WINDOWS_CHARACTERS_IN_PATH
from .table import ConcatenationTable, InMemoryTable, MemoryMappedTable, Table
from .utils.deprecation_utils import deprecated
from .utils.logging import get_logger
from .utils.py_utils import asdict, dumps
if TYPE_CHECKING:
from .arrow_dataset import Dataset
logger = get_logger(__name__)
# Fingerprinting allows to have one deterministic fingerprint per dataset state.
# A dataset fingerprint is updated after each transform.
# Re-running the same transforms on a dataset in a different session results in the same fingerprint.
# This is possible thanks to a custom hashing function that works with most python objects.
# Fingerprinting is the main mechanism that enables caching.
# The caching mechanism allows to reload an existing cache file if it's already been computed.
#################
# Caching
#################
_CACHING_ENABLED = True
_TEMP_DIR_FOR_TEMP_CACHE_FILES: Optional["_TempDirWithCustomCleanup"] = None
_DATASETS_WITH_TABLE_IN_TEMP_DIR: Optional[weakref.WeakSet] = None
class _TempDirWithCustomCleanup:
"""
A temporary directory with a custom cleanup function.
We need a custom temporary directory cleanup in order to delete the dataset objects that have
cache files in the temporary directory before deleting the dorectory itself.
"""
def __init__(self, cleanup_func=None, *cleanup_func_args, **cleanup_func_kwargs):
self.name = tempfile.mkdtemp()
self._finalizer = weakref.finalize(self, self._cleanup)
self._cleanup_func = cleanup_func
self._cleanup_func_args = cleanup_func_args
self._cleanup_func_kwargs = cleanup_func_kwargs
def _cleanup(self):
self._cleanup_func(*self._cleanup_func_args, **self._cleanup_func_kwargs)
if os.path.exists(self.name):
shutil.rmtree(self.name)
def cleanup(self):
if self._finalizer.detach():
self._cleanup()
def maybe_register_dataset_for_temp_dir_deletion(dataset):
"""
This function registers the datasets that have cache files in _TEMP_DIR_FOR_TEMP_CACHE_FILES in order
to properly delete them before deleting the temporary directory.
The temporary directory _TEMP_DIR_FOR_TEMP_CACHE_FILES is used when caching is disabled.
"""
if _TEMP_DIR_FOR_TEMP_CACHE_FILES is None:
return
global _DATASETS_WITH_TABLE_IN_TEMP_DIR
if _DATASETS_WITH_TABLE_IN_TEMP_DIR is None:
_DATASETS_WITH_TABLE_IN_TEMP_DIR = weakref.WeakSet()
if any(
Path(_TEMP_DIR_FOR_TEMP_CACHE_FILES.name) in Path(cache_file["filename"]).parents
for cache_file in dataset.cache_files
):
_DATASETS_WITH_TABLE_IN_TEMP_DIR.add(dataset)
def get_datasets_with_cache_file_in_temp_dir():
return list(_DATASETS_WITH_TABLE_IN_TEMP_DIR) if _DATASETS_WITH_TABLE_IN_TEMP_DIR is not None else []
def enable_caching():
"""
When applying transforms on a dataset, the data are stored in cache files.
The caching mechanism allows to reload an existing cache file if it's already been computed.
Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated
after each transform.
If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets.
More precisely, if the caching is disabled:
- cache files are always recreated
- cache files are written to a temporary directory that is deleted when session closes
- cache files are named using a random hash instead of the dataset fingerprint
- use [`~datasets.Dataset.save_to_disk`] to save a transformed dataset or it will be deleted when session closes
- caching doesn't affect [`~datasets.load_dataset`]. If you want to regenerate a dataset from scratch you should use
the `download_mode` parameter in [`~datasets.load_dataset`].
"""
global _CACHING_ENABLED
_CACHING_ENABLED = True
def disable_caching():
"""
When applying transforms on a dataset, the data are stored in cache files.
The caching mechanism allows to reload an existing cache file if it's already been computed.
Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated
after each transform.
If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets.
More precisely, if the caching is disabled:
- cache files are always recreated
- cache files are written to a temporary directory that is deleted when session closes
- cache files are named using a random hash instead of the dataset fingerprint
- use [`~datasets.Dataset.save_to_disk`] to save a transformed dataset or it will be deleted when session closes
- caching doesn't affect [`~datasets.load_dataset`]. If you want to regenerate a dataset from scratch you should use
the `download_mode` parameter in [`~datasets.load_dataset`].
"""
global _CACHING_ENABLED
_CACHING_ENABLED = False
@deprecated(
"Use datasets.enable_caching() or datasets.disable_caching() instead. This function will be removed in a future version of datasets."
)
def set_caching_enabled(boolean: bool):
"""
When applying transforms on a dataset, the data are stored in cache files.
The caching mechanism allows to reload an existing cache file if it's already been computed.
Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated
after each transform.
If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets.
More precisely, if the caching is disabled:
- cache files are always recreated
- cache files are written to a temporary directory that is deleted when session closes
- cache files are named using a random hash instead of the dataset fingerprint
- use :func:`datasets.Dataset.save_to_disk` to save a transformed dataset or it will be deleted when session closes
- caching doesn't affect :func:`datasets.load_dataset`. If you want to regenerate a dataset from scratch you should use
the ``download_mode`` parameter in :func:`datasets.load_dataset`.
"""
global _CACHING_ENABLED
_CACHING_ENABLED = bool(boolean)
def is_caching_enabled() -> bool:
"""
When applying transforms on a dataset, the data are stored in cache files.
The caching mechanism allows to reload an existing cache file if it's already been computed.
Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated
after each transform.
If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets.
More precisely, if the caching is disabled:
- cache files are always recreated
- cache files are written to a temporary directory that is deleted when session closes
- cache files are named using a random hash instead of the dataset fingerprint
- use [`~datasets.Dataset.save_to_disk`]] to save a transformed dataset or it will be deleted when session closes
- caching doesn't affect [`~datasets.load_dataset`]. If you want to regenerate a dataset from scratch you should use
the `download_mode` parameter in [`~datasets.load_dataset`].
"""
global _CACHING_ENABLED
return bool(_CACHING_ENABLED)
def get_temporary_cache_files_directory() -> str:
"""Return a directory that is deleted when session closes."""
global _TEMP_DIR_FOR_TEMP_CACHE_FILES
if _TEMP_DIR_FOR_TEMP_CACHE_FILES is None:
# Avoids a PermissionError on Windows caused by the datasets referencing
# the files from the cache directory on clean-up
def cleanup_func():
for dset in get_datasets_with_cache_file_in_temp_dir():
dset.__del__()
_TEMP_DIR_FOR_TEMP_CACHE_FILES = _TempDirWithCustomCleanup(cleanup_func=cleanup_func)
return _TEMP_DIR_FOR_TEMP_CACHE_FILES.name
#################
# Hashing
#################
def hashregister(*types):
def proxy(func):
for t in types:
Hasher.dispatch[t] = func
return func
return proxy
class Hasher:
"""Hasher that accepts python objects as inputs."""
dispatch: Dict = {}
def __init__(self):
self.m = xxhash.xxh64()
@classmethod
def hash_bytes(cls, value: Union[bytes, List[bytes]]) -> str:
value = [value] if isinstance(value, bytes) else value
m = xxhash.xxh64()
for x in value:
m.update(x)
return m.hexdigest()
@classmethod
def hash_default(cls, value: Any) -> str:
return cls.hash_bytes(dumps(value))
@classmethod
def hash(cls, value: Any) -> str:
if type(value) in cls.dispatch:
return cls.dispatch[type(value)](cls, value)
else:
return cls.hash_default(value)
def update(self, value: Any) -> None:
header_for_update = f"=={type(value)}=="
value_for_update = self.hash(value)
self.m.update(header_for_update.encode("utf8"))
self.m.update(value_for_update.encode("utf-8"))
def hexdigest(self) -> str:
return self.m.hexdigest()
# Register a new hasher can be useful for two possible reasons:
# 1 - optimize the hashing of large amount of data (e.g. pa.Table)
# 2 - take advantage of a custom serialization method (e.g. DatasetInfo)
@hashregister(pa.Table, Table, InMemoryTable, MemoryMappedTable, ConcatenationTable)
def _hash_pa_table(hasher, value):
def _hash_pa_array(value):
if isinstance(value, pa.ChunkedArray):
return hasher.hash_bytes(c.to_string().encode("utf-8") for c in value.chunks)
else:
return hasher.hash_bytes(value.to_string().encode("utf-8"))
value = "-".join(col + "-" + _hash_pa_array(value[col]) for col in sorted(value.column_names))
return hasher.hash_bytes(value.encode("utf-8"))
@hashregister(DatasetInfo)
def _hash_dataset_info(hasher, value):
return hasher.hash_bytes(json.dumps(asdict(value), sort_keys=True).encode("utf-8"))
#################
# Fingerprinting
#################
# we show a warning only once when fingerprinting fails to avoid spam
fingerprint_warnings: Dict[str, bool] = {}
def generate_fingerprint(dataset) -> str:
state = dataset.__dict__
hasher = Hasher()
for key in sorted(state):
if key == "_fingerprint":
continue
hasher.update(key)
hasher.update(state[key])
# hash data files last modification timestamps as well
for cache_file in dataset.cache_files:
hasher.update(os.path.getmtime(cache_file["filename"]))
return hasher.hexdigest()
def generate_random_fingerprint(nbits=64) -> str:
return f"{random.getrandbits(nbits):0{nbits//4}x}"
def update_fingerprint(fingerprint, transform, transform_args):
global fingerprint_warnings
hasher = Hasher()
hasher.update(fingerprint)
try:
hasher.update(transform)
except: # noqa various errors might raise here from pickle or dill
if _CACHING_ENABLED:
if not fingerprint_warnings.get("update_fingerprint_transform_hash_failed", False):
logger.warning(
f"Transform {transform} couldn't be hashed properly, a random hash was used instead. "
"Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. "
"If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. "
"This warning is only showed once. Subsequent hashing failures won't be showed."
)
fingerprint_warnings["update_fingerprint_transform_hash_failed"] = True
else:
logger.info(f"Transform {transform} couldn't be hashed properly, a random hash was used instead.")
else:
logger.info(
f"Transform {transform} couldn't be hashed properly, a random hash was used instead. This doesn't affect caching since it's disabled."
)
return generate_random_fingerprint()
for key in sorted(transform_args):
hasher.update(key)
try:
hasher.update(transform_args[key])
except: # noqa various errors might raise here from pickle or dill
if _CACHING_ENABLED:
if not fingerprint_warnings.get("update_fingerprint_transform_hash_failed", False):
logger.warning(
f"Parameter '{key}'={transform_args[key]} of the transform {transform} couldn't be hashed properly, a random hash was used instead. "
"Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. "
"If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. "
"This warning is only showed once. Subsequent hashing failures won't be showed."
)
fingerprint_warnings["update_fingerprint_transform_hash_failed"] = True
else:
logger.info(
f"Parameter '{key}'={transform_args[key]} of the transform {transform} couldn't be hashed properly, a random hash was used instead."
)
else:
logger.info(
f"Parameter '{key}'={transform_args[key]} of the transform {transform} couldn't be hashed properly, a random hash was used instead. This doesn't affect caching since it's disabled."
)
return generate_random_fingerprint()
return hasher.hexdigest()
def validate_fingerprint(fingerprint: str, max_length=64):
"""
Make sure the fingerprint is a non-empty string that is not longer that max_length=64 by default,
so that the fingerprint can be used to name cache files without issues.
"""
if not isinstance(fingerprint, str) or not fingerprint:
raise ValueError(f"Invalid fingerprint '{fingerprint}': it should be a non-empty string.")
for invalid_char in INVALID_WINDOWS_CHARACTERS_IN_PATH:
if invalid_char in fingerprint:
raise ValueError(
f"Invalid fingerprint. Bad characters from black list '{INVALID_WINDOWS_CHARACTERS_IN_PATH}' found in '{fingerprint}'. "
f"They could create issues when creating cache files."
)
if len(fingerprint) > max_length:
raise ValueError(
f"Invalid fingerprint. Maximum lenth is {max_length} but '{fingerprint}' has length {len(fingerprint)}."
"It could create issues when creating cache files."
)
def format_transform_for_fingerprint(func: Callable, version: Optional[str] = None) -> str:
"""
Format a transform to the format that will be used to update the fingerprint.
"""
transform = f"{func.__module__}.{func.__qualname__}"
if version is not None:
transform += f"@{version}"
return transform
def format_kwargs_for_fingerprint(
func: Callable,
args: Tuple,
kwargs: Dict[str, Any],
use_kwargs: Optional[List[str]] = None,
ignore_kwargs: Optional[List[str]] = None,
randomized_function: bool = False,
) -> Dict[str, Any]:
"""
Format the kwargs of a transform to the format that will be used to update the fingerprint.
"""
kwargs_for_fingerprint = kwargs.copy()
if args:
params = [p.name for p in inspect.signature(func).parameters.values() if p != p.VAR_KEYWORD]
args = args[1:] # assume the first argument is the dataset
params = params[1:]
kwargs_for_fingerprint.update(zip(params, args))
else:
del kwargs_for_fingerprint[
next(iter(inspect.signature(func).parameters))
] # assume the first key is the dataset
# keep the right kwargs to be hashed to generate the fingerprint
if use_kwargs:
kwargs_for_fingerprint = {k: v for k, v in kwargs_for_fingerprint.items() if k in use_kwargs}
if ignore_kwargs:
kwargs_for_fingerprint = {k: v for k, v in kwargs_for_fingerprint.items() if k not in ignore_kwargs}
if randomized_function: # randomized functions have `seed` and `generator` parameters
if kwargs_for_fingerprint.get("seed") is None and kwargs_for_fingerprint.get("generator") is None:
_, seed, pos, *_ = np.random.get_state()
seed = seed[pos] if pos < 624 else seed[0]
kwargs_for_fingerprint["generator"] = np.random.default_rng(seed)
# remove kwargs that are the default values
default_values = {
p.name: p.default for p in inspect.signature(func).parameters.values() if p.default != inspect._empty
}
for default_varname, default_value in default_values.items():
if default_varname in kwargs_for_fingerprint and kwargs_for_fingerprint[default_varname] == default_value:
kwargs_for_fingerprint.pop(default_varname)
return kwargs_for_fingerprint
def fingerprint_transform(
inplace: bool,
use_kwargs: Optional[List[str]] = None,
ignore_kwargs: Optional[List[str]] = None,
fingerprint_names: Optional[List[str]] = None,
randomized_function: bool = False,
version: Optional[str] = None,
):
"""
Wrapper for dataset transforms to update the dataset fingerprint using ``update_fingerprint``
Args:
inplace (:obj:`bool`): If inplace is True, the fingerprint of the dataset is updated inplace.
Otherwise, a parameter "new_fingerprint" is passed to the wrapped method that should take care of
setting the fingerprint of the returned Dataset.
use_kwargs (:obj:`List[str]`, optional): optional white list of argument names to take into account
to update the fingerprint to the wrapped method that should take care of
setting the fingerprint of the returned Dataset. By default all the arguments are used.
ignore_kwargs (:obj:`List[str]`, optional): optional black list of argument names to take into account
to update the fingerprint. Note that ignore_kwargs prevails on use_kwargs.
fingerprint_names (:obj:`List[str]`, optional, defaults to ["new_fingerprint"]):
If the dataset transforms is not inplace and returns a DatasetDict, then it can require
several fingerprints (one per dataset in the DatasetDict). By specifying fingerprint_names,
one fingerprint named after each element of fingerprint_names is going to be passed.
randomized_function (:obj:`bool`, defaults to False): If the dataset transform is random and has
optional parameters "seed" and "generator", then you can set randomized_function to True.
This way, even if users set "seed" and "generator" to None, then the fingerprint is
going to be randomly generated depending on numpy's current state. In this case, the
generator is set to np.random.default_rng(np.random.get_state()[1][0]).
version (:obj:`str`, optional): version of the transform. The version is taken into account when
computing the fingerprint. If a datase transform changes (or at least if the output data
that are cached changes), then one should increase the version. If the version stays the
same, then old cached data could be reused that are not compatible with the new transform.
It should be in the format "MAJOR.MINOR.PATCH".
"""
if use_kwargs is not None and not isinstance(use_kwargs, list):
raise ValueError(f"use_kwargs is supposed to be a list, not {type(use_kwargs)}")
if ignore_kwargs is not None and not isinstance(ignore_kwargs, list):
raise ValueError(f"ignore_kwargs is supposed to be a list, not {type(use_kwargs)}")
if inplace and fingerprint_names:
raise ValueError("fingerprint_names are only used when inplace is False")
fingerprint_names = fingerprint_names if fingerprint_names is not None else ["new_fingerprint"]
def _fingerprint(func):
if not inplace and not all(name in func.__code__.co_varnames for name in fingerprint_names):
raise ValueError("function {func} is missing parameters {fingerprint_names} in signature")
if randomized_function: # randomized function have seed and generator parameters
if "seed" not in func.__code__.co_varnames:
raise ValueError(f"'seed' must be in {func}'s signature")
if "generator" not in func.__code__.co_varnames:
raise ValueError(f"'generator' must be in {func}'s signature")
# this call has to be outside the wrapper or since __qualname__ changes in multiprocessing
transform = format_transform_for_fingerprint(func, version=version)
@wraps(func)
def wrapper(*args, **kwargs):
kwargs_for_fingerprint = format_kwargs_for_fingerprint(
func,
args,
kwargs,
use_kwargs=use_kwargs,
ignore_kwargs=ignore_kwargs,
randomized_function=randomized_function,
)
if args:
dataset: Dataset = args[0]
args = args[1:]
else:
dataset: Dataset = kwargs.pop(next(iter(inspect.signature(func).parameters)))
# compute new_fingerprint and add it to the args of not in-place transforms
if inplace:
new_fingerprint = update_fingerprint(dataset._fingerprint, transform, kwargs_for_fingerprint)
else:
for fingerprint_name in fingerprint_names: # transforms like `train_test_split` have several hashes
if kwargs.get(fingerprint_name) is None:
kwargs_for_fingerprint["fingerprint_name"] = fingerprint_name
kwargs[fingerprint_name] = update_fingerprint(
dataset._fingerprint, transform, kwargs_for_fingerprint
)
else:
validate_fingerprint(kwargs[fingerprint_name])
# Call actual function
out = func(dataset, *args, **kwargs)
# Update fingerprint of in-place transforms + update in-place history of transforms
if inplace: # update after calling func so that the fingerprint doesn't change if the function fails
dataset._fingerprint = new_fingerprint
return out
wrapper._decorator_name_ = "fingerprint"
return wrapper
return _fingerprint
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/info.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
""" DatasetInfo and MetricInfo record information we know about a dataset and a metric.
This includes things that we know about the dataset statically, i.e.:
- description
- canonical location
- does it have validation and tests splits
- size
- etc.
This also includes the things that can and should be computed once we've
processed the dataset as well:
- number of examples (in each split)
- etc.
"""
import copy
import dataclasses
import json
import os
import posixpath
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import ClassVar, Dict, List, Optional, Union
import fsspec
from huggingface_hub import DatasetCard, DatasetCardData
from . import config
from .features import Features, Value
from .filesystems import is_remote_filesystem
from .splits import SplitDict
from .tasks import TaskTemplate, task_template_from_dict
from .utils import Version
from .utils.logging import get_logger
from .utils.py_utils import asdict, unique_values
logger = get_logger(__name__)
@dataclass
class SupervisedKeysData:
input: str = ""
output: str = ""
@dataclass
class DownloadChecksumsEntryData:
key: str = ""
value: str = ""
class MissingCachedSizesConfigError(Exception):
"""The expected cached sizes of the download file are missing."""
class NonMatchingCachedSizesError(Exception):
"""The prepared split doesn't have expected sizes."""
@dataclass
class PostProcessedInfo:
features: Optional[Features] = None
resources_checksums: Optional[dict] = None
def __post_init__(self):
# Convert back to the correct classes when we reload from dict
if self.features is not None and not isinstance(self.features, Features):
self.features = Features.from_dict(self.features)
@classmethod
def from_dict(cls, post_processed_info_dict: dict) -> "PostProcessedInfo":
field_names = {f.name for f in dataclasses.fields(cls)}
return cls(**{k: v for k, v in post_processed_info_dict.items() if k in field_names})
@dataclass
class DatasetInfo:
"""Information about a dataset.
`DatasetInfo` documents datasets, including its name, version, and features.
See the constructor arguments and properties for a full list.
Not all fields are known on construction and may be updated later.
Attributes:
description (`str`):
A description of the dataset.
citation (`str`):
A BibTeX citation of the dataset.
homepage (`str`):
A URL to the official homepage for the dataset.
license (`str`):
The dataset's license. It can be the name of the license or a paragraph containing the terms of the license.
features ([`Features`], *optional*):
The features used to specify the dataset's column types.
post_processed (`PostProcessedInfo`, *optional*):
Information regarding the resources of a possible post-processing of a dataset. For example, it can contain the information of an index.
supervised_keys (`SupervisedKeysData`, *optional*):
Specifies the input feature and the label for supervised learning if applicable for the dataset (legacy from TFDS).
builder_name (`str`, *optional*):
The name of the `GeneratorBasedBuilder` subclass used to create the dataset. Usually matched to the corresponding script name. It is also the snake_case version of the dataset builder class name.
config_name (`str`, *optional*):
The name of the configuration derived from [`BuilderConfig`].
version (`str` or [`Version`], *optional*):
The version of the dataset.
splits (`dict`, *optional*):
The mapping between split name and metadata.
download_checksums (`dict`, *optional*):
The mapping between the URL to download the dataset's checksums and corresponding metadata.
download_size (`int`, *optional*):
The size of the files to download to generate the dataset, in bytes.
post_processing_size (`int`, *optional*):
Size of the dataset in bytes after post-processing, if any.
dataset_size (`int`, *optional*):
The combined size in bytes of the Arrow tables for all splits.
size_in_bytes (`int`, *optional*):
The combined size in bytes of all files associated with the dataset (downloaded files + Arrow files).
task_templates (`List[TaskTemplate]`, *optional*):
The task templates to prepare the dataset for during training and evaluation. Each template casts the dataset's [`Features`] to standardized column names and types as detailed in `datasets.tasks`.
**config_kwargs (additional keyword arguments):
Keyword arguments to be passed to the [`BuilderConfig`] and used in the [`DatasetBuilder`].
"""
# Set in the dataset scripts
description: str = dataclasses.field(default_factory=str)
citation: str = dataclasses.field(default_factory=str)
homepage: str = dataclasses.field(default_factory=str)
license: str = dataclasses.field(default_factory=str)
features: Optional[Features] = None
post_processed: Optional[PostProcessedInfo] = None
supervised_keys: Optional[SupervisedKeysData] = None
task_templates: Optional[List[TaskTemplate]] = None
# Set later by the builder
builder_name: Optional[str] = None
dataset_name: Optional[str] = None # for packaged builders, to be different from builder_name
config_name: Optional[str] = None
version: Optional[Union[str, Version]] = None
# Set later by `download_and_prepare`
splits: Optional[dict] = None
download_checksums: Optional[dict] = None
download_size: Optional[int] = None
post_processing_size: Optional[int] = None
dataset_size: Optional[int] = None
size_in_bytes: Optional[int] = None
_INCLUDED_INFO_IN_YAML: ClassVar[List[str]] = [
"config_name",
"download_size",
"dataset_size",
"features",
"splits",
]
def __post_init__(self):
# Convert back to the correct classes when we reload from dict
if self.features is not None and not isinstance(self.features, Features):
self.features = Features.from_dict(self.features)
if self.post_processed is not None and not isinstance(self.post_processed, PostProcessedInfo):
self.post_processed = PostProcessedInfo.from_dict(self.post_processed)
if self.version is not None and not isinstance(self.version, Version):
if isinstance(self.version, str):
self.version = Version(self.version)
else:
self.version = Version.from_dict(self.version)
if self.splits is not None and not isinstance(self.splits, SplitDict):
self.splits = SplitDict.from_split_dict(self.splits)
if self.supervised_keys is not None and not isinstance(self.supervised_keys, SupervisedKeysData):
if isinstance(self.supervised_keys, (tuple, list)):
self.supervised_keys = SupervisedKeysData(*self.supervised_keys)
else:
self.supervised_keys = SupervisedKeysData(**self.supervised_keys)
# Parse and make a list of templates
if self.task_templates is not None:
if isinstance(self.task_templates, (list, tuple)):
templates = [
template if isinstance(template, TaskTemplate) else task_template_from_dict(template)
for template in self.task_templates
]
self.task_templates = [template for template in templates if template is not None]
elif isinstance(self.task_templates, TaskTemplate):
self.task_templates = [self.task_templates]
else:
template = task_template_from_dict(self.task_templates)
self.task_templates = [template] if template is not None else []
# Align task templates with features
if self.task_templates is not None:
self.task_templates = list(self.task_templates)
if self.features is not None:
self.task_templates = [
template.align_with_features(self.features) for template in (self.task_templates)
]
def write_to_directory(
self, dataset_info_dir, pretty_print=False, fs="deprecated", storage_options: Optional[dict] = None
):
"""Write `DatasetInfo` and license (if present) as JSON files to `dataset_info_dir`.
Args:
dataset_info_dir (`str`):
Destination directory.
pretty_print (`bool`, defaults to `False`):
If `True`, the JSON will be pretty-printed with the indent level of 4.
fs (`fsspec.spec.AbstractFileSystem`, *optional*):
Instance of the remote filesystem used to download the files from.
<Deprecated version="2.9.0">
`fs` was deprecated in version 2.9.0 and will be removed in 3.0.0.
Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`.
</Deprecated>
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.9.0"/>
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.info.write_to_directory("/path/to/directory/")
```
"""
if fs != "deprecated":
warnings.warn(
"'fs' was deprecated in favor of 'storage_options' in version 2.9.0 and will be removed in 3.0.0.\n"
"You can remove this warning by passing 'storage_options=fs.storage_options' instead.",
FutureWarning,
)
storage_options = fs.storage_options
fs_token_paths = fsspec.get_fs_token_paths(dataset_info_dir, storage_options=storage_options)
fs: fsspec.AbstractFileSystem = fs_token_paths[0]
is_local = not is_remote_filesystem(fs)
path_join = os.path.join if is_local else posixpath.join
with fs.open(path_join(dataset_info_dir, config.DATASET_INFO_FILENAME), "wb") as f:
self._dump_info(f, pretty_print=pretty_print)
if self.license:
with fs.open(path_join(dataset_info_dir, config.LICENSE_FILENAME), "wb") as f:
self._dump_license(f)
def _dump_info(self, file, pretty_print=False):
"""Dump info in `file` file-like object open in bytes mode (to support remote files)"""
file.write(json.dumps(asdict(self), indent=4 if pretty_print else None).encode("utf-8"))
def _dump_license(self, file):
"""Dump license in `file` file-like object open in bytes mode (to support remote files)"""
file.write(self.license.encode("utf-8"))
@classmethod
def from_merge(cls, dataset_infos: List["DatasetInfo"]):
dataset_infos = [dset_info.copy() for dset_info in dataset_infos if dset_info is not None]
description = "\n\n".join(unique_values(info.description for info in dataset_infos)).strip()
citation = "\n\n".join(unique_values(info.citation for info in dataset_infos)).strip()
homepage = "\n\n".join(unique_values(info.homepage for info in dataset_infos)).strip()
license = "\n\n".join(unique_values(info.license for info in dataset_infos)).strip()
features = None
supervised_keys = None
task_templates = None
# Find common task templates across all dataset infos
all_task_templates = [info.task_templates for info in dataset_infos if info.task_templates is not None]
if len(all_task_templates) > 1:
task_templates = list(set(all_task_templates[0]).intersection(*all_task_templates[1:]))
elif len(all_task_templates):
task_templates = list(set(all_task_templates[0]))
# If no common task templates found, replace empty list with None
task_templates = task_templates if task_templates else None
return cls(
description=description,
citation=citation,
homepage=homepage,
license=license,
features=features,
supervised_keys=supervised_keys,
task_templates=task_templates,
)
@classmethod
def from_directory(
cls, dataset_info_dir: str, fs="deprecated", storage_options: Optional[dict] = None
) -> "DatasetInfo":
"""Create [`DatasetInfo`] from the JSON file in `dataset_info_dir`.
This function updates all the dynamically generated fields (num_examples,
hash, time of creation,...) of the [`DatasetInfo`].
This will overwrite all previous metadata.
Args:
dataset_info_dir (`str`):
The directory containing the metadata file. This
should be the root directory of a specific dataset version.
fs (`fsspec.spec.AbstractFileSystem`, *optional*):
Instance of the remote filesystem used to download the files from.
<Deprecated version="2.9.0">
`fs` was deprecated in version 2.9.0 and will be removed in 3.0.0.
Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`.
</Deprecated>
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.9.0"/>
Example:
```py
>>> from datasets import DatasetInfo
>>> ds_info = DatasetInfo.from_directory("/path/to/directory/")
```
"""
if fs != "deprecated":
warnings.warn(
"'fs' was deprecated in favor of 'storage_options' in version 2.9.0 and will be removed in 3.0.0.\n"
"You can remove this warning by passing 'storage_options=fs.storage_options' instead.",
FutureWarning,
)
storage_options = fs.storage_options
fs_token_paths = fsspec.get_fs_token_paths(dataset_info_dir, storage_options=storage_options)
fs: fsspec.AbstractFileSystem = fs_token_paths[0]
logger.info(f"Loading Dataset info from {dataset_info_dir}")
if not dataset_info_dir:
raise ValueError("Calling DatasetInfo.from_directory() with undefined dataset_info_dir.")
is_local = not is_remote_filesystem(fs)
path_join = os.path.join if is_local else posixpath.join
with fs.open(path_join(dataset_info_dir, config.DATASET_INFO_FILENAME), "r", encoding="utf-8") as f:
dataset_info_dict = json.load(f)
return cls.from_dict(dataset_info_dict)
@classmethod
def from_dict(cls, dataset_info_dict: dict) -> "DatasetInfo":
field_names = {f.name for f in dataclasses.fields(cls)}
return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names})
def update(self, other_dataset_info: "DatasetInfo", ignore_none=True):
self_dict = self.__dict__
self_dict.update(
**{
k: copy.deepcopy(v)
for k, v in other_dataset_info.__dict__.items()
if (v is not None or not ignore_none)
}
)
def copy(self) -> "DatasetInfo":
return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
def _to_yaml_dict(self) -> dict:
yaml_dict = {}
dataset_info_dict = asdict(self)
for key in dataset_info_dict:
if key in self._INCLUDED_INFO_IN_YAML:
value = getattr(self, key)
if hasattr(value, "_to_yaml_list"): # Features, SplitDict
yaml_dict[key] = value._to_yaml_list()
elif hasattr(value, "_to_yaml_string"): # Version
yaml_dict[key] = value._to_yaml_string()
else:
yaml_dict[key] = value
return yaml_dict
@classmethod
def _from_yaml_dict(cls, yaml_data: dict) -> "DatasetInfo":
yaml_data = copy.deepcopy(yaml_data)
if yaml_data.get("features") is not None:
yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
if yaml_data.get("splits") is not None:
yaml_data["splits"] = SplitDict._from_yaml_list(yaml_data["splits"])
field_names = {f.name for f in dataclasses.fields(cls)}
return cls(**{k: v for k, v in yaml_data.items() if k in field_names})
class DatasetInfosDict(Dict[str, DatasetInfo]):
def write_to_directory(self, dataset_infos_dir, overwrite=False, pretty_print=False) -> None:
total_dataset_infos = {}
dataset_infos_path = os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME)
dataset_readme_path = os.path.join(dataset_infos_dir, "README.md")
if not overwrite:
total_dataset_infos = self.from_directory(dataset_infos_dir)
total_dataset_infos.update(self)
if os.path.exists(dataset_infos_path):
# for backward compatibility, let's update the JSON file if it exists
with open(dataset_infos_path, "w", encoding="utf-8") as f:
dataset_infos_dict = {
config_name: asdict(dset_info) for config_name, dset_info in total_dataset_infos.items()
}
json.dump(dataset_infos_dict, f, indent=4 if pretty_print else None)
# Dump the infos in the YAML part of the README.md file
if os.path.exists(dataset_readme_path):
dataset_card = DatasetCard.load(dataset_readme_path)
dataset_card_data = dataset_card.data
else:
dataset_card = None
dataset_card_data = DatasetCardData()
if total_dataset_infos:
total_dataset_infos.to_dataset_card_data(dataset_card_data)
dataset_card = (
DatasetCard("---\n" + str(dataset_card_data) + "\n---\n") if dataset_card is None else dataset_card
)
dataset_card.save(Path(dataset_readme_path))
@classmethod
def from_directory(cls, dataset_infos_dir) -> "DatasetInfosDict":
logger.info(f"Loading Dataset Infos from {dataset_infos_dir}")
# Load the info from the YAML part of README.md
if os.path.exists(os.path.join(dataset_infos_dir, "README.md")):
dataset_card_data = DatasetCard.load(Path(dataset_infos_dir) / "README.md").data
if "dataset_info" in dataset_card_data:
return cls.from_dataset_card_data(dataset_card_data)
if os.path.exists(os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME)):
# this is just to have backward compatibility with dataset_infos.json files
with open(os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME), encoding="utf-8") as f:
return cls(
{
config_name: DatasetInfo.from_dict(dataset_info_dict)
for config_name, dataset_info_dict in json.load(f).items()
}
)
else:
return cls()
@classmethod
def from_dataset_card_data(cls, dataset_card_data: DatasetCardData) -> "DatasetInfosDict":
if isinstance(dataset_card_data.get("dataset_info"), (list, dict)):
if isinstance(dataset_card_data["dataset_info"], list):
return cls(
{
dataset_info_yaml_dict.get("config_name", "default"): DatasetInfo._from_yaml_dict(
dataset_info_yaml_dict
)
for dataset_info_yaml_dict in dataset_card_data["dataset_info"]
}
)
else:
dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
dataset_info.config_name = dataset_card_data["dataset_info"].get("config_name", "default")
return cls({dataset_info.config_name: dataset_info})
else:
return cls()
def to_dataset_card_data(self, dataset_card_data: DatasetCardData) -> None:
if self:
# first get existing metadata info
if "dataset_info" in dataset_card_data and isinstance(dataset_card_data["dataset_info"], dict):
dataset_metadata_infos = {
dataset_card_data["dataset_info"].get("config_name", "default"): dataset_card_data["dataset_info"]
}
elif "dataset_info" in dataset_card_data and isinstance(dataset_card_data["dataset_info"], list):
dataset_metadata_infos = {
config_metadata["config_name"]: config_metadata
for config_metadata in dataset_card_data["dataset_info"]
}
else:
dataset_metadata_infos = {}
# update/rewrite existing metadata info with the one to dump
total_dataset_infos = {
**dataset_metadata_infos,
**{config_name: dset_info._to_yaml_dict() for config_name, dset_info in self.items()},
}
# the config_name from the dataset_infos_dict takes over the config_name of the DatasetInfo
for config_name, dset_info_yaml_dict in total_dataset_infos.items():
dset_info_yaml_dict["config_name"] = config_name
if len(total_dataset_infos) == 1:
# use a struct instead of a list of configurations, since there's only one
dataset_card_data["dataset_info"] = next(iter(total_dataset_infos.values()))
config_name = dataset_card_data["dataset_info"].pop("config_name", None)
if config_name != "default":
# if config_name is not "default" preserve it and put at the first position
dataset_card_data["dataset_info"] = {
"config_name": config_name,
**dataset_card_data["dataset_info"],
}
else:
dataset_card_data["dataset_info"] = []
for config_name, dataset_info_yaml_dict in sorted(total_dataset_infos.items()):
# add the config_name field in first position
dataset_info_yaml_dict.pop("config_name", None)
dataset_info_yaml_dict = {"config_name": config_name, **dataset_info_yaml_dict}
dataset_card_data["dataset_info"].append(dataset_info_yaml_dict)
@dataclass
class MetricInfo:
"""Information about a metric.
`MetricInfo` documents a metric, including its name, version, and features.
See the constructor arguments and properties for a full list.
Note: Not all fields are known on construction and may be updated later.
"""
# Set in the dataset scripts
description: str
citation: str
features: Features
inputs_description: str = dataclasses.field(default_factory=str)
homepage: str = dataclasses.field(default_factory=str)
license: str = dataclasses.field(default_factory=str)
codebase_urls: List[str] = dataclasses.field(default_factory=list)
reference_urls: List[str] = dataclasses.field(default_factory=list)
streamable: bool = False
format: Optional[str] = None
# Set later by the builder
metric_name: Optional[str] = None
config_name: Optional[str] = None
experiment_id: Optional[str] = None
def __post_init__(self):
if self.format is not None:
for key, value in self.features.items():
if not isinstance(value, Value):
raise ValueError(
f"When using 'numpy' format, all features should be a `datasets.Value` feature. "
f"Here {key} is an instance of {value.__class__.__name__}"
)
def write_to_directory(self, metric_info_dir, pretty_print=False):
"""Write `MetricInfo` as JSON to `metric_info_dir`.
Also save the license separately in LICENCE.
If `pretty_print` is True, the JSON will be pretty-printed with the indent level of 4.
Example:
```py
>>> from datasets import load_metric
>>> metric = load_metric("accuracy")
>>> metric.info.write_to_directory("/path/to/directory/")
```
"""
with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), "w", encoding="utf-8") as f:
json.dump(asdict(self), f, indent=4 if pretty_print else None)
if self.license:
with open(os.path.join(metric_info_dir, config.LICENSE_FILENAME), "w", encoding="utf-8") as f:
f.write(self.license)
@classmethod
def from_directory(cls, metric_info_dir) -> "MetricInfo":
"""Create MetricInfo from the JSON file in `metric_info_dir`.
Args:
metric_info_dir: `str` The directory containing the metadata file. This
should be the root directory of a specific dataset version.
Example:
```py
>>> from datasets import MetricInfo
>>> metric_info = MetricInfo.from_directory("/path/to/directory/")
```
"""
logger.info(f"Loading Metric info from {metric_info_dir}")
if not metric_info_dir:
raise ValueError("Calling MetricInfo.from_directory() with undefined metric_info_dir.")
with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), encoding="utf-8") as f:
metric_info_dict = json.load(f)
return cls.from_dict(metric_info_dict)
@classmethod
def from_dict(cls, metric_info_dict: dict) -> "MetricInfo":
field_names = {f.name for f in dataclasses.fields(cls)}
return cls(**{k: v for k, v in metric_info_dict.items() if k in field_names})
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/inspect.py | # Copyright 2020 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
""" List and inspect datasets."""
import inspect
import os
import shutil
import warnings
from pathlib import PurePath
from typing import Dict, List, Mapping, Optional, Sequence, Union
import huggingface_hub
from .download.download_config import DownloadConfig
from .download.download_manager import DownloadMode
from .download.streaming_download_manager import StreamingDownloadManager
from .info import DatasetInfo
from .load import (
dataset_module_factory,
get_dataset_builder_class,
import_main_class,
load_dataset_builder,
metric_module_factory,
)
from .utils.deprecation_utils import deprecated
from .utils.file_utils import relative_to_absolute_path
from .utils.logging import get_logger
from .utils.version import Version
logger = get_logger(__name__)
class SplitsNotFoundError(ValueError):
pass
@deprecated("Use 'huggingface_hub.list_datasets' instead.")
def list_datasets(with_community_datasets=True, with_details=False):
"""List all the datasets scripts available on the Hugging Face Hub.
Args:
with_community_datasets (`bool`, *optional*, defaults to `True`):
Include the community provided datasets.
with_details (`bool`, *optional*, defaults to `False`):
Return the full details on the datasets instead of only the short name.
Example:
```py
>>> from datasets import list_datasets
>>> list_datasets()
['acronym_identification',
'ade_corpus_v2',
'adversarial_qa',
'aeslc',
'afrikaans_ner_corpus',
'ag_news',
...
]
```
"""
datasets = huggingface_hub.list_datasets(full=with_details)
if not with_community_datasets:
datasets = [dataset for dataset in datasets if "/" not in dataset.id]
if not with_details:
datasets = [dataset.id for dataset in datasets]
return list(datasets)
@deprecated(
"Use 'evaluate.list_evaluation_modules' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate"
)
def list_metrics(with_community_metrics=True, with_details=False):
"""List all the metrics script available on the Hugging Face Hub.
<Deprecated version="2.5.0">
Use `evaluate.list_evaluation_modules` instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
</Deprecated>
Args:
with_community_metrics (:obj:`bool`, optional, default ``True``): Include the community provided metrics.
with_details (:obj:`bool`, optional, default ``False``): Return the full details on the metrics instead of only the short name.
Example:
```py
>>> from datasets import list_metrics
>>> list_metrics()
['accuracy',
'bertscore',
'bleu',
'bleurt',
'cer',
'chrf',
...
]
```
"""
metrics = huggingface_hub.list_metrics()
if not with_community_metrics:
metrics = [metric for metric in metrics if "/" not in metric.id]
if not with_details:
metrics = [metric.id for metric in metrics]
return metrics
@deprecated("Clone the dataset repository from the Hugging Face Hub instead.")
def inspect_dataset(path: str, local_path: str, download_config: Optional[DownloadConfig] = None, **download_kwargs):
"""
Allow inspection/modification of a dataset script by copying on local drive at local_path.
Args:
path (`str`): Path to the dataset processing script with the dataset builder. Can be either:
- a local path to processing script or the directory containing the script (if the script has the same name
as the directory),
e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`.
- a dataset identifier on the Hugging Face Hub (list all available datasets and ids with [`list_datasets`])
e.g. `'squad'`, `'glue'` or `'openai/webtext'`.
local_path (`str`):
Path to the local folder to copy the dataset script to.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
**download_kwargs (additional keyword arguments):
Optional arguments for [`DownloadConfig`] which will override
the attributes of `download_config` if supplied.
"""
dataset_module = dataset_module_factory(path, download_config=download_config, **download_kwargs)
builder_cls = get_dataset_builder_class(dataset_module)
module_source_path = inspect.getsourcefile(builder_cls)
module_source_dirpath = os.path.dirname(module_source_path)
for dirpath, dirnames, filenames in os.walk(module_source_dirpath):
dst_dirpath = os.path.join(local_path, os.path.relpath(dirpath, module_source_dirpath))
os.makedirs(dst_dirpath, exist_ok=True)
# skipping hidden directories; prune the search
# [:] for the in-place list modification required by os.walk
dirnames[:] = [dirname for dirname in dirnames if not dirname.startswith((".", "__"))]
for filename in filenames:
shutil.copy2(os.path.join(dirpath, filename), os.path.join(dst_dirpath, filename))
shutil.copystat(dirpath, dst_dirpath)
local_path = relative_to_absolute_path(local_path)
print(
f"The processing script for dataset {path} can be inspected at {local_path}. "
f"The main class is in {module_source_dirpath}. "
f'You can modify this processing script and use it with `datasets.load_dataset("{PurePath(local_path).as_posix()}")`.'
)
@deprecated(
"Use 'evaluate.inspect_evaluation_module' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate"
)
def inspect_metric(path: str, local_path: str, download_config: Optional[DownloadConfig] = None, **download_kwargs):
r"""
Allow inspection/modification of a metric script by copying it on local drive at local_path.
<Deprecated version="2.5.0">
Use `evaluate.inspect_evaluation_module` instead, from the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate
</Deprecated>
Args:
path (``str``): path to the dataset processing script with the dataset builder. Can be either:
- a local path to processing script or the directory containing the script (if the script has the same name as the directory),
e.g. ``'./dataset/squad'`` or ``'./dataset/squad/squad.py'``
- a dataset identifier on the Hugging Face Hub (list all available datasets and ids with ``datasets.list_datasets()``)
e.g. ``'squad'``, ``'glue'`` or ``'openai/webtext'``
local_path (``str``): path to the local folder to copy the datset script to.
download_config (Optional ``datasets.DownloadConfig``): specific download configuration parameters.
**download_kwargs (additional keyword arguments): optional attributes for DownloadConfig() which will override the attributes in download_config if supplied.
"""
metric_module = metric_module_factory(path, download_config=download_config, **download_kwargs)
metric_cls = import_main_class(metric_module.module_path, dataset=False)
module_source_path = inspect.getsourcefile(metric_cls)
module_source_dirpath = os.path.dirname(module_source_path)
for dirpath, dirnames, filenames in os.walk(module_source_dirpath):
dst_dirpath = os.path.join(local_path, os.path.relpath(dirpath, module_source_dirpath))
os.makedirs(dst_dirpath, exist_ok=True)
# skipping hidden directories; prune the search
dirnames[:] = [dirname for dirname in dirnames if not dirname.startswith((".", "__"))]
for filename in filenames:
shutil.copy2(os.path.join(dirpath, filename), os.path.join(dst_dirpath, filename))
shutil.copystat(dirpath, dst_dirpath)
local_path = relative_to_absolute_path(local_path)
print(
f"The processing scripts for metric {path} can be inspected at {local_path}. "
f"The main class is in {module_source_dirpath}. "
f'You can modify this processing scripts and use it with `datasets.load_metric("{PurePath(local_path).as_posix()}")`.'
)
def get_dataset_infos(
path: str,
data_files: Optional[Union[Dict, List, str]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
use_auth_token="deprecated",
**config_kwargs,
):
"""Get the meta information about a dataset, returned as a dict mapping config name to DatasetInfoDict.
Args:
path (`str`): path to the dataset processing script with the dataset builder. Can be either:
- a local path to processing script or the directory containing the script (if the script has the same name as the directory),
e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`
- a dataset identifier on the Hugging Face Hub (list all available datasets and ids with [`datasets.list_datasets`])
e.g. `'squad'`, `'glue'` or``'openai/webtext'`
revision (`Union[str, datasets.Version]`, *optional*):
If specified, the dataset module will be loaded from the datasets repository at this version.
By default:
- it is set to the local version of the lib.
- it will also try to load it from the main branch if it's not available at the local version of the lib.
Specifying a version that is different from your local version of the lib might cause compatibility issues.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
data_files (`Union[Dict, List, str]`, *optional*):
Defining the data_files of the dataset configuration.
token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
use_auth_token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
<Deprecated version="2.14.0">
`use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0.
</Deprecated>
**config_kwargs (additional keyword arguments):
Optional attributes for builder class which will override the attributes if supplied.
Example:
```py
>>> from datasets import get_dataset_infos
>>> get_dataset_infos('rotten_tomatoes')
{'default': DatasetInfo(description="Movie Review Dataset.\nThis is a dataset of containing 5,331 positive and 5,331 negative processed\nsentences from Rotten Tomatoes movie reviews...), ...}
```
"""
if use_auth_token != "deprecated":
warnings.warn(
"'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n"
f"You can remove this warning by passing 'token={use_auth_token}' instead.",
FutureWarning,
)
token = use_auth_token
config_names = get_dataset_config_names(
path=path,
revision=revision,
download_config=download_config,
download_mode=download_mode,
data_files=data_files,
token=token,
)
return {
config_name: get_dataset_config_info(
path=path,
config_name=config_name,
data_files=data_files,
download_config=download_config,
download_mode=download_mode,
revision=revision,
token=token,
**config_kwargs,
)
for config_name in config_names
}
def get_dataset_config_names(
path: str,
revision: Optional[Union[str, Version]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
dynamic_modules_path: Optional[str] = None,
data_files: Optional[Union[Dict, List, str]] = None,
**download_kwargs,
):
"""Get the list of available config names for a particular dataset.
Args:
path (`str`): path to the dataset processing script with the dataset builder. Can be either:
- a local path to processing script or the directory containing the script (if the script has the same name as the directory),
e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`
- a dataset identifier on the Hugging Face Hub (list all available datasets and ids with [`datasets.list_datasets`])
e.g. `'squad'`, `'glue'` or `'openai/webtext'`
revision (`Union[str, datasets.Version]`, *optional*):
If specified, the dataset module will be loaded from the datasets repository at this version.
By default:
- it is set to the local version of the lib.
- it will also try to load it from the main branch if it's not available at the local version of the lib.
Specifying a version that is different from your local version of the lib might cause compatibility issues.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
dynamic_modules_path (`str`, defaults to `~/.cache/huggingface/modules/datasets_modules`):
Optional path to the directory in which the dynamic modules are saved. It must have been initialized with `init_dynamic_modules`.
By default the datasets and metrics are stored inside the `datasets_modules` module.
data_files (`Union[Dict, List, str]`, *optional*):
Defining the data_files of the dataset configuration.
**download_kwargs (additional keyword arguments):
Optional attributes for [`DownloadConfig`] which will override the attributes in `download_config` if supplied,
for example `token`.
Example:
```py
>>> from datasets import get_dataset_config_names
>>> get_dataset_config_names("glue")
['cola',
'sst2',
'mrpc',
'qqp',
'stsb',
'mnli',
'mnli_mismatched',
'mnli_matched',
'qnli',
'rte',
'wnli',
'ax']
```
"""
dataset_module = dataset_module_factory(
path,
revision=revision,
download_config=download_config,
download_mode=download_mode,
dynamic_modules_path=dynamic_modules_path,
data_files=data_files,
**download_kwargs,
)
builder_cls = get_dataset_builder_class(dataset_module, dataset_name=os.path.basename(path))
return list(builder_cls.builder_configs.keys()) or [dataset_module.builder_kwargs.get("config_name", "default")]
def get_dataset_config_info(
path: str,
config_name: Optional[str] = None,
data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
use_auth_token="deprecated",
**config_kwargs,
) -> DatasetInfo:
"""Get the meta information (DatasetInfo) about a dataset for a particular config
Args:
path (``str``): path to the dataset processing script with the dataset builder. Can be either:
- a local path to processing script or the directory containing the script (if the script has the same name as the directory),
e.g. ``'./dataset/squad'`` or ``'./dataset/squad/squad.py'``
- a dataset identifier on the Hugging Face Hub (list all available datasets and ids with ``datasets.list_datasets()``)
e.g. ``'squad'``, ``'glue'`` or ``'openai/webtext'``
config_name (:obj:`str`, optional): Defining the name of the dataset configuration.
data_files (:obj:`str` or :obj:`Sequence` or :obj:`Mapping`, optional): Path(s) to source data file(s).
download_config (:class:`~download.DownloadConfig`, optional): Specific download configuration parameters.
download_mode (:class:`DownloadMode` or :obj:`str`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode.
revision (:class:`~utils.Version` or :obj:`str`, optional): Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
token (``str`` or :obj:`bool`, optional): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If True, or not specified, will get token from `"~/.huggingface"`.
use_auth_token (``str`` or :obj:`bool`, optional): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If True, or not specified, will get token from `"~/.huggingface"`.
<Deprecated version="2.14.0">
`use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0.
</Deprecated>
**config_kwargs (additional keyword arguments): optional attributes for builder class which will override the attributes if supplied.
"""
if use_auth_token != "deprecated":
warnings.warn(
"'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n"
f"You can remove this warning by passing 'token={use_auth_token}' instead.",
FutureWarning,
)
token = use_auth_token
builder = load_dataset_builder(
path,
name=config_name,
data_files=data_files,
download_config=download_config,
download_mode=download_mode,
revision=revision,
token=token,
**config_kwargs,
)
info = builder.info
if info.splits is None:
download_config = download_config.copy() if download_config else DownloadConfig()
if token is not None:
download_config.token = token
builder._check_manual_download(
StreamingDownloadManager(base_path=builder.base_path, download_config=download_config)
)
try:
info.splits = {
split_generator.name: {"name": split_generator.name, "dataset_name": path}
for split_generator in builder._split_generators(
StreamingDownloadManager(base_path=builder.base_path, download_config=download_config)
)
}
except Exception as err:
raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
return info
def get_dataset_split_names(
path: str,
config_name: Optional[str] = None,
data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
use_auth_token="deprecated",
**config_kwargs,
):
"""Get the list of available splits for a particular config and dataset.
Args:
path (`str`): path to the dataset processing script with the dataset builder. Can be either:
- a local path to processing script or the directory containing the script (if the script has the same name as the directory),
e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`
- a dataset identifier on the Hugging Face Hub (list all available datasets and ids with [`datasets.list_datasets`])
e.g. `'squad'`, `'glue'` or `'openai/webtext'`
config_name (`str`, *optional*):
Defining the name of the dataset configuration.
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
revision ([`Version`] or `str`, *optional*):
Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
use_auth_token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
<Deprecated version="2.14.0">
`use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0.
</Deprecated>
**config_kwargs (additional keyword arguments):
Optional attributes for builder class which will override the attributes if supplied.
Example:
```py
>>> from datasets import get_dataset_split_names
>>> get_dataset_split_names('rotten_tomatoes')
['train', 'validation', 'test']
```
"""
if use_auth_token != "deprecated":
warnings.warn(
"'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n"
f"You can remove this warning by passing 'token={use_auth_token}' instead.",
FutureWarning,
)
token = use_auth_token
info = get_dataset_config_info(
path,
config_name=config_name,
data_files=data_files,
download_config=download_config,
download_mode=download_mode,
revision=revision,
token=token,
**config_kwargs,
)
return list(info.splits.keys())
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/arrow_writer.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""To write records into Parquet files."""
import errno
import json
import os
import sys
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import fsspec
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
from . import config
from .features import Features, Image, Value
from .features.features import (
FeatureType,
_ArrayXDExtensionType,
cast_to_python_objects,
generate_from_arrow_type,
get_nested_type,
list_of_np_array_to_pyarrow_listarray,
numpy_to_pyarrow_listarray,
to_pyarrow_listarray,
)
from .filesystems import is_remote_filesystem
from .info import DatasetInfo
from .keyhash import DuplicatedKeysError, KeyHasher
from .table import array_cast, array_concat, cast_array_to_feature, embed_table_storage, table_cast
from .utils import logging
from .utils.file_utils import hash_url_to_filename
from .utils.py_utils import asdict, first_non_null_value
logger = logging.get_logger(__name__)
type_ = type # keep python's type function
class SchemaInferenceError(ValueError):
pass
class TypedSequence:
"""
This data container generalizes the typing when instantiating pyarrow arrays, tables or batches.
More specifically it adds several features:
- Support extension types like ``datasets.features.Array2DExtensionType``:
By default pyarrow arrays don't return extension arrays. One has to call
``pa.ExtensionArray.from_storage(type, pa.array(data, type.storage_type))``
in order to get an extension array.
- Support for ``try_type`` parameter that can be used instead of ``type``:
When an array is transformed, we like to keep the same type as before if possible.
For example when calling :func:`datasets.Dataset.map`, we don't want to change the type
of each column by default.
- Better error message when a pyarrow array overflows.
Example::
from datasets.features import Array2D, Array2DExtensionType, Value
from datasets.arrow_writer import TypedSequence
import pyarrow as pa
arr = pa.array(TypedSequence([1, 2, 3], type=Value("int32")))
assert arr.type == pa.int32()
arr = pa.array(TypedSequence([1, 2, 3], try_type=Value("int32")))
assert arr.type == pa.int32()
arr = pa.array(TypedSequence(["foo", "bar"], try_type=Value("int32")))
assert arr.type == pa.string()
arr = pa.array(TypedSequence([[[1, 2, 3]]], type=Array2D((1, 3), "int64")))
assert arr.type == Array2DExtensionType((1, 3), "int64")
table = pa.Table.from_pydict({
"image": TypedSequence([[[1, 2, 3]]], type=Array2D((1, 3), "int64"))
})
assert table["image"].type == Array2DExtensionType((1, 3), "int64")
"""
def __init__(
self,
data: Iterable,
type: Optional[FeatureType] = None,
try_type: Optional[FeatureType] = None,
optimized_int_type: Optional[FeatureType] = None,
):
# assert type is None or try_type is None,
if type is not None and try_type is not None:
raise ValueError("You cannot specify both type and try_type")
# set attributes
self.data = data
self.type = type
self.try_type = try_type # is ignored if it doesn't match the data
self.optimized_int_type = optimized_int_type
# when trying a type (is ignored if data is not compatible)
self.trying_type = self.try_type is not None
self.trying_int_optimization = optimized_int_type is not None and type is None and try_type is None
# used to get back the inferred type after __arrow_array__() is called once
self._inferred_type = None
def get_inferred_type(self) -> FeatureType:
"""Return the inferred feature type.
This is done by converting the sequence to an Arrow array, and getting the corresponding
feature type.
Since building the Arrow array can be expensive, the value of the inferred type is cached
as soon as pa.array is called on the typed sequence.
Returns:
FeatureType: inferred feature type of the sequence.
"""
if self._inferred_type is None:
self._inferred_type = generate_from_arrow_type(pa.array(self).type)
return self._inferred_type
@staticmethod
def _infer_custom_type_and_encode(data: Iterable) -> Tuple[Iterable, Optional[FeatureType]]:
"""Implement type inference for custom objects like PIL.Image.Image -> Image type.
This function is only used for custom python objects that can't be direclty passed to build
an Arrow array. In such cases is infers the feature type to use, and it encodes the data so
that they can be passed to an Arrow array.
Args:
data (Iterable): array of data to infer the type, e.g. a list of PIL images.
Returns:
Tuple[Iterable, Optional[FeatureType]]: a tuple with:
- the (possibly encoded) array, if the inferred feature type requires encoding
- the inferred feature type if the array is made of supported custom objects like
PIL images, else None.
"""
if config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
non_null_idx, non_null_value = first_non_null_value(data)
if isinstance(non_null_value, PIL.Image.Image):
return [Image().encode_example(value) if value is not None else None for value in data], Image()
return data, None
def __arrow_array__(self, type: Optional[pa.DataType] = None):
"""This function is called when calling pa.array(typed_sequence)"""
if type is not None:
raise ValueError("TypedSequence is supposed to be used with pa.array(typed_sequence, type=None)")
del type # make sure we don't use it
data = self.data
# automatic type inference for custom objects
if self.type is None and self.try_type is None:
data, self._inferred_type = self._infer_custom_type_and_encode(data)
if self._inferred_type is None:
type = self.try_type if self.trying_type else self.type
else:
type = self._inferred_type
pa_type = get_nested_type(type) if type is not None else None
optimized_int_pa_type = (
get_nested_type(self.optimized_int_type) if self.optimized_int_type is not None else None
)
trying_cast_to_python_objects = False
try:
# custom pyarrow types
if isinstance(pa_type, _ArrayXDExtensionType):
storage = to_pyarrow_listarray(data, pa_type)
return pa.ExtensionArray.from_storage(pa_type, storage)
# efficient np array to pyarrow array
if isinstance(data, np.ndarray):
out = numpy_to_pyarrow_listarray(data)
elif isinstance(data, list) and data and isinstance(first_non_null_value(data)[1], np.ndarray):
out = list_of_np_array_to_pyarrow_listarray(data)
else:
trying_cast_to_python_objects = True
out = pa.array(cast_to_python_objects(data, only_1d_for_numpy=True))
# use smaller integer precisions if possible
if self.trying_int_optimization:
if pa.types.is_int64(out.type):
out = out.cast(optimized_int_pa_type)
elif pa.types.is_list(out.type):
if pa.types.is_int64(out.type.value_type):
out = array_cast(out, pa.list_(optimized_int_pa_type))
elif pa.types.is_list(out.type.value_type) and pa.types.is_int64(out.type.value_type.value_type):
out = array_cast(out, pa.list_(pa.list_(optimized_int_pa_type)))
# otherwise we can finally use the user's type
elif type is not None:
# We use cast_array_to_feature to support casting to custom types like Audio and Image
# Also, when trying type "string", we don't want to convert integers or floats to "string".
# We only do it if trying_type is False - since this is what the user asks for.
out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type)
return out
except (
TypeError,
pa.lib.ArrowInvalid,
pa.lib.ArrowNotImplementedError,
) as e: # handle type errors and overflows
# Ignore ArrowNotImplementedError caused by trying type, otherwise re-raise
if not self.trying_type and isinstance(e, pa.lib.ArrowNotImplementedError):
raise
if self.trying_type:
try: # second chance
if isinstance(data, np.ndarray):
return numpy_to_pyarrow_listarray(data)
elif isinstance(data, list) and data and any(isinstance(value, np.ndarray) for value in data):
return list_of_np_array_to_pyarrow_listarray(data)
else:
trying_cast_to_python_objects = True
return pa.array(cast_to_python_objects(data, only_1d_for_numpy=True))
except pa.lib.ArrowInvalid as e:
if "overflow" in str(e):
raise OverflowError(
f"There was an overflow with type {type_(data)}. Try to reduce writer_batch_size to have batches smaller than 2GB.\n({e})"
) from None
elif self.trying_int_optimization and "not in range" in str(e):
optimized_int_pa_type_str = np.dtype(optimized_int_pa_type.to_pandas_dtype()).name
logger.info(
f"Failed to cast a sequence to {optimized_int_pa_type_str}. Falling back to int64."
)
return out
elif trying_cast_to_python_objects and "Could not convert" in str(e):
out = pa.array(
cast_to_python_objects(data, only_1d_for_numpy=True, optimize_list_casting=False)
)
if type is not None:
out = cast_array_to_feature(out, type, allow_number_to_str=True)
return out
else:
raise
elif "overflow" in str(e):
raise OverflowError(
f"There was an overflow with type {type_(data)}. Try to reduce writer_batch_size to have batches smaller than 2GB.\n({e})"
) from None
elif self.trying_int_optimization and "not in range" in str(e):
optimized_int_pa_type_str = np.dtype(optimized_int_pa_type.to_pandas_dtype()).name
logger.info(f"Failed to cast a sequence to {optimized_int_pa_type_str}. Falling back to int64.")
return out
elif trying_cast_to_python_objects and "Could not convert" in str(e):
out = pa.array(cast_to_python_objects(data, only_1d_for_numpy=True, optimize_list_casting=False))
if type is not None:
out = cast_array_to_feature(out, type, allow_number_to_str=True)
return out
else:
raise
class OptimizedTypedSequence(TypedSequence):
def __init__(
self,
data,
type: Optional[FeatureType] = None,
try_type: Optional[FeatureType] = None,
col: Optional[str] = None,
optimized_int_type: Optional[FeatureType] = None,
):
optimized_int_type_by_col = {
"attention_mask": Value("int8"), # binary tensor
"special_tokens_mask": Value("int8"),
"input_ids": Value("int32"), # typical vocab size: 0-50k (max ~500k, never > 1M)
"token_type_ids": Value(
"int8"
), # binary mask; some (XLNetModel) use an additional token represented by a 2
}
if type is None and try_type is None:
optimized_int_type = optimized_int_type_by_col.get(col, None)
super().__init__(data, type=type, try_type=try_type, optimized_int_type=optimized_int_type)
class ArrowWriter:
"""Shuffles and writes Examples to Arrow files."""
_WRITER_CLASS = pa.RecordBatchStreamWriter
def __init__(
self,
schema: Optional[pa.Schema] = None,
features: Optional[Features] = None,
path: Optional[str] = None,
stream: Optional[pa.NativeFile] = None,
fingerprint: Optional[str] = None,
writer_batch_size: Optional[int] = None,
hash_salt: Optional[str] = None,
check_duplicates: Optional[bool] = False,
disable_nullable: bool = False,
update_features: bool = False,
with_metadata: bool = True,
unit: str = "examples",
embed_local_files: bool = False,
storage_options: Optional[dict] = None,
):
if path is None and stream is None:
raise ValueError("At least one of path and stream must be provided.")
if features is not None:
self._features = features
self._schema = None
elif schema is not None:
self._schema: pa.Schema = schema
self._features = Features.from_arrow_schema(self._schema)
else:
self._features = None
self._schema = None
if hash_salt is not None:
# Create KeyHasher instance using split name as hash salt
self._hasher = KeyHasher(hash_salt)
else:
self._hasher = KeyHasher("")
self._check_duplicates = check_duplicates
self._disable_nullable = disable_nullable
if stream is None:
fs_token_paths = fsspec.get_fs_token_paths(path, storage_options=storage_options)
self._fs: fsspec.AbstractFileSystem = fs_token_paths[0]
self._path = (
fs_token_paths[2][0]
if not is_remote_filesystem(self._fs)
else self._fs.unstrip_protocol(fs_token_paths[2][0])
)
self.stream = self._fs.open(fs_token_paths[2][0], "wb")
self._closable_stream = True
else:
self._fs = None
self._path = None
self.stream = stream
self._closable_stream = False
self.fingerprint = fingerprint
self.disable_nullable = disable_nullable
self.writer_batch_size = writer_batch_size or config.DEFAULT_MAX_BATCH_SIZE
self.update_features = update_features
self.with_metadata = with_metadata
self.unit = unit
self.embed_local_files = embed_local_files
self._num_examples = 0
self._num_bytes = 0
self.current_examples: List[Tuple[Dict[str, Any], str]] = []
self.current_rows: List[pa.Table] = []
self.pa_writer: Optional[pa.RecordBatchStreamWriter] = None
self.hkey_record = []
def __len__(self):
"""Return the number of writed and staged examples"""
return self._num_examples + len(self.current_examples) + len(self.current_rows)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
def close(self):
# Try closing if opened; if closed: pyarrow.lib.ArrowInvalid: Invalid operation on closed file
if self.pa_writer: # it might be None
try:
self.pa_writer.close()
except Exception: # pyarrow.lib.ArrowInvalid, OSError
pass
if self._closable_stream and not self.stream.closed:
self.stream.close() # This also closes self.pa_writer if it is opened
def _build_writer(self, inferred_schema: pa.Schema):
schema = self.schema
inferred_features = Features.from_arrow_schema(inferred_schema)
if self._features is not None:
if self.update_features: # keep original features it they match, or update them
fields = {field.name: field for field in self._features.type}
for inferred_field in inferred_features.type:
name = inferred_field.name
if name in fields:
if inferred_field == fields[name]:
inferred_features[name] = self._features[name]
self._features = inferred_features
schema: pa.Schema = inferred_schema
else:
self._features = inferred_features
schema: pa.Schema = inferred_features.arrow_schema
if self.disable_nullable:
schema = pa.schema(pa.field(field.name, field.type, nullable=False) for field in schema)
if self.with_metadata:
schema = schema.with_metadata(self._build_metadata(DatasetInfo(features=self._features), self.fingerprint))
else:
schema = schema.with_metadata({})
self._schema = schema
self.pa_writer = self._WRITER_CLASS(self.stream, schema)
@property
def schema(self):
_schema = (
self._schema
if self._schema is not None
else (pa.schema(self._features.type) if self._features is not None else None)
)
if self._disable_nullable and _schema is not None:
_schema = pa.schema(pa.field(field.name, field.type, nullable=False) for field in _schema)
return _schema if _schema is not None else []
@staticmethod
def _build_metadata(info: DatasetInfo, fingerprint: Optional[str] = None) -> Dict[str, str]:
info_keys = ["features"] # we can add support for more DatasetInfo keys in the future
info_as_dict = asdict(info)
metadata = {}
metadata["info"] = {key: info_as_dict[key] for key in info_keys}
if fingerprint is not None:
metadata["fingerprint"] = fingerprint
return {"huggingface": json.dumps(metadata)}
def write_examples_on_file(self):
"""Write stored examples from the write-pool of examples. It makes a table out of the examples and write it."""
if not self.current_examples:
return
# order the columns properly
cols = (
[col for col in self.schema.names if col in self.current_examples[0][0]]
+ [col for col in self.current_examples[0][0].keys() if col not in self.schema.names]
if self.schema
else self.current_examples[0][0].keys()
)
batch_examples = {}
for col in cols:
# We use row[0][col] since current_examples contains (example, key) tuples.
# Morever, examples could be Arrow arrays of 1 element.
# This can happen in `.map()` when we want to re-write the same Arrow data
if all(isinstance(row[0][col], (pa.Array, pa.ChunkedArray)) for row in self.current_examples):
arrays = [row[0][col] for row in self.current_examples]
batch_examples[col] = array_concat(arrays)
else:
batch_examples[col] = [
row[0][col].to_pylist()[0] if isinstance(row[0][col], (pa.Array, pa.ChunkedArray)) else row[0][col]
for row in self.current_examples
]
self.write_batch(batch_examples=batch_examples)
self.current_examples = []
def write_rows_on_file(self):
"""Write stored rows from the write-pool of rows. It concatenates the single-row tables and it writes the resulting table."""
if not self.current_rows:
return
table = pa.concat_tables(self.current_rows)
self.write_table(table)
self.current_rows = []
def write(
self,
example: Dict[str, Any],
key: Optional[Union[str, int, bytes]] = None,
writer_batch_size: Optional[int] = None,
):
"""Add a given (Example,Key) pair to the write-pool of examples which is written to file.
Args:
example: the Example to add.
key: Optional, a unique identifier(str, int or bytes) associated with each example
"""
# Utilize the keys and duplicate checking when `self._check_duplicates` is passed True
if self._check_duplicates:
# Create unique hash from key and store as (key, example) pairs
hash = self._hasher.hash(key)
self.current_examples.append((example, hash))
# Maintain record of keys and their respective hashes for checking duplicates
self.hkey_record.append((hash, key))
else:
# Store example as a tuple so as to keep the structure of `self.current_examples` uniform
self.current_examples.append((example, ""))
if writer_batch_size is None:
writer_batch_size = self.writer_batch_size
if writer_batch_size is not None and len(self.current_examples) >= writer_batch_size:
if self._check_duplicates:
self.check_duplicate_keys()
# Re-intializing to empty list for next batch
self.hkey_record = []
self.write_examples_on_file()
def check_duplicate_keys(self):
"""Raises error if duplicates found in a batch"""
tmp_record = set()
for hash, key in self.hkey_record:
if hash in tmp_record:
duplicate_key_indices = [
str(self._num_examples + index)
for index, (duplicate_hash, _) in enumerate(self.hkey_record)
if duplicate_hash == hash
]
raise DuplicatedKeysError(key, duplicate_key_indices)
else:
tmp_record.add(hash)
def write_row(self, row: pa.Table, writer_batch_size: Optional[int] = None):
"""Add a given single-row Table to the write-pool of rows which is written to file.
Args:
row: the row to add.
"""
if len(row) != 1:
raise ValueError(f"Only single-row pyarrow tables are allowed but got table with {len(row)} rows.")
self.current_rows.append(row)
if writer_batch_size is None:
writer_batch_size = self.writer_batch_size
if writer_batch_size is not None and len(self.current_rows) >= writer_batch_size:
self.write_rows_on_file()
def write_batch(
self,
batch_examples: Dict[str, List],
writer_batch_size: Optional[int] = None,
):
"""Write a batch of Example to file.
Ignores the batch if it appears to be empty,
preventing a potential schema update of unknown types.
Args:
batch_examples: the batch of examples to add.
"""
if batch_examples and len(next(iter(batch_examples.values()))) == 0:
return
features = None if self.pa_writer is None and self.update_features else self._features
try_features = self._features if self.pa_writer is None and self.update_features else None
arrays = []
inferred_features = Features()
cols = (
[col for col in self.schema.names if col in batch_examples]
+ [col for col in batch_examples.keys() if col not in self.schema.names]
if self.schema
else batch_examples.keys()
)
for col in cols:
col_values = batch_examples[col]
col_type = features[col] if features else None
if isinstance(col_values, (pa.Array, pa.ChunkedArray)):
array = cast_array_to_feature(col_values, col_type) if col_type is not None else col_values
arrays.append(array)
inferred_features[col] = generate_from_arrow_type(col_values.type)
else:
col_try_type = try_features[col] if try_features is not None and col in try_features else None
typed_sequence = OptimizedTypedSequence(col_values, type=col_type, try_type=col_try_type, col=col)
arrays.append(pa.array(typed_sequence))
inferred_features[col] = typed_sequence.get_inferred_type()
schema = inferred_features.arrow_schema if self.pa_writer is None else self.schema
pa_table = pa.Table.from_arrays(arrays, schema=schema)
self.write_table(pa_table, writer_batch_size)
def write_table(self, pa_table: pa.Table, writer_batch_size: Optional[int] = None):
"""Write a Table to file.
Args:
example: the Table to add.
"""
if writer_batch_size is None:
writer_batch_size = self.writer_batch_size
if self.pa_writer is None:
self._build_writer(inferred_schema=pa_table.schema)
pa_table = pa_table.combine_chunks()
pa_table = table_cast(pa_table, self._schema)
if self.embed_local_files:
pa_table = embed_table_storage(pa_table)
self._num_bytes += pa_table.nbytes
self._num_examples += pa_table.num_rows
self.pa_writer.write_table(pa_table, writer_batch_size)
def finalize(self, close_stream=True):
self.write_rows_on_file()
# In case current_examples < writer_batch_size, but user uses finalize()
if self._check_duplicates:
self.check_duplicate_keys()
# Re-intializing to empty list for next batch
self.hkey_record = []
self.write_examples_on_file()
# If schema is known, infer features even if no examples were written
if self.pa_writer is None and self.schema:
self._build_writer(self.schema)
if self.pa_writer is not None:
self.pa_writer.close()
self.pa_writer = None
if close_stream:
self.stream.close()
else:
if close_stream:
self.stream.close()
raise SchemaInferenceError("Please pass `features` or at least one example when writing data")
logger.debug(
f"Done writing {self._num_examples} {self.unit} in {self._num_bytes} bytes {self._path if self._path else ''}."
)
return self._num_examples, self._num_bytes
class ParquetWriter(ArrowWriter):
_WRITER_CLASS = pq.ParquetWriter
class BeamWriter:
"""
Shuffles and writes Examples to Arrow files.
The Arrow files are converted from Parquet files that are the output of Apache Beam pipelines.
"""
def __init__(
self,
features: Optional[Features] = None,
schema: Optional[pa.Schema] = None,
path: Optional[str] = None,
namespace: Optional[str] = None,
cache_dir: Optional[str] = None,
):
if features is None and schema is None:
raise ValueError("At least one of features and schema must be provided.")
if path is None:
raise ValueError("Path must be provided.")
if features is not None:
self._features: Features = features
self._schema: pa.Schema = features.arrow_schema
else:
self._schema: pa.Schema = schema
self._features: Features = Features.from_arrow_schema(schema)
self._path = path
self._parquet_path = os.path.splitext(path)[0] # remove extension
self._namespace = namespace or "default"
self._num_examples = None
self._cache_dir = cache_dir or config.HF_DATASETS_CACHE
def write_from_pcollection(self, pcoll_examples):
"""Add the final steps of the beam pipeline: write to parquet files."""
import apache_beam as beam
def inc_num_examples(example):
beam.metrics.Metrics.counter(self._namespace, "num_examples").inc()
# count examples
_ = pcoll_examples | "Count N. Examples" >> beam.Map(inc_num_examples)
# save dataset
return (
pcoll_examples
| "Get values" >> beam.Values()
| "Save to parquet"
>> beam.io.parquetio.WriteToParquet(
self._parquet_path, self._schema, shard_name_template="-SSSSS-of-NNNNN.parquet"
)
)
def finalize(self, metrics_query_result: dict):
"""
Run after the pipeline has finished.
It converts the resulting parquet files to arrow and it completes the info from the pipeline metrics.
Args:
metrics_query_result: `dict` obtained from pipeline_results.metrics().query(m_filter). Make sure
that the filter keeps only the metrics for the considered split, under the namespace `split_name`.
"""
import apache_beam as beam
from .utils import beam_utils
shards_metadata = list(
beam.io.filesystems.FileSystems.match([self._parquet_path + "*.parquet"])[0].metadata_list
)
shards = [metadata.path for metadata in shards_metadata]
num_bytes = sum([metadata.size_in_bytes for metadata in shards_metadata])
shard_lengths = get_parquet_lengths(shards)
# Convert to arrow
if self._path.endswith(".arrow"):
logger.info(f"Converting parquet files {self._parquet_path} to arrow {self._path}")
shards = [
metadata.path
for metadata in beam.io.filesystems.FileSystems.match([self._parquet_path + "*.parquet"])[
0
].metadata_list
]
try: # stream conversion
disable = not logging.is_progress_bar_enabled()
num_bytes = 0
for shard in logging.tqdm(shards, unit="shards", disable=disable):
with beam.io.filesystems.FileSystems.open(shard) as source:
with beam.io.filesystems.FileSystems.create(
shard.replace(".parquet", ".arrow")
) as destination:
shard_num_bytes, _ = parquet_to_arrow(source, destination)
num_bytes += shard_num_bytes
except OSError as e: # broken pipe can happen if the connection is unstable, do local conversion instead
if e.errno != errno.EPIPE: # not a broken pipe
raise
logger.warning(
"Broken Pipe during stream conversion from parquet to arrow. Using local convert instead"
)
local_convert_dir = os.path.join(self._cache_dir, "beam_convert")
os.makedirs(local_convert_dir, exist_ok=True)
disable = not logging.is_progress_bar_enabled()
num_bytes = 0
for shard in logging.tqdm(shards, unit="shards", disable=disable):
local_parquet_path = os.path.join(local_convert_dir, hash_url_to_filename(shard) + ".parquet")
beam_utils.download_remote_to_local(shard, local_parquet_path)
local_arrow_path = local_parquet_path.replace(".parquet", ".arrow")
shard_num_bytes, _ = parquet_to_arrow(local_parquet_path, local_arrow_path)
num_bytes += shard_num_bytes
remote_arrow_path = shard.replace(".parquet", ".arrow")
beam_utils.upload_local_to_remote(local_arrow_path, remote_arrow_path)
# Save metrics
counters_dict = {metric.key.metric.name: metric.result for metric in metrics_query_result["counters"]}
self._num_examples = counters_dict["num_examples"]
self._num_bytes = num_bytes
self._shard_lengths = shard_lengths
return self._num_examples, self._num_bytes
def get_parquet_lengths(sources) -> List[int]:
shard_lengths = []
disable = not logging.is_progress_bar_enabled()
for source in logging.tqdm(sources, unit="parquet files", disable=disable):
parquet_file = pa.parquet.ParquetFile(source)
shard_lengths.append(parquet_file.metadata.num_rows)
return shard_lengths
def parquet_to_arrow(source, destination) -> List[int]:
"""Convert parquet file to arrow file. Inputs can be str paths or file-like objects"""
stream = None if isinstance(destination, str) else destination
with ArrowWriter(path=destination, stream=stream) as writer:
parquet_file = pa.parquet.ParquetFile(source)
for record_batch in parquet_file.iter_batches():
pa_table = pa.Table.from_batches([record_batch])
writer.write_table(pa_table)
num_bytes, num_examples = writer.finalize()
return num_bytes, num_examples
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/combine.py | from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
logger = logging.get_logger(__name__)
DatasetType = TypeVar("DatasetType", Dataset, IterableDataset)
def interleave_datasets(
datasets: List[DatasetType],
probabilities: Optional[List[float]] = None,
seed: Optional[int] = None,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
) -> DatasetType:
"""
Interleave several datasets (sources) into a single dataset.
The new dataset is constructed by alternating between the sources to get the examples.
You can use this function on a list of [`Dataset`] objects, or on a list of [`IterableDataset`] objects.
- If `probabilities` is `None` (default) the new dataset is constructed by cycling between each source to get the examples.
- If `probabilities` is not `None`, the new dataset is constructed by getting examples from a random source at a time according to the provided probabilities.
The resulting dataset ends when one of the source datasets runs out of examples except when `oversampling` is `True`,
in which case, the resulting dataset ends when all datasets have ran out of examples at least one time.
Note for iterable datasets:
In a distributed setup or in PyTorch DataLoader workers, the stopping strategy is applied per process.
Therefore the "first_exhausted" strategy on an sharded iterable dataset can generate less samples in total (up to 1 missing sample per subdataset per worker).
Args:
datasets (`List[Dataset]` or `List[IterableDataset]`):
List of datasets to interleave.
probabilities (`List[float]`, *optional*, defaults to `None`):
If specified, the new dataset is constructed by sampling
examples from one source at a time according to these probabilities.
seed (`int`, *optional*, defaults to `None`):
The random seed used to choose a source for each example.
info ([`DatasetInfo`], *optional*):
Dataset information, like description, citation, etc.
<Added version="2.4.0"/>
split ([`NamedSplit`], *optional*):
Name of the dataset split.
<Added version="2.4.0"/>
stopping_strategy (`str`, defaults to `first_exhausted`):
Two strategies are proposed right now, `first_exhausted` and `all_exhausted`.
By default, `first_exhausted` is an undersampling strategy, i.e the dataset construction is stopped as soon as one dataset has ran out of samples.
If the strategy is `all_exhausted`, we use an oversampling strategy, i.e the dataset construction is stopped as soon as every samples of every dataset has been added at least once.
Note that if the strategy is `all_exhausted`, the interleaved dataset size can get enormous:
- with no probabilities, the resulting dataset will have `max_length_datasets*nb_dataset` samples.
- with given probabilities, the resulting dataset will have more samples if some datasets have really low probability of visiting.
Returns:
[`Dataset`] or [`IterableDataset`]: Return type depends on the input `datasets`
parameter. `Dataset` if the input is a list of `Dataset`, `IterableDataset` if the input is a list of
`IterableDataset`.
Example:
For regular datasets (map-style):
```python
>>> from datasets import Dataset, interleave_datasets
>>> d1 = Dataset.from_dict({"a": [0, 1, 2]})
>>> d2 = Dataset.from_dict({"a": [10, 11, 12]})
>>> d3 = Dataset.from_dict({"a": [20, 21, 22]})
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42, stopping_strategy="all_exhausted")
>>> dataset["a"]
[10, 0, 11, 1, 2, 20, 12, 10, 0, 1, 2, 21, 0, 11, 1, 2, 0, 1, 12, 2, 10, 0, 22]
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42)
>>> dataset["a"]
[10, 0, 11, 1, 2]
>>> dataset = interleave_datasets([d1, d2, d3])
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22]
>>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted")
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22]
>>> d1 = Dataset.from_dict({"a": [0, 1, 2]})
>>> d2 = Dataset.from_dict({"a": [10, 11, 12, 13]})
>>> d3 = Dataset.from_dict({"a": [20, 21, 22, 23, 24]})
>>> dataset = interleave_datasets([d1, d2, d3])
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22]
>>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted")
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 10, 24]
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42)
>>> dataset["a"]
[10, 0, 11, 1, 2]
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42, stopping_strategy="all_exhausted")
>>> dataset["a"]
[10, 0, 11, 1, 2, 20, 12, 13, ..., 0, 1, 2, 0, 24]
For datasets in streaming mode (iterable):
>>> from datasets import load_dataset, interleave_datasets
>>> d1 = load_dataset("oscar", "unshuffled_deduplicated_en", split="train", streaming=True)
>>> d2 = load_dataset("oscar", "unshuffled_deduplicated_fr", split="train", streaming=True)
>>> dataset = interleave_datasets([d1, d2])
>>> iterator = iter(dataset)
>>> next(iterator)
{'text': 'Mtendere Village was inspired by the vision...}
>>> next(iterator)
{'text': "Média de débat d'idées, de culture...}
```
"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError("Unable to interleave an empty list of datasets.")
for i, dataset in enumerate(datasets):
if not isinstance(dataset, (Dataset, IterableDataset)):
if isinstance(dataset, (DatasetDict, IterableDatasetDict)):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
"is an empty dataset dictionary."
)
raise ValueError(
f"Dataset at position {i} has at least one split: {list(dataset)}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(dataset))}']"
)
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(dataset).__name__}."
)
if i == 0:
dataset_type, other_type = (
(Dataset, IterableDataset) if isinstance(dataset, Dataset) else (IterableDataset, Dataset)
)
elif not isinstance(dataset, dataset_type):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects."
)
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy.")
if dataset_type is Dataset:
return _interleave_map_style_datasets(
datasets, probabilities, seed, info=info, split=split, stopping_strategy=stopping_strategy
)
else:
return _interleave_iterable_datasets(
datasets, probabilities, seed, info=info, split=split, stopping_strategy=stopping_strategy
)
def concatenate_datasets(
dsets: List[DatasetType],
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
axis: int = 0,
) -> DatasetType:
"""
Converts a list of [`Dataset`] with the same schema into a single [`Dataset`].
Args:
dsets (`List[datasets.Dataset]`):
List of Datasets to concatenate.
info (`DatasetInfo`, *optional*):
Dataset information, like description, citation, etc.
split (`NamedSplit`, *optional*):
Name of the dataset split.
axis (`{0, 1}`, defaults to `0`):
Axis to concatenate over, where `0` means over rows (vertically) and `1` means over columns
(horizontally).
<Added version="1.6.0"/>
Example:
```py
>>> ds3 = concatenate_datasets([ds1, ds2])
```
"""
if not dsets:
raise ValueError("Unable to concatenate an empty list of datasets.")
for i, dataset in enumerate(dsets):
if not isinstance(dataset, (Dataset, IterableDataset)):
if isinstance(dataset, (DatasetDict, IterableDatasetDict)):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
"is an empty dataset dictionary."
)
raise ValueError(
f"Dataset at position {i} has at least one split: {list(dataset)}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(dataset))}']"
)
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(dataset).__name__}."
)
if i == 0:
dataset_type, other_type = (
(Dataset, IterableDataset) if isinstance(dataset, Dataset) else (IterableDataset, Dataset)
)
elif not isinstance(dataset, dataset_type):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects."
)
if dataset_type is Dataset:
return _concatenate_map_style_datasets(dsets, info=info, split=split, axis=axis)
else:
return _concatenate_iterable_datasets(dsets, info=info, split=split, axis=axis)
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/arrow_reader.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
""" Arrow ArrowReader."""
import copy
import math
import os
import re
import shutil
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, List, Optional, Union
import pyarrow as pa
import pyarrow.parquet as pq
from .download.download_config import DownloadConfig
from .naming import _split_re, filenames_for_dataset_split
from .table import InMemoryTable, MemoryMappedTable, Table, concat_tables
from .utils import logging
from .utils.file_utils import cached_path
if TYPE_CHECKING:
from .info import DatasetInfo # noqa: F401
from .splits import Split, SplitInfo # noqa: F401
logger = logging.get_logger(__name__)
HF_GCP_BASE_URL = "https://storage.googleapis.com/huggingface-nlp/cache/datasets"
_SUB_SPEC_RE = re.compile(
rf"""
^
(?P<split>{_split_re[1:-1]})
(\[
((?P<from>-?\d+)
(?P<from_pct>%)?)?
:
((?P<to>-?\d+)
(?P<to_pct>%)?)?
\])?(\((?P<rounding>[^\)]*)\))?
$
""", # remove ^ and $
re.X,
)
_ADDITION_SEP_RE = re.compile(r"\s*\+\s*")
class DatasetNotOnHfGcsError(ConnectionError):
"""When you can't get the dataset from the Hf google cloud storage"""
pass
class MissingFilesOnHfGcsError(ConnectionError):
"""When some files are missing on the Hf oogle cloud storage"""
pass
@dataclass(frozen=True)
class FileInstructions:
"""The file instructions associated with a split ReadInstruction.
Attributes:
num_examples: `int`, The total number of examples
file_instructions: List[dict(filename, skip, take)], the files information.
The filenames contains the relative path, not absolute.
skip/take indicates which example read in the file: `ds.slice(skip, take)`
"""
num_examples: int
file_instructions: List[dict]
def make_file_instructions(
name: str,
split_infos: List["SplitInfo"],
instruction: Union[str, "ReadInstruction"],
filetype_suffix: Optional[str] = None,
prefix_path: Optional[str] = None,
) -> FileInstructions:
"""Returns instructions of the split dict.
Args:
name (`str`): Name of the dataset.
split_infos (`list` of `[SplitInfo]`): Dataset splits information.
instruction ([`ReadInstruction`] or `str`): Reading instruction for a dataset.
filetype_suffix (`str`, *optional*): Suffix of dataset files, e.g. 'arrow' or 'parquet'.
prefix_path (`str`, *optional*): Prefix of dataset files, e.g. directory name.
Returns:
[`FileInstructions`]
"""
if not isinstance(name, str):
raise TypeError(f"Expected str 'name', but got: {type(name).__name__}")
elif not name:
raise ValueError("Expected non-empty str 'name'")
name2len = {info.name: info.num_examples for info in split_infos}
name2shard_lengths = {info.name: info.shard_lengths for info in split_infos}
name2filenames = {
info.name: filenames_for_dataset_split(
path=prefix_path,
dataset_name=name,
split=info.name,
filetype_suffix=filetype_suffix,
shard_lengths=name2shard_lengths[info.name],
)
for info in split_infos
}
if not isinstance(instruction, ReadInstruction):
instruction = ReadInstruction.from_spec(instruction)
# Create the absolute instruction (per split)
absolute_instructions = instruction.to_absolute(name2len)
# For each split, return the files instruction (skip/take)
file_instructions = []
num_examples = 0
for abs_instr in absolute_instructions:
split_length = name2len[abs_instr.splitname]
filenames = name2filenames[abs_instr.splitname]
shard_lengths = name2shard_lengths[abs_instr.splitname]
from_ = 0 if abs_instr.from_ is None else abs_instr.from_
to = split_length if abs_instr.to is None else abs_instr.to
if shard_lengths is None: # not sharded
for filename in filenames:
num_examples += to - from_
file_instructions.append({"filename": filename, "skip": from_, "take": to - from_})
else: # sharded
index_start = 0 # Beginning (included) of moving window.
index_end = 0 # End (excluded) of moving window.
for filename, shard_length in zip(filenames, shard_lengths):
index_end += shard_length
if from_ < index_end and to > index_start: # There is something to take.
skip = from_ - index_start if from_ > index_start else 0
take = to - index_start - skip if to < index_end else -1
if take == 0:
continue
file_instructions.append({"filename": filename, "skip": skip, "take": take})
num_examples += shard_length - skip if take == -1 else take
index_start += shard_length
return FileInstructions(
num_examples=num_examples,
file_instructions=file_instructions,
)
class BaseReader:
"""
Build a Dataset object out of Instruction instance(s).
"""
def __init__(self, path: str, info: Optional["DatasetInfo"]):
"""Initializes ArrowReader.
Args:
path (str): path where tfrecords are stored.
info (DatasetInfo): info about the dataset.
"""
self._path: str = path
self._info: Optional["DatasetInfo"] = info
self._filetype_suffix: Optional[str] = None
def _get_table_from_filename(self, filename_skip_take, in_memory=False) -> Table:
"""Returns a Dataset instance from given (filename, skip, take)."""
raise NotImplementedError
def _read_files(self, files, in_memory=False) -> Table:
"""Returns Dataset for given file instructions.
Args:
files: List[dict(filename, skip, take)], the files information.
The filenames contain the absolute path, not relative.
skip/take indicates which example read in the file: `ds.slice(skip, take)`
in_memory (bool, default False): Whether to copy the data in-memory.
"""
if len(files) == 0 or not all(isinstance(f, dict) for f in files):
raise ValueError("please provide valid file informations")
pa_tables = []
files = copy.deepcopy(files)
for f in files:
f["filename"] = os.path.join(self._path, f["filename"])
for f_dict in files:
pa_table: Table = self._get_table_from_filename(f_dict, in_memory=in_memory)
pa_tables.append(pa_table)
pa_tables = [t for t in pa_tables if len(t) > 0]
if not pa_tables and (self._info is None or self._info.features is None):
raise ValueError(
"Tried to read an empty table. Please specify at least info.features to create an empty table with the right type."
)
pa_tables = pa_tables or [InMemoryTable.from_batches([], schema=pa.schema(self._info.features.type))]
pa_table = concat_tables(pa_tables) if len(pa_tables) != 1 else pa_tables[0]
return pa_table
def get_file_instructions(self, name, instruction, split_infos):
"""Return list of dict {'filename': str, 'skip': int, 'take': int}"""
file_instructions = make_file_instructions(
name, split_infos, instruction, filetype_suffix=self._filetype_suffix, prefix_path=self._path
)
files = file_instructions.file_instructions
return files
def read(
self,
name,
instructions,
split_infos,
in_memory=False,
):
"""Returns Dataset instance(s).
Args:
name (str): name of the dataset.
instructions (ReadInstruction): instructions to read.
Instruction can be string and will then be passed to the Instruction
constructor as it.
split_infos (list of SplitInfo proto): the available splits for dataset.
in_memory (bool, default False): Whether to copy the data in-memory.
Returns:
kwargs to build a single Dataset instance.
"""
files = self.get_file_instructions(name, instructions, split_infos)
if not files:
msg = f'Instruction "{instructions}" corresponds to no data!'
raise ValueError(msg)
return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory)
def read_files(
self,
files: List[dict],
original_instructions: Union[None, "ReadInstruction", "Split"] = None,
in_memory=False,
):
"""Returns single Dataset instance for the set of file instructions.
Args:
files: List[dict(filename, skip, take)], the files information.
The filenames contains the relative path, not absolute.
skip/take indicates which example read in the file: `ds.skip().take()`
original_instructions: store the original instructions used to build the dataset split in the dataset.
in_memory (bool, default False): Whether to copy the data in-memory.
Returns:
kwargs to build a Dataset instance.
"""
# Prepend path to filename
pa_table = self._read_files(files, in_memory=in_memory)
# If original_instructions is not None, convert it to a human-readable NamedSplit
if original_instructions is not None:
from .splits import Split # noqa
split = Split(str(original_instructions))
else:
split = None
dataset_kwargs = {"arrow_table": pa_table, "info": self._info, "split": split}
return dataset_kwargs
def download_from_hf_gcs(self, download_config: DownloadConfig, relative_data_dir):
"""
Download the dataset files from the Hf GCS
Args:
dl_cache_dir: `str`, the local cache directory used to download files
relative_data_dir: `str`, the relative directory of the remote files from
the `datasets` directory on GCS.
"""
remote_cache_dir = HF_GCP_BASE_URL + "/" + relative_data_dir.replace(os.sep, "/")
try:
remote_dataset_info = os.path.join(remote_cache_dir, "dataset_info.json")
downloaded_dataset_info = cached_path(remote_dataset_info.replace(os.sep, "/"))
shutil.move(downloaded_dataset_info, os.path.join(self._path, "dataset_info.json"))
if self._info is not None:
self._info.update(self._info.from_directory(self._path))
except FileNotFoundError as err:
raise DatasetNotOnHfGcsError(err) from None
try:
for split in self._info.splits:
file_instructions = self.get_file_instructions(
name=self._info.builder_name,
instruction=split,
split_infos=self._info.splits.values(),
)
for file_instruction in file_instructions:
file_to_download = str(Path(file_instruction["filename"]).relative_to(self._path))
remote_prepared_filename = os.path.join(remote_cache_dir, file_to_download)
downloaded_prepared_filename = cached_path(
remote_prepared_filename.replace(os.sep, "/"), download_config=download_config
)
shutil.move(downloaded_prepared_filename, file_instruction["filename"])
except FileNotFoundError as err:
raise MissingFilesOnHfGcsError(err) from None
class ArrowReader(BaseReader):
"""
Build a Dataset object out of Instruction instance(s).
This Reader uses either memory mapping or file descriptors (in-memory) on arrow files.
"""
def __init__(self, path: str, info: Optional["DatasetInfo"]):
"""Initializes ArrowReader.
Args:
path (str): path where Arrow files are stored.
info (DatasetInfo): info about the dataset.
"""
super().__init__(path, info)
self._filetype_suffix = "arrow"
def _get_table_from_filename(self, filename_skip_take, in_memory=False) -> Table:
"""Returns a Dataset instance from given (filename, skip, take)."""
filename, skip, take = (
filename_skip_take["filename"],
filename_skip_take["skip"] if "skip" in filename_skip_take else None,
filename_skip_take["take"] if "take" in filename_skip_take else None,
)
table = ArrowReader.read_table(filename, in_memory=in_memory)
if take == -1:
take = len(table) - skip
# here we don't want to slice an empty table, or it may segfault
if skip is not None and take is not None and not (skip == 0 and take == len(table)):
table = table.slice(skip, take)
return table
@staticmethod
def read_table(filename, in_memory=False) -> Table:
"""
Read table from file.
Args:
filename (str): File name of the table.
in_memory (bool, default=False): Whether to copy the data in-memory.
Returns:
pyarrow.Table
"""
table_cls = InMemoryTable if in_memory else MemoryMappedTable
return table_cls.from_file(filename)
class ParquetReader(BaseReader):
"""
Build a Dataset object out of Instruction instance(s).
This Reader uses memory mapping on parquet files.
"""
def __init__(self, path: str, info: Optional["DatasetInfo"]):
"""Initializes ParquetReader.
Args:
path (str): path where tfrecords are stored.
info (DatasetInfo): info about the dataset.
"""
super().__init__(path, info)
self._filetype_suffix = "parquet"
def _get_table_from_filename(self, filename_skip_take, **kwargs):
"""Returns a Dataset instance from given (filename, skip, take)."""
filename, skip, take = (
filename_skip_take["filename"],
filename_skip_take["skip"] if "skip" in filename_skip_take else None,
filename_skip_take["take"] if "take" in filename_skip_take else None,
)
# Parquet read_table always loads data in memory, independently of memory_map
pa_table = pq.read_table(filename, memory_map=True)
# here we don't want to slice an empty table, or it may segfault
if skip is not None and take is not None and not (skip == 0 and take == len(pa_table)):
pa_table = pa_table.slice(skip, take)
return pa_table
@dataclass(frozen=True)
class _AbsoluteInstruction:
"""A machine friendly slice: defined absolute positive boundaries."""
splitname: str
from_: int # uint (starting index).
to: int # uint (ending index).
@dataclass(frozen=True)
class _RelativeInstruction:
"""Represents a single parsed slicing instruction, can use % and negatives."""
splitname: str
from_: Optional[int] = None # int (starting index) or None if no lower boundary.
to: Optional[int] = None # int (ending index) or None if no upper boundary.
unit: Optional[str] = None
rounding: Optional[str] = None
def __post_init__(self):
if self.unit is not None and self.unit not in ["%", "abs"]:
raise ValueError("unit must be either % or abs")
if self.rounding is not None and self.rounding not in ["closest", "pct1_dropremainder"]:
raise ValueError("rounding must be either closest or pct1_dropremainder")
if self.unit != "%" and self.rounding is not None:
raise ValueError("It is forbidden to specify rounding if not using percent slicing.")
if self.unit == "%" and self.from_ is not None and abs(self.from_) > 100:
raise ValueError("Percent slice boundaries must be > -100 and < 100.")
if self.unit == "%" and self.to is not None and abs(self.to) > 100:
raise ValueError("Percent slice boundaries must be > -100 and < 100.")
# Update via __dict__ due to instance being "frozen"
self.__dict__["rounding"] = "closest" if self.rounding is None and self.unit == "%" else self.rounding
def _str_to_read_instruction(spec):
"""Returns ReadInstruction for given string."""
res = _SUB_SPEC_RE.match(spec)
if not res:
raise ValueError(f"Unrecognized instruction format: {spec}")
unit = "%" if res.group("from_pct") or res.group("to_pct") else "abs"
return ReadInstruction(
split_name=res.group("split"),
rounding=res.group("rounding"),
from_=int(res.group("from")) if res.group("from") else None,
to=int(res.group("to")) if res.group("to") else None,
unit=unit,
)
def _pct_to_abs_pct1(boundary, num_examples):
# Using math.trunc here, since -99.5% should give -99%, not -100%.
if num_examples < 100:
msg = (
'Using "pct1_dropremainder" rounding on a split with less than 100 '
"elements is forbidden: it always results in an empty dataset."
)
raise ValueError(msg)
return boundary * math.trunc(num_examples / 100.0)
def _pct_to_abs_closest(boundary, num_examples):
return int(round(boundary * num_examples / 100.0))
def _rel_to_abs_instr(rel_instr, name2len):
"""Returns _AbsoluteInstruction instance for given RelativeInstruction.
Args:
rel_instr: RelativeInstruction instance.
name2len: dict {split_name: num_examples}.
"""
pct_to_abs = _pct_to_abs_closest if rel_instr.rounding == "closest" else _pct_to_abs_pct1
split = rel_instr.splitname
if split not in name2len:
raise ValueError(f'Unknown split "{split}". Should be one of {list(name2len)}.')
num_examples = name2len[split]
from_ = rel_instr.from_
to = rel_instr.to
if rel_instr.unit == "%":
from_ = 0 if from_ is None else pct_to_abs(from_, num_examples)
to = num_examples if to is None else pct_to_abs(to, num_examples)
else:
from_ = 0 if from_ is None else from_
to = num_examples if to is None else to
if abs(from_) > num_examples or abs(to) > num_examples:
msg = f'Requested slice [{from_ or ""}:{to or ""}] incompatible with {num_examples} examples.'
raise ValueError(msg)
if from_ < 0:
from_ = num_examples + from_
elif from_ == 0:
from_ = None
if to < 0:
to = num_examples + to
elif to == num_examples:
to = None
return _AbsoluteInstruction(split, from_, to)
class ReadInstruction:
"""Reading instruction for a dataset.
Examples::
# The following lines are equivalent:
ds = datasets.load_dataset('mnist', split='test[:33%]')
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction.from_spec('test[:33%]'))
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction('test', to=33, unit='%'))
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction(
'test', from_=0, to=33, unit='%'))
# The following lines are equivalent:
ds = datasets.load_dataset('mnist', split='test[:33%]+train[1:-1]')
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction.from_spec(
'test[:33%]+train[1:-1]'))
ds = datasets.load_dataset('mnist', split=(
datasets.ReadInstruction('test', to=33, unit='%') +
datasets.ReadInstruction('train', from_=1, to=-1, unit='abs')))
# The following lines are equivalent:
ds = datasets.load_dataset('mnist', split='test[:33%](pct1_dropremainder)')
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction.from_spec(
'test[:33%](pct1_dropremainder)'))
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction(
'test', from_=0, to=33, unit='%', rounding="pct1_dropremainder"))
# 10-fold validation:
tests = datasets.load_dataset(
'mnist',
[datasets.ReadInstruction('train', from_=k, to=k+10, unit='%')
for k in range(0, 100, 10)])
trains = datasets.load_dataset(
'mnist',
[datasets.ReadInstruction('train', to=k, unit='%') + datasets.ReadInstruction('train', from_=k+10, unit='%')
for k in range(0, 100, 10)])
"""
def _init(self, relative_instructions):
# Private initializer.
self._relative_instructions = relative_instructions
@classmethod
def _read_instruction_from_relative_instructions(cls, relative_instructions):
"""Returns ReadInstruction obj initialized with relative_instructions."""
# Use __new__ to bypass __init__ used by public API and not conveniant here.
result = cls.__new__(cls)
result._init(relative_instructions) # pylint: disable=protected-access
return result
def __init__(self, split_name, rounding=None, from_=None, to=None, unit=None):
"""Initialize ReadInstruction.
Args:
split_name (str): name of the split to read. Eg: 'train'.
rounding (str, optional): The rounding behaviour to use when percent slicing is
used. Ignored when slicing with absolute indices.
Possible values:
- 'closest' (default): The specified percentages are rounded to the
closest value. Use this if you want specified percents to be as
much exact as possible.
- 'pct1_dropremainder': the specified percentages are treated as
multiple of 1%. Use this option if you want consistency. Eg:
len(5%) == 5 * len(1%).
Using this option, one might not be able to use the full set of
examples, if the number of those is not a multiple of 100.
from_ (int):
to (int): alternative way of specifying slicing boundaries. If any of
{from_, to, unit} argument is used, slicing cannot be specified as
string.
unit (str): optional, one of:
'%': to set the slicing unit as percents of the split size.
'abs': to set the slicing unit as absolute numbers.
"""
# This constructor is not always called. See factory method
# `_read_instruction_from_relative_instructions`. Common init instructions
# MUST be placed in the _init method.
self._init([_RelativeInstruction(split_name, from_, to, unit, rounding)])
@classmethod
def from_spec(cls, spec):
"""Creates a `ReadInstruction` instance out of a string spec.
Args:
spec (`str`):
Split(s) + optional slice(s) to read + optional rounding
if percents are used as the slicing unit. A slice can be specified,
using absolute numbers (`int`) or percentages (`int`).
Examples:
```
test: test split.
test + validation: test split + validation split.
test[10:]: test split, minus its first 10 records.
test[:10%]: first 10% records of test split.
test[:20%](pct1_dropremainder): first 10% records, rounded with the pct1_dropremainder rounding.
test[:-5%]+train[40%:60%]: first 95% of test + middle 20% of train.
```
Returns:
ReadInstruction instance.
"""
spec = str(spec) # Need to convert to str in case of NamedSplit instance.
subs = _ADDITION_SEP_RE.split(spec)
if not subs:
raise ValueError(f"No instructions could be built out of {spec}")
instruction = _str_to_read_instruction(subs[0])
return sum((_str_to_read_instruction(sub) for sub in subs[1:]), instruction)
def to_spec(self):
rel_instr_specs = []
for rel_instr in self._relative_instructions:
rel_instr_spec = rel_instr.splitname
if rel_instr.from_ is not None or rel_instr.to is not None:
from_ = rel_instr.from_
to = rel_instr.to
unit = rel_instr.unit
rounding = rel_instr.rounding
unit = unit if unit == "%" else ""
from_ = str(from_) + unit if from_ is not None else ""
to = str(to) + unit if to is not None else ""
slice_str = f"[{from_}:{to}]"
rounding_str = (
f"({rounding})" if unit == "%" and rounding is not None and rounding != "closest" else ""
)
rel_instr_spec += slice_str + rounding_str
rel_instr_specs.append(rel_instr_spec)
return "+".join(rel_instr_specs)
def __add__(self, other):
"""Returns a new ReadInstruction obj, result of appending other to self."""
if not isinstance(other, ReadInstruction):
msg = "ReadInstruction can only be added to another ReadInstruction obj."
raise TypeError(msg)
self_ris = self._relative_instructions
other_ris = other._relative_instructions # pylint: disable=protected-access
if (
self_ris[0].unit != "abs"
and other_ris[0].unit != "abs"
and self._relative_instructions[0].rounding != other_ris[0].rounding
):
raise ValueError("It is forbidden to sum ReadInstruction instances with different rounding values.")
return self._read_instruction_from_relative_instructions(self_ris + other_ris)
def __str__(self):
return self.to_spec()
def __repr__(self):
return f"ReadInstruction({self._relative_instructions})"
def to_absolute(self, name2len):
"""Translate instruction into a list of absolute instructions.
Those absolute instructions are then to be added together.
Args:
name2len (`dict`):
Associating split names to number of examples.
Returns:
list of _AbsoluteInstruction instances (corresponds to the + in spec).
"""
return [_rel_to_abs_instr(rel_instr, name2len) for rel_instr in self._relative_instructions]
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/table.py | import copy
import os
import tempfile
import warnings
from functools import partial
from itertools import groupby
from typing import TYPE_CHECKING, Callable, Iterator, List, Optional, Tuple, TypeVar, Union
import numpy as np
import pyarrow as pa
import pyarrow.compute as pc
from . import config
from .utils.logging import get_logger
if TYPE_CHECKING:
from .features.features import Features, FeatureType
logger = get_logger(__name__)
def inject_arrow_table_documentation(arrow_table_method):
def wrapper(fn):
fn.__doc__ = arrow_table_method.__doc__ + (fn.__doc__ if fn.__doc__ is not None else "")
fn.__doc__ = fn.__doc__.replace("pyarrow.Table", "Table")
if hasattr(arrow_table_method, "__annotations__"):
fn.__annotations__ = arrow_table_method.__annotations__
return fn
return wrapper
def _in_memory_arrow_table_from_file(filename: str) -> pa.Table:
in_memory_stream = pa.input_stream(filename)
opened_stream = pa.ipc.open_stream(in_memory_stream)
pa_table = opened_stream.read_all()
return pa_table
def _in_memory_arrow_table_from_buffer(buffer: pa.Buffer) -> pa.Table:
stream = pa.BufferReader(buffer)
opened_stream = pa.ipc.open_stream(stream)
table = opened_stream.read_all()
return table
def _memory_mapped_record_batch_reader_from_file(filename: str) -> pa.RecordBatchStreamReader:
memory_mapped_stream = pa.memory_map(filename)
return pa.ipc.open_stream(memory_mapped_stream)
def read_schema_from_file(filename: str) -> pa.Schema:
"""
Infer arrow table schema from file without loading whole file into memory.
Usefull especially while having very big files.
"""
with pa.memory_map(filename) as memory_mapped_stream:
schema = pa.ipc.open_stream(memory_mapped_stream).schema
return schema
def _memory_mapped_arrow_table_from_file(filename: str) -> pa.Table:
opened_stream = _memory_mapped_record_batch_reader_from_file(filename)
pa_table = opened_stream.read_all()
return pa_table
def _write_table_to_file(table: pa.Table, filename: str) -> int:
with open(filename, "wb") as sink:
writer = pa.RecordBatchStreamWriter(sink=sink, schema=table.schema)
batches: List[pa.RecordBatch] = table.to_batches()
for batch in batches:
writer.write_batch(batch)
writer.close()
return sum(batch.nbytes for batch in batches)
def _deepcopy(x, memo: dict):
"""deepcopy a regular class instance"""
cls = x.__class__
result = cls.__new__(cls)
memo[id(x)] = result
for k, v in x.__dict__.items():
setattr(result, k, copy.deepcopy(v, memo))
return result
def _interpolation_search(arr: List[int], x: int) -> int:
"""
Return the position i of a sorted array so that arr[i] <= x < arr[i+1]
Args:
arr (`List[int]`): non-empty sorted list of integers
x (`int`): query
Returns:
`int`: the position i so that arr[i] <= x < arr[i+1]
Raises:
`IndexError`: if the array is empty or if the query is outside the array values
"""
i, j = 0, len(arr) - 1
while i < j and arr[i] <= x < arr[j]:
k = i + ((j - i) * (x - arr[i]) // (arr[j] - arr[i]))
if arr[k] <= x < arr[k + 1]:
return k
elif arr[k] < x:
i, j = k + 1, j
else:
i, j = i, k
raise IndexError(f"Invalid query '{x}' for size {arr[-1] if len(arr) else 'none'}.")
class IndexedTableMixin:
def __init__(self, table: pa.Table):
self._schema: pa.Schema = table.schema
self._batches: List[pa.RecordBatch] = [
recordbatch for recordbatch in table.to_batches() if len(recordbatch) > 0
]
self._offsets: np.ndarray = np.cumsum([0] + [len(b) for b in self._batches], dtype=np.int64)
def fast_gather(self, indices: Union[List[int], np.ndarray]) -> pa.Table:
"""
Create a pa.Table by gathering the records at the records at the specified indices. Should be faster
than pa.concat_tables(table.fast_slice(int(i) % table.num_rows, 1) for i in indices) since NumPy can compute
the binary searches in parallel, highly optimized C
"""
if not len(indices):
raise ValueError("Indices must be non-empty")
batch_indices = np.searchsorted(self._offsets, indices, side="right") - 1
return pa.Table.from_batches(
[
self._batches[batch_idx].slice(i - self._offsets[batch_idx], 1)
for batch_idx, i in zip(batch_indices, indices)
],
schema=self._schema,
)
def fast_slice(self, offset=0, length=None) -> pa.Table:
"""
Slice the Table using interpolation search.
The behavior is the same as `pyarrow.Table.slice` but it's significantly faster.
Interpolation search is used to find the start and end indexes of the batches we want to keep.
The batches to keep are then concatenated to form the sliced Table.
"""
if offset < 0:
raise IndexError("Offset must be non-negative")
elif offset >= self._offsets[-1] or (length is not None and length <= 0):
return pa.Table.from_batches([], schema=self._schema)
i = _interpolation_search(self._offsets, offset)
if length is None or length + offset >= self._offsets[-1]:
batches = self._batches[i:]
batches[0] = batches[0].slice(offset - self._offsets[i])
else:
j = _interpolation_search(self._offsets, offset + length - 1)
batches = self._batches[i : j + 1]
batches[-1] = batches[-1].slice(0, offset + length - self._offsets[j])
batches[0] = batches[0].slice(offset - self._offsets[i])
return pa.Table.from_batches(batches, schema=self._schema)
class Table(IndexedTableMixin):
"""
Wraps a pyarrow Table by using composition.
This is the base class for `InMemoryTable`, `MemoryMappedTable` and `ConcatenationTable`.
It implements all the basic attributes/methods of the pyarrow Table class except
the Table transforms: `slice, filter, flatten, combine_chunks, cast, add_column,
append_column, remove_column, set_column, rename_columns` and `drop`.
The implementation of these methods differs for the subclasses.
"""
def __init__(self, table: pa.Table):
super().__init__(table)
self.table = table
def __deepcopy__(self, memo: dict):
# arrow tables are immutable, so there's no need to copy self.table
# moreover calling deepcopy on a pyarrow table seems to make pa.total_allocated_bytes() decrease for some reason
# by adding it to the memo, self.table won't be copied
memo[id(self.table)] = self.table
# same for the recordbatches used by the index
memo[id(self._batches)] = list(self._batches)
return _deepcopy(self, memo)
def __getstate__(self):
# We can't pickle objects that are bigger than 4GiB, or it causes OverflowError
# So we write the table on disk instead
if self.table.nbytes >= config.MAX_TABLE_NBYTES_FOR_PICKLING:
table = self.table
with tempfile.NamedTemporaryFile("wb", delete=False, suffix=".arrow") as tmp_file:
filename = tmp_file.name
logger.debug(
f"Attempting to pickle a table bigger than 4GiB. Writing it on the disk instead at {filename}"
)
_write_table_to_file(table=table, filename=filename)
return {"path": filename}
else:
return {"table": self.table}
def __setstate__(self, state):
if "path" in state:
filename = state["path"]
logger.debug(f"Unpickling a big table from the disk at {filename}")
table = _in_memory_arrow_table_from_file(filename)
logger.debug(f"Removing temporary table file at {filename}")
os.remove(filename)
else:
table = state["table"]
Table.__init__(self, table)
def validate(self, *args, **kwargs):
"""
Perform validation checks. An exception is raised if validation fails.
By default only cheap validation checks are run. Pass `full=True`
for thorough validation checks (potentially `O(n)`).
Args:
full (`bool`, defaults to `False`):
If `True`, run expensive checks, otherwise cheap checks only.
Raises:
`pa.lib.ArrowInvalid`: if validation fails
"""
return self.table.validate(*args, **kwargs)
def equals(self, *args, **kwargs):
"""
Check if contents of two tables are equal.
Args:
other ([`~datasets.table.Table`]):
Table to compare against.
check_metadata `bool`, defaults to `False`):
Whether schema metadata equality should be checked as well.
Returns:
`bool`
"""
args = tuple(arg.table if isinstance(arg, Table) else arg for arg in args)
kwargs = {k: v.table if isinstance(v, Table) else v for k, v in kwargs}
return self.table.equals(*args, **kwargs)
def to_batches(self, *args, **kwargs):
"""
Convert Table to list of (contiguous) `RecordBatch` objects.
Args:
max_chunksize (`int`, defaults to `None`):
Maximum size for `RecordBatch` chunks. Individual chunks may be
smaller depending on the chunk layout of individual columns.
Returns:
`List[pyarrow.RecordBatch]`
"""
return self.table.to_batches(*args, **kwargs)
def to_pydict(self, *args, **kwargs):
"""
Convert the Table to a `dict` or `OrderedDict`.
Returns:
`dict`
"""
return self.table.to_pydict(*args, **kwargs)
def to_pylist(self, *args, **kwargs):
"""
Convert the Table to a list
Returns:
`list`
"""
try:
return self.table.to_pylist(*args, **kwargs)
except AttributeError: # pyarrow <7 does not have to_pylist, so we use to_pydict
pydict = self.table.to_pydict(*args, **kwargs)
return [{k: pydict[k][i] for k in pydict} for i in range(len(self.table))]
def to_pandas(self, *args, **kwargs):
"""
Convert to a pandas-compatible NumPy array or DataFrame, as appropriate.
Args:
memory_pool (`MemoryPool`, defaults to `None`):
Arrow MemoryPool to use for allocations. Uses the default memory
pool is not passed.
strings_to_categorical (`bool`, defaults to `False`):
Encode string (UTF8) and binary types to `pandas.Categorical`.
categories (`list`, defaults to `empty`):
List of fields that should be returned as `pandas.Categorical`. Only
applies to table-like data structures.
zero_copy_only (`bool`, defaults to `False`):
Raise an `ArrowException` if this function call would require copying
the underlying data.
integer_object_nulls (`bool`, defaults to `False`):
Cast integers with nulls to objects.
date_as_object (`bool`, defaults to `True`):
Cast dates to objects. If `False`, convert to `datetime64[ns]` dtype.
timestamp_as_object (`bool`, defaults to `False`):
Cast non-nanosecond timestamps (`np.datetime64`) to objects. This is
useful if you have timestamps that don't fit in the normal date
range of nanosecond timestamps (1678 CE-2262 CE).
If `False`, all timestamps are converted to `datetime64[ns]` dtype.
use_threads (`bool`, defaults to `True`):
Whether to parallelize the conversion using multiple threads.
deduplicate_objects (`bool`, defaults to `False`):
Do not create multiple copies Python objects when created, to save
on memory use. Conversion will be slower.
ignore_metadata (`bool`, defaults to `False`):
If `True`, do not use the 'pandas' metadata to reconstruct the
DataFrame index, if present.
safe (`bool`, defaults to `True`):
For certain data types, a cast is needed in order to store the
data in a pandas DataFrame or Series (e.g. timestamps are always
stored as nanoseconds in pandas). This option controls whether it
is a safe cast or not.
split_blocks (`bool`, defaults to `False`):
If `True`, generate one internal "block" for each column when
creating a pandas.DataFrame from a `RecordBatch` or `Table`. While this
can temporarily reduce memory note that various pandas operations
can trigger "consolidation" which may balloon memory use.
self_destruct (`bool`, defaults to `False`):
EXPERIMENTAL: If `True`, attempt to deallocate the originating Arrow
memory while converting the Arrow object to pandas. If you use the
object after calling `to_pandas` with this option it will crash your
program.
types_mapper (`function`, defaults to `None`):
A function mapping a pyarrow DataType to a pandas `ExtensionDtype`.
This can be used to override the default pandas type for conversion
of built-in pyarrow types or in absence of `pandas_metadata` in the
Table schema. The function receives a pyarrow DataType and is
expected to return a pandas `ExtensionDtype` or `None` if the
default conversion should be used for that type. If you have
a dictionary mapping, you can pass `dict.get` as function.
Returns:
`pandas.Series` or `pandas.DataFrame`: `pandas.Series` or `pandas.DataFrame` depending on type of object
"""
return self.table.to_pandas(*args, **kwargs)
def to_string(self, *args, **kwargs):
return self.table.to_string(*args, **kwargs)
def to_reader(self, max_chunksize: Optional[int] = None):
"""
Convert the Table to a RecordBatchReader.
Note that this method is zero-copy, it merely exposes the same data under a different API.
Args:
max_chunksize (`int`, defaults to `None`)
Maximum size for RecordBatch chunks. Individual chunks may be smaller depending
on the chunk layout of individual columns.
Returns:
`pyarrow.RecordBatchReader`
"""
return self.table.to_reader(max_chunksize=max_chunksize)
def field(self, *args, **kwargs):
"""
Select a schema field by its column name or numeric index.
Args:
i (`Union[int, str]`):
The index or name of the field to retrieve.
Returns:
`pyarrow.Field`
"""
return self.table.field(*args, **kwargs)
def column(self, *args, **kwargs):
"""
Select a column by its column name, or numeric index.
Args:
i (`Union[int, str]`):
The index or name of the column to retrieve.
Returns:
`pyarrow.ChunkedArray`
"""
return self.table.column(*args, **kwargs)
def itercolumns(self, *args, **kwargs):
"""
Iterator over all columns in their numerical order.
Yields:
`pyarrow.ChunkedArray`
"""
return self.table.itercolumns(*args, **kwargs)
@property
def schema(self):
"""
Schema of the table and its columns.
Returns:
`pyarrow.Schema`
"""
return self.table.schema
@property
def columns(self):
"""
List of all columns in numerical order.
Returns:
`List[pa.ChunkedArray]`
"""
return self.table.columns
@property
def num_columns(self):
"""
Number of columns in this table.
Returns:
int
"""
return self.table.num_columns
@property
def num_rows(self):
"""
Number of rows in this table.
Due to the definition of a table, all columns have the same number of
rows.
Returns:
int
"""
return self.table.num_rows
@property
def shape(self):
"""
Dimensions of the table: (#rows, #columns).
Returns:
`(int, int)`: Number of rows and number of columns.
"""
return self.table.shape
@property
def nbytes(self):
"""
Total number of bytes consumed by the elements of the table.
"""
return self.table.nbytes
@property
def column_names(self):
"""
Names of the table's columns.
"""
return self.table.column_names
def __eq__(self, other):
return self.equals(other)
def __getitem__(self, i):
return self.table[i]
def __len__(self):
return len(self.table)
def __repr__(self):
return self.table.__repr__().replace("pyarrow.Table", self.__class__.__name__)
def __str__(self):
return self.table.__str__().replace("pyarrow.Table", self.__class__.__name__)
def slice(self, *args, **kwargs):
"""
Compute zero-copy slice of this Table.
Args:
offset (`int`, defaults to `0`):
Offset from start of table to slice.
length (`int`, defaults to `None`):
Length of slice (default is until end of table starting from
offset).
Returns:
`datasets.table.Table`
"""
raise NotImplementedError()
def filter(self, *args, **kwargs):
"""
Select records from a Table. See `pyarrow.compute.filter` for full usage.
"""
raise NotImplementedError()
def flatten(self, *args, **kwargs):
"""
Flatten this Table. Each column with a struct type is flattened
into one column per struct field. Other columns are left unchanged.
Args:
memory_pool (`MemoryPool`, defaults to `None`):
For memory allocations, if required, otherwise use default pool.
Returns:
`datasets.table.Table`
"""
raise NotImplementedError()
def combine_chunks(self, *args, **kwargs):
"""
Make a new table by combining the chunks this table has.
All the underlying chunks in the `ChunkedArray` of each column are
concatenated into zero or one chunk.
Args:
memory_pool (`MemoryPool`, defaults to `None`):
For memory allocations, if required, otherwise use default pool.
Returns:
`datasets.table.Table`
"""
raise NotImplementedError()
def cast(self, *args, **kwargs):
"""
Cast table values to another schema.
Args:
target_schema (`Schema`):
Schema to cast to, the names and order of fields must match.
safe (`bool`, defaults to `True`):
Check for overflows or other unsafe conversions.
Returns:
`datasets.table.Table`
"""
raise NotImplementedError()
def replace_schema_metadata(self, *args, **kwargs):
"""
EXPERIMENTAL: Create shallow copy of table by replacing schema
key-value metadata with the indicated new metadata (which may be None,
which deletes any existing metadata
Args:
metadata (`dict`, defaults to `None`):
Returns:
`datasets.table.Table`: shallow_copy
"""
raise NotImplementedError()
def add_column(self, *args, **kwargs):
"""
Add column to Table at position.
A new table is returned with the column added, the original table
object is left unchanged.
Args:
i (`int`):
Index to place the column at.
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`: New table with the passed column added.
"""
raise NotImplementedError()
def append_column(self, *args, **kwargs):
"""
Append column at end of columns.
Args:
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`: New table with the passed column added.
"""
raise NotImplementedError()
def remove_column(self, *args, **kwargs):
"""
Create new Table with the indicated column removed.
Args:
i (`int`):
Index of column to remove.
Returns:
`datasets.table.Table`: New table without the column.
"""
raise NotImplementedError()
def set_column(self, *args, **kwargs):
"""
Replace column in Table at position.
Args:
i (`int`):
Index to place the column at.
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`: New table with the passed column set.
"""
raise NotImplementedError()
def rename_columns(self, *args, **kwargs):
"""
Create new table with columns renamed to provided names.
"""
raise NotImplementedError()
def drop(self, *args, **kwargs):
"""
Drop one or more columns and return a new table.
Args:
columns (`List[str]`):
List of field names referencing existing columns.
Raises:
`KeyError` : if any of the passed columns name are not existing.
Returns:
`datasets.table.Table`: New table without the columns.
"""
raise NotImplementedError()
def select(self, *args, **kwargs):
"""
Select columns of the table.
Returns a new table with the specified columns, and metadata preserved.
Args:
columns (:obj:`Union[List[str], List[int]]`):
The column names or integer indices to select.
Returns:
`datasets.table.Table`: table with only a subset of the columns
"""
raise NotImplementedError()
class TableBlock(Table):
"""
`TableBlock` is the allowed class inside a `ConcanetationTable`.
Only `MemoryMappedTable` and `InMemoryTable` are `TableBlock`.
This is because we don't want a `ConcanetationTable` made out of other `ConcanetationTables`.
"""
pass
class InMemoryTable(TableBlock):
"""
The table is said in-memory when it is loaded into the user's RAM.
Pickling it does copy all the data using memory.
Its implementation is simple and uses the underlying pyarrow Table methods directly.
This is different from the `MemoryMapped` table, for which pickling doesn't copy all the
data in memory. For a `MemoryMapped`, unpickling instead reloads the table from the disk.
`InMemoryTable` must be used when data fit in memory, while `MemoryMapped` are reserved for
data bigger than memory or when you want the memory footprint of your application to
stay low.
"""
@classmethod
def from_file(cls, filename: str):
table = _in_memory_arrow_table_from_file(filename)
return cls(table)
@classmethod
def from_buffer(cls, buffer: pa.Buffer):
table = _in_memory_arrow_table_from_buffer(buffer)
return cls(table)
@classmethod
def from_pandas(cls, *args, **kwargs):
"""
Convert pandas.DataFrame to an Arrow Table.
The column types in the resulting Arrow Table are inferred from the
dtypes of the pandas.Series in the DataFrame. In the case of non-object
Series, the NumPy dtype is translated to its Arrow equivalent. In the
case of `object`, we need to guess the datatype by looking at the
Python objects in this Series.
Be aware that Series of the `object` dtype don't carry enough
information to always lead to a meaningful Arrow type. In the case that
we cannot infer a type, e.g. because the DataFrame is of length 0 or
the Series only contains `None/nan` objects, the type is set to
null. This behavior can be avoided by constructing an explicit schema
and passing it to this function.
Args:
df (`pandas.DataFrame`):
schema (`pyarrow.Schema`, *optional*):
The expected schema of the Arrow Table. This can be used to
indicate the type of columns if we cannot infer it automatically.
If passed, the output will have exactly this schema. Columns
specified in the schema that are not found in the DataFrame columns
or its index will raise an error. Additional columns or index
levels in the DataFrame which are not specified in the schema will
be ignored.
preserve_index (`bool`, *optional*):
Whether to store the index as an additional column in the resulting
`Table`. The default of None will store the index as a column,
except for RangeIndex which is stored as metadata only. Use
`preserve_index=True` to force it to be stored as a column.
nthreads (`int`, defaults to `None` (may use up to system CPU count threads))
If greater than 1, convert columns to Arrow in parallel using
indicated number of threads.
columns (`List[str]`, *optional*):
List of column to be converted. If `None`, use all columns.
safe (`bool`, defaults to `True`):
Check for overflows or other unsafe conversions,
Returns:
`datasets.table.Table`:
Examples:
```python
>>> import pandas as pd
>>> import pyarrow as pa
>>> df = pd.DataFrame({
... 'int': [1, 2],
... 'str': ['a', 'b']
... })
>>> pa.Table.from_pandas(df)
<pyarrow.lib.Table object at 0x7f05d1fb1b40>
```
"""
return cls(pa.Table.from_pandas(*args, **kwargs))
@classmethod
def from_arrays(cls, *args, **kwargs):
"""
Construct a Table from Arrow arrays.
Args:
arrays (`List[Union[pyarrow.Array, pyarrow.ChunkedArray]]`):
Equal-length arrays that should form the table.
names (`List[str]`, *optional*):
Names for the table columns. If not passed, schema must be passed.
schema (`Schema`, defaults to `None`):
Schema for the created table. If not passed, names must be passed.
metadata (`Union[dict, Mapping]`, defaults to `None`):
Optional metadata for the schema (if inferred).
Returns:
`datasets.table.Table`
"""
return cls(pa.Table.from_arrays(*args, **kwargs))
@classmethod
def from_pydict(cls, *args, **kwargs):
"""
Construct a Table from Arrow arrays or columns.
Args:
mapping (`Union[dict, Mapping]`):
A mapping of strings to Arrays or Python lists.
schema (`Schema`, defaults to `None`):
If not passed, will be inferred from the Mapping values
metadata (`Union[dict, Mapping]`, defaults to `None`):
Optional metadata for the schema (if inferred).
Returns:
`datasets.table.Table`
"""
return cls(pa.Table.from_pydict(*args, **kwargs))
@classmethod
def from_pylist(cls, mapping, *args, **kwargs):
"""
Construct a Table from list of rows / dictionaries.
Args:
mapping (`List[dict]`):
A mapping of strings to row values.
schema (`Schema`, defaults to `None`):
If not passed, will be inferred from the Mapping values
metadata (`Union[dict, Mapping]`, defaults to `None`):
Optional metadata for the schema (if inferred).
Returns:
`datasets.table.Table`
"""
return cls(pa.Table.from_pylist(mapping, *args, **kwargs))
@classmethod
def from_batches(cls, *args, **kwargs):
"""
Construct a Table from a sequence or iterator of Arrow `RecordBatches`.
Args:
batches (`Union[Sequence[pyarrow.RecordBatch], Iterator[pyarrow.RecordBatch]]`):
Sequence of `RecordBatch` to be converted, all schemas must be equal.
schema (`Schema`, defaults to `None`):
If not passed, will be inferred from the first `RecordBatch`.
Returns:
`datasets.table.Table`:
"""
return cls(pa.Table.from_batches(*args, **kwargs))
def slice(self, offset=0, length=None):
"""
Compute zero-copy slice of this Table.
Args:
offset (`int`, defaults to `0`):
Offset from start of table to slice.
length (`int`, defaults to `None`):
Length of slice (default is until end of table starting from
offset).
Returns:
`datasets.table.Table`
"""
# Use fast slicing here
return InMemoryTable(self.fast_slice(offset=offset, length=length))
def filter(self, *args, **kwargs):
"""
Select records from a Table. See `pyarrow.compute.filter` for full usage.
"""
return InMemoryTable(self.table.filter(*args, **kwargs))
def flatten(self, *args, **kwargs):
"""
Flatten this Table. Each column with a struct type is flattened
into one column per struct field. Other columns are left unchanged.
Args:
memory_pool (`MemoryPool`, defaults to `None`):
For memory allocations, if required, otherwise use default pool.
Returns:
`datasets.table.Table`
"""
return InMemoryTable(table_flatten(self.table, *args, **kwargs))
def combine_chunks(self, *args, **kwargs):
"""
Make a new table by combining the chunks this table has.
All the underlying chunks in the `ChunkedArray` of each column are
concatenated into zero or one chunk.
Args:
memory_pool (`MemoryPool`, defaults to `None`):
For memory allocations, if required, otherwise use default pool.
Returns:
`datasets.table.Table`
"""
return InMemoryTable(self.table.combine_chunks(*args, **kwargs))
def cast(self, *args, **kwargs):
"""
Cast table values to another schema.
Args:
target_schema (`Schema`):
Schema to cast to, the names and order of fields must match.
safe (`bool`, defaults to `True`):
Check for overflows or other unsafe conversions.
Returns:
`datasets.table.Table`
"""
return InMemoryTable(table_cast(self.table, *args, **kwargs))
def replace_schema_metadata(self, *args, **kwargs):
"""
EXPERIMENTAL: Create shallow copy of table by replacing schema
key-value metadata with the indicated new metadata (which may be `None`,
which deletes any existing metadata).
Args:
metadata (`dict`, defaults to `None`):
Returns:
`datasets.table.Table`: shallow_copy
"""
return InMemoryTable(self.table.replace_schema_metadata(*args, **kwargs))
def add_column(self, *args, **kwargs):
"""
Add column to Table at position.
A new table is returned with the column added, the original table
object is left unchanged.
Args:
i (`int`):
Index to place the column at.
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`: New table with the passed column added.
"""
return InMemoryTable(self.table.add_column(*args, **kwargs))
def append_column(self, *args, **kwargs):
"""
Append column at end of columns.
Args:
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`:
New table with the passed column added.
"""
return InMemoryTable(self.table.append_column(*args, **kwargs))
def remove_column(self, *args, **kwargs):
"""
Create new Table with the indicated column removed.
Args:
i (`int`):
Index of column to remove.
Returns:
`datasets.table.Table`:
New table without the column.
"""
return InMemoryTable(self.table.remove_column(*args, **kwargs))
def set_column(self, *args, **kwargs):
"""
Replace column in Table at position.
Args:
i (`int`):
Index to place the column at.
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`:
New table with the passed column set.
"""
return InMemoryTable(self.table.set_column(*args, **kwargs))
def rename_columns(self, *args, **kwargs):
"""
Create new table with columns renamed to provided names.
"""
return InMemoryTable(self.table.rename_columns(*args, **kwargs))
def drop(self, *args, **kwargs):
"""
Drop one or more columns and return a new table.
Args:
columns (`List[str]`):
List of field names referencing existing columns.
Raises:
`KeyError` : if any of the passed columns name are not existing.
Returns:
`datasets.table.Table`:
New table without the columns.
"""
return InMemoryTable(self.table.drop(*args, **kwargs))
def select(self, *args, **kwargs):
"""
Select columns of the table.
Returns a new table with the specified columns, and metadata preserved.
Args:
columns (:obj:`Union[List[str], List[int]]`):
The column names or integer indices to select.
Returns:
:class:`datasets.table.Table`: New table with the specified columns, and metadata preserved.
"""
return InMemoryTable(self.table.select(*args, **kwargs))
# The MemoryMappedTable needs replays to properly reload tables from the disk
Replay = Tuple[str, tuple, dict]
class MemoryMappedTable(TableBlock):
"""
The table is said memory mapped when it doesn't use the user's RAM but loads the data
from the disk instead.
Pickling it doesn't copy the data into memory.
Instead, only the path to the memory mapped arrow file is pickled, as well as the list
of transforms to "replay" when reloading the table from the disk.
Its implementation requires to store an history of all the transforms that were applied
to the underlying pyarrow Table, so that they can be "replayed" when reloading the Table
from the disk.
This is different from the `InMemoryTable` table, for which pickling does copy all the
data in memory.
`InMemoryTable` must be used when data fit in memory, while `MemoryMapped` are reserved for
data bigger than memory or when you want the memory footprint of your application to
stay low.
"""
def __init__(self, table: pa.Table, path: str, replays: Optional[List[Replay]] = None):
super().__init__(table)
self.path = os.path.abspath(path)
self.replays: List[Replay] = replays if replays is not None else []
@classmethod
def from_file(cls, filename: str, replays=None):
table = _memory_mapped_arrow_table_from_file(filename)
table = cls._apply_replays(table, replays)
return cls(table, filename, replays)
def __getstate__(self):
return {"path": self.path, "replays": self.replays}
def __setstate__(self, state):
path = state["path"]
replays = state["replays"]
table = _memory_mapped_arrow_table_from_file(path)
table = self._apply_replays(table, replays)
MemoryMappedTable.__init__(self, table, path=path, replays=replays)
@staticmethod
def _apply_replays(table: pa.Table, replays: Optional[List[Replay]] = None) -> pa.Table:
if replays is not None:
for name, args, kwargs in replays:
if name == "cast":
table = table_cast(table, *args, **kwargs)
elif name == "flatten":
table = table_flatten(table, *args, **kwargs)
else:
table = getattr(table, name)(*args, **kwargs)
return table
def _append_replay(self, replay: Replay) -> List[Replay]:
replays = copy.deepcopy(self.replays)
replays.append(replay)
return replays
def slice(self, offset=0, length=None):
"""
Compute zero-copy slice of this Table.
Args:
offset (`int`, defaults to `0`):
Offset from start of table to slice.
length (`int`, defaults to `None`):
Length of slice (default is until end of table starting from
offset).
Returns:
`datasets.table.Table`
"""
replay = ("slice", (offset, length), {})
replays = self._append_replay(replay)
# Use fast slicing here
return MemoryMappedTable(self.fast_slice(offset=offset, length=length), self.path, replays)
def filter(self, *args, **kwargs):
"""
Select records from a Table. See `pyarrow.compute.filter` for full usage.
"""
replay = ("filter", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(self.table.filter(*args, **kwargs), self.path, replays)
def flatten(self, *args, **kwargs):
"""
Flatten this Table. Each column with a struct type is flattened
into one column per struct field. Other columns are left unchanged.
Args:
memory_pool (`MemoryPool`, defaults to `None`):
For memory allocations, if required, otherwise use default pool.
Returns:
`datasets.table.Table`
"""
replay = ("flatten", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(table_flatten(self.table, *args, **kwargs), self.path, replays)
def combine_chunks(self, *args, **kwargs):
"""
Make a new table by combining the chunks this table has.
All the underlying chunks in the ChunkedArray of each column are
concatenated into zero or one chunk.
Args:
memory_pool (`MemoryPool`, defaults to `None`):
For memory allocations, if required, otherwise use default pool.
Returns:
`datasets.table.Table`
"""
replay = ("combine_chunks", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(self.table.combine_chunks(*args, **kwargs), self.path, replays)
def cast(self, *args, **kwargs):
"""
Cast table values to another schema
Args:
target_schema (`Schema`):
Schema to cast to, the names and order of fields must match.
safe (`bool`, defaults to `True`):
Check for overflows or other unsafe conversions.
Returns:
`datasets.table.Table`
"""
replay = ("cast", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(table_cast(self.table, *args, **kwargs), self.path, replays)
def replace_schema_metadata(self, *args, **kwargs):
"""
EXPERIMENTAL: Create shallow copy of table by replacing schema
key-value metadata with the indicated new metadata (which may be None,
which deletes any existing metadata.
Args:
metadata (`dict`, defaults to `None`):
Returns:
`datasets.table.Table`: shallow_copy
"""
replay = ("replace_schema_metadata", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(self.table.replace_schema_metadata(*args, **kwargs), self.path, replays)
def add_column(self, *args, **kwargs):
"""
Add column to Table at position.
A new table is returned with the column added, the original table
object is left unchanged.
Args:
i (`int`):
Index to place the column at.
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`: New table with the passed column added.
"""
replay = ("add_column", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(self.table.add_column(*args, **kwargs), self.path, replays)
def append_column(self, *args, **kwargs):
"""
Append column at end of columns.
Args:
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`:
New table with the passed column added.
"""
replay = ("append_column", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(self.table.append_column(*args, **kwargs), self.path, replays)
def remove_column(self, *args, **kwargs):
"""
Create new Table with the indicated column removed.
Args:
i (`int`):
Index of column to remove.
Returns:
`datasets.table.Table`:
New table without the column.
"""
replay = ("remove_column", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(self.table.remove_column(*args, **kwargs), self.path, replays)
def set_column(self, *args, **kwargs):
"""
Replace column in Table at position.
Args:
i (`int`):
Index to place the column at.
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`:
New table with the passed column set.
"""
replay = ("set_column", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(self.table.set_column(*args, **kwargs), self.path, replays)
def rename_columns(self, *args, **kwargs):
"""
Create new table with columns renamed to provided names.
"""
replay = ("rename_columns", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(self.table.rename_columns(*args, **kwargs), self.path, replays)
def drop(self, *args, **kwargs):
"""
Drop one or more columns and return a new table.
Args:
columns (`List[str]`):
List of field names referencing existing columns.
Raises:
`KeyError` : if any of the passed columns name are not existing.
Returns:
`datasets.table.Table`:
New table without the columns.
"""
replay = ("drop", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(self.table.drop(*args, **kwargs), self.path, replays)
def select(self, *args, **kwargs):
"""
Select columns of the table.
Returns a new table with the specified columns, and metadata preserved.
Args:
columns (:obj:`Union[List[str], List[int]]`):
The column names or integer indices to select.
Returns:
:class:`datasets.table.Table`: New table with the specified columns, and metadata preserved.
"""
replay = ("select", copy.deepcopy(args), copy.deepcopy(kwargs))
replays = self._append_replay(replay)
return MemoryMappedTable(self.table.select(*args, **kwargs), self.path, replays)
# A ConcatenationTable is the concatenation of several tables.
# The ``blocks`` attributes stores a list of list of blocks.
# The first axis concatenates the tables along the axis 0 (it appends rows),
# while the second axis concatenates tables along the axis 1 (it appends columns).
TableBlockContainer = TypeVar("TableBlockContainer", TableBlock, List[TableBlock], List[List[TableBlock]])
class ConcatenationTable(Table):
"""
The table comes from the concatenation of several tables called blocks.
It enables concatenation on both axis 0 (append rows) and axis 1 (append columns).
The underlying tables are called "blocks" and can be either `InMemoryTable`
or `MemoryMappedTable` objects.
This allows to combine tables that come from memory or that are memory mapped.
When a `ConcatenationTable` is pickled, then each block is pickled:
- the `InMemoryTable` objects are pickled by copying all the data in memory.
- the MemoryMappedTable objects are pickled without copying the data into memory.
Instead, only the path to the memory mapped arrow file is pickled, as well as the list
of transforms to "replays" when reloading the table from the disk.
Its implementation requires to store each block separately.
The `blocks` attributes stores a list of list of blocks.
The first axis concatenates the tables along the axis 0 (it appends rows),
while the second axis concatenates tables along the axis 1 (it appends columns).
If some columns are missing when concatenating on axis 0, they are filled with null values.
This is done using `pyarrow.concat_tables(tables, promote=True)`.
You can access the fully combined table by accessing the `ConcatenationTable.table` attribute,
and the blocks by accessing the `ConcatenationTable.blocks` attribute.
"""
def __init__(self, table: pa.Table, blocks: List[List[TableBlock]]):
super().__init__(table)
self.blocks = blocks
# Check that all the blocks have the right type.
# Only InMemoryTable and MemoryMappedTable are allowed.
for subtables in blocks:
for subtable in subtables:
if not isinstance(subtable, TableBlock):
raise TypeError(
"The blocks of a ConcatenationTable must be InMemoryTable or MemoryMappedTable objects"
f", but got {subtable}."
)
def __getstate__(self):
return {"blocks": self.blocks}
def __setstate__(self, state):
blocks = state["blocks"]
table = self._concat_blocks_horizontally_and_vertically(blocks)
ConcatenationTable.__init__(self, table, blocks=blocks)
@staticmethod
def _concat_blocks(blocks: List[Union[TableBlock, pa.Table]], axis: int = 0) -> pa.Table:
pa_tables = [table.table if hasattr(table, "table") else table for table in blocks]
if axis == 0:
# we set promote=True to fill missing columns with null values
return pa.concat_tables(pa_tables, promote=True)
elif axis == 1:
for i, table in enumerate(pa_tables):
if i == 0:
pa_table = table
else:
for name, col in zip(table.column_names, table.columns):
pa_table = pa_table.append_column(name, col)
return pa_table
else:
raise ValueError("'axis' must be either 0 or 1")
@classmethod
def _concat_blocks_horizontally_and_vertically(cls, blocks: List[List[TableBlock]]) -> pa.Table:
pa_tables_to_concat_vertically = []
for i, tables in enumerate(blocks):
if not tables:
continue
pa_table_horizontally_concatenated = cls._concat_blocks(tables, axis=1)
pa_tables_to_concat_vertically.append(pa_table_horizontally_concatenated)
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
@classmethod
def _merge_blocks(cls, blocks: TableBlockContainer, axis: Optional[int] = None) -> TableBlockContainer:
if axis is not None:
merged_blocks = []
for is_in_memory, block_group in groupby(blocks, key=lambda x: isinstance(x, InMemoryTable)):
if is_in_memory:
block_group = [InMemoryTable(cls._concat_blocks(list(block_group), axis=axis))]
merged_blocks += list(block_group)
else: # both
merged_blocks = [cls._merge_blocks(row_block, axis=1) for row_block in blocks]
if all(len(row_block) == 1 for row_block in merged_blocks):
merged_blocks = cls._merge_blocks(
[block for row_block in merged_blocks for block in row_block], axis=0
)
return merged_blocks
@classmethod
def _consolidate_blocks(cls, blocks: TableBlockContainer) -> TableBlockContainer:
if isinstance(blocks, TableBlock):
return blocks
elif isinstance(blocks[0], TableBlock):
return cls._merge_blocks(blocks, axis=0)
else:
return cls._merge_blocks(blocks)
@classmethod
def from_blocks(cls, blocks: TableBlockContainer) -> "ConcatenationTable":
blocks = cls._consolidate_blocks(blocks)
if isinstance(blocks, TableBlock):
table = blocks
return cls(table.table, [[table]])
elif isinstance(blocks[0], TableBlock):
table = cls._concat_blocks(blocks, axis=0)
blocks = [[t] for t in blocks]
return cls(table, blocks)
else:
table = cls._concat_blocks_horizontally_and_vertically(blocks)
return cls(table, blocks)
@classmethod
def from_tables(cls, tables: List[Union[pa.Table, Table]], axis: int = 0) -> "ConcatenationTable":
"""Create `ConcatenationTable` from list of tables.
Args:
tables (list of `Table` or list of `pyarrow.Table`):
List of tables.
axis (`{0, 1}`, defaults to `0`, meaning over rows):
Axis to concatenate over, where `0` means over rows (vertically) and `1` means over columns
(horizontally).
<Added version="1.6.0"/>
"""
def to_blocks(table: Union[pa.Table, Table]) -> List[List[TableBlock]]:
if isinstance(table, pa.Table):
return [[InMemoryTable(table)]]
elif isinstance(table, ConcatenationTable):
return copy.deepcopy(table.blocks)
else:
return [[table]]
def _slice_row_block(row_block: List[TableBlock], length: int) -> Tuple[List[TableBlock], List[TableBlock]]:
sliced = [table.slice(0, length) for table in row_block]
remainder = [table.slice(length, len(row_block[0]) - length) for table in row_block]
return sliced, remainder
def _split_both_like(
result: List[List[TableBlock]], blocks: List[List[TableBlock]]
) -> Tuple[List[List[TableBlock]], List[List[TableBlock]]]:
"""
Make sure each row_block contain the same num_rows to be able to concatenate them on axis=1.
To do so, we modify both blocks sets to have the same row_blocks boundaries.
For example, if `result` has 2 row_blocks of 3 rows and `blocks` has 3 row_blocks of 2 rows,
we modify both to have 4 row_blocks of size 2, 1, 1 and 2:
[ x x x | x x x ]
+ [ y y | y y | y y ]
-----------------------------
= [ x x | x | x | x x ]
[ y y | y | y | y y ]
"""
result, blocks = list(result), list(blocks)
new_result, new_blocks = [], []
while result and blocks:
# we slice the longest row block to save two row blocks of same length
# and we replace the long row block by its remainder if necessary
if len(result[0][0]) > len(blocks[0][0]):
new_blocks.append(blocks[0])
sliced, result[0] = _slice_row_block(result[0], len(blocks.pop(0)[0]))
new_result.append(sliced)
elif len(result[0][0]) < len(blocks[0][0]):
new_result.append(result[0])
sliced, blocks[0] = _slice_row_block(blocks[0], len(result.pop(0)[0]))
new_blocks.append(sliced)
else:
new_result.append(result.pop(0))
new_blocks.append(blocks.pop(0))
if result or blocks:
raise ValueError("Failed to concatenate on axis=1 because tables don't have the same number of rows")
return new_result, new_blocks
def _extend_blocks(
result: List[List[TableBlock]], blocks: List[List[TableBlock]], axis: int = 0
) -> List[List[TableBlock]]:
if axis == 0:
result.extend(blocks)
elif axis == 1:
# We make sure each row_block have the same num_rows
result, blocks = _split_both_like(result, blocks)
for i, row_block in enumerate(blocks):
result[i].extend(row_block)
return result
blocks = to_blocks(tables[0])
for table in tables[1:]:
table_blocks = to_blocks(table)
blocks = _extend_blocks(blocks, table_blocks, axis=axis)
return cls.from_blocks(blocks)
@property
def _slices(self):
offset = 0
for tables in self.blocks:
length = len(tables[0])
yield (offset, length)
offset += length
def slice(self, offset=0, length=None):
"""
Compute zero-copy slice of this Table.
Args:
offset (`int`, defaults to `0`):
Offset from start of table to slice.
length (`int`, defaults to `None`):
Length of slice (default is until end of table starting from
offset).
Returns:
`datasets.table.Table`
"""
table = self.table.slice(offset, length=length)
length = length if length is not None else self.num_rows - offset
blocks = []
for tables in self.blocks:
n_rows = len(tables[0])
if length == 0:
break
elif n_rows <= offset:
offset = offset - n_rows
elif n_rows <= offset + length:
blocks.append([t.slice(offset) for t in tables])
length, offset = length + offset - n_rows, 0
else:
blocks.append([t.slice(offset, length) for t in tables])
length, offset = 0, 0
return ConcatenationTable(table, blocks)
def filter(self, mask, *args, **kwargs):
"""
Select records from a Table. See `pyarrow.compute.filter` for full usage.
"""
table = self.table.filter(mask, *args, **kwargs)
blocks = []
for (offset, length), tables in zip(self._slices, self.blocks):
submask = mask.slice(offset, length)
blocks.append([t.filter(submask, *args, **kwargs) for t in tables])
return ConcatenationTable(table, blocks)
def flatten(self, *args, **kwargs):
"""
Flatten this Table. Each column with a struct type is flattened
into one column per struct field. Other columns are left unchanged.
Args:
memory_pool (`MemoryPool`, defaults to `None`):
For memory allocations, if required, otherwise use default pool.
Returns:
`datasets.table.Table`
"""
table = table_flatten(self.table, *args, **kwargs)
blocks = []
for tables in self.blocks:
blocks.append([t.flatten(*args, **kwargs) for t in tables])
return ConcatenationTable(table, blocks)
def combine_chunks(self, *args, **kwargs):
"""
Make a new table by combining the chunks this table has.
All the underlying chunks in the `ChunkedArray` of each column are
concatenated into zero or one chunk.
Args:
memory_pool (`MemoryPool`, defaults to `None`):
For memory allocations, if required, otherwise use default pool.
Returns:
`datasets.table.Table`
"""
table = self.table.combine_chunks(*args, **kwargs)
blocks = []
for tables in self.blocks:
blocks.append([t.combine_chunks(*args, **kwargs) for t in tables])
return ConcatenationTable(table, blocks)
def cast(self, target_schema, *args, **kwargs):
"""
Cast table values to another schema.
Args:
target_schema (`Schema`):
Schema to cast to, the names and order of fields must match.
safe (`bool`, defaults to `True`):
Check for overflows or other unsafe conversions.
Returns:
`datasets.table.Table`
"""
from .features import Features
table = table_cast(self.table, target_schema, *args, **kwargs)
target_features = Features.from_arrow_schema(target_schema)
blocks = []
for subtables in self.blocks:
new_tables = []
fields = list(target_schema)
for subtable in subtables:
subfields = []
for name in subtable.column_names:
subfields.append(fields.pop(next(i for i, field in enumerate(fields) if field.name == name)))
subfeatures = Features({subfield.name: target_features[subfield.name] for subfield in subfields})
subschema = subfeatures.arrow_schema
new_tables.append(subtable.cast(subschema, *args, **kwargs))
blocks.append(new_tables)
return ConcatenationTable(table, blocks)
def replace_schema_metadata(self, *args, **kwargs):
"""
EXPERIMENTAL: Create shallow copy of table by replacing schema
key-value metadata with the indicated new metadata (which may be `None`,
which deletes any existing metadata).
Args:
metadata (`dict`, defaults to `None`):
Returns:
`datasets.table.Table`: shallow_copy
"""
table = self.table.replace_schema_metadata(*args, **kwargs)
blocks = []
for tables in self.blocks:
blocks.append([t.replace_schema_metadata(*args, **kwargs) for t in tables])
return ConcatenationTable(table, self.blocks)
def add_column(self, *args, **kwargs):
"""
Add column to Table at position.
A new table is returned with the column added, the original table
object is left unchanged.
Args:
i (`int`):
Index to place the column at.
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`: New table with the passed column added.
"""
raise NotImplementedError()
def append_column(self, *args, **kwargs):
"""
Append column at end of columns.
Args:
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`:
New table with the passed column added.
"""
raise NotImplementedError()
def remove_column(self, i, *args, **kwargs):
"""
Create new Table with the indicated column removed.
Args:
i (`int`):
Index of column to remove.
Returns:
`datasets.table.Table`:
New table without the column.
"""
table = self.table.remove_column(i, *args, **kwargs)
name = self.table.column_names[i]
blocks = []
for tables in self.blocks:
blocks.append(
[
t.remove_column(t.column_names.index(name), *args, **kwargs) if name in t.column_names else t
for t in tables
]
)
return ConcatenationTable(table, blocks)
def set_column(self, *args, **kwargs):
"""
Replace column in Table at position.
Args:
i (`int`):
Index to place the column at.
field_ (`Union[str, pyarrow.Field]`):
If a string is passed then the type is deduced from the column
data.
column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
Column data.
Returns:
`datasets.table.Table`:
New table with the passed column set.
"""
raise NotImplementedError()
def rename_columns(self, names, *args, **kwargs):
"""
Create new table with columns renamed to provided names.
"""
table = self.table.rename_columns(names, *args, **kwargs)
names = dict(zip(self.table.column_names, names))
blocks = []
for tables in self.blocks:
blocks.append(
[t.rename_columns([names[name] for name in t.column_names], *args, **kwargs) for t in tables]
)
return ConcatenationTable(table, blocks)
def drop(self, columns, *args, **kwargs):
"""
Drop one or more columns and return a new table.
Args:
columns (`List[str]`):
List of field names referencing existing columns.
Raises:
`KeyError` : if any of the passed columns name are not existing.
Returns:
`datasets.table.Table`:
New table without the columns.
"""
table = self.table.drop(columns, *args, **kwargs)
blocks = []
for tables in self.blocks:
blocks.append([t.drop([c for c in columns if c in t.column_names], *args, **kwargs) for t in tables])
return ConcatenationTable(table, blocks)
def select(self, columns, *args, **kwargs):
"""
Select columns of the table.
Returns a new table with the specified columns, and metadata preserved.
Args:
columns (:obj:`Union[List[str], List[int]]`):
The column names or integer indices to select.
Returns:
:class:`datasets.table.Table`: New table with the specified columns, and metadata preserved.
"""
table = self.table.select(columns, *args, **kwargs)
blocks = []
for tables in self.blocks:
blocks.append([t.select([c for c in columns if c in t.column_names], *args, **kwargs) for t in tables])
return ConcatenationTable(table, blocks)
def concat_tables(tables: List[Table], axis: int = 0) -> Table:
"""
Concatenate tables.
Args:
tables (list of `Table`):
List of tables to be concatenated.
axis (`{0, 1}`, defaults to `0`, meaning over rows):
Axis to concatenate over, where `0` means over rows (vertically) and `1` means over columns
(horizontally).
<Added version="1.6.0"/>
Returns:
`datasets.table.Table`:
If the number of input tables is > 1, then the returned table is a `datasets.table.ConcatenationTable`.
Otherwise if there's only one table, it is returned as is.
"""
tables = list(tables)
if len(tables) == 1:
return tables[0]
return ConcatenationTable.from_tables(tables, axis=axis)
def list_table_cache_files(table: Table) -> List[str]:
"""
Get the cache files that are loaded by the table.
Cache file are used when parts of the table come from the disk via memory mapping.
Returns:
`List[str]`:
A list of paths to the cache files loaded by the table.
"""
if isinstance(table, ConcatenationTable):
cache_files = []
for subtables in table.blocks:
for subtable in subtables:
cache_files += list_table_cache_files(subtable)
return cache_files
elif isinstance(table, MemoryMappedTable):
return [table.path]
else:
return []
def _wrap_for_chunked_arrays(func):
"""Apply the function on each chunk of a `pyarrow.ChunkedArray`, or on the array directly"""
def wrapper(array, *args, **kwargs):
if isinstance(array, pa.ChunkedArray):
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
else:
return func(array, *args, **kwargs)
return wrapper
def _is_extension_type(pa_type: pa.DataType) -> bool:
"""
Check (recursively) if a pyarrow type is an extension type.
"""
if isinstance(pa_type, pa.StructType):
return any(_is_extension_type(field.type) for field in pa_type)
elif isinstance(pa_type, (pa.ListType, pa.FixedSizeListType, pa.LargeListType)):
return _is_extension_type(pa_type.value_type)
elif isinstance(pa_type, pa.ExtensionType):
return True
else:
return False
def array_concat(arrays: List[pa.Array]):
"""Improved version of pa.concat_arrays
It supports concatenating pa.ExtensionArray objects by concatenating the underlying storages.
Args:
arrays (List[pa.Array]): List of arrays to contatenate
Raises:
pa.ArrowInvalid: if the arrow array concatenation fails
ValueError: if the list of arrays is empty
TypeError: if the arrays to be concatenated have different types
Returns:
array (:obj:`pyarrow.Array`): the concatenated array
"""
arrays = list(arrays)
array_types = {array.type for array in arrays}
if not array_types:
raise ValueError("Couldn't concatenate empty list of arrays")
if len(array_types) > 1:
array_types = list(array_types)
raise TypeError(f"Couldn't concatenate arrays with different types {array_types[0]} and {array_types[1]}")
array_type = arrays[0].type
arrays = [chunk for arr in arrays for chunk in (arr.chunks if isinstance(arr, pa.ChunkedArray) else (arr,))]
if not _is_extension_type(array_type):
return pa.concat_arrays(arrays)
def _offsets_concat(offsets):
offset = offsets[0]
concatenated_offsets = offset
for offset in offsets[1:]:
offset = pc.subtract(offset, offset[0])
offset = pc.add(offset[1:], concatenated_offsets[-1])
concatenated_offsets = pa.concat_arrays([concatenated_offsets, offset])
return concatenated_offsets
def _concat_arrays(arrays):
array_type = arrays[0].type
if isinstance(array_type, pa.PyExtensionType):
return array_type.wrap_array(_concat_arrays([array.storage for array in arrays]))
elif pa.types.is_struct(array_type):
return pa.StructArray.from_arrays(
[_concat_arrays([array.field(field.name) for array in arrays]) for field in array_type],
fields=list(array_type),
mask=pa.concat_arrays([array.is_null() for array in arrays]),
)
elif pa.types.is_list(array_type):
if any(array.null_count > 0 for array in arrays):
if config.PYARROW_VERSION.major < 10:
warnings.warn(
"None values are converted to empty lists in `pyarrow<10.0.0` when concatenating list arrays with None values. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676."
)
else:
return pa.ListArray.from_arrays(
_offsets_concat([array.offsets for array in arrays]),
_concat_arrays([array.values for array in arrays]),
mask=pa.concat_arrays([array.is_null() for array in arrays]),
)
return pa.ListArray.from_arrays(
_offsets_concat([array.offsets for array in arrays]),
_concat_arrays([array.values for array in arrays]),
)
elif pa.types.is_fixed_size_list(array_type):
if config.PYARROW_VERSION.major < 13:
# PyArrow bug: https://github.com/apache/arrow/issues/35360
return pa.FixedSizeListArray.from_arrays(
_concat_arrays([array.values[array.offset * array.type.list_size :] for array in arrays]),
array_type.list_size,
)
else:
return pa.FixedSizeListArray.from_arrays(
_concat_arrays([array.values for array in arrays]),
array_type.value_type,
array_type.list_size,
)
return pa.concat_arrays(arrays)
return _concat_arrays(arrays)
@_wrap_for_chunked_arrays
def array_cast(array: pa.Array, pa_type: pa.DataType, allow_number_to_str=True):
"""Improved version of `pa.Array.cast`
It supports casting `pa.StructArray` objects to re-order the fields.
It also let you control certain aspects of the casting, e.g. whether
to disable numbers (`floats` or `ints`) to strings.
Args:
array (`pa.Array`):
PyArrow array to cast
pa_type (`pa.DataType`):
Target PyArrow type
allow_number_to_str (`bool`, defaults to `True`):
Whether to allow casting numbers to strings.
Defaults to `True`.
Raises:
`pa.ArrowInvalidError`: if the arrow data casting fails
`TypeError`: if the target type is not supported according, e.g.
- if a field is missing
- if casting from numbers to strings and `allow_number_to_str` is `False`
Returns:
`List[pyarrow.Array]`: the casted array
"""
_c = partial(array_cast, allow_number_to_str=allow_number_to_str)
if isinstance(array, pa.ExtensionArray):
array = array.storage
if isinstance(pa_type, pa.ExtensionType):
return pa_type.wrap_array(array)
elif array.type == pa_type:
return array
elif pa.types.is_struct(array.type):
if pa.types.is_struct(pa_type) and ({field.name for field in pa_type} == {field.name for field in array.type}):
if array.type.num_fields == 0:
return array
arrays = [_c(array.field(field.name), field.type) for field in pa_type]
return pa.StructArray.from_arrays(arrays, fields=list(pa_type), mask=array.is_null())
elif pa.types.is_list(array.type):
if pa.types.is_fixed_size_list(pa_type):
if pa_type.list_size * len(array) == len(array.values):
return pa.FixedSizeListArray.from_arrays(
_c(array.values, pa_type.value_type),
pa_type.list_size,
)
elif pa.types.is_list(pa_type):
if array.null_count > 0:
if config.PYARROW_VERSION.major < 10:
warnings.warn(
f"None values are converted to empty lists in `pyarrow<10.0.0` when converting array to {pa_type}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676."
)
else:
return pa.ListArray.from_arrays(
array.offsets, _c(array.values, pa_type.value_type), mask=array.is_null()
)
return pa.ListArray.from_arrays(array.offsets, _c(array.values, pa_type.value_type))
elif pa.types.is_fixed_size_list(array.type):
array_values = array.values
if config.PYARROW_VERSION.major < 13:
# PyArrow bug: https://github.com/apache/arrow/issues/35360
array_values = array.values[array.offset * array.type.list_size :]
if pa.types.is_fixed_size_list(pa_type):
return pa.FixedSizeListArray.from_arrays(
_c(array_values, pa_type.value_type),
pa_type.list_size,
)
elif pa.types.is_list(pa_type):
offsets_arr = pa.array(range(len(array) + 1), pa.int32())
if array.null_count > 0:
if config.PYARROW_VERSION.major < 10:
warnings.warn(
f"None values are converted to empty lists in `pyarrow<10.0.0` when converting array to {pa_type}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676."
)
else:
return pa.ListArray.from_arrays(
offsets_arr, _c(array_values, pa_type.value_type), mask=array.is_null()
)
return pa.ListArray.from_arrays(offsets_arr, _c(array_values, pa_type.value_type))
else:
if (
not allow_number_to_str
and pa.types.is_string(pa_type)
and (pa.types.is_floating(array.type) or pa.types.is_integer(array.type))
):
raise TypeError(
f"Couldn't cast array of type {array.type} to {pa_type} since allow_number_to_str is set to {allow_number_to_str}"
)
if pa.types.is_null(pa_type) and not pa.types.is_null(array.type):
raise TypeError(f"Couldn't cast array of type {array.type} to {pa_type}")
return array.cast(pa_type)
raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{pa_type}")
@_wrap_for_chunked_arrays
def cast_array_to_feature(array: pa.Array, feature: "FeatureType", allow_number_to_str=True):
"""Cast an array to the arrow type that corresponds to the requested feature type.
For custom features like [`Audio`] or [`Image`], it takes into account the "cast_storage" methods
they defined to enable casting from other arrow types.
Args:
array (`pa.Array`):
The PyArrow array to cast.
feature (`datasets.features.FeatureType`):
The target feature type.
allow_number_to_str (`bool`, defaults to `True`):
Whether to allow casting numbers to strings.
Defaults to `True`.
Raises:
`pa.ArrowInvalidError`: if the arrow data casting fails
`TypeError`: if the target type is not supported according, e.g.
- if a field is missing
- if casting from numbers to strings and `allow_number_to_str` is `False`
Returns:
array (`pyarrow.Array`): the casted array
"""
from .features.features import Sequence, get_nested_type
_c = partial(cast_array_to_feature, allow_number_to_str=allow_number_to_str)
if isinstance(array, pa.ExtensionArray):
array = array.storage
if hasattr(feature, "cast_storage"):
return feature.cast_storage(array)
elif pa.types.is_struct(array.type):
# feature must be a dict or Sequence(subfeatures_dict)
if isinstance(feature, Sequence) and isinstance(feature.feature, dict):
feature = {
name: Sequence(subfeature, length=feature.length) for name, subfeature in feature.feature.items()
}
if isinstance(feature, dict) and {field.name for field in array.type} == set(feature):
if array.type.num_fields == 0:
return array
arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]
return pa.StructArray.from_arrays(arrays, names=list(feature), mask=array.is_null())
elif pa.types.is_list(array.type):
# feature must be either [subfeature] or Sequence(subfeature)
if isinstance(feature, list):
casted_values = _c(array.values, feature[0])
if casted_values.type == array.values.type:
return array
else:
if array.null_count > 0:
if config.PYARROW_VERSION.major < 10:
warnings.warn(
f"None values are converted to empty lists in `pyarrow<10.0.0` when converting array to {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676."
)
else:
return pa.ListArray.from_arrays(array.offsets, casted_values, mask=array.is_null())
return pa.ListArray.from_arrays(array.offsets, casted_values)
elif isinstance(feature, Sequence):
if feature.length > -1:
if feature.length * len(array) == len(array.values):
return pa.FixedSizeListArray.from_arrays(_c(array.values, feature.feature), feature.length)
else:
casted_values = _c(array.values, feature.feature)
if casted_values.type == array.values.type:
return array
else:
if array.null_count > 0:
if config.PYARROW_VERSION.major < 10:
warnings.warn(
f"None values are converted to empty lists in `pyarrow<10.0.0` when converting array to {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676."
)
else:
return pa.ListArray.from_arrays(
array.offsets, _c(array.values, feature.feature), mask=array.is_null()
)
return pa.ListArray.from_arrays(array.offsets, _c(array.values, feature.feature))
elif pa.types.is_fixed_size_list(array.type):
# feature must be either [subfeature] or Sequence(subfeature)
array_values = array.values
if config.PYARROW_VERSION.major < 13:
# PyArrow bug: https://github.com/apache/arrow/issues/35360
array_values = array.values[array.offset * array.type.list_size :]
if isinstance(feature, list):
if array.null_count > 0:
if config.PYARROW_VERSION.major < 10:
warnings.warn(
f"None values are converted to empty lists when converting array to {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`"
)
else:
return pa.ListArray.from_arrays(array.offsets, _c(array_values, feature[0]), mask=array.is_null())
return pa.ListArray.from_arrays(array.offsets, _c(array_values, feature[0]))
elif isinstance(feature, Sequence):
if feature.length > -1:
if feature.length * len(array) == len(array_values):
return pa.FixedSizeListArray.from_arrays(_c(array_values, feature.feature), feature.length)
else:
offsets_arr = pa.array(range(len(array) + 1), pa.int32())
if array.null_count > 0:
if config.PYARROW_VERSION.major < 10:
warnings.warn(
f"None values are converted to empty lists when converting array to {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`"
)
else:
return pa.ListArray.from_arrays(
offsets_arr, _c(array_values, feature.feature), mask=array.is_null()
)
return pa.ListArray.from_arrays(offsets_arr, _c(array_values, feature.feature))
if pa.types.is_null(array.type):
return array_cast(array, get_nested_type(feature), allow_number_to_str=allow_number_to_str)
elif not isinstance(feature, (Sequence, dict, list, tuple)):
return array_cast(array, feature(), allow_number_to_str=allow_number_to_str)
raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}")
@_wrap_for_chunked_arrays
def embed_array_storage(array: pa.Array, feature: "FeatureType"):
"""Embed data into an arrays's storage.
For custom features like Audio or Image, it takes into account the "embed_storage" methods
they defined to enable embedding external data (e.g. an image file) into an other arrow types.
<Added version="2.4.0"/>
Args:
array (`pa.Array`):
The PyArrow array in which to embed data.
feature (`datasets.features.FeatureType`):
Array features.
Raises:
`TypeError`: if the target type is not supported according, e.g.
- if a field is missing
Returns:
array (`pyarrow.Array`): the casted array
"""
from .features import Sequence
_e = embed_array_storage
if isinstance(array, pa.ExtensionArray):
array = array.storage
if hasattr(feature, "embed_storage"):
return feature.embed_storage(array)
elif pa.types.is_struct(array.type):
# feature must be a dict or Sequence(subfeatures_dict)
if isinstance(feature, Sequence) and isinstance(feature.feature, dict):
feature = {
name: Sequence(subfeature, length=feature.length) for name, subfeature in feature.feature.items()
}
if isinstance(feature, dict):
arrays = [_e(array.field(name), subfeature) for name, subfeature in feature.items()]
return pa.StructArray.from_arrays(arrays, names=list(feature), mask=array.is_null())
elif pa.types.is_list(array.type):
# feature must be either [subfeature] or Sequence(subfeature)
if isinstance(feature, list):
if array.null_count > 0:
if config.PYARROW_VERSION.major < 10:
warnings.warn(
f"None values are converted to empty lists when embedding array storage with {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`"
)
else:
return pa.ListArray.from_arrays(array.offsets, _e(array.values, feature[0]), mask=array.is_null())
return pa.ListArray.from_arrays(array.offsets, _e(array.values, feature[0]))
elif isinstance(feature, Sequence):
if feature.length > -1:
if feature.length * len(array) == len(array.values):
return pa.FixedSizeListArray.from_arrays(_e(array.values, feature.feature), feature.length)
else:
casted_values = _e(array.values, feature.feature)
if casted_values.type == array.values.type:
return array
else:
if array.null_count > 0:
if config.PYARROW_VERSION.major < 10:
warnings.warn(
f"None values are converted to empty lists when embedding array storage with {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`"
)
else:
return pa.ListArray.from_arrays(
array.offsets, _e(array.values, feature.feature), mask=array.is_null()
)
return pa.ListArray.from_arrays(array.offsets, _e(array.values, feature.feature))
elif pa.types.is_fixed_size_list(array.type):
# feature must be either [subfeature] or Sequence(subfeature)
array_values = array.values
if config.PYARROW_VERSION.major < 13:
# PyArrow bug: https://github.com/apache/arrow/issues/35360
array_values = array.values[array.offset * array.type.list_size :]
if isinstance(feature, list):
if array.null_count > 0:
if config.PYARROW_VERSION.major < 10:
warnings.warn(
f"None values are converted to empty lists when embedding array storage with {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`"
)
else:
return pa.ListArray.from_arrays(array.offsets, _e(array_values, feature[0]), mask=array.is_null())
return pa.ListArray.from_arrays(array.offsets, _e(array_values, feature[0]))
elif isinstance(feature, Sequence):
if feature.length > -1:
if feature.length * len(array) == len(array_values):
return pa.FixedSizeListArray.from_arrays(_e(array_values, feature.feature), feature.length)
else:
offsets_arr = pa.array(range(len(array) + 1), pa.int32())
if array.null_count > 0:
if config.PYARROW_VERSION.major < 10:
warnings.warn(
f"None values are converted to empty lists when embedding array storage with {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`"
)
else:
return pa.ListArray.from_arrays(
offsets_arr, _e(array_values, feature.feature), mask=array.is_null()
)
return pa.ListArray.from_arrays(offsets_arr, _e(array_values, feature.feature))
if not isinstance(feature, (Sequence, dict, list, tuple)):
return array
raise TypeError(f"Couldn't embed array of type\n{array.type}\nwith\n{feature}")
def cast_table_to_features(table: pa.Table, features: "Features"):
"""Cast a table to the arrow schema that corresponds to the requested features.
Args:
table (`pyarrow.Table`):
PyArrow table to cast.
features ([`Features`]):
Target features.
Returns:
table (`pyarrow.Table`): the casted table
"""
if sorted(table.column_names) != sorted(features):
raise ValueError(f"Couldn't cast\n{table.schema}\nto\n{features}\nbecause column names don't match")
arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
return pa.Table.from_arrays(arrays, schema=features.arrow_schema)
def cast_table_to_schema(table: pa.Table, schema: pa.Schema):
"""Cast a table to the arrow schema. Different from `cast_table_to_features`, this method can preserve nullability.
Args:
table (`pa.Table`):
PyArrow table to cast.
features ([`Features`]):
Target features.
Returns:
`pa.Table`: the casted table
"""
from .features import Features
features = Features.from_arrow_schema(schema)
if sorted(table.column_names) != sorted(features):
raise ValueError(f"Couldn't cast\n{table.schema}\nto\n{features}\nbecause column names don't match")
arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
return pa.Table.from_arrays(arrays, schema=schema)
def embed_table_storage(table: pa.Table):
"""Embed external data into a table's storage.
<Added version="2.4.0"/>
Args:
table (`pyarrow.Table`):
PyArrow table in which to embed data.
Returns:
table (`pyarrow.Table`): the table with embedded data
"""
from .features.features import Features, require_storage_embed
features = Features.from_arrow_schema(table.schema)
arrays = [
embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name]
for name, feature in features.items()
]
return pa.Table.from_arrays(arrays, schema=features.arrow_schema)
def table_cast(table: pa.Table, schema: pa.Schema):
"""Improved version of `pa.Table.cast`.
It supports casting to feature types stored in the schema metadata.
Args:
table (`pyarrow.Table`):
PyArrow table to cast.
schema (`pyarrow.Schema`):
Target PyArrow schema.
Returns:
table (`pyarrow.Table`): the casted table
"""
if table.schema != schema:
return cast_table_to_schema(table, schema)
elif table.schema.metadata != schema.metadata:
return table.replace_schema_metadata(schema.metadata)
else:
return table
def table_flatten(table: pa.Table):
"""Improved version of `pa.Table.flatten`.
It behaves as `pa.Table.flatten` in a sense it does 1-step flatten of the columns with a struct type into one column per struct field,
but updates the metadata and skips decodable features unless the `decode` attribute of these features is set to False.
Args:
table (`pa.Table`):
PyArrow table to flatten.
Returns:
`Table`: the flattened table
"""
from .features import Features
features = Features.from_arrow_schema(table.schema)
if any(hasattr(subfeature, "flatten") and subfeature.flatten() == subfeature for subfeature in features.values()):
flat_arrays = []
flat_column_names = []
for field in table.schema:
array = table.column(field.name)
subfeature = features[field.name]
if pa.types.is_struct(field.type) and (
not hasattr(subfeature, "flatten") or subfeature.flatten() != subfeature
):
flat_arrays.extend(array.flatten())
flat_column_names.extend([f"{field.name}.{subfield.name}" for subfield in field.type])
else:
flat_arrays.append(array)
flat_column_names.append(field.name)
flat_table = pa.Table.from_arrays(
flat_arrays,
names=flat_column_names,
)
else:
flat_table = table.flatten()
# Preserve complex types in the metadata
flat_features = features.flatten(max_depth=2)
flat_features = Features({column_name: flat_features[column_name] for column_name in flat_table.column_names})
return flat_table.replace_schema_metadata(flat_features.arrow_schema.metadata)
def table_visitor(table: pa.Table, function: Callable[[pa.Array], None]):
"""Visit all arrays in a table and apply a function to them.
Args:
table (`pyarrow.Table`):
PyArrow table to visit.
function (`Callable[[pa.Array], None]`):
Function to apply to each array.
"""
from .features import Features, Sequence
features = Features.from_arrow_schema(table.schema)
def _visit(array, feature):
if isinstance(array, pa.ChunkedArray):
for chunk in array.chunks:
_visit(chunk, feature)
else:
if isinstance(array, pa.ExtensionArray):
array = array.storage
function(array, feature)
if pa.types.is_struct(array.type) and not hasattr(feature, "cast_storage"):
if isinstance(feature, Sequence) and isinstance(feature.feature, dict):
feature = {
name: Sequence(subfeature, length=feature.length)
for name, subfeature in feature.feature.items()
}
for name, subfeature in feature.items():
_visit(array.field(name), subfeature)
elif pa.types.is_list(array.type):
if isinstance(feature, list):
_visit(array.values, feature[0])
elif isinstance(feature, Sequence):
_visit(array.values, feature.feature)
for name, feature in features.items():
_visit(table[name], feature)
def table_iter(table: Table, batch_size: int, drop_last_batch=False) -> Iterator[pa.Table]:
"""Iterate over sub-tables of size `batch_size`.
Args:
table (`pyarrow.Table`):
PyArrow table to iterate over.
batch_size (`int`):
Size of each sub-table to yield.
drop_last_batch (`bool`, defaults to `False`):
Drop the last batch if it is smaller than `batch_size`.
"""
chunks_buffer = []
chunks_buffer_size = 0
for chunk in table.to_reader(max_chunksize=batch_size):
if len(chunk) == 0:
continue
elif chunks_buffer_size + len(chunk) < batch_size:
chunks_buffer.append(chunk)
chunks_buffer_size += len(chunk)
continue
elif chunks_buffer_size + len(chunk) == batch_size:
chunks_buffer.append(chunk)
yield pa.Table.from_batches(chunks_buffer)
chunks_buffer = []
chunks_buffer_size = 0
else:
cropped_chunk_length = batch_size - chunks_buffer_size
chunks_buffer.append(chunk.slice(0, cropped_chunk_length))
yield pa.Table.from_batches(chunks_buffer)
chunks_buffer = [chunk.slice(cropped_chunk_length, len(chunk) - cropped_chunk_length)]
chunks_buffer_size = len(chunk) - cropped_chunk_length
if not drop_last_batch and chunks_buffer:
yield pa.Table.from_batches(chunks_buffer)
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/splits.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Splits related API."""
import abc
import collections
import copy
import dataclasses
import re
from dataclasses import dataclass
from typing import Dict, List, Optional, Union
from .arrow_reader import FileInstructions, make_file_instructions
from .naming import _split_re
from .utils.py_utils import NonMutableDict, asdict
@dataclass
class SplitInfo:
name: str = ""
num_bytes: int = 0
num_examples: int = 0
shard_lengths: Optional[List[int]] = None
# Deprecated
# For backward compatibility, this field needs to always be included in files like
# dataset_infos.json and dataset_info.json files
# To do so, we always include it in the output of datasets.utils.py_utils.asdict(split_info)
dataset_name: Optional[str] = dataclasses.field(
default=None, metadata={"include_in_asdict_even_if_is_default": True}
)
@property
def file_instructions(self):
"""Returns the list of dict(filename, take, skip)."""
# `self.dataset_name` is assigned in `SplitDict.add()`.
instructions = make_file_instructions(
name=self.dataset_name,
split_infos=[self],
instruction=str(self.name),
)
return instructions.file_instructions
@dataclass
class SubSplitInfo:
"""Wrapper around a sub split info.
This class expose info on the subsplit:
```
ds, info = datasets.load_dataset(..., split='train[75%:]', with_info=True)
info.splits['train[75%:]'].num_examples
```
"""
instructions: FileInstructions
@property
def num_examples(self):
"""Returns the number of example in the subsplit."""
return self.instructions.num_examples
@property
def file_instructions(self):
"""Returns the list of dict(filename, take, skip)."""
return self.instructions.file_instructions
class SplitBase(metaclass=abc.ABCMeta):
# pylint: disable=line-too-long
"""Abstract base class for Split compositionality.
See the
[guide on splits](../loading#slice-splits)
for more information.
There are three parts to the composition:
1) The splits are composed (defined, merged, split,...) together before
calling the `.as_dataset()` function. This is done with the `__add__`,
`__getitem__`, which return a tree of `SplitBase` (whose leaf
are the `NamedSplit` objects)
```
split = datasets.Split.TRAIN + datasets.Split.TEST.subsplit(datasets.percent[:50])
```
2) The `SplitBase` is forwarded to the `.as_dataset()` function
to be resolved into actual read instruction. This is done by the
`.get_read_instruction()` method which takes the real dataset splits
(name, number of shards,...) and parse the tree to return a
`SplitReadInstruction()` object
```
read_instruction = split.get_read_instruction(self.info.splits)
```
3) The `SplitReadInstruction` is then used in the `tf.data.Dataset` pipeline
to define which files to read and how to skip examples within file.
"""
# pylint: enable=line-too-long
@abc.abstractmethod
def get_read_instruction(self, split_dict):
"""Parse the descriptor tree and compile all read instructions together.
Args:
split_dict: `dict`, The `dict[split_name, SplitInfo]` of the dataset
Returns:
split_read_instruction: `SplitReadInstruction`
"""
raise NotImplementedError("Abstract method")
def __eq__(self, other):
"""Equality: datasets.Split.TRAIN == 'train'."""
if isinstance(other, (NamedSplit, str)):
return False
raise NotImplementedError("Equality is not implemented between merged/sub splits.")
def __ne__(self, other):
"""InEquality: datasets.Split.TRAIN != 'test'."""
return not self.__eq__(other)
def __add__(self, other):
"""Merging: datasets.Split.TRAIN + datasets.Split.TEST."""
return _SplitMerged(self, other)
def subsplit(self, arg=None, k=None, percent=None, weighted=None): # pylint: disable=redefined-outer-name
"""Divides this split into subsplits.
There are 3 ways to define subsplits, which correspond to the 3
arguments `k` (get `k` even subsplits), `percent` (get a slice of the
dataset with `datasets.percent`), and `weighted` (get subsplits with proportions
specified by `weighted`).
Example::
```
# 50% train, 50% test
train, test = split.subsplit(k=2)
# 50% train, 25% test, 25% validation
train, test, validation = split.subsplit(weighted=[2, 1, 1])
# Extract last 20%
subsplit = split.subsplit(datasets.percent[-20:])
```
Warning: k and weighted will be converted into percent which mean that
values below the percent will be rounded up or down. The final split may be
bigger to deal with remainders. For instance:
```
train, test, valid = split.subsplit(k=3) # 33%, 33%, 34%
s1, s2, s3, s4 = split.subsplit(weighted=[2, 2, 1, 1]) # 33%, 33%, 16%, 18%
```
Args:
arg: If no kwargs are given, `arg` will be interpreted as one of
`k`, `percent`, or `weighted` depending on the type.
For example:
```
split.subsplit(10) # Equivalent to split.subsplit(k=10)
split.subsplit(datasets.percent[:-20]) # percent=datasets.percent[:-20]
split.subsplit([1, 1, 2]) # weighted=[1, 1, 2]
```
k: `int` If set, subdivide the split into `k` equal parts.
percent: `datasets.percent slice`, return a single subsplit corresponding to
a slice of the original split. For example:
`split.subsplit(datasets.percent[-20:]) # Last 20% of the dataset`.
weighted: `list[int]`, return a list of subsplits whose proportions match
the normalized sum of the list. For example:
`split.subsplit(weighted=[1, 1, 2]) # 25%, 25%, 50%`.
Returns:
A subsplit or list of subsplits extracted from this split object.
"""
# Note that the percent kwargs redefine the outer name datasets.percent. This
# is done for consistency (.subsplit(percent=datasets.percent[:40]))
if sum(bool(x) for x in (arg, k, percent, weighted)) != 1:
raise ValueError("Only one argument of subsplit should be set.")
# Auto deduce k
if isinstance(arg, int):
k = arg
elif isinstance(arg, slice):
percent = arg
elif isinstance(arg, list):
weighted = arg
if not (k or percent or weighted):
raise ValueError(
f"Invalid split argument {arg}. Only list, slice and int supported. "
"One of k, weighted or percent should be set to a non empty value."
)
def assert_slices_coverage(slices):
# Ensure that the expended slices cover all percents.
assert sum((list(range(*s.indices(100))) for s in slices), []) == list(range(100))
if k:
if not 0 < k <= 100:
raise ValueError(f"Subsplit k should be between 0 and 100, got {k}")
shift = 100 // k
slices = [slice(i * shift, (i + 1) * shift) for i in range(k)]
# Round up last element to ensure all elements are taken
slices[-1] = slice(slices[-1].start, 100)
# Internal check to ensure full coverage
assert_slices_coverage(slices)
return tuple(_SubSplit(self, s) for s in slices)
elif percent:
return _SubSplit(self, percent)
elif weighted:
# Normalize the weighted sum
total = sum(weighted)
weighted = [100 * x // total for x in weighted]
# Create the slice for each of the elements
start = 0
stop = 0
slices = []
for v in weighted:
stop += v
slices.append(slice(start, stop))
start = stop
# Round up last element to ensure all elements are taken
slices[-1] = slice(slices[-1].start, 100)
# Internal check to ensure full coverage
assert_slices_coverage(slices)
return tuple(_SubSplit(self, s) for s in slices)
else:
# Should not be possible
raise ValueError("Could not determine the split")
# 2 requirements:
# 1. datasets.percent be sliceable
# 2. datasets.percent be documented
#
# Instances are not documented, so we want datasets.percent to be a class, but to
# have it be sliceable, we need this metaclass.
class PercentSliceMeta(type):
def __getitem__(cls, slice_value):
if not isinstance(slice_value, slice):
raise ValueError(f"datasets.percent should only be called with slice, not {slice_value}")
return slice_value
class PercentSlice(metaclass=PercentSliceMeta):
# pylint: disable=line-too-long
"""Syntactic sugar for defining slice subsplits: `datasets.percent[75:-5]`.
See the
[guide on splits](../loading#slice-splits)
for more information.
"""
# pylint: enable=line-too-long
pass
percent = PercentSlice # pylint: disable=invalid-name
class _SplitMerged(SplitBase):
"""Represent two split descriptors merged together."""
def __init__(self, split1, split2):
self._split1 = split1
self._split2 = split2
def get_read_instruction(self, split_dict):
read_instruction1 = self._split1.get_read_instruction(split_dict)
read_instruction2 = self._split2.get_read_instruction(split_dict)
return read_instruction1 + read_instruction2
def __repr__(self):
return f"({repr(self._split1)} + {repr(self._split2)})"
class _SubSplit(SplitBase):
"""Represent a sub split of a split descriptor."""
def __init__(self, split, slice_value):
self._split = split
self._slice_value = slice_value
def get_read_instruction(self, split_dict):
return self._split.get_read_instruction(split_dict)[self._slice_value]
def __repr__(self):
slice_str = "{start}:{stop}"
if self._slice_value.step is not None:
slice_str += ":{step}"
slice_str = slice_str.format(
start="" if self._slice_value.start is None else self._slice_value.start,
stop="" if self._slice_value.stop is None else self._slice_value.stop,
step=self._slice_value.step,
)
return f"{repr(self._split)}(datasets.percent[{slice_str}])"
class NamedSplit(SplitBase):
"""Descriptor corresponding to a named split (train, test, ...).
Example:
Each descriptor can be composed with other using addition or slice:
```py
split = datasets.Split.TRAIN.subsplit(datasets.percent[0:25]) + datasets.Split.TEST
```
The resulting split will correspond to 25% of the train split merged with
100% of the test split.
A split cannot be added twice, so the following will fail:
```py
split = (
datasets.Split.TRAIN.subsplit(datasets.percent[:25]) +
datasets.Split.TRAIN.subsplit(datasets.percent[75:])
) # Error
split = datasets.Split.TEST + datasets.Split.ALL # Error
```
The slices can be applied only one time. So the following are valid:
```py
split = (
datasets.Split.TRAIN.subsplit(datasets.percent[:25]) +
datasets.Split.TEST.subsplit(datasets.percent[:50])
)
split = (datasets.Split.TRAIN + datasets.Split.TEST).subsplit(datasets.percent[:50])
```
But this is not valid:
```py
train = datasets.Split.TRAIN
test = datasets.Split.TEST
split = train.subsplit(datasets.percent[:25]).subsplit(datasets.percent[:25])
split = (train.subsplit(datasets.percent[:25]) + test).subsplit(datasets.percent[:50])
```
"""
def __init__(self, name):
self._name = name
split_names_from_instruction = [split_instruction.split("[")[0] for split_instruction in name.split("+")]
for split_name in split_names_from_instruction:
if not re.match(_split_re, split_name):
raise ValueError(f"Split name should match '{_split_re}' but got '{split_name}'.")
def __str__(self):
return self._name
def __repr__(self):
return f"NamedSplit({self._name!r})"
def __eq__(self, other):
"""Equality: datasets.Split.TRAIN == 'train'."""
if isinstance(other, NamedSplit):
return self._name == other._name # pylint: disable=protected-access
elif isinstance(other, SplitBase):
return False
elif isinstance(other, str): # Other should be string
return self._name == other
else:
raise ValueError(f"Equality not supported between split {self} and {other}")
def __lt__(self, other):
return self._name < other._name # pylint: disable=protected-access
def __hash__(self):
return hash(self._name)
def get_read_instruction(self, split_dict):
return SplitReadInstruction(split_dict[self._name])
class NamedSplitAll(NamedSplit):
"""Split corresponding to the union of all defined dataset splits."""
def __init__(self):
super().__init__("all")
def __repr__(self):
return "NamedSplitAll()"
def get_read_instruction(self, split_dict):
# Merge all dataset split together
read_instructions = [SplitReadInstruction(s) for s in split_dict.values()]
return sum(read_instructions, SplitReadInstruction())
class Split:
# pylint: disable=line-too-long
"""`Enum` for dataset splits.
Datasets are typically split into different subsets to be used at various
stages of training and evaluation.
- `TRAIN`: the training data.
- `VALIDATION`: the validation data. If present, this is typically used as
evaluation data while iterating on a model (e.g. changing hyperparameters,
model architecture, etc.).
- `TEST`: the testing data. This is the data to report metrics on. Typically
you do not want to use this during model iteration as you may overfit to it.
- `ALL`: the union of all defined dataset splits.
All splits, including compositions inherit from `datasets.SplitBase`.
See the [guide](../load_hub#splits) on splits for more information.
Example:
```py
>>> datasets.SplitGenerator(
... name=datasets.Split.TRAIN,
... gen_kwargs={"split_key": "train", "files": dl_manager.download_and extract(url)},
... ),
... datasets.SplitGenerator(
... name=datasets.Split.VALIDATION,
... gen_kwargs={"split_key": "validation", "files": dl_manager.download_and extract(url)},
... ),
... datasets.SplitGenerator(
... name=datasets.Split.TEST,
... gen_kwargs={"split_key": "test", "files": dl_manager.download_and extract(url)},
... )
```
"""
# pylint: enable=line-too-long
TRAIN = NamedSplit("train")
TEST = NamedSplit("test")
VALIDATION = NamedSplit("validation")
ALL = NamedSplitAll()
def __new__(cls, name):
"""Create a custom split with datasets.Split('custom_name')."""
return NamedSplitAll() if name == "all" else NamedSplit(name)
# Similar to SplitInfo, but contain an additional slice info
SlicedSplitInfo = collections.namedtuple(
"SlicedSplitInfo",
[
"split_info",
"slice_value",
],
) # noqa: E231
class SplitReadInstruction:
"""Object containing the reading instruction for the dataset.
Similarly to `SplitDescriptor` nodes, this object can be composed with itself,
but the resolution happens instantaneously, instead of keeping track of the
tree, such as all instructions are compiled and flattened in a single
SplitReadInstruction object containing the list of files and slice to use.
Once resolved, the instructions can be accessed with:
```
read_instructions.get_list_sliced_split_info() # List of splits to use
```
"""
def __init__(self, split_info=None):
self._splits = NonMutableDict(error_msg="Overlap between splits. Split {key} has been added with " "itself.")
if split_info:
self.add(SlicedSplitInfo(split_info=split_info, slice_value=None))
def add(self, sliced_split):
"""Add a SlicedSplitInfo the read instructions."""
# TODO(epot): Check that the number of examples per shard % 100 == 0
# Otherwise the slices value may be unbalanced and not exactly reflect the
# requested slice.
self._splits[sliced_split.split_info.name] = sliced_split
def __add__(self, other):
"""Merging split together."""
# Will raise error if a split has already be added (NonMutableDict)
# TODO(epot): If a split is already added but there is no overlap between
# the slices, should merge the slices (ex: [:10] + [80:])
split_instruction = SplitReadInstruction()
split_instruction._splits.update(self._splits) # pylint: disable=protected-access
split_instruction._splits.update(other._splits) # pylint: disable=protected-access
return split_instruction
def __getitem__(self, slice_value):
"""Sub-splits."""
# Will raise an error if a split has already been sliced
split_instruction = SplitReadInstruction()
for v in self._splits.values():
if v.slice_value is not None:
raise ValueError(f"Trying to slice Split {v.split_info.name} which has already been sliced")
v = v._asdict()
v["slice_value"] = slice_value
split_instruction.add(SlicedSplitInfo(**v))
return split_instruction
def get_list_sliced_split_info(self):
return list(self._splits.values())
class SplitDict(dict):
"""Split info object."""
def __init__(self, *args, dataset_name=None, **kwargs):
super().__init__(*args, **kwargs)
self.dataset_name = dataset_name
def __getitem__(self, key: Union[SplitBase, str]):
# 1st case: The key exists: `info.splits['train']`
if str(key) in self:
return super().__getitem__(str(key))
# 2nd case: Uses instructions: `info.splits['train[50%]']`
else:
instructions = make_file_instructions(
name=self.dataset_name,
split_infos=self.values(),
instruction=key,
)
return SubSplitInfo(instructions)
def __setitem__(self, key: Union[SplitBase, str], value: SplitInfo):
if key != value.name:
raise ValueError(f"Cannot add elem. (key mismatch: '{key}' != '{value.name}')")
if key in self:
raise ValueError(f"Split {key} already present")
super().__setitem__(key, value)
def add(self, split_info: SplitInfo):
"""Add the split info."""
if split_info.name in self:
raise ValueError(f"Split {split_info.name} already present")
split_info.dataset_name = self.dataset_name
super().__setitem__(split_info.name, split_info)
@property
def total_num_examples(self):
"""Return the total number of examples."""
return sum(s.num_examples for s in self.values())
@classmethod
def from_split_dict(cls, split_infos: Union[List, Dict], dataset_name: Optional[str] = None):
"""Returns a new SplitDict initialized from a Dict or List of `split_infos`."""
if isinstance(split_infos, dict):
split_infos = list(split_infos.values())
if dataset_name is None:
dataset_name = split_infos[0].get("dataset_name") if split_infos else None
split_dict = cls(dataset_name=dataset_name)
for split_info in split_infos:
if isinstance(split_info, dict):
split_info = SplitInfo(**split_info)
split_dict.add(split_info)
return split_dict
def to_split_dict(self):
"""Returns a list of SplitInfo protos that we have."""
out = []
for split_name, split_info in self.items():
split_info = copy.deepcopy(split_info)
split_info.name = split_name
out.append(split_info)
return out
def copy(self):
return SplitDict.from_split_dict(self.to_split_dict(), self.dataset_name)
def _to_yaml_list(self) -> list:
out = [asdict(s) for s in self.to_split_dict()]
# we don't need the shard lengths in YAML, since it depends on max_shard_size and num_proc
for split_info_dict in out:
split_info_dict.pop("shard_lengths", None)
# we don't need the dataset_name attribute that is deprecated
for split_info_dict in out:
split_info_dict.pop("dataset_name", None)
return out
@classmethod
def _from_yaml_list(cls, yaml_data: list) -> "SplitDict":
return cls.from_split_dict(yaml_data)
@dataclass
class SplitGenerator:
"""Defines the split information for the generator.
This should be used as returned value of
`GeneratorBasedBuilder._split_generators`.
See `GeneratorBasedBuilder._split_generators` for more info and example
of usage.
Args:
name (`str`):
Name of the `Split` for which the generator will
create the examples.
**gen_kwargs (additional keyword arguments):
Keyword arguments to forward to the `DatasetBuilder._generate_examples` method
of the builder.
Example:
```py
>>> datasets.SplitGenerator(
... name=datasets.Split.TRAIN,
... gen_kwargs={"split_key": "train", "files": dl_manager.download_and_extract(url)},
... )
```
"""
name: str
gen_kwargs: Dict = dataclasses.field(default_factory=dict)
split_info: SplitInfo = dataclasses.field(init=False)
def __post_init__(self):
self.name = str(self.name) # Make sure we convert NamedSplits in strings
NamedSplit(self.name) # check that it's a valid split name
self.split_info = SplitInfo(name=self.name)
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/streaming.py | import importlib
import inspect
from functools import wraps
from typing import TYPE_CHECKING, Optional
from .download.download_config import DownloadConfig
from .download.streaming_download_manager import (
xbasename,
xdirname,
xet_parse,
xexists,
xgetsize,
xglob,
xgzip_open,
xisdir,
xisfile,
xjoin,
xlistdir,
xnumpy_load,
xopen,
xpandas_read_csv,
xpandas_read_excel,
xPath,
xrelpath,
xsio_loadmat,
xsplit,
xsplitext,
xwalk,
xxml_dom_minidom_parse,
)
from .utils.logging import get_logger
from .utils.patching import patch_submodule
from .utils.py_utils import get_imports
logger = get_logger(__name__)
if TYPE_CHECKING:
from .builder import DatasetBuilder
def extend_module_for_streaming(module_path, download_config: Optional[DownloadConfig] = None):
"""Extend the module to support streaming.
We patch some functions in the module to use `fsspec` to support data streaming:
- We use `fsspec.open` to open and read remote files. We patch the module function:
- `open`
- We use the "::" hop separator to join paths and navigate remote compressed/archive files. We patch the module
functions:
- `os.path.join`
- `pathlib.Path.joinpath` and `pathlib.Path.__truediv__` (called when using the "/" operator)
The patched functions are replaced with custom functions defined to work with the
:class:`~download.streaming_download_manager.StreamingDownloadManager`.
Args:
module_path: Path to the module to be extended.
download_config : mainly use use_auth_token or storage_options to support different platforms and auth types.
"""
module = importlib.import_module(module_path)
# TODO(QL): always update the module to add subsequent new authentication without removing old ones
if hasattr(module, "_patched_for_streaming") and module._patched_for_streaming:
if isinstance(module._patched_for_streaming, DownloadConfig):
module._patched_for_streaming.token = download_config.token
module._patched_for_streaming.storage_options = download_config.storage_options
return
def wrap_auth(function):
@wraps(function)
def wrapper(*args, **kwargs):
return function(*args, download_config=download_config, **kwargs)
wrapper._decorator_name_ = "wrap_auth"
return wrapper
# open files in a streaming fashion
patch_submodule(module, "open", wrap_auth(xopen)).start()
patch_submodule(module, "os.listdir", wrap_auth(xlistdir)).start()
patch_submodule(module, "os.walk", wrap_auth(xwalk)).start()
patch_submodule(module, "glob.glob", wrap_auth(xglob)).start()
# allow to navigate in remote zip files
patch_submodule(module, "os.path.join", xjoin).start()
patch_submodule(module, "os.path.dirname", xdirname).start()
patch_submodule(module, "os.path.basename", xbasename).start()
patch_submodule(module, "os.path.relpath", xrelpath).start()
patch_submodule(module, "os.path.split", xsplit).start()
patch_submodule(module, "os.path.splitext", xsplitext).start()
# allow checks on paths
patch_submodule(module, "os.path.exists", wrap_auth(xexists)).start()
patch_submodule(module, "os.path.isdir", wrap_auth(xisdir)).start()
patch_submodule(module, "os.path.isfile", wrap_auth(xisfile)).start()
patch_submodule(module, "os.path.getsize", wrap_auth(xgetsize)).start()
patch_submodule(module, "pathlib.Path", xPath).start()
# file readers
patch_submodule(module, "gzip.open", wrap_auth(xgzip_open)).start()
patch_submodule(module, "numpy.load", wrap_auth(xnumpy_load)).start()
patch_submodule(module, "pandas.read_csv", wrap_auth(xpandas_read_csv), attrs=["__version__"]).start()
patch_submodule(module, "pandas.read_excel", wrap_auth(xpandas_read_excel), attrs=["__version__"]).start()
patch_submodule(module, "scipy.io.loadmat", wrap_auth(xsio_loadmat), attrs=["__version__"]).start()
patch_submodule(module, "xml.etree.ElementTree.parse", wrap_auth(xet_parse)).start()
patch_submodule(module, "xml.dom.minidom.parse", wrap_auth(xxml_dom_minidom_parse)).start()
module._patched_for_streaming = download_config
def extend_dataset_builder_for_streaming(builder: "DatasetBuilder"):
"""Extend the dataset builder module and the modules imported by it to support streaming.
Args:
builder (:class:`DatasetBuilder`): Dataset builder instance.
"""
# this extends the open and os.path.join functions for data streaming
download_config = DownloadConfig(storage_options=builder.storage_options, token=builder.token)
extend_module_for_streaming(builder.__module__, download_config=download_config)
# if needed, we also have to extend additional internal imports (like wmt14 -> wmt_utils)
if not builder.__module__.startswith("datasets."): # check that it's not a packaged builder like csv
for imports in get_imports(inspect.getfile(builder.__class__)):
if imports[0] == "internal":
internal_import_name = imports[1]
internal_module_name = ".".join(builder.__module__.split(".")[:-1] + [internal_import_name])
extend_module_for_streaming(internal_module_name, download_config=download_config)
# builders can inherit from other builders that might use streaming functionality
# (for example, ImageFolder and AudioFolder inherit from FolderBuilder which implements examples generation)
# but these parents builders are not patched automatically as they are not instantiated, so we patch them here
from .builder import DatasetBuilder
parent_builder_modules = [
cls.__module__
for cls in type(builder).__mro__[1:] # make sure it's not the same module we've already patched
if issubclass(cls, DatasetBuilder) and cls.__module__ != DatasetBuilder.__module__
] # check it's not a standard builder from datasets.builder
for module in parent_builder_modules:
extend_module_for_streaming(module, download_config=download_config)
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/dataset_dict.py | import contextlib
import copy
import json
import os
import posixpath
import re
import warnings
from fnmatch import fnmatch
from io import BytesIO
from pathlib import Path
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
import fsspec
import numpy as np
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from . import config
from .arrow_dataset import PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED, Dataset
from .download import DownloadConfig
from .features import Features
from .features.features import FeatureType
from .filesystems import extract_path_from_uri, is_remote_filesystem
from .info import DatasetInfo, DatasetInfosDict
from .naming import _split_re
from .splits import NamedSplit, Split, SplitDict, SplitInfo
from .table import Table
from .tasks import TaskTemplate
from .utils import logging
from .utils.deprecation_utils import deprecated
from .utils.doc_utils import is_documented_by
from .utils.file_utils import cached_path
from .utils.hub import hf_hub_url
from .utils.metadata import MetadataConfigs
from .utils.py_utils import asdict, glob_pattern_to_regex, string_to_dict
from .utils.typing import PathLike
logger = logging.get_logger(__name__)
class DatasetDict(dict):
"""A dictionary (dict of str: datasets.Dataset) with dataset transforms methods (map, filter, etc.)"""
def _check_values_type(self):
for dataset in self.values():
if not isinstance(dataset, Dataset):
raise TypeError(f"Values in `DatasetDict` should be of type `Dataset` but got type '{type(dataset)}'")
def _check_values_features(self):
items = list(self.items())
for item_a, item_b in zip(items[:-1], items[1:]):
if item_a[1].features != item_b[1].features:
raise ValueError(
f"All datasets in `DatasetDict` should have the same features but features for '{item_a[0]}' and '{item_b[0]}' don't match: {item_a[1].features} != {item_b[1].features}"
)
def __getitem__(self, k) -> Dataset:
if isinstance(k, (str, NamedSplit)) or len(self) == 0:
return super().__getitem__(k)
else:
available_suggested_splits = [
split for split in (Split.TRAIN, Split.TEST, Split.VALIDATION) if split in self
]
suggested_split = available_suggested_splits[0] if available_suggested_splits else list(self)[0]
raise KeyError(
f"Invalid key: {k}. Please first select a split. For example: "
f"`my_dataset_dictionary['{suggested_split}'][{k}]`. "
f"Available splits: {sorted(self)}"
)
@property
def data(self) -> Dict[str, Table]:
"""The Apache Arrow tables backing each split.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.data
```
"""
self._check_values_type()
return {k: dataset.data for k, dataset in self.items()}
@property
def cache_files(self) -> Dict[str, Dict]:
"""The cache files containing the Apache Arrow table backing each split.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.cache_files
{'test': [{'filename': '/root/.cache/huggingface/datasets/rotten_tomatoes_movie_review/default/1.0.0/40d411e45a6ce3484deed7cc15b82a53dad9a72aafd9f86f8f227134bec5ca46/rotten_tomatoes_movie_review-test.arrow'}],
'train': [{'filename': '/root/.cache/huggingface/datasets/rotten_tomatoes_movie_review/default/1.0.0/40d411e45a6ce3484deed7cc15b82a53dad9a72aafd9f86f8f227134bec5ca46/rotten_tomatoes_movie_review-train.arrow'}],
'validation': [{'filename': '/root/.cache/huggingface/datasets/rotten_tomatoes_movie_review/default/1.0.0/40d411e45a6ce3484deed7cc15b82a53dad9a72aafd9f86f8f227134bec5ca46/rotten_tomatoes_movie_review-validation.arrow'}]}
```
"""
self._check_values_type()
return {k: dataset.cache_files for k, dataset in self.items()}
@property
def num_columns(self) -> Dict[str, int]:
"""Number of columns in each split of the dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.num_columns
{'test': 2, 'train': 2, 'validation': 2}
```
"""
self._check_values_type()
return {k: dataset.num_columns for k, dataset in self.items()}
@property
def num_rows(self) -> Dict[str, int]:
"""Number of rows in each split of the dataset (same as :func:`datasets.Dataset.__len__`).
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.num_rows
{'test': 1066, 'train': 8530, 'validation': 1066}
```
"""
self._check_values_type()
return {k: dataset.num_rows for k, dataset in self.items()}
@property
def column_names(self) -> Dict[str, List[str]]:
"""Names of the columns in each split of the dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.column_names
{'test': ['text', 'label'],
'train': ['text', 'label'],
'validation': ['text', 'label']}
```
"""
self._check_values_type()
return {k: dataset.column_names for k, dataset in self.items()}
@property
def shape(self) -> Dict[str, Tuple[int]]:
"""Shape of each split of the dataset (number of columns, number of rows).
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.shape
{'test': (1066, 2), 'train': (8530, 2), 'validation': (1066, 2)}
```
"""
self._check_values_type()
return {k: dataset.shape for k, dataset in self.items()}
def flatten(self, max_depth=16) -> "DatasetDict":
"""Flatten the Apache Arrow Table of each split (nested features are flatten).
Each column with a struct type is flattened into one column per struct field.
Other columns are left unchanged.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("squad")
>>> ds["train"].features
{'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None),
'context': Value(dtype='string', id=None),
'id': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None),
'title': Value(dtype='string', id=None)}
>>> ds.flatten()
DatasetDict({
train: Dataset({
features: ['id', 'title', 'context', 'question', 'answers.text', 'answers.answer_start'],
num_rows: 87599
})
validation: Dataset({
features: ['id', 'title', 'context', 'question', 'answers.text', 'answers.answer_start'],
num_rows: 10570
})
})
```
"""
self._check_values_type()
return DatasetDict({k: dataset.flatten(max_depth=max_depth) for k, dataset in self.items()})
def unique(self, column: str) -> Dict[str, List]:
"""Return a list of the unique elements in a column for each split.
This is implemented in the low-level backend and as such, very fast.
Args:
column (`str`):
column name (list all the column names with [`~datasets.Dataset.column_names`])
Returns:
Dict[`str`, `list`]: Dictionary of unique elements in the given column.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.unique("label")
{'test': [1, 0], 'train': [1, 0], 'validation': [1, 0]}
```
"""
self._check_values_type()
return {k: dataset.unique(column) for k, dataset in self.items()}
def cleanup_cache_files(self) -> Dict[str, int]:
"""Clean up all cache files in the dataset cache directory, excepted the currently used cache file if there is one.
Be careful when running this command that no other process is currently using other cache files.
Return:
`Dict` with the number of removed files for each split
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.cleanup_cache_files()
{'test': 0, 'train': 0, 'validation': 0}
```
"""
self._check_values_type()
return {k: dataset.cleanup_cache_files() for k, dataset in self.items()}
def __repr__(self):
repr = "\n".join([f"{k}: {v}" for k, v in self.items()])
repr = re.sub(r"^", " " * 4, repr, 0, re.M)
return f"DatasetDict({{\n{repr}\n}})"
def cast(self, features: Features) -> "DatasetDict":
"""
Cast the dataset to a new set of features.
The transformation is applied to all the datasets of the dataset dictionary.
You can also remove a column using [`Dataset.map`] with `feature` but `cast`
is in-place (doesn't copy the data to a new dataset) and is thus faster.
Args:
features ([`Features`]):
New features to cast the dataset to.
The name and order of the fields in the features must match the current column names.
The type of the data must also be convertible from one type to the other.
For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`~Dataset.map`] to update the Dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> new_features = ds["train"].features.copy()
>>> new_features['label'] = ClassLabel(names=['bad', 'good'])
>>> new_features['text'] = Value('large_string')
>>> ds = ds.cast(new_features)
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='large_string', id=None)}
```
"""
self._check_values_type()
return DatasetDict({k: dataset.cast(features=features) for k, dataset in self.items()})
def cast_column(self, column: str, feature) -> "DatasetDict":
"""Cast column to feature for decoding.
Args:
column (`str`):
Column name.
feature ([`Feature`]):
Target feature.
Returns:
[`DatasetDict`]
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> ds = ds.cast_column('label', ClassLabel(names=['bad', 'good']))
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='string', id=None)}
```
"""
self._check_values_type()
return DatasetDict({k: dataset.cast_column(column=column, feature=feature) for k, dataset in self.items()})
def remove_columns(self, column_names: Union[str, List[str]]) -> "DatasetDict":
"""
Remove one or several column(s) from each split in the dataset
and the features associated to the column(s).
The transformation is applied to all the splits of the dataset dictionary.
You can also remove a column using [`Dataset.map`] with `remove_columns` but the present method
is in-place (doesn't copy the data to a new dataset) and is thus faster.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to remove.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.remove_columns("label")
DatasetDict({
train: Dataset({
features: ['text'],
num_rows: 8530
})
validation: Dataset({
features: ['text'],
num_rows: 1066
})
test: Dataset({
features: ['text'],
num_rows: 1066
})
})
```
"""
self._check_values_type()
return DatasetDict({k: dataset.remove_columns(column_names=column_names) for k, dataset in self.items()})
def rename_column(self, original_column_name: str, new_column_name: str) -> "DatasetDict":
"""
Rename a column in the dataset and move the features associated to the original column under the new column name.
The transformation is applied to all the datasets of the dataset dictionary.
You can also rename a column using [`~Dataset.map`] with `remove_columns` but the present method:
- takes care of moving the original features under the new column name.
- doesn't copy the data to a new dataset and is thus much faster.
Args:
original_column_name (`str`):
Name of the column to rename.
new_column_name (`str`):
New name for the column.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.rename_column("label", "label_new")
DatasetDict({
train: Dataset({
features: ['text', 'label_new'],
num_rows: 8530
})
validation: Dataset({
features: ['text', 'label_new'],
num_rows: 1066
})
test: Dataset({
features: ['text', 'label_new'],
num_rows: 1066
})
})
```
"""
self._check_values_type()
return DatasetDict(
{
k: dataset.rename_column(original_column_name=original_column_name, new_column_name=new_column_name)
for k, dataset in self.items()
}
)
def rename_columns(self, column_mapping: Dict[str, str]) -> "DatasetDict":
"""
Rename several columns in the dataset, and move the features associated to the original columns under
the new column names.
The transformation is applied to all the datasets of the dataset dictionary.
Args:
column_mapping (`Dict[str, str]`):
A mapping of columns to rename to their new names.
Returns:
[`DatasetDict`]: A copy of the dataset with renamed columns.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.rename_columns({'text': 'text_new', 'label': 'label_new'})
DatasetDict({
train: Dataset({
features: ['text_new', 'label_new'],
num_rows: 8530
})
validation: Dataset({
features: ['text_new', 'label_new'],
num_rows: 1066
})
test: Dataset({
features: ['text_new', 'label_new'],
num_rows: 1066
})
})
```
"""
self._check_values_type()
return DatasetDict({k: dataset.rename_columns(column_mapping=column_mapping) for k, dataset in self.items()})
def select_columns(self, column_names: Union[str, List[str]]) -> "DatasetDict":
"""Select one or several column(s) from each split in the dataset and
the features associated to the column(s).
The transformation is applied to all the splits of the dataset
dictionary.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to keep.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.select_columns("text")
DatasetDict({
train: Dataset({
features: ['text'],
num_rows: 8530
})
validation: Dataset({
features: ['text'],
num_rows: 1066
})
test: Dataset({
features: ['text'],
num_rows: 1066
})
})
```
"""
self._check_values_type()
return DatasetDict({k: dataset.select_columns(column_names=column_names) for k, dataset in self.items()})
def class_encode_column(self, column: str, include_nulls: bool = False) -> "DatasetDict":
"""Casts the given column as [`~datasets.features.ClassLabel`] and updates the tables.
Args:
column (`str`):
The name of the column to cast.
include_nulls (`bool`, defaults to `False`):
Whether to include null values in the class labels. If `True`, the null values will be encoded as the `"None"` class label.
<Added version="1.14.2"/>
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("boolq")
>>> ds["train"].features
{'answer': Value(dtype='bool', id=None),
'passage': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None)}
>>> ds = ds.class_encode_column("answer")
>>> ds["train"].features
{'answer': ClassLabel(num_classes=2, names=['False', 'True'], id=None),
'passage': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None)}
```
"""
self._check_values_type()
return DatasetDict(
{k: dataset.class_encode_column(column=column, include_nulls=include_nulls) for k, dataset in self.items()}
)
@contextlib.contextmanager
def formatted_as(
self,
type: Optional[str] = None,
columns: Optional[List] = None,
output_all_columns: bool = False,
**format_kwargs,
):
"""To be used in a `with` statement. Set `__getitem__` return format (type and columns).
The transformation is applied to all the datasets of the dataset dictionary.
Args:
type (`str`, *optional*):
Output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'pandas', 'arrow', 'jax']`.
`None` means `__getitem__` returns python objects (default).
columns (`List[str]`, *optional*):
Columns to format in the output.
`None` means `__getitem__` returns all columns (default).
output_all_columns (`bool`, defaults to False):
Keep un-formatted columns as well in the output (as python objects).
**format_kwargs (additional keyword arguments):
Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.
"""
self._check_values_type()
old_format_type = {k: dataset._format_type for k, dataset in self.items()}
old_format_kwargs = {k: dataset._format_kwargs for k, dataset in self.items()}
old_format_columns = {k: dataset._format_columns for k, dataset in self.items()}
old_output_all_columns = {k: dataset._output_all_columns for k, dataset in self.items()}
try:
self.set_format(type, columns, output_all_columns, **format_kwargs)
yield
finally:
for k, dataset in self.items():
dataset.set_format(
old_format_type[k], old_format_columns[k], old_output_all_columns[k], **old_format_kwargs[k]
)
def set_format(
self,
type: Optional[str] = None,
columns: Optional[List] = None,
output_all_columns: bool = False,
**format_kwargs,
):
"""Set `__getitem__` return format (type and columns).
The format is set for every dataset in the dataset dictionary.
Args:
type (`str`, *optional*):
Output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'pandas', 'arrow', 'jax']`.
`None` means `__getitem__` returns python objects (default).
columns (`List[str]`, *optional*):
Columns to format in the output.
`None` means `__getitem__` returns all columns (default).
output_all_columns (`bool`, defaults to False):
Keep un-formatted columns as well in the output (as python objects),
**format_kwargs (additional keyword arguments):
Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.
It is possible to call `map` after calling `set_format`. Since `map` may add new columns, then the list of formatted columns
gets updated. In this case, if you apply `map` on a dataset to add a new column, then this column will be formatted:
`new formatted columns = (all columns - previously unformatted columns)`
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> ds = ds.map(lambda x: tokenizer(x["text"], truncation=True, padding=True), batched=True)
>>> ds.set_format(type="numpy", columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'])
>>> ds["train"].format
{'columns': ['input_ids', 'token_type_ids', 'attention_mask', 'label'],
'format_kwargs': {},
'output_all_columns': False,
'type': 'numpy'}
```
"""
self._check_values_type()
for dataset in self.values():
dataset.set_format(type=type, columns=columns, output_all_columns=output_all_columns, **format_kwargs)
def reset_format(self):
"""Reset `__getitem__` return format to python objects and all columns.
The transformation is applied to all the datasets of the dataset dictionary.
Same as `self.set_format()`
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> ds = ds.map(lambda x: tokenizer(x["text"], truncation=True, padding=True), batched=True)
>>> ds.set_format(type="numpy", columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'])
>>> ds["train"].format
{'columns': ['input_ids', 'token_type_ids', 'attention_mask', 'label'],
'format_kwargs': {},
'output_all_columns': False,
'type': 'numpy'}
>>> ds.reset_format()
>>> ds["train"].format
{'columns': ['text', 'label', 'input_ids', 'token_type_ids', 'attention_mask'],
'format_kwargs': {},
'output_all_columns': False,
'type': None}
```
"""
self._check_values_type()
for dataset in self.values():
dataset.set_format()
def set_transform(
self,
transform: Optional[Callable],
columns: Optional[List] = None,
output_all_columns: bool = False,
):
"""Set ``__getitem__`` return format using this transform. The transform is applied on-the-fly on batches when ``__getitem__`` is called.
The transform is set for every dataset in the dataset dictionary
As :func:`datasets.Dataset.set_format`, this can be reset using :func:`datasets.Dataset.reset_format`
Args:
transform (`Callable`, optional): user-defined formatting transform, replaces the format defined by :func:`datasets.Dataset.set_format`
A formatting function is a callable that takes a batch (as a dict) as input and returns a batch.
This function is applied right before returning the objects in ``__getitem__``.
columns (`List[str]`, optional): columns to format in the output
If specified, then the input batch of the transform only contains those columns.
output_all_columns (`bool`, default to False): keep un-formatted columns as well in the output (as python objects)
If set to True, then the other un-formatted columns are kept with the output of the transform.
"""
self._check_values_type()
for dataset in self.values():
dataset.set_format("custom", columns=columns, output_all_columns=output_all_columns, transform=transform)
def with_format(
self,
type: Optional[str] = None,
columns: Optional[List] = None,
output_all_columns: bool = False,
**format_kwargs,
) -> "DatasetDict":
"""Set `__getitem__` return format (type and columns). The data formatting is applied on-the-fly.
The format `type` (for example "numpy") is used to format batches when using `__getitem__`.
The format is set for every dataset in the dataset dictionary.
It's also possible to use custom transforms for formatting using [`~datasets.Dataset.with_transform`].
Contrary to [`~datasets.DatasetDict.set_format`], `with_format` returns a new [`DatasetDict`] object with new [`Dataset`] objects.
Args:
type (`str`, *optional*):
Output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'pandas', 'arrow', 'jax']`.
`None` means `__getitem__` returns python objects (default).
columns (`List[str]`, *optional*):
Columns to format in the output.
`None` means `__getitem__` returns all columns (default).
output_all_columns (`bool`, defaults to `False`):
Keep un-formatted columns as well in the output (as python objects).
**format_kwargs (additional keyword arguments):
Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)
>>> ds["train"].format
{'columns': ['text', 'label', 'input_ids', 'token_type_ids', 'attention_mask'],
'format_kwargs': {},
'output_all_columns': False,
'type': None}
>>> ds = ds.with_format(type='tensorflow', columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'])
>>> ds["train"].format
{'columns': ['input_ids', 'token_type_ids', 'attention_mask', 'label'],
'format_kwargs': {},
'output_all_columns': False,
'type': 'tensorflow'}
```
"""
dataset = copy.deepcopy(self)
dataset.set_format(type=type, columns=columns, output_all_columns=output_all_columns, **format_kwargs)
return dataset
def with_transform(
self,
transform: Optional[Callable],
columns: Optional[List] = None,
output_all_columns: bool = False,
) -> "DatasetDict":
"""Set `__getitem__` return format using this transform. The transform is applied on-the-fly on batches when `__getitem__` is called.
The transform is set for every dataset in the dataset dictionary
As [`~datasets.Dataset.set_format`], this can be reset using [`~datasets.Dataset.reset_format`].
Contrary to [`~datasets.DatasetDict.set_transform`], `with_transform` returns a new [`DatasetDict`] object with new [`Dataset`] objects.
Args:
transform (`Callable`, *optional*):
User-defined formatting transform, replaces the format defined by [`~datasets.Dataset.set_format`].
A formatting function is a callable that takes a batch (as a dict) as input and returns a batch.
This function is applied right before returning the objects in `__getitem__`.
columns (`List[str]`, *optional*):
Columns to format in the output.
If specified, then the input batch of the transform only contains those columns.
output_all_columns (`bool`, defaults to False):
Keep un-formatted columns as well in the output (as python objects).
If set to `True`, then the other un-formatted columns are kept with the output of the transform.
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> def encode(example):
... return tokenizer(example['text'], truncation=True, padding=True, return_tensors="pt")
>>> ds = ds.with_transform(encode)
>>> ds["train"][0]
{'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1]),
'input_ids': tensor([ 101, 1103, 2067, 1110, 17348, 1106, 1129, 1103, 6880, 1432,
112, 188, 1207, 107, 14255, 1389, 107, 1105, 1115, 1119,
112, 188, 1280, 1106, 1294, 170, 24194, 1256, 3407, 1190,
170, 11791, 5253, 188, 1732, 7200, 10947, 12606, 2895, 117,
179, 7766, 118, 172, 15554, 1181, 3498, 6961, 3263, 1137,
188, 1566, 7912, 14516, 6997, 119, 102]),
'token_type_ids': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0])}
```
"""
dataset = copy.deepcopy(self)
dataset.set_transform(transform=transform, columns=columns, output_all_columns=output_all_columns)
return dataset
def map(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
with_rank: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[Union[str, List[str]]] = None,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
cache_file_names: Optional[Dict[str, Optional[str]]] = None,
writer_batch_size: Optional[int] = 1000,
features: Optional[Features] = None,
disable_nullable: bool = False,
fn_kwargs: Optional[dict] = None,
num_proc: Optional[int] = None,
desc: Optional[str] = None,
) -> "DatasetDict":
"""Apply a function to all the elements in the table (individually or in batches)
and update the table (if function does updated examples).
The transformation is applied to all the datasets of the dataset dictionary.
Args:
function (`callable`): with one of the following signature:
- `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
- `function(example: Dict[str, Any], indices: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
- `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False`
- `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True`
For advanced usage, the function can also return a `pyarrow.Table`.
Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
with_rank (`bool`, defaults to `False`):
Provide process rank to `function`. Note that in this case the
signature of `function` should be `def function(example[, idx], rank): ...`.
input_columns (`[Union[str, List[str]]]`, *optional*, defaults to `None`):
The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`,
`batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
drop_last_batch (`bool`, defaults to `False`):
Whether a last batch smaller than the batch_size should be
dropped instead of being processed by the function.
remove_columns (`[Union[str, List[str]]]`, *optional*, defaults to `None`):
Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
cache_file_names (`[Dict[str, str]]`, *optional*, defaults to `None`):
Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
You have to provide one `cache_file_name` per dataset in the dataset dictionary.
writer_batch_size (`int`, default `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
features (`[datasets.Features]`, *optional*, defaults to `None`):
Use a specific [`Features`] to store the cache file
instead of the automatically generated one.
disable_nullable (`bool`, defaults to `False`):
Disallow null values in the table.
fn_kwargs (`Dict`, *optional*, defaults to `None`):
Keyword arguments to be passed to `function`
num_proc (`int`, *optional*, defaults to `None`):
Number of processes for multiprocessing. By default it doesn't
use multiprocessing.
desc (`str`, *optional*, defaults to `None`):
Meaningful description to be displayed alongside with the progress bar while mapping examples.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> def add_prefix(example):
... example["text"] = "Review: " + example["text"]
... return example
>>> ds = ds.map(add_prefix)
>>> ds["train"][0:3]["text"]
['Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .',
'Review: the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .',
'Review: effective but too-tepid biopic']
# process a batch of examples
>>> ds = ds.map(lambda example: tokenizer(example["text"]), batched=True)
# set number of processors
>>> ds = ds.map(add_prefix, num_proc=4)
```
"""
self._check_values_type()
if cache_file_names is None:
cache_file_names = {k: None for k in self}
return DatasetDict(
{
k: dataset.map(
function=function,
with_indices=with_indices,
with_rank=with_rank,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
drop_last_batch=drop_last_batch,
remove_columns=remove_columns,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
cache_file_name=cache_file_names[k],
writer_batch_size=writer_batch_size,
features=features,
disable_nullable=disable_nullable,
fn_kwargs=fn_kwargs,
num_proc=num_proc,
desc=desc,
)
for k, dataset in self.items()
}
)
def filter(
self,
function,
with_indices=False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
cache_file_names: Optional[Dict[str, Optional[str]]] = None,
writer_batch_size: Optional[int] = 1000,
fn_kwargs: Optional[dict] = None,
num_proc: Optional[int] = None,
desc: Optional[str] = None,
) -> "DatasetDict":
"""Apply a filter function to all the elements in the table in batches
and update the table so that the dataset only includes examples according to the filter function.
The transformation is applied to all the datasets of the dataset dictionary.
Args:
function (`callable`):
With one of the following signature:
- `function(example: Dict[str, Any]) -> bool` if `with_indices=False, batched=False`
- `function(example: Dict[str, Any], indices: int) -> bool` if `with_indices=True, batched=False`
- `function(example: Dict[str, List]) -> List[bool]` if `with_indices=False, batched=True`
- `function(example: Dict[str, List], indices: List[int]) -> List[bool]` if ``with_indices=True, batched=True`
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
input_columns (`[Union[str, List[str]]]`, *optional*, defaults to `None`):
The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`
`batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if chaching is enabled):
If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
cache_file_names (`[Dict[str, str]]`, *optional*, defaults to `None`):
Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
You have to provide one `cache_file_name` per dataset in the dataset dictionary.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
fn_kwargs (`Dict`, *optional*, defaults to `None`):
Keyword arguments to be passed to `function`
num_proc (`int`, *optional*, defaults to `None`):
Number of processes for multiprocessing. By default it doesn't
use multiprocessing.
desc (`str`, *optional*, defaults to `None`):
Meaningful description to be displayed alongside with the progress bar while filtering examples.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.filter(lambda x: x["label"] == 1)
DatasetDict({
train: Dataset({
features: ['text', 'label'],
num_rows: 4265
})
validation: Dataset({
features: ['text', 'label'],
num_rows: 533
})
test: Dataset({
features: ['text', 'label'],
num_rows: 533
})
})
```
"""
self._check_values_type()
if cache_file_names is None:
cache_file_names = {k: None for k in self}
return DatasetDict(
{
k: dataset.filter(
function=function,
with_indices=with_indices,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
cache_file_name=cache_file_names[k],
writer_batch_size=writer_batch_size,
fn_kwargs=fn_kwargs,
num_proc=num_proc,
desc=desc,
)
for k, dataset in self.items()
}
)
def flatten_indices(
self,
keep_in_memory: bool = False,
cache_file_names: Optional[Dict[str, Optional[str]]] = None,
writer_batch_size: Optional[int] = 1000,
features: Optional[Features] = None,
disable_nullable: bool = False,
num_proc: Optional[int] = None,
new_fingerprint: Optional[str] = None,
) -> "DatasetDict":
"""Create and cache a new Dataset by flattening the indices mapping.
Args:
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
cache_file_names (`Dict[str, str]`, *optional*, default `None`):
Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
You have to provide one `cache_file_name` per dataset in the dataset dictionary.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
features (`Optional[datasets.Features]`, defaults to `None`):
Use a specific [`Features`] to store the cache file
instead of the automatically generated one.
disable_nullable (`bool`, defaults to `False`):
Allow null values in the table.
num_proc (`int`, optional, default `None`):
Max number of processes when generating cache. Already cached shards are loaded sequentially
new_fingerprint (`str`, *optional*, defaults to `None`):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
"""
self._check_values_type()
if cache_file_names is None:
cache_file_names = {k: None for k in self}
return DatasetDict(
{
k: dataset.flatten_indices(
keep_in_memory=keep_in_memory,
cache_file_name=cache_file_names[k],
writer_batch_size=writer_batch_size,
features=features,
disable_nullable=disable_nullable,
num_proc=num_proc,
new_fingerprint=new_fingerprint,
)
for k, dataset in self.items()
}
)
def sort(
self,
column_names: Union[str, Sequence[str]],
reverse: Union[bool, Sequence[bool]] = False,
kind="deprecated",
null_placement: str = "at_end",
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
indices_cache_file_names: Optional[Dict[str, Optional[str]]] = None,
writer_batch_size: Optional[int] = 1000,
) -> "DatasetDict":
"""Create a new dataset sorted according to a single or multiple columns.
Args:
column_names (`Union[str, Sequence[str]]`):
Column name(s) to sort by.
reverse (`Union[bool, Sequence[bool]]`, defaults to `False`):
If `True`, sort by descending order rather than ascending. If a single bool is provided,
the value is applied to the sorting of all column names. Otherwise a list of bools with the
same length and order as column_names must be provided.
kind (`str`, *optional*):
Pandas algorithm for sorting selected in `{quicksort, mergesort, heapsort, stable}`,
The default is `quicksort`. Note that both `stable` and `mergesort` use timsort under the covers and, in general,
the actual implementation will vary with data type. The `mergesort` option is retained for backwards compatibility.
<Deprecated version="2.8.0">
`kind` was deprecated in version 2.10.0 and will be removed in 3.0.0.
</Deprecated>
null_placement (`str`, defaults to `at_end`):
Put `None` values at the beginning if `at_start` or `first` or at the end if `at_end` or `last`
keep_in_memory (`bool`, defaults to `False`):
Keep the sorted indices in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the sorted indices
can be identified, use it instead of recomputing.
indices_cache_file_names (`[Dict[str, str]]`, *optional*, defaults to `None`):
Provide the name of a path for the cache file. It is used to store the
indices mapping instead of the automatically generated cache file name.
You have to provide one `cache_file_name` per dataset in the dataset dictionary.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes')
>>> ds['train']['label'][:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> sorted_ds = ds.sort('label')
>>> sorted_ds['train']['label'][:10]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> another_sorted_ds = ds.sort(['label', 'text'], reverse=[True, False])
>>> another_sorted_ds['train']['label'][:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```
"""
self._check_values_type()
if indices_cache_file_names is None:
indices_cache_file_names = {k: None for k in self}
return DatasetDict(
{
k: dataset.sort(
column_names=column_names,
reverse=reverse,
kind=kind,
null_placement=null_placement,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
indices_cache_file_name=indices_cache_file_names[k],
writer_batch_size=writer_batch_size,
)
for k, dataset in self.items()
}
)
def shuffle(
self,
seeds: Optional[Union[int, Dict[str, Optional[int]]]] = None,
seed: Optional[int] = None,
generators: Optional[Dict[str, np.random.Generator]] = None,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
indices_cache_file_names: Optional[Dict[str, Optional[str]]] = None,
writer_batch_size: Optional[int] = 1000,
) -> "DatasetDict":
"""Create a new Dataset where the rows are shuffled.
The transformation is applied to all the datasets of the dataset dictionary.
Currently shuffling uses numpy random generators.
You can either supply a NumPy BitGenerator to use, or a seed to initiate NumPy's default random generator (PCG64).
Args:
seeds (`Dict[str, int]` or `int`, *optional*):
A seed to initialize the default BitGenerator if `generator=None`.
If `None`, then fresh, unpredictable entropy will be pulled from the OS.
If an `int` or `array_like[ints]` is passed, then it will be passed to SeedSequence to derive the initial BitGenerator state.
You can provide one `seed` per dataset in the dataset dictionary.
seed (`int`, *optional*):
A seed to initialize the default BitGenerator if `generator=None`. Alias for seeds (a `ValueError` is raised if both are provided).
generators (`Dict[str, *optional*, np.random.Generator]`):
Numpy random Generator to use to compute the permutation of the dataset rows.
If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
You have to provide one `generator` per dataset in the dataset dictionary.
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
indices_cache_file_names (`Dict[str, str]`, *optional*):
Provide the name of a path for the cache file. It is used to store the
indices mappings instead of the automatically generated cache file name.
You have to provide one `cache_file_name` per dataset in the dataset dictionary.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds["train"]["label"][:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
# set a seed
>>> shuffled_ds = ds.shuffle(seed=42)
>>> shuffled_ds["train"]["label"][:10]
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0]
```
"""
self._check_values_type()
if seed is not None and seeds is not None:
raise ValueError("Please specify seed or seeds, but not both")
seeds = seed if seed is not None else seeds
if seeds is None:
seeds = {k: None for k in self}
elif not isinstance(seeds, dict):
seeds = {k: seeds for k in self}
if generators is None:
generators = {k: None for k in self}
if indices_cache_file_names is None:
indices_cache_file_names = {k: None for k in self}
return DatasetDict(
{
k: dataset.shuffle(
seed=seeds[k],
generator=generators[k],
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
indices_cache_file_name=indices_cache_file_names[k],
writer_batch_size=writer_batch_size,
)
for k, dataset in self.items()
}
)
def save_to_disk(
self,
dataset_dict_path: PathLike,
fs="deprecated",
max_shard_size: Optional[Union[str, int]] = None,
num_shards: Optional[Dict[str, int]] = None,
num_proc: Optional[int] = None,
storage_options: Optional[dict] = None,
):
"""
Saves a dataset dict to a filesystem using `fsspec.spec.AbstractFileSystem`.
For [`Image`] and [`Audio`] data:
All the Image() and Audio() data are stored in the arrow files.
If you want to store paths or urls, please use the Value("string") type.
Args:
dataset_dict_path (`str`):
Path (e.g. `dataset/train`) or remote URI
(e.g. `s3://my-bucket/dataset/train`) of the dataset dict directory where the dataset dict will be
saved to.
fs (`fsspec.spec.AbstractFileSystem`, *optional*):
Instance of the remote filesystem where the dataset will be saved to.
<Deprecated version="2.8.0">
`fs` was deprecated in version 2.8.0 and will be removed in 3.0.0.
Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`
</Deprecated>
max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by a unit
(like `"50MB"`).
num_shards (`Dict[str, int]`, *optional*):
Number of shards to write. By default the number of shards depends on `max_shard_size` and `num_proc`.
You need to provide the number of shards for each dataset in the dataset dictionary.
Use a dictionary to define a different num_shards for each split.
<Added version="2.8.0"/>
num_proc (`int`, *optional*, default `None`):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.8.0"/>
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.8.0"/>
Example:
```python
>>> dataset_dict.save_to_disk("path/to/dataset/directory")
>>> dataset_dict.save_to_disk("path/to/dataset/directory", max_shard_size="1GB")
>>> dataset_dict.save_to_disk("path/to/dataset/directory", num_shards={"train": 1024, "test": 8})
```
"""
if fs != "deprecated":
warnings.warn(
"'fs' was deprecated in favor of 'storage_options' in version 2.8.0 and will be removed in 3.0.0.\n"
"You can remove this warning by passing 'storage_options=fs.storage_options' instead.",
FutureWarning,
)
storage_options = fs.storage_options
fs_token_paths = fsspec.get_fs_token_paths(dataset_dict_path, storage_options=storage_options)
fs: fsspec.AbstractFileSystem = fs_token_paths[0]
is_local = not is_remote_filesystem(fs)
path_join = os.path.join if is_local else posixpath.join
if num_shards is None:
num_shards = {k: None for k in self}
elif not isinstance(num_shards, dict):
raise ValueError(
"Please provide one `num_shards` per dataset in the dataset dictionary, e.g. {{'train': 128, 'test': 4}}"
)
if is_local:
Path(dataset_dict_path).resolve().mkdir(parents=True, exist_ok=True)
else:
fs.makedirs(dataset_dict_path, exist_ok=True)
with fs.open(path_join(dataset_dict_path, config.DATASETDICT_JSON_FILENAME), "w", encoding="utf-8") as f:
json.dump({"splits": list(self)}, f)
for k, dataset in self.items():
dataset.save_to_disk(
path_join(dataset_dict_path, k),
num_shards=num_shards.get(k),
max_shard_size=max_shard_size,
num_proc=num_proc,
storage_options=storage_options,
)
@staticmethod
def load_from_disk(
dataset_dict_path: PathLike,
fs="deprecated",
keep_in_memory: Optional[bool] = None,
storage_options: Optional[dict] = None,
) -> "DatasetDict":
"""
Load a dataset that was previously saved using [`save_to_disk`] from a filesystem using `fsspec.spec.AbstractFileSystem`.
Args:
dataset_dict_path (`str`):
Path (e.g. `"dataset/train"`) or remote URI (e.g. `"s3//my-bucket/dataset/train"`)
of the dataset dict directory where the dataset dict will be loaded from.
fs (`fsspec.spec.AbstractFileSystem`, *optional*):
Instance of the remote filesystem where the dataset will be saved to.
<Deprecated version="2.8.0">
`fs` was deprecated in version 2.8.0 and will be removed in 3.0.0.
Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`
</Deprecated>
keep_in_memory (`bool`, defaults to `None`):
Whether to copy the dataset in-memory. If `None`, the
dataset will not be copied in-memory unless explicitly enabled by setting
`datasets.config.IN_MEMORY_MAX_SIZE` to nonzero. See more details in the
[improve performance](../cache#improve-performance) section.
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.8.0"/>
Returns:
[`DatasetDict`]
Example:
```py
>>> ds = load_from_disk('path/to/dataset/directory')
```
"""
if fs != "deprecated":
warnings.warn(
"'fs' was deprecated in favor of 'storage_options' in version 2.8.0 and will be removed in 3.0.0.\n"
"You can remove this warning by passing 'storage_options=fs.storage_options' instead.",
FutureWarning,
)
storage_options = fs.storage_options
fs_token_paths = fsspec.get_fs_token_paths(dataset_dict_path, storage_options=storage_options)
fs: fsspec.AbstractFileSystem = fs_token_paths[0]
if is_remote_filesystem(fs):
dest_dataset_dict_path = extract_path_from_uri(dataset_dict_path)
path_join = posixpath.join
else:
fs = fsspec.filesystem("file")
dest_dataset_dict_path = dataset_dict_path
path_join = os.path.join
dataset_dict_json_path = path_join(dest_dataset_dict_path, config.DATASETDICT_JSON_FILENAME)
dataset_state_json_path = path_join(dest_dataset_dict_path, config.DATASET_STATE_JSON_FILENAME)
dataset_info_path = path_join(dest_dataset_dict_path, config.DATASET_INFO_FILENAME)
if not fs.isfile(dataset_dict_json_path):
if fs.isfile(dataset_info_path) and fs.isfile(dataset_state_json_path):
raise FileNotFoundError(
f"No such file: '{dataset_dict_json_path}'. Expected to load a `DatasetDict` object, but got a `Dataset`. Please use either `datasets.load_from_disk` or `Dataset.load_from_disk` instead."
)
raise FileNotFoundError(
f"No such file: '{dataset_dict_json_path}'. Expected to load a `DatasetDict` object, but provided path is not a `DatasetDict`."
)
with fs.open(dataset_dict_json_path, "r", encoding="utf-8") as f:
splits = json.load(f)["splits"]
dataset_dict = DatasetDict()
for k in splits:
dataset_dict_split_path = (
dataset_dict_path.split("://")[0] + "://" + path_join(dest_dataset_dict_path, k)
if is_remote_filesystem(fs)
else path_join(dest_dataset_dict_path, k)
)
dataset_dict[k] = Dataset.load_from_disk(
dataset_dict_split_path, keep_in_memory=keep_in_memory, storage_options=storage_options
)
return dataset_dict
@staticmethod
def from_csv(
path_or_paths: Dict[str, PathLike],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
) -> "DatasetDict":
"""Create [`DatasetDict`] from CSV file(s).
Args:
path_or_paths (`dict` of path-like):
Path(s) of the CSV file(s).
features ([`Features`], *optional*):
Dataset features.
cache_dir (str, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`pandas.read_csv`].
Returns:
[`DatasetDict`]
Example:
```py
>>> from datasets import DatasetDict
>>> ds = DatasetDict.from_csv({'train': 'path/to/dataset.csv'})
```
"""
# Dynamic import to avoid circular dependency
from .io.csv import CsvDatasetReader
return CsvDatasetReader(
path_or_paths, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs
).read()
@staticmethod
def from_json(
path_or_paths: Dict[str, PathLike],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
) -> "DatasetDict":
"""Create [`DatasetDict`] from JSON Lines file(s).
Args:
path_or_paths (`path-like` or list of `path-like`):
Path(s) of the JSON Lines file(s).
features ([`Features`], *optional*):
Dataset features.
cache_dir (str, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`JsonConfig`].
Returns:
[`DatasetDict`]
Example:
```py
>>> from datasets import DatasetDict
>>> ds = DatasetDict.from_json({'train': 'path/to/dataset.json'})
```
"""
# Dynamic import to avoid circular dependency
from .io.json import JsonDatasetReader
return JsonDatasetReader(
path_or_paths, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs
).read()
@staticmethod
def from_parquet(
path_or_paths: Dict[str, PathLike],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
columns: Optional[List[str]] = None,
**kwargs,
) -> "DatasetDict":
"""Create [`DatasetDict`] from Parquet file(s).
Args:
path_or_paths (`dict` of path-like):
Path(s) of the CSV file(s).
features ([`Features`], *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
columns (`List[str]`, *optional*):
If not `None`, only these columns will be read from the file.
A column name may be a prefix of a nested field, e.g. 'a' will select
'a.b', 'a.c', and 'a.d.e'.
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`ParquetConfig`].
Returns:
[`DatasetDict`]
Example:
```py
>>> from datasets import DatasetDict
>>> ds = DatasetDict.from_parquet({'train': 'path/to/dataset/parquet'})
```
"""
# Dynamic import to avoid circular dependency
from .io.parquet import ParquetDatasetReader
return ParquetDatasetReader(
path_or_paths,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
columns=columns,
**kwargs,
).read()
@staticmethod
def from_text(
path_or_paths: Dict[str, PathLike],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
) -> "DatasetDict":
"""Create [`DatasetDict`] from text file(s).
Args:
path_or_paths (`dict` of path-like):
Path(s) of the text file(s).
features ([`Features`], *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`TextConfig`].
Returns:
[`DatasetDict`]
Example:
```py
>>> from datasets import DatasetDict
>>> ds = DatasetDict.from_text({'train': 'path/to/dataset.txt'})
```
"""
# Dynamic import to avoid circular dependency
from .io.text import TextDatasetReader
return TextDatasetReader(
path_or_paths, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs
).read()
@deprecated()
@is_documented_by(Dataset.prepare_for_task)
def prepare_for_task(self, task: Union[str, TaskTemplate], id: int = 0) -> "DatasetDict":
self._check_values_type()
return DatasetDict({k: dataset.prepare_for_task(task=task, id=id) for k, dataset in self.items()})
@is_documented_by(Dataset.align_labels_with_mapping)
def align_labels_with_mapping(self, label2id: Dict, label_column: str) -> "DatasetDict":
self._check_values_type()
return DatasetDict(
{
k: dataset.align_labels_with_mapping(label2id=label2id, label_column=label_column)
for k, dataset in self.items()
}
)
def push_to_hub(
self,
repo_id,
config_name: str = "default",
private: Optional[bool] = False,
token: Optional[str] = None,
branch: Optional[None] = None,
max_shard_size: Optional[Union[int, str]] = None,
num_shards: Optional[Dict[str, int]] = None,
embed_external_files: bool = True,
):
"""Pushes the [`DatasetDict`] to the hub as a Parquet dataset.
The [`DatasetDict`] is pushed using HTTP requests and does not need to have neither git or git-lfs installed.
Each dataset split will be pushed independently. The pushed dataset will keep the original split names.
The resulting Parquet files are self-contained by default: if your dataset contains [`Image`] or [`Audio`]
data, the Parquet files will store the bytes of your images or audio files.
You can disable this by setting `embed_external_files` to False.
Args:
repo_id (`str`):
The ID of the repository to push to in the following format: `<user>/<dataset_name>` or
`<org>/<dataset_name>`. Also accepts `<dataset_name>`, which will default to the namespace
of the logged-in user.
private (`bool`, *optional*):
Whether the dataset repository should be set to private or not. Only affects repository creation:
a repository that already exists will not be affected by that parameter.
config_name (`str`):
Configuration name of a dataset. Defaults to "default".
token (`str`, *optional*):
An optional authentication token for the Hugging Face Hub. If no token is passed, will default
to the token saved locally when logging in with `huggingface-cli login`. Will raise an error
if no token is passed and the user is not logged-in.
branch (`str`, *optional*):
The git branch on which to push the dataset.
max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by a unit
(like `"500MB"` or `"1GB"`).
num_shards (`Dict[str, int]`, *optional*):
Number of shards to write. By default the number of shards depends on `max_shard_size`.
Use a dictionary to define a different num_shards for each split.
<Added version="2.8.0"/>
embed_external_files (`bool`, defaults to `True`):
Whether to embed file bytes in the shards.
In particular, this will do the following before the push for the fields of type:
- [`Audio`] and [`Image`] removes local path information and embed file content in the Parquet files.
Example:
```python
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>")
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", private=True)
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", max_shard_size="1GB")
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", num_shards={"train": 1024, "test": 8})
```
"""
if num_shards is None:
num_shards = {k: None for k in self}
elif not isinstance(num_shards, dict):
raise ValueError(
"Please provide one `num_shards` per dataset in the dataset dictionary, e.g. {{'train': 128, 'test': 4}}"
)
self._check_values_type()
self._check_values_features()
total_uploaded_size = 0
total_dataset_nbytes = 0
info_to_dump: DatasetInfo = next(iter(self.values())).info.copy()
info_to_dump.config_name = config_name
info_to_dump.splits = SplitDict()
for split in self.keys():
if not re.match(_split_re, split):
raise ValueError(f"Split name should match '{_split_re}' but got '{split}'.")
data_dir = config_name if config_name != "default" else "data" # for backward compatibility
for split in self.keys():
logger.info(f"Pushing split {split} to the Hub.")
# The split=key needs to be removed before merging
repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub(
repo_id,
data_dir=data_dir,
split=split,
private=private,
token=token,
branch=branch,
max_shard_size=max_shard_size,
num_shards=num_shards.get(split),
embed_external_files=embed_external_files,
)
total_uploaded_size += uploaded_size
total_dataset_nbytes += dataset_nbytes
info_to_dump.splits[split] = SplitInfo(str(split), num_bytes=dataset_nbytes, num_examples=len(self[split]))
info_to_dump.download_checksums = None
info_to_dump.download_size = total_uploaded_size
info_to_dump.dataset_size = total_dataset_nbytes
info_to_dump.size_in_bytes = total_uploaded_size + total_dataset_nbytes
metadata_config_to_dump = {
"data_files": [{"split": split, "path": f"{data_dir}/{split}-*"} for split in self.keys()],
}
api = HfApi(endpoint=config.HF_ENDPOINT)
repo_files = api.list_repo_files(repo_id, repo_type="dataset", revision=branch, token=token)
# get the info from the README to update them
if "README.md" in repo_files:
download_config = DownloadConfig()
download_config.download_desc = "Downloading metadata"
download_config.token = token
dataset_readme_path = cached_path(
hf_hub_url(repo_id, "README.md"),
download_config=download_config,
)
dataset_card = DatasetCard.load(Path(dataset_readme_path))
dataset_card_data = dataset_card.data
metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
# get the deprecated dataset_infos.json to update them
elif config.DATASETDICT_INFOS_FILENAME in repo_files:
dataset_card = None
dataset_card_data = DatasetCardData()
metadata_configs = MetadataConfigs()
else:
dataset_card = None
dataset_card_data = DatasetCardData()
metadata_configs = MetadataConfigs()
# create the metadata configs if it was uploaded with push_to_hub before metadata configs existed
if not metadata_configs:
_matched_paths = [
p
for p in repo_files
if fnmatch(p, PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED.replace("{split}", "*"))
]
if len(_matched_paths) > 0:
# it was uploaded with push_to_hub before metadata configs existed
_resolved_splits = {
string_to_dict(
p, glob_pattern_to_regex(PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED)
)["split"]
for p in _matched_paths
}
default_metadata_configs_to_dump = {
"data_files": [
{"split": _resolved_split, "path": f"data/{_resolved_split}-*"}
for _resolved_split in _resolved_splits
]
}
MetadataConfigs({"default": default_metadata_configs_to_dump}).to_dataset_card_data(dataset_card_data)
# push to the deprecated dataset_infos.json
if config.DATASETDICT_INFOS_FILENAME in repo_files:
download_config = DownloadConfig()
download_config.download_desc = "Downloading metadata"
download_config.token = token
dataset_infos_path = cached_path(
hf_hub_url(repo_id, config.DATASETDICT_INFOS_FILENAME),
download_config=download_config,
)
with open(dataset_infos_path, encoding="utf-8") as f:
dataset_infos: dict = json.load(f)
dataset_infos[config_name] = asdict(info_to_dump)
buffer = BytesIO()
buffer.write(json.dumps(dataset_infos, indent=4).encode("utf-8"))
HfApi(endpoint=config.HF_ENDPOINT).upload_file(
path_or_fileobj=buffer.getvalue(),
path_in_repo=config.DATASETDICT_INFOS_FILENAME,
repo_id=repo_id,
token=token,
repo_type="dataset",
revision=branch,
)
# push to README
DatasetInfosDict({config_name: info_to_dump}).to_dataset_card_data(dataset_card_data)
MetadataConfigs({config_name: metadata_config_to_dump}).to_dataset_card_data(dataset_card_data)
dataset_card = (
DatasetCard(
"---\n"
+ str(dataset_card_data)
+ "\n---\n"
+ f'# Dataset Card for "{repo_id.split("/")[-1]}"\n\n[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)'
)
if dataset_card is None
else dataset_card
)
HfApi(endpoint=config.HF_ENDPOINT).upload_file(
path_or_fileobj=str(dataset_card).encode(),
path_in_repo="README.md",
repo_id=repo_id,
token=token,
repo_type="dataset",
revision=branch,
)
class IterableDatasetDict(dict):
def with_format(
self,
type: Optional[str] = None,
) -> "IterableDatasetDict":
"""
Return a dataset with the specified format.
This method only supports the "torch" format for now.
The format is set to all the datasets of the dataset dictionary.
Args:
type (`str`, *optional*, defaults to `None`):
If set to "torch", the returned dataset
will be a subclass of `torch.utils.data.IterableDataset` to be used in a `DataLoader`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> def encode(example):
... return tokenizer(examples["text"], truncation=True, padding="max_length")
>>> ds = ds.map(encode, batched=True, remove_columns=["text"])
>>> ds = ds.with_format("torch")
```
"""
return IterableDatasetDict({k: dataset.with_format(type=type) for k, dataset in self.items()})
def map(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: int = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[Union[str, List[str]]] = None,
fn_kwargs: Optional[dict] = None,
) -> "IterableDatasetDict":
"""
Apply a function to all the examples in the iterable dataset (individually or in batches) and update them.
If your function returns a column that already exists, then it overwrites it.
The function is applied on-the-fly on the examples when iterating over the dataset.
The transformation is applied to all the datasets of the dataset dictionary.
You can specify whether the function should be batched or not with the `batched` parameter:
- If batched is `False`, then the function takes 1 example in and should return 1 example.
An example is a dictionary, e.g. `{"text": "Hello there !"}`.
- If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples.
A batch is a dictionary, e.g. a batch of 1 example is `{"text": ["Hello there !"]}`.
- If batched is `True` and `batch_size` is `n` > 1, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.
Note that the last batch may have less than `n` examples.
A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`.
Args:
function (`Callable`, *optional*, defaults to `None`):
Function applied on-the-fly on the examples when you iterate on the dataset.
It must have one of the following signatures:
- `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
- `function(example: Dict[str, Any], idx: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
- `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False`
- `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True`
For advanced usage, the function can also return a `pyarrow.Table`.
Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
If no function is provided, default to identity function: `lambda x: x`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`.
input_columns (`[Union[str, List[str]]]`, *optional*, defaults to `None`):
The columns to be passed into `function`
as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`.
drop_last_batch (`bool`, defaults to `False`):
Whether a last batch smaller than the `batch_size` should be
dropped instead of being processed by the function.
remove_columns (`[List[str]]`, *optional*, defaults to `None`):
Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
fn_kwargs (`Dict`, *optional*, defaults to `None`):
Keyword arguments to be passed to `function`
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> def add_prefix(example):
... example["text"] = "Review: " + example["text"]
... return example
>>> ds = ds.map(add_prefix)
>>> next(iter(ds["train"]))
{'label': 1,
'text': 'Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
return IterableDatasetDict(
{
k: dataset.map(
function=function,
with_indices=with_indices,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
drop_last_batch=drop_last_batch,
remove_columns=remove_columns,
fn_kwargs=fn_kwargs,
)
for k, dataset in self.items()
}
)
def filter(
self,
function: Optional[Callable] = None,
with_indices=False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
fn_kwargs: Optional[dict] = None,
) -> "IterableDatasetDict":
"""Apply a filter function to all the elements so that the dataset only includes examples according to the filter function.
The filtering is done on-the-fly when iterating over the dataset.
The filtering is applied to all the datasets of the dataset dictionary.
Args:
function (`Callable`):
Callable with one of the following signatures:
- `function(example: Dict[str, Any]) -> bool` if `with_indices=False, batched=False`
- `function(example: Dict[str, Any], indices: int) -> bool` if `with_indices=True, batched=False`
- `function(example: Dict[str, List]) -> List[bool]` if `with_indices=False, batched=True`
- `function(example: Dict[str, List], indices: List[int]) -> List[bool]` if `with_indices=True, batched=True`
If no function is provided, defaults to an always True function: `lambda x: True`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
input_columns (`str` or `List[str]`, *optional*):
The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`.
fn_kwargs (`Dict`, *optional*, defaults to `None`):
Keyword arguments to be passed to `function`
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds = ds.filter(lambda x: x["label"] == 0)
>>> list(ds["train"].take(3))
[{'label': 0, 'text': 'Review: simplistic , silly and tedious .'},
{'label': 0,
'text': "Review: it's so laddish and juvenile , only teenage boys could possibly find it funny ."},
{'label': 0,
'text': 'Review: exploitative and largely devoid of the depth or sophistication that would make watching such a graphic treatment of the crimes bearable .'}]
```
"""
return IterableDatasetDict(
{
k: dataset.filter(
function=function,
with_indices=with_indices,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
fn_kwargs=fn_kwargs,
)
for k, dataset in self.items()
}
)
def shuffle(
self, seed=None, generator: Optional[np.random.Generator] = None, buffer_size: int = 1000
) -> "IterableDatasetDict":
"""
Randomly shuffles the elements of this dataset.
The shuffling is applied to all the datasets of the dataset dictionary.
This dataset fills a buffer with buffer_size elements, then randomly samples elements from this buffer,
replacing the selected elements with new elements. For perfect shuffling, a buffer size greater than or
equal to the full size of the dataset is required.
For instance, if your dataset contains 10,000 elements but `buffer_size` is set to 1000, then `shuffle` will
initially select a random element from only the first 1000 elements in the buffer. Once an element is
selected, its space in the buffer is replaced by the next (i.e. 1,001-st) element,
maintaining the 1000 element buffer.
If the dataset is made of several shards, it also does `shuffle` the order of the shards.
However if the order has been fixed by using [`~datasets.IterableDataset.skip`] or [`~datasets.IterableDataset.take`]
then the order of the shards is kept unchanged.
Args:
seed (`int`, *optional*, defaults to `None`):
Random seed that will be used to shuffle the dataset.
It is used to sample from the shuffle buffe and als oto shuffle the data shards.
generator (`numpy.random.Generator`, *optional*):
Numpy random Generator to use to compute the permutation of the dataset rows.
If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
buffer_size (`int`, defaults to `1000`):
Size of the buffer.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> list(ds["train"].take(3))
[{'label': 1,
'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
{'label': 1,
'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
{'label': 1, 'text': 'effective but too-tepid biopic'}]
>>> ds = ds.shuffle(seed=42)
>>> list(ds["train"].take(3))
[{'label': 1,
'text': "a sports movie with action that's exciting on the field and a story you care about off it ."},
{'label': 1,
'text': 'at its best , the good girl is a refreshingly adult take on adultery . . .'},
{'label': 1,
'text': "sam jones became a very lucky filmmaker the day wilco got dropped from their record label , proving that one man's ruin may be another's fortune ."}]
```
"""
return IterableDatasetDict(
{
k: dataset.shuffle(seed=seed, generator=generator, buffer_size=buffer_size)
for k, dataset in self.items()
}
)
def rename_column(self, original_column_name: str, new_column_name: str) -> "IterableDatasetDict":
"""
Rename a column in the dataset, and move the features associated to the original column under the new column
name.
The renaming is applied to all the datasets of the dataset dictionary.
Args:
original_column_name (`str`):
Name of the column to rename.
new_column_name (`str`):
New name for the column.
Returns:
[`IterableDatasetDict`]: A copy of the dataset with a renamed column.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds = ds.rename_column("text", "movie_review")
>>> next(iter(ds["train"]))
{'label': 1,
'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
return IterableDatasetDict(
{
k: dataset.rename_column(original_column_name=original_column_name, new_column_name=new_column_name)
for k, dataset in self.items()
}
)
def rename_columns(self, column_mapping: Dict[str, str]) -> "IterableDatasetDict":
"""
Rename several columns in the dataset, and move the features associated to the original columns under
the new column names.
The renaming is applied to all the datasets of the dataset dictionary.
Args:
column_mapping (`Dict[str, str]`):
A mapping of columns to rename to their new names.
Returns:
[`IterableDatasetDict`]: A copy of the dataset with renamed columns
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds = ds.rename_columns({"text": "movie_review", "label": "rating"})
>>> next(iter(ds["train"]))
{'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .',
'rating': 1}
```
"""
return IterableDatasetDict(
{k: dataset.rename_columns(column_mapping=column_mapping) for k, dataset in self.items()}
)
def remove_columns(self, column_names: Union[str, List[str]]) -> "IterableDatasetDict":
"""
Remove one or several column(s) in the dataset and the features associated to them.
The removal is done on-the-fly on the examples when iterating over the dataset.
The removal is applied to all the datasets of the dataset dictionary.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to remove.
Returns:
[`IterableDatasetDict`]: A copy of the dataset object without the columns to remove.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds = ds.remove_columns("label")
>>> next(iter(ds["train"]))
{'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
return IterableDatasetDict({k: dataset.remove_columns(column_names) for k, dataset in self.items()})
def select_columns(self, column_names: Union[str, List[str]]) -> "IterableDatasetDict":
"""Select one or several column(s) in the dataset and the features
associated to them. The selection is done on-the-fly on the examples
when iterating over the dataset. The selection is applied to all the
datasets of the dataset dictionary.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to keep.
Returns:
[`IterableDatasetDict`]: A copy of the dataset object with only selected columns.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds = ds.select("text")
>>> next(iter(ds["train"]))
{'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
return IterableDatasetDict({k: dataset.select_columns(column_names) for k, dataset in self.items()})
def cast_column(self, column: str, feature: FeatureType) -> "IterableDatasetDict":
"""Cast column to feature for decoding.
The type casting is applied to all the datasets of the dataset dictionary.
Args:
column (`str`):
Column name.
feature ([`Feature`]):
Target feature.
Returns:
[`IterableDatasetDict`]
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> ds = ds.cast_column('label', ClassLabel(names=['bad', 'good']))
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='string', id=None)}
```
"""
return IterableDatasetDict(
{k: dataset.cast_column(column=column, feature=feature) for k, dataset in self.items()}
)
def cast(
self,
features: Features,
) -> "IterableDatasetDict":
"""
Cast the dataset to a new set of features.
The type casting is applied to all the datasets of the dataset dictionary.
Args:
features (`Features`):
New features to cast the dataset to.
The name of the fields in the features must match the current column names.
The type of the data must also be convertible from one type to the other.
For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`map`] to update the Dataset.
Returns:
[`IterableDatasetDict`]: A copy of the dataset with casted features.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> new_features = ds["train"].features.copy()
>>> new_features['label'] = ClassLabel(names=['bad', 'good'])
>>> new_features['text'] = Value('large_string')
>>> ds = ds.cast(new_features)
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='large_string', id=None)}
```
"""
return IterableDatasetDict({k: dataset.cast(features=features) for k, dataset in self.items()})
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/data_files.py | import os
import re
from functools import partial
from pathlib import Path, PurePath
from typing import Callable, Dict, List, Optional, Set, Tuple, Union
import huggingface_hub
from fsspec import get_fs_token_paths
from fsspec.implementations.http import HTTPFileSystem
from huggingface_hub import HfFileSystem
from tqdm.contrib.concurrent import thread_map
from . import config
from .download import DownloadConfig
from .download.streaming_download_manager import _prepare_path_and_storage_options, xbasename, xjoin
from .splits import Split
from .utils import logging
from .utils.file_utils import is_local_path, is_relative_path
from .utils.py_utils import glob_pattern_to_regex, string_to_dict
SANITIZED_DEFAULT_SPLIT = str(Split.TRAIN)
logger = logging.get_logger(__name__)
class Url(str):
pass
class EmptyDatasetError(FileNotFoundError):
pass
SPLIT_PATTERN_SHARDED = "data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*"
SPLIT_KEYWORDS = {
Split.TRAIN: ["train", "training"],
Split.VALIDATION: ["validation", "valid", "dev", "val"],
Split.TEST: ["test", "testing", "eval", "evaluation"],
}
NON_WORDS_CHARS = "-._ 0-9"
KEYWORDS_IN_FILENAME_BASE_PATTERNS = ["**[{sep}/]{keyword}[{sep}]*", "{keyword}[{sep}]*"]
KEYWORDS_IN_DIR_NAME_BASE_PATTERNS = ["{keyword}[{sep}/]**", "**[{sep}/]{keyword}[{sep}/]**"]
DEFAULT_SPLITS = [Split.TRAIN, Split.VALIDATION, Split.TEST]
DEFAULT_PATTERNS_SPLIT_IN_FILENAME = {
split: [
pattern.format(keyword=keyword, sep=NON_WORDS_CHARS)
for keyword in SPLIT_KEYWORDS[split]
for pattern in KEYWORDS_IN_FILENAME_BASE_PATTERNS
]
for split in DEFAULT_SPLITS
}
DEFAULT_PATTERNS_SPLIT_IN_DIR_NAME = {
split: [
pattern.format(keyword=keyword, sep=NON_WORDS_CHARS)
for keyword in SPLIT_KEYWORDS[split]
for pattern in KEYWORDS_IN_DIR_NAME_BASE_PATTERNS
]
for split in DEFAULT_SPLITS
}
DEFAULT_PATTERNS_ALL = {
Split.TRAIN: ["**"],
}
ALL_SPLIT_PATTERNS = [SPLIT_PATTERN_SHARDED]
ALL_DEFAULT_PATTERNS = [
DEFAULT_PATTERNS_SPLIT_IN_DIR_NAME,
DEFAULT_PATTERNS_SPLIT_IN_FILENAME,
DEFAULT_PATTERNS_ALL,
]
METADATA_PATTERNS = [
"metadata.csv",
"**/metadata.csv",
"metadata.jsonl",
"**/metadata.jsonl",
] # metadata file for ImageFolder and AudioFolder
WILDCARD_CHARACTERS = "*[]"
FILES_TO_IGNORE = ["README.md", "config.json", "dataset_infos.json", "dummy_data.zip", "dataset_dict.json"]
def contains_wildcards(pattern: str) -> bool:
return any(wilcard_character in pattern for wilcard_character in WILDCARD_CHARACTERS)
def sanitize_patterns(patterns: Union[Dict, List, str]) -> Dict[str, Union[List[str], "DataFilesList"]]:
"""
Take the data_files patterns from the user, and format them into a dictionary.
Each key is the name of the split, and each value is a list of data files patterns (paths or urls).
The default split is "train".
Returns:
patterns: dictionary of split_name -> list of patterns
"""
if isinstance(patterns, dict):
return {str(key): value if isinstance(value, list) else [value] for key, value in patterns.items()}
elif isinstance(patterns, str):
return {SANITIZED_DEFAULT_SPLIT: [patterns]}
elif isinstance(patterns, list):
if any(isinstance(pattern, dict) for pattern in patterns):
for pattern in patterns:
if not (
isinstance(pattern, dict)
and len(pattern) == 2
and "split" in pattern
and isinstance(pattern.get("path"), (str, list))
):
raise ValueError(
f"Expected each split to have a 'path' key which can be a string or a list of strings, but got {pattern}"
)
splits = [pattern["split"] for pattern in patterns]
if len(set(splits)) != len(splits):
raise ValueError(f"Some splits are duplicated in data_files: {splits}")
return {
str(pattern["split"]): pattern["path"] if isinstance(pattern["path"], list) else [pattern["path"]]
for pattern in patterns
}
else:
return {SANITIZED_DEFAULT_SPLIT: patterns}
else:
return sanitize_patterns(list(patterns))
def _is_inside_unrequested_special_dir(matched_rel_path: str, pattern: str) -> bool:
"""
When a path matches a pattern, we additionnally check if it's inside a special directory
we ignore by default (if it starts with a double underscore).
Users can still explicitly request a filepath inside such a directory if "__pycache__" is
mentioned explicitly in the requested pattern.
Some examples:
base directory:
./
└── __pycache__
└── b.txt
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "**")
True
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "*/b.txt")
True
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "__pycache__/*")
False
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "__*/*")
False
"""
# We just need to check if every special directories from the path is present explicly in the pattern.
# Since we assume that the path matches the pattern, it's equivalent to counting that both
# the parent path and the parent pattern have the same number of special directories.
data_dirs_to_ignore_in_path = [part for part in PurePath(matched_rel_path).parent.parts if part.startswith("__")]
data_dirs_to_ignore_in_pattern = [part for part in PurePath(pattern).parent.parts if part.startswith("__")]
return len(data_dirs_to_ignore_in_path) != len(data_dirs_to_ignore_in_pattern)
def _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(matched_rel_path: str, pattern: str) -> bool:
"""
When a path matches a pattern, we additionnally check if it's a hidden file or if it's inside
a hidden directory we ignore by default, i.e. if the file name or a parent directory name starts with a dot.
Users can still explicitly request a filepath that is hidden or is inside a hidden directory
if the hidden part is mentioned explicitly in the requested pattern.
Some examples:
base directory:
./
└── .hidden_file.txt
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_file.txt", "**")
True
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_file.txt", ".*")
False
base directory:
./
└── .hidden_dir
└── a.txt
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", "**")
True
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", ".*/*")
False
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", ".hidden_dir/*")
False
base directory:
./
└── .hidden_dir
└── .hidden_file.txt
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", "**")
True
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".*/*")
True
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".*/.*")
False
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".hidden_dir/*")
True
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".hidden_dir/.*")
False
"""
# We just need to check if every hidden part from the path is present explicly in the pattern.
# Since we assume that the path matches the pattern, it's equivalent to counting that both
# the path and the pattern have the same number of hidden parts.
hidden_directories_in_path = [
part for part in PurePath(matched_rel_path).parts if part.startswith(".") and not set(part) == {"."}
]
hidden_directories_in_pattern = [
part for part in PurePath(pattern).parts if part.startswith(".") and not set(part) == {"."}
]
return len(hidden_directories_in_path) != len(hidden_directories_in_pattern)
def _get_data_files_patterns(pattern_resolver: Callable[[str], List[str]]) -> Dict[str, List[str]]:
"""
Get the default pattern from a directory or repository by testing all the supported patterns.
The first patterns to return a non-empty list of data files is returned.
In order, it first tests if SPLIT_PATTERN_SHARDED works, otherwise it tests the patterns in ALL_DEFAULT_PATTERNS.
"""
# first check the split patterns like data/{split}-00000-of-00001.parquet
for split_pattern in ALL_SPLIT_PATTERNS:
pattern = split_pattern.replace("{split}", "*")
try:
data_files = pattern_resolver(pattern)
except FileNotFoundError:
continue
if len(data_files) > 0:
splits: Set[str] = {string_to_dict(p, glob_pattern_to_regex(split_pattern))["split"] for p in data_files}
sorted_splits = [str(split) for split in DEFAULT_SPLITS if split in splits] + sorted(
splits - set(DEFAULT_SPLITS)
)
return {split: [split_pattern.format(split=split)] for split in sorted_splits}
# then check the default patterns based on train/valid/test splits
for patterns_dict in ALL_DEFAULT_PATTERNS:
non_empty_splits = []
for split, patterns in patterns_dict.items():
for pattern in patterns:
try:
data_files = pattern_resolver(pattern)
except FileNotFoundError:
continue
if len(data_files) > 0:
non_empty_splits.append(split)
break
if non_empty_splits:
return {split: patterns_dict[split] for split in non_empty_splits}
raise FileNotFoundError(f"Couldn't resolve pattern {pattern} with resolver {pattern_resolver}")
def _get_metadata_files_patterns(pattern_resolver: Callable[[str], List[str]]) -> List[str]:
"""
Get the supported metadata patterns from a directory or repository.
"""
non_empty_patterns = []
for pattern in METADATA_PATTERNS:
try:
metadata_files = pattern_resolver(pattern)
if len(metadata_files) > 0:
non_empty_patterns.append(pattern)
except FileNotFoundError:
pass
if non_empty_patterns:
return non_empty_patterns
raise FileNotFoundError(f"Couldn't resolve pattern {pattern} with resolver {pattern_resolver}")
def resolve_pattern(
pattern: str,
base_path: str,
allowed_extensions: Optional[List[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> List[str]:
"""
Resolve the paths and URLs of the data files from the pattern passed by the user.
You can use patterns to resolve multiple local files. Here are a few examples:
- *.csv to match all the CSV files at the first level
- **.csv to match all the CSV files at any level
- data/* to match all the files inside "data"
- data/** to match all the files inside "data" and its subdirectories
The patterns are resolved using the fsspec glob.
Here are some behaviors specific to fsspec glob that are different from glob.glob, Path.glob, Path.match or fnmatch:
- '*' matches only first level items
- '**' matches all items
- '**/*' matches all at least second level items
More generally:
- '*' matches any character except a forward-slash (to match just the file or directory name)
- '**' matches any character including a forward-slash /
Hidden files and directories (i.e. whose names start with a dot) are ignored, unless they are explicitly requested.
The same applies to special directories that start with a double underscore like "__pycache__".
You can still include one if the pattern explicilty mentions it:
- to include a hidden file: "*/.hidden.txt" or "*/.*"
- to include a hidden directory: ".hidden/*" or ".*/*"
- to include a special directory: "__special__/*" or "__*/*"
Example::
>>> from datasets.data_files import resolve_pattern
>>> base_path = "."
>>> resolve_pattern("docs/**/*.py", base_path)
[/Users/mariosasko/Desktop/projects/datasets/docs/source/_config.py']
Args:
pattern (str): Unix pattern or paths or URLs of the data files to resolve.
The paths can be absolute or relative to base_path.
Remote filesystems using fsspec are supported, e.g. with the hf:// protocol.
base_path (str): Base path to use when resolving relative paths.
allowed_extensions (Optional[list], optional): White-list of file extensions to use. Defaults to None (all extensions).
For example: allowed_extensions=[".csv", ".json", ".txt", ".parquet"]
Returns:
List[Union[Path, Url]]: List of paths or URLs to the local or remote files that match the patterns.
"""
if is_relative_path(pattern):
pattern = xjoin(base_path, pattern)
elif is_local_path(pattern):
base_path = os.path.splitdrive(pattern)[0] + os.sep
else:
base_path = ""
pattern, storage_options = _prepare_path_and_storage_options(pattern, download_config=download_config)
fs, _, _ = get_fs_token_paths(pattern, storage_options=storage_options)
fs_base_path = base_path.split("::")[0].split("://")[-1] or fs.root_marker
fs_pattern = pattern.split("::")[0].split("://")[-1]
protocol_prefix = fs.protocol + "://" if fs.protocol != "file" else ""
files_to_ignore = set(FILES_TO_IGNORE) - {xbasename(pattern)}
matched_paths = [
filepath if filepath.startswith(protocol_prefix) else protocol_prefix + filepath
for filepath, info in fs.glob(pattern, detail=True).items()
if info["type"] == "file"
and (xbasename(filepath) not in files_to_ignore)
and not _is_inside_unrequested_special_dir(
os.path.relpath(filepath, fs_base_path), os.path.relpath(fs_pattern, fs_base_path)
)
and not _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(
os.path.relpath(filepath, fs_base_path), os.path.relpath(fs_pattern, fs_base_path)
)
] # ignore .ipynb and __pycache__, but keep /../
if allowed_extensions is not None:
out = [
filepath
for filepath in matched_paths
if any("." + suffix in allowed_extensions for suffix in xbasename(filepath).split(".")[1:])
]
if len(out) < len(matched_paths):
invalid_matched_files = list(set(matched_paths) - set(out))
logger.info(
f"Some files matched the pattern '{pattern}' but don't have valid data file extensions: {invalid_matched_files}"
)
else:
out = matched_paths
if not out:
error_msg = f"Unable to find '{pattern}'"
if allowed_extensions is not None:
error_msg += f" with any supported extension {list(allowed_extensions)}"
raise FileNotFoundError(error_msg)
return out
def get_data_patterns(base_path: str, download_config: Optional[DownloadConfig] = None) -> Dict[str, List[str]]:
"""
Get the default pattern from a directory testing all the supported patterns.
The first patterns to return a non-empty list of data files is returned.
Some examples of supported patterns:
Input:
my_dataset_repository/
├── README.md
└── dataset.csv
Output:
{"train": ["**"]}
Input:
my_dataset_repository/
├── README.md
├── train.csv
└── test.csv
my_dataset_repository/
├── README.md
└── data/
├── train.csv
└── test.csv
my_dataset_repository/
├── README.md
├── train_0.csv
├── train_1.csv
├── train_2.csv
├── train_3.csv
├── test_0.csv
└── test_1.csv
Output:
{"train": ["**train*"], "test": ["**test*"]}
Input:
my_dataset_repository/
├── README.md
└── data/
├── train/
│ ├── shard_0.csv
│ ├── shard_1.csv
│ ├── shard_2.csv
│ └── shard_3.csv
└── test/
├── shard_0.csv
└── shard_1.csv
Output:
{"train": ["**train*/**"], "test": ["**test*/**"]}
Input:
my_dataset_repository/
├── README.md
└── data/
├── train-00000-of-00003.csv
├── train-00001-of-00003.csv
├── train-00002-of-00003.csv
├── test-00000-of-00001.csv
├── random-00000-of-00003.csv
├── random-00001-of-00003.csv
└── random-00002-of-00003.csv
Output:
{
"train": ["data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9].*"],
"test": ["data/test-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9].*"],
"random": ["data/random-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9].*"],
}
In order, it first tests if SPLIT_PATTERN_SHARDED works, otherwise it tests the patterns in ALL_DEFAULT_PATTERNS.
"""
resolver = partial(resolve_pattern, base_path=base_path, download_config=download_config)
try:
return _get_data_files_patterns(resolver)
except FileNotFoundError:
raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None
def get_metadata_patterns(
base_path: str,
download_config: Optional[DownloadConfig] = None,
) -> List[str]:
"""
Get the supported metadata patterns from a local directory.
"""
resolver = partial(resolve_pattern, base_path=base_path, download_config=download_config)
try:
return _get_metadata_files_patterns(resolver)
except FileNotFoundError:
raise FileNotFoundError(f"The directory at {base_path} doesn't contain any metadata file") from None
def _get_single_origin_metadata(
data_file: str,
download_config: Optional[DownloadConfig] = None,
) -> Tuple[str]:
data_file, storage_options = _prepare_path_and_storage_options(data_file, download_config=download_config)
fs, _, _ = get_fs_token_paths(data_file, storage_options=storage_options)
if isinstance(fs, HfFileSystem):
resolved_path = fs.resolve_path(data_file)
return (resolved_path.repo_id, resolved_path.revision)
elif isinstance(fs, HTTPFileSystem) and data_file.startswith(config.HF_ENDPOINT):
hffs = HfFileSystem(endpoint=config.HF_ENDPOINT, token=download_config.token)
data_file = "hf://" + data_file[len(config.HF_ENDPOINT) + 1 :].replace("/resolve/", "@", 1)
resolved_path = hffs.resolve_path(data_file)
return (resolved_path.repo_id, resolved_path.revision)
info = fs.info(data_file)
# s3fs uses "ETag", gcsfs uses "etag", and for local we simply check mtime
for key in ["ETag", "etag", "mtime"]:
if key in info:
return (str(info[key]),)
return ()
def _get_origin_metadata(
data_files: List[str],
max_workers=64,
download_config: Optional[DownloadConfig] = None,
) -> Tuple[str]:
return thread_map(
partial(_get_single_origin_metadata, download_config=download_config),
data_files,
max_workers=max_workers,
tqdm_class=logging.tqdm,
desc="Resolving data files",
disable=len(data_files) <= 16 or not logging.is_progress_bar_enabled(),
)
class DataFilesList(List[str]):
"""
List of data files (absolute local paths or URLs).
It has two construction methods given the user's data files patterns :
- ``from_hf_repo``: resolve patterns inside a dataset repository
- ``from_local_or_remote``: resolve patterns from a local path
Moreover DataFilesList has an additional attribute ``origin_metadata``.
It can store:
- the last modified time of local files
- ETag of remote files
- commit sha of a dataset repository
Thanks to this additional attribute, it is possible to hash the list
and get a different hash if and only if at least one file changed.
This is useful for caching Dataset objects that are obtained from a list of data files.
"""
def __init__(self, data_files: List[str], origin_metadata: List[Tuple[str]]):
super().__init__(data_files)
self.origin_metadata = origin_metadata
def __add__(self, other):
return DataFilesList([*self, *other], self.origin_metadata + other.origin_metadata)
@classmethod
def from_hf_repo(
cls,
patterns: List[str],
dataset_info: huggingface_hub.hf_api.DatasetInfo,
base_path: Optional[str] = None,
allowed_extensions: Optional[List[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesList":
base_path = f"hf://datasets/{dataset_info.id}@{dataset_info.sha}/{base_path or ''}".rstrip("/")
return cls.from_patterns(
patterns, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config
)
@classmethod
def from_local_or_remote(
cls,
patterns: List[str],
base_path: Optional[str] = None,
allowed_extensions: Optional[List[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesList":
base_path = base_path if base_path is not None else Path().resolve().as_posix()
return cls.from_patterns(
patterns, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config
)
@classmethod
def from_patterns(
cls,
patterns: List[str],
base_path: Optional[str] = None,
allowed_extensions: Optional[List[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesList":
base_path = base_path if base_path is not None else Path().resolve().as_posix()
data_files = []
for pattern in patterns:
try:
data_files.extend(
resolve_pattern(
pattern,
base_path=base_path,
allowed_extensions=allowed_extensions,
download_config=download_config,
)
)
except FileNotFoundError:
pass
origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
return cls(data_files, origin_metadata)
def filter_extensions(self, extensions: List[str]) -> "DataFilesList":
pattern = "|".join("\\" + ext for ext in extensions)
pattern = re.compile(f".*({pattern})(\\..+)?$")
return DataFilesList(
[data_file for data_file in self if pattern.match(data_file)],
origin_metadata=self.origin_metadata,
)
class DataFilesDict(Dict[str, DataFilesList]):
"""
Dict of split_name -> list of data files (absolute local paths or URLs).
It has two construction methods given the user's data files patterns :
- ``from_hf_repo``: resolve patterns inside a dataset repository
- ``from_local_or_remote``: resolve patterns from a local path
Moreover each list is a DataFilesList. It is possible to hash the dictionary
and get a different hash if and only if at least one file changed.
For more info, see ``DataFilesList``.
This is useful for caching Dataset objects that are obtained from a list of data files.
Changing the order of the keys of this dictionary also doesn't change its hash.
"""
@classmethod
def from_local_or_remote(
cls,
patterns: Dict[str, Union[List[str], DataFilesList]],
base_path: Optional[str] = None,
allowed_extensions: Optional[List[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesDict":
out = cls()
for key, patterns_for_key in patterns.items():
out[key] = (
DataFilesList.from_local_or_remote(
patterns_for_key,
base_path=base_path,
allowed_extensions=allowed_extensions,
download_config=download_config,
)
if not isinstance(patterns_for_key, DataFilesList)
else patterns_for_key
)
return out
@classmethod
def from_hf_repo(
cls,
patterns: Dict[str, Union[List[str], DataFilesList]],
dataset_info: huggingface_hub.hf_api.DatasetInfo,
base_path: Optional[str] = None,
allowed_extensions: Optional[List[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesDict":
out = cls()
for key, patterns_for_key in patterns.items():
out[key] = (
DataFilesList.from_hf_repo(
patterns_for_key,
dataset_info=dataset_info,
base_path=base_path,
allowed_extensions=allowed_extensions,
download_config=download_config,
)
if not isinstance(patterns_for_key, DataFilesList)
else patterns_for_key
)
return out
@classmethod
def from_patterns(
cls,
patterns: Dict[str, Union[List[str], DataFilesList]],
base_path: Optional[str] = None,
allowed_extensions: Optional[List[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesDict":
out = cls()
for key, patterns_for_key in patterns.items():
out[key] = (
DataFilesList.from_patterns(
patterns_for_key,
base_path=base_path,
allowed_extensions=allowed_extensions,
download_config=download_config,
)
if not isinstance(patterns_for_key, DataFilesList)
else patterns_for_key
)
return out
def __reduce__(self):
"""
To make sure the order of the keys doesn't matter when pickling and hashing:
>>> from datasets.data_files import DataFilesDict
>>> from datasets.fingerprint import Hasher
>>> assert Hasher.hash(DataFilesDict(a=[], b=[])) == Hasher.hash(DataFilesDict(b=[], a=[]))
"""
return DataFilesDict, (dict(sorted(self.items())),)
def filter_extensions(self, extensions: List[str]) -> "DataFilesDict":
out = type(self)()
for key, data_files_list in self.items():
out[key] = data_files_list.filter_extensions(extensions)
return out
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/metric.py | # Copyright 2020 The HuggingFace Datasets Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
""" Metrics base class."""
import os
import types
import uuid
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
from . import config
from .arrow_dataset import Dataset
from .arrow_reader import ArrowReader
from .arrow_writer import ArrowWriter
from .download.download_config import DownloadConfig
from .download.download_manager import DownloadManager
from .features import Features
from .info import DatasetInfo, MetricInfo
from .naming import camelcase_to_snakecase
from .utils.deprecation_utils import deprecated
from .utils.filelock import BaseFileLock, FileLock, Timeout
from .utils.logging import get_logger
from .utils.py_utils import copyfunc, temp_seed
logger = get_logger(__name__)
class FileFreeLock(BaseFileLock):
"""Thread lock until a file **cannot** be locked"""
def __init__(self, lock_file, *args, **kwargs):
self.filelock = FileLock(lock_file)
super().__init__(lock_file, *args, **kwargs)
def _acquire(self):
try:
self.filelock.acquire(timeout=0.01, poll_intervall=0.02) # Try to lock once
except Timeout:
# We couldn't acquire the lock, the file is locked!
self._lock_file_fd = self.filelock.lock_file
else:
# We were able to acquire the lock, the file is not yet locked!
self.filelock.release()
self._lock_file_fd = None
def _release(self):
self._lock_file_fd = None
# lists - summarize long lists similarly to NumPy
# arrays/tensors - let the frameworks control formatting
def summarize_if_long_list(obj):
if not type(obj) == list or len(obj) <= 6:
return f"{obj}"
def format_chunk(chunk):
return ", ".join(repr(x) for x in chunk)
return f"[{format_chunk(obj[:3])}, ..., {format_chunk(obj[-3:])}]"
class MetricInfoMixin:
"""This base class exposes some attributes of MetricInfo
at the base level of the Metric for easy access.
<Deprecated version="2.5.0">
Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate
</Deprecated>
"""
def __init__(self, info: MetricInfo):
self._metric_info = info
@property
def info(self):
""":class:`datasets.MetricInfo` object containing all the metadata in the metric."""
return self._metric_info
@property
def name(self) -> str:
return self._metric_info.metric_name
@property
def experiment_id(self) -> Optional[str]:
return self._metric_info.experiment_id
@property
def description(self) -> str:
return self._metric_info.description
@property
def citation(self) -> str:
return self._metric_info.citation
@property
def features(self) -> Features:
return self._metric_info.features
@property
def inputs_description(self) -> str:
return self._metric_info.inputs_description
@property
def homepage(self) -> Optional[str]:
return self._metric_info.homepage
@property
def license(self) -> str:
return self._metric_info.license
@property
def codebase_urls(self) -> Optional[List[str]]:
return self._metric_info.codebase_urls
@property
def reference_urls(self) -> Optional[List[str]]:
return self._metric_info.reference_urls
@property
def streamable(self) -> bool:
return self._metric_info.streamable
@property
def format(self) -> Optional[str]:
return self._metric_info.format
class Metric(MetricInfoMixin):
"""A Metric is the base class and common API for all metrics.
<Deprecated version="2.5.0">
Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate
</Deprecated>
Args:
config_name (``str``): This is used to define a hash specific to a metrics computation script and prevents the metric's data
to be overridden when the metric loading script is modified.
keep_in_memory (:obj:`bool`): keep all predictions and references in memory. Not possible in distributed settings.
cache_dir (``str``): Path to a directory in which temporary prediction/references data will be stored.
The data directory should be located on a shared file-system in distributed setups.
num_process (``int``): specify the total number of nodes in a distributed settings.
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
process_id (``int``): specify the id of the current process in a distributed setup (between 0 and num_process-1)
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
seed (:obj:`int`, optional): If specified, this will temporarily set numpy's random seed when :func:`datasets.Metric.compute` is run.
experiment_id (``str``): A specific experiment id. This is used if several distributed evaluations share the same file system.
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
max_concurrent_cache_files (``int``): Max number of concurrent metrics cache files (default 10000).
timeout (``Union[int, float]``): Timeout in second for distributed setting synchronization.
"""
@deprecated("Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate")
def __init__(
self,
config_name: Optional[str] = None,
keep_in_memory: bool = False,
cache_dir: Optional[str] = None,
num_process: int = 1,
process_id: int = 0,
seed: Optional[int] = None,
experiment_id: Optional[str] = None,
max_concurrent_cache_files: int = 10000,
timeout: Union[int, float] = 100,
**kwargs,
):
# prepare info
self.config_name = config_name or "default"
info = self._info()
info.metric_name = camelcase_to_snakecase(self.__class__.__name__)
info.config_name = self.config_name
info.experiment_id = experiment_id or "default_experiment"
MetricInfoMixin.__init__(self, info) # For easy access on low level
# Safety checks on num_process and process_id
if not isinstance(process_id, int) or process_id < 0:
raise ValueError("'process_id' should be a number greater than 0")
if not isinstance(num_process, int) or num_process <= process_id:
raise ValueError("'num_process' should be a number greater than process_id")
if keep_in_memory and num_process != 1:
raise ValueError("Using 'keep_in_memory' is not possible in distributed setting (num_process > 1).")
self.num_process = num_process
self.process_id = process_id
self.max_concurrent_cache_files = max_concurrent_cache_files
self.keep_in_memory = keep_in_memory
self._data_dir_root = os.path.expanduser(cache_dir or config.HF_METRICS_CACHE)
self.data_dir = self._build_data_dir()
if seed is None:
_, seed, pos, *_ = np.random.get_state()
self.seed: int = seed[pos] if pos < 624 else seed[0]
else:
self.seed: int = seed
self.timeout: Union[int, float] = timeout
# Update 'compute' and 'add' docstring
# methods need to be copied otherwise it changes the docstrings of every instance
self.compute = types.MethodType(copyfunc(self.compute), self)
self.add_batch = types.MethodType(copyfunc(self.add_batch), self)
self.add = types.MethodType(copyfunc(self.add), self)
self.compute.__func__.__doc__ += self.info.inputs_description
self.add_batch.__func__.__doc__ += self.info.inputs_description
self.add.__func__.__doc__ += self.info.inputs_description
# self.arrow_schema = pa.schema(field for field in self.info.features.type)
self.buf_writer = None
self.writer = None
self.writer_batch_size = None
self.data = None
# This is the cache file we store our predictions/references in
# Keep it None for now so we can (cloud)pickle the object
self.cache_file_name = None
self.filelock = None
self.rendez_vous_lock = None
# This is all the cache files on which we have a lock when we are in a distributed setting
self.file_paths = None
self.filelocks = None
def __len__(self):
"""Return the number of examples (predictions or predictions/references pair)
currently stored in the metric's cache.
"""
return 0 if self.writer is None else len(self.writer)
def __repr__(self):
return (
f'Metric(name: "{self.name}", features: {self.features}, '
f'usage: """{self.inputs_description}""", '
f"stored examples: {len(self)})"
)
def _build_data_dir(self):
"""Path of this metric in cache_dir:
Will be:
self._data_dir_root/self.name/self.config_name/self.hash (if not none)/
If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped.
"""
builder_data_dir = self._data_dir_root
builder_data_dir = os.path.join(builder_data_dir, self.name, self.config_name)
os.makedirs(builder_data_dir, exist_ok=True)
return builder_data_dir
def _create_cache_file(self, timeout=1) -> Tuple[str, FileLock]:
"""Create a new cache file. If the default cache file is used, we generated a new hash."""
file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{self.process_id}.arrow")
filelock = None
for i in range(self.max_concurrent_cache_files):
filelock = FileLock(file_path + ".lock")
try:
filelock.acquire(timeout=timeout)
except Timeout:
# If we have reached the max number of attempts or we are not allow to find a free name (distributed setup)
# We raise an error
if self.num_process != 1:
raise ValueError(
f"Error in _create_cache_file: another metric instance is already using the local cache file at {file_path}. "
f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision "
f"between distributed metric instances."
) from None
if i == self.max_concurrent_cache_files - 1:
raise ValueError(
f"Cannot acquire lock, too many metric instance are operating concurrently on this file system."
f"You should set a larger value of max_concurrent_cache_files when creating the metric "
f"(current value is {self.max_concurrent_cache_files})."
) from None
# In other cases (allow to find new file name + not yet at max num of attempts) we can try to sample a new hashing name.
file_uuid = str(uuid.uuid4())
file_path = os.path.join(
self.data_dir, f"{self.experiment_id}-{file_uuid}-{self.num_process}-{self.process_id}.arrow"
)
else:
break
return file_path, filelock
def _get_all_cache_files(self) -> Tuple[List[str], List[FileLock]]:
"""Get a lock on all the cache files in a distributed setup.
We wait for timeout second to let all the distributed node finish their tasks (default is 100 seconds).
"""
if self.num_process == 1:
if self.cache_file_name is None:
raise ValueError(
"Metric cache file doesn't exist. Please make sure that you call `add` or `add_batch` "
"at least once before calling `compute`."
)
file_paths = [self.cache_file_name]
else:
file_paths = [
os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow")
for process_id in range(self.num_process)
]
# Let's acquire a lock on each process files to be sure they are finished writing
filelocks = []
for process_id, file_path in enumerate(file_paths):
if process_id == 0: # process 0 already has its lock file
filelocks.append(self.filelock)
else:
filelock = FileLock(file_path + ".lock")
try:
filelock.acquire(timeout=self.timeout)
except Timeout:
raise ValueError(
f"Cannot acquire lock on cached file {file_path} for process {process_id}."
) from None
else:
filelocks.append(filelock)
return file_paths, filelocks
def _check_all_processes_locks(self):
expected_lock_file_names = [
os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow.lock")
for process_id in range(self.num_process)
]
for expected_lock_file_name in expected_lock_file_names:
nofilelock = FileFreeLock(expected_lock_file_name)
try:
nofilelock.acquire(timeout=self.timeout)
except Timeout:
raise ValueError(
f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist."
) from None
else:
nofilelock.release()
def _check_rendez_vous(self):
expected_lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-0.arrow.lock")
nofilelock = FileFreeLock(expected_lock_file_name)
try:
nofilelock.acquire(timeout=self.timeout)
except Timeout:
raise ValueError(
f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist."
) from None
else:
nofilelock.release()
lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock")
rendez_vous_lock = FileLock(lock_file_name)
try:
rendez_vous_lock.acquire(timeout=self.timeout)
except Timeout:
raise ValueError(f"Couldn't acquire lock on {lock_file_name} from process {self.process_id}.") from None
else:
rendez_vous_lock.release()
def _finalize(self):
"""Close all the writing process and load/gather the data
from all the nodes if main node or all_process is True.
"""
if self.writer is not None:
self.writer.finalize()
self.writer = None
# release the locks of the processes > 0 so that process 0 can lock them to read + delete the data
if self.filelock is not None and self.process_id > 0:
self.filelock.release()
if self.keep_in_memory:
# Read the predictions and references
reader = ArrowReader(path=self.data_dir, info=DatasetInfo(features=self.features))
self.data = Dataset.from_buffer(self.buf_writer.getvalue())
elif self.process_id == 0:
# Let's acquire a lock on each node files to be sure they are finished writing
file_paths, filelocks = self._get_all_cache_files()
# Read the predictions and references
try:
reader = ArrowReader(path="", info=DatasetInfo(features=self.features))
self.data = Dataset(**reader.read_files([{"filename": f} for f in file_paths]))
except FileNotFoundError:
raise ValueError(
"Error in finalize: another metric instance is already using the local cache file. "
"Please specify an experiment_id to avoid collision between distributed metric instances."
) from None
# Store file paths and locks and we will release/delete them after the computation.
self.file_paths = file_paths
self.filelocks = filelocks
def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]:
"""Compute the metrics.
Usage of positional arguments is not allowed to prevent mistakes.
Args:
predictions (list/array/tensor, optional): Predictions.
references (list/array/tensor, optional): References.
**kwargs (optional): Keyword arguments that will be forwarded to the metrics :meth:`_compute`
method (see details in the docstring).
Return:
dict or None
- Dictionary with the metrics if this metric is run on the main process (``process_id == 0``).
- None if the metric is not run on the main process (``process_id != 0``).
Example:
```py
>>> from datasets import load_metric
>>> metric = load_metric("accuracy")
>>> accuracy = metric.compute(predictions=model_prediction, references=labels)
```
"""
all_kwargs = {"predictions": predictions, "references": references, **kwargs}
if predictions is None and references is None:
missing_kwargs = {k: None for k in self.features if k not in all_kwargs}
all_kwargs.update(missing_kwargs)
else:
missing_inputs = [k for k in self.features if k not in all_kwargs]
if missing_inputs:
raise ValueError(
f"Metric inputs are missing: {missing_inputs}. All required inputs are {list(self.features)}"
)
inputs = {input_name: all_kwargs[input_name] for input_name in self.features}
compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self.features}
if any(v is not None for v in inputs.values()):
self.add_batch(**inputs)
self._finalize()
self.cache_file_name = None
self.filelock = None
if self.process_id == 0:
self.data.set_format(type=self.info.format)
inputs = {input_name: self.data[input_name] for input_name in self.features}
with temp_seed(self.seed):
output = self._compute(**inputs, **compute_kwargs)
if self.buf_writer is not None:
self.buf_writer = None
del self.data
self.data = None
else:
# Release locks and delete all the cache files. Process 0 is released last.
for filelock, file_path in reversed(list(zip(self.filelocks, self.file_paths))):
logger.info(f"Removing {file_path}")
del self.data
self.data = None
del self.writer
self.writer = None
os.remove(file_path)
filelock.release()
return output
else:
return None
def add_batch(self, *, predictions=None, references=None, **kwargs):
"""Add a batch of predictions and references for the metric's stack.
Args:
predictions (list/array/tensor, optional): Predictions.
references (list/array/tensor, optional): References.
Example:
```py
>>> from datasets import load_metric
>>> metric = load_metric("accuracy")
>>> metric.add_batch(predictions=model_prediction, references=labels)
```
"""
bad_inputs = [input_name for input_name in kwargs if input_name not in self.features]
if bad_inputs:
raise ValueError(f"Bad inputs for metric: {bad_inputs}. All required inputs are {list(self.features)}")
batch = {"predictions": predictions, "references": references, **kwargs}
batch = {intput_name: batch[intput_name] for intput_name in self.features}
batch = self.info.features.encode_batch(batch)
if self.writer is None:
self._init_writer()
try:
self.writer.write_batch(batch)
except pa.ArrowInvalid:
if any(len(batch[c]) != len(next(iter(batch.values()))) for c in batch):
col0 = next(iter(batch))
bad_col = [c for c in batch if len(batch[c]) != len(batch[col0])][0]
error_msg = (
f"Mismatch in the number of {col0} ({len(batch[col0])}) and {bad_col} ({len(batch[bad_col])})"
)
elif sorted(self.features) != ["references", "predictions"]:
error_msg = f"Metric inputs don't match the expected format.\n" f"Expected format: {self.features},\n"
error_msg_inputs = ",\n".join(
f"Input {input_name}: {summarize_if_long_list(batch[input_name])}" for input_name in self.features
)
error_msg += error_msg_inputs
else:
error_msg = (
f"Predictions and/or references don't match the expected format.\n"
f"Expected format: {self.features},\n"
f"Input predictions: {summarize_if_long_list(predictions)},\n"
f"Input references: {summarize_if_long_list(references)}"
)
raise ValueError(error_msg) from None
def add(self, *, prediction=None, reference=None, **kwargs):
"""Add one prediction and reference for the metric's stack.
Args:
prediction (list/array/tensor, optional): Predictions.
reference (list/array/tensor, optional): References.
Example:
```py
>>> from datasets import load_metric
>>> metric = load_metric("accuracy")
>>> metric.add(predictions=model_predictions, references=labels)
```
"""
bad_inputs = [input_name for input_name in kwargs if input_name not in self.features]
if bad_inputs:
raise ValueError(f"Bad inputs for metric: {bad_inputs}. All required inputs are {list(self.features)}")
example = {"predictions": prediction, "references": reference, **kwargs}
example = {intput_name: example[intput_name] for intput_name in self.features}
example = self.info.features.encode_example(example)
if self.writer is None:
self._init_writer()
try:
self.writer.write(example)
except pa.ArrowInvalid:
error_msg = f"Metric inputs don't match the expected format.\n" f"Expected format: {self.features},\n"
error_msg_inputs = ",\n".join(
f"Input {input_name}: {summarize_if_long_list(example[input_name])}" for input_name in self.features
)
error_msg += error_msg_inputs
raise ValueError(error_msg) from None
def _init_writer(self, timeout=1):
if self.num_process > 1:
if self.process_id == 0:
file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock")
self.rendez_vous_lock = FileLock(file_path)
try:
self.rendez_vous_lock.acquire(timeout=timeout)
except TimeoutError:
raise ValueError(
f"Error in _init_writer: another metric instance is already using the local cache file at {file_path}. "
f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision "
f"between distributed metric instances."
) from None
if self.keep_in_memory:
self.buf_writer = pa.BufferOutputStream()
self.writer = ArrowWriter(
features=self.info.features, stream=self.buf_writer, writer_batch_size=self.writer_batch_size
)
else:
self.buf_writer = None
# Get cache file name and lock it
if self.cache_file_name is None or self.filelock is None:
cache_file_name, filelock = self._create_cache_file() # get ready
self.cache_file_name = cache_file_name
self.filelock = filelock
self.writer = ArrowWriter(
features=self.info.features, path=self.cache_file_name, writer_batch_size=self.writer_batch_size
)
# Setup rendez-vous here if
if self.num_process > 1:
if self.process_id == 0:
self._check_all_processes_locks() # wait for everyone to be ready
self.rendez_vous_lock.release() # let everyone go
else:
self._check_rendez_vous() # wait for master to be ready and to let everyone go
def _info(self) -> MetricInfo:
"""Construct the MetricInfo object. See `MetricInfo` for details.
Warning: This function is only called once and the result is cached for all
following .info() calls.
Returns:
info: (MetricInfo) The metrics information
"""
raise NotImplementedError
def download_and_prepare(
self,
download_config: Optional[DownloadConfig] = None,
dl_manager: Optional[DownloadManager] = None,
):
"""Downloads and prepares dataset for reading.
Args:
download_config (:class:`DownloadConfig`, optional): Specific download configuration parameters.
dl_manager (:class:`DownloadManager`, optional): Specific download manager to use.
"""
if dl_manager is None:
if download_config is None:
download_config = DownloadConfig()
download_config.cache_dir = os.path.join(self.data_dir, "downloads")
download_config.force_download = False
dl_manager = DownloadManager(
dataset_name=self.name, download_config=download_config, data_dir=self.data_dir
)
self._download_and_prepare(dl_manager)
def _download_and_prepare(self, dl_manager):
"""Downloads and prepares resources for the metric.
This is the internal implementation to overwrite called when user calls
`download_and_prepare`. It should download all required resources for the metric.
Args:
dl_manager (:class:`DownloadManager`): `DownloadManager` used to download and cache data.
"""
return None
def _compute(self, *, predictions=None, references=None, **kwargs) -> Dict[str, Any]:
"""This method defines the common API for all the metrics in the library"""
raise NotImplementedError
def __del__(self):
if hasattr(self, "filelock") and self.filelock is not None:
self.filelock.release()
if hasattr(self, "rendez_vous_lock") and self.rendez_vous_lock is not None:
self.rendez_vous_lock.release()
if hasattr(self, "writer"): # in case it was already deleted
del self.writer
if hasattr(self, "data"): # in case it was already deleted
del self.data
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/iterable_dataset.py | import copy
import itertools
import sys
import warnings
from collections import Counter
from copy import deepcopy
from dataclasses import dataclass
from itertools import cycle, islice
from typing import Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
from . import config
from .arrow_dataset import Dataset, DatasetInfoMixin
from .features import Features
from .features.features import FeatureType, _align_features, _check_if_features_can_be_aligned, cast_to_python_objects
from .filesystems import _reset_fsspec_lock
from .formatting import PythonFormatter, TensorFormatter, get_format_type_from_alias, get_formatter
from .info import DatasetInfo
from .splits import NamedSplit
from .table import cast_table_to_features, read_schema_from_file, table_cast
from .utils.logging import get_logger
from .utils.py_utils import Literal
from .utils.sharding import _merge_gen_kwargs, _number_of_shards_in_gen_kwargs, _shuffle_gen_kwargs, _split_gen_kwargs
logger = get_logger(__name__)
Key = Union[int, str]
def _infer_features_from_batch(batch: Dict[str, list], try_features: Optional[Features] = None) -> Features:
pa_table = pa.Table.from_pydict(batch)
if try_features is not None:
try:
pa_table = table_cast(pa_table, pa.schema(try_features.type))
except (TypeError, pa.ArrowInvalid, pa.ArrowNotImplementedError):
pass
return Features.from_arrow_schema(pa_table.schema)
def _examples_to_batch(examples: List[Dict[str, Any]]) -> Dict[str, list]:
# we order the columns by order of appearance
# to do so, we use a dict as an ordered set
cols = {col: None for example in examples for col in example}
# when an example is missing a column, we set the value to None with .get()
arrays = [[example.get(col) for example in examples] for col in cols]
return dict(zip(cols, arrays))
def _batch_to_examples(batch: Dict[str, list]) -> List[Dict[str, Any]]:
"""Convert a batch (dict of examples) to examples list"""
n_examples = len(batch[next(iter(batch))])
for i in range(n_examples):
yield {col: array[i] for col, array in batch.items()}
class _HasNextIterator(Iterator):
"""Iterator with an hasnext() function. Taken from https://stackoverflow.com/questions/1966591/has-next-in-python-iterators."""
def __init__(self, it):
self.it = iter(it)
self._hasnext = None
def __iter__(self):
return self
def __next__(self):
if self._hasnext:
result = self._thenext
else:
result = next(self.it)
self._hasnext = None
return result
def hasnext(self):
if self._hasnext is None:
try:
self._thenext = next(self.it)
except StopIteration:
self._hasnext = False
else:
self._hasnext = True
return self._hasnext
def _convert_to_arrow(
iterable: Iterable[Tuple[Key, dict]],
batch_size: int,
drop_last_batch: bool = False,
) -> Iterator[Tuple[Key, pa.Table]]:
"""Convert and group examples in Arrow tables of size `batch_size`.
Args:
iterable (`Iterable[Tuple[Key, dict]]`):
An examples iterable containing tuples (example_key, example) of type (int/str, dict)
batch_size (`Optional[int]`):
Size of each sub-table to yield. If None or <= 0, yields the full table.
drop_last_batch (`bool`, defaults to `False`):
Drop the last batch if it is smaller than `batch_size`.
"""
if batch_size is None or batch_size <= 0:
yield "all", pa.Table.from_pylist(
cast_to_python_objects([example for _, example in iterable], only_1d_for_numpy=True)
)
return
iterator = iter(iterable)
for key, example in iterator:
iterator_batch = islice(iterator, batch_size - 1)
key_examples_list = [(key, example)] + [(key, example) for key, example in iterator_batch]
if len(key_examples_list) < batch_size and drop_last_batch:
return
keys, examples = zip(*key_examples_list)
new_key = "_".join(str(key) for key in keys)
yield new_key, pa.Table.from_pylist(cast_to_python_objects(examples, only_1d_for_numpy=True))
def _batch_arrow_tables(
iterable: Iterable[Tuple[Key, pa.Table]],
batch_size: Optional[int],
drop_last_batch: bool = False,
) -> Iterator[Tuple[Key, pa.Table]]:
"""Iterate over sub-tables of size `batch_size`.
Args:
iterable (`Iterable[Tuple[Key, pa.Table]]`):
A tables iterable containing tuples (table_key, table) of type (int/str, pa.Table)
batch_size (`Optional[int]`):
Size of each sub-table to yield. If None or <= 0, yields the full table.
drop_last_batch (`bool`, defaults to `False`):
Drop the last batch if it is smaller than `batch_size`.
"""
if batch_size is None or batch_size <= 0:
yield "all", pa.concat_tables([pa_table for _, pa_table in iterable])
return
keys_buffer = []
chunks_buffer = []
chunks_buffer_size = 0
for key, pa_table in iterable:
for chunk in pa_table.to_reader(max_chunksize=batch_size):
if len(chunk) == 0:
continue
elif chunks_buffer_size + len(chunk) < batch_size:
keys_buffer.append(key)
chunks_buffer.append(chunk)
chunks_buffer_size += len(chunk)
continue
elif chunks_buffer_size + len(chunk) == batch_size:
keys_buffer.append(key)
chunks_buffer.append(chunk)
new_key = "_".join(str(_key) for _key in keys_buffer)
yield new_key, pa.Table.from_batches(chunks_buffer)
keys_buffer = []
chunks_buffer = []
chunks_buffer_size = 0
else:
cropped_chunk_length = batch_size - chunks_buffer_size
keys_buffer.append(f"{key}[:{cropped_chunk_length}]")
chunks_buffer.append(chunk.slice(0, cropped_chunk_length))
new_key = "_".join(str(_key) for _key in keys_buffer)
yield new_key, pa.Table.from_batches(chunks_buffer)
keys_buffer = [f"{key}[{cropped_chunk_length}:]"]
chunks_buffer = [chunk.slice(cropped_chunk_length, len(chunk) - cropped_chunk_length)]
chunks_buffer_size = len(chunk) - cropped_chunk_length
if not drop_last_batch and chunks_buffer:
new_key = "_".join(str(_key) for _key in keys_buffer)
yield new_key, pa.Table.from_batches(chunks_buffer)
class _BaseExamplesIterable:
"""Base class for the examples iterable used by an IterableDataset"""
def __init__(self) -> None:
self.iter_arrow: Optional[Callable[[], Iterator[Tuple[Key, pa.Table]]]] = None
def __iter__(self) -> Iterator[Tuple[Key, dict]]:
"""An examples iterable should yield tuples (example_key, example) of type (int/str, dict)"""
raise NotImplementedError(f"{type(self)} doesn't implement __iter__ yet")
def shuffle_data_sources(self, generator: np.random.Generator) -> "_BaseExamplesIterable":
"""
Either shuffle the shards/sources of the dataset, or propagate the shuffling to the underlying iterable.
If the order of the shards must stay fixed (when using .skip or .take for example), then this method returns self.
"""
raise NotImplementedError(f"{type(self)} doesn't implement shuffle_data_sources yet")
def shard_data_sources(self, worker_id: int, num_workers: int) -> "_BaseExamplesIterable":
"""Either keep only the requested shard, or propagate the request to the underlying iterable."""
raise NotImplementedError(f"{type(self)} doesn't implement shard_data_sources yet")
def split_shard_indices_by_worker(self, worker_id: int, num_workers: int) -> List[int]:
return list(range(worker_id, self.n_shards, num_workers))
@property
def n_shards(self) -> int:
raise NotImplementedError(f"{type(self)} doesn't implement n_shards yet")
class ExamplesIterable(_BaseExamplesIterable):
def __init__(self, generate_examples_fn: Callable[..., Tuple[Key, dict]], kwargs: dict):
super().__init__()
self.generate_examples_fn = generate_examples_fn
self.kwargs = kwargs
def __iter__(self):
yield from self.generate_examples_fn(**self.kwargs)
def shuffle_data_sources(self, generator: np.random.Generator) -> "ExamplesIterable":
return ShuffledDataSourcesExamplesIterable(self.generate_examples_fn, self.kwargs, generator)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "ExamplesIterable":
"""Keep only the requested shard."""
gen_kwargs_list = _split_gen_kwargs(self.kwargs, max_num_jobs=self.n_shards)
shard_indices = self.split_shard_indices_by_worker(worker_id, num_workers)
requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices])
return ExamplesIterable(self.generate_examples_fn, requested_gen_kwargs)
@property
def n_shards(self) -> int:
return _number_of_shards_in_gen_kwargs(self.kwargs)
class ShuffledDataSourcesExamplesIterable(ExamplesIterable):
def __init__(
self, generate_examples_fn: Callable[..., Tuple[Key, dict]], kwargs: dict, generator: np.random.Generator
):
super().__init__(generate_examples_fn, kwargs)
self.generator = deepcopy(generator)
def __iter__(self):
"""Shuffle the kwargs order to shuffle shards"""
rng = deepcopy(self.generator)
kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
yield from self.generate_examples_fn(**kwargs_with_shuffled_shards)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "ExamplesIterable":
"""Keep only the requested shard."""
rng = deepcopy(self.generator)
kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
return ExamplesIterable(self.generate_examples_fn, kwargs_with_shuffled_shards).shard_data_sources(
worker_id, num_workers
)
class ArrowExamplesIterable(_BaseExamplesIterable):
def __init__(self, generate_tables_fn: Callable[..., Tuple[Key, pa.Table]], kwargs: dict):
super().__init__()
self.generate_tables_fn = generate_tables_fn
self.kwargs = kwargs
self.iter_arrow = self._iter_arrow
def __iter__(self):
formatter = PythonFormatter()
for key, pa_table in self.generate_tables_fn(**self.kwargs):
for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER):
formatted_batch = formatter.format_batch(pa_subtable)
for example in _batch_to_examples(formatted_batch):
yield key, example
def _iter_arrow(self):
yield from self.generate_tables_fn(**self.kwargs)
def shuffle_data_sources(self, generator: np.random.Generator) -> "ArrowExamplesIterable":
return ShuffledDataSourcesArrowExamplesIterable(self.generate_tables_fn, self.kwargs, generator)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "ArrowExamplesIterable":
"""Keep only the requested shard."""
gen_kwargs_list = _split_gen_kwargs(self.kwargs, max_num_jobs=self.n_shards)
shard_indices = self.split_shard_indices_by_worker(worker_id, num_workers)
requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices])
return ArrowExamplesIterable(self.generate_tables_fn, requested_gen_kwargs)
@property
def n_shards(self) -> int:
return _number_of_shards_in_gen_kwargs(self.kwargs)
class ShuffledDataSourcesArrowExamplesIterable(ArrowExamplesIterable):
def __init__(
self,
generate_tables_fn: Callable[..., Tuple[Key, pa.Table]],
kwargs: dict,
generator: np.random.Generator,
):
super().__init__(generate_tables_fn, kwargs)
self.generator = deepcopy(generator)
def __iter__(self):
"""Shuffle the kwargs order to shuffle shards"""
rng = deepcopy(self.generator)
kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
formatter = PythonFormatter()
for key, pa_table in self.generate_tables_fn(**kwargs_with_shuffled_shards):
for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER):
formatted_batch = formatter.format_batch(pa_subtable)
for example in _batch_to_examples(formatted_batch):
yield key, example
def _iter_arrow(self):
rng = deepcopy(self.generator)
kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
yield from self.generate_tables_fn(**kwargs_with_shuffled_shards)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "ArrowExamplesIterable":
"""Keep only the requested shard."""
rng = deepcopy(self.generator)
kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
return ArrowExamplesIterable(self.generate_tables_fn, kwargs_with_shuffled_shards).shard_data_sources(
worker_id, num_workers
)
class SelectColumnsIterable(_BaseExamplesIterable):
def __init__(self, ex_iterable: _BaseExamplesIterable, column_names: List[str]):
super().__init__()
self.ex_iterable = ex_iterable
self.column_names = column_names
if self.ex_iterable.iter_arrow:
self.iter_arrow = self._iter_arrow
def __iter__(self):
for idx, row in self.ex_iterable:
yield idx, {c: row[c] for c in self.column_names}
def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]:
for idx, pa_table in self.ex_iterable.iter_arrow():
yield idx, pa_table.select(self.column_names)
def shuffle_data_sources(self, generator: np.random.Generator) -> "SelectColumnsIterable":
return SelectColumnsIterable(self.ex_iterable.shuffle_data_sources(generator), self.column_names)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "SelectColumnsIterable":
return SelectColumnsIterable(self.ex_iterable.shard_data_sources(worker_id, num_workers), self.column_names)
@property
def n_shards(self) -> int:
return self.ex_iterable.n_shards
class StepExamplesIterable(_BaseExamplesIterable):
def __init__(self, ex_iterable: _BaseExamplesIterable, step: int, offset: int):
super().__init__()
self.ex_iterable = ex_iterable
self.step = step
self.offset = offset
# TODO(QL): implement iter_arrow
def __iter__(self):
ex_iterator = iter(self.ex_iterable)
while True:
batch = list(islice(ex_iterator, self.step))
if len(batch) > self.offset:
yield batch[self.offset]
else:
break
def shuffle_data_sources(self, generator: np.random.Generator) -> "StepExamplesIterable":
return StepExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator), step=self.step, offset=self.offset
)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "StepExamplesIterable":
return StepExamplesIterable(
self.ex_iterable.shard_data_sources(worker_id, num_workers), step=self.step, offset=self.offset
)
@property
def n_shards(self) -> int:
return self.ex_iterable.n_shards
class CyclingMultiSourcesExamplesIterable(_BaseExamplesIterable):
def __init__(
self,
ex_iterables: List[_BaseExamplesIterable],
stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
):
super().__init__()
self.ex_iterables = ex_iterables
self.stopping_strategy = stopping_strategy
# if undersampling ("first_exhausted"), we stop as soon as one dataset is exhausted
# if oversampling ("all_exhausted"), we stop as soons as every dataset is exhausted, i.e as soon as every samples of every dataset has been visited at least once
self.bool_strategy_func = np.all if (stopping_strategy == "all_exhausted") else np.any
# TODO(QL): implement iter_arrow
def _get_indices_iterator(self):
# this is an infinite iterator to keep track of which iterator we want to pick examples from
return cycle(range(len(self.ex_iterables)))
def __iter__(self):
iterators = [_HasNextIterator(ex_iterable) for ex_iterable in self.ex_iterables]
indices_iterator = self._get_indices_iterator()
is_exhausted = np.full(len(self.ex_iterables), False)
for i in indices_iterator:
try: # let's pick one example from the iterator at index i
yield next(iterators[i])
# it will resume from the yield at the next call so that we can directly test if the iterable is exhausted and if we need to break out of the loop
if not iterators[i].hasnext():
is_exhausted[i] = True
if self.bool_strategy_func(is_exhausted):
# if the stopping criteria is met, break the main for loop
break
# otherwise reinitialise the iterator and yield the first example
iterators[i] = _HasNextIterator(self.ex_iterables[i])
except StopIteration:
# here it means that the i-th iterabledataset is empty, i.e we never have the occasion to yield an element of the i-th dataset.
# we still check if the stopping criteria is met and if we break out of the loop in case of an oversampling strategy
is_exhausted[i] = True
if self.bool_strategy_func(is_exhausted):
# if the stopping criteria is met, break the main for loop
break
def shuffle_data_sources(self, generator: np.random.Generator) -> "CyclingMultiSourcesExamplesIterable":
"""Shuffle each underlying examples iterable."""
ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables]
return CyclingMultiSourcesExamplesIterable(ex_iterables, self.stopping_strategy)
@property
def n_shards(self) -> int:
return min(ex_iterable.n_shards for ex_iterable in self.ex_iterables)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "CyclingMultiSourcesExamplesIterable":
"""Either keep only the requested shard, or propagate the request to the underlying iterable."""
return CyclingMultiSourcesExamplesIterable(
[iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables],
stopping_strategy=self.stopping_strategy,
)
class VerticallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable):
"""
VerticallyConcatenatedMultiSourcesExamplesIterable simply chains the input iterables.
It doesn't require the examples iterables to always yield the same columns.
Instead, this is handled by the `IterableDataset` class or `TypedExamplesIterable`.
For information, `IterableDataset` merges the features of all the datasets to concatenate into one.
We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate.
Then for each example, `IterableDataset` and `TypedExamplesIterable` automatically fill missing columns with None.
This is done with `_apply_feature_types_on_example`.
"""
def __init__(self, ex_iterables: List[_BaseExamplesIterable]):
super().__init__()
self.ex_iterables = ex_iterables
if all(ex_iterable.iter_arrow is not None for ex_iterable in ex_iterables):
self.iter_arrow = self._iter_arrow
def __iter__(self):
for ex_iterable in self.ex_iterables:
yield from ex_iterable
def _iter_arrow(self):
for ex_iterable in self.ex_iterables:
yield from ex_iterable.iter_arrow()
def shuffle_data_sources(
self, generator: np.random.Generator
) -> "VerticallyConcatenatedMultiSourcesExamplesIterable":
"""Shuffle the list of examples iterable, as well as each underlying examples iterable."""
rng = deepcopy(generator)
ex_iterables = list(self.ex_iterables)
rng.shuffle(ex_iterables)
ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in ex_iterables]
return VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables)
@property
def n_shards(self) -> int:
return min(ex_iterable.n_shards for ex_iterable in self.ex_iterables)
def shard_data_sources(
self, worker_id: int, num_workers: int
) -> "VerticallyConcatenatedMultiSourcesExamplesIterable":
"""Either keep only the requested shard, or propagate the request to the underlying iterable."""
return VerticallyConcatenatedMultiSourcesExamplesIterable(
[iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables]
)
def _check_column_names(column_names: List[str]):
"""Check the column names to make sure they don't contain duplicates."""
counter = Counter(column_names)
if not all(count == 1 for count in counter.values()):
duplicated_columns = [col for col in counter if counter[col] > 1]
raise ValueError(
f"The examples iterables can't have duplicated columns but columns {duplicated_columns} are duplicated."
)
class HorizontallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable):
"""
HorizontallyConcatenatedMultiSourcesExamplesIterable merges examples together for the input list of iterables.
It also checks that there are no duplicate columns (otherwise we don't know which one to keep).
This check is done once when yielding the first example.
However it doesn't fill missing columns with None.
Instead, this is handled by the `IterableDataset` class or `TypedExamplesIterable`.
For information, `IterableDataset` merges the features of all the datasets to concatenate into one.
We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate.
Then for each example, `IterableDataset` and `TypedExamplesIterable` automatically fill missing columns with None.
This is done with `_apply_feature_types_on_example`.
"""
def __init__(self, ex_iterables: List[_BaseExamplesIterable]):
super().__init__()
self.ex_iterables = ex_iterables
# TODO(QL): implement iter_arrow
def __iter__(self):
ex_iterators = [iter(ex_iterable) for ex_iterable in self.ex_iterables]
for i in itertools.count():
keys = []
examples = []
for ex_iterator in list(ex_iterators):
try:
key, example = next(ex_iterator)
keys.append(key)
examples.append(example)
except StopIteration:
ex_iterators.remove(ex_iterator)
if ex_iterators:
if i == 0:
_check_column_names([column_name for example in examples for column_name in example])
new_example = {}
for example in examples:
new_example.update(example)
new_key = "_".join(str(key) for key in keys)
yield new_key, new_example
else:
break
def shuffle_data_sources(
self, generator: np.random.Generator
) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable":
"""Doesn't shuffle the wrapped examples iterable since it would break the alignment between them."""
return self
@property
def n_shards(self) -> int:
return 1
def shard_data_sources(
self, worker_id: int, num_workers: int
) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable":
"""Either keep only the requested shard, or propagate the request to the underlying iterable."""
return HorizontallyConcatenatedMultiSourcesExamplesIterable(
[iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables]
)
class RandomlyCyclingMultiSourcesExamplesIterable(CyclingMultiSourcesExamplesIterable):
def __init__(
self,
ex_iterables: List[_BaseExamplesIterable],
generator: np.random.Generator,
probabilities: Optional[List[float]] = None,
stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
):
super().__init__(ex_iterables, stopping_strategy)
self.generator = deepcopy(generator)
self.probabilities = probabilities
# TODO(QL): implement iter_arrow
@staticmethod
def _iter_random_indices(
rng: np.random.Generator,
num_sources: int,
random_batch_size=1000,
p: Optional[List[float]] = None,
) -> Iterator[int]:
"""Get an infinite iterator that randomly samples the index of the source to pick examples from."""
if p is None:
while True:
yield from (int(i) for i in rng.integers(0, num_sources, size=random_batch_size))
else:
while True:
yield from (int(i) for i in rng.choice(num_sources, size=random_batch_size, p=p))
def _get_indices_iterator(self):
rng = deepcopy(self.generator)
# this is an infinite iterator that randomly samples the index of the source to pick examples from
return self._iter_random_indices(rng, len(self.ex_iterables), p=self.probabilities)
def shuffle_data_sources(self, generator: np.random.Generator) -> "RandomlyCyclingMultiSourcesExamplesIterable":
"""Shuffle the data sources of each wrapped examples iterable."""
ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables]
return RandomlyCyclingMultiSourcesExamplesIterable(
ex_iterables,
generator=generator,
probabilities=self.probabilities,
stopping_strategy=self.stopping_strategy,
)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "RandomlyCyclingMultiSourcesExamplesIterable":
"""Either keep only the requested shard, or propagate the request to the underlying iterable."""
return RandomlyCyclingMultiSourcesExamplesIterable(
[iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables],
self.generator,
self.probabilities,
self.stopping_strategy,
)
class MappedExamplesIterable(_BaseExamplesIterable):
def __init__(
self,
ex_iterable: _BaseExamplesIterable,
function: Callable,
with_indices: bool = False,
input_columns: Optional[List[str]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[List[str]] = None,
fn_kwargs: Optional[dict] = None,
formatting: Optional["FormattingConfig"] = None,
format_type="deprecated",
):
if format_type != "deprecated":
warning_msg = "'format_type' is deprecated and will be removed in the next major version of datasets. "
help_message = "Please use 'formatting=FormattingConfig(format_type=format_type)' instead."
warnings.warn(warning_msg + help_message, category=FutureWarning, stacklevel=2)
formatting = FormattingConfig(format_type=format_type)
super().__init__()
self.ex_iterable = ex_iterable
self.function = function
self.batched = batched
self.batch_size = batch_size
self.drop_last_batch = drop_last_batch
self.remove_columns = remove_columns
self.with_indices = with_indices
self.input_columns = input_columns
self.fn_kwargs = fn_kwargs or {}
self.formatting = formatting
if self.formatting and self.formatting.format_type == "arrow":
self.iter_arrow = self._iter_arrow
def __iter__(self):
if self.formatting and self.formatting.format_type == "arrow":
yield from ArrowExamplesIterable(self._iter_arrow, {})
else:
yield from self._iter()
def _iter(self):
iterator = iter(self.ex_iterable)
current_idx = 0
if self.formatting:
formatter = get_formatter(self.formatting.format_type)
format_dict = (
formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
)
else:
format_dict = None
if self.batched:
for key, example in iterator:
# If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset
iterator_batch = (
iterator
if self.batch_size is None or self.batch_size <= 0
else islice(iterator, self.batch_size - 1)
)
key_examples_list = [(key, example)] + [(key, example) for key, example in iterator_batch]
keys, examples = zip(*key_examples_list)
if (
self.drop_last_batch
and self.batch_size is not None
and self.batch_size > 0
and len(examples) < self.batch_size
): # ignore last batch
return
batch = _examples_to_batch(examples)
batch = format_dict(batch) if format_dict else batch
# then apply the transform
inputs = batch
function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
if self.with_indices:
function_args.append([current_idx + i for i in range(len(key_examples_list))])
transformed_batch = dict(batch) # this will be updated with the function output
transformed_batch.update(self.function(*function_args, **self.fn_kwargs))
# then remove the unwanted columns
if self.remove_columns:
for c in self.remove_columns:
del transformed_batch[c]
if transformed_batch:
first_col = next(iter(transformed_batch))
bad_cols = [
col
for col in transformed_batch
if len(transformed_batch[col]) != len(transformed_batch[first_col])
]
if bad_cols:
raise ValueError(
f"Column lengths mismatch: columns {bad_cols} have length {[len(transformed_batch[col]) for col in bad_cols]} while {first_col} has length {len(transformed_batch[first_col])}."
)
# the new key is the concatenation of the examples keys from the batch
new_key = "_".join(str(key) for key in keys)
# yield one example at a time from the transformed batch
for batch_idx, example in enumerate(_batch_to_examples(transformed_batch)):
yield new_key, example
current_idx += batch_idx + 1
else:
for key, example in iterator:
# If not batched, we can apply the transform and yield the example directly
# first copy the example, since we might drop some keys
example = dict(example)
example = format_dict(example) if format_dict else example
# then apply the transform
inputs = example
function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
if self.with_indices:
function_args.append(current_idx)
transformed_example = dict(example) # this will be updated with the function output
transformed_example.update(self.function(*function_args, **self.fn_kwargs))
# then we remove the unwanted columns
if self.remove_columns:
for c in self.remove_columns:
del transformed_example[c]
yield key, transformed_example
current_idx += 1
def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]:
if self.ex_iterable.iter_arrow:
iterator = _batch_arrow_tables(
self.ex_iterable.iter_arrow(),
batch_size=self.batch_size if self.batched else 1,
drop_last_batch=self.drop_last_batch,
)
else:
iterator = _convert_to_arrow(
self.ex_iterable,
batch_size=self.batch_size if self.batched else 1,
drop_last_batch=self.drop_last_batch,
)
current_idx = 0
for key, pa_table in iterator:
# first build the batch
function_args = [pa_table] if self.input_columns is None else [pa_table[col] for col in self.input_columns]
if self.with_indices:
if self.batched:
function_args.append([current_idx + i for i in range(len(pa_table))])
else:
function_args.append(current_idx)
# then apply the transform
output_table = self.function(*function_args, **self.fn_kwargs)
if not isinstance(output_table, pa.Table):
raise TypeError(
f"Provided `function` which is applied to pyarrow tables returns a variable of type {type(output_table)}. Make sure provided `function` returns a a pyarrow table to update the dataset."
)
# we don't need to merge results for consistency with Dataset.map which merges iif both input and output are dicts
# then remove the unwanted columns
if self.remove_columns:
for column in self.remove_columns:
if column in output_table.column_names:
output_table = output_table.remove_column(output_table.column_names.index(column))
# return output
yield key, output_table
current_idx += len(pa_table)
def shuffle_data_sources(self, generator: np.random.Generator) -> "MappedExamplesIterable":
"""Shuffle the wrapped examples iterable."""
return MappedExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator),
function=self.function,
with_indices=self.with_indices,
input_columns=self.input_columns,
batched=self.batched,
batch_size=self.batch_size,
remove_columns=self.remove_columns,
fn_kwargs=self.fn_kwargs,
)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "MappedExamplesIterable":
"""Keep only the requested shard."""
return MappedExamplesIterable(
self.ex_iterable.shard_data_sources(worker_id, num_workers),
function=self.function,
with_indices=self.with_indices,
input_columns=self.input_columns,
batched=self.batched,
batch_size=self.batch_size,
remove_columns=self.remove_columns,
fn_kwargs=self.fn_kwargs,
)
@property
def n_shards(self) -> int:
return self.ex_iterable.n_shards
class FilteredExamplesIterable(_BaseExamplesIterable):
def __init__(
self,
ex_iterable: _BaseExamplesIterable,
function: Callable,
with_indices: bool = False,
input_columns: Optional[List[str]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
fn_kwargs: Optional[dict] = None,
formatting: Optional["FormattingConfig"] = None,
format_type="deprecated",
):
if format_type != "deprecated":
warning_msg = "'format_type' is deprecated and will be removed in the next major version of datasets. "
help_message = "Please use 'formatting=FormattingConfig(format_type=format_type)' instead."
warnings.warn(warning_msg + help_message, category=FutureWarning, stacklevel=2)
formatting = FormattingConfig(format_type=format_type)
super().__init__()
self.ex_iterable = ex_iterable
self.function = function
self.batched = batched
self.batch_size = batch_size
self.with_indices = with_indices
self.input_columns = input_columns
self.fn_kwargs = fn_kwargs or {}
self.formatting = formatting
if self.formatting and self.formatting.format_type == "arrow":
self.iter_arrow = self._iter_arrow
def __iter__(self):
if self.formatting and self.formatting.format_type == "arrow":
yield from ArrowExamplesIterable(self._iter_arrow, {})
else:
yield from self._iter()
def _iter(self):
if self.formatting:
formatter = get_formatter(self.formatting.format_type)
format_dict = (
formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
)
else:
format_dict = None
iterator = iter(self.ex_iterable)
current_idx = 0
if self.batched:
for key, example in iterator:
# If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset
iterator_batch = (
iterator
if self.batch_size is None or self.batch_size <= 0
else islice(iterator, self.batch_size - 1)
)
key_examples_list = [(key, example)] + [(key, example) for key, example in iterator_batch]
keys, examples = zip(*key_examples_list)
batch = _examples_to_batch(examples)
batch = format_dict(batch) if format_dict else batch
# then compute the mask for the batch
inputs = batch
function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
if self.with_indices:
function_args.append([current_idx + i for i in range(len(key_examples_list))])
mask = self.function(*function_args, **self.fn_kwargs)
# yield one example at a time from the batch
for batch_idx, (key_example, to_keep) in enumerate(zip(key_examples_list, mask)):
if to_keep:
yield key_example
current_idx += batch_idx + 1
else:
for key, example in iterator:
# If not batched, we can apply the filtering function direcly
example = dict(example)
inputs = format_dict(example) if format_dict else example
function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
if self.with_indices:
function_args.append(current_idx)
to_keep = self.function(*function_args, **self.fn_kwargs)
if to_keep:
yield key, example
current_idx += 1
def _iter_arrow(self):
if self.ex_iterable.iter_arrow:
iterator = _batch_arrow_tables(
self.ex_iterable.iter_arrow(), batch_size=self.batch_size if self.batched else 1
)
else:
iterator = _convert_to_arrow(self.ex_iterable, batch_size=self.batch_size if self.batched else 1)
current_idx = 0
for key, pa_table in iterator:
# first build the batch
function_args = [pa_table] if self.input_columns is None else [pa_table[col] for col in self.input_columns]
if self.with_indices:
if self.batched:
function_args.append([current_idx + i for i in range(len(pa_table))])
else:
function_args.append(current_idx)
# then apply the transform
mask = self.function(*function_args, **self.fn_kwargs)
# yield the filtered table
if self.batched:
yield key, pa_table.filter(mask)
elif mask.as_py() if isinstance(mask, pa.BooleanScalar) else mask:
yield key, pa_table
current_idx += len(pa_table)
def shuffle_data_sources(self, seed: Optional[int]) -> "FilteredExamplesIterable":
"""Shuffle the wrapped examples iterable."""
return FilteredExamplesIterable(
self.ex_iterable.shuffle_data_sources(seed),
function=self.function,
with_indices=self.with_indices,
input_columns=self.input_columns,
batched=self.batched,
batch_size=self.batch_size,
)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "FilteredExamplesIterable":
"""Keep only the requested shard."""
return FilteredExamplesIterable(
self.ex_iterable.shard_data_sources(worker_id, num_workers),
function=self.function,
with_indices=self.with_indices,
input_columns=self.input_columns,
batched=self.batched,
batch_size=self.batch_size,
)
@property
def n_shards(self) -> int:
return self.ex_iterable.n_shards
class BufferShuffledExamplesIterable(_BaseExamplesIterable):
def __init__(self, ex_iterable: _BaseExamplesIterable, buffer_size: int, generator: np.random.Generator):
super().__init__()
self.ex_iterable = ex_iterable
self.buffer_size = buffer_size
self.generator = generator
# TODO(QL): implement iter_arrow
@staticmethod
def _iter_random_indices(rng: np.random.Generator, buffer_size: int, random_batch_size=1000) -> Iterator[int]:
while True:
yield from (int(i) for i in rng.integers(0, buffer_size, size=random_batch_size))
def __iter__(self):
buffer_size = self.buffer_size
rng = deepcopy(self.generator)
indices_iterator = self._iter_random_indices(rng, buffer_size)
# this is the shuffle buffer that we keep in memory
mem_buffer = []
for x in self.ex_iterable:
if len(mem_buffer) == buffer_size: # if the buffer is full, pick and example from it
i = next(indices_iterator)
yield mem_buffer[i]
mem_buffer[i] = x # replace the picked example by a new one
else: # otherwise, keep filling the buffer
mem_buffer.append(x)
# when we run out of examples, we shuffle the remaining examples in the buffer and yield them
rng.shuffle(mem_buffer)
yield from mem_buffer
def shuffle_data_sources(self, generator: np.random.Generator) -> "BufferShuffledExamplesIterable":
"""Shuffle the wrapped examples iterable as well as the shuffling buffer."""
return BufferShuffledExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator), buffer_size=self.buffer_size, generator=generator
)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "BufferShuffledExamplesIterable":
"""Keep only the requested shard."""
return BufferShuffledExamplesIterable(
self.ex_iterable.shard_data_sources(worker_id, num_workers),
buffer_size=self.buffer_size,
generator=self.generator,
)
@property
def n_shards(self) -> int:
return self.ex_iterable.n_shards
class SkipExamplesIterable(_BaseExamplesIterable):
def __init__(self, ex_iterable: _BaseExamplesIterable, n: int):
super().__init__()
self.ex_iterable = ex_iterable
self.n = n
# TODO(QL): implement iter_arrow
def __iter__(self):
yield from islice(self.ex_iterable, self.n, None)
def shuffle_data_sources(self, generator: np.random.Generator) -> "SkipExamplesIterable":
"""Doesn't shuffle the wrapped examples iterable since it would skip examples from other shards instead."""
return self
@property
def n_shards(self) -> int:
return self.ex_iterable.n_shards
class TakeExamplesIterable(_BaseExamplesIterable):
def __init__(self, ex_iterable: _BaseExamplesIterable, n: int):
super().__init__()
self.ex_iterable = ex_iterable
self.n = n
# TODO(QL): implement iter_arrow
def __iter__(self):
yield from islice(self.ex_iterable, self.n)
def shuffle_data_sources(self, generator: np.random.Generator) -> "TakeExamplesIterable":
"""Doesn't shuffle the wrapped examples iterable since it would take examples from other shards instead."""
return self
@staticmethod
def split_number(num, n):
quotient = num // n
remainder = num % n
result = [quotient] * n
for i in range(remainder):
result[i] += 1
return result
def shard_data_sources(self, worker_id: int, num_workers: int) -> "TakeExamplesIterable":
"""Keep only the requested shard."""
return TakeExamplesIterable(
self.ex_iterable.shard_data_sources(worker_id, num_workers),
n=self.split_number(self.n, num_workers)[worker_id],
)
@property
def n_shards(self) -> int:
return self.ex_iterable.n_shards
def _apply_feature_types_on_example(
example: dict, features: Features, token_per_repo_id: Dict[str, Union[str, bool, None]]
) -> dict:
example = dict(example)
# add missing columns
for column_name in features:
if column_name not in example:
example[column_name] = None
# we encode the example for ClassLabel feature types for example
encoded_example = features.encode_example(example)
# Decode example for Audio feature, e.g.
decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id)
return decoded_example
def _apply_feature_types_on_batch(
batch: dict, features: Features, token_per_repo_id: Dict[str, Union[str, bool, None]]
) -> dict:
batch = dict(batch)
# add missing columns
n_examples = len(batch[next(iter(batch))])
for column_name in features:
if column_name not in batch:
batch[column_name] = [None] * n_examples
# we encode the batch for ClassLabel feature types for example
encoded_batch = features.encode_batch(batch)
# Decode batch for Audio feature, e.g.
decoded_batch = features.decode_batch(encoded_batch, token_per_repo_id=token_per_repo_id)
return decoded_batch
class TypedExamplesIterable(_BaseExamplesIterable):
def __init__(
self,
ex_iterable: _BaseExamplesIterable,
features: Features,
token_per_repo_id: Dict[str, Union[str, bool, None]],
):
super().__init__()
self.ex_iterable = ex_iterable
self.features = features
self.token_per_repo_id = token_per_repo_id
if self.ex_iterable.iter_arrow is not None:
self.iter_arrow = self._iter_arrow
def __iter__(self):
# Then for each example, `TypedExamplesIterable` automatically fills missing columns with None.
# This is done with `_apply_feature_types_on_example`.
for key, example in self.ex_iterable:
yield key, _apply_feature_types_on_example(
example, self.features, token_per_repo_id=self.token_per_repo_id
)
def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]:
schema = self.features.arrow_schema
for key, pa_table in self.ex_iterable.iter_arrow():
columns = set(pa_table.column_names)
# add missing columns
for column_name in self.features:
if column_name not in columns:
col = pa.NullArray.from_buffers(pa.null(), len(pa_table), [None])
pa_table = pa_table.append_column(column_name, col)
if pa_table.schema != schema:
pa_table = cast_table_to_features(pa_table, self.features)
yield key, pa_table
def shuffle_data_sources(self, generator: np.random.Generator) -> "TypedExamplesIterable":
"""Shuffle the wrapped examples iterable."""
return TypedExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator),
features=self.features,
token_per_repo_id=self.token_per_repo_id,
)
def shard_data_sources(self, worker_id: int, num_workers: int) -> "TypedExamplesIterable":
"""Keep only the requested shard."""
return TypedExamplesIterable(
self.ex_iterable.shard_data_sources(worker_id, num_workers),
features=self.features,
token_per_repo_id=self.token_per_repo_id,
)
@property
def n_shards(self) -> int:
return self.ex_iterable.n_shards
@dataclass
class FormattingConfig:
format_type: Optional[str]
def __post_init__(self):
if self.format_type == "pandas":
raise NotImplementedError(
"The 'pandas' formatting is not implemented for iterable datasets. You can use 'numpy' or 'arrow' instead."
)
@dataclass
class ShufflingConfig:
generator: np.random.Generator
_original_seed: Optional[int] = None
@dataclass
class DistributedConfig:
rank: int
world_size: int
def _maybe_add_torch_iterable_dataset_parent_class(cls):
"""Add torch.utils.data.IterableDataset as a parent class if 'torch' is available"""
if config.TORCH_AVAILABLE:
import torch.utils.data
if torch.utils.data.IterableDataset not in cls.__bases__:
cls.__bases__ += (torch.utils.data.IterableDataset,)
class IterableDataset(DatasetInfoMixin):
"""A Dataset backed by an iterable."""
def __init__(
self,
ex_iterable: _BaseExamplesIterable,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
formatting: Optional[FormattingConfig] = None,
shuffling: Optional[ShufflingConfig] = None,
distributed: Optional[DistributedConfig] = None,
token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None,
format_type="deprecated",
):
if distributed and distributed.world_size > 1 and shuffling and shuffling._original_seed is None:
raise RuntimeError(
"The dataset doesn't have a fixed random seed across nodes to shuffle and split the list of dataset shards by node. "
"Please pass e.g. `seed=42` in `.shuffle()` to make all the nodes use the same seed. "
)
if format_type != "deprecated":
warning_msg = "'format_type' is deprecated and will be removed in the next major version of datasets. "
help_message = "Please use 'formatting=FormattingConfig(format_type=format_type)' instead."
warnings.warn(warning_msg + help_message, category=FutureWarning, stacklevel=2)
formatting = FormattingConfig(format_type=format_type)
info = info.copy() if info is not None else DatasetInfo()
DatasetInfoMixin.__init__(self, info=info, split=split)
self._ex_iterable = ex_iterable
self._formatting = formatting
self._shuffling = shuffling
self._distributed = distributed
self._epoch = 0
self._token_per_repo_id: Dict[str, Union[str, bool, None]] = token_per_repo_id or {}
_maybe_add_torch_iterable_dataset_parent_class(self.__class__)
def __getstate__(self):
return self.__dict__
def __setstate__(self, d):
self.__dict__ = d
# Re-add torch iterable dataset as a parent class, since dynamically added parent classes are not kept when pickling
_maybe_add_torch_iterable_dataset_parent_class(self.__class__)
def _head(self, n=5):
return _examples_to_batch(list(self.take(n)))
def _effective_generator(self):
if self._shuffling and self._epoch == 0:
return self._shuffling.generator
elif self._shuffling:
# Create effective seed using self._epoch (we subtract in order to avoir overflow in long_scalars)
effective_seed = deepcopy(self._shuffling.generator).integers(0, 1 << 63) - self._epoch
effective_seed = (1 << 63) + effective_seed if effective_seed < 0 else effective_seed
return np.random.default_rng(effective_seed)
else:
raise ValueError("This dataset is not shuffled")
@property
def n_shards(self) -> int:
if self._distributed and self._ex_iterable.n_shards % self._distributed.world_size == 0:
return self._ex_iterable.n_shards // self._distributed.world_size
return self._ex_iterable.n_shards
def _iter_pytorch(self):
ex_iterable = self._prepare_ex_iterable_for_iteration()
# fix for fsspec when using multiprocess
_reset_fsspec_lock()
# check if there aren't too many workers
import torch.utils.data
worker_info = torch.utils.data.get_worker_info()
if self._is_main_process() and ex_iterable.n_shards < worker_info.num_workers:
logger.warning(
f"Too many dataloader workers: {worker_info.num_workers} (max is dataset.n_shards={ex_iterable.n_shards}). "
f"Stopping {worker_info.num_workers - ex_iterable.n_shards} dataloader workers."
)
logger.info(
f"To parallelize data loading, we give each process some shards (or data sources) to process. "
f"Therefore it's unnecessary to have a number of workers greater than dataset.n_shards={ex_iterable.n_shards}. "
f"To enable more parallelism, please split the dataset in more files than {ex_iterable.n_shards}."
)
# split workload
_log_prefix = f"node#{self._distributed.rank} " if self._distributed else ""
shards_indices = self._ex_iterable.split_shard_indices_by_worker(worker_info.id, worker_info.num_workers)
if shards_indices:
logger.debug(
f"{_log_prefix}dataloader worker#{worker_info.id}, ': Starting to iterate over {len(shards_indices)}/{ex_iterable.n_shards} shards."
)
ex_iterable = ex_iterable.shard_data_sources(worker_id=worker_info.id, num_workers=worker_info.num_workers)
if self._formatting:
formatter = get_formatter(self._formatting.format_type, features=self.features)
format_dict = (
formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
)
else:
format_dict = None
if self._formatting and (ex_iterable.iter_arrow or self._formatting == "arrow"):
if ex_iterable.iter_arrow:
iterator = _batch_arrow_tables(ex_iterable.iter_arrow(), batch_size=1)
else:
iterator = _convert_to_arrow(ex_iterable, batch_size=1)
for key, pa_table in iterator:
yield formatter.format_row(pa_table)
return
else:
for key, example in ex_iterable:
if self.features:
# `IterableDataset` automatically fills missing columns with None.
# This is done with `_apply_feature_types_on_example`.
example = _apply_feature_types_on_example(
example, self.features, token_per_repo_id=self._token_per_repo_id
)
yield format_dict(example) if format_dict else example
logger.debug(
f"{_log_prefix}dataloader worker#{worker_info.id}, ': Finished iterating over {len(shards_indices)}/{ex_iterable.n_shards} shards."
)
else:
logger.debug(
f"{_log_prefix}dataloader worker#{worker_info.id}, ': Stopping... Number of dataset shards < num_workers ({ex_iterable.n_shards}<{worker_info.num_workers})."
)
def _is_main_process(self):
if self._distributed and self._distributed.rank > 0:
return False
if "torch" in sys.modules:
import torch.utils.data
worker_info = torch.utils.data.get_worker_info()
if worker_info is not None and worker_info.id > 0:
return False
return True
def _prepare_ex_iterable_for_iteration(self) -> _BaseExamplesIterable:
if self._shuffling:
ex_iterable = self._ex_iterable.shuffle_data_sources(self._effective_generator())
else:
ex_iterable = self._ex_iterable
if self._distributed:
rank = self._distributed.rank
world_size = self._distributed.world_size
if ex_iterable.n_shards % world_size == 0:
if self._is_main_process():
n_shards_per_node = ex_iterable.n_shards // world_size
plural = "s" if n_shards_per_node > 1 else ""
logger.info(
f"Assigning {n_shards_per_node} shard{plural} (or data source{plural}) of the dataset to each node."
)
ex_iterable = ex_iterable.shard_data_sources(rank, world_size)
else:
if self._is_main_process():
logger.info(
f"Assigning 1 out of {world_size} examples of the dataset to each node. The others are skipped during the iteration."
)
logger.info(
f"It is more optimized to distribute the dataset shards (or data sources) across nodes. "
f"You can do that by using a dataset with number of shards that is a factor of world_size={world_size}. "
f"The current dataset has {ex_iterable.n_shards} which is not a factor of {world_size}"
)
ex_iterable = StepExamplesIterable(ex_iterable, step=world_size, offset=rank)
return ex_iterable
def __iter__(self):
if "torch" in sys.modules:
import torch.utils.data
worker_info = torch.utils.data.get_worker_info()
if isinstance(self, torch.utils.data.IterableDataset) and worker_info is not None:
# We're a torch.utils.data.IterableDataset in a PyTorch worker process
yield from self._iter_pytorch()
return
ex_iterable = self._prepare_ex_iterable_for_iteration()
if self._formatting:
formatter = get_formatter(self._formatting.format_type, features=self.features)
format_dict = (
formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
)
else:
format_dict = None
if self._formatting and (ex_iterable.iter_arrow or self._formatting.format_type == "arrow"):
if ex_iterable.iter_arrow:
iterator = _batch_arrow_tables(ex_iterable.iter_arrow(), batch_size=1)
else:
iterator = _convert_to_arrow(ex_iterable, batch_size=1)
for key, pa_table in iterator:
yield formatter.format_row(pa_table)
return
for key, example in ex_iterable:
if self.features:
# `IterableDataset` automatically fills missing columns with None.
# This is done with `_apply_feature_types_on_example`.
example = _apply_feature_types_on_example(
example, self.features, token_per_repo_id=self._token_per_repo_id
)
yield format_dict(example) if format_dict else example
def iter(self, batch_size: int, drop_last_batch: bool = False):
"""Iterate through the batches of size `batch_size`.
Args:
batch_size (:obj:`int`): size of each batch to yield.
drop_last_batch (:obj:`bool`, default `False`): Whether a last batch smaller than the batch_size should be
dropped
"""
if self._formatting:
formatter = get_formatter(self._formatting.format_type, features=self.features)
format_dict = (
formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
)
else:
format_dict = None
ex_iterable = self._prepare_ex_iterable_for_iteration()
if self._formatting and (ex_iterable.iter_arrow or self._formatting == "arrow"):
if ex_iterable.iter_arrow:
iterator = _batch_arrow_tables(
ex_iterable.iter_arrow(), batch_size=batch_size, drop_last_batch=drop_last_batch
)
else:
iterator = _convert_to_arrow(ex_iterable, batch_size=batch_size, drop_last_batch=drop_last_batch)
for key, pa_table in iterator:
yield formatter.format_batch(pa_table)
return
iterator = iter(ex_iterable)
for key, example in iterator:
# If batched, first build the batch
examples = [example] + [example for key, example in islice(iterator, batch_size - 1)]
if drop_last_batch and len(examples) < batch_size: # ignore last batch
return
batch = _examples_to_batch(examples)
if self.features:
# `IterableDataset` automatically fills missing columns with None.
# This is done with `_apply_feature_types_on_batch`.
batch = _apply_feature_types_on_batch(batch, self.features, token_per_repo_id=self._token_per_repo_id)
yield format_dict(batch) if format_dict else batch
@staticmethod
def from_generator(
generator: Callable,
features: Optional[Features] = None,
gen_kwargs: Optional[dict] = None,
) -> "IterableDataset":
"""Create an Iterable Dataset from a generator.
Args:
generator (`Callable`):
A generator function that `yields` examples.
features (`Features`, *optional*):
Dataset features.
gen_kwargs(`dict`, *optional*):
Keyword arguments to be passed to the `generator` callable.
You can define a sharded iterable dataset by passing the list of shards in `gen_kwargs`.
This can be used to improve shuffling and when iterating over the dataset with multiple workers.
Returns:
`IterableDataset`
Example:
```py
>>> def gen():
... yield {"text": "Good", "label": 0}
... yield {"text": "Bad", "label": 1}
...
>>> ds = IterableDataset.from_generator(gen)
```
```py
>>> def gen(shards):
... for shard in shards:
... with open(shard) as f:
... for line in f:
... yield {"line": line}
...
>>> shards = [f"data{i}.txt" for i in range(32)]
>>> ds = IterableDataset.from_generator(gen, gen_kwargs={"shards": shards})
>>> ds = ds.shuffle(seed=42, buffer_size=10_000) # shuffles the shards order + uses a shuffle buffer
>>> from torch.utils.data import DataLoader
>>> dataloader = DataLoader(ds.with_format("torch"), num_workers=4) # give each worker a subset of 32/4=8 shards
```
"""
from .io.generator import GeneratorDatasetInputStream
return GeneratorDatasetInputStream(
generator=generator,
features=features,
gen_kwargs=gen_kwargs,
streaming=True,
).read()
@staticmethod
def from_spark(
df: "pyspark.sql.DataFrame",
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
**kwargs,
) -> "IterableDataset":
"""Create an IterableDataset from Spark DataFrame. The dataset is streamed to the driver in batches.
Args:
df (`pyspark.sql.DataFrame`):
The DataFrame containing the desired data.
split (`NamedSplit`, *optional*):
Split name to be assigned to the dataset.
features (`Features`, *optional*):
Dataset features.
Returns:
[`IterableDataset`]
Example:
```py
>>> df = spark.createDataFrame(
>>> data=[[1, "Elia"], [2, "Teo"], [3, "Fang"]],
>>> columns=["id", "name"],
>>> )
>>> ds = IterableDataset.from_spark(df)
```
"""
from .io.spark import SparkDatasetReader
if sys.platform == "win32":
raise EnvironmentError("IterableDataset.from_spark is not currently supported on Windows")
return SparkDatasetReader(
df,
split=split,
features=features,
streaming=True,
**kwargs,
).read()
@staticmethod
def from_file(filename: str) -> "IterableDataset":
"""Instantiate a IterableDataset from Arrow table at filename.
Args:
filename (`str`):
File name of the dataset.
Returns:
[`IterableDataset`]
"""
pa_table_schema = read_schema_from_file(filename)
inferred_features = Features.from_arrow_schema(pa_table_schema)
ex_iterable = ArrowExamplesIterable(Dataset._generate_tables_from_cache_file, kwargs={"filename": filename})
return IterableDataset(ex_iterable=ex_iterable, info=DatasetInfo(features=inferred_features))
def with_format(
self,
type: Optional[str] = None,
) -> "IterableDataset":
"""
Return a dataset with the specified format.
Supported formats: "arrow", or None for regular python objects.
The other formats are currently not implemented.
Args:
type (`str`, optional, default None): if set to "torch", the returned dataset
will be a subclass of torch.utils.data.IterableDataset to be used in a DataLoader
"""
type = get_format_type_from_alias(type)
# TODO(QL): add format_kwargs
# TODO(QL): add format_columns and return_all_columns
# TODO(QL): add pandas format
return IterableDataset(
ex_iterable=self._ex_iterable,
info=self._info.copy(),
split=self._split,
formatting=FormattingConfig(format_type=type),
shuffling=copy.deepcopy(self._shuffling),
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
def map(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[Union[str, List[str]]] = None,
features: Optional[Features] = None,
fn_kwargs: Optional[dict] = None,
) -> "IterableDataset":
"""
Apply a function to all the examples in the iterable dataset (individually or in batches) and update them.
If your function returns a column that already exists, then it overwrites it.
The function is applied on-the-fly on the examples when iterating over the dataset.
You can specify whether the function should be batched or not with the `batched` parameter:
- If batched is `False`, then the function takes 1 example in and should return 1 example.
An example is a dictionary, e.g. `{"text": "Hello there !"}`.
- If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples.
A batch is a dictionary, e.g. a batch of 1 example is {"text": ["Hello there !"]}.
- If batched is `True` and `batch_size` is `n` > 1, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.
Note that the last batch may have less than `n` examples.
A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`.
Args:
function (`Callable`, *optional*, defaults to `None`):
Function applied on-the-fly on the examples when you iterate on the dataset.
It must have one of the following signatures:
- `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
- `function(example: Dict[str, Any], idx: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
- `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False`
- `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True`
For advanced usage, the function can also return a `pyarrow.Table`.
Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
If no function is provided, default to identity function: `lambda x: x`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`.
input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`):
The columns to be passed into `function`
as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`.
`batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
drop_last_batch (`bool`, defaults to `False`):
Whether a last batch smaller than the batch_size should be
dropped instead of being processed by the function.
remove_columns (`[List[str]]`, *optional*, defaults to `None`):
Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
features (`[Features]`, *optional*, defaults to `None`):
Feature types of the resulting dataset.
fn_kwargs (`Dict`, *optional*, default `None`):
Keyword arguments to be passed to `function`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> def add_prefix(example):
... example["text"] = "Review: " + example["text"]
... return example
>>> ds = ds.map(add_prefix)
>>> list(ds.take(3))
[{'label': 1,
'text': 'Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
{'label': 1,
'text': 'Review: the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
{'label': 1, 'text': 'Review: effective but too-tepid biopic'}]
```
"""
if isinstance(input_columns, str):
input_columns = [input_columns]
if isinstance(remove_columns, str):
remove_columns = [remove_columns]
if function is None:
function = lambda x: x # noqa: E731
if fn_kwargs is None:
fn_kwargs = {}
ex_iterable = MappedExamplesIterable(
TypedExamplesIterable(self._ex_iterable, self._info.features, token_per_repo_id=self._token_per_repo_id)
if self._info.features is not None
else self._ex_iterable,
function=function,
with_indices=with_indices,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
drop_last_batch=drop_last_batch,
remove_columns=remove_columns,
fn_kwargs=fn_kwargs,
formatting=self._formatting,
)
info = self.info.copy()
info.features = features
return IterableDataset(
ex_iterable=ex_iterable,
info=info,
split=self._split,
formatting=self._formatting,
shuffling=copy.deepcopy(self._shuffling),
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
def filter(
self,
function: Optional[Callable] = None,
with_indices=False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
fn_kwargs: Optional[dict] = None,
) -> "IterableDataset":
"""Apply a filter function to all the elements so that the dataset only includes examples according to the filter function.
The filtering is done on-the-fly when iterating over the dataset.
Args:
function (`Callable`):
Callable with one of the following signatures:
- `function(example: Dict[str, Any]) -> bool` if `with_indices=False, batched=False`
- `function(example: Dict[str, Any], indices: int) -> bool` if `with_indices=True, batched=False`
- `function(example: Dict[str, List]) -> List[bool]` if `with_indices=False, batched=True`
- `function(example: Dict[str, List], indices: List[int]) -> List[bool]` if `with_indices=True, batched=True`
If no function is provided, defaults to an always True function: `lambda x: True`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
input_columns (`str` or `List[str]`, *optional*):
The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, default `1000`):
Number of examples per batch provided to `function` if `batched=True`.
fn_kwargs (`Dict`, *optional*, default `None`):
Keyword arguments to be passed to `function`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> ds = ds.filter(lambda x: x["label"] == 0)
>>> list(ds.take(3))
[{'label': 0, 'movie_review': 'simplistic , silly and tedious .'},
{'label': 0,
'movie_review': "it's so laddish and juvenile , only teenage boys could possibly find it funny ."},
{'label': 0,
'movie_review': 'exploitative and largely devoid of the depth or sophistication that would make watching such a graphic treatment of the crimes bearable .'}]
```
"""
if isinstance(input_columns, str):
input_columns = [input_columns]
# TODO(QL): keep the features (right now if we keep it it would call decode_example again on an already decoded example)
info = copy.deepcopy(self._info)
info.features = None
# We need the examples to be decoded for certain feature types like Image or Audio, so we use TypedExamplesIterable here
ex_iterable = FilteredExamplesIterable(
TypedExamplesIterable(self._ex_iterable, self._info.features, token_per_repo_id=self._token_per_repo_id)
if self._info.features is not None
else self._ex_iterable,
function=function,
with_indices=with_indices,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
fn_kwargs=fn_kwargs,
formatting=self._formatting,
)
return IterableDataset(
ex_iterable=ex_iterable,
info=info,
split=self._split,
formatting=self._formatting,
shuffling=copy.deepcopy(self._shuffling),
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
def shuffle(
self, seed=None, generator: Optional[np.random.Generator] = None, buffer_size: int = 1000
) -> "IterableDataset":
"""
Randomly shuffles the elements of this dataset.
This dataset fills a buffer with `buffer_size` elements, then randomly samples elements from this buffer,
replacing the selected elements with new elements. For perfect shuffling, a buffer size greater than or
equal to the full size of the dataset is required.
For instance, if your dataset contains 10,000 elements but `buffer_size` is set to 1000, then `shuffle` will
initially select a random element from only the first 1000 elements in the buffer. Once an element is
selected, its space in the buffer is replaced by the next (i.e. 1,001-st) element,
maintaining the 1000 element buffer.
If the dataset is made of several shards, it also does shuffle the order of the shards.
However if the order has been fixed by using [`~datasets.IterableDataset.skip`] or [`~datasets.IterableDataset.take`]
then the order of the shards is kept unchanged.
Args:
seed (`int`, *optional*, defaults to `None`):
Random seed that will be used to shuffle the dataset.
It is used to sample from the shuffle buffe and also to shuffle the data shards.
generator (`numpy.random.Generator`, *optional*):
Numpy random Generator to use to compute the permutation of the dataset rows.
If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
buffer_size (`int`, defaults to `1000`):
Size of the buffer.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> list(ds.take(3))
[{'label': 1,
'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
{'label': 1,
'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
{'label': 1, 'text': 'effective but too-tepid biopic'}]
>>> shuffled_ds = ds.shuffle(seed=42)
>>> list(shuffled_ds.take(3))
[{'label': 1,
'text': "a sports movie with action that's exciting on the field and a story you care about off it ."},
{'label': 1,
'text': 'at its best , the good girl is a refreshingly adult take on adultery . . .'},
{'label': 1,
'text': "sam jones became a very lucky filmmaker the day wilco got dropped from their record label , proving that one man's ruin may be another's fortune ."}]
```
"""
if generator is None:
generator = np.random.default_rng(seed)
else:
generator = deepcopy(generator)
shuffling = ShufflingConfig(generator=generator, _original_seed=seed)
return IterableDataset(
ex_iterable=BufferShuffledExamplesIterable(
self._ex_iterable, buffer_size=buffer_size, generator=generator
).shuffle_data_sources(generator),
info=self._info.copy(),
split=self._split,
formatting=self._formatting,
shuffling=shuffling,
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
def set_epoch(self, epoch: int):
self._epoch = epoch
def skip(self, n) -> "IterableDataset":
"""
Create a new [`IterableDataset`] that skips the first `n` elements.
Args:
n (`int`):
Number of elements to skip.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> list(ds.take(3))
[{'label': 1,
'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
{'label': 1,
'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
{'label': 1, 'text': 'effective but too-tepid biopic'}]
>>> ds = ds.skip(1)
>>> list(ds.take(3))
[{'label': 1,
'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
{'label': 1, 'text': 'effective but too-tepid biopic'},
{'label': 1,
'text': 'if you sometimes like to go to the movies to have fun , wasabi is a good place to start .'}]
```
"""
ex_iterable = SkipExamplesIterable(self._ex_iterable, n)
return IterableDataset(
ex_iterable=ex_iterable,
info=self._info.copy(),
split=self._split,
formatting=self._formatting,
shuffling=copy.deepcopy(self._shuffling),
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
def take(self, n) -> "IterableDataset":
"""
Create a new [`IterableDataset`] with only the first `n` elements.
Args:
n (`int`):
Number of elements to take.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> small_ds = ds.take(2)
>>> list(small_ds)
[{'label': 1,
'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
{'label': 1,
'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}]
```
"""
ex_iterable = TakeExamplesIterable(self._ex_iterable, n)
return IterableDataset(
ex_iterable=ex_iterable,
info=self._info.copy(),
split=self._split,
formatting=self._formatting,
shuffling=copy.deepcopy(self._shuffling),
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
@property
def column_names(self) -> Optional[List[str]]:
"""Names of the columns in the dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation", streaming=True)
>>> ds.column_names
['text', 'label']
```
"""
return list(self._info.features.keys()) if self._info.features is not None else None
def add_column(self, name: str, column: Union[list, np.array]) -> "IterableDataset":
"""Add column to Dataset.
Args:
name (str): Column name.
column (list or np.array): Column data to be added.
Returns:
`IterableDataset`
"""
def add_column_fn(example, idx):
if name in example:
raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.")
return {name: column[idx]}
return self.map(add_column_fn, with_indices=True)
def rename_column(self, original_column_name: str, new_column_name: str) -> "IterableDataset":
"""
Rename a column in the dataset, and move the features associated to the original column under the new column
name.
Args:
original_column_name (`str`):
Name of the column to rename.
new_column_name (`str`):
New name for the column.
Returns:
`IterableDataset`: A copy of the dataset with a renamed column.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> next(iter(ds))
{'label': 1,
'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
>>> ds = ds.rename_column("text", "movie_review")
>>> next(iter(ds))
{'label': 1,
'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
def rename_column_fn(example):
if original_column_name not in example:
raise ValueError(
f"Error when renaming {original_column_name} to {new_column_name}: column {original_column_name} is not in the dataset."
)
if new_column_name in example:
raise ValueError(
f"Error when renaming {original_column_name} to {new_column_name}: column {new_column_name} is already in the dataset."
)
return {new_column_name: example[original_column_name]}
original_features = self._info.features.copy() if self._info.features else None
ds_iterable = self.map(rename_column_fn, remove_columns=[original_column_name])
if original_features is not None:
ds_iterable._info.features = Features(
{
new_column_name if col == original_column_name else col: feature
for col, feature in original_features.items()
}
)
return ds_iterable
def rename_columns(self, column_mapping: Dict[str, str]) -> "IterableDataset":
"""
Rename several columns in the dataset, and move the features associated to the original columns under
the new column names.
Args:
column_mapping (`Dict[str, str]`): A mapping of columns to rename to their new names
Returns:
`IterableDataset`: A copy of the dataset with renamed columns
"""
def rename_columns_fn(example):
if any(col not in example for col in column_mapping):
raise ValueError(
f"Error when renaming {list(column_mapping)} to {list(column_mapping.values())}: columns {set(column_mapping) - set(example)} are not in the dataset."
)
if any(col in example for col in column_mapping.values()):
raise ValueError(
f"Error when renaming {list(column_mapping)} to {list(column_mapping.values())}: columns {set(example) - set(column_mapping.values())} are already in the dataset."
)
return {
new_column_name: example[original_column_name]
for original_column_name, new_column_name in column_mapping.items()
}
original_features = self._info.features.copy() if self._info.features else None
ds_iterable = self.map(rename_columns_fn, remove_columns=list(column_mapping))
if original_features is not None:
ds_iterable._info.features = Features(
{
column_mapping[col] if col in column_mapping.keys() else col: feature
for col, feature in original_features.items()
}
)
# check that it's still valid, especially with regard to task templates
try:
ds_iterable._info.copy()
except ValueError:
ds_iterable._info.task_templates = None
return ds_iterable
def remove_columns(self, column_names: Union[str, List[str]]) -> "IterableDataset":
"""
Remove one or several column(s) in the dataset and the features associated to them.
The removal is done on-the-fly on the examples when iterating over the dataset.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to remove.
Returns:
`IterableDataset`: A copy of the dataset object without the columns to remove.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> next(iter(ds))
{'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'label': 1}
>>> ds = ds.remove_columns("label")
>>> next(iter(ds))
{'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
original_features = self._info.features.copy() if self._info.features else None
ds_iterable = self.map(remove_columns=column_names)
if original_features is not None:
ds_iterable._info.features = original_features.copy()
for col, _ in original_features.items():
if col in column_names:
del ds_iterable._info.features[col]
# check that it's still valid, especially with regard to task templates
try:
ds_iterable._info.copy()
except ValueError:
ds_iterable._info.task_templates = None
return ds_iterable
def select_columns(self, column_names: Union[str, List[str]]) -> "IterableDataset":
"""Select one or several column(s) in the dataset and the features
associated to them. The selection is done on-the-fly on the examples
when iterating over the dataset.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to select.
Returns:
`IterableDataset`: A copy of the dataset object with selected columns.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> next(iter(ds))
{'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'label': 1}
>>> ds = ds.select_columns("text")
>>> next(iter(ds))
{'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
if isinstance(column_names, str):
column_names = [column_names]
if self._info:
info = copy.deepcopy(self._info)
if self._info.features is not None:
for column_name in column_names:
if column_name not in self._info.features:
raise ValueError(
f"Column name {column_name} not in the "
"dataset. Columns in the dataset: "
f"{list(self._info.features.keys())}."
)
info.features = Features({c: info.features[c] for c in column_names})
# check that it's still valid, especially with regard to task templates
try:
info.copy()
except ValueError:
info.task_templates = None
ex_iterable = SelectColumnsIterable(self._ex_iterable, column_names)
return IterableDataset(
ex_iterable=ex_iterable,
info=info,
split=self._split,
formatting=self._formatting,
shuffling=self._shuffling,
distributed=self._distributed,
token_per_repo_id=self._token_per_repo_id,
)
def cast_column(self, column: str, feature: FeatureType) -> "IterableDataset":
"""Cast column to feature for decoding.
Args:
column (`str`):
Column name.
feature (`Feature`):
Target feature.
Returns:
`IterableDataset`
Example:
```py
>>> from datasets import load_dataset, Audio
>>> ds = load_dataset("PolyAI/minds14", name="en-US", split="train", streaming=True)
>>> ds.features
{'audio': Audio(sampling_rate=8000, mono=True, decode=True, id=None),
'english_transcription': Value(dtype='string', id=None),
'intent_class': ClassLabel(num_classes=14, names=['abroad', 'address', 'app_error', 'atm_limit', 'balance', 'business_loan', 'card_issues', 'cash_deposit', 'direct_debit', 'freeze', 'high_value_payment', 'joint_account', 'latest_transactions', 'pay_bill'], id=None),
'lang_id': ClassLabel(num_classes=14, names=['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR', 'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN'], id=None),
'path': Value(dtype='string', id=None),
'transcription': Value(dtype='string', id=None)}
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16000))
>>> ds.features
{'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None),
'english_transcription': Value(dtype='string', id=None),
'intent_class': ClassLabel(num_classes=14, names=['abroad', 'address', 'app_error', 'atm_limit', 'balance', 'business_loan', 'card_issues', 'cash_deposit', 'direct_debit', 'freeze', 'high_value_payment', 'joint_account', 'latest_transactions', 'pay_bill'], id=None),
'lang_id': ClassLabel(num_classes=14, names=['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR', 'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN'], id=None),
'path': Value(dtype='string', id=None),
'transcription': Value(dtype='string', id=None)}
```
"""
info = self._info.copy()
info.features[column] = feature
# check that it's still valid, especially with regard to task templates
try:
info.copy()
except ValueError:
info.task_templates = None
return IterableDataset(
ex_iterable=self._ex_iterable,
info=info,
split=self._split,
formatting=self._formatting,
shuffling=copy.deepcopy(self._shuffling),
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
def cast(
self,
features: Features,
) -> "IterableDataset":
"""
Cast the dataset to a new set of features.
Args:
features ([`Features`]):
New features to cast the dataset to.
The name of the fields in the features must match the current column names.
The type of the data must also be convertible from one type to the other.
For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`~Dataset.map`] to update the Dataset.
Returns:
`IterableDataset`: A copy of the dataset with casted features.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> ds.features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> new_features = ds.features.copy()
>>> new_features["label"] = ClassLabel(names=["bad", "good"])
>>> new_features["text"] = Value("large_string")
>>> ds = ds.cast(new_features)
>>> ds.features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='large_string', id=None)}
```
"""
info = self._info.copy()
info.features = features
# check that it's still valid, especially with regard to task templates
try:
info.copy()
except ValueError:
info.task_templates = None
return IterableDataset(
ex_iterable=self._ex_iterable,
info=info,
split=self._split,
formatting=self._formatting,
shuffling=copy.deepcopy(self._shuffling),
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
def _step(self, step: int, offset: int) -> "IterableDataset":
ex_iterable = StepExamplesIterable(self._ex_iterable, step=step, offset=offset)
return IterableDataset(
ex_iterable=ex_iterable,
info=self._info.copy(),
split=self._split,
formatting=self._formatting,
shuffling=copy.deepcopy(self._shuffling),
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
def _resolve_features(self):
if self.features is not None:
return self
elif isinstance(self._ex_iterable, TypedExamplesIterable):
features = self._ex_iterable.features
else:
features = _infer_features_from_batch(self.with_format(None)._head())
info = self.info.copy()
info.features = features
return IterableDataset(
ex_iterable=self._ex_iterable,
info=info,
split=self._split,
formatting=self._formatting,
shuffling=copy.deepcopy(self._shuffling),
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
def _concatenate_iterable_datasets(
dsets: List[IterableDataset],
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
axis: int = 0,
) -> IterableDataset:
"""
Converts a list of `IterableDataset` with the same schema into a single `IterableDataset`.
Missing data are filled with None values.
<Added version="2.4.0"/>
Args:
dsets (`List[datasets.IterableDataset]`): List of Datasets to concatenate.
info (`DatasetInfo`, optional): Dataset information, like description, citation, etc.
split (`NamedSplit`, optional): Name of the dataset split.
axis (``{0, 1}``, default ``0``, meaning over rows):
Axis to concatenate over, where ``0`` means over rows (vertically) and ``1`` means over columns
(horizontally).
*New in version 1.6.0*
Example:
```py
>>> ds3 = _concatenate_iterable_datasets([ds1, ds2])
```
"""
dsets = [d._resolve_features() for d in dsets]
# Perform checks (and a potentional cast if axis=0)
if axis == 0:
_check_if_features_can_be_aligned([dset.features for dset in dsets])
else:
_check_column_names([col_name for dset in dsets for col_name in dset.features])
# TODO: improve this to account for a mix of ClassLabel and Value for example
# right now it would keep the type of the first dataset in the list
features = Features(
{k: v for features in _align_features([dset.features for dset in dsets]) for k, v in features.items()}
)
ex_iterables = [d._ex_iterable for d in dsets]
if axis == 0:
ex_iterable = VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables)
else:
ex_iterable = HorizontallyConcatenatedMultiSourcesExamplesIterable(ex_iterables)
# Set new info - we update the features
# setting the features also ensures to fill missing columns with None
if info is None:
info = DatasetInfo.from_merge([d.info for d in dsets])
else:
info = info.copy()
info.features = features
# Get all the auth tokens per repository - in case the datasets come from different private repositories
token_per_repo_id = {repo_id: token for dataset in dsets for repo_id, token in dataset._token_per_repo_id.items()}
# Return new daset
return IterableDataset(ex_iterable=ex_iterable, info=info, split=split, token_per_repo_id=token_per_repo_id)
def _interleave_iterable_datasets(
datasets: List[IterableDataset],
probabilities: Optional[List[float]] = None,
seed: Optional[int] = None,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
) -> IterableDataset:
"""
Interleave several iterable datasets (sources) into a single iterable dataset.
The new iterable dataset alternates between the sources to yield examples.
If `probabilities = None` (default) the iterable dataset will cycles through the sources in order for each next example in the iteration.
If `probabilities` is not `None, the iterable dataset will sample a random source according to the provided probabilities for each next examples in the iteration.
<Added version="2.4.0"/>
Args:
datasets (`List[IterableDataset]`): list of datasets to interleave
probabilities (`List[float]`, optional, default None): If specified, the new iterable dataset samples
examples from one source at a time according to these probabilities.
seed (`int`, optional, default None): The random seed used to choose a source for each example.
stopping_strategy (`str`, defaults to `first_exhausted`):
Two strategies are proposed right now.
By default, `first_exhausted` is an undersampling strategy, i.e the dataset construction is stopped as soon as one dataset has ran out of samples.
If the strategy is `all_exhausted`, we use an oversampling strategy, i.e the dataset construction is stopped as soon as every samples of every dataset has been added at least once.
Note that if the strategy is `all_exhausted`, the interleaved dataset size can get enormous:
- with no probabilities, the resulting dataset will have max_length_datasets*nb_dataset samples.
- with given probabilities, the resulting dataset will have more samples if some datasets have really low probability of visiting.
Output:
`datasets.IterableDataset`
"""
datasets = [d._resolve_features() for d in datasets]
# Perform checks
_check_if_features_can_be_aligned([dset.features for dset in datasets])
# TODO: improve this to account for a mix of ClassLabel and Value for example
# right now it would keep the type of the first dataset in the list
features = Features(
{k: v for features in _align_features([dset.features for dset in datasets]) for k, v in features.items()}
)
ex_iterables = [d._ex_iterable for d in datasets]
# Use cycling or random cycling of sources
if probabilities is None:
ex_iterable = CyclingMultiSourcesExamplesIterable(ex_iterables, stopping_strategy=stopping_strategy)
else:
generator = np.random.default_rng(seed)
ex_iterable = RandomlyCyclingMultiSourcesExamplesIterable(
ex_iterables, generator=generator, probabilities=probabilities, stopping_strategy=stopping_strategy
)
# Set new info - we update the features
# setting the features also ensures to fill missing columns with None
if info is None:
info = DatasetInfo.from_merge([d.info for d in datasets])
else:
info = info.copy()
info.features = features
# Get all the auth tokens per repository - in case the datasets come from different private repositories
token_per_repo_id = {
repo_id: token for dataset in datasets for repo_id, token in dataset._token_per_repo_id.items()
}
# Return new daset
return IterableDataset(ex_iterable=ex_iterable, info=info, split=split, token_per_repo_id=token_per_repo_id)
def _split_by_node_iterable_dataset(dataset: IterableDataset, rank: int, world_size: int) -> IterableDataset:
"""
Split an iterable dataset for the node at rank `rank` in a pool of nodes of size `world_size`.
If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.n_shards % world_size == 0`),
then the shards are evenly assigned across the nodes, which is the most optimized.
Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples.
Args:
dataset ([`IterableDataset`]):
The iterable dataset to split by node.
rank (`int`):
Rank of the current node.
world_size (`int`):
Total number of nodes.
Returns:
[`IterableDataset`]: The iterable dataset to be used on the node at rank `rank`.
"""
if dataset._distributed:
world_size = world_size * dataset._distributed.world_size
rank = world_size * dataset._distributed.rank + rank
distributed = DistributedConfig(rank=rank, world_size=world_size)
return IterableDataset(
ex_iterable=dataset._ex_iterable,
info=dataset._info.copy(),
split=dataset._split,
formatting=dataset._formatting,
shuffling=copy.deepcopy(dataset._shuffling),
distributed=distributed,
token_per_repo_id=dataset._token_per_repo_id,
)
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/search.py | import importlib.util
import os
import tempfile
from pathlib import PurePath
from typing import TYPE_CHECKING, Dict, List, NamedTuple, Optional, Union
import fsspec
import numpy as np
from .utils import logging
if TYPE_CHECKING:
from .arrow_dataset import Dataset # noqa: F401
try:
from elasticsearch import Elasticsearch # noqa: F401
except ImportError:
pass
try:
import faiss # noqa: F401
except ImportError:
pass
_has_elasticsearch = importlib.util.find_spec("elasticsearch") is not None
_has_faiss = importlib.util.find_spec("faiss") is not None
logger = logging.get_logger(__name__)
class MissingIndex(Exception):
pass
class SearchResults(NamedTuple):
scores: List[float]
indices: List[int]
class BatchedSearchResults(NamedTuple):
total_scores: List[List[float]]
total_indices: List[List[int]]
class NearestExamplesResults(NamedTuple):
scores: List[float]
examples: dict
class BatchedNearestExamplesResults(NamedTuple):
total_scores: List[List[float]]
total_examples: List[dict]
class BaseIndex:
"""Base class for indexing"""
def search(self, query, k: int = 10, **kwargs) -> SearchResults:
"""
To implement.
This method has to return the scores and the indices of the retrieved examples given a certain query.
"""
raise NotImplementedError
def search_batch(self, queries, k: int = 10, **kwargs) -> BatchedSearchResults:
"""Find the nearest examples indices to the query.
Args:
queries (`Union[List[str], np.ndarray]`): The queries as a list of strings if `column` is a text index or as a numpy array if `column` is a vector index.
k (`int`): The number of examples to retrieve per query.
Ouput:
total_scores (`List[List[float]`): The retrieval scores of the retrieved examples per query.
total_indices (`List[List[int]]`): The indices of the retrieved examples per query.
"""
total_scores, total_indices = [], []
for query in queries:
scores, indices = self.search(query, k)
total_scores.append(scores)
total_indices.append(indices)
return BatchedSearchResults(total_scores, total_indices)
def save(self, file: Union[str, PurePath]):
"""Serialize the index on disk"""
raise NotImplementedError
@classmethod
def load(cls, file: Union[str, PurePath]) -> "BaseIndex":
"""Deserialize the index from disk"""
raise NotImplementedError
class ElasticSearchIndex(BaseIndex):
"""
Sparse index using Elasticsearch. It is used to index text and run queries based on BM25 similarity.
An Elasticsearch server needs to be accessible, and a python client is declared with
```
es_client = Elasticsearch([{'host': 'localhost', 'port': '9200'}])
```
for example.
"""
def __init__(
self,
host: Optional[str] = None,
port: Optional[int] = None,
es_client: Optional["Elasticsearch"] = None,
es_index_name: Optional[str] = None,
es_index_config: Optional[dict] = None,
):
if not _has_elasticsearch:
raise ImportError(
"You must install ElasticSearch to use ElasticSearchIndex. To do so you can run `pip install elasticsearch==7.7.1 for example`"
)
if es_client is not None and (host is not None or port is not None):
raise ValueError("Please specify either `es_client` or `(host, port)`, but not both.")
host = host or "localhost"
port = port or 9200
import elasticsearch.helpers # noqa: F401 - need this to properly load all the es features
from elasticsearch import Elasticsearch # noqa: F811
self.es_client = es_client if es_client is not None else Elasticsearch([{"host": host, "port": str(port)}])
self.es_index_name = (
es_index_name
if es_index_name is not None
else "huggingface_datasets_" + os.path.basename(tempfile.NamedTemporaryFile().name)
)
self.es_index_config = (
es_index_config
if es_index_config is not None
else {
"settings": {
"number_of_shards": 1,
"analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}},
},
"mappings": {"properties": {"text": {"type": "text", "analyzer": "standard", "similarity": "BM25"}}},
}
)
def add_documents(self, documents: Union[List[str], "Dataset"], column: Optional[str] = None):
"""
Add documents to the index.
If the documents are inside a certain column, you can specify it using the `column` argument.
"""
index_name = self.es_index_name
index_config = self.es_index_config
self.es_client.indices.create(index=index_name, body=index_config)
number_of_docs = len(documents)
progress = logging.tqdm(unit="docs", total=number_of_docs, disable=not logging.is_progress_bar_enabled())
successes = 0
def passage_generator():
if column is not None:
for i, example in enumerate(documents):
yield {"text": example[column], "_id": i}
else:
for i, example in enumerate(documents):
yield {"text": example, "_id": i}
# create the ES index
import elasticsearch as es
for ok, action in es.helpers.streaming_bulk(
client=self.es_client,
index=index_name,
actions=passage_generator(),
):
progress.update(1)
successes += ok
if successes != len(documents):
logger.warning(
f"Some documents failed to be added to ElasticSearch. Failures: {len(documents)-successes}/{len(documents)}"
)
logger.info(f"Indexed {successes:d} documents")
def search(self, query: str, k=10, **kwargs) -> SearchResults:
"""Find the nearest examples indices to the query.
Args:
query (`str`): The query as a string.
k (`int`): The number of examples to retrieve.
Ouput:
scores (`List[List[float]`): The retrieval scores of the retrieved examples.
indices (`List[List[int]]`): The indices of the retrieved examples.
"""
response = self.es_client.search(
index=self.es_index_name,
body={"query": {"multi_match": {"query": query, "fields": ["text"], "type": "cross_fields"}}, "size": k},
**kwargs,
)
hits = response["hits"]["hits"]
return SearchResults([hit["_score"] for hit in hits], [int(hit["_id"]) for hit in hits])
def search_batch(self, queries, k: int = 10, max_workers=10, **kwargs) -> BatchedSearchResults:
import concurrent.futures
total_scores, total_indices = [None] * len(queries), [None] * len(queries)
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_index = {executor.submit(self.search, query, k, **kwargs): i for i, query in enumerate(queries)}
for future in concurrent.futures.as_completed(future_to_index):
index = future_to_index[future]
results: SearchResults = future.result()
total_scores[index] = results.scores
total_indices[index] = results.indices
return BatchedSearchResults(total_indices=total_indices, total_scores=total_scores)
class FaissIndex(BaseIndex):
"""
Dense index using Faiss. It is used to index vectors.
Faiss is a library for efficient similarity search and clustering of dense vectors.
It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM.
You can find more information about Faiss here:
- For index types and the string factory: https://github.com/facebookresearch/faiss/wiki/The-index-factory
- For GPU settings: https://github.com/facebookresearch/faiss/wiki/Faiss-on-the-GPU
"""
def __init__(
self,
device: Optional[Union[int, List[int]]] = None,
string_factory: Optional[str] = None,
metric_type: Optional[int] = None,
custom_index: Optional["faiss.Index"] = None,
):
"""
Create a Dense index using Faiss. You can specify `device` if you want to run it on GPU (`device` must be the GPU index).
You can find more information about Faiss here:
- For `string factory`: https://github.com/facebookresearch/faiss/wiki/The-index-factory
"""
if string_factory is not None and custom_index is not None:
raise ValueError("Please specify either `string_factory` or `custom_index` but not both.")
if device is not None and custom_index is not None:
raise ValueError(
"Cannot pass both 'custom_index' and 'device'. "
"Pass 'custom_index' already transferred to the target device instead."
)
self.device = device
self.string_factory = string_factory
self.metric_type = metric_type
self.faiss_index = custom_index
if not _has_faiss:
raise ImportError(
"You must install Faiss to use FaissIndex. To do so you can run `conda install -c pytorch faiss-cpu` or `conda install -c pytorch faiss-gpu`. "
"A community supported package is also available on pypi: `pip install faiss-cpu` or `pip install faiss-gpu`. "
"Note that pip may not have the latest version of FAISS, and thus, some of the latest features and bug fixes may not be available."
)
def add_vectors(
self,
vectors: Union[np.array, "Dataset"],
column: Optional[str] = None,
batch_size: int = 1000,
train_size: Optional[int] = None,
faiss_verbose: Optional[bool] = None,
):
"""
Add vectors to the index.
If the arrays are inside a certain column, you can specify it using the `column` argument.
"""
import faiss # noqa: F811
# Create index
if self.faiss_index is None:
size = len(vectors[0]) if column is None else len(vectors[0][column])
if self.string_factory is not None:
if self.metric_type is None:
index = faiss.index_factory(size, self.string_factory)
else:
index = faiss.index_factory(size, self.string_factory, self.metric_type)
else:
if self.metric_type is None:
index = faiss.IndexFlat(size)
else:
index = faiss.IndexFlat(size, self.metric_type)
self.faiss_index = self._faiss_index_to_device(index, self.device)
logger.info(f"Created faiss index of type {type(self.faiss_index)}")
# Set verbosity level
if faiss_verbose is not None:
self.faiss_index.verbose = faiss_verbose
if hasattr(self.faiss_index, "index") and self.faiss_index.index is not None:
self.faiss_index.index.verbose = faiss_verbose
if hasattr(self.faiss_index, "quantizer") and self.faiss_index.quantizer is not None:
self.faiss_index.quantizer.verbose = faiss_verbose
if hasattr(self.faiss_index, "clustering_index") and self.faiss_index.clustering_index is not None:
self.faiss_index.clustering_index.verbose = faiss_verbose
# Train
if train_size is not None:
train_vecs = vectors[:train_size] if column is None else vectors[:train_size][column]
logger.info(f"Training the index with the first {len(train_vecs)} vectors")
self.faiss_index.train(train_vecs)
else:
logger.info("Ignored the training step of the faiss index as `train_size` is None.")
# Add vectors
logger.info(f"Adding {len(vectors)} vectors to the faiss index")
for i in logging.tqdm(range(0, len(vectors), batch_size), disable=not logging.is_progress_bar_enabled()):
vecs = vectors[i : i + batch_size] if column is None else vectors[i : i + batch_size][column]
self.faiss_index.add(vecs)
@staticmethod
def _faiss_index_to_device(index: "faiss.Index", device: Optional[Union[int, List[int]]] = None) -> "faiss.Index":
"""
Sends a faiss index to a device.
A device can either be a positive integer (GPU id), a negative integer (all GPUs),
or a list of positive integers (select GPUs to use), or `None` for CPU.
"""
# If device is not specified, then it runs on CPU.
if device is None:
return index
import faiss # noqa: F811
# If the device id is given as an integer
if isinstance(device, int):
# Positive integers are directly mapped to GPU ids
if device > -1:
faiss_res = faiss.StandardGpuResources()
index = faiss.index_cpu_to_gpu(faiss_res, device, index)
# And negative integers mean using all GPUs
else:
index = faiss.index_cpu_to_all_gpus(index)
# Device ids given as a list mean mapping to those devices specified.
elif isinstance(device, (list, tuple)):
index = faiss.index_cpu_to_gpus_list(index, gpus=list(device))
else:
raise TypeError(
f"The argument type: {type(device)} is not expected. "
+ "Please pass in either nothing, a positive int, a negative int, or a list of positive ints."
)
return index
def search(self, query: np.array, k=10, **kwargs) -> SearchResults:
"""Find the nearest examples indices to the query.
Args:
query (`np.array`): The query as a numpy array.
k (`int`): The number of examples to retrieve.
Ouput:
scores (`List[List[float]`): The retrieval scores of the retrieved examples.
indices (`List[List[int]]`): The indices of the retrieved examples.
"""
if len(query.shape) != 1 and (len(query.shape) != 2 or query.shape[0] != 1):
raise ValueError("Shape of query is incorrect, it has to be either a 1D array or 2D (1, N)")
queries = query.reshape(1, -1)
if not queries.flags.c_contiguous:
queries = np.asarray(queries, order="C")
scores, indices = self.faiss_index.search(queries, k, **kwargs)
return SearchResults(scores[0], indices[0].astype(int))
def search_batch(self, queries: np.array, k=10, **kwargs) -> BatchedSearchResults:
"""Find the nearest examples indices to the queries.
Args:
queries (`np.array`): The queries as a numpy array.
k (`int`): The number of examples to retrieve.
Ouput:
total_scores (`List[List[float]`): The retrieval scores of the retrieved examples per query.
total_indices (`List[List[int]]`): The indices of the retrieved examples per query.
"""
if len(queries.shape) != 2:
raise ValueError("Shape of query must be 2D")
if not queries.flags.c_contiguous:
queries = np.asarray(queries, order="C")
scores, indices = self.faiss_index.search(queries, k, **kwargs)
return BatchedSearchResults(scores, indices.astype(int))
def save(self, file: Union[str, PurePath], storage_options: Optional[Dict] = None):
"""Serialize the FaissIndex on disk"""
import faiss # noqa: F811
if self.device is not None and isinstance(self.device, (int, list, tuple)):
index = faiss.index_gpu_to_cpu(self.faiss_index)
else:
index = self.faiss_index
with fsspec.open(str(file), "wb", **(storage_options or {})) as f:
faiss.write_index(index, faiss.BufferedIOWriter(faiss.PyCallbackIOWriter(f.write)))
@classmethod
def load(
cls,
file: Union[str, PurePath],
device: Optional[Union[int, List[int]]] = None,
storage_options: Optional[Dict] = None,
) -> "FaissIndex":
"""Deserialize the FaissIndex from disk"""
import faiss # noqa: F811
# Instances of FaissIndex is essentially just a wrapper for faiss indices.
faiss_index = cls(device=device)
with fsspec.open(str(file), "rb", **(storage_options or {})) as f:
index = faiss.read_index(faiss.BufferedIOReader(faiss.PyCallbackIOReader(f.read)))
faiss_index.faiss_index = faiss_index._faiss_index_to_device(index, faiss_index.device)
return faiss_index
class IndexableMixin:
"""Add indexing features to `datasets.Dataset`"""
def __init__(self):
self._indexes: Dict[str, BaseIndex] = {}
def __len__(self):
raise NotImplementedError
def __getitem__(self, key):
raise NotImplementedError
def is_index_initialized(self, index_name: str) -> bool:
return index_name in self._indexes
def _check_index_is_initialized(self, index_name: str):
if not self.is_index_initialized(index_name):
raise MissingIndex(
f"Index with index_name '{index_name}' not initialized yet. Please make sure that you call `add_faiss_index` or `add_elasticsearch_index` first."
)
def list_indexes(self) -> List[str]:
"""List the `colindex_nameumns`/identifiers of all the attached indexes."""
return list(self._indexes)
def get_index(self, index_name: str) -> BaseIndex:
"""List the `index_name`/identifiers of all the attached indexes.
Args:
index_name (`str`): Index name.
Returns:
[`BaseIndex`]
"""
self._check_index_is_initialized(index_name)
return self._indexes[index_name]
def add_faiss_index(
self,
column: str,
index_name: Optional[str] = None,
device: Optional[Union[int, List[int]]] = None,
string_factory: Optional[str] = None,
metric_type: Optional[int] = None,
custom_index: Optional["faiss.Index"] = None,
batch_size: int = 1000,
train_size: Optional[int] = None,
faiss_verbose: bool = False,
):
"""Add a dense index using Faiss for fast retrieval.
The index is created using the vectors of the specified column.
You can specify `device` if you want to run it on GPU (`device` must be the GPU index, see more below).
You can find more information about Faiss here:
- For `string factory`: https://github.com/facebookresearch/faiss/wiki/The-index-factory
Args:
column (`str`): The column of the vectors to add to the index.
index_name (Optional `str`): The index_name/identifier of the index. This is the index_name that is used to call `.get_nearest` or `.search`.
By default it corresponds to `column`.
device (Optional `Union[int, List[int]]`): If positive integer, this is the index of the GPU to use. If negative integer, use all GPUs.
If a list of positive integers is passed in, run only on those GPUs. By default it uses the CPU.
string_factory (Optional `str`): This is passed to the index factory of Faiss to create the index. Default index class is IndexFlatIP.
metric_type (Optional `int`): Type of metric. Ex: `faiss.METRIC_INNER_PRODUCT` or `faiss.METRIC_L2`.
custom_index (Optional `faiss.Index`): Custom Faiss index that you already have instantiated and configured for your needs.
batch_size (Optional `int`): Size of the batch to use while adding vectors to the FaissIndex. Default value is 1000.
<Added version="2.4.0"/>
train_size (Optional `int`): If the index needs a training step, specifies how many vectors will be used to train the index.
faiss_verbose (`bool`, defaults to False): Enable the verbosity of the Faiss index.
"""
index_name = index_name if index_name is not None else column
faiss_index = FaissIndex(
device=device, string_factory=string_factory, metric_type=metric_type, custom_index=custom_index
)
faiss_index.add_vectors(
self, column=column, batch_size=batch_size, train_size=train_size, faiss_verbose=faiss_verbose
)
self._indexes[index_name] = faiss_index
def add_faiss_index_from_external_arrays(
self,
external_arrays: np.array,
index_name: str,
device: Optional[Union[int, List[int]]] = None,
string_factory: Optional[str] = None,
metric_type: Optional[int] = None,
custom_index: Optional["faiss.Index"] = None,
batch_size: int = 1000,
train_size: Optional[int] = None,
faiss_verbose: bool = False,
):
"""Add a dense index using Faiss for fast retrieval.
The index is created using the vectors of `external_arrays`.
You can specify `device` if you want to run it on GPU (`device` must be the GPU index).
You can find more information about Faiss here:
- For `string factory`: https://github.com/facebookresearch/faiss/wiki/The-index-factory
Args:
external_arrays (`np.array`): If you want to use arrays from outside the lib for the index, you can set `external_arrays`.
It will use `external_arrays` to create the Faiss index instead of the arrays in the given `column`.
index_name (`str`): The index_name/identifier of the index. This is the index_name that is used to call `.get_nearest` or `.search`.
device (Optional `Union[int, List[int]]`): If positive integer, this is the index of the GPU to use. If negative integer, use all GPUs.
If a list of positive integers is passed in, run only on those GPUs. By default it uses the CPU.
string_factory (Optional `str`): This is passed to the index factory of Faiss to create the index. Default index class is IndexFlatIP.
metric_type (Optional `int`): Type of metric. Ex: `faiss.METRIC_INNER_PRODUCT` or `faiss.METRIC_L2`.
custom_index (Optional `faiss.Index`): Custom Faiss index that you already have instantiated and configured for your needs.
batch_size (Optional `int`): Size of the batch to use while adding vectors to the FaissIndex. Default value is 1000.
<Added version="2.4.0"/>
train_size (Optional `int`): If the index needs a training step, specifies how many vectors will be used to train the index.
faiss_verbose (`bool`, defaults to False): Enable the verbosity of the Faiss index.
"""
faiss_index = FaissIndex(
device=device, string_factory=string_factory, metric_type=metric_type, custom_index=custom_index
)
faiss_index.add_vectors(
external_arrays, column=None, batch_size=batch_size, train_size=train_size, faiss_verbose=faiss_verbose
)
self._indexes[index_name] = faiss_index
def save_faiss_index(self, index_name: str, file: Union[str, PurePath], storage_options: Optional[Dict] = None):
"""Save a FaissIndex on disk.
Args:
index_name (`str`): The index_name/identifier of the index. This is the index_name that is used to call `.get_nearest` or `.search`.
file (`str`): The path to the serialized faiss index on disk or remote URI (e.g. `"s3://my-bucket/index.faiss"`).
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.11.0"/>
"""
index = self.get_index(index_name)
if not isinstance(index, FaissIndex):
raise ValueError(f"Index '{index_name}' is not a FaissIndex but a '{type(index)}'")
index.save(file, storage_options=storage_options)
logger.info(f"Saved FaissIndex {index_name} at {file}")
def load_faiss_index(
self,
index_name: str,
file: Union[str, PurePath],
device: Optional[Union[int, List[int]]] = None,
storage_options: Optional[Dict] = None,
):
"""Load a FaissIndex from disk.
If you want to do additional configurations, you can have access to the faiss index object by doing
`.get_index(index_name).faiss_index` to make it fit your needs.
Args:
index_name (`str`): The index_name/identifier of the index. This is the index_name that is used to
call `.get_nearest` or `.search`.
file (`str`): The path to the serialized faiss index on disk or remote URI (e.g. `"s3://my-bucket/index.faiss"`).
device (Optional `Union[int, List[int]]`): If positive integer, this is the index of the GPU to use. If negative integer, use all GPUs.
If a list of positive integers is passed in, run only on those GPUs. By default it uses the CPU.
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.11.0"/>
"""
index = FaissIndex.load(file, device=device, storage_options=storage_options)
if index.faiss_index.ntotal != len(self):
raise ValueError(
f"Index size should match Dataset size, but Index '{index_name}' at {file} has {index.faiss_index.ntotal} elements while the dataset has {len(self)} examples."
)
self._indexes[index_name] = index
logger.info(f"Loaded FaissIndex {index_name} from {file}")
def add_elasticsearch_index(
self,
column: str,
index_name: Optional[str] = None,
host: Optional[str] = None,
port: Optional[int] = None,
es_client: Optional["Elasticsearch"] = None,
es_index_name: Optional[str] = None,
es_index_config: Optional[dict] = None,
):
"""Add a text index using ElasticSearch for fast retrieval.
Args:
column (`str`): The column of the documents to add to the index.
index_name (Optional `str`): The index_name/identifier of the index. This is the index name that is used to call `.get_nearest` or `.search`.
By default it corresponds to `column`.
host (Optional `str`, defaults to localhost):
host of where ElasticSearch is running
port (Optional `str`, defaults to 9200):
port of where ElasticSearch is running
es_client (Optional `elasticsearch.Elasticsearch`):
The elasticsearch client used to create the index if host and port are None.
es_index_name (Optional `str`): The elasticsearch index name used to create the index.
es_index_config (Optional `dict`):
The configuration of the elasticsearch index.
Default config is:
Config::
{
"settings": {
"number_of_shards": 1,
"analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}},
},
"mappings": {
"properties": {
"text": {
"type": "text",
"analyzer": "standard",
"similarity": "BM25"
},
}
},
}
"""
index_name = index_name if index_name is not None else column
es_index = ElasticSearchIndex(
host=host, port=port, es_client=es_client, es_index_name=es_index_name, es_index_config=es_index_config
)
es_index.add_documents(self, column=column)
self._indexes[index_name] = es_index
def load_elasticsearch_index(
self,
index_name: str,
es_index_name: str,
host: Optional[str] = None,
port: Optional[int] = None,
es_client: Optional["Elasticsearch"] = None,
es_index_config: Optional[dict] = None,
):
"""Load an existing text index using ElasticSearch for fast retrieval.
Args:
index_name (`str`):
The `index_name`/identifier of the index. This is the index name that is used to call `get_nearest` or `search`.
es_index_name (`str`):
The name of elasticsearch index to load.
host (`str`, *optional*, defaults to `localhost`):
Host of where ElasticSearch is running.
port (`str`, *optional*, defaults to `9200`):
Port of where ElasticSearch is running.
es_client (`elasticsearch.Elasticsearch`, *optional*):
The elasticsearch client used to create the index if host and port are `None`.
es_index_config (`dict`, *optional*):
The configuration of the elasticsearch index.
Default config is:
```
{
"settings": {
"number_of_shards": 1,
"analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}},
},
"mappings": {
"properties": {
"text": {
"type": "text",
"analyzer": "standard",
"similarity": "BM25"
},
}
},
}
```
"""
self._indexes[index_name] = ElasticSearchIndex(
host=host, port=port, es_client=es_client, es_index_name=es_index_name, es_index_config=es_index_config
)
def drop_index(self, index_name: str):
"""Drop the index with the specified column.
Args:
index_name (`str`):
The `index_name`/identifier of the index.
"""
del self._indexes[index_name]
def search(self, index_name: str, query: Union[str, np.array], k: int = 10, **kwargs) -> SearchResults:
"""Find the nearest examples indices in the dataset to the query.
Args:
index_name (`str`):
The name/identifier of the index.
query (`Union[str, np.ndarray]`):
The query as a string if `index_name` is a text index or as a numpy array if `index_name` is a vector index.
k (`int`):
The number of examples to retrieve.
Returns:
`(scores, indices)`:
A tuple of `(scores, indices)` where:
- **scores** (`List[List[float]`): the retrieval scores from either FAISS (`IndexFlatL2` by default) or ElasticSearch of the retrieved examples
- **indices** (`List[List[int]]`): the indices of the retrieved examples
"""
self._check_index_is_initialized(index_name)
return self._indexes[index_name].search(query, k, **kwargs)
def search_batch(
self, index_name: str, queries: Union[List[str], np.array], k: int = 10, **kwargs
) -> BatchedSearchResults:
"""Find the nearest examples indices in the dataset to the query.
Args:
index_name (`str`):
The `index_name`/identifier of the index.
queries (`Union[List[str], np.ndarray]`):
The queries as a list of strings if `index_name` is a text index or as a numpy array if `index_name` is a vector index.
k (`int`):
The number of examples to retrieve per query.
Returns:
`(total_scores, total_indices)`:
A tuple of `(total_scores, total_indices)` where:
- **total_scores** (`List[List[float]`): the retrieval scores from either FAISS (`IndexFlatL2` by default) or ElasticSearch of the retrieved examples per query
- **total_indices** (`List[List[int]]`): the indices of the retrieved examples per query
"""
self._check_index_is_initialized(index_name)
return self._indexes[index_name].search_batch(queries, k, **kwargs)
def get_nearest_examples(
self, index_name: str, query: Union[str, np.array], k: int = 10, **kwargs
) -> NearestExamplesResults:
"""Find the nearest examples in the dataset to the query.
Args:
index_name (`str`):
The index_name/identifier of the index.
query (`Union[str, np.ndarray]`):
The query as a string if `index_name` is a text index or as a numpy array if `index_name` is a vector index.
k (`int`):
The number of examples to retrieve.
Returns:
`(scores, examples)`:
A tuple of `(scores, examples)` where:
- **scores** (`List[float]`): the retrieval scores from either FAISS (`IndexFlatL2` by default) or ElasticSearch of the retrieved examples
- **examples** (`dict`): the retrieved examples
"""
self._check_index_is_initialized(index_name)
scores, indices = self.search(index_name, query, k, **kwargs)
top_indices = [i for i in indices if i >= 0]
return NearestExamplesResults(scores[: len(top_indices)], self[top_indices])
def get_nearest_examples_batch(
self, index_name: str, queries: Union[List[str], np.array], k: int = 10, **kwargs
) -> BatchedNearestExamplesResults:
"""Find the nearest examples in the dataset to the query.
Args:
index_name (`str`):
The `index_name`/identifier of the index.
queries (`Union[List[str], np.ndarray]`):
The queries as a list of strings if `index_name` is a text index or as a numpy array if `index_name` is a vector index.
k (`int`):
The number of examples to retrieve per query.
Returns:
`(total_scores, total_examples)`:
A tuple of `(total_scores, total_examples)` where:
- **total_scores** (`List[List[float]`): the retrieval scores from either FAISS (`IndexFlatL2` by default) or ElasticSearch of the retrieved examples per query
- **total_examples** (`List[dict]`): the retrieved examples per query
"""
self._check_index_is_initialized(index_name)
total_scores, total_indices = self.search_batch(index_name, queries, k, **kwargs)
total_scores = [
scores_i[: len([i for i in indices_i if i >= 0])]
for scores_i, indices_i in zip(total_scores, total_indices)
]
total_samples = [self[[i for i in indices if i >= 0]] for indices in total_indices]
return BatchedNearestExamplesResults(total_scores, total_samples)
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/naming.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Utilities for file names."""
import itertools
import os
import re
_uppercase_uppercase_re = re.compile(r"([A-Z]+)([A-Z][a-z])")
_lowercase_uppercase_re = re.compile(r"([a-z\d])([A-Z])")
_single_underscore_re = re.compile(r"(?<!_)_(?!_)")
_multiple_underscores_re = re.compile(r"(_{2,})")
_split_re = r"^\w+(\.\w+)*$"
INVALID_WINDOWS_CHARACTERS_IN_PATH = r"<>:/\|?*"
def camelcase_to_snakecase(name):
"""Convert camel-case string to snake-case."""
name = _uppercase_uppercase_re.sub(r"\1_\2", name)
name = _lowercase_uppercase_re.sub(r"\1_\2", name)
return name.lower()
def snakecase_to_camelcase(name):
"""Convert snake-case string to camel-case string."""
name = _single_underscore_re.split(name)
name = [_multiple_underscores_re.split(n) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(name) if n != "")
def filename_prefix_for_name(name):
if os.path.basename(name) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}")
return camelcase_to_snakecase(name)
def filename_prefix_for_split(name, split):
if os.path.basename(name) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}")
if not re.match(_split_re, split):
raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'.")
return f"{filename_prefix_for_name(name)}-{split}"
def filepattern_for_dataset_split(dataset_name, split, data_dir, filetype_suffix=None):
prefix = filename_prefix_for_split(dataset_name, split)
if filetype_suffix:
prefix += f".{filetype_suffix}"
filepath = os.path.join(data_dir, prefix)
return f"{filepath}*"
def filenames_for_dataset_split(path, dataset_name, split, filetype_suffix=None, shard_lengths=None):
prefix = filename_prefix_for_split(dataset_name, split)
prefix = os.path.join(path, prefix)
if shard_lengths:
num_shards = len(shard_lengths)
filenames = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(num_shards)]
if filetype_suffix:
filenames = [filename + f".{filetype_suffix}" for filename in filenames]
return filenames
else:
filename = prefix
if filetype_suffix:
filename += f".{filetype_suffix}"
return [filename]
| 0 |
hf_public_repos/datasets/src | hf_public_repos/datasets/src/datasets/arrow_dataset.py | # Copyright 2020 The HuggingFace Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
""" Simple Dataset wrapping an Arrow Table."""
import contextlib
import copy
import itertools
import json
import os
import posixpath
import re
import shutil
import sys
import tempfile
import time
import warnings
import weakref
from collections import Counter
from collections.abc import Mapping
from copy import deepcopy
from fnmatch import fnmatch
from functools import partial, wraps
from io import BytesIO
from math import ceil, floor
from pathlib import Path
from random import sample
from typing import (
TYPE_CHECKING,
Any,
BinaryIO,
Callable,
Dict,
Iterable,
Iterator,
List,
Optional,
Tuple,
Union,
overload,
)
from typing import Sequence as Sequence_
import fsspec
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.compute as pc
from huggingface_hub import DatasetCard, DatasetCardData, HfApi, HfFolder
from multiprocess import Pool
from requests import HTTPError
from . import config
from .arrow_reader import ArrowReader
from .arrow_writer import ArrowWriter, OptimizedTypedSequence
from .data_files import sanitize_patterns
from .download.download_config import DownloadConfig
from .download.streaming_download_manager import xgetsize
from .features import Audio, ClassLabel, Features, Image, Sequence, Value
from .features.features import (
FeatureType,
_align_features,
_check_if_features_can_be_aligned,
generate_from_arrow_type,
pandas_types_mapper,
require_decoding,
)
from .filesystems import extract_path_from_uri, is_remote_filesystem
from .fingerprint import (
fingerprint_transform,
format_kwargs_for_fingerprint,
format_transform_for_fingerprint,
generate_fingerprint,
generate_random_fingerprint,
get_temporary_cache_files_directory,
is_caching_enabled,
maybe_register_dataset_for_temp_dir_deletion,
update_fingerprint,
validate_fingerprint,
)
from .formatting import format_table, get_format_type_from_alias, get_formatter, query_table
from .formatting.formatting import LazyDict, _is_range_contiguous
from .info import DatasetInfo, DatasetInfosDict
from .naming import _split_re
from .search import IndexableMixin
from .splits import NamedSplit, Split, SplitDict, SplitInfo
from .table import (
InMemoryTable,
MemoryMappedTable,
Table,
_memory_mapped_record_batch_reader_from_file,
cast_array_to_feature,
concat_tables,
embed_table_storage,
list_table_cache_files,
table_cast,
table_iter,
table_visitor,
)
from .tasks import TaskTemplate
from .utils import logging
from .utils.deprecation_utils import deprecated
from .utils.file_utils import _retry, cached_path, estimate_dataset_size
from .utils.hub import hf_hub_url
from .utils.info_utils import is_small_dataset
from .utils.metadata import MetadataConfigs
from .utils.py_utils import (
Literal,
asdict,
convert_file_size_to_int,
glob_pattern_to_regex,
iflatmap_unordered,
string_to_dict,
unique_values,
)
from .utils.stratify import stratified_shuffle_split_generate_indices
from .utils.tf_utils import dataset_to_tf, minimal_tf_collate_fn, multiprocess_dataset_to_tf
from .utils.typing import ListLike, PathLike
if TYPE_CHECKING:
import sqlite3
import pyspark
import sqlalchemy
from .dataset_dict import DatasetDict
from .iterable_dataset import IterableDataset
logger = logging.get_logger(__name__)
PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED = (
"data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.parquet"
)
class DatasetInfoMixin:
"""This base class exposes some attributes of DatasetInfo
at the base level of the Dataset for easy access.
"""
def __init__(self, info: DatasetInfo, split: Optional[NamedSplit]):
self._info = info
self._split = split
@property
def info(self):
"""[`~datasets.DatasetInfo`] object containing all the metadata in the dataset."""
return self._info
@property
def split(self):
"""[`~datasets.NamedSplit`] object corresponding to a named dataset split."""
return self._split
@property
def builder_name(self) -> str:
return self._info.builder_name
@property
def citation(self) -> str:
return self._info.citation
@property
def config_name(self) -> str:
return self._info.config_name
@property
def dataset_size(self) -> Optional[int]:
return self._info.dataset_size
@property
def description(self) -> str:
return self._info.description
@property
def download_checksums(self) -> Optional[dict]:
return self._info.download_checksums
@property
def download_size(self) -> Optional[int]:
return self._info.download_size
@property
def features(self) -> Optional[Features]:
return self._info.features.copy() if self._info.features is not None else None
@property
def homepage(self) -> Optional[str]:
return self._info.homepage
@property
def license(self) -> Optional[str]:
return self._info.license
@property
def size_in_bytes(self) -> Optional[int]:
return self._info.size_in_bytes
@property
def supervised_keys(self):
return self._info.supervised_keys
@property
def task_templates(self):
return self._info.task_templates
@property
def version(self):
return self._info.version
class TensorflowDatasetMixin:
_TF_DATASET_REFS = set()
@staticmethod
def _get_output_signature(
dataset: "Dataset",
collate_fn: Callable,
collate_fn_args: dict,
cols_to_retain: Optional[List[str]] = None,
batch_size: Optional[int] = None,
num_test_batches: int = 20,
):
"""Private method used by `to_tf_dataset()` to find the shapes and dtypes of samples from this dataset
after being passed through the collate_fn. Tensorflow needs an exact signature for tf.numpy_function, so
the only way to do this is to run test batches - the collator may add or rename columns, so we can't figure
it out just by inspecting the dataset.
Args:
dataset (`Dataset`): Dataset to load samples from.
collate_fn(`bool`): Shuffle the dataset order when loading. Recommended True for training, False for
validation/evaluation.
collate_fn(`Callable`): A function or callable object (such as a `DataCollator`) that will collate
lists of samples into a batch.
collate_fn_args (`Dict`): A `dict` of keyword arguments to be passed to the
`collate_fn`.
batch_size (`int`, optional): The size of batches loaded from the dataset. Used for shape inference.
Can be None, which indicates that batch sizes can be variable.
num_test_batches (`int`): The number of batches to load from the dataset for shape inference.
Returns:
`dict`: Dict mapping column names to tf.Tensorspec objects
`dict`: Dict mapping column names to np.dtype objects
"""
if config.TF_AVAILABLE:
import tensorflow as tf
else:
raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.")
if len(dataset) == 0:
raise ValueError("Unable to get the output signature because the dataset is empty.")
if batch_size is not None:
batch_size = min(len(dataset), batch_size)
test_batch_size = 1
if cols_to_retain is not None:
cols_to_retain = list(set(cols_to_retain + ["label_ids", "label", "labels"]))
test_batches = []
for _ in range(num_test_batches):
indices = sample(range(len(dataset)), test_batch_size)
test_batch = dataset[indices]
if cols_to_retain is not None:
test_batch = {key: value for key, value in test_batch.items() if key in cols_to_retain}
test_batch = [{key: value[i] for key, value in test_batch.items()} for i in range(test_batch_size)]
test_batch = collate_fn(test_batch, **collate_fn_args)
test_batches.append(test_batch)
tf_columns_to_signatures = {}
np_columns_to_dtypes = {}
for column in test_batches[0].keys():
raw_arrays = [batch[column] for batch in test_batches]
# In case the collate_fn returns something strange
np_arrays = []
for array in raw_arrays:
if isinstance(array, np.ndarray):
np_arrays.append(array)
elif isinstance(array, tf.Tensor):
np_arrays.append(array.numpy())
else:
np_arrays.append(np.array(array))
if np.issubdtype(np_arrays[0].dtype, np.integer) or np_arrays[0].dtype == bool:
tf_dtype = tf.int64
np_dtype = np.int64
elif np.issubdtype(np_arrays[0].dtype, np.number):
tf_dtype = tf.float32
np_dtype = np.float32
elif np_arrays[0].dtype.kind == "U": # Unicode strings
np_dtype = np.unicode_
tf_dtype = tf.string
else:
raise RuntimeError(
f"Unrecognized array dtype {np_arrays[0].dtype}. \n"
"Nested types and image/audio types are not supported yet."
)
shapes = [array.shape for array in np_arrays]
static_shape = []
for dim in range(len(shapes[0])):
sizes = {shape[dim] for shape in shapes}
if dim == 0:
static_shape.append(batch_size)
continue
if len(sizes) == 1: # This dimension looks constant
static_shape.append(sizes.pop())
else: # Use None for variable dimensions
static_shape.append(None)
tf_columns_to_signatures[column] = tf.TensorSpec(shape=static_shape, dtype=tf_dtype)
np_columns_to_dtypes[column] = np_dtype
return tf_columns_to_signatures, np_columns_to_dtypes
def to_tf_dataset(
self,
batch_size: Optional[int] = None,
columns: Optional[Union[str, List[str]]] = None,
shuffle: bool = False,
collate_fn: Optional[Callable] = None,
drop_remainder: bool = False,
collate_fn_args: Optional[Dict[str, Any]] = None,
label_cols: Optional[Union[str, List[str]]] = None,
prefetch: bool = True,
num_workers: int = 0,
num_test_batches: int = 20,
):
"""Create a `tf.data.Dataset` from the underlying Dataset. This `tf.data.Dataset` will load and collate batches from
the Dataset, and is suitable for passing to methods like `model.fit()` or `model.predict()`. The dataset will yield
`dicts` for both inputs and labels unless the `dict` would contain only a single key, in which case a raw
`tf.Tensor` is yielded instead.
Args:
batch_size (`int`, *optional*):
Size of batches to load from the dataset. Defaults to `None`, which implies that the dataset won't be
batched, but the returned dataset can be batched later with `tf_dataset.batch(batch_size)`.
columns (`List[str]` or `str`, *optional*):
Dataset column(s) to load in the `tf.data.Dataset`.
Column names that are created by the `collate_fn` and that do not exist in the original dataset can be used.
shuffle(`bool`, defaults to `False`):
Shuffle the dataset order when loading. Recommended `True` for training, `False` for
validation/evaluation.
drop_remainder(`bool`, defaults to `False`):
Drop the last incomplete batch when loading. Ensures
that all batches yielded by the dataset will have the same length on the batch dimension.
collate_fn(`Callable`, *optional*):
A function or callable object (such as a `DataCollator`) that will collate
lists of samples into a batch.
collate_fn_args (`Dict`, *optional*):
An optional `dict` of keyword arguments to be passed to the
`collate_fn`.
label_cols (`List[str]` or `str`, defaults to `None`):
Dataset column(s) to load as labels.
Note that many models compute loss internally rather than letting Keras do it, in which case
passing the labels here is optional, as long as they're in the input `columns`.
prefetch (`bool`, defaults to `True`):
Whether to run the dataloader in a separate thread and maintain
a small buffer of batches for training. Improves performance by allowing data to be loaded in the
background while the model is training.
num_workers (`int`, defaults to `0`):
Number of workers to use for loading the dataset. Only supported on Python versions >= 3.8.
num_test_batches (`int`, defaults to `20`):
Number of batches to use to infer the output signature of the dataset.
The higher this number, the more accurate the signature will be, but the longer it will take to
create the dataset.
Returns:
`tf.data.Dataset`
Example:
```py
>>> ds_train = ds["train"].to_tf_dataset(
... columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
```
"""
if config.TF_AVAILABLE:
import tensorflow as tf
else:
raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.")
if (isinstance(columns, list) and len(columns) == 1) or (
isinstance(label_cols, list) and len(label_cols) == 1
):
warnings.warn(
"The output of `to_tf_dataset` will change when a passing single element list for `labels` or "
"`columns` in the next datasets version. To return a tuple structure rather than dict, pass a "
"single string.\n"
"Old behaviour: columns=['a'], labels=['labels'] -> (tf.Tensor, tf.Tensor) \n"
" : columns='a', labels='labels' -> (tf.Tensor, tf.Tensor) \n"
"New behaviour: columns=['a'],labels=['labels'] -> ({'a': tf.Tensor}, {'labels': tf.Tensor}) \n"
" : columns='a', labels='labels' -> (tf.Tensor, tf.Tensor) ",
FutureWarning,
)
if isinstance(tf.distribute.get_strategy(), tf.distribute.TPUStrategy):
logger.warning(
"Note that to_tf_dataset() loads the data with a generator rather than a full tf.data "
"pipeline and is not compatible with remote TPU connections. If you encounter errors, please "
"try using a TPU VM or, if your data can fit in memory, loading it into memory as a dict of "
"Tensors instead of streaming with to_tf_dataset()."
)
if collate_fn is None:
# Set a very simple default collator that just stacks things together
collate_fn = minimal_tf_collate_fn
if collate_fn_args is None:
collate_fn_args = {}
if label_cols and not columns:
raise ValueError("Cannot specify label_cols without specifying columns!")
if label_cols is None:
label_cols = []
elif isinstance(label_cols, str):
label_cols = [label_cols]
if len(set(label_cols)) < len(label_cols):
raise ValueError("List of label_cols contains duplicates.")
if columns:
if isinstance(columns, str):
columns = [columns]
if len(set(columns)) < len(columns):
raise ValueError("List of columns contains duplicates.")
cols_to_retain = list(set(columns + label_cols))
else:
cols_to_retain = None # Indicates keeping all valid columns
columns = []
if self.format["type"] not in ["custom", "numpy"]:
dataset = self.with_format("numpy")
else:
dataset = self
# TODO(Matt, QL): deprecate the retention of label_ids and label
output_signature, columns_to_np_types = dataset._get_output_signature(
dataset,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
cols_to_retain=cols_to_retain,
batch_size=batch_size if drop_remainder and batch_size is not None else None,
num_test_batches=num_test_batches,
)
if "labels" in output_signature:
if ("label_ids" in columns or "label" in columns) and "labels" not in columns:
columns = [col for col in columns if col not in ["label_ids", "label"]] + ["labels"]
if ("label_ids" in label_cols or "label" in label_cols) and "labels" not in label_cols:
label_cols = [col for col in label_cols if col not in ["label_ids", "label"]] + ["labels"]
for col in columns:
if col not in output_signature:
raise ValueError(f"Column {col} not found in dataset!")
for col in label_cols:
if col not in output_signature:
raise ValueError(f"Label column {col} not found in dataset!")
if num_workers == 0:
tf_dataset = dataset_to_tf(
dataset=dataset,
cols_to_retain=cols_to_retain,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
columns_to_np_types=columns_to_np_types,
output_signature=output_signature,
shuffle=shuffle,
batch_size=batch_size,
drop_remainder=drop_remainder,
)
elif num_workers > 0:
if batch_size is None:
raise NotImplementedError(
"`batch_size` must be specified when using multiple workers, as unbatched multiprocessing "
"is not supported yet. Please provide a `batch_size` if `num_workers` is greater than 0."
)
tf_dataset = multiprocess_dataset_to_tf(
dataset=dataset,
cols_to_retain=cols_to_retain,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
columns_to_np_types=columns_to_np_types,
output_signature=output_signature,
shuffle=shuffle,
batch_size=batch_size,
drop_remainder=drop_remainder,
num_workers=num_workers,
)
else:
raise ValueError("num_workers must be >= 0")
def split_features_and_labels(input_batch):
# TODO(Matt, QL): deprecate returning the dict content when there's only one key
features = {key: tensor for key, tensor in input_batch.items() if key in columns}
labels = {key: tensor for key, tensor in input_batch.items() if key in label_cols}
if len(features) == 1:
features = list(features.values())[0]
if len(labels) == 1:
labels = list(labels.values())[0]
if isinstance(labels, dict) and len(labels) == 0:
return features
else:
return features, labels
if cols_to_retain is not None:
tf_dataset = tf_dataset.map(split_features_and_labels)
if prefetch:
tf_dataset = tf_dataset.prefetch(tf.data.experimental.AUTOTUNE)
# Remove a reference to the open Arrow file on delete
def cleanup_callback(ref):
dataset.__del__()
self._TF_DATASET_REFS.remove(ref)
self._TF_DATASET_REFS.add(weakref.ref(tf_dataset, cleanup_callback))
return tf_dataset
class DatasetTransformationNotAllowedError(Exception):
pass
def transmit_format(func):
"""Wrapper for dataset transforms that recreate a new Dataset to transmit the format of the original dataset to the new dataset"""
@wraps(func)
def wrapper(*args, **kwargs):
if args:
self: "Dataset" = args[0]
args = args[1:]
else:
self: "Dataset" = kwargs.pop("self")
# don't use self.format since it returns a list of columns for 'columns' even if self_format_columns is None
unformatted_columns = set(self.column_names) - set(self._format_columns or [])
self_format = {
"type": self._format_type,
"format_kwargs": self._format_kwargs,
"columns": self._format_columns,
"output_all_columns": self._output_all_columns,
}
# apply actual function
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
# re-apply format to the output
for dataset in datasets:
new_format = self_format.copy()
if new_format["columns"] is not None: # new formatted columns = (columns - previously unformatted columns)
# sort the columns to have a deterministic list of columns that we can compare with `out_format`
new_format["columns"] = sorted(set(dataset.column_names) - unformatted_columns)
out_format = {
"type": dataset._format_type,
"format_kwargs": dataset._format_kwargs,
"columns": sorted(dataset._format_columns) if dataset._format_columns is not None else None,
"output_all_columns": dataset._output_all_columns,
}
if out_format != new_format:
fingerprint = dataset._fingerprint
dataset.set_format(**new_format)
dataset._fingerprint = fingerprint
return out
wrapper._decorator_name_ = "transmit_format"
return wrapper
def transmit_tasks(func):
"""Wrapper for dataset transforms that recreate a new Dataset to transmit the task templates of the original dataset to the new dataset"""
@wraps(func)
def wrapper(*args, **kwargs):
if args:
self: "Dataset" = args[0]
args = args[1:]
else:
self: "Dataset" = kwargs.pop("self")
# apply actual function
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
for dataset in datasets:
# Remove task templates if a column mapping of the template is no longer valid
if self.info.task_templates is not None:
dataset.info.task_templates = [
template
for template in self.info.task_templates
if all(
dataset._info.features.get(k) == self._info.features.get(k)
for k in template.column_mapping.keys()
)
]
return out
wrapper._decorator_name_ = "transmit_tasks"
return wrapper
def update_metadata_with_features(table: Table, features: Features):
"""To be used in dataset transforms that modify the features of the dataset, in order to update the features stored in the metadata of its schema."""
features = Features({col_name: features[col_name] for col_name in table.column_names})
if table.schema.metadata is None or b"huggingface" not in table.schema.metadata:
pa_metadata = ArrowWriter._build_metadata(DatasetInfo(features=features))
else:
metadata = json.loads(table.schema.metadata[b"huggingface"].decode())
if "info" not in metadata:
metadata["info"] = asdict(DatasetInfo(features=features))
else:
metadata["info"]["features"] = asdict(DatasetInfo(features=features))["features"]
pa_metadata = {"huggingface": json.dumps(metadata)}
table = table.replace_schema_metadata(pa_metadata)
return table
def _check_table(table) -> Table:
"""We check the table type to make sure it's an instance of :class:`datasets.table.Table`"""
if isinstance(table, pa.Table):
# for a pyarrow table, we can just consider it as a in-memory table
# this is here for backward compatibility
return InMemoryTable(table)
elif isinstance(table, Table):
return table
else:
raise TypeError(f"Expected a pyarrow.Table or a datasets.table.Table object, but got {table}.")
def _check_column_names(column_names: List[str]):
"""Check the column names to make sure they don't contain duplicates."""
counter = Counter(column_names)
if not all(count == 1 for count in counter.values()):
duplicated_columns = [col for col in counter if counter[col] > 1]
raise ValueError(f"The table can't have duplicated columns but columns {duplicated_columns} are duplicated.")
def _check_valid_indices_value(index, size):
if (index < 0 and index + size < 0) or (index >= size):
raise IndexError(f"Index {index} out of range for dataset of size {size}.")
class NonExistentDatasetError(Exception):
"""Used when we expect the existence of a dataset"""
pass
class Dataset(DatasetInfoMixin, IndexableMixin, TensorflowDatasetMixin):
"""A Dataset backed by an Arrow table."""
def __init__(
self,
arrow_table: Table,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
indices_table: Optional[Table] = None,
fingerprint: Optional[str] = None,
):
info = info.copy() if info is not None else DatasetInfo()
DatasetInfoMixin.__init__(self, info=info, split=split)
IndexableMixin.__init__(self)
self._data: Table = _check_table(arrow_table)
self._indices: Optional[Table] = _check_table(indices_table) if indices_table is not None else None
maybe_register_dataset_for_temp_dir_deletion(self)
self._format_type: Optional[str] = None
self._format_kwargs: dict = {}
self._format_columns: Optional[list] = None
self._output_all_columns: bool = False
self._fingerprint: str = fingerprint
# Read metadata
if self._data.schema.metadata is not None and b"huggingface" in self._data.schema.metadata:
metadata = json.loads(self._data.schema.metadata[b"huggingface"].decode())
if (
"fingerprint" in metadata and self._fingerprint is None
): # try to load fingerprint from the arrow file metadata
self._fingerprint = metadata["fingerprint"]
# Infer features if None
inferred_features = Features.from_arrow_schema(arrow_table.schema)
if self.info.features is None:
self.info.features = inferred_features
else: # make sure the nested columns are in the right order
try:
self.info.features = self.info.features.reorder_fields_as(inferred_features)
except ValueError as e:
raise ValueError(
f"{e}\nThe 'source' features come from dataset_info.json, and the 'target' ones are those of the dataset arrow file."
)
# Infer fingerprint if None
if self._fingerprint is None:
self._fingerprint = generate_fingerprint(self)
# Sanity checks
if self._info.features is None:
raise ValueError("Features can't be None in a Dataset object")
if self._fingerprint is None:
raise ValueError("Fingerprint can't be None in a Dataset object")
if self.info.features.type != inferred_features.type:
raise ValueError(
f"External features info don't match the dataset:\nGot\n{self.info.features}\nwith type\n{self.info.features.type}\n\nbut expected something like\n{inferred_features}\nwith type\n{inferred_features.type}"
)
if self._indices is not None:
if not pa.types.is_unsigned_integer(self._indices.column(0).type):
raise ValueError(
f"indices must be an Arrow table of unsigned integers, current type is {self._indices.column(0).type}"
)
_check_column_names(self._data.column_names)
self._data = update_metadata_with_features(self._data, self._info.features)
@property
def features(self) -> Features:
features = super().features
if features is None: # this is already checked in __init__
raise ValueError("Features can't be None in a Dataset object")
return features
@classmethod
def from_file(
cls,
filename: str,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
indices_filename: Optional[str] = None,
in_memory: bool = False,
) -> "Dataset":
"""Instantiate a Dataset backed by an Arrow table at filename.
Args:
filename (`str`):
File name of the dataset.
info (`DatasetInfo`, *optional*):
Dataset information, like description, citation, etc.
split (`NamedSplit`, *optional*):
Name of the dataset split.
indices_filename (`str`, *optional*):
File names of the indices.
in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
Returns:
[`Dataset`]
"""
table = ArrowReader.read_table(filename, in_memory=in_memory)
if indices_filename is not None:
indices_pa_table = ArrowReader.read_table(indices_filename, in_memory=in_memory)
else:
indices_pa_table = None
return cls(
arrow_table=table,
info=info,
split=split,
indices_table=indices_pa_table,
)
@classmethod
def from_buffer(
cls,
buffer: pa.Buffer,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
indices_buffer: Optional[pa.Buffer] = None,
) -> "Dataset":
"""Instantiate a Dataset backed by an Arrow buffer.
Args:
buffer (`pyarrow.Buffer`):
Arrow buffer.
info (`DatasetInfo`, *optional*):
Dataset information, like description, citation, etc.
split (`NamedSplit`, *optional*):
Name of the dataset split.
indices_buffer (`pyarrow.Buffer`, *optional*):
Indices Arrow buffer.
Returns:
[`Dataset`]
"""
table = InMemoryTable.from_buffer(buffer)
if indices_buffer is not None:
indices_table = InMemoryTable.from_buffer(buffer)
else:
indices_table = None
return cls(table, info=info, split=split, indices_table=indices_table)
@classmethod
def from_pandas(
cls,
df: pd.DataFrame,
features: Optional[Features] = None,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
preserve_index: Optional[bool] = None,
) -> "Dataset":
"""
Convert `pandas.DataFrame` to a `pyarrow.Table` to create a [`Dataset`].
The column types in the resulting Arrow Table are inferred from the dtypes of the `pandas.Series` in the
DataFrame. In the case of non-object Series, the NumPy dtype is translated to its Arrow equivalent. In the
case of `object`, we need to guess the datatype by looking at the Python objects in this Series.
Be aware that Series of the `object` dtype don't carry enough information to always lead to a meaningful Arrow
type. In the case that we cannot infer a type, e.g. because the DataFrame is of length 0 or the Series only
contains `None/nan` objects, the type is set to `null`. This behavior can be avoided by constructing explicit
features and passing it to this function.
Args:
df (`pandas.DataFrame`):
Dataframe that contains the dataset.
features ([`Features`], *optional*):
Dataset features.
info (`DatasetInfo`, *optional*):
Dataset information, like description, citation, etc.
split (`NamedSplit`, *optional*):
Name of the dataset split.
preserve_index (`bool`, *optional*):
Whether to store the index as an additional column in the resulting Dataset.
The default of `None` will store the index as a column, except for `RangeIndex` which is stored as metadata only.
Use `preserve_index=True` to force it to be stored as a column.
Returns:
[`Dataset`]
Example:
```py
>>> ds = Dataset.from_pandas(df)
```
"""
if info is not None and features is not None and info.features != features:
raise ValueError(
f"Features specified in `features` and `info.features` can't be different:\n{features}\n{info.features}"
)
features = features if features is not None else info.features if info is not None else None
if info is None:
info = DatasetInfo()
info.features = features
table = InMemoryTable.from_pandas(
df=df,
preserve_index=preserve_index,
)
if features is not None:
# more expensive cast than InMemoryTable.from_pandas(..., schema=features.arrow_schema)
# needed to support the str to Audio conversion for instance
table = table.cast(features.arrow_schema)
return cls(table, info=info, split=split)
@classmethod
def from_dict(
cls,
mapping: dict,
features: Optional[Features] = None,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
) -> "Dataset":
"""
Convert `dict` to a `pyarrow.Table` to create a [`Dataset`].
Args:
mapping (`Mapping`):
Mapping of strings to Arrays or Python lists.
features ([`Features`], *optional*):
Dataset features.
info (`DatasetInfo`, *optional*):
Dataset information, like description, citation, etc.
split (`NamedSplit`, *optional*):
Name of the dataset split.
Returns:
[`Dataset`]
"""
if info is not None and features is not None and info.features != features:
raise ValueError(
f"Features specified in `features` and `info.features` can't be different:\n{features}\n{info.features}"
)
features = features if features is not None else info.features if info is not None else None
arrow_typed_mapping = {}
for col, data in mapping.items():
if isinstance(data, (pa.Array, pa.ChunkedArray)):
data = cast_array_to_feature(data, features[col]) if features is not None else data
else:
data = OptimizedTypedSequence(
features.encode_column(data, col) if features is not None else data,
type=features[col] if features is not None else None,
col=col,
)
arrow_typed_mapping[col] = data
mapping = arrow_typed_mapping
pa_table = InMemoryTable.from_pydict(mapping=mapping)
if info is None:
info = DatasetInfo()
info.features = features
if info.features is None:
info.features = Features(
{
col: generate_from_arrow_type(data.type)
if isinstance(data, (pa.Array, pa.ChunkedArray))
else data.get_inferred_type()
for col, data in mapping.items()
}
)
return cls(pa_table, info=info, split=split)
@classmethod
def from_list(
cls,
mapping: List[dict],
features: Optional[Features] = None,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
) -> "Dataset":
"""
Convert a list of dicts to a `pyarrow.Table` to create a [`Dataset`]`.
Note that the keys of the first entry will be used to determine the dataset columns,
regardless of what is passed to features.
Args:
mapping (`List[dict]`): A list of mappings of strings to row values.
features (`Features`, optional): Dataset features.
info (`DatasetInfo`, optional): Dataset information, like description, citation, etc.
split (`NamedSplit`, optional): Name of the dataset split.
Returns:
[`Dataset`]
"""
# for simplicity and consistency wrt OptimizedTypedSequence we do not use InMemoryTable.from_pylist here
mapping = {k: [r.get(k) for r in mapping] for k in mapping[0]} if mapping else {}
return cls.from_dict(mapping, features, info, split)
@staticmethod
def from_csv(
path_or_paths: Union[PathLike, List[PathLike]],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
num_proc: Optional[int] = None,
**kwargs,
):
"""Create Dataset from CSV file(s).
Args:
path_or_paths (`path-like` or list of `path-like`):
Path(s) of the CSV file(s).
split ([`NamedSplit`], *optional*):
Split name to be assigned to the dataset.
features ([`Features`], *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
This is helpful if the dataset is made of multiple files. Multiprocessing is disabled by default.
<Added version="2.8.0"/>
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`pandas.read_csv`].
Returns:
[`Dataset`]
Example:
```py
>>> ds = Dataset.from_csv('path/to/dataset.csv')
```
"""
# Dynamic import to avoid circular dependency
from .io.csv import CsvDatasetReader
return CsvDatasetReader(
path_or_paths,
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
num_proc=num_proc,
**kwargs,
).read()
@staticmethod
def from_generator(
generator: Callable,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
gen_kwargs: Optional[dict] = None,
num_proc: Optional[int] = None,
**kwargs,
):
"""Create a Dataset from a generator.
Args:
generator (:`Callable`):
A generator function that `yields` examples.
features ([`Features`], *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
gen_kwargs(`dict`, *optional*):
Keyword arguments to be passed to the `generator` callable.
You can define a sharded dataset by passing the list of shards in `gen_kwargs`.
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
This is helpful if the dataset is made of multiple files. Multiprocessing is disabled by default.
<Added version="2.7.0"/>
**kwargs (additional keyword arguments):
Keyword arguments to be passed to :[`GeneratorConfig`].
Returns:
[`Dataset`]
Example:
```py
>>> def gen():
... yield {"text": "Good", "label": 0}
... yield {"text": "Bad", "label": 1}
...
>>> ds = Dataset.from_generator(gen)
```
```py
>>> def gen(shards):
... for shard in shards:
... with open(shard) as f:
... for line in f:
... yield {"line": line}
...
>>> shards = [f"data{i}.txt" for i in range(32)]
>>> ds = Dataset.from_generator(gen, gen_kwargs={"shards": shards})
```
"""
from .io.generator import GeneratorDatasetInputStream
return GeneratorDatasetInputStream(
generator=generator,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
gen_kwargs=gen_kwargs,
num_proc=num_proc,
**kwargs,
).read()
@staticmethod
def from_json(
path_or_paths: Union[PathLike, List[PathLike]],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
field: Optional[str] = None,
num_proc: Optional[int] = None,
**kwargs,
):
"""Create Dataset from JSON or JSON Lines file(s).
Args:
path_or_paths (`path-like` or list of `path-like`):
Path(s) of the JSON or JSON Lines file(s).
split ([`NamedSplit`], *optional*):
Split name to be assigned to the dataset.
features ([`Features`], *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
field (`str`, *optional*):
Field name of the JSON file where the dataset is contained in.
num_proc (`int`, *optional* defaults to `None`):
Number of processes when downloading and generating the dataset locally.
This is helpful if the dataset is made of multiple files. Multiprocessing is disabled by default.
<Added version="2.8.0"/>
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`JsonConfig`].
Returns:
[`Dataset`]
Example:
```py
>>> ds = Dataset.from_json('path/to/dataset.json')
```
"""
# Dynamic import to avoid circular dependency
from .io.json import JsonDatasetReader
return JsonDatasetReader(
path_or_paths,
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
field=field,
num_proc=num_proc,
**kwargs,
).read()
@staticmethod
def from_parquet(
path_or_paths: Union[PathLike, List[PathLike]],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
columns: Optional[List[str]] = None,
num_proc: Optional[int] = None,
**kwargs,
):
"""Create Dataset from Parquet file(s).
Args:
path_or_paths (`path-like` or list of `path-like`):
Path(s) of the Parquet file(s).
split (`NamedSplit`, *optional*):
Split name to be assigned to the dataset.
features (`Features`, *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
columns (`List[str]`, *optional*):
If not `None`, only these columns will be read from the file.
A column name may be a prefix of a nested field, e.g. 'a' will select
'a.b', 'a.c', and 'a.d.e'.
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
This is helpful if the dataset is made of multiple files. Multiprocessing is disabled by default.
<Added version="2.8.0"/>
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`ParquetConfig`].
Returns:
[`Dataset`]
Example:
```py
>>> ds = Dataset.from_parquet('path/to/dataset.parquet')
```
"""
# Dynamic import to avoid circular dependency
from .io.parquet import ParquetDatasetReader
return ParquetDatasetReader(
path_or_paths,
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
columns=columns,
num_proc=num_proc,
**kwargs,
).read()
@staticmethod
def from_text(
path_or_paths: Union[PathLike, List[PathLike]],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
num_proc: Optional[int] = None,
**kwargs,
):
"""Create Dataset from text file(s).
Args:
path_or_paths (`path-like` or list of `path-like`):
Path(s) of the text file(s).
split (`NamedSplit`, *optional*):
Split name to be assigned to the dataset.
features (`Features`, *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
This is helpful if the dataset is made of multiple files. Multiprocessing is disabled by default.
<Added version="2.8.0"/>
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`TextConfig`].
Returns:
[`Dataset`]
Example:
```py
>>> ds = Dataset.from_text('path/to/dataset.txt')
```
"""
# Dynamic import to avoid circular dependency
from .io.text import TextDatasetReader
return TextDatasetReader(
path_or_paths,
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
num_proc=num_proc,
**kwargs,
).read()
@staticmethod
def from_spark(
df: "pyspark.sql.DataFrame",
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
keep_in_memory: bool = False,
cache_dir: str = None,
working_dir: str = None,
load_from_cache_file: bool = True,
**kwargs,
):
"""Create a Dataset from Spark DataFrame. Dataset downloading is distributed over Spark workers.
Args:
df (`pyspark.sql.DataFrame`):
The DataFrame containing the desired data.
split (`NamedSplit`, *optional*):
Split name to be assigned to the dataset.
features (`Features`, *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data. When using a multi-node Spark cluster, the cache_dir must be accessible to both
workers and the driver.
keep_in_memory (`bool`):
Whether to copy the data in-memory.
working_dir (`str`, *optional*)
Intermediate directory for each Spark worker to write data to before moving it to `cache_dir`. Setting
a non-NFS intermediate directory may improve performance.
load_from_cache_file (`bool`):
Whether to load the dataset from the cache if possible.
Returns:
[`Dataset`]
Example:
```py
>>> df = spark.createDataFrame(
>>> data=[[1, "Elia"], [2, "Teo"], [3, "Fang"]],
>>> columns=["id", "name"],
>>> )
>>> ds = Dataset.from_spark(df)
```
"""
# Dynamic import to avoid circular dependency
from .io.spark import SparkDatasetReader
if sys.platform == "win32":
raise EnvironmentError("Dataset.from_spark is not currently supported on Windows")
return SparkDatasetReader(
df,
split=split,
features=features,
streaming=False,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
working_dir=working_dir,
load_from_cache_file=load_from_cache_file,
**kwargs,
).read()
@staticmethod
def from_sql(
sql: Union[str, "sqlalchemy.sql.Selectable"],
con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
):
"""Create Dataset from SQL query or database table.
Args:
sql (`str` or `sqlalchemy.sql.Selectable`):
SQL query to be executed or a table name.
con (`str` or `sqlite3.Connection` or `sqlalchemy.engine.Connection` or `sqlalchemy.engine.Connection`):
A [URI string](https://docs.sqlalchemy.org/en/13/core/engines.html#database-urls) used to instantiate a database connection or a SQLite3/SQLAlchemy connection object.
features ([`Features`], *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`SqlConfig`].
Returns:
[`Dataset`]
Example:
```py
>>> # Fetch a database table
>>> ds = Dataset.from_sql("test_data", "postgres:///db_name")
>>> # Execute a SQL query on the table
>>> ds = Dataset.from_sql("SELECT sentence FROM test_data", "postgres:///db_name")
>>> # Use a Selectable object to specify the query
>>> from sqlalchemy import select, text
>>> stmt = select([text("sentence")]).select_from(text("test_data"))
>>> ds = Dataset.from_sql(stmt, "postgres:///db_name")
```
<Tip>
The returned dataset can only be cached if `con` is specified as URI string.
</Tip>
"""
from .io.sql import SqlDatasetReader
return SqlDatasetReader(
sql,
con,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
**kwargs,
).read()
def __del__(self):
if hasattr(self, "_data"):
del self._data
if hasattr(self, "_indices"):
del self._indices
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
# Here `del` is used to del the pyarrow tables. This properly closes the files used for memory mapped tables
self.__del__()
def save_to_disk(
self,
dataset_path: PathLike,
fs="deprecated",
max_shard_size: Optional[Union[str, int]] = None,
num_shards: Optional[int] = None,
num_proc: Optional[int] = None,
storage_options: Optional[dict] = None,
):
"""
Saves a dataset to a dataset directory, or in a filesystem using any implementation of `fsspec.spec.AbstractFileSystem`.
For [`Image`] and [`Audio`] data:
All the Image() and Audio() data are stored in the arrow files.
If you want to store paths or urls, please use the Value("string") type.
Args:
dataset_path (`str`):
Path (e.g. `dataset/train`) or remote URI (e.g. `s3://my-bucket/dataset/train`)
of the dataset directory where the dataset will be saved to.
fs (`fsspec.spec.AbstractFileSystem`, *optional*):
Instance of the remote filesystem where the dataset will be saved to.
<Deprecated version="2.8.0">
`fs` was deprecated in version 2.8.0 and will be removed in 3.0.0.
Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`
</Deprecated>
max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by a unit
(like `"50MB"`).
num_shards (`int`, *optional*):
Number of shards to write. By default the number of shards depends on `max_shard_size` and `num_proc`.
<Added version="2.8.0"/>
num_proc (`int`, *optional*):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.8.0"/>
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.8.0"/>
Example:
```py
>>> ds.save_to_disk("path/to/dataset/directory")
>>> ds.save_to_disk("path/to/dataset/directory", max_shard_size="1GB")
>>> ds.save_to_disk("path/to/dataset/directory", num_shards=1024)
```
"""
if max_shard_size is not None and num_shards is not None:
raise ValueError(
"Failed to push_to_hub: please specify either max_shard_size or num_shards, but not both."
)
if fs != "deprecated":
warnings.warn(
"'fs' was deprecated in favor of 'storage_options' in version 2.8.0 and will be removed in 3.0.0.\n"
"You can remove this warning by passing 'storage_options=fs.storage_options' instead.",
FutureWarning,
)
storage_options = fs.storage_options
if num_shards is None:
dataset_nbytes = self._estimate_nbytes()
max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE)
num_shards = int(dataset_nbytes / max_shard_size) + 1
num_shards = max(num_shards, num_proc or 1)
num_proc = num_proc if num_proc is not None else 1
num_shards = num_shards if num_shards is not None else num_proc
fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options)
fs: fsspec.AbstractFileSystem = fs_token_paths[0]
is_local = not is_remote_filesystem(fs)
path_join = os.path.join if is_local else posixpath.join
if self.list_indexes():
raise ValueError("please remove all the indexes using `dataset.drop_index` before saving a dataset")
if is_local:
Path(dataset_path).resolve().mkdir(parents=True, exist_ok=True)
parent_cache_files_paths = {
Path(cache_filename["filename"]).resolve().parent for cache_filename in self.cache_files
}
# Check that the dataset doesn't overwrite iself. It can cause a permission error on Windows and a segfault on linux.
if Path(dataset_path).resolve() in parent_cache_files_paths:
raise PermissionError(
f"Tried to overwrite {Path(dataset_path).resolve()} but a dataset can't overwrite itself."
)
else:
fs.makedirs(dataset_path, exist_ok=True)
# Get json serializable state
state = {
key: self.__dict__[key]
for key in [
"_fingerprint",
"_format_columns",
"_format_kwargs",
"_format_type",
"_output_all_columns",
]
}
state["_split"] = str(self.split) if self.split is not None else self.split
state["_data_files"] = [
{"filename": f"data-{shard_idx:05d}-of-{num_shards:05d}.arrow"} for shard_idx in range(num_shards)
]
for k in state["_format_kwargs"].keys():
try:
json.dumps(state["_format_kwargs"][k])
except TypeError as e:
raise TypeError(
str(e) + f"\nThe format kwargs must be JSON serializable, but key '{k}' isn't."
) from None
# Get json serializable dataset info
dataset_info = asdict(self._info)
shards_done = 0
pbar = logging.tqdm(
disable=not logging.is_progress_bar_enabled(),
unit=" examples",
total=len(self),
desc=f"Saving the dataset ({shards_done}/{num_shards} shards)",
)
kwargs_per_job = (
{
"job_id": shard_idx,
"shard": self.shard(num_shards=num_shards, index=shard_idx, contiguous=True),
"fpath": path_join(dataset_path, f"data-{shard_idx:05d}-of-{num_shards:05d}.arrow"),
"storage_options": storage_options,
}
for shard_idx in range(num_shards)
)
shard_lengths = [None] * num_shards
shard_sizes = [None] * num_shards
if num_proc > 1:
with Pool(num_proc) as pool:
with pbar:
for job_id, done, content in iflatmap_unordered(
pool, Dataset._save_to_disk_single, kwargs_iterable=kwargs_per_job
):
if done:
shards_done += 1
pbar.set_description(f"Saving the dataset ({shards_done}/{num_shards} shards)")
logger.debug(f"Finished writing shard number {job_id} of {num_shards}.")
shard_lengths[job_id], shard_sizes[job_id] = content
else:
pbar.update(content)
else:
with pbar:
for kwargs in kwargs_per_job:
for job_id, done, content in Dataset._save_to_disk_single(**kwargs):
if done:
shards_done += 1
pbar.set_description(f"Saving the dataset ({shards_done}/{num_shards} shards)")
logger.debug(f"Finished writing shard number {job_id} of {num_shards}.")
shard_lengths[job_id], shard_sizes[job_id] = content
else:
pbar.update(content)
with fs.open(path_join(dataset_path, config.DATASET_STATE_JSON_FILENAME), "w", encoding="utf-8") as state_file:
json.dump(state, state_file, indent=2, sort_keys=True)
with fs.open(
path_join(dataset_path, config.DATASET_INFO_FILENAME), "w", encoding="utf-8"
) as dataset_info_file:
# Sort only the first level of keys, or we might shuffle fields of nested features if we use sort_keys=True
sorted_keys_dataset_info = {key: dataset_info[key] for key in sorted(dataset_info)}
json.dump(sorted_keys_dataset_info, dataset_info_file, indent=2)
@staticmethod
def _save_to_disk_single(job_id: int, shard: "Dataset", fpath: str, storage_options: Optional[dict]):
batch_size = config.DEFAULT_MAX_BATCH_SIZE
num_examples_progress_update = 0
writer = ArrowWriter(
features=shard.features,
path=fpath,
storage_options=storage_options,
embed_local_files=True,
)
try:
_time = time.time()
for pa_table in shard.with_format("arrow").iter(batch_size):
writer.write_table(pa_table)
num_examples_progress_update += len(pa_table)
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
_time = time.time()
yield job_id, False, num_examples_progress_update
num_examples_progress_update = 0
finally:
yield job_id, False, num_examples_progress_update
num_examples, num_bytes = writer.finalize()
writer.close()
yield job_id, True, (num_examples, num_bytes)
@staticmethod
def _build_local_temp_path(uri_or_path: str) -> Path:
"""
Builds and returns a Path concatenating a local temporary dir with the dir path (or absolute/relative
path extracted from the uri) passed.
Args:
uri_or_path (`str`): Path (e.g. `"dataset/train"`) or remote URI (e.g.
`"s3://my-bucket/dataset/train"`) to concatenate.
Returns:
:class:`Path`: the concatenated path (temp dir + path)
"""
src_dataset_path = Path(uri_or_path)
tmp_dir = get_temporary_cache_files_directory()
return Path(tmp_dir, src_dataset_path.relative_to(src_dataset_path.anchor))
@staticmethod
def load_from_disk(
dataset_path: str,
fs="deprecated",
keep_in_memory: Optional[bool] = None,
storage_options: Optional[dict] = None,
) -> "Dataset":
"""
Loads a dataset that was previously saved using [`save_to_disk`] from a dataset directory, or from a
filesystem using any implementation of `fsspec.spec.AbstractFileSystem`.
Args:
dataset_path (`str`):
Path (e.g. `"dataset/train"`) or remote URI (e.g. `"s3//my-bucket/dataset/train"`)
of the dataset directory where the dataset will be loaded from.
fs (`fsspec.spec.AbstractFileSystem`, *optional*):
Instance of the remote filesystem where the dataset will be saved to.
<Deprecated version="2.8.0">
`fs` was deprecated in version 2.8.0 and will be removed in 3.0.0.
Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`
</Deprecated>
keep_in_memory (`bool`, defaults to `None`):
Whether to copy the dataset in-memory. If `None`, the
dataset will not be copied in-memory unless explicitly enabled by setting
`datasets.config.IN_MEMORY_MAX_SIZE` to nonzero. See more details in the
[improve performance](../cache#improve-performance) section.
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.8.0"/>
Returns:
[`Dataset`] or [`DatasetDict`]:
- If `dataset_path` is a path of a dataset directory, the dataset requested.
- If `dataset_path` is a path of a dataset dict directory, a `datasets.DatasetDict` with each split.
Example:
```py
>>> ds = load_from_disk("path/to/dataset/directory")
```
"""
if fs != "deprecated":
warnings.warn(
"'fs' was deprecated in favor of 'storage_options' in version 2.8.0 and will be removed in 3.0.0.\n"
"You can remove this warning by passing 'storage_options=fs.storage_options' instead.",
FutureWarning,
)
storage_options = fs.storage_options
fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options)
fs: fsspec.AbstractFileSystem = fs_token_paths[0]
if is_remote_filesystem(fs):
dest_dataset_path = extract_path_from_uri(dataset_path)
path_join = posixpath.join
else:
fs = fsspec.filesystem("file")
dest_dataset_path = dataset_path
path_join = os.path.join
dataset_dict_json_path = path_join(dest_dataset_path, config.DATASETDICT_JSON_FILENAME)
dataset_state_json_path = path_join(dest_dataset_path, config.DATASET_STATE_JSON_FILENAME)
dataset_info_path = path_join(dest_dataset_path, config.DATASET_INFO_FILENAME)
dataset_dict_is_file = fs.isfile(dataset_dict_json_path)
dataset_info_is_file = fs.isfile(dataset_info_path)
dataset_state_is_file = fs.isfile(dataset_state_json_path)
if not dataset_info_is_file and not dataset_state_is_file:
if dataset_dict_is_file:
raise FileNotFoundError(
f"No such files: '{dataset_info_path}', nor '{dataset_state_json_path}' found. Expected to load a `Dataset` object, but got a `DatasetDict`. Please use either `datasets.load_from_disk` or `DatasetDict.load_from_disk` instead."
)
raise FileNotFoundError(
f"No such files: '{dataset_info_path}', nor '{dataset_state_json_path}' found. Expected to load a `Dataset` object but provided path is not a `Dataset`."
)
if not dataset_info_is_file:
if dataset_dict_is_file:
raise FileNotFoundError(
f"No such file: '{dataset_info_path}' found. Expected to load a `Dataset` object, but got a `DatasetDict`. Please use either `datasets.load_from_disk` or `DatasetDict.load_from_disk` instead."
)
raise FileNotFoundError(
f"No such file: '{dataset_info_path}'. Expected to load a `Dataset` object but provided path is not a `Dataset`."
)
if not dataset_state_is_file:
if dataset_dict_is_file:
raise FileNotFoundError(
f"No such file: '{dataset_state_json_path}' found. Expected to load a `Dataset` object, but got a `DatasetDict`. Please use either `datasets.load_from_disk` or `DatasetDict.load_from_disk` instead."
)
raise FileNotFoundError(
f"No such file: '{dataset_state_json_path}'. Expected to load a `Dataset` object but provided path is not a `Dataset`."
)
# copies file from filesystem if it is remote filesystem to local filesystem and modifies dataset_path to temp directory containing local copies
if is_remote_filesystem(fs):
src_dataset_path = dest_dataset_path
dest_dataset_path = Dataset._build_local_temp_path(src_dataset_path)
fs.download(src_dataset_path, dest_dataset_path.as_posix(), recursive=True)
dataset_state_json_path = path_join(dest_dataset_path, config.DATASET_STATE_JSON_FILENAME)
dataset_info_path = path_join(dest_dataset_path, config.DATASET_INFO_FILENAME)
with open(dataset_state_json_path, encoding="utf-8") as state_file:
state = json.load(state_file)
with open(dataset_info_path, encoding="utf-8") as dataset_info_file:
dataset_info = DatasetInfo.from_dict(json.load(dataset_info_file))
dataset_size = estimate_dataset_size(
Path(dest_dataset_path, data_file["filename"]) for data_file in state["_data_files"]
)
keep_in_memory = keep_in_memory if keep_in_memory is not None else is_small_dataset(dataset_size)
table_cls = InMemoryTable if keep_in_memory else MemoryMappedTable
arrow_table = concat_tables(
table_cls.from_file(path_join(dest_dataset_path, data_file["filename"]))
for data_file in state["_data_files"]
)
split = state["_split"]
split = Split(split) if split is not None else split
dataset = Dataset(
arrow_table=arrow_table,
info=dataset_info,
split=split,
fingerprint=state["_fingerprint"],
)
format = {
"type": state["_format_type"],
"format_kwargs": state["_format_kwargs"],
"columns": state["_format_columns"],
"output_all_columns": state["_output_all_columns"],
}
dataset = dataset.with_format(**format)
return dataset
@property
def data(self) -> Table:
"""The Apache Arrow table backing the dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.data
MemoryMappedTable
text: string
label: int64
----
text: [["compassionately explores the seemingly irreconcilable situation between conservative christian parents and their estranged gay and lesbian children .","the soundtrack alone is worth the price of admission .","rodriguez does a splendid job of racial profiling hollywood style--casting excellent latin actors of all ages--a trend long overdue .","beneath the film's obvious determination to shock at any cost lies considerable skill and determination , backed by sheer nerve .","bielinsky is a filmmaker of impressive talent .","so beautifully acted and directed , it's clear that washington most certainly has a new career ahead of him if he so chooses .","a visual spectacle full of stunning images and effects .","a gentle and engrossing character study .","it's enough to watch huppert scheming , with her small , intelligent eyes as steady as any noir villain , and to enjoy the perfectly pitched web of tension that chabrol spins .","an engrossing portrait of uncompromising artists trying to create something original against the backdrop of a corporate music industry that only seems to care about the bottom line .",...,"ultimately , jane learns her place as a girl , softens up and loses some of the intensity that made her an interesting character to begin with .","ah-nuld's action hero days might be over .","it's clear why deuces wild , which was shot two years ago , has been gathering dust on mgm's shelf .","feels like nothing quite so much as a middle-aged moviemaker's attempt to surround himself with beautiful , half-naked women .","when the precise nature of matthew's predicament finally comes into sharp focus , the revelation fails to justify the build-up .","this picture is murder by numbers , and as easy to be bored by as your abc's , despite a few whopping shootouts .","hilarious musical comedy though stymied by accents thick as mud .","if you are into splatter movies , then you will probably have a reasonably good time with the salton sea .","a dull , simple-minded and stereotypical tale of drugs , death and mind-numbing indifference on the inner-city streets .","the feature-length stretch . . . strains the show's concept ."]]
label: [[1,1,1,1,1,1,1,1,1,1,...,0,0,0,0,0,0,0,0,0,0]]
```
"""
return self._data
@property
def cache_files(self) -> List[dict]:
"""The cache files containing the Apache Arrow table backing the dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.cache_files
[{'filename': '/root/.cache/huggingface/datasets/rotten_tomatoes_movie_review/default/1.0.0/40d411e45a6ce3484deed7cc15b82a53dad9a72aafd9f86f8f227134bec5ca46/rotten_tomatoes_movie_review-validation.arrow'}]
```
"""
cache_files = list_table_cache_files(self._data)
if self._indices is not None:
cache_files += list_table_cache_files(self._indices)
return [{"filename": cache_filename} for cache_filename in cache_files]
@property
def num_columns(self) -> int:
"""Number of columns in the dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.num_columns
2
```
"""
return self._data.num_columns
@property
def num_rows(self) -> int:
"""Number of rows in the dataset (same as [`Dataset.__len__`]).
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.num_rows
1066
```
"""
if self._indices is not None:
return self._indices.num_rows
return self._data.num_rows
@property
def column_names(self) -> List[str]:
"""Names of the columns in the dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.column_names
['text', 'label']
```
"""
return self._data.column_names
@property
def shape(self) -> Tuple[int, int]:
"""Shape of the dataset (number of columns, number of rows).
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.shape
(1066, 2)
```
"""
if self._indices is not None:
return (self._indices.num_rows, self._data.num_columns)
return self._data.shape
def unique(self, column: str) -> List:
"""Return a list of the unique elements in a column.
This is implemented in the low-level backend and as such, very fast.
Args:
column (`str`):
Column name (list all the column names with [`~datasets.Dataset.column_names`]).
Returns:
`list`: List of unique elements in the given column.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.unique('label')
[1, 0]
```
"""
if column not in self._data.column_names:
raise ValueError(f"Column ({column}) not in table columns ({self._data.column_names}).")
if self._indices is not None and self._indices.num_rows != self._data.num_rows:
dataset = self.flatten_indices()
else:
dataset = self
return dataset._data.column(column).unique().to_pylist()
def class_encode_column(self, column: str, include_nulls: bool = False) -> "Dataset":
"""Casts the given column as [`~datasets.features.ClassLabel`] and updates the table.
Args:
column (`str`):
The name of the column to cast (list all the column names with [`~datasets.Dataset.column_names`])
include_nulls (`bool`, defaults to `False`):
Whether to include null values in the class labels. If `True`, the null values will be encoded as the `"None"` class label.
<Added version="1.14.2"/>
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("boolq", split="validation")
>>> ds.features
{'answer': Value(dtype='bool', id=None),
'passage': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None)}
>>> ds = ds.class_encode_column('answer')
>>> ds.features
{'answer': ClassLabel(num_classes=2, names=['False', 'True'], id=None),
'passage': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None)}
```
"""
# Sanity checks
if column not in self._data.column_names:
raise ValueError(f"Column ({column}) not in table columns ({self._data.column_names}).")
src_feat = self._info.features[column]
if not isinstance(src_feat, Value):
raise ValueError(
f"Class encoding is only supported for {Value.__name__} column, and column {column} is {type(src_feat).__name__}."
)
if src_feat.dtype != "string" or (include_nulls and None in self.unique(column)):
def stringify_column(batch):
batch[column] = [
str(sample) if include_nulls or sample is not None else None for sample in batch[column]
]
return batch
dset = self.map(
stringify_column,
batched=True,
desc="Stringifying the column",
)
else:
dset = self
# Create the new feature
class_names = sorted(str(sample) for sample in dset.unique(column) if include_nulls or sample is not None)
dst_feat = ClassLabel(names=class_names)
def cast_to_class_labels(batch):
batch[column] = [
dst_feat.str2int(str(sample)) if include_nulls or sample is not None else None
for sample in batch[column]
]
return batch
new_features = dset.features.copy()
new_features[column] = dst_feat
dset = dset.map(
cast_to_class_labels,
batched=True,
features=new_features,
desc="Casting to class labels",
)
return dset
@fingerprint_transform(inplace=False)
def flatten(self, new_fingerprint: Optional[str] = None, max_depth=16) -> "Dataset":
"""Flatten the table.
Each column with a struct type is flattened into one column per struct field.
Other columns are left unchanged.
Args:
new_fingerprint (`str`, *optional*):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments.
Returns:
[`Dataset`]: A copy of the dataset with flattened columns.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("squad", split="train")
>>> ds.features
{'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None),
'context': Value(dtype='string', id=None),
'id': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None),
'title': Value(dtype='string', id=None)}
>>> ds.flatten()
Dataset({
features: ['id', 'title', 'context', 'question', 'answers.text', 'answers.answer_start'],
num_rows: 87599
})
```
"""
dataset = copy.deepcopy(self)
for depth in range(1, max_depth):
if any(isinstance(field.type, pa.StructType) for field in dataset._data.schema):
dataset._data = dataset._data.flatten()
else:
break
dataset.info.features = self._info.features.flatten(max_depth=max_depth)
dataset.info.features = Features({col: dataset.info.features[col] for col in dataset.data.column_names})
dataset._data = update_metadata_with_features(dataset._data, dataset.features)
logger.info(f'Flattened dataset from depth {depth} to depth {1 if depth + 1 < max_depth else "unknown"}.')
dataset._fingerprint = new_fingerprint
return dataset
def cast(
self,
features: Features,
batch_size: Optional[int] = 1000,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
num_proc: Optional[int] = None,
) -> "Dataset":
"""
Cast the dataset to a new set of features.
Args:
features ([`Features`]):
New features to cast the dataset to.
The name of the fields in the features must match the current column names.
The type of the data must also be convertible from one type to the other.
For non-trivial conversion, e.g. `str` <-> `ClassLabel` you should use [`~datasets.Dataset.map`] to update the Dataset.
batch_size (`int`, defaults to `1000`):
Number of examples per batch provided to cast.
If `batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to cast.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
load_from_cache_file (`bool`, defaults to `True` if caching is enabled):
If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
cache_file_name (`str`, *optional*, defaults to `None`):
Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running [`~datasets.Dataset.map`].
num_proc (`int`, *optional*, defaults to `None`):
Number of processes for multiprocessing. By default it doesn't
use multiprocessing.
Returns:
[`Dataset`]: A copy of the dataset with casted features.
Example:
```py
>>> from datasets import load_dataset, ClassLabel, Value
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> new_features = ds.features.copy()
>>> new_features['label'] = ClassLabel(names=['bad', 'good'])
>>> new_features['text'] = Value('large_string')
>>> ds = ds.cast(new_features)
>>> ds.features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='large_string', id=None)}
```
"""
if sorted(features) != sorted(self._data.column_names):
raise ValueError(
f"The columns in features ({list(features)}) must be identical "
f"as the columns in the dataset: {self._data.column_names}"
)
schema = features.arrow_schema
format = self.format
dataset = self.with_format("arrow")
# capture the PyArrow version here to make the lambda serializable on Windows
dataset = dataset.map(
partial(table_cast, schema=schema),
batched=True,
batch_size=batch_size,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
cache_file_name=cache_file_name,
writer_batch_size=writer_batch_size,
num_proc=num_proc,
features=features,
desc="Casting the dataset",
)
dataset = dataset.with_format(**format)
return dataset
@fingerprint_transform(inplace=False)
def cast_column(self, column: str, feature: FeatureType, new_fingerprint: Optional[str] = None) -> "Dataset":
"""Cast column to feature for decoding.
Args:
column (`str`):
Column name.
feature (`FeatureType`):
Target feature.
new_fingerprint (`str`, *optional*):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments.
Returns:
[`Dataset`]
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> ds = ds.cast_column('label', ClassLabel(names=['bad', 'good']))
>>> ds.features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='string', id=None)}
```
"""
if hasattr(feature, "decode_example"):
dataset = copy.deepcopy(self)
dataset._info.features[column] = feature
dataset._fingerprint = new_fingerprint
dataset._data = dataset._data.cast(dataset.features.arrow_schema)
dataset._data = update_metadata_with_features(dataset._data, dataset.features)
return dataset
else:
features = self.features
features[column] = feature
return self.cast(features)
@transmit_tasks
@transmit_format
@fingerprint_transform(inplace=False)
def remove_columns(self, column_names: Union[str, List[str]], new_fingerprint: Optional[str] = None) -> "Dataset":
"""
Remove one or several column(s) in the dataset and the features associated to them.
You can also remove a column using [`~datasets.Dataset.map`] with `remove_columns` but the present method
is in-place (doesn't copy the data to a new dataset) and is thus faster.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to remove.
new_fingerprint (`str`, *optional*):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments.
Returns:
[`Dataset`]: A copy of the dataset object without the columns to remove.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.remove_columns('label')
Dataset({
features: ['text'],
num_rows: 1066
})
>>> ds.remove_columns(column_names=ds.column_names) # Removing all the columns returns an empty dataset with the `num_rows` property set to 0
Dataset({
features: [],
num_rows: 0
})
```
"""
dataset = copy.deepcopy(self)
if isinstance(column_names, str):
column_names = [column_names]
for column_name in column_names:
if column_name not in dataset._data.column_names:
raise ValueError(
f"Column name {column_name} not in the dataset. "
f"Current columns in the dataset: {dataset._data.column_names}"
)
for column_name in column_names:
del dataset._info.features[column_name]
dataset._data = dataset._data.drop(column_names)
dataset._data = update_metadata_with_features(dataset._data, dataset.features)
dataset._fingerprint = new_fingerprint
return dataset
@transmit_tasks
@fingerprint_transform(inplace=False)
def rename_column(
self, original_column_name: str, new_column_name: str, new_fingerprint: Optional[str] = None
) -> "Dataset":
"""
Rename a column in the dataset, and move the features associated to the original column under the new column
name.
Args:
original_column_name (`str`):
Name of the column to rename.
new_column_name (`str`):
New name for the column.
new_fingerprint (`str`, *optional*):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments.
Returns:
[`Dataset`]: A copy of the dataset with a renamed column.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.rename_column('label', 'label_new')
Dataset({
features: ['text', 'label_new'],
num_rows: 1066
})
```
"""
dataset = copy.deepcopy(self)
if original_column_name not in dataset._data.column_names:
raise ValueError(
f"Original column name {original_column_name} not in the dataset. "
f"Current columns in the dataset: {dataset._data.column_names}"
)
if new_column_name in dataset._data.column_names:
raise ValueError(
f"New column name {new_column_name} already in the dataset. "
f"Please choose a column name which is not already in the dataset. "
f"Current columns in the dataset: {dataset._data.column_names}"
)
if not new_column_name:
raise ValueError("New column name is empty.")
def rename(columns):
return [new_column_name if col == original_column_name else col for col in columns]
new_column_names = rename(self._data.column_names)
if self._format_columns is not None:
dataset._format_columns = rename(self._format_columns)
dataset._info.features = Features(
{
new_column_name if col == original_column_name else col: feature
for col, feature in self._info.features.items()
}
)
dataset._data = dataset._data.rename_columns(new_column_names)
dataset._data = update_metadata_with_features(dataset._data, dataset.features)
dataset._fingerprint = new_fingerprint
return dataset
@transmit_tasks
@fingerprint_transform(inplace=False)
def rename_columns(self, column_mapping: Dict[str, str], new_fingerprint: Optional[str] = None) -> "Dataset":
"""
Rename several columns in the dataset, and move the features associated to the original columns under
the new column names.
Args:
column_mapping (`Dict[str, str]`):
A mapping of columns to rename to their new names
new_fingerprint (`str`, *optional*):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments.
Returns:
[`Dataset`]: A copy of the dataset with renamed columns
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.rename_columns({'text': 'text_new', 'label': 'label_new'})
Dataset({
features: ['text_new', 'label_new'],
num_rows: 1066
})
```
"""
dataset = copy.deepcopy(self)
extra_columns = set(column_mapping.keys()) - set(dataset.column_names)
if extra_columns:
raise ValueError(
f"Original column names {extra_columns} not in the dataset. "
f"Current columns in the dataset: {dataset._data.column_names}"
)
number_of_duplicates_in_new_columns = len(column_mapping.values()) - len(set(column_mapping.values()))
if number_of_duplicates_in_new_columns != 0:
raise ValueError(
"New column names must all be different, but this column mapping "
f"has {number_of_duplicates_in_new_columns} duplicates"
)
empty_new_columns = [new_col for new_col in column_mapping.values() if not new_col]
if empty_new_columns:
raise ValueError(f"New column names {empty_new_columns} are empty.")
def rename(columns):
return [column_mapping[col] if col in column_mapping else col for col in columns]
new_column_names = rename(self._data.column_names)
if self._format_columns is not None:
dataset._format_columns = rename(self._format_columns)
dataset._info.features = Features(
{
column_mapping[col] if col in column_mapping else col: feature
for col, feature in (self._info.features or {}).items()
}
)
dataset._data = dataset._data.rename_columns(new_column_names)
dataset._data = update_metadata_with_features(dataset._data, dataset.features)
dataset._fingerprint = new_fingerprint
return dataset
@transmit_tasks
@transmit_format
@fingerprint_transform(inplace=False)
def select_columns(self, column_names: Union[str, List[str]], new_fingerprint: Optional[str] = None) -> "Dataset":
"""Select one or several column(s) in the dataset and the features
associated to them.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to keep.
new_fingerprint (`str`, *optional*):
The new fingerprint of the dataset after transform. If `None`,
the new fingerprint is computed using a hash of the previous
fingerprint, and the transform arguments.
Returns:
[`Dataset`]: A copy of the dataset object which only consists of
selected columns.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.select_columns(['text'])
Dataset({
features: ['text'],
num_rows: 1066
})
```
"""
if isinstance(column_names, str):
column_names = [column_names]
for column_name in column_names:
if column_name not in self._data.column_names:
raise ValueError(
f"Column name {column_name} not in the "
"dataset. Current columns in the dataset: "
f"{self._data.column_names}."
)
dataset = copy.deepcopy(self)
dataset._data = dataset._data.select(column_names)
dataset._info.features = Features({col: self._info.features[col] for col in dataset._data.column_names})
dataset._data = update_metadata_with_features(dataset._data, dataset.features)
dataset._fingerprint = new_fingerprint
return dataset
def __len__(self):
"""Number of rows in the dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.__len__
<bound method Dataset.__len__ of Dataset({
features: ['text', 'label'],
num_rows: 1066
})>
```
"""
return self.num_rows
def __iter__(self):
"""Iterate through the examples.
If a formatting is set with :meth:`Dataset.set_format` rows will be returned with the
selected format.
"""
if self._indices is None:
# Fast iteration
# Benchmark: https://gist.github.com/mariosasko/0248288a2e3a7556873969717c1fe52b (fast_iter_batch)
format_kwargs = self._format_kwargs if self._format_kwargs is not None else {}
formatter = get_formatter(self._format_type, features=self._info.features, **format_kwargs)
batch_size = config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER
for pa_subtable in table_iter(self.data, batch_size=batch_size):
for i in range(pa_subtable.num_rows):
pa_subtable_ex = pa_subtable.slice(i, 1)
formatted_output = format_table(
pa_subtable_ex,
0,
formatter=formatter,
format_columns=self._format_columns,
output_all_columns=self._output_all_columns,
)
yield formatted_output
else:
for i in range(self.num_rows):
yield self._getitem(
i,
)
def iter(self, batch_size: int, drop_last_batch: bool = False):
"""Iterate through the batches of size `batch_size`.
If a formatting is set with [`~datasets.Dataset.set_format`] rows will be returned with the
selected format.
Args:
batch_size (:obj:`int`): size of each batch to yield.
drop_last_batch (:obj:`bool`, default `False`): Whether a last batch smaller than the batch_size should be
dropped
"""
if self._indices is None:
# Fast iteration
# Benchmark: https://gist.github.com/mariosasko/0248288a2e3a7556873969717c1fe52b (fast_iter_batch)
format_kwargs = self._format_kwargs if self._format_kwargs is not None else {}
formatter = get_formatter(self._format_type, features=self._info.features, **format_kwargs)
for pa_subtable in table_iter(self.data, batch_size=batch_size, drop_last_batch=drop_last_batch):
formatted_batch = format_table(
pa_subtable,
range(pa_subtable.num_rows),
formatter=formatter,
format_columns=self._format_columns,
output_all_columns=self._output_all_columns,
)
yield formatted_batch
else:
num_rows = self.num_rows if not drop_last_batch else self.num_rows // batch_size * batch_size
for i in range(0, num_rows, batch_size):
yield self._getitem(
slice(i, i + batch_size),
)
def __repr__(self):
return f"Dataset({{\n features: {list(self._info.features.keys())},\n num_rows: {self.num_rows}\n}})"
@property
def format(self):
return {
"type": self._format_type,
"format_kwargs": self._format_kwargs,
"columns": self.column_names if self._format_columns is None else self._format_columns,
"output_all_columns": self._output_all_columns,
}
@contextlib.contextmanager
def formatted_as(
self,
type: Optional[str] = None,
columns: Optional[List] = None,
output_all_columns: bool = False,
**format_kwargs,
):
"""To be used in a `with` statement. Set `__getitem__` return format (type and columns).
Args:
type (`str`, *optional*):
Output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'pandas', 'arrow', 'jax']`.
`None` means `__getitem__`` returns python objects (default).
columns (`List[str]`, *optional*):
Columns to format in the output.
`None` means `__getitem__` returns all columns (default).
output_all_columns (`bool`, defaults to `False`):
Keep un-formatted columns as well in the output (as python objects).
**format_kwargs (additional keyword arguments):
Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.
"""
old_format_type = self._format_type
old_format_kwargs = self._format_kwargs
old_format_columns = self._format_columns
old_output_all_columns = self._output_all_columns
try:
self.set_format(type, columns, output_all_columns, **format_kwargs)
yield
finally:
self.set_format(old_format_type, old_format_columns, old_output_all_columns, **old_format_kwargs)
@fingerprint_transform(inplace=True)
def set_format(
self,
type: Optional[str] = None,
columns: Optional[List] = None,
output_all_columns: bool = False,
**format_kwargs,
):
"""Set `__getitem__` return format (type and columns). The data formatting is applied on-the-fly.
The format `type` (for example "numpy") is used to format batches when using `__getitem__`.
It's also possible to use custom transforms for formatting using [`~datasets.Dataset.set_transform`].
Args:
type (`str`, *optional*):
Either output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'pandas', 'arrow', 'jax']`.
`None` means `__getitem__` returns python objects (default).
columns (`List[str]`, *optional*):
Columns to format in the output.
`None` means `__getitem__` returns all columns (default).
output_all_columns (`bool`, defaults to `False`):
Keep un-formatted columns as well in the output (as python objects).
**format_kwargs (additional keyword arguments):
Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.
It is possible to call [`~datasets.Dataset.map`] after calling `set_format`. Since `map` may add new columns, then the list of formatted columns
gets updated. In this case, if you apply `map` on a dataset to add a new column, then this column will be formatted as:
```
new formatted columns = (all columns - previously unformatted columns)
```
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)
>>> ds.set_format(type='numpy', columns=['text', 'label'])
>>> ds.format
{'type': 'numpy',
'format_kwargs': {},
'columns': ['text', 'label'],
'output_all_columns': False}
```
"""
format_kwargs.update(format_kwargs.pop("format_kwargs", {})) # allow to use self.set_format(**self.format)
# Check that the format_type and format_kwargs are valid and make it possible to have a Formatter
type = get_format_type_from_alias(type)
get_formatter(type, features=self._info.features, **format_kwargs)
# Check filter column
if isinstance(columns, str):
columns = [columns]
if isinstance(columns, tuple):
columns = list(columns)
if columns is not None and any(col not in self._data.column_names for col in columns):
raise ValueError(
f"Columns {list(filter(lambda col: col not in self._data.column_names, columns))} not in the dataset. Current columns in the dataset: {self._data.column_names}"
)
if columns is not None:
columns = columns.copy() # Ensures modifications made to the list after this call don't cause bugs
self._format_type = type
self._format_kwargs = format_kwargs
self._format_columns = columns
self._output_all_columns = output_all_columns
logger.debug(
"Set __getitem__(key) output type to %s for %s columns "
" (when key is int or slice) and %s output other (un-formatted) columns.",
"python objects" if type is None else type,
"no" if columns is None else str(columns),
"do" if output_all_columns else "don't",
)
def reset_format(self):
"""Reset `__getitem__` return format to python objects and all columns.
Same as `self.set_format()`
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)
>>> ds.set_format(type='numpy', columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'])
>>> ds.format
{'columns': ['input_ids', 'token_type_ids', 'attention_mask', 'label'],
'format_kwargs': {},
'output_all_columns': False,
'type': 'numpy'}
>>> ds.reset_format()
>>> ds.format
{'columns': ['text', 'label', 'input_ids', 'token_type_ids', 'attention_mask'],
'format_kwargs': {},
'output_all_columns': False,
'type': None}
```
"""
self.set_format()
def set_transform(
self,
transform: Optional[Callable],
columns: Optional[List] = None,
output_all_columns: bool = False,
):
"""Set `__getitem__` return format using this transform. The transform is applied on-the-fly on batches when `__getitem__` is called.
As [`~datasets.Dataset.set_format`], this can be reset using [`~datasets.Dataset.reset_format`].
Args:
transform (`Callable`, *optional*):
User-defined formatting transform, replaces the format defined by [`~datasets.Dataset.set_format`].
A formatting function is a callable that takes a batch (as a `dict`) as input and returns a batch.
This function is applied right before returning the objects in `__getitem__`.
columns (`List[str]`, *optional*):
Columns to format in the output.
If specified, then the input batch of the transform only contains those columns.
output_all_columns (`bool`, defaults to `False`):
Keep un-formatted columns as well in the output (as python objects).
If set to True, then the other un-formatted columns are kept with the output of the transform.
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
>>> def encode(batch):
... return tokenizer(batch['text'], padding=True, truncation=True, return_tensors='pt')
>>> ds.set_transform(encode)
>>> ds[0]
{'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1]),
'input_ids': tensor([ 101, 29353, 2135, 15102, 1996, 9428, 20868, 2890, 8663, 6895,
20470, 2571, 3663, 2090, 4603, 3017, 3008, 1998, 2037, 24211,
5637, 1998, 11690, 2336, 1012, 102]),
'token_type_ids': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0])}
```
"""
self.set_format("custom", columns=columns, output_all_columns=output_all_columns, transform=transform)
def with_format(
self,
type: Optional[str] = None,
columns: Optional[List] = None,
output_all_columns: bool = False,
**format_kwargs,
):
"""Set `__getitem__` return format (type and columns). The data formatting is applied on-the-fly.
The format `type` (for example "numpy") is used to format batches when using `__getitem__`.
It's also possible to use custom transforms for formatting using [`~datasets.Dataset.with_transform`].
Contrary to [`~datasets.Dataset.set_format`], `with_format` returns a new [`Dataset`] object.
Args:
type (`str`, *optional*):
Either output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'pandas', 'arrow', 'jax']`.
`None` means `__getitem__` returns python objects (default).
columns (`List[str]`, *optional*):
Columns to format in the output.
`None` means `__getitem__` returns all columns (default).
output_all_columns (`bool`, defaults to `False`):
Keep un-formatted columns as well in the output (as python objects).
**format_kwargs (additional keyword arguments):
Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)
>>> ds.format
{'columns': ['text', 'label', 'input_ids', 'token_type_ids', 'attention_mask'],
'format_kwargs': {},
'output_all_columns': False,
'type': None}
>>> ds = ds.with_format(type='tensorflow', columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'])
>>> ds.format
{'columns': ['input_ids', 'token_type_ids', 'attention_mask', 'label'],
'format_kwargs': {},
'output_all_columns': False,
'type': 'tensorflow'}
```
"""
dataset = copy.deepcopy(self)
dataset.set_format(type=type, columns=columns, output_all_columns=output_all_columns, **format_kwargs)
return dataset
def with_transform(
self,
transform: Optional[Callable],
columns: Optional[List] = None,
output_all_columns: bool = False,
):
"""Set `__getitem__` return format using this transform. The transform is applied on-the-fly on batches when `__getitem__` is called.
As [`~datasets.Dataset.set_format`], this can be reset using [`~datasets.Dataset.reset_format`].
Contrary to [`~datasets.Dataset.set_transform`], `with_transform` returns a new [`Dataset`] object.
Args:
transform (`Callable`, `optional`):
User-defined formatting transform, replaces the format defined by [`~datasets.Dataset.set_format`].
A formatting function is a callable that takes a batch (as a `dict`) as input and returns a batch.
This function is applied right before returning the objects in `__getitem__`.
columns (`List[str]`, `optional`):
Columns to format in the output.
If specified, then the input batch of the transform only contains those columns.
output_all_columns (`bool`, defaults to `False`):
Keep un-formatted columns as well in the output (as python objects).
If set to `True`, then the other un-formatted columns are kept with the output of the transform.
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> def encode(example):
... return tokenizer(example["text"], padding=True, truncation=True, return_tensors='pt')
>>> ds = ds.with_transform(encode)
>>> ds[0]
{'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1]),
'input_ids': tensor([ 101, 18027, 16310, 16001, 1103, 9321, 178, 11604, 7235, 6617,
1742, 2165, 2820, 1206, 6588, 22572, 12937, 1811, 2153, 1105,
1147, 12890, 19587, 6463, 1105, 15026, 1482, 119, 102]),
'token_type_ids': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0])}
```
"""
dataset = copy.deepcopy(self)
dataset.set_transform(transform=transform, columns=columns, output_all_columns=output_all_columns)
return dataset
@deprecated()
def prepare_for_task(self, task: Union[str, TaskTemplate], id: int = 0) -> "Dataset":
"""
Prepare a dataset for the given task by casting the dataset's [`Features`] to standardized column names and types as detailed in [`datasets.tasks`](./task_templates).
Casts [`datasets.DatasetInfo.features`] according to a task-specific schema. Intended for single-use only, so all task templates are removed from [`datasets.DatasetInfo.task_templates`] after casting.
Args:
task (`Union[str, TaskTemplate]`):
The task to prepare the dataset for during training and evaluation. If `str`, supported tasks include:
- `"text-classification"`
- `"question-answering"`
If [`TaskTemplate`], must be one of the task templates in [`datasets.tasks`](./task_templates).
id (`int`, defaults to `0`):
The id required to unambiguously identify the task template when multiple task templates of the same type are supported.
"""
# TODO(lewtun): Add support for casting nested features like answers.text and answers.answer_start in SQuAD
if isinstance(task, str):
tasks = [template.task for template in (self.info.task_templates or [])]
compatible_templates = [template for template in (self.info.task_templates or []) if template.task == task]
if not compatible_templates:
raise ValueError(
f"Task {task} is not compatible with this dataset! Available tasks: {list(unique_values(tasks))}"
)
if not 0 <= id < len(compatible_templates):
templates_list_str = "\n".join(
f"- `{idx}` for task {template}" for idx, template in enumerate(compatible_templates)
)
raise ValueError(
f"Id {id} for task {task} is not in a valid range. Supported ids:\n{templates_list_str}"
)
template = compatible_templates[id]
elif isinstance(task, TaskTemplate):
template = task
else:
raise ValueError(
f"Expected a `str` or `datasets.TaskTemplate` object but got task {task} with type {type(task)}."
)
template = template.align_with_features(self.info.features)
column_mapping = template.column_mapping
columns_to_drop = [column for column in self.column_names if column not in column_mapping]
dataset = self.remove_columns(columns_to_drop)
dataset = dataset.rename_columns(column_mapping)
# We found a template so now flush `DatasetInfo` to skip the template update in `DatasetInfo.__post_init__`
dataset.info.task_templates = None
dataset = dataset.cast(features=template.features)
return dataset
def _getitem(self, key: Union[int, slice, str, ListLike[int]], **kwargs) -> Union[Dict, List]:
"""
Can be used to index columns (by string names) or rows (by integer, slice, or list-like of integer indices)
"""
if isinstance(key, bool):
raise TypeError("dataset index must be int, str, slice or collection of int, not bool")
format_type = kwargs["format_type"] if "format_type" in kwargs else self._format_type
format_columns = kwargs["format_columns"] if "format_columns" in kwargs else self._format_columns
output_all_columns = (
kwargs["output_all_columns"] if "output_all_columns" in kwargs else self._output_all_columns
)
format_kwargs = kwargs["format_kwargs"] if "format_kwargs" in kwargs else self._format_kwargs
format_kwargs = format_kwargs if format_kwargs is not None else {}
formatter = get_formatter(format_type, features=self._info.features, **format_kwargs)
pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)
formatted_output = format_table(
pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns
)
return formatted_output
@overload
def __getitem__(self, key: Union[int, slice, Iterable[int]]) -> Dict: # noqa: F811
...
@overload
def __getitem__(self, key: str) -> List: # noqa: F811
...
def __getitem__(self, key): # noqa: F811
"""Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools)."""
return self._getitem(key)
def __getitems__(self, keys: List) -> List:
"""Can be used to get a batch using a list of integers indices."""
batch = self.__getitem__(keys)
n_examples = len(batch[next(iter(batch))])
return [{col: array[i] for col, array in batch.items()} for i in range(n_examples)]
def cleanup_cache_files(self) -> int:
"""Clean up all cache files in the dataset cache directory, excepted the currently used cache file if there is
one.
Be careful when running this command that no other process is currently using other cache files.
Returns:
`int`: Number of removed files.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.cleanup_cache_files()
10
```
"""
current_cache_files = [os.path.abspath(cache_file["filename"]) for cache_file in self.cache_files]
if not current_cache_files:
return 0
cache_directory = os.path.dirname(current_cache_files[0])
logger.info(f"Listing files in {cache_directory}")
files: List[str] = os.listdir(cache_directory)
files_to_remove = []
for f_name in files:
full_name = os.path.abspath(os.path.join(cache_directory, f_name))
if f_name.startswith("cache-") and f_name.endswith(".arrow"):
if full_name in current_cache_files:
logger.info(f"Keeping currently used cache file at {full_name}")
continue
files_to_remove.append(full_name)
for file_path in files_to_remove:
logger.info(f"Removing {file_path}")
os.remove(file_path)
return len(files_to_remove)
def _get_cache_file_path(self, fingerprint):
if is_caching_enabled() and self.cache_files:
cache_file_name = "cache-" + fingerprint + ".arrow"
cache_directory = os.path.dirname(self.cache_files[0]["filename"])
else:
cache_file_name = "cache-" + generate_random_fingerprint() + ".arrow"
cache_directory = get_temporary_cache_files_directory()
cache_file_path = os.path.join(cache_directory, cache_file_name)
return cache_file_path
@transmit_tasks
@transmit_format
def map(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
with_rank: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[Union[str, List[str]]] = None,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
features: Optional[Features] = None,
disable_nullable: bool = False,
fn_kwargs: Optional[dict] = None,
num_proc: Optional[int] = None,
suffix_template: str = "_{rank:05d}_of_{num_proc:05d}",
new_fingerprint: Optional[str] = None,
desc: Optional[str] = None,
) -> "Dataset":
"""
Apply a function to all the examples in the table (individually or in batches) and update the table.
If your function returns a column that already exists, then it overwrites it.
You can specify whether the function should be batched or not with the `batched` parameter:
- If batched is `False`, then the function takes 1 example in and should return 1 example.
An example is a dictionary, e.g. `{"text": "Hello there !"}`.
- If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples.
A batch is a dictionary, e.g. a batch of 1 example is `{"text": ["Hello there !"]}`.
- If batched is `True` and `batch_size` is `n > 1`, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.
Note that the last batch may have less than `n` examples.
A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`.
Args:
function (`Callable`): Function with one of the following signatures:
- `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False` and `with_rank=False`
- `function(example: Dict[str, Any], *extra_args) -> Dict[str, Any]` if `batched=False` and `with_indices=True` and/or `with_rank=True` (one extra arg for each)
- `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False` and `with_rank=False`
- `function(batch: Dict[str, List], *extra_args) -> Dict[str, List]` if `batched=True` and `with_indices=True` and/or `with_rank=True` (one extra arg for each)
For advanced usage, the function can also return a `pyarrow.Table`.
Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
If no function is provided, default to identity function: `lambda x: x`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the
signature of `function` should be `def function(example, idx[, rank]): ...`.
with_rank (`bool`, defaults to `False`):
Provide process rank to `function`. Note that in this case the
signature of `function` should be `def function(example[, idx], rank): ...`.
input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`):
The columns to be passed into `function`
as positional arguments. If `None`, a `dict` mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`.
If `batch_size <= 0` or `batch_size == None`, provide the full dataset as a single batch to `function`.
drop_last_batch (`bool`, defaults to `False`):
Whether a last batch smaller than the batch_size should be
dropped instead of being processed by the function.
remove_columns (`Optional[Union[str, List[str]]]`, defaults to `None`):
Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`Optioanl[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
cache_file_name (`str`, *optional*, defaults to `None`):
Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
features (`Optional[datasets.Features]`, defaults to `None`):
Use a specific Features to store the cache file
instead of the automatically generated one.
disable_nullable (`bool`, defaults to `False`):
Disallow null values in the table.
fn_kwargs (`Dict`, *optional*, defaults to `None`):
Keyword arguments to be passed to `function`.
num_proc (`int`, *optional*, defaults to `None`):
Max number of processes when generating cache. Already cached shards are loaded sequentially.
suffix_template (`str`):
If `cache_file_name` is specified, then this suffix
will be added at the end of the base name of each. Defaults to `"_{rank:05d}_of_{num_proc:05d}"`. For example, if `cache_file_name` is "processed.arrow", then for
`rank=1` and `num_proc=4`, the resulting file would be `"processed_00001_of_00004.arrow"` for the default suffix.
new_fingerprint (`str`, *optional*, defaults to `None`):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments.
desc (`str`, *optional*, defaults to `None`):
Meaningful description to be displayed alongside with the progress bar while mapping examples.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> def add_prefix(example):
... example["text"] = "Review: " + example["text"]
... return example
>>> ds = ds.map(add_prefix)
>>> ds[0:3]["text"]
['Review: compassionately explores the seemingly irreconcilable situation between conservative christian parents and their estranged gay and lesbian children .',
'Review: the soundtrack alone is worth the price of admission .',
'Review: rodriguez does a splendid job of racial profiling hollywood style--casting excellent latin actors of all ages--a trend long overdue .']
# process a batch of examples
>>> ds = ds.map(lambda example: tokenizer(example["text"]), batched=True)
# set number of processors
>>> ds = ds.map(add_prefix, num_proc=4)
```
"""
if keep_in_memory and cache_file_name is not None:
raise ValueError("Please use either `keep_in_memory` or `cache_file_name` but not both.")
if num_proc is not None and num_proc <= 0:
raise ValueError("num_proc must be an integer > 0.")
# If the array is empty we do nothing (but we make sure to handle an empty indices mapping and remove the requested columns anyway)
if len(self) == 0:
if self._indices is not None: # empty indices mapping
self = Dataset(
self.data.slice(0, 0),
info=self.info.copy(),
split=self.split,
fingerprint=new_fingerprint,
)
if remove_columns:
return self.remove_columns(remove_columns)
else:
return self
if function is None:
function = lambda x: x # noqa: E731
if isinstance(input_columns, str):
input_columns = [input_columns]
if input_columns is not None:
for input_column in input_columns:
if input_column not in self._data.column_names:
raise ValueError(
f"Input column {input_column} not in the dataset. Current columns in the dataset: {self._data.column_names}"
)
if isinstance(remove_columns, str):
remove_columns = [remove_columns]
if remove_columns is not None and any(col not in self._data.column_names for col in remove_columns):
raise ValueError(
f"Column to remove {list(filter(lambda col: col not in self._data.column_names, remove_columns))} not in the dataset. Current columns in the dataset: {self._data.column_names}"
)
load_from_cache_file = load_from_cache_file if load_from_cache_file is not None else is_caching_enabled()
if fn_kwargs is None:
fn_kwargs = {}
if num_proc is not None and num_proc > len(self):
num_proc = len(self)
logger.warning(
f"num_proc must be <= {len(self)}. Reducing num_proc to {num_proc} for dataset of size {len(self)}."
)
dataset_kwargs = {
"shard": self,
"function": function,
"with_indices": with_indices,
"with_rank": with_rank,
"input_columns": input_columns,
"batched": batched,
"batch_size": batch_size,
"drop_last_batch": drop_last_batch,
"remove_columns": remove_columns,
"keep_in_memory": keep_in_memory,
"writer_batch_size": writer_batch_size,
"features": features,
"disable_nullable": disable_nullable,
"fn_kwargs": fn_kwargs,
}
if new_fingerprint is None:
# we create a unique hash from the function,
# current dataset file and the mapping args
transform = format_transform_for_fingerprint(Dataset._map_single)
kwargs_for_fingerprint = format_kwargs_for_fingerprint(Dataset._map_single, (), dataset_kwargs)
kwargs_for_fingerprint["fingerprint_name"] = "new_fingerprint"
new_fingerprint = update_fingerprint(self._fingerprint, transform, kwargs_for_fingerprint)
else:
validate_fingerprint(new_fingerprint)
dataset_kwargs["new_fingerprint"] = new_fingerprint
if self.cache_files:
if cache_file_name is None:
cache_file_name = self._get_cache_file_path(new_fingerprint)
dataset_kwargs["cache_file_name"] = cache_file_name
def load_processed_shard_from_cache(shard_kwargs):
"""Load a processed shard from cache if it exists, otherwise throw an error."""
shard = shard_kwargs["shard"]
# Check if we've already cached this computation (indexed by a hash)
if shard_kwargs["cache_file_name"] is not None:
if os.path.exists(shard_kwargs["cache_file_name"]) and load_from_cache_file:
info = shard.info.copy()
info.features = features
info.task_templates = None
return Dataset.from_file(shard_kwargs["cache_file_name"], info=info, split=shard.split)
raise NonExistentDatasetError
num_shards = num_proc if num_proc is not None else 1
if batched and drop_last_batch:
pbar_total = len(self) // num_shards // batch_size * num_shards * batch_size
else:
pbar_total = len(self)
shards_done = 0
if num_proc is None or num_proc == 1:
transformed_dataset = None
try:
transformed_dataset = load_processed_shard_from_cache(dataset_kwargs)
logger.info(f"Loading cached processed dataset at {dataset_kwargs['cache_file_name']}")
except NonExistentDatasetError:
pass
if transformed_dataset is None:
with logging.tqdm(
disable=not logging.is_progress_bar_enabled(),
unit=" examples",
total=pbar_total,
desc=desc or "Map",
) as pbar:
for rank, done, content in Dataset._map_single(**dataset_kwargs):
if done:
shards_done += 1
logger.debug(f"Finished processing shard number {rank} of {num_shards}.")
transformed_dataset = content
else:
pbar.update(content)
assert transformed_dataset is not None, "Failed to retrieve the result from map"
# update fingerprint if the dataset changed
if transformed_dataset._fingerprint != self._fingerprint:
transformed_dataset._fingerprint = new_fingerprint
return transformed_dataset
else:
def format_cache_file_name(
cache_file_name: Optional[str], rank: Union[int, Literal["*"]] # noqa: F722
) -> Optional[str]:
if not cache_file_name:
return cache_file_name
sep = cache_file_name.rindex(".")
base_name, extension = cache_file_name[:sep], cache_file_name[sep:]
if isinstance(rank, int):
cache_file_name = base_name + suffix_template.format(rank=rank, num_proc=num_proc) + extension
logger.info(f"Process #{rank} will write at {cache_file_name}")
else:
cache_file_name = (
base_name
+ suffix_template.replace("{rank:05d}", "{rank}").format(rank=rank, num_proc=num_proc)
+ extension
)
return cache_file_name
def format_new_fingerprint(new_fingerprint: str, rank: int) -> str:
new_fingerprint = new_fingerprint + suffix_template.format(rank=rank, num_proc=num_proc)
validate_fingerprint(new_fingerprint)
return new_fingerprint
prev_env = deepcopy(os.environ)
# check if parallelism if off
# from https://github.com/huggingface/tokenizers/blob/bb668bc439dc34389b71dbb8ce0c597f15707b53/tokenizers/src/utils/parallelism.rs#L22
if prev_env.get("TOKENIZERS_PARALLELISM", "false").lower() not in (
"",
"off",
"false",
"f",
"no",
"n",
"0",
):
logger.warning("Setting TOKENIZERS_PARALLELISM=false for forked processes.")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
shards = [
self.shard(num_shards=num_proc, index=rank, contiguous=True, keep_in_memory=keep_in_memory)
for rank in range(num_proc)
]
kwargs_per_job = [
{
**dataset_kwargs,
"shard": shards[rank],
"cache_file_name": format_cache_file_name(cache_file_name, rank),
"rank": rank,
"offset": sum(len(s) for s in shards[:rank]),
"new_fingerprint": format_new_fingerprint(new_fingerprint, rank),
}
for rank in range(num_shards)
]
transformed_shards = [None] * num_shards
for rank in range(num_shards):
try:
transformed_shards[rank] = load_processed_shard_from_cache(kwargs_per_job[rank])
kwargs_per_job[rank] = None
except NonExistentDatasetError:
pass
kwargs_per_job = [kwargs for kwargs in kwargs_per_job if kwargs is not None]
# We try to create a pool with as many workers as dataset not yet cached.
if kwargs_per_job:
if len(kwargs_per_job) < num_shards:
logger.info(
f"Reprocessing {len(kwargs_per_job)}/{num_shards} shards because some of them were missing from the cache."
)
with Pool(len(kwargs_per_job)) as pool:
os.environ = prev_env
logger.info(f"Spawning {num_proc} processes")
with logging.tqdm(
disable=not logging.is_progress_bar_enabled(),
unit=" examples",
total=pbar_total,
desc=(desc or "Map") + f" (num_proc={num_proc})",
) as pbar:
for rank, done, content in iflatmap_unordered(
pool, Dataset._map_single, kwargs_iterable=kwargs_per_job
):
if done:
shards_done += 1
logger.debug(f"Finished processing shard number {rank} of {num_shards}.")
transformed_shards[rank] = content
else:
pbar.update(content)
# Avoids PermissionError on Windows (the error: https://github.com/huggingface/datasets/actions/runs/4026734820/jobs/6921621805)
for kwargs in kwargs_per_job:
del kwargs["shard"]
else:
logger.info(f"Loading cached processed dataset at {format_cache_file_name(cache_file_name, '*')}")
assert (
None not in transformed_shards
), f"Failed to retrieve results from map: result list {transformed_shards} still contains None - at least one worker failed to return its results"
logger.info(f"Concatenating {num_proc} shards")
result = _concatenate_map_style_datasets(transformed_shards)
# update fingerprint if the dataset changed
if any(
transformed_shard._fingerprint != shard._fingerprint
for transformed_shard, shard in zip(transformed_shards, shards)
):
result._fingerprint = new_fingerprint
else:
result._fingerprint = self._fingerprint
return result
@staticmethod
def _map_single(
shard: "Dataset",
function: Optional[Callable] = None,
with_indices: bool = False,
with_rank: bool = False,
input_columns: Optional[List[str]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[List[str]] = None,
keep_in_memory: bool = False,
cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
features: Optional[Features] = None,
disable_nullable: bool = False,
fn_kwargs: Optional[dict] = None,
new_fingerprint: Optional[str] = None,
rank: Optional[int] = None,
offset: int = 0,
) -> Iterable[Tuple[int, bool, Union[int, "Dataset"]]]:
"""Apply a function to all the elements in the table (individually or in batches)
and update the table (if function does update examples).
Args:
shard (`datasets.Dataset`): Dataset to map the transform on.
function (`Callable`): with one of the following signature:
- `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False` and `with_rank=False`
- `function(example: Dict[str, Any], *extra_args) -> Dict[str, Any]` if `batched=False` and `with_indices=True` and/or `with_rank=True` (one extra arg for each)
- `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False` and `with_rank=False`
- `function(batch: Dict[str, List], *extra_args) -> Dict[str, List]` if `batched=True` and `with_indices=True` and/or `with_rank=True` (one extra arg for each)
For advanced usage, the function can also return a `pyarrow.Table`.
Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
If no function is provided, default to identity function: lambda x: x
with_indices (`bool`, defaults to `False`): Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`.
with_rank (`bool`, default `False`): Provide process rank to `function`. Note that in this case the signature of `function` should be `def function(example[, idx], rank): ...`.
input_columns (`Optional[List[str]]`, defaults to `None`): The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`): Provide batch of examples to `function`
batch_size (`int`, optional, defaults to `1000`): Number of examples per batch provided to `function` if `batched=True`
`batch_size <= 0` or `batch_size == None`: Provide the full dataset as a single batch to `function`
drop_last_batch (`bool`, default: `False`): Whether a last batch smaller than the batch_size should be
dropped instead of being processed by the function.
remove_columns (`Optional[List[str]]`, defaults to `None`): Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
keep_in_memory (`bool`, defaults to `False`): Keep the dataset in memory instead of writing it to a cache file.
cache_file_name (`str`, optional, defaults to `None`): Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
writer_batch_size (`int`, default `1000`): Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `.map()`.
features (`Optional[datasets.Features]`, defaults to `None`): Use a specific Features to store the cache file
instead of the automatically generated one.
disable_nullable (`bool`, defaults to `False`): Disallow null values in the table.
fn_kwargs (`Dict`, optional, defaults to `None`): Keyword arguments to be passed to `function`
new_fingerprint (`str`, optional, defaults to `None`): the new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
rank: (`int`, optional, defaults to `None`): If specified, this is the process rank when doing multiprocessing
offset: (`int`, defaults to 0): If specified, this is an offset applied to the indices passed to `function` if `with_indices=True`.
"""
if fn_kwargs is None:
fn_kwargs = {}
# If we do batch computation but no batch size is provided, default to the full dataset
if batched and (batch_size is None or batch_size <= 0):
batch_size = shard.num_rows
# We set this variable to True after processing the first example/batch in
# `apply_function_on_filtered_inputs` if the map function returns a dict.
# If set to False, no new arrow table will be created
update_data = None
format_kwargs = shard._format_kwargs.copy()
# Lazy formatting is only available for the default format (None/python)
if not input_columns and shard._format_type is None:
format_kwargs["lazy"] = True
input_formatter = get_formatter(
shard._format_type,
features=shard.features,
**format_kwargs,
)
class NumExamplesMismatchError(Exception):
pass
def validate_function_output(processed_inputs, indices):
"""Validate output of the map function."""
if processed_inputs is not None and not isinstance(processed_inputs, (Mapping, pa.Table, pd.DataFrame)):
raise TypeError(
f"Provided `function` which is applied to all elements of table returns a variable of type {type(processed_inputs)}. Make sure provided `function` returns a variable of type `dict` (or a pyarrow table) to update the dataset or `None` if you are only interested in side effects."
)
elif isinstance(indices, list) and isinstance(processed_inputs, Mapping):
allowed_batch_return_types = (list, np.ndarray, pd.Series)
if config.TF_AVAILABLE and "tensorflow" in sys.modules:
import tensorflow as tf
allowed_batch_return_types += (tf.Tensor,)
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
allowed_batch_return_types += (torch.Tensor,)
if config.JAX_AVAILABLE and "jax" in sys.modules:
import jax.numpy as jnp
allowed_batch_return_types += (jnp.ndarray,)
all_dict_values_are_lists = all(
isinstance(value, allowed_batch_return_types) for value in processed_inputs.values()
)
if all_dict_values_are_lists is False:
raise TypeError(
f"Provided `function` which is applied to all elements of table returns a `dict` of types {[type(x) for x in processed_inputs.values()]}. When using `batched=True`, make sure provided `function` returns a `dict` of types like `{allowed_batch_return_types}`."
)
def apply_function_on_filtered_inputs(pa_inputs, indices, check_same_num_examples=False, offset=0):
"""Utility to apply the function on a selection of columns."""
nonlocal update_data
inputs = format_table(
pa_inputs,
0 if not batched else range(pa_inputs.num_rows),
format_columns=input_columns,
formatter=input_formatter,
)
fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns]
if offset == 0:
effective_indices = indices
else:
effective_indices = [i + offset for i in indices] if isinstance(indices, list) else indices + offset
additional_args = ()
if with_indices:
additional_args += (effective_indices,)
if with_rank:
additional_args += (rank,)
processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)
if isinstance(processed_inputs, LazyDict):
processed_inputs = {
k: v for k, v in processed_inputs.data.items() if k not in processed_inputs.keys_to_format
}
returned_lazy_dict = True
else:
returned_lazy_dict = False
if update_data is None:
# Check if the function returns updated examples
update_data = isinstance(processed_inputs, (Mapping, pa.Table, pd.DataFrame))
validate_function_output(processed_inputs, indices)
if not update_data:
return None # Nothing to update, let's move on
if shard._format_type or input_columns:
# TODO(QL, MS): ideally the behavior should be the same even if the dataset is formatted (may require major release)
inputs_to_merge = dict(zip(pa_inputs.column_names, pa_inputs.itercolumns()))
elif isinstance(inputs, LazyDict):
inputs_to_merge = {
k: (v if k not in inputs.keys_to_format else pa_inputs[k]) for k, v in inputs.data.items()
}
else:
inputs_to_merge = inputs
if remove_columns is not None:
for column in remove_columns:
# `function` can modify input in-place causing column to be already removed.
if column in inputs_to_merge:
inputs_to_merge.pop(column)
if returned_lazy_dict and column in processed_inputs:
processed_inputs.pop(column)
if check_same_num_examples:
input_num_examples = len(pa_inputs)
processed_inputs_num_examples = len(processed_inputs[next(iter(processed_inputs.keys()))])
if input_num_examples != processed_inputs_num_examples:
raise NumExamplesMismatchError()
if isinstance(inputs, Mapping) and isinstance(processed_inputs, Mapping):
# The .map() transform *updates* the dataset:
# the output dictionary contains both the the input data and the output data.
# The output dictionary may contain Arrow values from `inputs_to_merge` so that we can re-write them efficiently.
return {**inputs_to_merge, **processed_inputs}
else:
return processed_inputs
def init_buffer_and_writer():
# Prepare output buffer and batched writer in memory or on file if we update the table
writer_features = features
if writer_features is None:
writer_features = shard.features
update_features = True
else:
update_features = False
if keep_in_memory or cache_file_name is None:
buf_writer = pa.BufferOutputStream()
tmp_file = None
writer = ArrowWriter(
features=writer_features,
stream=buf_writer,
writer_batch_size=writer_batch_size,
update_features=update_features,
fingerprint=new_fingerprint,
disable_nullable=disable_nullable,
)
else:
buf_writer = None
logger.info(f"Caching processed dataset at {cache_file_name}")
tmp_file = tempfile.NamedTemporaryFile("wb", dir=os.path.dirname(cache_file_name), delete=False)
writer = ArrowWriter(
features=writer_features,
path=tmp_file.name,
writer_batch_size=writer_batch_size,
update_features=update_features,
fingerprint=new_fingerprint,
disable_nullable=disable_nullable,
)
return buf_writer, writer, tmp_file
num_examples_progress_update = 0
# If `update_data` is True after processing the first example/batch, initalize these resources with `init_buffer_and_writer`
buf_writer, writer, tmp_file = None, None, None
# Optionally initialize the writer as a context manager
with contextlib.ExitStack() as stack:
try:
arrow_formatted_shard = shard.with_format("arrow")
# Loop over single examples or batches and write to buffer/file if examples are to be updated
if not batched:
shard_iterable = enumerate(arrow_formatted_shard)
else:
num_rows = len(shard) if not drop_last_batch else len(shard) // batch_size * batch_size
shard_iterable = zip(
range(0, num_rows, batch_size),
arrow_formatted_shard.iter(batch_size, drop_last_batch=drop_last_batch),
)
if not batched:
_time = time.time()
for i, example in shard_iterable:
example = apply_function_on_filtered_inputs(example, i, offset=offset)
if update_data:
if i == 0:
buf_writer, writer, tmp_file = init_buffer_and_writer()
stack.enter_context(writer)
if isinstance(example, pa.Table):
writer.write_row(example)
elif isinstance(example, pd.DataFrame):
writer.write_row(pa.Table.from_pandas(example))
else:
writer.write(example)
num_examples_progress_update += 1
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
_time = time.time()
yield rank, False, num_examples_progress_update
num_examples_progress_update = 0
else:
_time = time.time()
for i, batch in shard_iterable:
num_examples_in_batch = len(batch)
indices = list(
range(*(slice(i, i + batch_size).indices(shard.num_rows)))
) # Something simpler?
try:
batch = apply_function_on_filtered_inputs(
batch,
indices,
check_same_num_examples=len(shard.list_indexes()) > 0,
offset=offset,
)
except NumExamplesMismatchError:
raise DatasetTransformationNotAllowedError(
"Using `.map` in batched mode on a dataset with attached indexes is allowed only if it doesn't create or remove existing examples. You can first run `.drop_index() to remove your index and then re-add it."
) from None
if update_data:
if i == 0:
buf_writer, writer, tmp_file = init_buffer_and_writer()
stack.enter_context(writer)
if isinstance(batch, pa.Table):
writer.write_table(batch)
elif isinstance(batch, pd.DataFrame):
writer.write_table(pa.Table.from_pandas(batch))
else:
writer.write_batch(batch)
num_examples_progress_update += num_examples_in_batch
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
_time = time.time()
yield rank, False, num_examples_progress_update
num_examples_progress_update = 0
if update_data and writer is not None:
writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file
except (Exception, KeyboardInterrupt):
yield rank, False, num_examples_progress_update
if update_data:
if writer is not None:
writer.finalize()
if tmp_file is not None:
tmp_file.close()
if os.path.exists(tmp_file.name):
os.remove(tmp_file.name)
raise
yield rank, False, num_examples_progress_update
if update_data and tmp_file is not None:
tmp_file.close()
shutil.move(tmp_file.name, cache_file_name)
umask = os.umask(0o666)
os.umask(umask)
os.chmod(cache_file_name, 0o666 & ~umask)
if update_data:
# Create new Dataset from buffer or file
info = shard.info.copy()
info.features = writer._features
info.task_templates = None
if buf_writer is None:
yield rank, True, Dataset.from_file(cache_file_name, info=info, split=shard.split)
else:
yield rank, True, Dataset.from_buffer(buf_writer.getvalue(), info=info, split=shard.split)
else:
yield rank, True, shard
@transmit_format
@fingerprint_transform(
inplace=False, ignore_kwargs=["load_from_cache_file", "cache_file_name", "desc"], version="2.0.1"
)
def filter(
self,
function: Optional[Callable] = None,
with_indices=False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
fn_kwargs: Optional[dict] = None,
num_proc: Optional[int] = None,
suffix_template: str = "_{rank:05d}_of_{num_proc:05d}",
new_fingerprint: Optional[str] = None,
desc: Optional[str] = None,
) -> "Dataset":
"""Apply a filter function to all the elements in the table in batches
and update the table so that the dataset only includes examples according to the filter function.
Args:
function (`Callable`): Callable with one of the following signatures:
- `function(example: Dict[str, Any]) -> bool` if `with_indices=False, batched=False`
- `function(example: Dict[str, Any], indices: int) -> bool` if `with_indices=True, batched=False`
- `function(example: Dict[str, List]) -> List[bool]` if `with_indices=False, batched=True`
- `function(example: Dict[str, List], indices: List[int]) -> List[bool]` if `with_indices=True, batched=True`
If no function is provided, defaults to an always `True` function: `lambda x: True`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
input_columns (`str` or `List[str]`, *optional*):
The columns to be passed into `function` as
positional arguments. If `None`, a `dict` mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if
`batched = True`. If `batched = False`, one example per batch is passed to `function`.
If `batch_size <= 0` or `batch_size == None`, provide the full dataset as a single batch to `function`.
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
cache_file_name (`str`, *optional*):
Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
fn_kwargs (`dict`, *optional*):
Keyword arguments to be passed to `function`.
num_proc (`int`, *optional*):
Number of processes for multiprocessing. By default it doesn't
use multiprocessing.
suffix_template (`str`):
If `cache_file_name` is specified, then this suffix will be added at the end of the base name of each.
For example, if `cache_file_name` is `"processed.arrow"`, then for `rank = 1` and `num_proc = 4`,
the resulting file would be `"processed_00001_of_00004.arrow"` for the default suffix (default
`_{rank:05d}_of_{num_proc:05d}`).
new_fingerprint (`str`, *optional*):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments.
desc (`str`, *optional*, defaults to `None`):
Meaningful description to be displayed alongside with the progress bar while filtering examples.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.filter(lambda x: x["label"] == 1)
Dataset({
features: ['text', 'label'],
num_rows: 533
})
```
"""
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.filter` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it.`"
)
if function is None:
function = lambda x: True # noqa: E731
if len(self) == 0:
return self
indices = self.map(
function=partial(
get_indices_from_mask_function, function, batched, with_indices, input_columns, self._indices
),
with_indices=True,
features=Features({"indices": Value("uint64")}),
batched=True,
batch_size=batch_size,
remove_columns=self.column_names,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
cache_file_name=cache_file_name,
writer_batch_size=writer_batch_size,
fn_kwargs=fn_kwargs,
num_proc=num_proc,
suffix_template=suffix_template,
new_fingerprint=new_fingerprint,
input_columns=input_columns,
desc=desc or "Filter",
)
new_dataset = copy.deepcopy(self)
new_dataset._indices = indices.data
new_dataset._fingerprint = new_fingerprint
return new_dataset
@transmit_format
@fingerprint_transform(inplace=False, ignore_kwargs=["cache_file_name"])
def flatten_indices(
self,
keep_in_memory: bool = False,
cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
features: Optional[Features] = None,
disable_nullable: bool = False,
num_proc: Optional[int] = None,
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Create and cache a new Dataset by flattening the indices mapping.
Args:
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
cache_file_name (`str`, *optional*, default `None`):
Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
features (`Optional[datasets.Features]`, defaults to `None`):
Use a specific [`Features`] to store the cache file
instead of the automatically generated one.
disable_nullable (`bool`, defaults to `False`):
Allow null values in the table.
num_proc (`int`, optional, default `None`):
Max number of processes when generating cache. Already cached shards are loaded sequentially
new_fingerprint (`str`, *optional*, defaults to `None`):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
"""
return self.map(
batched=True, # for speed
keep_in_memory=keep_in_memory,
cache_file_name=cache_file_name,
writer_batch_size=writer_batch_size,
features=features,
disable_nullable=disable_nullable,
new_fingerprint=new_fingerprint,
desc="Flattening the indices",
num_proc=num_proc,
)
def _new_dataset_with_indices(
self,
indices_cache_file_name: Optional[str] = None,
indices_buffer: Optional[pa.Buffer] = None,
fingerprint: Optional[str] = None,
) -> "Dataset":
"""Return a new Dataset obtained by adding indices (provided in indices_cache_file_name or in a buffer) to the
current Dataset.
"""
if indices_cache_file_name is None and indices_buffer is None:
raise ValueError("At least one of indices_cache_file_name or indices_buffer must be provided.")
if fingerprint is None:
raise ValueError("please specify a fingerprint for the dataset with indices")
if indices_cache_file_name is not None:
indices_table = MemoryMappedTable.from_file(indices_cache_file_name)
else:
indices_table = InMemoryTable.from_buffer(indices_buffer)
# Return new Dataset object
# don't forget to copy the objects
return Dataset(
self._data,
info=self.info.copy(),
split=self.split,
indices_table=indices_table,
fingerprint=fingerprint,
)
@transmit_format
@fingerprint_transform(inplace=False, ignore_kwargs=["indices_cache_file_name"])
def select(
self,
indices: Iterable,
keep_in_memory: bool = False,
indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Create a new dataset with rows selected following the list/array of indices.
Args:
indices (`range`, `list`, `iterable`, `ndarray` or `Series`):
Range, list or 1D-array of integer indices for indexing.
If the indices correspond to a contiguous range, the Arrow table is simply sliced.
However passing a list of indices that are not contiguous creates indices mapping, which is much less efficient,
but still faster than recreating an Arrow table made of the requested rows.
keep_in_memory (`bool`, defaults to `False`):
Keep the indices mapping in memory instead of writing it to a cache file.
indices_cache_file_name (`str`, *optional*, defaults to `None`):
Provide the name of a path for the cache file. It is used to store the
indices mapping instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
new_fingerprint (`str`, *optional*, defaults to `None`):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds.select(range(4))
Dataset({
features: ['text', 'label'],
num_rows: 4
})
```
"""
if keep_in_memory and indices_cache_file_name is not None:
raise ValueError("Please use either `keep_in_memory` or `indices_cache_file_name` but not both.")
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.select` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
)
# If the array is empty we do nothing
if len(self) == 0:
return self
# If indices is a PyArrow array, we convert to NumPy
if isinstance(indices, (pa.Array, pa.ChunkedArray)):
indices = indices.to_numpy().astype(np.int64)
# Convert generator objects to lists
if isinstance(indices, Iterator):
indices = list(indices)
# If the indices are contiguous, simply slice the arrow table
if isinstance(indices, range):
if _is_range_contiguous(indices) and indices.start >= 0:
start, length = indices.start, indices.stop - indices.start
return self._select_contiguous(start, length, new_fingerprint=new_fingerprint)
else:
try:
start = next(iter(indices))
except StopIteration:
# if `indices` is an empty iterable, we return an empty dataset
return self._select_contiguous(0, 0, new_fingerprint=new_fingerprint)
if start >= 0:
counter_from_start = itertools.count(start=start)
if all(i == j for i, j in zip(indices, counter_from_start)):
length = next(counter_from_start) - start
return self._select_contiguous(start, length, new_fingerprint=new_fingerprint)
# If not contiguous, we need to create a new indices mapping
return self._select_with_indices_mapping(
indices,
keep_in_memory=keep_in_memory,
indices_cache_file_name=indices_cache_file_name,
writer_batch_size=writer_batch_size,
new_fingerprint=new_fingerprint,
)
@transmit_format
@fingerprint_transform(inplace=False)
def _select_contiguous(
self,
start: int,
length: int,
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Create a new dataset with rows from a contiguous slice of data.
The slice is defined by that start index and its length.
Args:
start (`int`): start index.
length (`int`): length of the slice to select.
new_fingerprint (`str`, optional, default `None`): the new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds._select_contiguous(0, 4)
Dataset({
features: ['text', 'label'],
num_rows: 4
})
```
"""
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.select` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
)
# If the array is empty we do nothing
if len(self) == 0:
return self
_check_valid_indices_value(start, len(self))
_check_valid_indices_value(start + length - 1, len(self))
if self._indices is None or length == 0:
return Dataset(
self.data.slice(start, length),
info=self.info.copy(),
split=self.split,
fingerprint=new_fingerprint,
)
else:
return Dataset(
self.data,
info=self.info.copy(),
split=self.split,
indices_table=self._indices.slice(start, length),
fingerprint=new_fingerprint,
)
@transmit_format
@fingerprint_transform(inplace=False, ignore_kwargs=["indices_cache_file_name"])
def _select_with_indices_mapping(
self,
indices: Iterable,
keep_in_memory: bool = False,
indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Create a new dataset with rows selected following the list/array of indices.
The new dataset is made by creating a new indices mapping on top of the main arrow table.
Args:
indices (sequence, iterable, range, ndarray or Series): List or 1D-array of integer indices for indexing.
keep_in_memory (`bool`, default `False`): Keep the indices mapping in memory instead of writing it to a cache file.
indices_cache_file_name (`str`, optional, default `None`): Provide the name of a path for the cache file. It is used to store the
indices mapping instead of the automatically generated cache file name.
writer_batch_size (`int`, default `1000`): Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `.map()`.
new_fingerprint (`str`, optional, default `None`): the new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds._select_with_indices_mapping(range(4))
Dataset({
features: ['text', 'label'],
num_rows: 4
})
```
"""
if keep_in_memory and indices_cache_file_name is not None:
raise ValueError("Please use either `keep_in_memory` or `indices_cache_file_name` but not both.")
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.select` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
)
# If the array is empty we do nothing
if len(self) == 0:
return self
# Prepare the writer for our indices arrow table
if keep_in_memory or indices_cache_file_name is None:
buf_writer = pa.BufferOutputStream()
tmp_file = None
writer = ArrowWriter(
stream=buf_writer, writer_batch_size=writer_batch_size, fingerprint=new_fingerprint, unit="indices"
)
else:
buf_writer = None
logger.info(f"Caching indices mapping at {indices_cache_file_name}")
tmp_file = tempfile.NamedTemporaryFile("wb", dir=os.path.dirname(indices_cache_file_name), delete=False)
writer = ArrowWriter(
path=tmp_file.name, writer_batch_size=writer_batch_size, fingerprint=new_fingerprint, unit="indices"
)
indices = indices if isinstance(indices, list) else list(indices)
size = len(self)
if indices:
_check_valid_indices_value(int(max(indices)), size=size)
_check_valid_indices_value(int(min(indices)), size=size)
else:
return self._select_contiguous(0, 0, new_fingerprint=new_fingerprint)
indices_array = pa.array(indices, type=pa.uint64())
# Check if we need to convert indices
if self._indices is not None:
indices_array = self._indices.column(0).take(indices_array)
indices_table = pa.Table.from_arrays([indices_array], names=["indices"])
with writer:
try:
writer.write_table(indices_table)
writer.finalize() # close_stream=bool(buf_writer is None)) We only close if we are writing in a file
except (Exception, KeyboardInterrupt):
if tmp_file is not None:
tmp_file.close()
if os.path.exists(tmp_file.name):
os.remove(tmp_file.name)
raise
if tmp_file is not None:
tmp_file.close()
shutil.move(tmp_file.name, indices_cache_file_name)
umask = os.umask(0o666)
os.umask(umask)
os.chmod(indices_cache_file_name, 0o666 & ~umask)
# Return new Dataset object
if buf_writer is None:
return self._new_dataset_with_indices(
indices_cache_file_name=indices_cache_file_name, fingerprint=new_fingerprint
)
else:
return self._new_dataset_with_indices(indices_buffer=buf_writer.getvalue(), fingerprint=new_fingerprint)
@transmit_format
@fingerprint_transform(inplace=False, ignore_kwargs=["load_from_cache_file", "indices_cache_file_name"])
def sort(
self,
column_names: Union[str, Sequence_[str]],
reverse: Union[bool, Sequence_[bool]] = False,
kind="deprecated",
null_placement: str = "at_end",
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Create a new dataset sorted according to a single or multiple columns.
Args:
column_names (`Union[str, Sequence[str]]`):
Column name(s) to sort by.
reverse (`Union[bool, Sequence[bool]]`, defaults to `False`):
If `True`, sort by descending order rather than ascending. If a single bool is provided,
the value is applied to the sorting of all column names. Otherwise a list of bools with the
same length and order as column_names must be provided.
kind (`str`, *optional*):
Pandas algorithm for sorting selected in `{quicksort, mergesort, heapsort, stable}`,
The default is `quicksort`. Note that both `stable` and `mergesort` use `timsort` under the covers and, in general,
the actual implementation will vary with data type. The `mergesort` option is retained for backwards compatibility.
<Deprecated version="2.8.0">
`kind` was deprecated in version 2.10.0 and will be removed in 3.0.0.
</Deprecated>
null_placement (`str`, defaults to `at_end`):
Put `None` values at the beginning if `at_start` or `first` or at the end if `at_end` or `last`
<Added version="1.14.2"/>
keep_in_memory (`bool`, defaults to `False`):
Keep the sorted indices in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the sorted indices
can be identified, use it instead of recomputing.
indices_cache_file_name (`str`, *optional*, defaults to `None`):
Provide the name of a path for the cache file. It is used to store the
sorted indices instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory.
new_fingerprint (`str`, *optional*, defaults to `None`):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes', split='validation')
>>> ds['label'][:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> sorted_ds = ds.sort('label')
>>> sorted_ds['label'][:10]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> another_sorted_ds = ds.sort(['label', 'text'], reverse=[True, False])
>>> another_sorted_ds['label'][:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```
"""
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.sort` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
)
# If the array is empty we do nothing
if len(self) == 0:
return self
# Deprecation warning
if kind != "deprecated":
warnings.warn(
"'kind' was deprecated in version 2.10.0 and will be removed in 3.0.0.",
category=FutureWarning,
)
# Check proper format of and for duplicates in column_names
if isinstance(column_names, str):
column_names = [column_names]
# Check proper format and length of reverse
if not isinstance(reverse, bool):
if len(reverse) != len(column_names):
raise ValueError(
"Parameter 'reverse' should be either a boolean or a list of booleans with the same length as 'column_names'."
)
else:
reverse = [reverse] * len(column_names)
# Check whether column name(s) exist in dataset
for column in column_names:
if not isinstance(column, str) or column not in self._data.column_names:
raise ValueError(
f"Column '{column}' not found in the dataset. Please provide a column selected in: {self._data.column_names}"
)
# Change null_placement to conform to pyarrow's sort_indices() while ensuring backwards compatability
if null_placement not in ["at_start", "at_end"]:
if null_placement == "first":
null_placement = "at_start"
elif null_placement == "last":
null_placement = "at_end"
else:
raise ValueError(
f"null_placement '{null_placement}' is an invalid parameter value. Must be either 'last', 'at_end', 'first' or 'at_start'."
)
load_from_cache_file = load_from_cache_file if load_from_cache_file is not None else is_caching_enabled()
# Check if we've already cached this computation (indexed by a hash)
if self.cache_files:
if indices_cache_file_name is None:
# we create a unique hash from the function, current dataset file and the mapping args
indices_cache_file_name = self._get_cache_file_path(new_fingerprint)
if os.path.exists(indices_cache_file_name) and load_from_cache_file:
logger.info(f"Loading cached sorted indices for dataset at {indices_cache_file_name}")
return self._new_dataset_with_indices(
fingerprint=new_fingerprint, indices_cache_file_name=indices_cache_file_name
)
sort_table = query_table(
table=self._data,
key=slice(0, len(self)),
indices=self._indices if self._indices is not None else None,
)
sort_keys = [
(col, "ascending" if not col_reverse else "descending") for col, col_reverse in zip(column_names, reverse)
]
indices = pc.sort_indices(sort_table, sort_keys=sort_keys, null_placement=null_placement)
return self.select(
indices=indices,
keep_in_memory=keep_in_memory,
indices_cache_file_name=indices_cache_file_name,
writer_batch_size=writer_batch_size,
new_fingerprint=new_fingerprint,
)
@transmit_format
@fingerprint_transform(
inplace=False, randomized_function=True, ignore_kwargs=["load_from_cache_file", "indices_cache_file_name"]
)
def shuffle(
self,
seed: Optional[int] = None,
generator: Optional[np.random.Generator] = None,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Create a new Dataset where the rows are shuffled.
Currently shuffling uses numpy random generators.
You can either supply a NumPy BitGenerator to use, or a seed to initiate NumPy's default random generator (PCG64).
Shuffling takes the list of indices `[0:len(my_dataset)]` and shuffles it to create an indices mapping.
However as soon as your [`Dataset`] has an indices mapping, the speed can become 10x slower.
This is because there is an extra step to get the row index to read using the indices mapping, and most importantly, you aren't reading contiguous chunks of data anymore.
To restore the speed, you'd need to rewrite the entire dataset on your disk again using [`Dataset.flatten_indices`], which removes the indices mapping.
This may take a lot of time depending of the size of your dataset though:
```python
my_dataset[0] # fast
my_dataset = my_dataset.shuffle(seed=42)
my_dataset[0] # up to 10x slower
my_dataset = my_dataset.flatten_indices() # rewrite the shuffled dataset on disk as contiguous chunks of data
my_dataset[0] # fast again
```
In this case, we recommend switching to an [`IterableDataset`] and leveraging its fast approximate shuffling method [`IterableDataset.shuffle`].
It only shuffles the shards order and adds a shuffle buffer to your dataset, which keeps the speed of your dataset optimal:
```python
my_iterable_dataset = my_dataset.to_iterable_dataset(num_shards=128)
for example in enumerate(my_iterable_dataset): # fast
pass
shuffled_iterable_dataset = my_iterable_dataset.shuffle(seed=42, buffer_size=100)
for example in enumerate(shuffled_iterable_dataset): # as fast as before
pass
```
Args:
seed (`int`, *optional*):
A seed to initialize the default BitGenerator if `generator=None`.
If `None`, then fresh, unpredictable entropy will be pulled from the OS.
If an `int` or `array_like[ints]` is passed, then it will be passed to SeedSequence to derive the initial BitGenerator state.
generator (`numpy.random.Generator`, *optional*):
Numpy random Generator to use to compute the permutation of the dataset rows.
If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
keep_in_memory (`bool`, default `False`):
Keep the shuffled indices in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the shuffled indices
can be identified, use it instead of recomputing.
indices_cache_file_name (`str`, *optional*):
Provide the name of a path for the cache file. It is used to store the
shuffled indices instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
new_fingerprint (`str`, *optional*, defaults to `None`):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds['label'][:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
# set a seed
>>> shuffled_ds = ds.shuffle(seed=42)
>>> shuffled_ds['label'][:10]
[1, 0, 1, 1, 0, 0, 0, 0, 0, 0]
```
"""
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.shuffle` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
)
# If the array is empty we do nothing
if len(self) == 0:
return self
if keep_in_memory and indices_cache_file_name is not None:
raise ValueError("Please use either `keep_in_memory` or `indices_cache_file_name` but not both.")
if seed is not None and generator is not None:
raise ValueError("Both `seed` and `generator` were provided. Please specify just one of them.")
if generator is not None and not isinstance(generator, np.random.Generator):
raise ValueError("The provided generator must be an instance of numpy.random.Generator")
load_from_cache_file = load_from_cache_file if load_from_cache_file is not None else is_caching_enabled()
if generator is None:
if seed is None:
_, seed, pos, *_ = np.random.get_state()
seed = seed[pos] if pos < 624 else seed[0]
_ = np.random.random() # do 1 step of rng
generator = np.random.default_rng(seed)
# Check if we've already cached this computation (indexed by a hash)
if self.cache_files:
if indices_cache_file_name is None:
# we create a unique hash from the function, current dataset file and the mapping args
indices_cache_file_name = self._get_cache_file_path(new_fingerprint)
if os.path.exists(indices_cache_file_name) and load_from_cache_file:
logger.info(f"Loading cached shuffled indices for dataset at {indices_cache_file_name}")
return self._new_dataset_with_indices(
fingerprint=new_fingerprint, indices_cache_file_name=indices_cache_file_name
)
permutation = generator.permutation(len(self))
return self.select(
indices=permutation,
keep_in_memory=keep_in_memory,
indices_cache_file_name=indices_cache_file_name if not keep_in_memory else None,
writer_batch_size=writer_batch_size,
new_fingerprint=new_fingerprint,
)
@transmit_format
@fingerprint_transform(
inplace=False,
randomized_function=True,
fingerprint_names=["train_new_fingerprint", "test_new_fingerprint"],
ignore_kwargs=["load_from_cache_file", "train_indices_cache_file_name", "test_indices_cache_file_name"],
)
def train_test_split(
self,
test_size: Union[float, int, None] = None,
train_size: Union[float, int, None] = None,
shuffle: bool = True,
stratify_by_column: Optional[str] = None,
seed: Optional[int] = None,
generator: Optional[np.random.Generator] = None,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
train_indices_cache_file_name: Optional[str] = None,
test_indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
train_new_fingerprint: Optional[str] = None,
test_new_fingerprint: Optional[str] = None,
) -> "DatasetDict":
"""Return a dictionary ([`datasets.DatasetDict`]) with two random train and test subsets (`train` and `test` `Dataset` splits).
Splits are created from the dataset according to `test_size`, `train_size` and `shuffle`.
This method is similar to scikit-learn `train_test_split`.
Args:
test_size (`numpy.random.Generator`, *optional*):
Size of the test split
If `float`, should be between `0.0` and `1.0` and represent the proportion of the dataset to include in the test split.
If `int`, represents the absolute number of test samples.
If `None`, the value is set to the complement of the train size.
If `train_size` is also `None`, it will be set to `0.25`.
train_size (`numpy.random.Generator`, *optional*):
Size of the train split
If `float`, should be between `0.0` and `1.0` and represent the proportion of the dataset to include in the train split.
If `int`, represents the absolute number of train samples.
If `None`, the value is automatically set to the complement of the test size.
shuffle (`bool`, *optional*, defaults to `True`):
Whether or not to shuffle the data before splitting.
stratify_by_column (`str`, *optional*, defaults to `None`):
The column name of labels to be used to perform stratified split of data.
seed (`int`, *optional*):
A seed to initialize the default BitGenerator if `generator=None`.
If `None`, then fresh, unpredictable entropy will be pulled from the OS.
If an `int` or `array_like[ints]` is passed, then it will be passed to SeedSequence to derive the initial BitGenerator state.
generator (`numpy.random.Generator`, *optional*):
Numpy random Generator to use to compute the permutation of the dataset rows.
If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
keep_in_memory (`bool`, defaults to `False`):
Keep the splits indices in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the splits indices
can be identified, use it instead of recomputing.
train_cache_file_name (`str`, *optional*):
Provide the name of a path for the cache file. It is used to store the
train split indices instead of the automatically generated cache file name.
test_cache_file_name (`str`, *optional*):
Provide the name of a path for the cache file. It is used to store the
test split indices instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
train_new_fingerprint (`str`, *optional*, defaults to `None`):
The new fingerprint of the train set after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
test_new_fingerprint (`str`, *optional*, defaults to `None`):
The new fingerprint of the test set after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds = ds.train_test_split(test_size=0.2, shuffle=True)
DatasetDict({
train: Dataset({
features: ['text', 'label'],
num_rows: 852
})
test: Dataset({
features: ['text', 'label'],
num_rows: 214
})
})
# set a seed
>>> ds = ds.train_test_split(test_size=0.2, seed=42)
# stratified split
>>> ds = load_dataset("imdb",split="train")
Dataset({
features: ['text', 'label'],
num_rows: 25000
})
>>> ds = ds.train_test_split(test_size=0.2, stratify_by_column="label")
DatasetDict({
train: Dataset({
features: ['text', 'label'],
num_rows: 20000
})
test: Dataset({
features: ['text', 'label'],
num_rows: 5000
})
})
```
"""
from .dataset_dict import DatasetDict # import here because of circular dependency
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.train_test_split` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
)
# If the array is empty we do nothing
if len(self) == 0:
return DatasetDict({"train": self, "test": self})
if test_size is None and train_size is None:
test_size = 0.25
# Safety checks similar to scikit-learn's ones.
# (adapted from https://github.com/scikit-learn/scikit-learn/blob/fd237278e895b42abe8d8d09105cbb82dc2cbba7/sklearn/model_selection/_split.py#L1750)
n_samples = len(self)
if (
isinstance(test_size, int)
and (test_size >= n_samples or test_size <= 0)
or isinstance(test_size, float)
and (test_size <= 0 or test_size >= 1)
):
raise ValueError(
f"test_size={test_size} should be either positive and smaller "
f"than the number of samples {n_samples} or a float in the (0, 1) range"
)
if (
isinstance(train_size, int)
and (train_size >= n_samples or train_size <= 0)
or isinstance(train_size, float)
and (train_size <= 0 or train_size >= 1)
):
raise ValueError(
f"train_size={train_size} should be either positive and smaller "
f"than the number of samples {n_samples} or a float in the (0, 1) range"
)
if train_size is not None and not isinstance(train_size, (int, float)):
raise ValueError(f"Invalid value for train_size: {train_size} of type {type(train_size)}")
if test_size is not None and not isinstance(test_size, (int, float)):
raise ValueError(f"Invalid value for test_size: {test_size} of type {type(test_size)}")
if isinstance(train_size, float) and isinstance(test_size, float) and train_size + test_size > 1:
raise ValueError(
f"The sum of test_size and train_size = {train_size + test_size}, should be in the (0, 1)"
" range. Reduce test_size and/or train_size."
)
if isinstance(test_size, float):
n_test = ceil(test_size * n_samples)
elif isinstance(test_size, int):
n_test = float(test_size)
if isinstance(train_size, float):
n_train = floor(train_size * n_samples)
elif isinstance(train_size, int):
n_train = float(train_size)
if train_size is None:
n_train = n_samples - n_test
elif test_size is None:
n_test = n_samples - n_train
if n_train + n_test > n_samples:
raise ValueError(
f"The sum of train_size and test_size = {n_train + n_test}, "
"should be smaller than the number of "
f"samples {n_samples}. Reduce test_size and/or "
"train_size."
)
n_train, n_test = int(n_train), int(n_test)
if n_train == 0:
raise ValueError(
f"With n_samples={n_samples}, test_size={test_size} and train_size={train_size}, the "
"resulting train set will be empty. Adjust any of the "
"aforementioned parameters."
)
load_from_cache_file = load_from_cache_file if load_from_cache_file is not None else is_caching_enabled()
if generator is None and shuffle is True:
if seed is None:
_, seed, pos, *_ = np.random.get_state()
seed = seed[pos] if pos < 624 else seed[0]
_ = np.random.random() # do 1 step of rng
generator = np.random.default_rng(seed)
# Check if we've already cached this computation (indexed by a hash)
if self.cache_files:
if train_indices_cache_file_name is None or test_indices_cache_file_name is None:
# we create a unique hash from the function, current dataset file and the mapping args
if train_indices_cache_file_name is None:
train_indices_cache_file_name = self._get_cache_file_path(train_new_fingerprint)
if test_indices_cache_file_name is None:
test_indices_cache_file_name = self._get_cache_file_path(test_new_fingerprint)
if (
os.path.exists(train_indices_cache_file_name)
and os.path.exists(test_indices_cache_file_name)
and load_from_cache_file
):
logger.info(
f"Loading cached split indices for dataset at {train_indices_cache_file_name} and {test_indices_cache_file_name}"
)
return DatasetDict(
{
"train": self._new_dataset_with_indices(
fingerprint=train_new_fingerprint, indices_cache_file_name=train_indices_cache_file_name
),
"test": self._new_dataset_with_indices(
fingerprint=test_new_fingerprint, indices_cache_file_name=test_indices_cache_file_name
),
}
)
if not shuffle:
if stratify_by_column is not None:
raise ValueError("Stratified train/test split is not implemented for `shuffle=False`")
train_indices = np.arange(n_train)
test_indices = np.arange(n_train, n_train + n_test)
else:
# stratified partition
if stratify_by_column is not None:
if stratify_by_column not in self._info.features.keys():
raise ValueError(f"Key {stratify_by_column} not found in {self._info.features.keys()}")
if not isinstance(self._info.features[stratify_by_column], ClassLabel):
raise ValueError(
f"Stratifying by column is only supported for {ClassLabel.__name__} column, and column {stratify_by_column} is {type(self._info.features[stratify_by_column]).__name__}."
)
try:
train_indices, test_indices = next(
stratified_shuffle_split_generate_indices(
self.with_format("numpy")[stratify_by_column], n_train, n_test, rng=generator
)
)
except Exception as error:
if str(error) == "Minimum class count error":
raise ValueError(
f"The least populated class in {stratify_by_column} column has only 1"
" member, which is too few. The minimum"
" number of groups for any class cannot"
" be less than 2."
)
else:
raise error
# random partition
else:
permutation = generator.permutation(len(self))
test_indices = permutation[:n_test]
train_indices = permutation[n_test : (n_test + n_train)]
train_split = self.select(
indices=train_indices,
keep_in_memory=keep_in_memory,
indices_cache_file_name=train_indices_cache_file_name,
writer_batch_size=writer_batch_size,
new_fingerprint=train_new_fingerprint,
)
test_split = self.select(
indices=test_indices,
keep_in_memory=keep_in_memory,
indices_cache_file_name=test_indices_cache_file_name,
writer_batch_size=writer_batch_size,
new_fingerprint=test_new_fingerprint,
)
return DatasetDict({"train": train_split, "test": test_split})
def shard(
self,
num_shards: int,
index: int,
contiguous: bool = False,
keep_in_memory: bool = False,
indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
) -> "Dataset":
"""Return the `index`-nth shard from dataset split into `num_shards` pieces.
This shards deterministically. `dset.shard(n, i)` will contain all elements of dset whose
index mod `n = i`.
`dset.shard(n, i, contiguous=True)` will instead split dset into contiguous chunks,
so it can be easily concatenated back together after processing. If `n % i == l`, then the
first `l` shards will have length `(n // i) + 1`, and the remaining shards will have length `(n // i)`.
`datasets.concatenate([dset.shard(n, i, contiguous=True) for i in range(n)])` will return
a dataset with the same order as the original.
Be sure to shard before using any randomizing operator (such as `shuffle`).
It is best if the shard operator is used early in the dataset pipeline.
Args:
num_shards (`int`):
How many shards to split the dataset into.
index (`int`):
Which shard to select and return.
contiguous: (`bool`, defaults to `False`):
Whether to select contiguous blocks of indices for shards.
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
indices_cache_file_name (`str`, *optional*):
Provide the name of a path for the cache file. It is used to store the
indices of each shard instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds
Dataset({
features: ['text', 'label'],
num_rows: 1066
})
>>> ds.shard(num_shards=2, index=0)
Dataset({
features: ['text', 'label'],
num_rows: 533
})
```
"""
if not 0 <= index < num_shards:
raise ValueError("index should be in [0, num_shards-1]")
if contiguous:
div = len(self) // num_shards
mod = len(self) % num_shards
start = div * index + min(index, mod)
end = start + div + (1 if index < mod else 0)
indices = range(start, end)
else:
indices = np.arange(index, len(self), num_shards)
return self.select(
indices=indices,
keep_in_memory=keep_in_memory,
indices_cache_file_name=indices_cache_file_name,
writer_batch_size=writer_batch_size,
)
def export(
self,
filename: str,
format: str = "tfrecord",
):
"""Writes the Arrow dataset to a TFRecord file.
The dataset must already be in tensorflow format. The records will be written with
keys from `dataset._format_columns`.
Args:
filename (`str`): The filename, including the `.tfrecord` extension, to write to.
format (`str`, optional, default `"tfrecord"`): The type of output file. Currently this is a no-op, as
TFRecords are the only option. This enables a more flexible function signature later.
"""
try:
import tensorflow as tf # noqa: F401
except ImportError:
logger.error("Tensorflow needs to be installed to be able to return Tensorflow tensors.")
# From https://www.tensorflow.org/tutorials/load_data/tfrecord
def _bytes_feature(values):
"""Returns a bytes_list from a list of string / byte."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=values))
def _float_feature(values):
"""Returns a float_list from a list of float / double."""
return tf.train.Feature(float_list=tf.train.FloatList(value=values))
def _int64_feature(values):
"""Returns an int64_list from a list of bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def _feature(values: Union[float, int, str, np.ndarray, list]) -> "tf.train.Feature":
"""Typechecks `values` and returns the corresponding tf.train.Feature."""
if isinstance(values, list):
if values and isinstance(values[0], str):
return _bytes_feature([v.encode() for v in values])
else:
raise ValueError(f"values={values} is empty or contains items that cannot be serialized")
elif isinstance(values, np.ndarray):
if values.dtype == np.dtype(float):
return _float_feature(values)
elif values.dtype == np.int64:
return _int64_feature(values)
elif values.dtype == np.dtype(str) or (
values.dtype == np.dtype(object) and len(values) > 0 and isinstance(values[0], str)
):
return _bytes_feature([v.encode() for v in values])
else:
raise ValueError(
f"values={values} is empty or is an np.ndarray with items of dtype {values[0].dtype}, which cannot be serialized"
)
elif hasattr(values, "dtype"):
if np.issubdtype(values.dtype, np.floating):
return _float_feature([values.item()])
elif np.issubdtype(values.dtype, np.integer):
return _int64_feature([values.item()])
elif np.issubdtype(values.dtype, str):
return _bytes_feature([values.item().encode()])
else:
raise ValueError(f"values={values} has dtype {values.dtype}, which cannot be serialized")
else:
raise ValueError(f"values={values} are not numpy objects or strings, and so cannot be serialized")
def serialize_example(ex):
feature = {key: _feature(value) for key, value in ex.items()}
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
def tf_serialize_example(ex):
tf_string = tf.py_function(serialize_example, (ex,), tf.string)
return tf.reshape(tf_string, ())
def generator():
for ex in self:
yield serialize_example(ex)
if self._format_type != "numpy":
raise ValueError("Dataset format must be numpy before exporting")
if not filename.endswith(".tfrecord"):
raise ValueError("filename {filename} must end with .tfrecord")
tf_dataset = tf.data.Dataset.from_generator(generator, output_types=tf.string, output_shapes=())
writer = tf.data.experimental.TFRecordWriter(filename)
logger.info(f"Writing TFRecord to {filename}")
writer.write(tf_dataset)
logger.info(f"Finished writing TFRecord to {filename}")
self = None # delete the dataset reference used by tf_dataset
def to_csv(
self,
path_or_buf: Union[PathLike, BinaryIO],
batch_size: Optional[int] = None,
num_proc: Optional[int] = None,
**to_csv_kwargs,
) -> int:
"""Exports the dataset to csv
Args:
path_or_buf (`PathLike` or `FileOrBuffer`):
Either a path to a file or a BinaryIO.
batch_size (`int`, *optional*):
Size of the batch to load in memory and write at once.
Defaults to `datasets.config.DEFAULT_MAX_BATCH_SIZE`.
num_proc (`int`, *optional*):
Number of processes for multiprocessing. By default it doesn't
use multiprocessing. `batch_size` in this case defaults to
`datasets.config.DEFAULT_MAX_BATCH_SIZE` but feel free to make it 5x or 10x of the default
value if you have sufficient compute power.
**to_csv_kwargs (additional keyword arguments):
Parameters to pass to pandas's [`pandas.DataFrame.to_csv`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html).
<Changed version="2.10.0">
Now, `index` defaults to `False` if not specified.
If you would like to write the index, pass `index=True` and also set a name for the index column by
passing `index_label`.
</Changed>
Returns:
`int`: The number of characters or bytes written.
Example:
```py
>>> ds.to_csv("path/to/dataset/directory")
```
"""
# Dynamic import to avoid circular dependency
from .io.csv import CsvDatasetWriter
return CsvDatasetWriter(self, path_or_buf, batch_size=batch_size, num_proc=num_proc, **to_csv_kwargs).write()
def to_dict(self, batch_size: Optional[int] = None, batched="deprecated") -> Union[dict, Iterator[dict]]:
"""Returns the dataset as a Python dict. Can also return a generator for large datasets.
Args:
batched (`bool`):
Set to `True` to return a generator that yields the dataset as batches
of `batch_size` rows. Defaults to `False` (returns the whole datasets once).
<Deprecated version="2.11.0">
Use `.iter(batch_size=batch_size)` followed by `.to_dict()` on the individual batches instead.
</Deprecated>
batch_size (`int`, *optional*): The size (number of rows) of the batches if `batched` is `True`.
Defaults to `datasets.config.DEFAULT_MAX_BATCH_SIZE`.
Returns:
`dict` or `Iterator[dict]`
Example:
```py
>>> ds.to_dict()
```
"""
if batched != "deprecated":
warnings.warn(
"'batched' was deprecated in version 2.11.0 and will be removed in version 3.0.0. Use `.iter(batch_size=batch_size)` followed by `.to_dict()` on the individual batches instead.",
FutureWarning,
)
else:
batched = False
if not batched:
return query_table(
table=self._data,
key=slice(0, len(self)),
indices=self._indices if self._indices is not None else None,
).to_pydict()
else:
batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
return (
query_table(
table=self._data,
key=slice(offset, offset + batch_size),
indices=self._indices if self._indices is not None else None,
).to_pydict()
for offset in range(0, len(self), batch_size)
)
def to_list(self) -> list:
"""Returns the dataset as a Python list.
Returns:
`list`
Example:
```py
>>> ds.to_list()
```
"""
return query_table(
table=self._data,
key=slice(0, len(self)),
indices=self._indices if self._indices is not None else None,
).to_pylist()
def to_json(
self,
path_or_buf: Union[PathLike, BinaryIO],
batch_size: Optional[int] = None,
num_proc: Optional[int] = None,
**to_json_kwargs,
) -> int:
"""Export the dataset to JSON Lines or JSON.
Args:
path_or_buf (`PathLike` or `FileOrBuffer`):
Either a path to a file or a BinaryIO.
batch_size (`int`, *optional*):
Size of the batch to load in memory and write at once.
Defaults to `datasets.config.DEFAULT_MAX_BATCH_SIZE`.
num_proc (`int`, *optional*):
Number of processes for multiprocessing. By default it doesn't
use multiprocessing. `batch_size` in this case defaults to
`datasets.config.DEFAULT_MAX_BATCH_SIZE` but feel free to make it 5x or 10x of the default
value if you have sufficient compute power.
**to_json_kwargs (additional keyword arguments):
Parameters to pass to pandas's [`pandas.DataFrame.to_json`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html).
<Changed version="2.11.0">
Now, `index` defaults to `False` if `orint` is `"split"` or `"table"` is specified.
If you would like to write the index, pass `index=True`.
</Changed>
Returns:
`int`: The number of characters or bytes written.
Example:
```py
>>> ds.to_json("path/to/dataset/directory")
```
"""
# Dynamic import to avoid circular dependency
from .io.json import JsonDatasetWriter
return JsonDatasetWriter(self, path_or_buf, batch_size=batch_size, num_proc=num_proc, **to_json_kwargs).write()
def to_pandas(
self, batch_size: Optional[int] = None, batched: bool = False
) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]:
"""Returns the dataset as a `pandas.DataFrame`. Can also return a generator for large datasets.
Args:
batched (`bool`):
Set to `True` to return a generator that yields the dataset as batches
of `batch_size` rows. Defaults to `False` (returns the whole datasets once).
batch_size (`int`, *optional*):
The size (number of rows) of the batches if `batched` is `True`.
Defaults to `datasets.config.DEFAULT_MAX_BATCH_SIZE`.
Returns:
`pandas.DataFrame` or `Iterator[pandas.DataFrame]`
Example:
```py
>>> ds.to_pandas()
```
"""
if not batched:
return query_table(
table=self._data,
key=slice(0, len(self)),
indices=self._indices if self._indices is not None else None,
).to_pandas(types_mapper=pandas_types_mapper)
else:
batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
return (
query_table(
table=self._data,
key=slice(offset, offset + batch_size),
indices=self._indices if self._indices is not None else None,
).to_pandas(types_mapper=pandas_types_mapper)
for offset in range(0, len(self), batch_size)
)
def to_parquet(
self,
path_or_buf: Union[PathLike, BinaryIO],
batch_size: Optional[int] = None,
**parquet_writer_kwargs,
) -> int:
"""Exports the dataset to parquet
Args:
path_or_buf (`PathLike` or `FileOrBuffer`):
Either a path to a file or a BinaryIO.
batch_size (`int`, *optional*):
Size of the batch to load in memory and write at once.
Defaults to `datasets.config.DEFAULT_MAX_BATCH_SIZE`.
**parquet_writer_kwargs (additional keyword arguments):
Parameters to pass to PyArrow's `pyarrow.parquet.ParquetWriter`.
Returns:
`int`: The number of characters or bytes written.
Example:
```py
>>> ds.to_parquet("path/to/dataset/directory")
```
"""
# Dynamic import to avoid circular dependency
from .io.parquet import ParquetDatasetWriter
return ParquetDatasetWriter(self, path_or_buf, batch_size=batch_size, **parquet_writer_kwargs).write()
def to_sql(
self,
name: str,
con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"],
batch_size: Optional[int] = None,
**sql_writer_kwargs,
) -> int:
"""Exports the dataset to a SQL database.
Args:
name (`str`):
Name of SQL table.
con (`str` or `sqlite3.Connection` or `sqlalchemy.engine.Connection` or `sqlalchemy.engine.Connection`):
A [URI string](https://docs.sqlalchemy.org/en/13/core/engines.html#database-urls) or a SQLite3/SQLAlchemy connection object used to write to a database.
batch_size (`int`, *optional*):
Size of the batch to load in memory and write at once.
Defaults to `datasets.config.DEFAULT_MAX_BATCH_SIZE`.
**sql_writer_kwargs (additional keyword arguments):
Parameters to pass to pandas's [`pandas.DataFrame.to_sql`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_sql.html).
<Changed version="2.11.0">
Now, `index` defaults to `False` if not specified.
If you would like to write the index, pass `index=True` and also set a name for the index column by
passing `index_label`.
</Changed>
Returns:
`int`: The number of records written.
Example:
```py
>>> # con provided as a connection URI string
>>> ds.to_sql("data", "sqlite:///my_own_db.sql")
>>> # con provided as a sqlite3 connection object
>>> import sqlite3
>>> con = sqlite3.connect("my_own_db.sql")
>>> with con:
... ds.to_sql("data", con)
```
"""
# Dynamic import to avoid circular dependency
from .io.sql import SqlDatasetWriter
return SqlDatasetWriter(self, name, con, batch_size=batch_size, **sql_writer_kwargs).write()
def _estimate_nbytes(self) -> int:
dataset_nbytes = self.data.nbytes
# Find decodable columns, because if there are any, we need to
# adjust the dataset size computation (needed for sharding) to account for possible external files
decodable_columns = [
k for k, v in self._info.features.items() if require_decoding(v, ignore_decode_attribute=True)
]
if decodable_columns:
# Approximate the space needed to store the bytes from the external files by analyzing the first 1000 examples
extra_nbytes = 0
def extra_nbytes_visitor(array, feature):
nonlocal extra_nbytes
if isinstance(feature, (Audio, Image)):
for x in array.to_pylist():
if x is not None and x["bytes"] is None and x["path"] is not None:
size = xgetsize(x["path"])
extra_nbytes += size
extra_nbytes -= array.field("path").nbytes
table = self.with_format("arrow")[:1000]
table_visitor(table, extra_nbytes_visitor)
extra_nbytes = extra_nbytes * len(self.data) / len(table)
dataset_nbytes = dataset_nbytes + extra_nbytes
if self._indices is not None:
dataset_nbytes = dataset_nbytes * len(self._indices) / len(self.data)
return dataset_nbytes
@staticmethod
def _generate_tables_from_shards(shards: List["Dataset"], batch_size: int):
for shard_idx, shard in enumerate(shards):
for pa_table in shard.with_format("arrow").iter(batch_size):
yield shard_idx, pa_table
@staticmethod
def _generate_tables_from_cache_file(filename: str):
for batch_idx, batch in enumerate(_memory_mapped_record_batch_reader_from_file(filename)):
yield batch_idx, pa.Table.from_batches([batch])
def to_iterable_dataset(self, num_shards: Optional[int] = 1) -> "IterableDataset":
"""Get an [`datasets.IterableDataset`] from a map-style [`datasets.Dataset`].
This is equivalent to loading a dataset in streaming mode with [`datasets.load_dataset`], but much faster since the data is streamed from local files.
Contrary to map-style datasets, iterable datasets are lazy and can only be iterated over (e.g. using a for loop).
Since they are read sequentially in training loops, iterable datasets are much faster than map-style datasets.
All the transformations applied to iterable datasets like filtering or processing are done on-the-fly when you start iterating over the dataset.
Still, it is possible to shuffle an iterable dataset using [`datasets.IterableDataset.shuffle`].
This is a fast approximate shuffling that works best if you have multiple shards and if you specify a buffer size that is big enough.
To get the best speed performance, make sure your dataset doesn't have an indices mapping.
If this is the case, the data are not read contiguously, which can be slow sometimes.
You can use `ds = ds.flatten_indices()` to write your dataset in contiguous chunks of data and have optimal speed before switching to an iterable dataset.
Args:
num_shards (`int`, default to `1`):
Number of shards to define when instantiating the iterable dataset. This is especially useful for big datasets to be able to shuffle properly,
and also to enable fast parallel loading using a PyTorch DataLoader or in distributed setups for example.
Shards are defined using [`datasets.Dataset.shard`]: it simply slices the data without writing anything on disk.
Returns:
[`datasets.IterableDataset`]
Example:
Basic usage:
```python
>>> ids = ds.to_iterable_dataset()
>>> for example in ids:
... pass
```
With lazy filtering and processing:
```python
>>> ids = ds.to_iterable_dataset()
>>> ids = ids.filter(filter_fn).map(process_fn) # will filter and process on-the-fly when you start iterating over the iterable dataset
>>> for example in ids:
... pass
```
With sharding to enable efficient shuffling:
```python
>>> ids = ds.to_iterable_dataset(num_shards=64) # the dataset is split into 64 shards to be iterated over
>>> ids = ids.shuffle(buffer_size=10_000) # will shuffle the shards order and use a shuffle buffer for fast approximate shuffling when you start iterating
>>> for example in ids:
... pass
```
With a PyTorch DataLoader:
```python
>>> import torch
>>> ids = ds.to_iterable_dataset(num_shards=64)
>>> ids = ids.filter(filter_fn).map(process_fn)
>>> dataloader = torch.utils.data.DataLoader(ids, num_workers=4) # will assign 64 / 4 = 16 shards to each worker to load, filter and process when you start iterating
>>> for example in ids:
... pass
```
With a PyTorch DataLoader and shuffling:
```python
>>> import torch
>>> ids = ds.to_iterable_dataset(num_shards=64)
>>> ids = ids.shuffle(buffer_size=10_000) # will shuffle the shards order and use a shuffle buffer when you start iterating
>>> dataloader = torch.utils.data.DataLoader(ids, num_workers=4) # will assign 64 / 4 = 16 shards from the shuffled list of shards to each worker when you start iterating
>>> for example in ids:
... pass
```
In a distributed setup like PyTorch DDP with a PyTorch DataLoader and shuffling
```python
>>> from datasets.distributed import split_dataset_by_node
>>> ids = ds.to_iterable_dataset(num_shards=512)
>>> ids = ids.shuffle(buffer_size=10_000) # will shuffle the shards order and use a shuffle buffer when you start iterating
>>> ids = split_dataset_by_node(ds, world_size=8, rank=0) # will keep only 512 / 8 = 64 shards from the shuffled lists of shards when you start iterating
>>> dataloader = torch.utils.data.DataLoader(ids, num_workers=4) # will assign 64 / 4 = 16 shards from this node's list of shards to each worker when you start iterating
>>> for example in ids:
... pass
```
With shuffling and multiple epochs:
```python
>>> ids = ds.to_iterable_dataset(num_shards=64)
>>> ids = ids.shuffle(buffer_size=10_000, seed=42) # will shuffle the shards order and use a shuffle buffer when you start iterating
>>> for epoch in range(n_epochs):
... ids.set_epoch(epoch) # will use effective_seed = seed + epoch to shuffle the shards and for the shuffle buffer when you start iterating
... for example in ids:
... pass
```
Feel free to also use [`IterableDataset.set_epoch`] when using a PyTorch DataLoader or in distributed setups.
"""
from .iterable_dataset import ArrowExamplesIterable, IterableDataset
if self._format_type is not None:
raise NotImplementedError(
"Converting a formatted dataset to a formatted iterable dataset is not implemented yet. Please run `my_dataset = my_dataset.with_format(None)` before calling to_iterable_dataset"
)
if num_shards > len(self):
raise ValueError(
f"Unable to shard a dataset of size {len(self)} into {num_shards} shards (the number of shards exceeds the number of samples)."
)
if self._indices is not None:
logger.info(
"Converting an Arrow dataset to iterable but it has an indices mapping that can make it slower. "
"You can use `ds = ds.flatten_indices()` to write your dataset in contiguous chunks of data and have optimal speed."
)
shards = (
[copy.deepcopy(self)]
if num_shards == 1
else [
self.shard(num_shards=num_shards, index=shard_idx, contiguous=True) for shard_idx in range(num_shards)
]
)
ex_iterable = ArrowExamplesIterable(
Dataset._generate_tables_from_shards,
kwargs={"shards": shards, "batch_size": config.DEFAULT_MAX_BATCH_SIZE},
)
return IterableDataset(ex_iterable, info=DatasetInfo(features=self.features))
def _push_parquet_shards_to_hub(
self,
repo_id: str,
data_dir: str = "data",
split: Optional[str] = None,
private: Optional[bool] = False,
token: Optional[str] = None,
branch: Optional[str] = None,
max_shard_size: Optional[Union[int, str]] = None,
num_shards: Optional[int] = None,
embed_external_files: bool = True,
) -> Tuple[str, str, int, int, List[str], int]:
"""Pushes the dataset to the hub.
The dataset is pushed using HTTP requests and does not need to have neither git or git-lfs installed.
Args:
repo_id (`str`):
The ID of the repository to push to in the following format: `<user>/<dataset_name>` or
`<org>/<dataset_name>`. Also accepts `<dataset_name>`, which will default to the namespace
of the logged-in user.
data_dir (`str`):
The name of directory to store parquet files. Defaults to "data".
split (Optional, `str`):
The name of the split that will be given to that dataset. Defaults to `self.split`.
private (Optional `bool`, defaults to `False`):
Whether the dataset repository should be set to private or not. Only affects repository creation:
a repository that already exists will not be affected by that parameter.
token (Optional `str`):
An optional authentication token for the Hugging Face Hub. If no token is passed, will default
to the token saved locally when logging in with ``huggingface-cli login``. Will raise an error
if no token is passed and the user is not logged-in.
branch (Optional `str`):
The git branch on which to push the dataset. This defaults to the default branch as specified
in your repository, which defaults to `"main"`.
max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by a
a unit (like `"5MB"`).
num_shards (`int`, *optional*):
Number of shards to write. By default the number of shards depends on `max_shard_size`.
<Added version="2.8.0"/>
embed_external_files (`bool`, default ``True``):
Whether to embed file bytes in the shards.
In particular, this will do the following before the push for the fields of type:
- :class:`Audio` and class:`Image`: remove local path information and embed file content in the Parquet files.
Returns:
repo_id (`str`): ID of the repository in <user>/<dataset_name>` or `<org>/<dataset_name>` format
split (`str`): name of the uploaded split
uploaded_size (`int`): number of uploaded bytes to the repository
dataset_nbytes (`int`): approximate size in bytes of the uploaded dataset afer uncompression
repo_files (`List[str]`): list of files in the repository
deleted_size (`int`): number of deleted bytes in the repository
Example:
```python
>>> dataset.push_to_hub("<organization>/<dataset_id>", split="evaluation")
```
"""
if max_shard_size is not None and num_shards is not None:
raise ValueError(
"Failed to push_to_hub: please specify either max_shard_size or num_shards, but not both."
)
api = HfApi(endpoint=config.HF_ENDPOINT)
token = token if token is not None else HfFolder.get_token()
if token is None:
raise EnvironmentError(
"You need to provide a `token` or be logged in to Hugging Face with `huggingface-cli login`."
)
if split is None:
split = str(self.split) if self.split is not None else "train"
if not re.match(_split_re, split):
raise ValueError(f"Split name should match '{_split_re}' but got '{split}'.")
identifier = repo_id.split("/")
if len(identifier) > 2:
raise ValueError(
f"The identifier should be in the format <repo_id> or <namespace>/<repo_id>. It is {identifier}, "
"which doesn't conform to either format."
)
elif len(identifier) == 1:
dataset_name = identifier[0]
organization_or_username = api.whoami(token)["name"]
repo_id = f"{organization_or_username}/{dataset_name}"
api.create_repo(
repo_id,
token=token,
repo_type="dataset",
private=private,
exist_ok=True,
)
# Find decodable columns, because if there are any, we need to:
# embed the bytes from the files in the shards
decodable_columns = (
[k for k, v in self._info.features.items() if require_decoding(v, ignore_decode_attribute=True)]
if embed_external_files
else []
)
dataset_nbytes = self._estimate_nbytes()
if num_shards is None:
max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE)
num_shards = int(dataset_nbytes / max_shard_size) + 1
num_shards = max(num_shards, 1)
shards = (self.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards))
if decodable_columns:
def shards_with_embedded_external_files(shards):
for shard in shards:
format = shard.format
shard = shard.with_format("arrow")
shard = shard.map(
embed_table_storage,
batched=True,
batch_size=1000,
keep_in_memory=True,
)
shard = shard.with_format(**format)
yield shard
shards = shards_with_embedded_external_files(shards)
files = api.list_repo_files(repo_id, repo_type="dataset", revision=branch, token=token)
data_files = [file for file in files if file.startswith(f"{data_dir}/")]
def path_in_repo(_index, shard):
return f"{data_dir}/{split}-{_index:05d}-of-{num_shards:05d}-{shard._fingerprint}.parquet"
shards_iter = iter(shards)
first_shard = next(shards_iter)
first_shard_path_in_repo = path_in_repo(0, first_shard)
if first_shard_path_in_repo in data_files and num_shards < len(data_files):
logger.info("Resuming upload of the dataset shards.")
uploaded_size = 0
shards_path_in_repo = []
for index, shard in logging.tqdm(
enumerate(itertools.chain([first_shard], shards_iter)),
desc="Pushing dataset shards to the dataset hub",
total=num_shards,
disable=not logging.is_progress_bar_enabled(),
):
shard_path_in_repo = path_in_repo(index, shard)
# Upload a shard only if it doesn't already exist in the repository
if shard_path_in_repo not in data_files:
buffer = BytesIO()
shard.to_parquet(buffer)
uploaded_size += buffer.tell()
_retry(
api.upload_file,
func_kwargs={
"path_or_fileobj": buffer.getvalue(),
"path_in_repo": shard_path_in_repo,
"repo_id": repo_id,
"token": token,
"repo_type": "dataset",
"revision": branch,
},
exceptions=HTTPError,
status_codes=[504],
base_wait_time=2.0,
max_retries=5,
max_wait_time=20.0,
)
shards_path_in_repo.append(shard_path_in_repo)
# Cleanup to remove unused files
data_files_to_delete = [
data_file
for data_file in data_files
if data_file.startswith(f"{data_dir}/{split}-") and data_file not in shards_path_in_repo
]
download_config = DownloadConfig(token=token)
deleted_size = sum(
xgetsize(hf_hub_url(repo_id, data_file), download_config=download_config)
for data_file in data_files_to_delete
)
def delete_file(file):
api.delete_file(file, repo_id=repo_id, token=token, repo_type="dataset", revision=branch)
if len(data_files_to_delete):
for data_file in logging.tqdm(
data_files_to_delete,
desc="Deleting unused files from dataset repository",
total=len(data_files_to_delete),
disable=not logging.is_progress_bar_enabled(),
):
delete_file(data_file)
repo_files = list(set(files) - set(data_files_to_delete))
return repo_id, split, uploaded_size, dataset_nbytes, repo_files, deleted_size
def push_to_hub(
self,
repo_id: str,
config_name: str = "default",
split: Optional[str] = None,
private: Optional[bool] = False,
token: Optional[str] = None,
branch: Optional[str] = None,
max_shard_size: Optional[Union[int, str]] = None,
num_shards: Optional[int] = None,
embed_external_files: bool = True,
):
"""Pushes the dataset to the hub as a Parquet dataset.
The dataset is pushed using HTTP requests and does not need to have neither git or git-lfs installed.
The resulting Parquet files are self-contained by default. If your dataset contains [`Image`] or [`Audio`]
data, the Parquet files will store the bytes of your images or audio files.
You can disable this by setting `embed_external_files` to `False`.
Args:
repo_id (`str`):
The ID of the repository to push to in the following format: `<user>/<dataset_name>` or
`<org>/<dataset_name>`. Also accepts `<dataset_name>`, which will default to the namespace
of the logged-in user.
config_name (`str`, defaults to "default"):
The configuration name of a dataset. Defaults to "default"
split (`str`, *optional*):
The name of the split that will be given to that dataset. Defaults to `self.split`.
private (`bool`, *optional*, defaults to `False`):
Whether the dataset repository should be set to private or not. Only affects repository creation:
a repository that already exists will not be affected by that parameter.
token (`str`, *optional*):
An optional authentication token for the Hugging Face Hub. If no token is passed, will default
to the token saved locally when logging in with `huggingface-cli login`. Will raise an error
if no token is passed and the user is not logged-in.
branch (`str`, *optional*):
The git branch on which to push the dataset. This defaults to the default branch as specified
in your repository, which defaults to `"main"`.
max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by
a unit (like `"5MB"`).
num_shards (`int`, *optional*): Number of shards to write. By default the number of shards depends on `max_shard_size`.
<Added version="2.8.0"/>
embed_external_files (`bool`, defaults to `True`):
Whether to embed file bytes in the shards.
In particular, this will do the following before the push for the fields of type:
- [`Audio`] and [`Image`]: remove local path information and embed file content in the Parquet files.
Example:
```python
>>> dataset.push_to_hub("<organization>/<dataset_id>")
>>> dataset.push_to_hub("<organization>/<dataset_id>", split="validation")
>>> dataset.push_to_hub("<organization>/<dataset_id>", max_shard_size="1GB")
>>> dataset.push_to_hub("<organization>/<dataset_id>", num_shards=1024)
```
"""
if config_name == "data":
raise ValueError("`config_name` cannot be 'data'. Please, choose another name for configuration.")
if max_shard_size is not None and num_shards is not None:
raise ValueError(
"Failed to push_to_hub: please specify either max_shard_size or num_shards, but not both."
)
data_dir = config_name if config_name != "default" else "data" # for backward compatibility
repo_id, split, uploaded_size, dataset_nbytes, repo_files, deleted_size = self._push_parquet_shards_to_hub(
repo_id=repo_id,
data_dir=data_dir,
split=split,
private=private,
token=token,
branch=branch,
max_shard_size=max_shard_size,
num_shards=num_shards,
embed_external_files=embed_external_files,
)
organization, dataset_name = repo_id.split("/")
info_to_dump = self.info.copy()
info_to_dump.download_checksums = None
info_to_dump.download_size = uploaded_size
info_to_dump.dataset_size = dataset_nbytes
info_to_dump.size_in_bytes = uploaded_size + dataset_nbytes
info_to_dump.config_name = config_name
info_to_dump.splits = SplitDict(
{split: SplitInfo(split, num_bytes=dataset_nbytes, num_examples=len(self), dataset_name=dataset_name)}
)
# get the info from the README to update them
if "README.md" in repo_files:
download_config = DownloadConfig()
download_config.download_desc = "Downloading metadata"
download_config.token = token
dataset_readme_path = cached_path(
hf_hub_url(repo_id, "README.md"),
download_config=download_config,
)
dataset_card = DatasetCard.load(Path(dataset_readme_path))
dataset_card_data = dataset_card.data
metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
dataset_infos: DatasetInfosDict = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
if dataset_infos:
repo_info = dataset_infos[next(iter(dataset_infos))]
else:
repo_info = None
# get the deprecated dataset_infos.json to update them
elif config.DATASETDICT_INFOS_FILENAME in repo_files:
dataset_card = None
dataset_card_data = DatasetCardData()
download_config = DownloadConfig()
download_config.download_desc = "Downloading metadata"
download_config.token = token
dataset_infos_path = cached_path(
hf_hub_url(repo_id, config.DATASETDICT_INFOS_FILENAME),
download_config=download_config,
)
with open(dataset_infos_path, encoding="utf-8") as f:
dataset_infos: dict = json.load(f)
dataset_info = dataset_infos.get(config_name, None) if dataset_infos else None
repo_info = DatasetInfo.from_dict(dataset_info) if dataset_info else None
else:
dataset_card = None
dataset_card_data = DatasetCardData()
metadata_configs = MetadataConfigs()
repo_info = None
# update the total info to dump from existing info
if repo_info is not None:
logger.info("Updating downloaded metadata with the new split.")
if repo_info.splits and list(repo_info.splits) != [split]:
if self._info.features != repo_info.features:
raise ValueError(
f"Features of the new split don't match the features of the existing splits on the hub: {self._info.features} != {repo_info.features}"
)
if split in repo_info.splits:
repo_info.download_size -= deleted_size
repo_info.dataset_size -= repo_info.splits.get(split, SplitInfo()).num_bytes or 0
repo_info.download_checksums = None
repo_info.download_size = (repo_info.download_size or 0) + uploaded_size
repo_info.dataset_size = (repo_info.dataset_size or 0) + dataset_nbytes
repo_info.size_in_bytes = repo_info.download_size + repo_info.dataset_size
repo_info.splits[split] = SplitInfo(
split, num_bytes=dataset_nbytes, num_examples=len(self), dataset_name=dataset_name
)
info_to_dump = repo_info
# create the metadata configs if it was uploaded with push_to_hub before metadata configs existed
if not metadata_configs:
_matched_paths = [
p
for p in repo_files
if fnmatch(p, PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED.replace("{split}", "*"))
]
if len(_matched_paths) > 0:
# it was uploaded with push_to_hub before metadata configs existed
_resolved_splits = {
string_to_dict(
p, glob_pattern_to_regex(PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED)
)["split"]
for p in _matched_paths
}
default_metadata_configs_to_dump = {
"data_files": [
{"split": _resolved_split, "path": f"data/{_resolved_split}-*"}
for _resolved_split in _resolved_splits
]
}
MetadataConfigs({"default": default_metadata_configs_to_dump}).to_dataset_card_data(dataset_card_data)
# update the metadata configs
if config_name in metadata_configs:
metadata_config = metadata_configs[config_name]
if "data_files" in metadata_config:
data_files_to_dump = sanitize_patterns(metadata_config["data_files"])
else:
data_files_to_dump = {}
# add the new split
data_files_to_dump[split] = [f"{data_dir}/{split}-*"]
metadata_config_to_dump = {
"data_files": [
{
"split": _split,
"path": _pattern[0] if len(_pattern) == 1 else _pattern,
}
for _split, _pattern in data_files_to_dump.items()
]
}
else:
metadata_config_to_dump = {"data_files": [{"split": split, "path": f"{data_dir}/{split}-*"}]}
# push to the deprecated dataset_infos.json
if config.DATASETDICT_INFOS_FILENAME in repo_files:
download_config = DownloadConfig()
download_config.download_desc = "Downloading deprecated dataset_infos.json"
download_config.use_auth_token = token
dataset_infos_path = cached_path(
hf_hub_url(repo_id, config.DATASETDICT_INFOS_FILENAME),
download_config=download_config,
)
with open(dataset_infos_path, encoding="utf-8") as f:
dataset_infos: dict = json.load(f)
dataset_infos[config_name] = asdict(info_to_dump)
buffer = BytesIO()
buffer.write(json.dumps(dataset_infos, indent=4).encode("utf-8"))
HfApi(endpoint=config.HF_ENDPOINT).upload_file(
path_or_fileobj=buffer.getvalue(),
path_in_repo=config.DATASETDICT_INFOS_FILENAME,
repo_id=repo_id,
token=token,
repo_type="dataset",
revision=branch,
)
# push to README
DatasetInfosDict({config_name: info_to_dump}).to_dataset_card_data(dataset_card_data)
MetadataConfigs({config_name: metadata_config_to_dump}).to_dataset_card_data(dataset_card_data)
dataset_card = (
DatasetCard(
"---\n"
+ str(dataset_card_data)
+ "\n---\n"
+ f'# Dataset Card for "{repo_id.split("/")[-1]}"\n\n[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)'
)
if dataset_card is None
else dataset_card
)
HfApi(endpoint=config.HF_ENDPOINT).upload_file(
path_or_fileobj=str(dataset_card).encode(),
path_in_repo="README.md",
repo_id=repo_id,
token=token,
repo_type="dataset",
revision=branch,
)
@transmit_format
@fingerprint_transform(inplace=False)
def add_column(self, name: str, column: Union[list, np.array], new_fingerprint: str):
"""Add column to Dataset.
<Added version="1.7"/>
Args:
name (`str`):
Column name.
column (`list` or `np.array`):
Column data to be added.
Returns:
[`Dataset`]
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> more_text = ds["text"]
>>> ds.add_column(name="text_2", column=more_text)
Dataset({
features: ['text', 'label', 'text_2'],
num_rows: 1066
})
```
"""
column_table = InMemoryTable.from_pydict({name: column})
_check_column_names(self._data.column_names + column_table.column_names)
dataset = self.flatten_indices() if self._indices is not None else self
# Concatenate tables horizontally
table = concat_tables([dataset._data, column_table], axis=1)
# Update features
info = dataset.info.copy()
info.features.update(Features.from_arrow_schema(column_table.schema))
table = update_metadata_with_features(table, info.features)
return Dataset(table, info=info, split=self.split, indices_table=None, fingerprint=new_fingerprint)
def add_faiss_index(
self,
column: str,
index_name: Optional[str] = None,
device: Optional[int] = None,
string_factory: Optional[str] = None,
metric_type: Optional[int] = None,
custom_index: Optional["faiss.Index"] = None, # noqa: F821
batch_size: int = 1000,
train_size: Optional[int] = None,
faiss_verbose: bool = False,
dtype=np.float32,
):
"""Add a dense index using Faiss for fast retrieval.
By default the index is done over the vectors of the specified column.
You can specify `device` if you want to run it on GPU (`device` must be the GPU index).
You can find more information about Faiss here:
- For [string factory](https://github.com/facebookresearch/faiss/wiki/The-index-factory)
Args:
column (`str`):
The column of the vectors to add to the index.
index_name (`str`, *optional*):
The `index_name`/identifier of the index.
This is the `index_name` that is used to call [`~datasets.Dataset.get_nearest_examples`] or [`~datasets.Dataset.search`].
By default it corresponds to `column`.
device (`Union[int, List[int]]`, *optional*):
If positive integer, this is the index of the GPU to use. If negative integer, use all GPUs.
If a list of positive integers is passed in, run only on those GPUs. By default it uses the CPU.
string_factory (`str`, *optional*):
This is passed to the index factory of Faiss to create the index.
Default index class is `IndexFlat`.
metric_type (`int`, *optional*):
Type of metric. Ex: `faiss.METRIC_INNER_PRODUCT` or `faiss.METRIC_L2`.
custom_index (`faiss.Index`, *optional*):
Custom Faiss index that you already have instantiated and configured for your needs.
batch_size (`int`):
Size of the batch to use while adding vectors to the `FaissIndex`. Default value is `1000`.
<Added version="2.4.0"/>
train_size (`int`, *optional*):
If the index needs a training step, specifies how many vectors will be used to train the index.
faiss_verbose (`bool`, defaults to `False`):
Enable the verbosity of the Faiss index.
dtype (`data-type`):
The dtype of the numpy arrays that are indexed.
Default is `np.float32`.
Example:
```python
>>> ds = datasets.load_dataset('crime_and_punish', split='train')
>>> ds_with_embeddings = ds.map(lambda example: {'embeddings': embed(example['line']}))
>>> ds_with_embeddings.add_faiss_index(column='embeddings')
>>> # query
>>> scores, retrieved_examples = ds_with_embeddings.get_nearest_examples('embeddings', embed('my new query'), k=10)
>>> # save index
>>> ds_with_embeddings.save_faiss_index('embeddings', 'my_index.faiss')
>>> ds = datasets.load_dataset('crime_and_punish', split='train')
>>> # load index
>>> ds.load_faiss_index('embeddings', 'my_index.faiss')
>>> # query
>>> scores, retrieved_examples = ds.get_nearest_examples('embeddings', embed('my new query'), k=10)
```
"""
with self.formatted_as(type="numpy", columns=[column], dtype=dtype):
super().add_faiss_index(
column=column,
index_name=index_name,
device=device,
string_factory=string_factory,
metric_type=metric_type,
custom_index=custom_index,
batch_size=batch_size,
train_size=train_size,
faiss_verbose=faiss_verbose,
)
return self
def add_faiss_index_from_external_arrays(
self,
external_arrays: np.array,
index_name: str,
device: Optional[int] = None,
string_factory: Optional[str] = None,
metric_type: Optional[int] = None,
custom_index: Optional["faiss.Index"] = None, # noqa: F821
batch_size: int = 1000,
train_size: Optional[int] = None,
faiss_verbose: bool = False,
dtype=np.float32,
):
"""Add a dense index using Faiss for fast retrieval.
The index is created using the vectors of `external_arrays`.
You can specify `device` if you want to run it on GPU (`device` must be the GPU index).
You can find more information about Faiss here:
- For [string factory](https://github.com/facebookresearch/faiss/wiki/The-index-factory)
Args:
external_arrays (`np.array`):
If you want to use arrays from outside the lib for the index, you can set `external_arrays`.
It will use `external_arrays` to create the Faiss index instead of the arrays in the given `column`.
index_name (`str`):
The `index_name`/identifier of the index.
This is the `index_name` that is used to call [`~datasets.Dataset.get_nearest_examples`] or [`~datasets.Dataset.search`].
device (Optional `Union[int, List[int]]`, *optional*):
If positive integer, this is the index of the GPU to use. If negative integer, use all GPUs.
If a list of positive integers is passed in, run only on those GPUs. By default it uses the CPU.
string_factory (`str`, *optional*):
This is passed to the index factory of Faiss to create the index.
Default index class is `IndexFlat`.
metric_type (`int`, *optional*):
Type of metric. Ex: `faiss.faiss.METRIC_INNER_PRODUCT` or `faiss.METRIC_L2`.
custom_index (`faiss.Index`, *optional*):
Custom Faiss index that you already have instantiated and configured for your needs.
batch_size (`int`, *optional*):
Size of the batch to use while adding vectors to the FaissIndex. Default value is 1000.
<Added version="2.4.0"/>
train_size (`int`, *optional*):
If the index needs a training step, specifies how many vectors will be used to train the index.
faiss_verbose (`bool`, defaults to False):
Enable the verbosity of the Faiss index.
dtype (`numpy.dtype`):
The dtype of the numpy arrays that are indexed. Default is np.float32.
"""
super().add_faiss_index_from_external_arrays(
external_arrays=external_arrays.astype(dtype),
index_name=index_name,
device=device,
string_factory=string_factory,
metric_type=metric_type,
custom_index=custom_index,
batch_size=batch_size,
train_size=train_size,
faiss_verbose=faiss_verbose,
)
def add_elasticsearch_index(
self,
column: str,
index_name: Optional[str] = None,
host: Optional[str] = None,
port: Optional[int] = None,
es_client: Optional["elasticsearch.Elasticsearch"] = None, # noqa: F821
es_index_name: Optional[str] = None,
es_index_config: Optional[dict] = None,
):
"""Add a text index using ElasticSearch for fast retrieval. This is done in-place.
Args:
column (`str`):
The column of the documents to add to the index.
index_name (`str`, *optional*):
The `index_name`/identifier of the index.
This is the index name that is used to call [`~Dataset.get_nearest_examples`] or [`Dataset.search`].
By default it corresponds to `column`.
host (`str`, *optional*, defaults to `localhost`):
Host of where ElasticSearch is running.
port (`str`, *optional*, defaults to `9200`):
Port of where ElasticSearch is running.
es_client (`elasticsearch.Elasticsearch`, *optional*):
The elasticsearch client used to create the index if host and port are `None`.
es_index_name (`str`, *optional*):
The elasticsearch index name used to create the index.
es_index_config (`dict`, *optional*):
The configuration of the elasticsearch index.
Default config is:
```
{
"settings": {
"number_of_shards": 1,
"analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}},
},
"mappings": {
"properties": {
"text": {
"type": "text",
"analyzer": "standard",
"similarity": "BM25"
},
}
},
}
```
Example:
```python
>>> es_client = elasticsearch.Elasticsearch()
>>> ds = datasets.load_dataset('crime_and_punish', split='train')
>>> ds.add_elasticsearch_index(column='line', es_client=es_client, es_index_name="my_es_index")
>>> scores, retrieved_examples = ds.get_nearest_examples('line', 'my new query', k=10)
```
"""
with self.formatted_as(type=None, columns=[column]):
super().add_elasticsearch_index(
column=column,
index_name=index_name,
host=host,
port=port,
es_client=es_client,
es_index_name=es_index_name,
es_index_config=es_index_config,
)
return self
@transmit_format
@fingerprint_transform(inplace=False)
def add_item(self, item: dict, new_fingerprint: str):
"""Add item to Dataset.
<Added version="1.7"/>
Args:
item (`dict`):
Item data to be added.
Returns:
[`Dataset`]
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> new_review = {'label': 0, 'text': 'this movie is the absolute worst thing I have ever seen'}
>>> ds = ds.add_item(new_review)
>>> ds[-1]
{'label': 0, 'text': 'this movie is the absolute worst thing I have ever seen'}
```
"""
item_table = InMemoryTable.from_pydict({k: [v] for k, v in item.items()})
# We don't call _check_if_features_can_be_aligned here so this cast is "unsafe"
dset_features, item_features = _align_features(
[self._info.features, Features.from_arrow_schema(item_table.schema)]
)
# Cast to align the schemas of the tables and concatenate the tables
table = concat_tables(
[
self._data.cast(dset_features.arrow_schema) if self._info.features != dset_features else self._data,
item_table.cast(item_features.arrow_schema),
]
)
if self._indices is None:
indices_table = None
else:
item_indices_array = pa.array([len(self._data)], type=pa.uint64())
item_indices_table = InMemoryTable.from_arrays([item_indices_array], names=["indices"])
indices_table = concat_tables([self._indices, item_indices_table])
info = self.info.copy()
info.features.update(item_features)
table = update_metadata_with_features(table, info.features)
return Dataset(
table,
info=info,
split=self.split,
indices_table=indices_table,
fingerprint=new_fingerprint,
)
def align_labels_with_mapping(self, label2id: Dict, label_column: str) -> "Dataset":
"""Align the dataset's label ID and label name mapping to match an input `label2id` mapping.
This is useful when you want to ensure that a model's predicted labels are aligned with the dataset.
The alignment in done using the lowercase label names.
Args:
label2id (`dict`):
The label name to ID mapping to align the dataset with.
label_column (`str`):
The column name of labels to align on.
Example:
```python
>>> # dataset with mapping {'entailment': 0, 'neutral': 1, 'contradiction': 2}
>>> ds = load_dataset("glue", "mnli", split="train")
>>> # mapping to align with
>>> label2id = {'CONTRADICTION': 0, 'NEUTRAL': 1, 'ENTAILMENT': 2}
>>> ds_aligned = ds.align_labels_with_mapping(label2id, "label")
```
"""
# Sanity checks
if label_column not in self._data.column_names:
raise ValueError(f"Column ({label_column}) not in table columns ({self._data.column_names}).")
label_feature = self._info.features[label_column]
if not (
isinstance(label_feature, ClassLabel)
or (isinstance(label_feature, Sequence) and isinstance(label_feature.feature, ClassLabel))
):
raise ValueError(
f"Aligning labels with a mapping is only supported for {ClassLabel.__name__} column or {Sequence.__name__} column with the inner type {ClassLabel.__name__}, and column {label_feature} is of type {type(label_feature).__name__}."
)
# Sort input mapping by ID value to ensure the label names are aligned
label2id = dict(sorted(label2id.items(), key=lambda item: item[1]))
label_names = list(label2id.keys())
# Some label mappings use uppercase label names so we lowercase them during alignment
label2id = {k.lower(): v for k, v in label2id.items()}
int2str_function = (
label_feature.int2str if isinstance(label_feature, ClassLabel) else label_feature.feature.int2str
)
if isinstance(label_feature, ClassLabel):
def process_label_ids(batch):
dset_label_names = [
int2str_function(label_id).lower() if label_id is not None else None
for label_id in batch[label_column]
]
batch[label_column] = [
label2id[label_name] if label_name is not None else None for label_name in dset_label_names
]
return batch
else:
def process_label_ids(batch):
dset_label_names = [
[int2str_function(label_id).lower() if label_id is not None else None for label_id in seq]
for seq in batch[label_column]
]
batch[label_column] = [
[label2id[label_name] if label_name is not None else None for label_name in seq]
for seq in dset_label_names
]
return batch
features = self.features
features[label_column] = (
ClassLabel(num_classes=len(label_names), names=label_names)
if isinstance(label_feature, ClassLabel)
else Sequence(ClassLabel(num_classes=len(label_names), names=label_names))
)
return self.map(process_label_ids, features=features, batched=True, desc="Aligning the labels")
def _concatenate_map_style_datasets(
dsets: List[Dataset],
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
axis: int = 0,
):
"""
Converts a list of :class:`Dataset` with the same schema into a single :class:`Dataset`.
When you concatenate on axis 0, missing data are filled with None values.
Args:
dsets (`List[datasets.Dataset]`): List of Datasets to concatenate.
info (:class:`DatasetInfo`, optional): Dataset information, like description, citation, etc.
split (:class:`NamedSplit`, optional): Name of the dataset split.
axis (``{0, 1}``, default ``0``, meaning over rows):
Axis to concatenate over, where ``0`` means over rows (vertically) and ``1`` means over columns
(horizontally).
*New in version 1.6.0*
Example:
```py
>>> ds3 = _concatenate_map_style_datasets([ds1, ds2])
```
"""
# Ignore datasets with no rows
if any(dset.num_rows > 0 for dset in dsets):
dsets = [dset for dset in dsets if dset.num_rows > 0]
else:
# Return first dataset if all datasets are empty
return dsets[0]
# Perform checks (and a potentional cast if axis=0)
if axis == 0:
_check_if_features_can_be_aligned([dset.features for dset in dsets])
else:
if not all(dset.num_rows == dsets[0].num_rows for dset in dsets):
raise ValueError("Number of rows must match for all datasets")
_check_column_names([col_name for dset in dsets for col_name in dset._data.column_names])
# Find common format or reset format
format = dsets[0].format
if any(dset.format != format for dset in dsets):
format = {}
logger.info("Some of the datasets have disparate format. Resetting the format of the concatenated dataset.")
def apply_offset_to_indices_table(table, offset):
if offset == 0:
return table
else:
array = table["indices"]
new_array = pc.add(array, pa.scalar(offset, type=pa.uint64()))
return InMemoryTable.from_arrays([new_array], names=["indices"])
# Concatenate indices if they exist
if any(dset._indices is not None for dset in dsets):
if axis == 0:
# Datasets with no indices tables are replaced with a dataset with an indices table in memory.
# Applying an offset to an indices table also brings the table in memory.
indices_tables = []
for i in range(len(dsets)):
if dsets[i]._indices is None:
dsets[i] = dsets[i]._select_with_indices_mapping(range(len(dsets[i])))
indices_tables.append(dsets[i]._indices)
# An offset needs to be applied to the indices before concatenating
offset = 0
for i in range(len(dsets)):
indices_tables[i] = apply_offset_to_indices_table(indices_tables[i], offset)
offset += len(dsets[i]._data)
# Concatenate indices
indices_tables = [t for t in indices_tables if len(t) > 0]
if indices_tables:
indices_table = concat_tables(indices_tables)
else:
indices_table = InMemoryTable.from_batches([], schema=pa.schema({"indices": pa.int64()}))
else:
if len(dsets) == 1:
indices_table = dsets[0]._indices
else:
for i in range(len(dsets)):
dsets[i] = dsets[i].flatten_indices()
indices_table = None
else:
indices_table = None
table = concat_tables([dset._data for dset in dsets], axis=axis)
if axis == 0:
features_list = _align_features([dset.features for dset in dsets])
else:
features_list = [dset.features for dset in dsets]
table = update_metadata_with_features(table, {k: v for features in features_list for k, v in features.items()})
# Concatenate infos
if info is None:
info = DatasetInfo.from_merge([dset.info for dset in dsets])
fingerprint = update_fingerprint(
"".join(dset._fingerprint for dset in dsets), _concatenate_map_style_datasets, {"info": info, "split": split}
)
# Make final concatenated dataset
concatenated_dataset = Dataset(
table,
info=info,
split=split,
indices_table=indices_table,
fingerprint=fingerprint,
)
concatenated_dataset.set_format(**format)
return concatenated_dataset
def _interleave_map_style_datasets(
datasets: List["Dataset"],
probabilities: Optional[List[float]] = None,
seed: Optional[int] = None,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
**kwargs,
) -> "Dataset":
"""
Interleave several map-style datasets (sources) into a single map-style dataset.
The new dataset is constructed by alternating between the sources to get the examples.
If `probabilities = None` (default) the new dataset is constructed by cycling between each source to get the examples.
If `probabilities` is not `None, the new dataset is constructed by getting examples from a random source at a time according to the provided probabilities.
Args:
datasets (`List[Dataset]`): list of datasets to interleave
probabilities (`List[float]`, optional, default None): If specified, the new dataset is constructed by sampling
examples from one source at a time according to these probabilities.
seed (`int`, optional, default None): The random seed used to choose a source for each example.
info (:class:`DatasetInfo`, optional): Dataset information, like description, citation, etc.
split (:class:`NamedSplit`, optional): Name of the dataset split.
stopping_strategy (`str`, defaults to `first_exhausted`):
Two strategies are proposed right now.
By default, `first_exhausted` is an undersampling strategy, i.e the dataset construction is stopped as soon as one dataset has ran out of samples.
If the strategy is `all_exhausted`, we use an oversampling strategy, i.e the dataset construction is stopped as soon as every samples of every dataset has been added at least once.
Note that if the strategy is `all_exhausted`, the interleaved dataset size can get enormous:
- with no probabilities, the resulting dataset will have max_length_datasets*nb_dataset samples.
- with given probabilities, the resulting dataset will have more samples if some datasets have really low probability of visiting.
**kwargs (additional keyword arguments): Keyword arguments to be passed to :meth:`datasets.Datasets.select` when selecting the indices used to interleave the datasets.
Output:
:class:`datasets.Dataset`
"""
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(
f"{stopping_strategy} stopping strategy in `interleave_datasets` is not implemented yet with a list of {type(datasets[0])}"
)
# To interleave the datasets, we concatenate them and then we re-order the indices
concatenated_datasets = _concatenate_map_style_datasets(datasets, info=info, split=split)
# Let's now build the indices to pass to .select()
lengths = [len(dset) for dset in datasets]
offsets = np.cumsum([0] + lengths[:-1])
# if stopping_strategy is "first_exhausted", it is an undersampling situation whereas it is an oversampling situation if it is "all_exhausted"
oversampling = stopping_strategy == "all_exhausted"
if probabilities is None and not oversampling:
# Undersampling situation with cycling between each sources
# Example:: If lengths of the datasets are [3, 4, 5]
# Then the resulting indices should be [0, 3, 7, 1, 4, 8, 2, 6, 9]
# Note that we only have 3 examples per dataset since the first dataset ran out of examples
# Reasoning behind the following operation: keeping the min_length first indices of each dataset
# while offsetting in order to correspond to the right indices of the concatenated dataset
# and flattening to effectively interleave the datasets
indices = (offsets.reshape(1, -1) + np.arange(min(lengths)).reshape(-1, 1)).flatten().tolist()
elif probabilities is None:
# Oversampling situation with cycling between each sources
# Then the resulting indices should be [0, 3, 7, 1, 4, 8, 2, 5, 9, 0, 6, 10, 1, 3, 11]
# Note that we have 5 examples per dataset with a rolling window since the longest dataset has 5 samples
# Reasoning behind the following operation: for each dataset indices (i.e column) repeat the indices to have max_length indices per dataset
# For example, if the max_length is 5 and the i-th dataset has 3 samples, the i-th column will be [0,1,2,0,1]
indices = np.mod(np.arange(max(lengths)).reshape(-1, 1), np.array(lengths).reshape(1, -1))
# We have to keep the indices to their respective dataset offsets and to flatten to effectively interleave the datasets
indices = (indices + offsets).flatten().tolist()
else:
# boolean array indicating if at index i if the dataset_i has been fully exhausted
is_exhausted = np.full(len(lengths), False)
# if undersampling ("first_exhausted"), we stop as soon as one dataset is exhausted
# if oversampling ("all_exhausted"), we stop as soons as every dataset is exhausted, i.e as soon as every samples of every dataset has been visited at least once
bool_strategy_func = np.all if oversampling else np.any
def iter_random_indices():
"""Get an infinite iterator that randomly samples the index of the source to pick examples from."""
rng = np.random.default_rng(seed)
while True:
yield from (int(i) for i in rng.choice(len(datasets), size=1000, p=probabilities))
current_index = [0] * len(datasets)
indices = []
for source_idx in iter_random_indices():
# If no oversampling, we stop as soon as a dataset has ran out of examples (np.any)
# Otherwise, we stop as soon as every dataset has ran out of examples (np.all)
if bool_strategy_func(is_exhausted):
# the stopping condition was reached, let's stop
break
# let's add the example at the current index of the `source_idx`-th dataset
indices.append(current_index[source_idx] + offsets[source_idx])
current_index[source_idx] += 1
# we've ran out of examples for the current dataset, let's update our boolean array and bring the current_index back to 0
if current_index[source_idx] >= lengths[source_idx]:
is_exhausted[source_idx] = True
current_index[source_idx] = 0
return concatenated_datasets.select(indices, **kwargs)
def _split_by_node_map_style_dataset(dataset: Dataset, rank: int, world_size: int) -> Dataset:
"""
Split a dataset for the node at rank `rank` in a pool of nodes of size `world_size`.
Each node is assigned a chunk of data, e.g. rank 0 is given the first chunk of the dataset.
To maximize data loading throughput, chunks are made of contiguous data on disk if possible.
Args:
dataset ([`Dataset`]):
The dataset to split by node.
rank (`int`):
Rank of the current node.
world_size (`int`):
Total number of nodes.
Returns:
[`Dataset`]: The dataset to be used on the node at rank `rank`.
"""
return dataset.shard(num_shards=world_size, index=rank, contiguous=True)
# This is outside Dataset.filter as it needs to be picklable for multiprocessing
def get_indices_from_mask_function(
function: Callable,
batched: bool,
with_indices: bool,
input_columns: Optional[Union[str, List[str]]],
indices_mapping: Optional[Table] = None,
*args,
**fn_kwargs,
):
if batched:
# we extract indices from args
*inputs, indices = args
if with_indices:
mask = function(*inputs, indices, **fn_kwargs)
else:
mask = function(*inputs, **fn_kwargs)
else:
# we get batched data (to do less look-ups) but `function` only accepts one example
# therefore we need to call `function` on each example of the batch to get the mask
*inputs, indices = args
mask = []
if input_columns is None:
# inputs only contains a batch of examples
batch: dict = inputs[0]
num_examples = len(batch[next(iter(batch.keys()))])
for i in range(num_examples):
example = {key: batch[key][i] for key in batch}
mask.append(
function(example, indices[i], **fn_kwargs) if with_indices else function(example, **fn_kwargs)
)
else:
# inputs is a list of columns
columns: List[List] = inputs
num_examples = len(columns[0])
for i in range(num_examples):
input = [column[i] for column in columns]
mask.append(
function(*input, indices[i], **fn_kwargs) if with_indices else function(*input, **fn_kwargs)
)
indices_array = [i for i, to_keep in zip(indices, mask) if to_keep]
if indices_mapping is not None:
indices_array = pa.array(indices_array, type=pa.uint64())
indices_array = indices_mapping.column(0).take(indices_array)
indices_array = indices_array.to_pylist()
return {"indices": indices_array}
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/tasks/__init__.py | from typing import Optional
from ..utils.logging import get_logger
from .audio_classificiation import AudioClassification
from .automatic_speech_recognition import AutomaticSpeechRecognition
from .base import TaskTemplate
from .image_classification import ImageClassification
from .language_modeling import LanguageModeling
from .question_answering import QuestionAnsweringExtractive
from .summarization import Summarization
from .text_classification import TextClassification
__all__ = [
"AutomaticSpeechRecognition",
"AudioClassification",
"ImageClassification",
"LanguageModeling",
"QuestionAnsweringExtractive",
"Summarization",
"TaskTemplate",
"TextClassification",
]
logger = get_logger(__name__)
NAME2TEMPLATE = {
AutomaticSpeechRecognition.task: AutomaticSpeechRecognition,
AudioClassification.task: AudioClassification,
ImageClassification.task: ImageClassification,
LanguageModeling.task: LanguageModeling,
QuestionAnsweringExtractive.task: QuestionAnsweringExtractive,
Summarization.task: Summarization,
TextClassification.task: TextClassification,
}
def task_template_from_dict(task_template_dict: dict) -> Optional[TaskTemplate]:
"""Create one of the supported task templates in :py:mod:`datasets.tasks` from a dictionary."""
task_name = task_template_dict.get("task")
if task_name is None:
logger.warning(f"Couldn't find template for task '{task_name}'. Available templates: {list(NAME2TEMPLATE)}")
return None
template = NAME2TEMPLATE.get(task_name)
return template.from_dict(task_template_dict)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/tasks/image_classification.py | import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=True)
class ImageClassification(TaskTemplate):
task: str = field(default="image-classification", metadata={"include_in_asdict_even_if_is_default": True})
input_schema: ClassVar[Features] = Features({"image": Image()})
label_schema: ClassVar[Features] = Features({"labels": ClassLabel})
image_column: str = "image"
label_column: str = "labels"
def align_with_features(self, features):
if self.label_column not in features:
raise ValueError(f"Column {self.label_column} is not present in features.")
if not isinstance(features[self.label_column], ClassLabel):
raise ValueError(f"Column {self.label_column} is not a ClassLabel.")
task_template = copy.deepcopy(self)
label_schema = self.label_schema.copy()
label_schema["labels"] = features[self.label_column]
task_template.__dict__["label_schema"] = label_schema
return task_template
@property
def column_mapping(self) -> Dict[str, str]:
return {
self.image_column: "image",
self.label_column: "labels",
}
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/tasks/language_modeling.py | from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=True)
class LanguageModeling(TaskTemplate):
task: str = field(default="language-modeling", metadata={"include_in_asdict_even_if_is_default": True})
input_schema: ClassVar[Features] = Features({"text": Value("string")})
label_schema: ClassVar[Features] = Features({})
text_column: str = "text"
@property
def column_mapping(self) -> Dict[str, str]:
return {self.text_column: "text"}
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/tasks/base.py | import abc
import copy
import dataclasses
from dataclasses import dataclass
from typing import ClassVar, Dict, Type, TypeVar
from ..features import Features
T = TypeVar("T", bound="TaskTemplate")
@dataclass(frozen=True)
class TaskTemplate(abc.ABC):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
task: str
input_schema: ClassVar[Features]
label_schema: ClassVar[Features]
def align_with_features(self: T, features: Features) -> T:
"""
Align features with the task template.
"""
# No-op
return copy.deepcopy(self)
@property
def features(self) -> Features:
return Features(**self.input_schema, **self.label_schema)
@property
@abc.abstractmethod
def column_mapping(self) -> Dict[str, str]:
raise NotImplementedError
@classmethod
def from_dict(cls: Type[T], template_dict: dict) -> T:
field_names = {f.name for f in dataclasses.fields(cls)}
return cls(**{k: v for k, v in template_dict.items() if k in field_names})
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/tasks/automatic_speech_recognition.py | import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=True)
class AutomaticSpeechRecognition(TaskTemplate):
task: str = field(default="automatic-speech-recognition", metadata={"include_in_asdict_even_if_is_default": True})
input_schema: ClassVar[Features] = Features({"audio": Audio()})
label_schema: ClassVar[Features] = Features({"transcription": Value("string")})
audio_column: str = "audio"
transcription_column: str = "transcription"
def align_with_features(self, features):
if self.audio_column not in features:
raise ValueError(f"Column {self.audio_column} is not present in features.")
if not isinstance(features[self.audio_column], Audio):
raise ValueError(f"Column {self.audio_column} is not an Audio type.")
task_template = copy.deepcopy(self)
input_schema = self.input_schema.copy()
input_schema["audio"] = features[self.audio_column]
task_template.__dict__["input_schema"] = input_schema
return task_template
@property
def column_mapping(self) -> Dict[str, str]:
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/tasks/audio_classificiation.py | import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=True)
class AudioClassification(TaskTemplate):
task: str = field(default="audio-classification", metadata={"include_in_asdict_even_if_is_default": True})
input_schema: ClassVar[Features] = Features({"audio": Audio()})
label_schema: ClassVar[Features] = Features({"labels": ClassLabel})
audio_column: str = "audio"
label_column: str = "labels"
def align_with_features(self, features):
if self.label_column not in features:
raise ValueError(f"Column {self.label_column} is not present in features.")
if not isinstance(features[self.label_column], ClassLabel):
raise ValueError(f"Column {self.label_column} is not a ClassLabel.")
task_template = copy.deepcopy(self)
label_schema = self.label_schema.copy()
label_schema["labels"] = features[self.label_column]
task_template.__dict__["label_schema"] = label_schema
return task_template
@property
def column_mapping(self) -> Dict[str, str]:
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/tasks/text_classification.py | import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=True)
class TextClassification(TaskTemplate):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
task: str = field(default="text-classification", metadata={"include_in_asdict_even_if_is_default": True})
input_schema: ClassVar[Features] = Features({"text": Value("string")})
label_schema: ClassVar[Features] = Features({"labels": ClassLabel})
text_column: str = "text"
label_column: str = "labels"
def align_with_features(self, features):
if self.label_column not in features:
raise ValueError(f"Column {self.label_column} is not present in features.")
if not isinstance(features[self.label_column], ClassLabel):
raise ValueError(f"Column {self.label_column} is not a ClassLabel.")
task_template = copy.deepcopy(self)
label_schema = self.label_schema.copy()
label_schema["labels"] = features[self.label_column]
task_template.__dict__["label_schema"] = label_schema
return task_template
@property
def column_mapping(self) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/tasks/question_answering.py | from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=True)
class QuestionAnsweringExtractive(TaskTemplate):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
task: str = field(default="question-answering-extractive", metadata={"include_in_asdict_even_if_is_default": True})
input_schema: ClassVar[Features] = Features({"question": Value("string"), "context": Value("string")})
label_schema: ClassVar[Features] = Features(
{
"answers": Sequence(
{
"text": Value("string"),
"answer_start": Value("int32"),
}
)
}
)
question_column: str = "question"
context_column: str = "context"
answers_column: str = "answers"
@property
def column_mapping(self) -> Dict[str, str]:
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/tasks/summarization.py | from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=True)
class Summarization(TaskTemplate):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
task: str = field(default="summarization", metadata={"include_in_asdict_even_if_is_default": True})
input_schema: ClassVar[Features] = Features({"text": Value("string")})
label_schema: ClassVar[Features] = Features({"summary": Value("string")})
text_column: str = "text"
summary_column: str = "summary"
@property
def column_mapping(self) -> Dict[str, str]:
return {self.text_column: "text", self.summary_column: "summary"}
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/parallel/parallel.py | import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
logger = logging.get_logger(__name__)
class ParallelBackendConfig:
backend_name = None
@experimental
def parallel_map(function, iterable, num_proc, types, disable_tqdm, desc, single_map_nested_func):
"""
**Experimental.** Apply a function to iterable elements in parallel, where the implementation uses either
multiprocessing.Pool or joblib for parallelization.
Args:
function (`Callable[[Any], Any]`): Function to be applied to `iterable`.
iterable (`list`, `tuple` or `np.ndarray`): Iterable elements to apply function to.
num_proc (`int`): Number of processes (if no backend specified) or jobs (using joblib).
types (`tuple`): Additional types (besides `dict` values) to apply `function` recursively to their elements.
disable_tqdm (`bool`): Whether to disable the tqdm progressbar.
desc (`str`): Prefix for the tqdm progressbar.
single_map_nested_func (`Callable`): Map function that applies `function` to an element from `iterable`.
Takes a tuple of function, data_struct, types, rank, disable_tqdm, desc as input, where data_struct is an
element of `iterable`, and `rank` is used for progress bar.
"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
function, iterable, num_proc, types, disable_tqdm, desc, single_map_nested_func
)
return _map_with_joblib(function, iterable, num_proc, types, disable_tqdm, desc, single_map_nested_func)
def _map_with_multiprocessing_pool(function, iterable, num_proc, types, disable_tqdm, desc, single_map_nested_func):
num_proc = num_proc if num_proc <= len(iterable) else len(iterable)
split_kwds = [] # We organize the splits ourselve (contiguous splits)
for index in range(num_proc):
div = len(iterable) // num_proc
mod = len(iterable) % num_proc
start = div * index + min(index, mod)
end = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc))
if len(iterable) != sum(len(i[1]) for i in split_kwds):
raise ValueError(
f"Error dividing inputs iterable among processes. "
f"Total number of objects {len(iterable)}, "
f"length: {sum(len(i[1]) for i in split_kwds)}"
)
logger.info(
f"Spawning {num_proc} processes for {len(iterable)} objects in slices of {[len(i[1]) for i in split_kwds]}"
)
initargs, initializer = None, None
if not disable_tqdm:
initargs, initializer = (RLock(),), tqdm.set_lock
with Pool(num_proc, initargs=initargs, initializer=initializer) as pool:
mapped = pool.map(single_map_nested_func, split_kwds)
logger.info(f"Finished {num_proc} processes")
mapped = [obj for proc_res in mapped for obj in proc_res]
logger.info(f"Unpacked {len(mapped)} objects")
return mapped
def _map_with_joblib(function, iterable, num_proc, types, disable_tqdm, desc, single_map_nested_func):
# progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib,
# and it requires monkey-patching joblib internal classes which is subject to change
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=num_proc):
return joblib.Parallel()(
joblib.delayed(single_map_nested_func)((function, obj, types, None, True, None)) for obj in iterable
)
@experimental
@contextlib.contextmanager
def parallel_backend(backend_name: str):
"""
**Experimental.** Configures the parallel backend for parallelized dataset loading, which uses the parallelization
implemented by joblib.
Args:
backend_name (str): Name of backend for parallelization implementation, has to be supported by joblib.
Example usage:
```py
with parallel_backend('spark'):
dataset = load_dataset(..., num_proc=2)
```
"""
ParallelBackendConfig.backend_name = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
ParallelBackendConfig.backend_name = None
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/parallel/__init__.py | from .parallel import parallel_backend, parallel_map, ParallelBackendConfig # noqa F401
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/io/parquet.py | import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def get_writer_batch_size(features: Features) -> Optional[int]:
"""
Get the writer_batch_size that defines the maximum row group size in the parquet files.
The default in `datasets` is 1,000 but we lower it to 100 for image datasets.
This allows to optimize random access to parquet file, since accessing 1 row requires
to read its entire row group.
This can be improved to get optimized size for querying/iterating
but at least it matches the dataset viewer expectations on HF.
Args:
ds_config_info (`datasets.info.DatasetInfo`):
Dataset info from `datasets`.
Returns:
writer_batch_size (`Optional[int]`):
Writer batch size to pass to a dataset builder.
If `None`, then it will use the `datasets` default.
"""
batch_size = np.inf
def set_batch_size(feature: FeatureType) -> None:
nonlocal batch_size
if isinstance(feature, Image):
batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS)
elif isinstance(feature, Audio):
batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS)
elif isinstance(feature, Value) and feature.dtype == "binary":
batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS)
_visit(features, set_batch_size)
return None if batch_size is np.inf else batch_size
class ParquetDatasetReader(AbstractDatasetReader):
def __init__(
self,
path_or_paths: NestedDataStructureLike[PathLike],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
streaming: bool = False,
num_proc: Optional[int] = None,
**kwargs,
):
super().__init__(
path_or_paths,
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
streaming=streaming,
num_proc=num_proc,
**kwargs,
)
path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}
hash = _PACKAGED_DATASETS_MODULES["parquet"][1]
self.builder = Parquet(
cache_dir=cache_dir,
data_files=path_or_paths,
features=features,
hash=hash,
**kwargs,
)
def read(self):
# Build iterable dataset
if self.streaming:
dataset = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
download_config = None
download_mode = None
verification_mode = None
base_path = None
self.builder.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
# try_from_hf_gcs=try_from_hf_gcs,
base_path=base_path,
num_proc=self.num_proc,
)
dataset = self.builder.as_dataset(
split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory
)
return dataset
class ParquetDatasetWriter:
def __init__(
self,
dataset: Dataset,
path_or_buf: Union[PathLike, BinaryIO],
batch_size: Optional[int] = None,
**parquet_writer_kwargs,
):
self.dataset = dataset
self.path_or_buf = path_or_buf
self.batch_size = batch_size or get_writer_batch_size(dataset.features)
self.parquet_writer_kwargs = parquet_writer_kwargs
def write(self) -> int:
batch_size = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf, (str, bytes, os.PathLike)):
with open(self.path_or_buf, "wb+") as buffer:
written = self._write(file_obj=buffer, batch_size=batch_size, **self.parquet_writer_kwargs)
else:
written = self._write(file_obj=self.path_or_buf, batch_size=batch_size, **self.parquet_writer_kwargs)
return written
def _write(self, file_obj: BinaryIO, batch_size: int, **parquet_writer_kwargs) -> int:
"""Writes the pyarrow table as Parquet to a binary file handle.
Caller is responsible for opening and closing the handle.
"""
written = 0
_ = parquet_writer_kwargs.pop("path_or_buf", None)
schema = self.dataset.features.arrow_schema
writer = pq.ParquetWriter(file_obj, schema=schema, **parquet_writer_kwargs)
for offset in logging.tqdm(
range(0, len(self.dataset), batch_size),
unit="ba",
disable=not logging.is_progress_bar_enabled(),
desc="Creating parquet from Arrow format",
):
batch = query_table(
table=self.dataset._data,
key=slice(offset, offset + batch_size),
indices=self.dataset._indices if self.dataset._indices is not None else None,
)
writer.write_table(batch)
written += batch.nbytes
writer.close()
return written
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/io/generator.py | from typing import Callable, Optional
from .. import Features
from ..packaged_modules.generator.generator import Generator
from .abc import AbstractDatasetInputStream
class GeneratorDatasetInputStream(AbstractDatasetInputStream):
def __init__(
self,
generator: Callable,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
streaming: bool = False,
gen_kwargs: Optional[dict] = None,
num_proc: Optional[int] = None,
**kwargs,
):
super().__init__(
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
streaming=streaming,
num_proc=num_proc,
**kwargs,
)
self.builder = Generator(
cache_dir=cache_dir,
features=features,
generator=generator,
gen_kwargs=gen_kwargs,
**kwargs,
)
def read(self):
# Build iterable dataset
if self.streaming:
dataset = self.builder.as_streaming_dataset(split="train")
# Build regular (map-style) dataset
else:
download_config = None
download_mode = None
verification_mode = None
base_path = None
self.builder.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
# try_from_hf_gcs=try_from_hf_gcs,
base_path=base_path,
num_proc=self.num_proc,
)
dataset = self.builder.as_dataset(
split="train", verification_mode=verification_mode, in_memory=self.keep_in_memory
)
return dataset
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/io/sql.py | import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlite3
import sqlalchemy
class SqlDatasetReader(AbstractDatasetInputStream):
def __init__(
self,
sql: Union[str, "sqlalchemy.sql.Selectable"],
con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
):
super().__init__(features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs)
self.builder = Sql(
cache_dir=cache_dir,
features=features,
sql=sql,
con=con,
**kwargs,
)
def read(self):
download_config = None
download_mode = None
verification_mode = None
base_path = None
self.builder.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
# try_from_hf_gcs=try_from_hf_gcs,
base_path=base_path,
)
# Build dataset for splits
dataset = self.builder.as_dataset(
split="train", verification_mode=verification_mode, in_memory=self.keep_in_memory
)
return dataset
class SqlDatasetWriter:
def __init__(
self,
dataset: Dataset,
name: str,
con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"],
batch_size: Optional[int] = None,
num_proc: Optional[int] = None,
**to_sql_kwargs,
):
if num_proc is not None and num_proc <= 0:
raise ValueError(f"num_proc {num_proc} must be an integer > 0.")
self.dataset = dataset
self.name = name
self.con = con
self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
self.num_proc = num_proc
self.to_sql_kwargs = to_sql_kwargs
def write(self) -> int:
_ = self.to_sql_kwargs.pop("sql", None)
_ = self.to_sql_kwargs.pop("con", None)
index = self.to_sql_kwargs.pop("index", False)
written = self._write(index=index, **self.to_sql_kwargs)
return written
def _batch_sql(self, args):
offset, index, to_sql_kwargs = args
to_sql_kwargs = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs
batch = query_table(
table=self.dataset.data,
key=slice(offset, offset + self.batch_size),
indices=self.dataset._indices,
)
df = batch.to_pandas()
num_rows = df.to_sql(self.name, self.con, index=index, **to_sql_kwargs)
return num_rows or len(df)
def _write(self, index, **to_sql_kwargs) -> int:
"""Writes the pyarrow table as SQL to a database.
Caller is responsible for opening and closing the SQL connection.
"""
written = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0, len(self.dataset), self.batch_size),
unit="ba",
disable=not logging.is_progress_bar_enabled(),
desc="Creating SQL from Arrow format",
):
written += self._batch_sql((offset, index, to_sql_kwargs))
else:
num_rows, batch_size = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql,
[(offset, index, to_sql_kwargs) for offset in range(0, num_rows, batch_size)],
),
total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,
unit="ba",
disable=not logging.is_progress_bar_enabled(),
desc="Creating SQL from Arrow format",
):
written += num_rows
return written
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/io/abc.py | from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class AbstractDatasetReader(ABC):
def __init__(
self,
path_or_paths: Optional[NestedDataStructureLike[PathLike]] = None,
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
streaming: bool = False,
num_proc: Optional[int] = None,
**kwargs,
):
self.path_or_paths = path_or_paths
self.split = split if split or isinstance(path_or_paths, dict) else "train"
self.features = features
self.cache_dir = cache_dir
self.keep_in_memory = keep_in_memory
self.streaming = streaming
self.num_proc = num_proc
self.kwargs = kwargs
@abstractmethod
def read(self) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]:
pass
class AbstractDatasetInputStream(ABC):
def __init__(
self,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
streaming: bool = False,
num_proc: Optional[int] = None,
**kwargs,
):
self.features = features
self.cache_dir = cache_dir
self.keep_in_memory = keep_in_memory
self.streaming = streaming
self.num_proc = num_proc
self.kwargs = kwargs
@abstractmethod
def read(self) -> Union[Dataset, IterableDataset]:
pass
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/io/spark.py | from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class SparkDatasetReader(AbstractDatasetReader):
"""A dataset reader that reads from a Spark DataFrame.
When caching, cache materialization is parallelized over Spark; an NFS that is accessible to the driver must be
provided. Streaming is not currently supported.
"""
def __init__(
self,
df: pyspark.sql.DataFrame,
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
streaming: bool = True,
cache_dir: str = None,
keep_in_memory: bool = False,
working_dir: str = None,
load_from_cache_file: bool = True,
file_format: str = "arrow",
**kwargs,
):
super().__init__(
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
streaming=streaming,
**kwargs,
)
self._load_from_cache_file = load_from_cache_file
self._file_format = file_format
self.builder = Spark(
df=df,
features=features,
cache_dir=cache_dir,
working_dir=working_dir,
**kwargs,
)
def read(self):
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split)
download_mode = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=download_mode,
file_format=self._file_format,
)
return self.builder.as_dataset(split=self.split)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/io/text.py | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class TextDatasetReader(AbstractDatasetReader):
def __init__(
self,
path_or_paths: NestedDataStructureLike[PathLike],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
streaming: bool = False,
num_proc: Optional[int] = None,
**kwargs,
):
super().__init__(
path_or_paths,
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
streaming=streaming,
num_proc=num_proc,
**kwargs,
)
path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}
self.builder = Text(
cache_dir=cache_dir,
data_files=path_or_paths,
features=features,
**kwargs,
)
def read(self):
# Build iterable dataset
if self.streaming:
dataset = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
download_config = None
download_mode = None
verification_mode = None
base_path = None
self.builder.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
# try_from_hf_gcs=try_from_hf_gcs,
base_path=base_path,
num_proc=self.num_proc,
)
dataset = self.builder.as_dataset(
split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory
)
return dataset
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/io/csv.py | import multiprocessing
import os
from typing import BinaryIO, Optional, Union
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.csv.csv import Csv
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class CsvDatasetReader(AbstractDatasetReader):
def __init__(
self,
path_or_paths: NestedDataStructureLike[PathLike],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
streaming: bool = False,
num_proc: Optional[int] = None,
**kwargs,
):
super().__init__(
path_or_paths,
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
streaming=streaming,
num_proc=num_proc,
**kwargs,
)
path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}
self.builder = Csv(
cache_dir=cache_dir,
data_files=path_or_paths,
features=features,
**kwargs,
)
def read(self):
# Build iterable dataset
if self.streaming:
dataset = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
download_config = None
download_mode = None
verification_mode = None
base_path = None
self.builder.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
# try_from_hf_gcs=try_from_hf_gcs,
base_path=base_path,
num_proc=self.num_proc,
)
dataset = self.builder.as_dataset(
split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory
)
return dataset
class CsvDatasetWriter:
def __init__(
self,
dataset: Dataset,
path_or_buf: Union[PathLike, BinaryIO],
batch_size: Optional[int] = None,
num_proc: Optional[int] = None,
**to_csv_kwargs,
):
if num_proc is not None and num_proc <= 0:
raise ValueError(f"num_proc {num_proc} must be an integer > 0.")
self.dataset = dataset
self.path_or_buf = path_or_buf
self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
self.num_proc = num_proc
self.encoding = "utf-8"
self.to_csv_kwargs = to_csv_kwargs
def write(self) -> int:
_ = self.to_csv_kwargs.pop("path_or_buf", None)
header = self.to_csv_kwargs.pop("header", True)
index = self.to_csv_kwargs.pop("index", False)
if isinstance(self.path_or_buf, (str, bytes, os.PathLike)):
with open(self.path_or_buf, "wb+") as buffer:
written = self._write(file_obj=buffer, header=header, index=index, **self.to_csv_kwargs)
else:
written = self._write(file_obj=self.path_or_buf, header=header, index=index, **self.to_csv_kwargs)
return written
def _batch_csv(self, args):
offset, header, index, to_csv_kwargs = args
batch = query_table(
table=self.dataset.data,
key=slice(offset, offset + self.batch_size),
indices=self.dataset._indices,
)
csv_str = batch.to_pandas().to_csv(
path_or_buf=None, header=header if (offset == 0) else False, index=index, **to_csv_kwargs
)
return csv_str.encode(self.encoding)
def _write(self, file_obj: BinaryIO, header, index, **to_csv_kwargs) -> int:
"""Writes the pyarrow table as CSV to a binary file handle.
Caller is responsible for opening and closing the handle.
"""
written = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0, len(self.dataset), self.batch_size),
unit="ba",
disable=not logging.is_progress_bar_enabled(),
desc="Creating CSV from Arrow format",
):
csv_str = self._batch_csv((offset, header, index, to_csv_kwargs))
written += file_obj.write(csv_str)
else:
num_rows, batch_size = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for csv_str in logging.tqdm(
pool.imap(
self._batch_csv,
[(offset, header, index, to_csv_kwargs) for offset in range(0, num_rows, batch_size)],
),
total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,
unit="ba",
disable=not logging.is_progress_bar_enabled(),
desc="Creating CSV from Arrow format",
):
written += file_obj.write(csv_str)
return written
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/io/json.py | import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class JsonDatasetReader(AbstractDatasetReader):
def __init__(
self,
path_or_paths: NestedDataStructureLike[PathLike],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
streaming: bool = False,
field: Optional[str] = None,
num_proc: Optional[int] = None,
**kwargs,
):
super().__init__(
path_or_paths,
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
streaming=streaming,
num_proc=num_proc,
**kwargs,
)
self.field = field
path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}
self.builder = Json(
cache_dir=cache_dir,
data_files=path_or_paths,
features=features,
field=field,
**kwargs,
)
def read(self):
# Build iterable dataset
if self.streaming:
dataset = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
download_config = None
download_mode = None
verification_mode = None
base_path = None
self.builder.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
# try_from_hf_gcs=try_from_hf_gcs,
base_path=base_path,
num_proc=self.num_proc,
)
dataset = self.builder.as_dataset(
split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory
)
return dataset
class JsonDatasetWriter:
def __init__(
self,
dataset: Dataset,
path_or_buf: Union[PathLike, BinaryIO],
batch_size: Optional[int] = None,
num_proc: Optional[int] = None,
**to_json_kwargs,
):
if num_proc is not None and num_proc <= 0:
raise ValueError(f"num_proc {num_proc} must be an integer > 0.")
self.dataset = dataset
self.path_or_buf = path_or_buf
self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
self.num_proc = num_proc
self.encoding = "utf-8"
self.to_json_kwargs = to_json_kwargs
def write(self) -> int:
_ = self.to_json_kwargs.pop("path_or_buf", None)
orient = self.to_json_kwargs.pop("orient", "records")
lines = self.to_json_kwargs.pop("lines", True if orient == "records" else False)
index = self.to_json_kwargs.pop("index", False if orient in ["split", "table"] else True)
compression = self.to_json_kwargs.pop("compression", None)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(f"`datasets` currently does not support {compression} compression")
if isinstance(self.path_or_buf, (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf, "wb", compression=compression) as buffer:
written = self._write(file_obj=buffer, orient=orient, lines=lines, index=index, **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
f"The compression parameter is not supported when writing to a buffer, but compression={compression}"
" was passed. Please provide a local path instead."
)
written = self._write(
file_obj=self.path_or_buf, orient=orient, lines=lines, index=index, **self.to_json_kwargs
)
return written
def _batch_json(self, args):
offset, orient, lines, index, to_json_kwargs = args
batch = query_table(
table=self.dataset.data,
key=slice(offset, offset + self.batch_size),
indices=self.dataset._indices,
)
json_str = batch.to_pandas().to_json(
path_or_buf=None, orient=orient, lines=lines, index=index, **to_json_kwargs
)
if not json_str.endswith("\n"):
json_str += "\n"
return json_str.encode(self.encoding)
def _write(
self,
file_obj: BinaryIO,
orient,
lines,
index,
**to_json_kwargs,
) -> int:
"""Writes the pyarrow table as JSON lines to a binary file handle.
Caller is responsible for opening and closing the handle.
"""
written = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0, len(self.dataset), self.batch_size),
unit="ba",
disable=not logging.is_progress_bar_enabled(),
desc="Creating json from Arrow format",
):
json_str = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(json_str)
else:
num_rows, batch_size = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json,
[(offset, orient, lines, index, to_json_kwargs) for offset in range(0, num_rows, batch_size)],
),
total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,
unit="ba",
disable=not logging.is_progress_bar_enabled(),
desc="Creating json from Arrow format",
):
written += file_obj.write(json_str)
return written
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/__init__.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# flake8: noqa
# Lint as: python3
"""Util import."""
__all__ = [
"VerificationMode",
"Version",
"disable_progress_bar",
"enable_progress_bar",
"is_progress_bar_enabled",
"experimental",
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/file_utils.py | """
Utilities for working with the local dataset cache.
This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
Copyright by the AllenNLP authors.
"""
import copy
import io
import json
import os
import posixpath
import re
import shutil
import sys
import time
import urllib
from contextlib import closing, contextmanager
from functools import partial
from hashlib import sha256
from pathlib import Path
from typing import List, Optional, Type, TypeVar, Union
from urllib.parse import urljoin, urlparse
import fsspec
import huggingface_hub
import requests
from huggingface_hub import HfFolder
from packaging import version
from .. import __version__, config
from ..download.download_config import DownloadConfig
from . import logging
from .extract import ExtractManager
from .filelock import FileLock
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
INCOMPLETE_SUFFIX = ".incomplete"
T = TypeVar("T", str, Path)
def init_hf_modules(hf_modules_cache: Optional[Union[Path, str]] = None) -> str:
"""
Add hf_modules_cache to the python path.
By default hf_modules_cache='~/.cache/huggingface/modules'.
It can also be set with the environment variable HF_MODULES_CACHE.
This is used to add modules such as `datasets_modules`
"""
hf_modules_cache = hf_modules_cache if hf_modules_cache is not None else config.HF_MODULES_CACHE
hf_modules_cache = str(hf_modules_cache)
if hf_modules_cache not in sys.path:
sys.path.append(hf_modules_cache)
os.makedirs(hf_modules_cache, exist_ok=True)
if not os.path.exists(os.path.join(hf_modules_cache, "__init__.py")):
with open(os.path.join(hf_modules_cache, "__init__.py"), "w"):
pass
return hf_modules_cache
def is_remote_url(url_or_filename: str) -> bool:
return urlparse(url_or_filename).scheme != "" and not os.path.ismount(urlparse(url_or_filename).scheme + ":/")
def is_local_path(url_or_filename: str) -> bool:
# On unix the scheme of a local path is empty (for both absolute and relative),
# while on windows the scheme is the drive name (ex: "c") for absolute paths.
# for details on the windows behavior, see https://bugs.python.org/issue42215
return urlparse(url_or_filename).scheme == "" or os.path.ismount(urlparse(url_or_filename).scheme + ":/")
def is_relative_path(url_or_filename: str) -> bool:
return urlparse(url_or_filename).scheme == "" and not os.path.isabs(url_or_filename)
def relative_to_absolute_path(path: T) -> T:
"""Convert relative path to absolute path."""
abs_path_str = os.path.abspath(os.path.expanduser(os.path.expandvars(str(path))))
return Path(abs_path_str) if isinstance(path, Path) else abs_path_str
def hf_bucket_url(identifier: str, filename: str, use_cdn=False, dataset=True) -> str:
if dataset:
endpoint = config.CLOUDFRONT_DATASETS_DISTRIB_PREFIX if use_cdn else config.S3_DATASETS_BUCKET_PREFIX
else:
endpoint = config.CLOUDFRONT_METRICS_DISTRIB_PREFIX if use_cdn else config.S3_METRICS_BUCKET_PREFIX
return "/".join((endpoint, identifier, filename))
def head_hf_s3(
identifier: str, filename: str, use_cdn=False, dataset=True, max_retries=0
) -> Union[requests.Response, Exception]:
return http_head(
hf_bucket_url(identifier=identifier, filename=filename, use_cdn=use_cdn, dataset=dataset),
max_retries=max_retries,
)
def hf_github_url(path: str, name: str, dataset=True, revision: Optional[str] = None) -> str:
default_revision = "main" if version.parse(__version__).is_devrelease else __version__
revision = revision or default_revision
if dataset:
return config.REPO_DATASETS_URL.format(revision=revision, path=path, name=name)
else:
return config.REPO_METRICS_URL.format(revision=revision, path=path, name=name)
def url_or_path_join(base_name: str, *pathnames: str) -> str:
if is_remote_url(base_name):
return posixpath.join(base_name, *(str(pathname).replace(os.sep, "/").lstrip("/") for pathname in pathnames))
else:
return Path(base_name, *pathnames).as_posix()
def url_or_path_parent(url_or_path: str) -> str:
if is_remote_url(url_or_path):
return url_or_path[: url_or_path.rindex("/")]
else:
return os.path.dirname(url_or_path)
def hash_url_to_filename(url, etag=None):
"""
Convert `url` into a hashed filename in a repeatable way.
If `etag` is specified, append its hash to the url's, delimited
by a period.
If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name
so that TF 2.0 can identify it as a HDF5 file
(see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
"""
url_bytes = url.encode("utf-8")
url_hash = sha256(url_bytes)
filename = url_hash.hexdigest()
if etag:
etag_bytes = etag.encode("utf-8")
etag_hash = sha256(etag_bytes)
filename += "." + etag_hash.hexdigest()
if url.endswith(".py"):
filename += ".py"
return filename
def cached_path(
url_or_filename,
download_config=None,
**download_kwargs,
) -> str:
"""
Given something that might be a URL (or might be a local path),
determine which. If it's a URL, download the file and cache it, and
return the path to the cached file. If it's already a local path,
make sure the file exists and then return the path.
Return:
Local path (string)
Raises:
FileNotFoundError: in case of non-recoverable file
(non-existent or no cache on disk)
ConnectionError: in case of unreachable url
and no cache on disk
ValueError: if it couldn't parse the url or filename correctly
requests.exceptions.ConnectionError: in case of internet connection issue
"""
if download_config is None:
download_config = DownloadConfig(**download_kwargs)
cache_dir = download_config.cache_dir or config.DOWNLOADED_DATASETS_PATH
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
if isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if is_remote_url(url_or_filename):
# URL, so get it from the cache (downloading if necessary)
output_path = get_from_cache(
url_or_filename,
cache_dir=cache_dir,
force_download=download_config.force_download,
proxies=download_config.proxies,
resume_download=download_config.resume_download,
user_agent=download_config.user_agent,
local_files_only=download_config.local_files_only,
use_etag=download_config.use_etag,
max_retries=download_config.max_retries,
token=download_config.token,
ignore_url_params=download_config.ignore_url_params,
storage_options=download_config.storage_options,
download_desc=download_config.download_desc,
)
elif os.path.exists(url_or_filename):
# File, and it exists.
output_path = url_or_filename
elif is_local_path(url_or_filename):
# File, but it doesn't exist.
raise FileNotFoundError(f"Local file {url_or_filename} doesn't exist")
else:
# Something unknown
raise ValueError(f"unable to parse {url_or_filename} as a URL or as a local path")
if output_path is None:
return output_path
if download_config.extract_compressed_file:
output_path = ExtractManager(cache_dir=download_config.cache_dir).extract(
output_path, force_extract=download_config.force_extract
)
return output_path
def get_datasets_user_agent(user_agent: Optional[Union[str, dict]] = None) -> str:
ua = f"datasets/{__version__}"
ua += f"; python/{config.PY_VERSION}"
ua += f"; huggingface_hub/{huggingface_hub.__version__}"
ua += f"; pyarrow/{config.PYARROW_VERSION}"
if config.TORCH_AVAILABLE:
ua += f"; torch/{config.TORCH_VERSION}"
if config.TF_AVAILABLE:
ua += f"; tensorflow/{config.TF_VERSION}"
if config.JAX_AVAILABLE:
ua += f"; jax/{config.JAX_VERSION}"
if config.BEAM_AVAILABLE:
ua += f"; apache_beam/{config.BEAM_VERSION}"
if isinstance(user_agent, dict):
ua += f"; {'; '.join(f'{k}/{v}' for k, v in user_agent.items())}"
elif isinstance(user_agent, str):
ua += "; " + user_agent
return ua
def get_authentication_headers_for_url(url: str, token: Optional[Union[str, bool]] = None) -> dict:
"""Handle the HF authentication"""
headers = {}
if url.startswith(config.HF_ENDPOINT):
if token is False:
token = None
elif isinstance(token, str):
token = token
else:
token = HfFolder.get_token()
if token:
headers["authorization"] = f"Bearer {token}"
return headers
class OfflineModeIsEnabled(ConnectionError):
pass
def _raise_if_offline_mode_is_enabled(msg: Optional[str] = None):
"""Raise an OfflineModeIsEnabled error (subclass of ConnectionError) if HF_DATASETS_OFFLINE is True."""
if config.HF_DATASETS_OFFLINE:
raise OfflineModeIsEnabled(
"Offline mode is enabled." if msg is None else "Offline mode is enabled. " + str(msg)
)
def _retry(
func,
func_args: Optional[tuple] = None,
func_kwargs: Optional[dict] = None,
exceptions: Type[requests.exceptions.RequestException] = requests.exceptions.RequestException,
status_codes: Optional[List[int]] = None,
max_retries: int = 0,
base_wait_time: float = 0.5,
max_wait_time: float = 2,
):
func_args = func_args or ()
func_kwargs = func_kwargs or {}
retry = 0
while True:
try:
return func(*func_args, **func_kwargs)
except exceptions as err:
if retry >= max_retries or (status_codes and err.response.status_code not in status_codes):
raise err
else:
sleep_time = min(max_wait_time, base_wait_time * 2**retry) # Exponential backoff
logger.info(f"{func} timed out, retrying in {sleep_time}s... [{retry/max_retries}]")
time.sleep(sleep_time)
retry += 1
def _request_with_retry(
method: str,
url: str,
max_retries: int = 0,
base_wait_time: float = 0.5,
max_wait_time: float = 2,
timeout: float = 10.0,
**params,
) -> requests.Response:
"""Wrapper around requests to retry in case it fails with a ConnectTimeout, with exponential backoff.
Note that if the environment variable HF_DATASETS_OFFLINE is set to 1, then a OfflineModeIsEnabled error is raised.
Args:
method (str): HTTP method, such as 'GET' or 'HEAD'.
url (str): The URL of the resource to fetch.
max_retries (int): Maximum number of retries, defaults to 0 (no retries).
base_wait_time (float): Duration (in seconds) to wait before retrying the first time. Wait time between
retries then grows exponentially, capped by max_wait_time.
max_wait_time (float): Maximum amount of time between two retries, in seconds.
**params (additional keyword arguments): Params to pass to :obj:`requests.request`.
"""
_raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
tries, success = 0, False
while not success:
tries += 1
try:
response = requests.request(method=method.upper(), url=url, timeout=timeout, **params)
success = True
except (requests.exceptions.ConnectTimeout, requests.exceptions.ConnectionError) as err:
if tries > max_retries:
raise err
else:
logger.info(f"{method} request to {url} timed out, retrying... [{tries/max_retries}]")
sleep_time = min(max_wait_time, base_wait_time * 2 ** (tries - 1)) # Exponential backoff
time.sleep(sleep_time)
return response
def fsspec_head(url, storage_options=None):
_raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
fs, _, paths = fsspec.get_fs_token_paths(url, storage_options=storage_options)
if len(paths) > 1:
raise ValueError(f"HEAD can be called with at most one path but was called with {paths}")
return fs.info(paths[0])
class TqdmCallback(fsspec.callbacks.TqdmCallback):
def __init__(self, tqdm_kwargs=None, *args, **kwargs):
super().__init__(tqdm_kwargs, *args, **kwargs)
self._tqdm = logging # replace tqdm.tqdm by datasets.logging.tqdm
def fsspec_get(url, temp_file, storage_options=None, desc=None):
_raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
fs, _, paths = fsspec.get_fs_token_paths(url, storage_options=storage_options)
if len(paths) > 1:
raise ValueError(f"GET can be called with at most one path but was called with {paths}")
callback = TqdmCallback(
tqdm_kwargs={
"desc": desc or "Downloading",
"disable": not logging.is_progress_bar_enabled(),
"unit": "B",
"unit_scale": True,
}
)
fs.get_file(paths[0], temp_file.name, callback=callback)
def ftp_head(url, timeout=10.0):
_raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
try:
with closing(urllib.request.urlopen(url, timeout=timeout)) as r:
r.read(1)
except Exception:
return False
return True
def ftp_get(url, temp_file, timeout=10.0):
_raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
try:
logger.info(f"Getting through FTP {url} into {temp_file.name}")
with closing(urllib.request.urlopen(url, timeout=timeout)) as r:
shutil.copyfileobj(r, temp_file)
except urllib.error.URLError as e:
raise ConnectionError(e) from None
def http_get(
url, temp_file, proxies=None, resume_size=0, headers=None, cookies=None, timeout=100.0, max_retries=0, desc=None
):
headers = copy.deepcopy(headers) or {}
headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent"))
if resume_size > 0:
headers["Range"] = f"bytes={resume_size:d}-"
response = _request_with_retry(
method="GET",
url=url,
stream=True,
proxies=proxies,
headers=headers,
cookies=cookies,
max_retries=max_retries,
timeout=timeout,
)
if response.status_code == 416: # Range not satisfiable
return
content_length = response.headers.get("Content-Length")
total = resume_size + int(content_length) if content_length is not None else None
with logging.tqdm(
unit="B",
unit_scale=True,
total=total,
initial=resume_size,
desc=desc or "Downloading",
disable=not logging.is_progress_bar_enabled(),
) as progress:
for chunk in response.iter_content(chunk_size=1024):
progress.update(len(chunk))
temp_file.write(chunk)
def http_head(
url, proxies=None, headers=None, cookies=None, allow_redirects=True, timeout=10.0, max_retries=0
) -> requests.Response:
headers = copy.deepcopy(headers) or {}
headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent"))
response = _request_with_retry(
method="HEAD",
url=url,
proxies=proxies,
headers=headers,
cookies=cookies,
allow_redirects=allow_redirects,
timeout=timeout,
max_retries=max_retries,
)
return response
def request_etag(url: str, token: Optional[Union[str, bool]] = None) -> Optional[str]:
if urlparse(url).scheme not in ("http", "https"):
return None
headers = get_authentication_headers_for_url(url, token=token)
response = http_head(url, headers=headers, max_retries=3)
response.raise_for_status()
etag = response.headers.get("ETag") if response.ok else None
return etag
def get_from_cache(
url,
cache_dir=None,
force_download=False,
proxies=None,
etag_timeout=100,
resume_download=False,
user_agent=None,
local_files_only=False,
use_etag=True,
max_retries=0,
token=None,
ignore_url_params=False,
storage_options=None,
download_desc=None,
) -> str:
"""
Given a URL, look for the corresponding file in the local cache.
If it's not there, download it. Then return the path to the cached file.
Return:
Local path (string)
Raises:
FileNotFoundError: in case of non-recoverable file
(non-existent or no cache on disk)
ConnectionError: in case of unreachable url
and no cache on disk
"""
if cache_dir is None:
cache_dir = config.HF_DATASETS_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
os.makedirs(cache_dir, exist_ok=True)
if ignore_url_params:
# strip all query parameters and #fragments from the URL
cached_url = urljoin(url, urlparse(url).path)
else:
cached_url = url # additional parameters may be added to the given URL
connected = False
response = None
cookies = None
etag = None
head_error = None
scheme = None
# Try a first time to file the file on the local file system without eTag (None)
# if we don't ask for 'force_download' then we spare a request
filename = hash_url_to_filename(cached_url, etag=None)
cache_path = os.path.join(cache_dir, filename)
if os.path.exists(cache_path) and not force_download and not use_etag:
return cache_path
# Prepare headers for authentication
headers = get_authentication_headers_for_url(url, token=token)
if user_agent is not None:
headers["user-agent"] = user_agent
# We don't have the file locally or we need an eTag
if not local_files_only:
scheme = urlparse(url).scheme
if scheme == "ftp":
connected = ftp_head(url)
elif scheme not in ("http", "https"):
response = fsspec_head(url, storage_options=storage_options)
# s3fs uses "ETag", gcsfs uses "etag"
etag = (response.get("ETag", None) or response.get("etag", None)) if use_etag else None
connected = True
try:
response = http_head(
url,
allow_redirects=True,
proxies=proxies,
timeout=etag_timeout,
max_retries=max_retries,
headers=headers,
)
if response.status_code == 200: # ok
etag = response.headers.get("ETag") if use_etag else None
for k, v in response.cookies.items():
# In some edge cases, we need to get a confirmation token
if k.startswith("download_warning") and "drive.google.com" in url:
url += "&confirm=" + v
cookies = response.cookies
connected = True
# Fix Google Drive URL to avoid Virus scan warning
if "drive.google.com" in url and "confirm=" not in url:
url += "&confirm=t"
# In some edge cases, head request returns 400 but the connection is actually ok
elif (
(response.status_code == 400 and "firebasestorage.googleapis.com" in url)
or (response.status_code == 405 and "drive.google.com" in url)
or (
response.status_code == 403
and (
re.match(r"^https?://github.com/.*?/.*?/releases/download/.*?/.*?$", url)
or re.match(r"^https://.*?s3.*?amazonaws.com/.*?$", response.url)
)
)
or (response.status_code == 403 and "ndownloader.figstatic.com" in url)
):
connected = True
logger.info(f"Couldn't get ETag version for url {url}")
elif response.status_code == 401 and config.HF_ENDPOINT in url and token is None:
raise ConnectionError(
f"Unauthorized for URL {url}. Please use the parameter `token=True` after logging in with `huggingface-cli login`"
)
except (OSError, requests.exceptions.Timeout) as e:
# not connected
head_error = e
pass
# connected == False = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if not connected:
if os.path.exists(cache_path) and not force_download:
return cache_path
if local_files_only:
raise FileNotFoundError(
f"Cannot find the requested files in the cached path at {cache_path} and outgoing traffic has been"
" disabled. To enable file online look-ups, set 'local_files_only' to False."
)
elif response is not None and response.status_code == 404:
raise FileNotFoundError(f"Couldn't find file at {url}")
_raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
if head_error is not None:
raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})")
elif response is not None:
raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})")
else:
raise ConnectionError(f"Couldn't reach {url}")
# Try a second time
filename = hash_url_to_filename(cached_url, etag)
cache_path = os.path.join(cache_dir, filename)
if os.path.exists(cache_path) and not force_download:
return cache_path
# From now on, connected is True.
# Prevent parallel downloads of the same file with a lock.
lock_path = cache_path + ".lock"
with FileLock(lock_path):
# Retry in case previously locked processes just enter after the precedent process releases the lock
if os.path.exists(cache_path) and not force_download:
return cache_path
incomplete_path = cache_path + ".incomplete"
@contextmanager
def temp_file_manager(mode="w+b"):
with open(incomplete_path, mode) as f:
yield f
resume_size = 0
if resume_download:
temp_file_manager = partial(temp_file_manager, mode="a+b")
if os.path.exists(incomplete_path):
resume_size = os.stat(incomplete_path).st_size
# Download to temporary file, then copy to cache path once finished.
# Otherwise, you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
logger.info(f"{url} not found in cache or force_download set to True, downloading to {temp_file.name}")
# GET file object
if scheme == "ftp":
ftp_get(url, temp_file)
elif scheme not in ("http", "https"):
fsspec_get(url, temp_file, storage_options=storage_options, desc=download_desc)
else:
http_get(
url,
temp_file,
proxies=proxies,
resume_size=resume_size,
headers=headers,
cookies=cookies,
max_retries=max_retries,
desc=download_desc,
)
logger.info(f"storing {url} in cache at {cache_path}")
shutil.move(temp_file.name, cache_path)
umask = os.umask(0o666)
os.umask(umask)
os.chmod(cache_path, 0o666 & ~umask)
logger.info(f"creating metadata file for {cache_path}")
meta = {"url": url, "etag": etag}
meta_path = cache_path + ".json"
with open(meta_path, "w", encoding="utf-8") as meta_file:
json.dump(meta, meta_file)
return cache_path
def add_start_docstrings(*docstr):
def docstring_decorator(fn):
fn.__doc__ = "".join(docstr) + "\n\n" + (fn.__doc__ if fn.__doc__ is not None else "")
return fn
return docstring_decorator
def add_end_docstrings(*docstr):
def docstring_decorator(fn):
fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "\n\n" + "".join(docstr)
return fn
return docstring_decorator
def estimate_dataset_size(paths):
return sum(path.stat().st_size for path in paths)
def readline(f: io.RawIOBase):
# From: https://github.com/python/cpython/blob/d27e2f4d118e7a9909b6a3e5da06c5ff95806a85/Lib/_pyio.py#L525
res = bytearray()
while True:
b = f.read(1)
if not b:
break
res += b
if res.endswith(b"\n"):
break
return bytes(res)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/stratify.py | import numpy as np
def approximate_mode(class_counts, n_draws, rng):
"""Computes approximate mode of multivariate hypergeometric.
This is an approximation to the mode of the multivariate
hypergeometric given by class_counts and n_draws.
It shouldn't be off by more than one.
It is the mostly likely outcome of drawing n_draws many
samples from the population given by class_counts.
Args
----------
class_counts : ndarray of int
Population per class.
n_draws : int
Number of draws (samples to draw) from the overall population.
rng : random state
Used to break ties.
Returns
-------
sampled_classes : ndarray of int
Number of samples drawn from each class.
np.sum(sampled_classes) == n_draws
"""
# this computes a bad approximation to the mode of the
# multivariate hypergeometric given by class_counts and n_draws
continuous = n_draws * class_counts / class_counts.sum()
# floored means we don't overshoot n_samples, but probably undershoot
floored = np.floor(continuous)
# we add samples according to how much "left over" probability
# they had, until we arrive at n_samples
need_to_add = int(n_draws - floored.sum())
if need_to_add > 0:
remainder = continuous - floored
values = np.sort(np.unique(remainder))[::-1]
# add according to remainder, but break ties
# randomly to avoid biases
for value in values:
(inds,) = np.where(remainder == value)
# if we need_to_add less than what's in inds
# we draw randomly from them.
# if we need to add more, we add them all and
# go to the next value
add_now = min(len(inds), need_to_add)
inds = rng.choice(inds, size=add_now, replace=False)
floored[inds] += 1
need_to_add -= add_now
if need_to_add == 0:
break
return floored.astype(np.int64)
def stratified_shuffle_split_generate_indices(y, n_train, n_test, rng, n_splits=10):
"""
Provides train/test indices to split data in train/test sets.
It's reference is taken from StratifiedShuffleSplit implementation
of scikit-learn library.
Args
----------
n_train : int,
represents the absolute number of train samples.
n_test : int,
represents the absolute number of test samples.
random_state : int or RandomState instance, default=None
Controls the randomness of the training and testing indices produced.
Pass an int for reproducible output across multiple function calls.
n_splits : int, default=10
Number of re-shuffling & splitting iterations.
"""
classes, y_indices = np.unique(y, return_inverse=True)
n_classes = classes.shape[0]
class_counts = np.bincount(y_indices)
if np.min(class_counts) < 2:
raise ValueError("Minimum class count error")
if n_train < n_classes:
raise ValueError(
"The train_size = %d should be greater or " "equal to the number of classes = %d" % (n_train, n_classes)
)
if n_test < n_classes:
raise ValueError(
"The test_size = %d should be greater or " "equal to the number of classes = %d" % (n_test, n_classes)
)
class_indices = np.split(np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1])
for _ in range(n_splits):
n_i = approximate_mode(class_counts, n_train, rng)
class_counts_remaining = class_counts - n_i
t_i = approximate_mode(class_counts_remaining, n_test, rng)
train = []
test = []
for i in range(n_classes):
permutation = rng.permutation(class_counts[i])
perm_indices_class_i = class_indices[i].take(permutation, mode="clip")
train.extend(perm_indices_class_i[: n_i[i]])
test.extend(perm_indices_class_i[n_i[i] : n_i[i] + t_i[i]])
train = rng.permutation(train)
test = rng.permutation(test)
yield train, test
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/experimental.py | """Contains utilities to flag a feature as "experimental" in datasets."""
import warnings
from functools import wraps
from typing import Callable
def experimental(fn: Callable) -> Callable:
"""Decorator to flag a feature as experimental.
An experimental feature trigger a warning when used as it might be subject to breaking changes in the future.
Args:
fn (`Callable`):
The function to flag as experimental.
Returns:
`Callable`: The decorated function.
Example:
```python
>>> from datasets.utils import experimental
>>> @experimental
... def my_function():
... print("Hello world!")
>>> my_function()
UserWarning: 'my_function' is experimental and might be subject to breaking changes in the future.
Hello world!
```
"""
@wraps(fn)
def _inner_fn(*args, **kwargs):
warnings.warn(
(f"'{fn.__name__}' is experimental and might be subject to breaking changes in the future."),
UserWarning,
)
return fn(*args, **kwargs)
return _inner_fn
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/doc_utils.py | from typing import Callable
def is_documented_by(function_with_docstring: Callable):
"""Decorator to share docstrings across common functions.
Args:
function_with_docstring (`Callable`): Name of the function with the docstring.
"""
def wrapper(target_function):
target_function.__doc__ = function_with_docstring.__doc__
return target_function
return wrapper
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/typing.py | import os
from typing import Dict, List, Tuple, TypeVar, Union
T = TypeVar("T")
ListLike = Union[List[T], Tuple[T, ...]]
NestedDataStructureLike = Union[T, List[T], Dict[str, T]]
PathLike = Union[str, bytes, os.PathLike]
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/logging.py | # Copyright 2020 Optuna, Hugging Face
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Logging utilities. """
import logging
import os
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
from tqdm import auto as tqdm_lib
log_levels = {
"debug": logging.DEBUG,
"info": logging.INFO,
"warning": logging.WARNING,
"error": logging.ERROR,
"critical": logging.CRITICAL,
}
_default_log_level = logging.WARNING
def _get_default_logging_level():
"""
If DATASETS_VERBOSITY env var is set to one of the valid choices return that as the new default level.
If it is not - fall back to ``_default_log_level``
"""
env_level_str = os.getenv("DATASETS_VERBOSITY", None)
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"Unknown option DATASETS_VERBOSITY={env_level_str}, "
f"has to be one of: { ', '.join(log_levels.keys()) }"
)
return _default_log_level
def _get_library_name() -> str:
return __name__.split(".")[0]
def _get_library_root_logger() -> logging.Logger:
return logging.getLogger(_get_library_name())
def _configure_library_root_logger() -> None:
# Apply our default configuration to the library root logger.
library_root_logger = _get_library_root_logger()
library_root_logger.addHandler(logging.StreamHandler())
library_root_logger.setLevel(_get_default_logging_level())
def _reset_library_root_logger() -> None:
library_root_logger = _get_library_root_logger()
library_root_logger.setLevel(logging.NOTSET)
def get_logger(name: Optional[str] = None) -> logging.Logger:
"""Return a logger with the specified name.
This function can be used in dataset scripts.
"""
if name is None:
name = _get_library_name()
return logging.getLogger(name)
def get_verbosity() -> int:
"""Return the current level for the HuggingFace datasets library's root logger.
Returns:
Logging level, e.g., `datasets.logging.DEBUG` and `datasets.logging.INFO`.
<Tip>
HuggingFace datasets library has following logging levels:
- `datasets.logging.CRITICAL`, `datasets.logging.FATAL`
- `datasets.logging.ERROR`
- `datasets.logging.WARNING`, `datasets.logging.WARN`
- `datasets.logging.INFO`
- `datasets.logging.DEBUG`
</Tip>
"""
return _get_library_root_logger().getEffectiveLevel()
def set_verbosity(verbosity: int) -> None:
"""Set the level for the Hugging Face Datasets library's root logger.
Args:
verbosity:
Logging level, e.g., `datasets.logging.DEBUG` and `datasets.logging.INFO`.
"""
_get_library_root_logger().setLevel(verbosity)
def set_verbosity_info():
"""Set the level for the Hugging Face datasets library's root logger to `INFO`.
This will display most of the logging information and tqdm bars.
Shortcut to `datasets.logging.set_verbosity(datasets.logging.INFO)`.
"""
return set_verbosity(INFO)
def set_verbosity_warning():
"""Set the level for the Hugging Face datasets library's root logger to `WARNING`.
This will display only the warning and errors logging information and tqdm bars.
Shortcut to `datasets.logging.set_verbosity(datasets.logging.WARNING)`.
"""
return set_verbosity(WARNING)
def set_verbosity_debug():
"""Set the level for the Hugging Face datasets library's root logger to `DEBUG`.
This will display all the logging information and tqdm bars.
Shortcut to `datasets.logging.set_verbosity(datasets.logging.DEBUG)`.
"""
return set_verbosity(DEBUG)
def set_verbosity_error():
"""Set the level for the Hugging Face datasets library's root logger to `ERROR`.
This will display only the errors logging information and tqdm bars.
Shortcut to `datasets.logging.set_verbosity(datasets.logging.ERROR)`.
"""
return set_verbosity(ERROR)
def disable_propagation() -> None:
"""Disable propagation of the library log outputs.
Note that log propagation is disabled by default.
"""
_get_library_root_logger().propagate = False
def enable_propagation() -> None:
"""Enable propagation of the library log outputs.
Please disable the Hugging Face datasets library's default handler to prevent double logging if the root logger has
been configured.
"""
_get_library_root_logger().propagate = True
# Configure the library root logger at the module level (singleton-like)
_configure_library_root_logger()
class EmptyTqdm:
"""Dummy tqdm which doesn't do anything."""
def __init__(self, *args, **kwargs): # pylint: disable=unused-argument
self._iterator = args[0] if args else None
def __iter__(self):
return iter(self._iterator)
def __getattr__(self, _):
"""Return empty function."""
def empty_fn(*args, **kwargs): # pylint: disable=unused-argument
return
return empty_fn
def __enter__(self):
return self
def __exit__(self, type_, value, traceback):
return
_tqdm_active = True
class _tqdm_cls:
def __call__(self, *args, disable=False, **kwargs):
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*args, **kwargs)
else:
return EmptyTqdm(*args, **kwargs)
def set_lock(self, *args, **kwargs):
self._lock = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*args, **kwargs)
def get_lock(self):
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
def __delattr__(self, attr):
"""fix for https://github.com/huggingface/datasets/issues/6066"""
try:
del self.__dict__[attr]
except KeyError:
if attr != "_lock":
raise AttributeError(attr)
tqdm = _tqdm_cls()
def is_progress_bar_enabled() -> bool:
"""Return a boolean indicating whether tqdm progress bars are enabled."""
global _tqdm_active
return bool(_tqdm_active)
def enable_progress_bar():
"""Enable tqdm progress bar."""
global _tqdm_active
_tqdm_active = True
def disable_progress_bar():
"""Disable tqdm progress bar."""
global _tqdm_active
_tqdm_active = False
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/deprecation_utils.py | import enum
import inspect
import warnings
from functools import wraps
from typing import Callable, Optional
from .logging import get_logger
_emitted_deprecation_warnings = set()
logger = get_logger(__name__)
def deprecated(help_message: Optional[str] = None):
"""Decorator to mark a class or a function as deprecated.
Args:
help_message (:obj:`str`, optional): An optional message to guide the user on how to
switch to non-deprecated usage of the library.
"""
def decorator(deprecated_class_or_function: Callable):
global _emitted_deprecation_warnings
if inspect.isclass(deprecated_class_or_function):
deprecated_function = deprecated_class_or_function.__init__
name = deprecated_class_or_function.__name__
else:
deprecated_function = deprecated_class_or_function
name = deprecated_function.__name__
# Support deprecating __init__ class method: class name instead
name = name if name != "__init__" else deprecated_function.__qualname__.split(".")[-2]
warning_msg = (
f"{name} is deprecated and will be removed in the next major version of datasets." + f" {help_message}"
if help_message
else ""
)
@wraps(deprecated_function)
def wrapper(*args, **kwargs):
func_hash = hash(deprecated_function)
if func_hash not in _emitted_deprecation_warnings:
warnings.warn(warning_msg, category=FutureWarning, stacklevel=2)
_emitted_deprecation_warnings.add(func_hash)
return deprecated_function(*args, **kwargs)
wrapper._decorator_name_ = "deprecated"
if inspect.isclass(deprecated_class_or_function):
deprecated_class_or_function.__init__ = wrapper
return deprecated_class_or_function
else:
return wrapper
return decorator
class OnAccess(enum.EnumMeta):
"""
Enum metaclass that calls a user-specified function whenever a member is accessed.
"""
def __getattribute__(cls, name):
obj = super().__getattribute__(name)
if isinstance(obj, enum.Enum) and obj._on_access:
obj._on_access()
return obj
def __getitem__(cls, name):
member = super().__getitem__(name)
if member._on_access:
member._on_access()
return member
def __call__(cls, value, names=None, *, module=None, qualname=None, type=None, start=1):
obj = super().__call__(value, names, module=module, qualname=qualname, type=type, start=start)
if isinstance(obj, enum.Enum) and obj._on_access:
obj._on_access()
return obj
class DeprecatedEnum(enum.Enum, metaclass=OnAccess):
"""
Enum class that calls `deprecate` method whenever a member is accessed.
"""
def __new__(cls, value):
member = object.__new__(cls)
member._value_ = value
member._on_access = member.deprecate
return member
@property
def help_message(self):
return ""
def deprecate(self):
help_message = f" {self.help_message}" if self.help_message else ""
warnings.warn(
f"'{self.__objclass__.__name__}' is deprecated and will be removed in the next major version of datasets."
+ help_message,
FutureWarning,
stacklevel=3,
)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/metadata.py | import textwrap
from collections import Counter
from pathlib import Path
from typing import Any, ClassVar, Dict, Optional, Tuple, Union
import yaml
from huggingface_hub import DatasetCardData
from ..config import METADATA_CONFIGS_FIELD
from ..utils.logging import get_logger
from .deprecation_utils import deprecated
logger = get_logger(__name__)
class _NoDuplicateSafeLoader(yaml.SafeLoader):
def _check_no_duplicates_on_constructed_node(self, node):
keys = [self.constructed_objects[key_node] for key_node, _ in node.value]
keys = [tuple(key) if isinstance(key, list) else key for key in keys]
counter = Counter(keys)
duplicate_keys = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}")
def construct_mapping(self, node, deep=False):
mapping = super().construct_mapping(node, deep=deep)
self._check_no_duplicates_on_constructed_node(node)
return mapping
def _split_yaml_from_readme(readme_content: str) -> Tuple[Optional[str], str]:
full_content = list(readme_content.splitlines())
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
sep_idx = full_content[1:].index("---") + 1
yamlblock = "\n".join(full_content[1:sep_idx])
return yamlblock, "\n".join(full_content[sep_idx + 1 :])
return None, "\n".join(full_content)
@deprecated("Use `huggingface_hub.DatasetCardData` instead.")
class DatasetMetadata(dict):
# class attributes
_FIELDS_WITH_DASHES = {"train_eval_index"} # train-eval-index in the YAML metadata
@classmethod
def from_readme(cls, path: Union[Path, str]) -> "DatasetMetadata":
"""Loads and validates the dataset metadata from its dataset card (README.md)
Args:
path (:obj:`Path`): Path to the dataset card (its README.md file)
Returns:
:class:`DatasetMetadata`: The dataset's metadata
Raises:
:obj:`TypeError`: If the dataset's metadata is invalid
"""
with open(path, encoding="utf-8") as readme_file:
yaml_string, _ = _split_yaml_from_readme(readme_file.read())
if yaml_string is not None:
return cls.from_yaml_string(yaml_string)
else:
return cls()
def to_readme(self, path: Path):
if path.exists():
with open(path, encoding="utf-8") as readme_file:
readme_content = readme_file.read()
else:
readme_content = None
updated_readme_content = self._to_readme(readme_content)
with open(path, "w", encoding="utf-8") as readme_file:
readme_file.write(updated_readme_content)
def _to_readme(self, readme_content: Optional[str] = None) -> str:
if readme_content is not None:
_, content = _split_yaml_from_readme(readme_content)
full_content = "---\n" + self.to_yaml_string() + "---\n" + content
else:
full_content = "---\n" + self.to_yaml_string() + "---\n"
return full_content
@classmethod
def from_yaml_string(cls, string: str) -> "DatasetMetadata":
"""Loads and validates the dataset metadata from a YAML string
Args:
string (:obj:`str`): The YAML string
Returns:
:class:`DatasetMetadata`: The dataset's metadata
Raises:
:obj:`TypeError`: If the dataset's metadata is invalid
"""
metadata_dict = yaml.load(string, Loader=_NoDuplicateSafeLoader) or {}
# Convert the YAML keys to DatasetMetadata fields
metadata_dict = {
(key.replace("-", "_") if key.replace("-", "_") in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**metadata_dict)
def to_yaml_string(self) -> str:
return yaml.safe_dump(
{
(key.replace("_", "-") if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
},
sort_keys=False,
allow_unicode=True,
encoding="utf-8",
).decode("utf-8")
class MetadataConfigs(Dict[str, Dict[str, Any]]):
"""Should be in format {config_name: {**config_params}}."""
FIELD_NAME: ClassVar[str] = METADATA_CONFIGS_FIELD
@staticmethod
def _raise_if_data_files_field_not_valid(metadata_config: dict):
yaml_data_files = metadata_config.get("data_files")
if yaml_data_files is not None:
yaml_error_message = textwrap.dedent(
f"""
Expected data_files in YAML to be either a string or a list of strings
or a list of dicts with two keys: 'split' and 'path', but got {yaml_data_files}
Examples of data_files in YAML:
data_files: data.csv
data_files: data/*.png
data_files:
- part0/*
- part1/*
data_files:
- split: train
path: train/*
- split: test
path: test/*
data_files:
- split: train
path:
- train/part1/*
- train/part2/*
- split: test
path: test/*
"""
)
if not isinstance(yaml_data_files, (list, str)):
raise ValueError(yaml_error_message)
if isinstance(yaml_data_files, list):
for yaml_data_files_item in yaml_data_files:
if (
not isinstance(yaml_data_files_item, (str, dict))
or isinstance(yaml_data_files_item, dict)
and not (
len(yaml_data_files_item) == 2
and "split" in yaml_data_files_item
and isinstance(yaml_data_files_item.get("path"), (str, list))
)
):
raise ValueError(yaml_error_message)
@classmethod
def from_dataset_card_data(cls, dataset_card_data: DatasetCardData) -> "MetadataConfigs":
if dataset_card_data.get(cls.FIELD_NAME):
metadata_configs = dataset_card_data[cls.FIELD_NAME]
if not isinstance(metadata_configs, list):
raise ValueError(f"Expected {cls.FIELD_NAME} to be a list, but got '{metadata_configs}'")
for metadata_config in metadata_configs:
if "config_name" not in metadata_config:
raise ValueError(
f"Each config must include `config_name` field with a string name of a config, "
f"but got {metadata_config}. "
)
cls._raise_if_data_files_field_not_valid(metadata_config)
return cls(
{
config["config_name"]: {param: value for param, value in config.items() if param != "config_name"}
for config in metadata_configs
}
)
return cls()
def to_dataset_card_data(self, dataset_card_data: DatasetCardData) -> None:
if self:
for metadata_config in self.values():
self._raise_if_data_files_field_not_valid(metadata_config)
current_metadata_configs = self.from_dataset_card_data(dataset_card_data)
total_metadata_configs = dict(sorted({**current_metadata_configs, **self}.items()))
for config_name, config_metadata in total_metadata_configs.items():
config_metadata.pop("config_name", None)
dataset_card_data[self.FIELD_NAME] = [
{"config_name": config_name, **config_metadata}
for config_name, config_metadata in total_metadata_configs.items()
]
def get_default_config_name(self) -> Optional[str]:
default_config_name = None
for config_name, metadata_config in self.items():
if config_name == "default" or metadata_config.get("default"):
if default_config_name is None:
default_config_name = config_name
else:
raise ValueError(
f"Dataset has several default configs: '{default_config_name}' and '{config_name}'."
)
return default_config_name
# DEPRECATED - just here to support old versions of evaluate like 0.2.2
# To support new tasks on the Hugging Face Hub, please open a PR for this file:
# https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
known_task_ids = {
"image-classification": [],
"translation": [],
"image-segmentation": [],
"fill-mask": [],
"automatic-speech-recognition": [],
"token-classification": [],
"sentence-similarity": [],
"audio-classification": [],
"question-answering": [],
"summarization": [],
"zero-shot-classification": [],
"table-to-text": [],
"feature-extraction": [],
"other": [],
"multiple-choice": [],
"text-classification": [],
"text-to-image": [],
"text2text-generation": [],
"zero-shot-image-classification": [],
"tabular-classification": [],
"tabular-regression": [],
"image-to-image": [],
"tabular-to-text": [],
"unconditional-image-generation": [],
"text-retrieval": [],
"text-to-speech": [],
"object-detection": [],
"audio-to-audio": [],
"text-generation": [],
"conversational": [],
"table-question-answering": [],
"visual-question-answering": [],
"image-to-text": [],
"reinforcement-learning": [],
"voice-activity-detection": [],
"time-series-forecasting": [],
"document-question-answering": [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
ap = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.")
ap.add_argument("readme_filepath")
args = ap.parse_args()
readme_filepath = Path(args.readme_filepath)
dataset_metadata = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/tf_utils.py | # Copyright 2022 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF-specific utils import."""
import os
import warnings
from functools import partial
from math import ceil
from uuid import uuid4
import numpy as np
import pyarrow as pa
from multiprocess import get_context
try:
from multiprocess.shared_memory import SharedMemory
except ImportError:
SharedMemory = None # Version checks should prevent this being called on older Python versions
from .. import config
def minimal_tf_collate_fn(features):
if isinstance(features, dict): # case batch_size=None: nothing to collate
return features
elif config.TF_AVAILABLE:
import tensorflow as tf
else:
raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.")
first = features[0]
batch = {}
for k, v in first.items():
if isinstance(v, np.ndarray):
batch[k] = np.stack([f[k] for f in features])
elif isinstance(v, tf.Tensor):
batch[k] = tf.stack([f[k] for f in features])
else:
batch[k] = np.array([f[k] for f in features])
return batch
def minimal_tf_collate_fn_with_renaming(features):
batch = minimal_tf_collate_fn(features)
if "label" in batch:
batch["labels"] = batch["label"]
del batch["label"]
return batch
def is_numeric_pa_type(pa_type):
if pa.types.is_list(pa_type):
return is_numeric_pa_type(pa_type.value_type)
return pa.types.is_integer(pa_type) or pa.types.is_floating(pa_type) or pa.types.is_decimal(pa_type)
def is_numeric_feature(feature):
from .. import ClassLabel, Sequence, Value
from ..features.features import _ArrayXD
if isinstance(feature, Sequence):
return is_numeric_feature(feature.feature)
elif isinstance(feature, list):
return is_numeric_feature(feature[0])
elif isinstance(feature, _ArrayXD):
return is_numeric_pa_type(feature().storage_dtype)
elif isinstance(feature, Value):
return is_numeric_pa_type(feature())
elif isinstance(feature, ClassLabel):
return True
else:
return False
def np_get_batch(
indices, dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, return_dict=False
):
if not isinstance(indices, np.ndarray):
indices = indices.numpy()
is_batched = True
# Optimization - if we're loading a sequential batch, do it with slicing instead of a list of indices
if isinstance(indices, np.integer):
batch = dataset[indices.item()]
is_batched = False
elif np.all(np.diff(indices) == 1):
batch = dataset[indices[0] : indices[-1] + 1]
elif isinstance(indices, np.ndarray):
batch = dataset[indices]
else:
raise RuntimeError("Unexpected type for indices: {}".format(type(indices)))
if cols_to_retain is not None:
batch = {
key: value
for key, value in batch.items()
if key in cols_to_retain or key in ("label", "label_ids", "labels")
}
if is_batched:
actual_size = len(list(batch.values())[0]) # Get the length of one of the arrays, assume all same
# Our collators expect a list of dicts, not a dict of lists/arrays, so we invert
batch = [{key: value[i] for key, value in batch.items()} for i in range(actual_size)]
batch = collate_fn(batch, **collate_fn_args)
if return_dict:
out_batch = {}
for col, cast_dtype in columns_to_np_types.items():
# In case the collate_fn returns something strange
array = np.array(batch[col])
array = array.astype(cast_dtype)
out_batch[col] = array
else:
out_batch = []
for col, cast_dtype in columns_to_np_types.items():
# In case the collate_fn returns something strange
array = np.array(batch[col])
array = array.astype(cast_dtype)
out_batch.append(array)
return out_batch
def dataset_to_tf(
dataset,
cols_to_retain,
collate_fn,
collate_fn_args,
columns_to_np_types,
output_signature,
shuffle,
batch_size,
drop_remainder,
):
"""Create a tf.data.Dataset from the underlying Dataset. This is a single-process method - the multiprocess
equivalent is multiprocess_dataset_to_tf.
Args:
dataset (`Dataset`): Dataset to wrap with tf.data.Dataset.
cols_to_retain (`List[str]`): Dataset column(s) to load in the
tf.data.Dataset. It is acceptable to include column names that are created by the `collate_fn` and
that do not exist in the original dataset.
collate_fn(`Callable`): A function or callable object (such as a `DataCollator`) that will collate
lists of samples into a batch.
collate_fn_args (`Dict`): A `dict` of keyword arguments to be passed to the
`collate_fn`. Can be empty.
columns_to_np_types (`Dict[str, np.dtype]`): A `dict` mapping column names to numpy dtypes.
output_signature (`Dict[str, tf.TensorSpec]`): A `dict` mapping column names to
`tf.TensorSpec` objects.
shuffle(`bool`): Shuffle the dataset order when loading. Recommended True for training, False for
validation/evaluation.
batch_size (`int`, default `None`): Size of batches to load from the dataset. Defaults to `None`, which implies that
the dataset won't be batched, but the returned dataset can be batched later with `tf_dataset.batch(batch_size)`.
drop_remainder(`bool`, default `None`): Drop the last incomplete batch when loading. If not provided,
defaults to the same setting as shuffle.
Returns:
`tf.data.Dataset`
"""
if config.TF_AVAILABLE:
import tensorflow as tf
else:
raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.")
# TODO Matt: When our minimum Python version is 3.8 or higher, we can delete all of this and move everything
# to the NumPy multiprocessing path.
if hasattr(tf, "random_index_shuffle"):
random_index_shuffle = tf.random_index_shuffle
elif hasattr(tf.random.experimental, "index_shuffle"):
random_index_shuffle = tf.random.experimental.index_shuffle
else:
if len(dataset) > 10_000_000:
warnings.warn(
"to_tf_dataset() can be memory-inefficient on versions of TensorFlow older than 2.9. "
"If you are iterating over a dataset with a very large number of samples, consider "
"upgrading to TF >= 2.9."
)
random_index_shuffle = None
getter_fn = partial(
np_get_batch,
dataset=dataset,
cols_to_retain=cols_to_retain,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
columns_to_np_types=columns_to_np_types,
return_dict=False,
)
# This works because dictionaries always output in the same order
tout = [tf.dtypes.as_dtype(dtype) for dtype in columns_to_np_types.values()]
@tf.function(input_signature=[tf.TensorSpec(None, tf.int64)])
def fetch_function(indices):
output = tf.py_function(
getter_fn,
inp=[indices],
Tout=tout,
)
return {key: output[i] for i, key in enumerate(columns_to_np_types.keys())}
tf_dataset = tf.data.Dataset.range(len(dataset))
if shuffle and random_index_shuffle is not None:
base_seed = tf.fill((3,), value=tf.cast(-1, dtype=tf.int64))
def scan_random_index(state, index):
if tf.reduce_all(state == -1):
# This generates a new random seed once per epoch only,
# to ensure that we iterate over each sample exactly once per epoch
state = tf.random.uniform(shape=(3,), maxval=2**62, dtype=tf.int64)
shuffled_index = random_index_shuffle(index=index, seed=state, max_index=len(dataset) - 1)
return state, shuffled_index
tf_dataset = tf_dataset.scan(base_seed, scan_random_index)
elif shuffle:
tf_dataset = tf_dataset.shuffle(tf_dataset.cardinality())
if batch_size is not None:
tf_dataset = tf_dataset.batch(batch_size, drop_remainder=drop_remainder)
tf_dataset = tf_dataset.map(fetch_function)
if batch_size is not None:
def ensure_shapes(input_dict):
return {key: tf.ensure_shape(val, output_signature[key].shape) for key, val in input_dict.items()}
else:
# Ensure shape but remove batch dimension of output_signature[key].shape
def ensure_shapes(input_dict):
return {key: tf.ensure_shape(val, output_signature[key].shape[1:]) for key, val in input_dict.items()}
return tf_dataset.map(ensure_shapes)
class SharedMemoryContext:
# This is a context manager for creating shared memory that ensures cleanup happens even if a process is interrupted
# The process that creates shared memory is always the one responsible for unlinking it in the end
def __init__(self):
self.created_shms = []
self.opened_shms = []
def get_shm(self, name, size, create):
shm = SharedMemory(size=int(size), name=name, create=create)
if create:
# We only unlink the ones we created in this context
self.created_shms.append(shm)
else:
# If we didn't create it, we only close it when done, we don't unlink it
self.opened_shms.append(shm)
return shm
def get_array(self, name, shape, dtype, create):
shm = self.get_shm(name=name, size=np.prod(shape) * np.dtype(dtype).itemsize, create=create)
return np.ndarray(shape, dtype=dtype, buffer=shm.buf)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
for shm in self.created_shms:
shm.close()
shm.unlink()
for shm in self.opened_shms:
shm.close()
class NumpyMultiprocessingGenerator:
def __init__(
self,
dataset,
cols_to_retain,
collate_fn,
collate_fn_args,
columns_to_np_types,
output_signature,
shuffle,
batch_size,
drop_remainder,
num_workers,
):
self.dataset = dataset
self.cols_to_retain = cols_to_retain
self.collate_fn = collate_fn
self.collate_fn_args = collate_fn_args
self.string_columns = [col for col, dtype in columns_to_np_types.items() if dtype in (np.unicode_, np.str_)]
# Strings will be converted to arrays of single unicode chars, so that we can have a constant itemsize
self.columns_to_np_types = {
col: dtype if col not in self.string_columns else np.dtype("U1")
for col, dtype in columns_to_np_types.items()
}
self.output_signature = output_signature
self.shuffle = shuffle
self.batch_size = batch_size
self.drop_remainder = drop_remainder
self.num_workers = num_workers
# Because strings are converted to characters, we need to add one extra dimension to the shape
self.columns_to_ranks = {
col: int(spec.shape.rank) if col not in self.string_columns else int(spec.shape.rank) + 1
for col, spec in output_signature.items()
}
def __iter__(self):
# Make sure we only spawn workers if they have work to do
num_workers = min(self.num_workers, int(ceil(len(self.dataset) / self.batch_size)))
# Do the shuffling in iter so that it's done at the start of each epoch
per_worker_batches, final_batch, final_batch_worker = self.distribute_batches(
self.dataset, self.batch_size, self.drop_remainder, num_workers, self.shuffle
)
ctx = get_context("spawn")
names = []
shape_arrays = []
workers = []
array_ready_events = [ctx.Event() for _ in range(num_workers)]
array_loaded_events = [ctx.Event() for _ in range(num_workers)]
base_args = {
"dataset": self.dataset,
"cols_to_retain": self.cols_to_retain,
"collate_fn": self.collate_fn,
"collate_fn_args": self.collate_fn_args,
"columns_to_np_types": self.columns_to_np_types,
"columns_to_ranks": self.columns_to_ranks,
"string_columns": self.string_columns,
}
with SharedMemoryContext() as shm_ctx:
for i in range(num_workers):
worker_random_id = str(uuid4())
worker_name = f"dw_{i}_{worker_random_id}"[:10]
names.append(worker_name)
worker_shape_arrays = {
col: shm_ctx.get_array(f"{worker_name}_{col}_shape", shape=(rank,), dtype=np.int64, create=True)
for col, rank in self.columns_to_ranks.items()
}
shape_arrays.append(worker_shape_arrays)
worker_indices = per_worker_batches[i]
if i == final_batch_worker and final_batch is not None:
final_batch_arg = final_batch
else:
final_batch_arg = None
worker_kwargs = {
"worker_name": worker_name,
"indices": worker_indices,
"extra_batch": final_batch_arg,
"array_ready_event": array_ready_events[i],
"array_loaded_event": array_loaded_events[i],
**base_args,
}
worker = ctx.Process(target=self.worker_loop, kwargs=worker_kwargs, daemon=True)
worker.start()
workers.append(worker)
end_signal_received = False
while not end_signal_received:
for i in range(num_workers):
if not array_ready_events[i].wait(timeout=60):
raise TimeoutError("Data loading worker timed out!")
array_ready_events[i].clear()
array_shapes = shape_arrays[i]
if any(np.any(shape < 0) for shape in array_shapes.values()):
# Child processes send negative array shapes to indicate
# that no more data is going to be sent
end_signal_received = True
break
# Matt: Because array shapes are variable we recreate the shared memory each iteration.
# I suspect repeatedly opening lots of shared memory is the bottleneck for the parent process.
# A future optimization, at the cost of some code complexity, could be to reuse shared memory
# between iterations, but this would require knowing in advance the maximum size, or having
# a system to only create a new memory block when a new maximum size is seen.
# Another potential optimization would be to figure out which memory copies are necessary,
# or whether we can yield objects straight out of shared memory.
with SharedMemoryContext() as batch_shm_ctx:
# This memory context only lasts long enough to copy everything out of the batch
arrays = {
col: batch_shm_ctx.get_array(
f"{names[i]}_{col}",
shape=shape,
dtype=self.columns_to_np_types[col],
create=False,
)
for col, shape in array_shapes.items()
}
# Copy everything out of shm because the memory
# will be unlinked by the child process at some point
arrays = {col: np.copy(arr) for col, arr in arrays.items()}
# Now we convert any unicode char arrays to strings
for string_col in self.string_columns:
arrays[string_col] = (
arrays[string_col].view(f"U{arrays[string_col].shape[-1]}").squeeze(-1)
)
yield arrays
array_loaded_events[i].set()
# Now we just do some cleanup
# Shared memory is cleaned up by the context manager, so we just make sure workers finish
for worker in workers:
worker.join()
def __call__(self):
return self
@staticmethod
def worker_loop(
dataset,
cols_to_retain,
collate_fn,
collate_fn_args,
columns_to_np_types,
columns_to_ranks,
string_columns,
indices,
extra_batch,
worker_name,
array_ready_event,
array_loaded_event,
):
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
if config.TF_AVAILABLE:
import tensorflow as tf
else:
raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.")
tf.config.set_visible_devices([], "GPU") # Make sure workers don't try to allocate GPU memory
def send_batch_to_parent(indices):
batch = np_get_batch(
indices=indices,
dataset=dataset,
cols_to_retain=cols_to_retain,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
columns_to_np_types=columns_to_np_types,
return_dict=True,
)
# Now begins the fun part where we start shovelling shared memory at the parent process
out_arrays = {}
with SharedMemoryContext() as batch_shm_ctx:
# The batch shared memory context exists only as long as it takes for the parent process
# to read everything, after which it cleans everything up again
for col, cast_dtype in columns_to_np_types.items():
# Everything has to be np.array for this to work, even if the collate_fn is giving us tf.Tensor
array = batch[col]
if col in string_columns:
# We can't send unicode arrays over shared memory, so we convert to single chars ("U1")
# which have a fixed width of 4 bytes. The parent process will convert these back to strings.
array = array.view("U1").reshape(array.shape + (-1,))
shape_arrays[col][:] = array.shape
out_arrays[col] = batch_shm_ctx.get_array(
f"{worker_name}_{col}", shape=array.shape, dtype=cast_dtype, create=True
)
out_arrays[col][:] = array
array_ready_event.set()
array_loaded_event.wait()
array_loaded_event.clear()
with SharedMemoryContext() as shm_ctx:
shape_arrays = {
col: shm_ctx.get_array(f"{worker_name}_{col}_shape", shape=(rank,), dtype=np.int64, create=False)
for col, rank in columns_to_ranks.items()
}
for batch in indices:
send_batch_to_parent(batch)
if extra_batch is not None:
send_batch_to_parent(extra_batch)
# Now we send a batsignal to the parent process that we're done
for col, array in shape_arrays.items():
array[:] = -1
array_ready_event.set()
@staticmethod
def distribute_batches(dataset, batch_size, drop_remainder, num_workers, shuffle):
indices = np.arange(len(dataset))
if shuffle:
np.random.shuffle(indices)
num_samples = len(indices)
# We distribute the batches so that reading from the workers in round-robin order yields the exact
# order specified in indices. This is only important when shuffle is False, but we do it regardless.
incomplete_batch_cutoff = num_samples - (num_samples % batch_size)
indices, last_incomplete_batch = np.split(indices, [incomplete_batch_cutoff])
if drop_remainder or len(last_incomplete_batch) == 0:
last_incomplete_batch = None
indices = indices.reshape(-1, batch_size)
num_batches = len(indices)
final_batches_cutoff = num_batches - (num_batches % num_workers)
indices, final_batches = np.split(indices, [final_batches_cutoff])
indices = indices.reshape(-1, num_workers, batch_size)
per_worker_indices = np.split(indices, indices.shape[1], axis=1)
per_worker_indices = [np.squeeze(worker_indices, 1) for worker_indices in per_worker_indices]
# Distribute the final batches to the first workers
for i in range(len(final_batches)):
# len(final_batches) can be zero, and is always less than num_workers
per_worker_indices[i] = np.concatenate([per_worker_indices[i], final_batches[i].reshape(1, -1)], axis=0)
# Add the last incomplete batch to the next worker, which might be the first worker
if last_incomplete_batch is not None:
incomplete_batch_worker_idx = len(final_batches)
else:
incomplete_batch_worker_idx = None
return per_worker_indices, last_incomplete_batch, incomplete_batch_worker_idx
def multiprocess_dataset_to_tf(
dataset,
cols_to_retain,
collate_fn,
collate_fn_args,
columns_to_np_types,
output_signature,
shuffle,
batch_size,
drop_remainder,
num_workers,
):
"""Create a tf.data.Dataset from the underlying Dataset. This is a multi-process method - the single-process
equivalent is dataset_to_tf.
Args:
dataset (`Dataset`): Dataset to wrap with tf.data.Dataset.
cols_to_retain (`List[str]`): Dataset column(s) to load in the
tf.data.Dataset. It is acceptable to include column names that are created by the `collate_fn` and
that do not exist in the original dataset.
collate_fn(`Callable`): A function or callable object (such as a `DataCollator`) that will collate
lists of samples into a batch.
collate_fn_args (`Dict`): A `dict` of keyword arguments to be passed to the
`collate_fn`. Can be empty.
columns_to_np_types (`Dict[str, np.dtype]`): A `dict` mapping column names to numpy dtypes.
output_signature (`Dict[str, tf.TensorSpec]`): A `dict` mapping column names to
`tf.TensorSpec` objects.
shuffle(`bool`): Shuffle the dataset order when loading. Recommended True for training, False for
validation/evaluation.
batch_size (`int`, default `None`): Size of batches to load from the dataset. Defaults to `None`, which implies that
the dataset won't be batched, but the returned dataset can be batched later with `tf_dataset.batch(batch_size)`.
drop_remainder(`bool`, default `None`): Drop the last incomplete batch when loading. If not provided,
defaults to the same setting as shuffle.
num_workers (`int`): Number of workers to use for loading the dataset. Should be >= 1.
Returns:
`tf.data.Dataset`
"""
if config.TF_AVAILABLE:
import tensorflow as tf
else:
raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.")
data_generator = NumpyMultiprocessingGenerator(
dataset=dataset,
cols_to_retain=cols_to_retain,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
columns_to_np_types=columns_to_np_types,
output_signature=output_signature,
shuffle=shuffle,
batch_size=batch_size,
drop_remainder=drop_remainder,
num_workers=num_workers,
)
tf_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=output_signature)
if drop_remainder:
dataset_length = int(len(dataset) // batch_size)
else:
dataset_length = int(ceil(len(dataset) / batch_size))
return tf_dataset.apply(tf.data.experimental.assert_cardinality(dataset_length))
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/beam_utils.py | import os
from apache_beam.io.filesystems import FileSystems
from apache_beam.pipeline import Pipeline
from .logging import get_logger
CHUNK_SIZE = 2 << 20 # 2mb
logger = get_logger(__name__)
class BeamPipeline(Pipeline):
"""Wrapper over `apache_beam.pipeline.Pipeline` for convenience"""
def is_local(self):
runner = self._options.get_all_options().get("runner")
return runner in [None, "DirectRunner", "PortableRunner"]
def upload_local_to_remote(local_file_path, remote_file_path, force_upload=False):
"""Use the Beam Filesystems to upload to a remote directory on gcs/s3/hdfs..."""
fs = FileSystems
if fs.exists(remote_file_path):
if force_upload:
logger.info(f"Remote path already exist: {remote_file_path}. Overwriting it as force_upload=True.")
else:
logger.info(f"Remote path already exist: {remote_file_path}. Skipping it as force_upload=False.")
return
with fs.create(remote_file_path) as remote_file:
with open(local_file_path, "rb") as local_file:
chunk = local_file.read(CHUNK_SIZE)
while chunk:
remote_file.write(chunk)
chunk = local_file.read(CHUNK_SIZE)
def download_remote_to_local(remote_file_path, local_file_path, force_download=False):
"""Use the Beam Filesystems to download from a remote directory on gcs/s3/hdfs..."""
fs = FileSystems
if os.path.exists(local_file_path):
if force_download:
logger.info(f"Local path already exist: {remote_file_path}. Overwriting it as force_upload=True.")
else:
logger.info(f"Local path already exist: {remote_file_path}. Skipping it as force_upload=False.")
return
with fs.open(remote_file_path) as remote_file:
with open(local_file_path, "wb") as local_file:
chunk = remote_file.read(CHUNK_SIZE)
while chunk:
local_file.write(chunk)
chunk = remote_file.read(CHUNK_SIZE)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/version.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Version utils."""
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
_VERSION_REG = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class Version:
"""Dataset version `MAJOR.MINOR.PATCH`.
Args:
version_str (`str`):
The dataset version.
description (`str`):
A description of what is new in this version.
major (`str`):
minor (`str`):
patch (`str`):
Example:
```py
>>> VERSION = datasets.Version("1.0.0")
```
"""
version_str: str
description: Optional[str] = None
major: Optional[Union[str, int]] = None
minor: Optional[Union[str, int]] = None
patch: Optional[Union[str, int]] = None
def __post_init__(self):
self.major, self.minor, self.patch = _str_to_version_tuple(self.version_str)
def __repr__(self):
return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}"
@property
def tuple(self):
return self.major, self.minor, self.patch
def _validate_operand(self, other):
if isinstance(other, str):
return Version(other)
elif isinstance(other, Version):
return other
raise TypeError(f"{other} (type {type(other)}) cannot be compared to version.")
def __eq__(self, other):
try:
other = self._validate_operand(other)
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__(self, other):
other = self._validate_operand(other)
return self.tuple < other.tuple
def __hash__(self):
return hash(_version_tuple_to_str(self.tuple))
@classmethod
def from_dict(cls, dic):
field_names = {f.name for f in dataclasses.fields(cls)}
return cls(**{k: v for k, v in dic.items() if k in field_names})
def _to_yaml_string(self) -> str:
return self.version_str
def _str_to_version_tuple(version_str):
"""Return the tuple (major, minor, patch) version extracted from the str."""
res = _VERSION_REG.match(version_str)
if not res:
raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.")
return tuple(int(v) for v in [res.group("major"), res.group("minor"), res.group("patch")])
def _version_tuple_to_str(version_tuple):
"""Return the str version from the version tuple (major, minor, patch)."""
return ".".join(str(v) for v in version_tuple)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/patching.py | from importlib import import_module
from .logging import get_logger
logger = get_logger(__name__)
class _PatchedModuleObj:
"""Set all the modules components as attributes of the _PatchedModuleObj object."""
def __init__(self, module, attrs=None):
attrs = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__"):
setattr(self, key, getattr(module, key))
self._original_module = module._original_module if isinstance(module, _PatchedModuleObj) else module
class patch_submodule:
"""
Patch a submodule attribute of an object, by keeping all other submodules intact at all levels.
Example::
>>> import importlib
>>> from datasets.load import dataset_module_factory
>>> from datasets.streaming import patch_submodule, xjoin
>>>
>>> dataset_module = dataset_module_factory("snli")
>>> snli_module = importlib.import_module(dataset_module.module_path)
>>> patcher = patch_submodule(snli_module, "os.path.join", xjoin)
>>> patcher.start()
>>> assert snli_module.os.path.join is xjoin
"""
_active_patches = []
def __init__(self, obj, target: str, new, attrs=None):
self.obj = obj
self.target = target
self.new = new
self.key = target.split(".")[0]
self.original = {}
self.attrs = attrs or []
def __enter__(self):
*submodules, target_attr = self.target.split(".")
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(submodules)):
try:
submodule = import_module(".".join(submodules[: i + 1]))
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
obj_attr = getattr(self.obj, attr)
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(obj_attr, _PatchedModuleObj) and obj_attr._original_module is submodule)
):
self.original[attr] = obj_attr
# patch at top level
setattr(self.obj, attr, _PatchedModuleObj(obj_attr, attrs=self.attrs))
patched = getattr(self.obj, attr)
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(patched, key, _PatchedModuleObj(getattr(patched, key, None), attrs=self.attrs))
patched = getattr(patched, key)
# finally set the target attribute
setattr(patched, target_attr, self.new)
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
attr_value = getattr(import_module(".".join(submodules)), target_attr)
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj, attr) is attr_value:
self.original[attr] = getattr(self.obj, attr)
setattr(self.obj, attr, self.new)
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
self.original[target_attr] = globals()["__builtins__"][target_attr]
setattr(self.obj, target_attr, self.new)
else:
raise RuntimeError(f"Tried to patch attribute {target_attr} instead of a submodule.")
def __exit__(self, *exc_info):
for attr in list(self.original):
setattr(self.obj, attr, self.original.pop(attr))
def start(self):
"""Activate a patch."""
self.__enter__()
self._active_patches.append(self)
def stop(self):
"""Stop an active patch."""
try:
self._active_patches.remove(self)
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/hub.py | from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def hf_hub_url(repo_id: str, path: str, revision: Optional[str] = None) -> str:
if version.parse(hfh.__version__).release < version.parse("0.11.0").release:
# old versions of hfh don't url-encode the file path
path = quote(path)
return hfh.hf_hub_url(repo_id, path, repo_type="dataset", revision=revision)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/download_manager.py | # deprecated, please use daatsets.download.download_manager
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/readme.py | # loading package files: https://stackoverflow.com/a/20885799
import importlib.resources as pkg_resources
import logging
from pathlib import Path
from typing import Any, List, Tuple
import yaml
from . import resources
from .deprecation_utils import deprecated
BASE_REF_URL = "https://github.com/huggingface/datasets/tree/main/src/datasets/utils"
this_url = f"{BASE_REF_URL}/{__file__}"
logger = logging.getLogger(__name__)
def load_yaml_resource(resource: str) -> Tuple[Any, str]:
content = pkg_resources.read_text(resources, resource)
return yaml.safe_load(content), f"{BASE_REF_URL}/resources/{resource}"
readme_structure, known_readme_structure_url = load_yaml_resource("readme_structure.yaml")
FILLER_TEXT = [
"[Needs More Information]",
"[More Information Needed]",
"(https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)",
]
# Dictionary representation of section/readme, error_list, warning_list
ReadmeValidatorOutput = Tuple[dict, List[str], List[str]]
class Section:
def __init__(self, name: str, level: str, lines: List[str] = None, suppress_parsing_errors: bool = False):
self.name = name
self.level = level
self.lines = lines
self.text = ""
self.is_empty_text = True
self.content = {}
self.parsing_error_list = []
self.parsing_warning_list = []
if self.lines is not None:
self.parse(suppress_parsing_errors=suppress_parsing_errors)
def parse(self, suppress_parsing_errors: bool = False):
current_sub_level = ""
current_lines = []
code_start = False
for line in self.lines:
if line.strip(" \n") == "":
continue
elif line.strip(" \n")[:3] == "```":
code_start = not code_start
elif line.split()[0] == self.level + "#" and not code_start:
if current_sub_level != "":
self.content[current_sub_level] = Section(current_sub_level, self.level + "#", current_lines)
current_lines = []
else:
if current_lines != []:
self.text += "".join(current_lines).strip()
if self.text != "" and self.text not in FILLER_TEXT:
self.is_empty_text = False
current_lines = []
current_sub_level = " ".join(line.split()[1:]).strip(" \n")
else:
current_lines.append(line)
else:
if current_sub_level != "":
if current_sub_level in self.content:
self.parsing_error_list.append(
f"Multiple sections with the same heading `{current_sub_level}` have been found. Please keep only one of these sections."
)
self.content[current_sub_level] = Section(current_sub_level, self.level + "#", current_lines)
else:
if current_lines != []:
self.text += "".join(current_lines).strip()
if self.text != "" and self.text not in FILLER_TEXT:
self.is_empty_text = False
if self.level == "" and not suppress_parsing_errors:
if self.parsing_error_list != [] or self.parsing_warning_list != []:
errors = errors = "\n".join("-\t" + x for x in self.parsing_error_list + self.parsing_warning_list)
error_string = f"The following issues were found while parsing the README at `{self.name}`:\n" + errors
raise ValueError(error_string)
def validate(self, structure: dict) -> ReadmeValidatorOutput:
"""Validates a Section class object recursively using the structure provided as a dictionary.
Args:
structute (:obj: `dict`): The dictionary representing expected structure.
Returns:
:obj: `ReadmeValidatorOutput`: The dictionary representation of the section, and the errors.
"""
# Header text validation
error_list = []
warning_list = []
if structure["allow_empty"] is False:
# If content is expected
if self.is_empty_text and self.content == {}:
# If no content is found, mention it in the error_list
error_list.append(f"Expected some content in section `{self.name}` but it is empty.")
if structure["allow_empty_text"] is False:
# If some text is expected
if self.is_empty_text:
# If no text is found, mention it in the error_list
error_list.append(
f"Expected some text in section `{self.name}` but it is empty (text in subsections are ignored)."
)
# Subsections Validation
if structure["subsections"] is not None:
# If subsections are expected
if self.content == {}:
# If no subsections are present
values = [subsection["name"] for subsection in structure["subsections"]]
# Mention the expected values in the error_list
error_list.append(
f"Section `{self.name}` expected the following subsections: {', '.join(['`'+x+'`' for x in values])}. Found 'None'."
)
else:
# If some subsections are present
structure_names = [subsection["name"] for subsection in structure["subsections"]]
has_missing_subsections = False
for idx, name in enumerate(structure_names):
if name not in self.content:
# If the expected subsection is not present
error_list.append(f"Section `{self.name}` is missing subsection: `{name}`.")
has_missing_subsections = True
else:
# If the subsection is present, validate subsection, return the result
# and concat the errors from subsection to section error_list
# Skip sublevel validation if current level is `###`
if self.level == "###":
continue
else:
_, subsec_error_list, subsec_warning_list = self.content[name].validate(
structure["subsections"][idx]
)
error_list += subsec_error_list
warning_list += subsec_warning_list
if has_missing_subsections: # we only allow to have extra subsections if all the other ones are here
for name in self.content:
if name not in structure_names:
# If an extra subsection is present
warning_list.append(
f"`{self.name}` has an extra subsection: `{name}`. Skipping further validation checks for this subsection as expected structure is unknown."
)
if error_list:
# If there are errors, do not return the dictionary as it is invalid
return {}, error_list, warning_list
else:
return self.to_dict(), error_list, warning_list
def to_dict(self) -> dict:
"""Returns the dictionary representation of a section."""
return {
"name": self.name,
"text": self.text,
"is_empty_text": self.is_empty_text,
"subsections": [value.to_dict() for value in self.content.values()],
}
@deprecated("Use `huggingface_hub.DatasetCard` instead.")
class ReadMe(Section): # Level 0
def __init__(self, name: str, lines: List[str], structure: dict = None, suppress_parsing_errors: bool = False):
super().__init__(name=name, level="") # Not using lines here as we need to use a child class parse
self.structure = structure
self.yaml_tags_line_count = -2
self.tag_count = 0
self.lines = lines
if self.lines is not None:
self.parse(suppress_parsing_errors=suppress_parsing_errors)
def validate(self):
if self.structure is None:
content, error_list, warning_list = self._validate(readme_structure)
else:
content, error_list, warning_list = self._validate(self.structure)
if error_list != [] or warning_list != []:
errors = "\n".join(["-\t" + x for x in error_list + warning_list])
error_string = f"The following issues were found for the README at `{self.name}`:\n" + errors
raise ValueError(error_string)
@classmethod
def from_readme(cls, path: Path, structure: dict = None, suppress_parsing_errors: bool = False):
with open(path, encoding="utf-8") as f:
lines = f.readlines()
return cls(path, lines, structure, suppress_parsing_errors=suppress_parsing_errors)
@classmethod
def from_string(
cls, string: str, structure: dict = None, root_name: str = "root", suppress_parsing_errors: bool = False
):
lines = string.split("\n")
return cls(root_name, lines, structure, suppress_parsing_errors=suppress_parsing_errors)
def parse(self, suppress_parsing_errors: bool = False):
# Skip Tags
line_count = 0
for line in self.lines:
self.yaml_tags_line_count += 1
if line.strip(" \n") == "---":
self.tag_count += 1
if self.tag_count == 2:
break
line_count += 1
if self.tag_count == 2:
self.lines = self.lines[line_count + 1 :] # Get the last + 1 th item.
else:
self.lines = self.lines[self.tag_count :]
super().parse(suppress_parsing_errors=suppress_parsing_errors)
def __str__(self):
"""Returns the string of dictionary representation of the ReadMe."""
return str(self.to_dict())
def _validate(self, readme_structure):
error_list = []
warning_list = []
if self.yaml_tags_line_count == 0:
warning_list.append("Empty YAML markers are present in the README.")
elif self.tag_count == 0:
warning_list.append("No YAML markers are present in the README.")
elif self.tag_count == 1:
warning_list.append("Only the start of YAML tags present in the README.")
# Check how many first level sections are present.
num_first_level_keys = len(self.content.keys())
if num_first_level_keys > 1:
# If more than one, add to the error list, continue
error_list.append(
f"The README has several first-level headings: {', '.join(['`'+x+'`' for x in list(self.content.keys())])}. Only one heading is expected. Skipping further validation for this README."
)
elif num_first_level_keys < 1:
# If less than one, append error.
error_list.append(
"The README has no first-level headings. One heading is expected. Skipping further validation for this README."
)
else:
# If one exactly
start_key = list(self.content.keys())[0] # Get the key
if start_key.startswith("Dataset Card for"): # Check correct start
# If the starting is correct, validate all the sections
_, sec_error_list, sec_warning_list = self.content[start_key].validate(
readme_structure["subsections"][0]
)
error_list += sec_error_list
warning_list += sec_warning_list
else:
# If not found, append error
error_list.append(
"No first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README."
)
if error_list:
# If there are errors, do not return the dictionary as it is invalid
return {}, error_list, warning_list
else:
return self.to_dict(), error_list, warning_list
if __name__ == "__main__":
from argparse import ArgumentParser
ap = ArgumentParser(usage="Validate the content (excluding YAML tags) of a README.md file.")
ap.add_argument("readme_filepath")
args = ap.parse_args()
readme_filepath = Path(args.readme_filepath)
readme = ReadMe.from_readme(readme_filepath)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/extract.py | import bz2
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
logger = get_logger(__name__)
class ExtractManager:
def __init__(self, cache_dir: Optional[str] = None):
self.extract_dir = (
os.path.join(cache_dir, config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
self.extractor = Extractor
def _get_output_path(self, path: str) -> str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
abs_path = os.path.abspath(path)
return os.path.join(self.extract_dir, hash_url_to_filename(abs_path))
def _do_extract(self, output_path: str, force_extract: bool) -> bool:
return force_extract or (
not os.path.isfile(output_path) and not (os.path.isdir(output_path) and os.listdir(output_path))
)
def extract(self, input_path: str, force_extract: bool = False) -> str:
extractor_format = self.extractor.infer_extractor_format(input_path)
if not extractor_format:
return input_path
output_path = self._get_output_path(input_path)
if self._do_extract(output_path, force_extract):
self.extractor.extract(input_path, output_path, extractor_format)
return output_path
class BaseExtractor(ABC):
@classmethod
@abstractmethod
def is_extractable(cls, path: Union[Path, str], **kwargs) -> bool:
...
@staticmethod
@abstractmethod
def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None:
...
class MagicNumberBaseExtractor(BaseExtractor, ABC):
magic_numbers: List[bytes] = []
@staticmethod
def read_magic_number(path: Union[Path, str], magic_number_length: int):
with open(path, "rb") as f:
return f.read(magic_number_length)
@classmethod
def is_extractable(cls, path: Union[Path, str], magic_number: bytes = b"") -> bool:
if not magic_number:
magic_number_length = max(len(cls_magic_number) for cls_magic_number in cls.magic_numbers)
try:
magic_number = cls.read_magic_number(path, magic_number_length)
except OSError:
return False
return any(magic_number.startswith(cls_magic_number) for cls_magic_number in cls.magic_numbers)
class TarExtractor(BaseExtractor):
@classmethod
def is_extractable(cls, path: Union[Path, str], **kwargs) -> bool:
return tarfile.is_tarfile(path)
@staticmethod
def safemembers(members, output_path):
"""
Fix for CVE-2007-4559
Desc:
Directory traversal vulnerability in the (1) extract and (2) extractall functions in the tarfile
module in Python allows user-assisted remote attackers to overwrite arbitrary files via a .. (dot dot)
sequence in filenames in a TAR archive, a related issue to CVE-2001-1267.
See: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4559
From: https://stackoverflow.com/a/10077309
"""
def resolved(path: str) -> str:
return os.path.realpath(os.path.abspath(path))
def badpath(path: str, base: str) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(base, path)).startswith(base)
def badlink(info, base: str) -> bool:
# Links are interpreted relative to the directory containing the link
tip = resolved(os.path.join(base, os.path.dirname(info.name)))
return badpath(info.linkname, base=tip)
base = resolved(output_path)
for finfo in members:
if badpath(finfo.name, base):
logger.error(f"Extraction of {finfo.name} is blocked (illegal path)")
elif finfo.issym() and badlink(finfo, base):
logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}")
elif finfo.islnk() and badlink(finfo, base):
logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}")
else:
yield finfo
@staticmethod
def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None:
os.makedirs(output_path, exist_ok=True)
tar_file = tarfile.open(input_path)
tar_file.extractall(output_path, members=TarExtractor.safemembers(tar_file, output_path))
tar_file.close()
class GzipExtractor(MagicNumberBaseExtractor):
magic_numbers = [b"\x1F\x8B"]
@staticmethod
def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None:
with gzip.open(input_path, "rb") as gzip_file:
with open(output_path, "wb") as extracted_file:
shutil.copyfileobj(gzip_file, extracted_file)
class ZipExtractor(MagicNumberBaseExtractor):
magic_numbers = [
b"PK\x03\x04",
b"PK\x05\x06", # empty archive
b"PK\x07\x08", # spanned archive
]
@classmethod
def is_extractable(cls, path: Union[Path, str], magic_number: bytes = b"") -> bool:
if super().is_extractable(path, magic_number=magic_number):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(path, "rb") as fp:
endrec = _EndRecData(fp)
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
data = fp.read(sizeCentralDir) # CD is where we expect it to be
if len(data) == sizeCentralDir:
centdir = struct.unpack(structCentralDir, data) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None:
os.makedirs(output_path, exist_ok=True)
with zipfile.ZipFile(input_path, "r") as zip_file:
zip_file.extractall(output_path)
zip_file.close()
class XzExtractor(MagicNumberBaseExtractor):
magic_numbers = [b"\xFD\x37\x7A\x58\x5A\x00"]
@staticmethod
def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None:
with lzma.open(input_path) as compressed_file:
with open(output_path, "wb") as extracted_file:
shutil.copyfileobj(compressed_file, extracted_file)
class RarExtractor(MagicNumberBaseExtractor):
magic_numbers = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID
@staticmethod
def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None:
if not config.RARFILE_AVAILABLE:
raise ImportError("Please pip install rarfile")
import rarfile
os.makedirs(output_path, exist_ok=True)
rf = rarfile.RarFile(input_path)
rf.extractall(output_path)
rf.close()
class ZstdExtractor(MagicNumberBaseExtractor):
magic_numbers = [b"\x28\xb5\x2F\xFD"]
@staticmethod
def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError("Please pip install zstandard")
import zstandard as zstd
dctx = zstd.ZstdDecompressor()
with open(input_path, "rb") as ifh, open(output_path, "wb") as ofh:
dctx.copy_stream(ifh, ofh)
class Bzip2Extractor(MagicNumberBaseExtractor):
magic_numbers = [b"\x42\x5A\x68"]
@staticmethod
def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None:
with bz2.open(input_path, "rb") as compressed_file:
with open(output_path, "wb") as extracted_file:
shutil.copyfileobj(compressed_file, extracted_file)
class SevenZipExtractor(MagicNumberBaseExtractor):
magic_numbers = [b"\x37\x7A\xBC\xAF\x27\x1C"]
@staticmethod
def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None:
if not config.PY7ZR_AVAILABLE:
raise ImportError("Please pip install py7zr")
import py7zr
os.makedirs(output_path, exist_ok=True)
with py7zr.SevenZipFile(input_path, "r") as archive:
archive.extractall(output_path)
class Lz4Extractor(MagicNumberBaseExtractor):
magic_numbers = [b"\x04\x22\x4D\x18"]
@staticmethod
def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None:
if not config.LZ4_AVAILABLE:
raise ImportError("Please pip install lz4")
import lz4.frame
with lz4.frame.open(input_path, "rb") as compressed_file:
with open(output_path, "wb") as extracted_file:
shutil.copyfileobj(compressed_file, extracted_file)
class Extractor:
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
extractors: Dict[str, Type[BaseExtractor]] = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": Bzip2Extractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": Lz4Extractor, # <Added version="2.4.0"/>
}
@classmethod
def _get_magic_number_max_length(cls):
return max(
len(extractor_magic_number)
for extractor in cls.extractors.values()
if issubclass(extractor, MagicNumberBaseExtractor)
for extractor_magic_number in extractor.magic_numbers
)
@staticmethod
def _read_magic_number(path: Union[Path, str], magic_number_length: int):
try:
return MagicNumberBaseExtractor.read_magic_number(path, magic_number_length=magic_number_length)
except OSError:
return b""
@classmethod
def is_extractable(cls, path: Union[Path, str], return_extractor: bool = False) -> bool:
warnings.warn(
"Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. "
"Use 'infer_extractor_format' instead.",
category=FutureWarning,
)
extractor_format = cls.infer_extractor_format(path)
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def infer_extractor_format(cls, path: Union[Path, str]) -> str: # <Added version="2.4.0"/>
magic_number_max_length = cls._get_magic_number_max_length()
magic_number = cls._read_magic_number(path, magic_number_max_length)
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(path, magic_number=magic_number):
return extractor_format
@classmethod
def extract(
cls,
input_path: Union[Path, str],
output_path: Union[Path, str],
extractor_format: Optional[str] = None, # <Added version="2.4.0"/>
extractor: Optional[BaseExtractor] = "deprecated",
) -> None:
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# Prevent parallel extractions
lock_path = str(Path(output_path).with_suffix(".lock"))
with FileLock(lock_path):
shutil.rmtree(output_path, ignore_errors=True)
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(extractor_format, str): # passed as positional arg
warnings.warn(
"Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. "
"Use 'extractor_format' instead.",
category=FutureWarning,
)
extractor = extractor if extractor != "deprecated" else extractor_format
else:
extractor = cls.extractors[extractor_format]
return extractor.extract(input_path, output_path)
else:
warnings.warn(
"Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an "
"exception in 3.0.0.",
category=FutureWarning,
)
for extractor in cls.extractors.values():
if extractor.is_extractable(input_path):
return extractor.extract(input_path, output_path)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/info_utils.py | import enum
import os
from hashlib import sha256
from typing import Optional
from .. import config
from .logging import get_logger
logger = get_logger(__name__)
class VerificationMode(enum.Enum):
"""`Enum` that specifies which verification checks to run.
The default mode is `BASIC_CHECKS`, which will perform only rudimentary checks to avoid slowdowns
when generating/downloading a dataset for the first time.
The verification modes:
| | Verification checks |
|---------------------------|------------------------------------------------------------------------------ |
| `ALL_CHECKS` | Split checks, uniqueness of the keys yielded in case of the GeneratorBuilder |
| | and the validity (number of files, checksums, etc.) of downloaded files |
| `BASIC_CHECKS` (default) | Same as `ALL_CHECKS` but without checking downloaded files |
| `NO_CHECKS` | None |
"""
ALL_CHECKS = "all_checks"
BASIC_CHECKS = "basic_checks"
NO_CHECKS = "no_checks"
class ChecksumVerificationException(Exception):
"""Exceptions during checksums verifications of downloaded files."""
class UnexpectedDownloadedFile(ChecksumVerificationException):
"""Some downloaded files were not expected."""
class ExpectedMoreDownloadedFiles(ChecksumVerificationException):
"""Some files were supposed to be downloaded but were not."""
class NonMatchingChecksumError(ChecksumVerificationException):
"""The downloaded file checksum don't match the expected checksum."""
def verify_checksums(expected_checksums: Optional[dict], recorded_checksums: dict, verification_name=None):
if expected_checksums is None:
logger.info("Unable to verify checksums.")
return
if len(set(expected_checksums) - set(recorded_checksums)) > 0:
raise ExpectedMoreDownloadedFiles(str(set(expected_checksums) - set(recorded_checksums)))
if len(set(recorded_checksums) - set(expected_checksums)) > 0:
raise UnexpectedDownloadedFile(str(set(recorded_checksums) - set(expected_checksums)))
bad_urls = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
for_verification_name = " for " + verification_name if verification_name is not None else ""
if len(bad_urls) > 0:
raise NonMatchingChecksumError(
f"Checksums didn't match{for_verification_name}:\n"
f"{bad_urls}\n"
"Set `verification_mode='no_checks'` to skip checksums verification and ignore this error"
)
logger.info("All the checksums matched successfully" + for_verification_name)
class SplitsVerificationException(Exception):
"""Exceptions during splis verifications"""
class UnexpectedSplits(SplitsVerificationException):
"""The expected splits of the downloaded file is missing."""
class ExpectedMoreSplits(SplitsVerificationException):
"""Some recorded splits are missing."""
class NonMatchingSplitsSizesError(SplitsVerificationException):
"""The splits sizes don't match the expected splits sizes."""
def verify_splits(expected_splits: Optional[dict], recorded_splits: dict):
if expected_splits is None:
logger.info("Unable to verify splits sizes.")
return
if len(set(expected_splits) - set(recorded_splits)) > 0:
raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits)))
if len(set(recorded_splits) - set(expected_splits)) > 0:
raise UnexpectedSplits(str(set(recorded_splits) - set(expected_splits)))
bad_splits = [
{"expected": expected_splits[name], "recorded": recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(bad_splits) > 0:
raise NonMatchingSplitsSizesError(str(bad_splits))
logger.info("All the splits matched successfully.")
def get_size_checksum_dict(path: str, record_checksum: bool = True) -> dict:
"""Compute the file size and the sha256 checksum of a file"""
if record_checksum:
m = sha256()
with open(path, "rb") as f:
for chunk in iter(lambda: f.read(1 << 20), b""):
m.update(chunk)
checksum = m.hexdigest()
else:
checksum = None
return {"num_bytes": os.path.getsize(path), "checksum": checksum}
def is_small_dataset(dataset_size):
"""Check if `dataset_size` is smaller than `config.IN_MEMORY_MAX_SIZE`.
Args:
dataset_size (int): Dataset size in bytes.
Returns:
bool: Whether `dataset_size` is smaller than `config.IN_MEMORY_MAX_SIZE`.
"""
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/sharding.py | from typing import List
import numpy as np
def _number_of_shards_in_gen_kwargs(gen_kwargs: dict) -> int:
"""Return the number of possible shards according to the input gen_kwargs"""
# Having lists of different sizes makes sharding ambigious, raise an error in this case
# until we decide how to define sharding without ambiguity for users
lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)}
if len(set(lists_lengths.values())) > 1:
raise RuntimeError(
(
"Sharding is ambiguous for this dataset: "
+ "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n"
+ "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items())
+ "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, "
+ "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length."
)
)
max_length = max(lists_lengths.values(), default=0)
return max(1, max_length)
def _distribute_shards(num_shards: int, max_num_jobs: int) -> List[range]:
"""
Get the range of shard indices per job.
If num_shards<max_num_jobs, then num_shards jobs are given a range of one shard.
The shards indices order is preserved: e.g. all the first shards are given the first job.
Moreover all the jobs are given approximately the same number of shards.
Example:
```python
>>> _distribute_shards(2, max_num_jobs=4)
[range(0, 1), range(1, 2)]
>>> _distribute_shards(10, max_num_jobs=3)
[range(0, 4), range(4, 7), range(7, 10)]
```
"""
shards_indices_per_group = []
for group_idx in range(max_num_jobs):
num_shards_to_add = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
start = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
shard_indices = range(start, start + num_shards_to_add)
shards_indices_per_group.append(shard_indices)
return shards_indices_per_group
def _split_gen_kwargs(gen_kwargs: dict, max_num_jobs: int) -> List[dict]:
"""Split the gen_kwargs into `max_num_job` gen_kwargs"""
# Having lists of different sizes makes sharding ambigious, raise an error in this case
num_shards = _number_of_shards_in_gen_kwargs(gen_kwargs)
if num_shards == 1:
return [dict(gen_kwargs)]
else:
shard_indices_per_group = _distribute_shards(num_shards=num_shards, max_num_jobs=max_num_jobs)
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(value, list)
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(shard_indices_per_group))
]
def _merge_gen_kwargs(gen_kwargs_list: List[dict]) -> dict:
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key], list)
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def _shuffle_gen_kwargs(rng: np.random.Generator, gen_kwargs: dict) -> dict:
"""Return a shuffled copy of the input gen_kwargs"""
# We must shuffle all the lists, and lists of the same size must have the same shuffling.
# This way entangled lists of (shard, shard_metadata) are still in the right order.
# First, let's generate the shuffled indices per list size
list_sizes = {len(value) for value in gen_kwargs.values() if isinstance(value, list)}
indices_per_size = {}
for size in list_sizes:
indices_per_size[size] = list(range(size))
rng.shuffle(indices_per_size[size])
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
shuffled_kwargs = dict(gen_kwargs)
for key, value in shuffled_kwargs.items():
if isinstance(value, list):
shuffled_kwargs[key] = [value[i] for i in indices_per_size[len(value)]]
return shuffled_kwargs
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/py_utils.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Some python utils function and classes.
"""
import copy
import functools
import itertools
import multiprocessing.pool
import os
import queue
import re
import types
from contextlib import contextmanager
from dataclasses import fields, is_dataclass
from io import BytesIO as StringIO
from multiprocessing import Manager
from queue import Empty
from shutil import disk_usage
from types import CodeType, FunctionType
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union
from urllib.parse import urlparse
import dill
import multiprocess
import multiprocess.pool
import numpy as np
from packaging import version
from tqdm.auto import tqdm
from .. import config
from ..parallel import parallel_map
from . import logging
try: # pragma: no branch
import typing_extensions as _typing_extensions
from typing_extensions import Final, Literal
except ImportError:
_typing_extensions = Literal = Final = None
logger = logging.get_logger(__name__)
# NOTE: When used on an instance method, the cache is shared across all
# instances and IS NOT per-instance.
# See
# https://stackoverflow.com/questions/14946264/python-lru-cache-decorator-per-instance
# For @property methods, use @memoized_property below.
memoize = functools.lru_cache
def size_str(size_in_bytes):
"""Returns a human readable size string.
If size_in_bytes is None, then returns "Unknown size".
For example `size_str(1.5 * datasets.units.GiB) == "1.50 GiB"`.
Args:
size_in_bytes: `int` or `None`, the size, in bytes, that we want to
format as a human-readable size string.
"""
if not size_in_bytes:
return "Unknown size"
_NAME_LIST = [("PiB", 2**50), ("TiB", 2**40), ("GiB", 2**30), ("MiB", 2**20), ("KiB", 2**10)]
size_in_bytes = float(size_in_bytes)
for name, size_bytes in _NAME_LIST:
value = size_in_bytes / size_bytes
if value >= 1.0:
return f"{value:.2f} {name}"
return f"{int(size_in_bytes)} bytes"
def convert_file_size_to_int(size: Union[int, str]) -> int:
"""
Converts a size expressed as a string with digits an unit (like `"50MB"`) to an integer (in bytes).
Args:
size (`int` or `str`): The size to convert. Will be directly returned if an `int`.
Example:
```py
>>> convert_file_size_to_int("1MiB")
1048576
```
"""
if isinstance(size, int):
return size
if size.upper().endswith("PIB"):
return int(size[:-3]) * (2**50)
if size.upper().endswith("TIB"):
return int(size[:-3]) * (2**40)
if size.upper().endswith("GIB"):
return int(size[:-3]) * (2**30)
if size.upper().endswith("MIB"):
return int(size[:-3]) * (2**20)
if size.upper().endswith("KIB"):
return int(size[:-3]) * (2**10)
if size.upper().endswith("PB"):
int_size = int(size[:-2]) * (10**15)
return int_size // 8 if size.endswith("b") else int_size
if size.upper().endswith("TB"):
int_size = int(size[:-2]) * (10**12)
return int_size // 8 if size.endswith("b") else int_size
if size.upper().endswith("GB"):
int_size = int(size[:-2]) * (10**9)
return int_size // 8 if size.endswith("b") else int_size
if size.upper().endswith("MB"):
int_size = int(size[:-2]) * (10**6)
return int_size // 8 if size.endswith("b") else int_size
if size.upper().endswith("KB"):
int_size = int(size[:-2]) * (10**3)
return int_size // 8 if size.endswith("b") else int_size
raise ValueError(f"`size={size}` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.")
def glob_pattern_to_regex(pattern):
# partially taken from fsspec:
# https://github.com/fsspec/filesystem_spec/blob/697d0f8133d8a5fbc3926e4761d7ecd51337ce50/fsspec/asyn.py#L735
return (
pattern.replace("\\", r"\\")
.replace(".", r"\.")
.replace("*", ".*")
.replace("+", r"\+")
.replace("//", "/")
.replace("(", r"\(")
.replace(")", r"\)")
.replace("|", r"\|")
.replace("^", r"\^")
.replace("$", r"\$")
.rstrip("/")
.replace("?", ".")
)
def string_to_dict(string: str, pattern: str) -> Dict[str, str]:
"""Un-format a string using a python f-string pattern.
From https://stackoverflow.com/a/36838374
Example::
>>> p = 'hello, my name is {name} and I am a {age} year old {what}'
>>> s = p.format(name='cody', age=18, what='quarterback')
>>> s
'hello, my name is cody and I am a 18 year old quarterback'
>>> string_to_dict(s, p)
{'age': '18', 'name': 'cody', 'what': 'quarterback'}
Args:
string (str): input string
pattern (str): pattern formatted like a python f-string
Returns:
Dict[str, str]: dictionary of variable -> value, retrieved from the input using the pattern
Raises:
ValueError: if the string doesn't match the pattern
"""
regex = re.sub(r"{(.+?)}", r"(?P<_\1>.+)", pattern)
result = re.search(regex, string)
if result is None:
raise ValueError(f"String {string} doesn't match the pattern {pattern}")
values = list(result.groups())
keys = re.findall(r"{(.+?)}", pattern)
_dict = dict(zip(keys, values))
return _dict
def asdict(obj):
"""Convert an object to its dictionary representation recursively.
<Added version="2.4.0"/>
"""
# Implementation based on https://docs.python.org/3/library/dataclasses.html#dataclasses.asdict
def _is_dataclass_instance(obj):
# https://docs.python.org/3/library/dataclasses.html#dataclasses.is_dataclass
return is_dataclass(obj) and not isinstance(obj, type)
def _asdict_inner(obj):
if _is_dataclass_instance(obj):
result = {}
for f in fields(obj):
value = _asdict_inner(getattr(obj, f.name))
if not f.init or value != f.default or f.metadata.get("include_in_asdict_even_if_is_default", False):
result[f.name] = value
return result
elif isinstance(obj, tuple) and hasattr(obj, "_fields"):
# obj is a namedtuple
return type(obj)(*[_asdict_inner(v) for v in obj])
elif isinstance(obj, (list, tuple)):
# Assume we can create an object of this type by passing in a
# generator (which is not true for namedtuples, handled
# above).
return type(obj)(_asdict_inner(v) for v in obj)
elif isinstance(obj, dict):
return {_asdict_inner(k): _asdict_inner(v) for k, v in obj.items()}
else:
return copy.deepcopy(obj)
if not isinstance(obj, dict) and not _is_dataclass_instance(obj):
raise TypeError(f"{obj} is not a dict or a dataclass")
return _asdict_inner(obj)
@contextmanager
def temporary_assignment(obj, attr, value):
"""Temporarily assign obj.attr to value."""
original = getattr(obj, attr, None)
setattr(obj, attr, value)
try:
yield
finally:
setattr(obj, attr, original)
@contextmanager
def temp_seed(seed: int, set_pytorch=False, set_tensorflow=False):
"""Temporarily set the random seed. This works for python numpy, pytorch and tensorflow."""
np_state = np.random.get_state()
np.random.seed(seed)
if set_pytorch and config.TORCH_AVAILABLE:
import torch
torch_state = torch.random.get_rng_state()
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch_cuda_states = torch.cuda.get_rng_state_all()
torch.cuda.manual_seed_all(seed)
if set_tensorflow and config.TF_AVAILABLE:
import tensorflow as tf
from tensorflow.python import context as tfpycontext
tf_state = tf.random.get_global_generator()
temp_gen = tf.random.Generator.from_seed(seed)
tf.random.set_global_generator(temp_gen)
if not tf.executing_eagerly():
raise ValueError("Setting random seed for TensorFlow is only available in eager mode")
tf_context = tfpycontext.context() # eager mode context
tf_seed = tf_context._seed
tf_rng_initialized = hasattr(tf_context, "_rng")
if tf_rng_initialized:
tf_rng = tf_context._rng
tf_context._set_global_seed(seed)
try:
yield
finally:
np.random.set_state(np_state)
if set_pytorch and config.TORCH_AVAILABLE:
torch.random.set_rng_state(torch_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state_all(torch_cuda_states)
if set_tensorflow and config.TF_AVAILABLE:
tf.random.set_global_generator(tf_state)
tf_context._seed = tf_seed
if tf_rng_initialized:
tf_context._rng = tf_rng
else:
delattr(tf_context, "_rng")
def unique_values(values):
"""Iterate over iterable and return only unique values in order."""
seen = set()
for value in values:
if value not in seen:
seen.add(value)
yield value
def no_op_if_value_is_null(func):
"""If the value is None, return None, else call `func`."""
def wrapper(value):
return func(value) if value is not None else None
return wrapper
def first_non_null_value(iterable):
"""Return the index and the value of the first non-null value in the iterable. If all values are None, return -1 as index."""
for i, value in enumerate(iterable):
if value is not None:
return i, value
return -1, None
def zip_dict(*dicts):
"""Iterate over items of dictionaries grouped by their keys."""
for key in unique_values(itertools.chain(*dicts)): # set merge all keys
# Will raise KeyError if the dict don't have the same keys
yield key, tuple(d[key] for d in dicts)
class NonMutableDict(dict):
"""Dict where keys can only be added but not modified.
Will raise an error if the user try to overwrite one key. The error message
can be customized during construction. It will be formatted using {key} for
the overwritten key.
"""
def __init__(self, *args, **kwargs):
self._error_msg = kwargs.pop(
"error_msg",
"Try to overwrite existing key: {key}",
)
if kwargs:
raise ValueError("NonMutableDict cannot be initialized with kwargs.")
super().__init__(*args, **kwargs)
def __setitem__(self, key, value):
if key in self:
raise ValueError(self._error_msg.format(key=key))
return super().__setitem__(key, value)
def update(self, other):
if any(k in self for k in other):
raise ValueError(self._error_msg.format(key=set(self) & set(other)))
return super().update(other)
class classproperty(property): # pylint: disable=invalid-name
"""Descriptor to be used as decorator for @classmethods."""
def __get__(self, obj, objtype=None):
return self.fget.__get__(None, objtype)()
def _single_map_nested(args):
"""Apply a function recursively to each element of a nested data struct."""
function, data_struct, types, rank, disable_tqdm, desc = args
# Singleton first to spare some computation
if not isinstance(data_struct, dict) and not isinstance(data_struct, types):
return function(data_struct)
# Reduce logging to keep things readable in multiprocessing with tqdm
if rank is not None and logging.get_verbosity() < logging.WARNING:
logging.set_verbosity_warning()
# Print at least one thing to fix tqdm in notebooks in multiprocessing
# see https://github.com/tqdm/tqdm/issues/485#issuecomment-473338308
if rank is not None and not disable_tqdm and any("notebook" in tqdm_cls.__name__ for tqdm_cls in tqdm.__mro__):
print(" ", end="", flush=True)
# Loop over single examples or batches and write to buffer/file if examples are to be updated
pbar_iterable = data_struct.items() if isinstance(data_struct, dict) else data_struct
pbar_desc = (desc + " " if desc is not None else "") + "#" + str(rank) if rank is not None else desc
with logging.tqdm(pbar_iterable, disable=disable_tqdm, position=rank, unit="obj", desc=pbar_desc) as pbar:
if isinstance(data_struct, dict):
return {k: _single_map_nested((function, v, types, None, True, None)) for k, v in pbar}
else:
mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar]
if isinstance(data_struct, list):
return mapped
elif isinstance(data_struct, tuple):
return tuple(mapped)
else:
return np.array(mapped)
def map_nested(
function: Callable[[Any], Any],
data_struct: Any,
dict_only: bool = False,
map_list: bool = True,
map_tuple: bool = False,
map_numpy: bool = False,
num_proc: Optional[int] = None,
parallel_min_length: int = 2,
types: Optional[tuple] = None,
disable_tqdm: bool = True,
desc: Optional[str] = None,
) -> Any:
"""Apply a function recursively to each element of a nested data struct.
Use multiprocessing if num_proc > 1 and the length of data_struct is greater than or equal to
`parallel_min_length`.
<Changed version="2.5.0">
Before version 2.5.0, multiprocessing was not used if `num_proc` was greater than or equal to ``len(iterable)``.
Now, if `num_proc` is greater than or equal to ``len(iterable)``, `num_proc` is set to ``len(iterable)`` and
multiprocessing is used.
</Changed>
Args:
function (`Callable`): Function to be applied to `data_struct`.
data_struct (`Any`): Data structure to apply `function` to.
dict_only (`bool`, default `False`): Whether only apply `function` recursively to `dict` values in
`data_struct`.
map_list (`bool`, default `True`): Whether also apply `function` recursively to `list` elements (besides `dict`
values).
map_tuple (`bool`, default `False`): Whether also apply `function` recursively to `tuple` elements (besides
`dict` values).
map_numpy (`bool, default `False`): Whether also apply `function` recursively to `numpy.array` elements (besides
`dict` values).
num_proc (`int`, *optional*): Number of processes.
parallel_min_length (`int`, default `2`): Minimum length of `data_struct` required for parallel
processing.
<Added version="2.5.0"/>
types (`tuple`, *optional*): Additional types (besides `dict` values) to apply `function` recursively to their
elements.
disable_tqdm (`bool`, default `True`): Whether to disable the tqdm progressbar.
desc (`str`, *optional*): Prefix for the tqdm progressbar.
Returns:
`Any`
"""
if types is None:
types = []
if not dict_only:
if map_list:
types.append(list)
if map_tuple:
types.append(tuple)
if map_numpy:
types.append(np.ndarray)
types = tuple(types)
# Singleton
if not isinstance(data_struct, dict) and not isinstance(data_struct, types):
return function(data_struct)
disable_tqdm = disable_tqdm or not logging.is_progress_bar_enabled()
iterable = list(data_struct.values()) if isinstance(data_struct, dict) else data_struct
if num_proc is None:
num_proc = 1
if num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length:
mapped = [
_single_map_nested((function, obj, types, None, True, None))
for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)
]
else:
mapped = parallel_map(function, iterable, num_proc, types, disable_tqdm, desc, _single_map_nested)
if isinstance(data_struct, dict):
return dict(zip(data_struct.keys(), mapped))
else:
if isinstance(data_struct, list):
return mapped
elif isinstance(data_struct, tuple):
return tuple(mapped)
else:
return np.array(mapped)
class NestedDataStructure:
def __init__(self, data=None):
self.data = data if data is not None else []
def flatten(self, data=None):
data = data if data is not None else self.data
if isinstance(data, dict):
return self.flatten(list(data.values()))
elif isinstance(data, (list, tuple)):
return [flattened for item in data for flattened in self.flatten(item)]
else:
return [data]
def has_sufficient_disk_space(needed_bytes, directory="."):
try:
free_bytes = disk_usage(os.path.abspath(directory)).free
except OSError:
return True
return needed_bytes < free_bytes
def _convert_github_url(url_path: str) -> Tuple[str, Optional[str]]:
"""Convert a link to a file on a github repo in a link to the raw github object."""
parsed = urlparse(url_path)
sub_directory = None
if parsed.scheme in ("http", "https", "s3") and parsed.netloc == "github.com":
if "blob" in url_path:
if not url_path.endswith(".py"):
raise ValueError(f"External import from github at {url_path} should point to a file ending with '.py'")
url_path = url_path.replace("blob", "raw") # Point to the raw file
else:
# Parse github url to point to zip
github_path = parsed.path[1:]
repo_info, branch = github_path.split("/tree/") if "/tree/" in github_path else (github_path, "master")
repo_owner, repo_name = repo_info.split("/")
url_path = f"https://github.com/{repo_owner}/{repo_name}/archive/{branch}.zip"
sub_directory = f"{repo_name}-{branch}"
return url_path, sub_directory
def get_imports(file_path: str) -> Tuple[str, str, str, str]:
"""Find whether we should import or clone additional files for a given processing script.
And list the import.
We allow:
- library dependencies,
- local dependencies and
- external dependencies whose url is specified with a comment starting from "# From:' followed by the raw url to a file, an archive or a github repository.
external dependencies will be downloaded (and extracted if needed in the dataset folder).
We also add an `__init__.py` to each sub-folder of a downloaded folder so the user can import from them in the script.
Note that only direct import in the dataset processing script will be handled
We don't recursively explore the additional import to download further files.
Example::
import tensorflow
import .c4_utils
import .clicr.dataset-code.build_json_dataset # From: https://raw.githubusercontent.com/clips/clicr/master/dataset-code/build_json_dataset
"""
lines = []
with open(file_path, encoding="utf-8") as f:
lines.extend(f.readlines())
logger.debug(f"Checking {file_path} for additional imports.")
imports: List[Tuple[str, str, str, Optional[str]]] = []
is_in_docstring = False
for line in lines:
docstr_start_match = re.findall(r'[\s\S]*?"""[\s\S]*?', line)
if len(docstr_start_match) == 1:
# flip True <=> False only if doctstring
# starts at line without finishing
is_in_docstring = not is_in_docstring
if is_in_docstring:
# import statements in doctstrings should
# not be added as required dependencies
continue
match = re.match(r"^import\s+(\.?)([^\s\.]+)[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", line, flags=re.MULTILINE)
if match is None:
match = re.match(
r"^from\s+(\.?)([^\s\.]+)(?:[^\s]*)\s+import\s+[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)",
line,
flags=re.MULTILINE,
)
if match is None:
continue
if match.group(1):
# The import starts with a '.', we will download the relevant file
if any(imp[1] == match.group(2) for imp in imports):
# We already have this import
continue
if match.group(3):
# The import has a comment with 'From:', we'll retrieve it from the given url
url_path = match.group(3)
url_path, sub_directory = _convert_github_url(url_path)
imports.append(("external", match.group(2), url_path, sub_directory))
elif match.group(2):
# The import should be at the same place as the file
imports.append(("internal", match.group(2), match.group(2), None))
else:
if match.group(3):
# The import has a comment with `From: git+https:...`, asks user to pip install from git.
url_path = match.group(3)
imports.append(("library", match.group(2), url_path, None))
else:
imports.append(("library", match.group(2), match.group(2), None))
return imports
class Pickler(dill.Pickler):
"""Same Pickler as the one from dill, but improved for notebooks and shells"""
dispatch = dill._dill.MetaCatchingDict(dill.Pickler.dispatch.copy())
def save(self, obj, save_persistent_id=True):
# lazy registration of reduction functions
obj_type = type(obj)
if obj_type not in Pickler.dispatch:
if config.DILL_VERSION < version.parse("0.3.6"):
def dill_log(pickler, msg):
dill._dill.log.info(msg)
elif config.DILL_VERSION.release[:3] in [version.parse("0.3.6").release, version.parse("0.3.7").release]:
def dill_log(pickler, msg):
dill._dill.logger.trace(pickler, msg)
if (obj_type.__module__, obj_type.__name__) == ("_regex", "Pattern"):
try:
import regex
@pklregister(obj_type)
def _save_regex(pickler, obj):
dill_log(pickler, f"Re: {obj}")
args = (
obj.pattern,
obj.flags,
)
pickler.save_reduce(regex.compile, args, obj=obj)
dill_log(pickler, "# Re")
return
except ImportError:
pass
elif (obj_type.__module__, obj_type.__name__) == ("torch", "Tensor"):
try:
import torch
@pklregister(obj_type)
def _save_tensor(pickler, obj):
# `torch.from_numpy` is not picklable in `torch>=1.11.0`
def _create_tensor(np_array):
return torch.from_numpy(np_array)
dill_log(pickler, f"To: {obj}")
args = (obj.detach().cpu().numpy(),)
pickler.save_reduce(_create_tensor, args, obj=obj)
dill_log(pickler, "# To")
return
except ImportError:
pass
elif (obj_type.__module__, obj_type.__name__) == ("tiktoken.core", "Encoding"):
try:
import tiktoken
@pklregister(obj_type)
def _save_encoding(pickler, obj):
dill_log(pickler, f"Enc: {obj}")
args = (obj.name, obj._pat_str, obj._mergeable_ranks, obj._special_tokens)
pickler.save_reduce(tiktoken.Encoding, args, obj=obj)
dill_log(pickler, "# Enc")
return
except ImportError:
pass
elif obj_type.__module__.startswith("spacy.lang") and any(
(cls.__module__, cls.__name__) == ("spacy.language", "Language") for cls in obj_type.__mro__
):
try:
import spacy
@pklregister(obj_type)
def _save_lang(pickler, obj):
def _create_lang(config, bytes_data):
lang_cls = spacy.util.get_lang_class(config["nlp"]["lang"])
nlp = lang_cls.from_config(config)
return nlp.from_bytes(bytes_data)
dill_log(pickler, f"Sp: {obj}")
args = (obj.config, obj.to_bytes())
pickler.save_reduce(_create_lang, args, obj=obj)
dill_log(pickler, "# Sp")
return
except ImportError:
pass
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
def memoize(self, obj):
# don't memoize strings since two identical strings can have different python ids
if type(obj) != str:
dill.Pickler.memoize(self, obj)
def dump(obj, file):
"""pickle an object to a file"""
Pickler(file, recurse=True).dump(obj)
return
@contextmanager
def _no_cache_fields(obj):
try:
if (
"PreTrainedTokenizerBase" in [base_class.__name__ for base_class in type(obj).__mro__]
and hasattr(obj, "cache")
and isinstance(obj.cache, dict)
):
with temporary_assignment(obj, "cache", {}):
yield
else:
yield
except ImportError:
yield
def dumps(obj):
"""pickle an object to a string"""
file = StringIO()
with _no_cache_fields(obj):
dump(obj, file)
return file.getvalue()
def pklregister(t):
def proxy(func):
Pickler.dispatch[t] = func
return func
return proxy
if config.DILL_VERSION < version.parse("0.3.6"):
@pklregister(CodeType)
def _save_code(pickler, obj):
"""
From dill._dill.save_code
This is a modified version that removes the origin (filename + line no.)
of functions created in notebooks or shells for example.
"""
dill._dill.log.info(f"Co: {obj}")
# The filename of a function is the .py file where it is defined.
# Filenames of functions created in notebooks or shells start with '<'
# ex: <ipython-input-13-9ed2afe61d25> for ipython, and <stdin> for shell
# Filenames of functions created in ipykernel the filename
# look like f"{tempdir}/ipykernel_{id1}/{id2}.py"
# Moreover lambda functions have a special name: '<lambda>'
# ex: (lambda x: x).__code__.co_name == "<lambda>" # True
#
# For the hashing mechanism we ignore where the function has been defined
# More specifically:
# - we ignore the filename of special functions (filename starts with '<')
# - we always ignore the line number
# - we only use the base name of the file instead of the whole path,
# to be robust in case a script is moved for example.
#
# Only those two lines are different from the original implementation:
co_filename = (
""
if obj.co_filename.startswith("<")
or (
len(obj.co_filename.split(os.path.sep)) > 1
and obj.co_filename.split(os.path.sep)[-2].startswith("ipykernel_")
)
or obj.co_name == "<lambda>"
else os.path.basename(obj.co_filename)
)
co_firstlineno = 1
# The rest is the same as in the original dill implementation
if dill._dill.PY3:
if hasattr(obj, "co_posonlyargcount"):
args = (
obj.co_argcount,
obj.co_posonlyargcount,
obj.co_kwonlyargcount,
obj.co_nlocals,
obj.co_stacksize,
obj.co_flags,
obj.co_code,
obj.co_consts,
obj.co_names,
obj.co_varnames,
co_filename,
obj.co_name,
co_firstlineno,
obj.co_lnotab,
obj.co_freevars,
obj.co_cellvars,
)
else:
args = (
obj.co_argcount,
obj.co_kwonlyargcount,
obj.co_nlocals,
obj.co_stacksize,
obj.co_flags,
obj.co_code,
obj.co_consts,
obj.co_names,
obj.co_varnames,
co_filename,
obj.co_name,
co_firstlineno,
obj.co_lnotab,
obj.co_freevars,
obj.co_cellvars,
)
else:
args = (
obj.co_argcount,
obj.co_nlocals,
obj.co_stacksize,
obj.co_flags,
obj.co_code,
obj.co_consts,
obj.co_names,
obj.co_varnames,
co_filename,
obj.co_name,
co_firstlineno,
obj.co_lnotab,
obj.co_freevars,
obj.co_cellvars,
)
pickler.save_reduce(CodeType, args, obj=obj)
dill._dill.log.info("# Co")
return
elif config.DILL_VERSION.release[:3] in [version.parse("0.3.6").release, version.parse("0.3.7").release]:
# From: https://github.com/uqfoundation/dill/blob/dill-0.3.6/dill/_dill.py#L1104
@pklregister(CodeType)
def save_code(pickler, obj):
dill._dill.logger.trace(pickler, "Co: %s", obj)
############################################################################################################
# Modification here for huggingface/datasets
# The filename of a function is the .py file where it is defined.
# Filenames of functions created in notebooks or shells start with '<'
# ex: <ipython-input-13-9ed2afe61d25> for ipython, and <stdin> for shell
# Filenames of functions created in ipykernel the filename
# look like f"{tempdir}/ipykernel_{id1}/{id2}.py"
# Moreover lambda functions have a special name: '<lambda>'
# ex: (lambda x: x).__code__.co_name == "<lambda>" # True
#
# For the hashing mechanism we ignore where the function has been defined
# More specifically:
# - we ignore the filename of special functions (filename starts with '<')
# - we always ignore the line number
# - we only use the base name of the file instead of the whole path,
# to be robust in case a script is moved for example.
#
# Only those two lines are different from the original implementation:
co_filename = (
""
if obj.co_filename.startswith("<")
or (
len(obj.co_filename.split(os.path.sep)) > 1
and obj.co_filename.split(os.path.sep)[-2].startswith("ipykernel_")
)
or obj.co_name == "<lambda>"
else os.path.basename(obj.co_filename)
)
co_firstlineno = 1
# The rest is the same as in the original dill implementation, except for the replacements:
# - obj.co_filename => co_filename
# - obj.co_firstlineno => co_firstlineno
############################################################################################################
if hasattr(obj, "co_endlinetable"): # python 3.11a (20 args)
args = (
obj.co_lnotab, # for < python 3.10 [not counted in args]
obj.co_argcount,
obj.co_posonlyargcount,
obj.co_kwonlyargcount,
obj.co_nlocals,
obj.co_stacksize,
obj.co_flags,
obj.co_code,
obj.co_consts,
obj.co_names,
obj.co_varnames,
co_filename, # Modification for huggingface/datasets ############################################
obj.co_name,
obj.co_qualname,
co_firstlineno, # Modification for huggingface/datasets #########################################
obj.co_linetable,
obj.co_endlinetable,
obj.co_columntable,
obj.co_exceptiontable,
obj.co_freevars,
obj.co_cellvars,
)
elif hasattr(obj, "co_exceptiontable"): # python 3.11 (18 args)
args = (
obj.co_lnotab, # for < python 3.10 [not counted in args]
obj.co_argcount,
obj.co_posonlyargcount,
obj.co_kwonlyargcount,
obj.co_nlocals,
obj.co_stacksize,
obj.co_flags,
obj.co_code,
obj.co_consts,
obj.co_names,
obj.co_varnames,
co_filename, # Modification for huggingface/datasets ############################################
obj.co_name,
obj.co_qualname,
co_firstlineno, # Modification for huggingface/datasets #########################################
obj.co_linetable,
obj.co_exceptiontable,
obj.co_freevars,
obj.co_cellvars,
)
elif hasattr(obj, "co_linetable"): # python 3.10 (16 args)
args = (
obj.co_lnotab, # for < python 3.10 [not counted in args]
obj.co_argcount,
obj.co_posonlyargcount,
obj.co_kwonlyargcount,
obj.co_nlocals,
obj.co_stacksize,
obj.co_flags,
obj.co_code,
obj.co_consts,
obj.co_names,
obj.co_varnames,
co_filename, # Modification for huggingface/datasets ############################################
obj.co_name,
co_firstlineno, # Modification for huggingface/datasets #########################################
obj.co_linetable,
obj.co_freevars,
obj.co_cellvars,
)
elif hasattr(obj, "co_posonlyargcount"): # python 3.8 (16 args)
args = (
obj.co_argcount,
obj.co_posonlyargcount,
obj.co_kwonlyargcount,
obj.co_nlocals,
obj.co_stacksize,
obj.co_flags,
obj.co_code,
obj.co_consts,
obj.co_names,
obj.co_varnames,
co_filename, # Modification for huggingface/datasets ############################################
obj.co_name,
co_firstlineno, # Modification for huggingface/datasets #########################################
obj.co_lnotab,
obj.co_freevars,
obj.co_cellvars,
)
else: # python 3.7 (15 args)
args = (
obj.co_argcount,
obj.co_kwonlyargcount,
obj.co_nlocals,
obj.co_stacksize,
obj.co_flags,
obj.co_code,
obj.co_consts,
obj.co_names,
obj.co_varnames,
co_filename, # Modification for huggingface/datasets ############################################
obj.co_name,
co_firstlineno, # Modification for huggingface/datasets #########################################
obj.co_lnotab,
obj.co_freevars,
obj.co_cellvars,
)
pickler.save_reduce(dill._dill._create_code, args, obj=obj)
dill._dill.logger.trace(pickler, "# Co")
return
if config.DILL_VERSION < version.parse("0.3.5"):
@pklregister(FunctionType)
def save_function(pickler, obj):
"""
From dill._dill.save_function
This is a modified version that make globs deterministic since the order of
the keys in the output dictionary of globalvars can change.
"""
if not dill._dill._locate_function(obj):
dill._dill.log.info(f"F1: {obj}")
if getattr(pickler, "_recurse", False):
# recurse to get all globals referred to by obj
globalvars = dill.detect.globalvars
globs = globalvars(obj, recurse=True, builtin=True)
if id(obj) in dill._dill.stack:
globs = obj.__globals__ if dill._dill.PY3 else obj.func_globals
else:
globs = obj.__globals__ if dill._dill.PY3 else obj.func_globals
# globs is a dictionary with keys = var names (str) and values = python objects
# however the dictionary is not always loaded in the same order
# therefore we have to sort the keys to make deterministic.
# This is important to make `dump` deterministic.
# Only this line is different from the original implementation:
globs = dict(sorted(globs.items()))
# The rest is the same as in the original dill implementation
_byref = getattr(pickler, "_byref", None)
_recurse = getattr(pickler, "_recurse", None)
_memo = (id(obj) in dill._dill.stack) and (_recurse is not None)
dill._dill.stack[id(obj)] = len(dill._dill.stack), obj
if dill._dill.PY3:
_super = ("super" in getattr(obj.__code__, "co_names", ())) and (_byref is not None)
if _super:
pickler._byref = True
if _memo:
pickler._recurse = False
fkwdefaults = getattr(obj, "__kwdefaults__", None)
pickler.save_reduce(
dill._dill._create_function,
(obj.__code__, globs, obj.__name__, obj.__defaults__, obj.__closure__, obj.__dict__, fkwdefaults),
obj=obj,
)
else:
_super = (
("super" in getattr(obj.func_code, "co_names", ()))
and (_byref is not None)
and getattr(pickler, "_recurse", False)
)
if _super:
pickler._byref = True
if _memo:
pickler._recurse = False
pickler.save_reduce(
dill._dill._create_function,
(obj.func_code, globs, obj.func_name, obj.func_defaults, obj.func_closure, obj.__dict__),
obj=obj,
)
if _super:
pickler._byref = _byref
if _memo:
pickler._recurse = _recurse
if (
dill._dill.OLDER
and not _byref
and (_super or (not _super and _memo) or (not _super and not _memo and _recurse))
):
pickler.clear_memo()
dill._dill.log.info("# F1")
else:
dill._dill.log.info(f"F2: {obj}")
name = getattr(obj, "__qualname__", getattr(obj, "__name__", None))
dill._dill.StockPickler.save_global(pickler, obj, name=name)
dill._dill.log.info("# F2")
return
elif config.DILL_VERSION.release[:3] == version.parse("0.3.5").release: # 0.3.5, 0.3.5.1
# https://github.com/uqfoundation/dill/blob/dill-0.3.5.1/dill/_dill.py
@pklregister(FunctionType)
def save_function(pickler, obj):
if not dill._dill._locate_function(obj, pickler):
dill._dill.log.info("F1: %s" % obj)
_recurse = getattr(pickler, "_recurse", None)
_postproc = getattr(pickler, "_postproc", None)
_main_modified = getattr(pickler, "_main_modified", None)
_original_main = getattr(pickler, "_original_main", dill._dill.__builtin__) # 'None'
postproc_list = []
if _recurse:
# recurse to get all globals referred to by obj
from dill.detect import globalvars
globs_copy = globalvars(obj, recurse=True, builtin=True)
# Add the name of the module to the globs dictionary to prevent
# the duplication of the dictionary. Pickle the unpopulated
# globals dictionary and set the remaining items after the function
# is created to correctly handle recursion.
globs = {"__name__": obj.__module__}
else:
globs_copy = obj.__globals__ if dill._dill.PY3 else obj.func_globals
# If the globals is the __dict__ from the module being saved as a
# session, substitute it by the dictionary being actually saved.
if _main_modified and globs_copy is _original_main.__dict__:
globs_copy = getattr(pickler, "_main", _original_main).__dict__
globs = globs_copy
# If the globals is a module __dict__, do not save it in the pickle.
elif (
globs_copy is not None
and obj.__module__ is not None
and getattr(dill._dill._import_module(obj.__module__, True), "__dict__", None) is globs_copy
):
globs = globs_copy
else:
globs = {"__name__": obj.__module__}
# DONE: modified here for huggingface/datasets
# - globs is a dictionary with keys = var names (str) and values = python objects
# - globs_copy is a dictionary with keys = var names (str) and values = ids of the python objects
# however the dictionary is not always loaded in the same order
# therefore we have to sort the keys to make deterministic.
# This is important to make `dump` deterministic.
# Only these line are different from the original implementation:
# START
globs_is_globs_copy = globs is globs_copy
globs = dict(sorted(globs.items()))
if globs_is_globs_copy:
globs_copy = globs
elif globs_copy is not None:
globs_copy = dict(sorted(globs_copy.items()))
# END
if globs_copy is not None and globs is not globs_copy:
# In the case that the globals are copied, we need to ensure that
# the globals dictionary is updated when all objects in the
# dictionary are already created.
if dill._dill.PY3:
glob_ids = {id(g) for g in globs_copy.values()}
else:
glob_ids = {id(g) for g in globs_copy.itervalues()}
for stack_element in _postproc:
if stack_element in glob_ids:
_postproc[stack_element].append((dill._dill._setitems, (globs, globs_copy)))
break
else:
postproc_list.append((dill._dill._setitems, (globs, globs_copy)))
if dill._dill.PY3:
closure = obj.__closure__
state_dict = {}
for fattrname in ("__doc__", "__kwdefaults__", "__annotations__"):
fattr = getattr(obj, fattrname, None)
if fattr is not None:
state_dict[fattrname] = fattr
if obj.__qualname__ != obj.__name__:
state_dict["__qualname__"] = obj.__qualname__
if "__name__" not in globs or obj.__module__ != globs["__name__"]:
state_dict["__module__"] = obj.__module__
state = obj.__dict__
if type(state) is not dict:
state_dict["__dict__"] = state
state = None
if state_dict:
state = state, state_dict
dill._dill._save_with_postproc(
pickler,
(
dill._dill._create_function,
(obj.__code__, globs, obj.__name__, obj.__defaults__, closure),
state,
),
obj=obj,
postproc_list=postproc_list,
)
else:
closure = obj.func_closure
if obj.__doc__ is not None:
postproc_list.append((setattr, (obj, "__doc__", obj.__doc__)))
if "__name__" not in globs or obj.__module__ != globs["__name__"]:
postproc_list.append((setattr, (obj, "__module__", obj.__module__)))
if obj.__dict__:
postproc_list.append((setattr, (obj, "__dict__", obj.__dict__)))
dill._dill._save_with_postproc(
pickler,
(dill._dill._create_function, (obj.func_code, globs, obj.func_name, obj.func_defaults, closure)),
obj=obj,
postproc_list=postproc_list,
)
# Lift closure cell update to earliest function (#458)
if _postproc:
topmost_postproc = next(iter(_postproc.values()), None)
if closure and topmost_postproc:
for cell in closure:
possible_postproc = (setattr, (cell, "cell_contents", obj))
try:
topmost_postproc.remove(possible_postproc)
except ValueError:
continue
# Change the value of the cell
pickler.save_reduce(*possible_postproc)
# pop None created by calling preprocessing step off stack
if dill._dill.PY3:
pickler.write(bytes("0", "UTF-8"))
else:
pickler.write("0")
dill._dill.log.info("# F1")
else:
dill._dill.log.info("F2: %s" % obj)
name = getattr(obj, "__qualname__", getattr(obj, "__name__", None))
dill._dill.StockPickler.save_global(pickler, obj, name=name)
dill._dill.log.info("# F2")
return
elif config.DILL_VERSION.release[:3] in [version.parse("0.3.6").release, version.parse("0.3.7").release]:
# From: https://github.com/uqfoundation/dill/blob/dill-0.3.6/dill/_dill.py#L1739
@pklregister(FunctionType)
def save_function(pickler, obj):
if not dill._dill._locate_function(obj, pickler):
if type(obj.__code__) is not CodeType:
# Some PyPy builtin functions have no module name, and thus are not
# able to be located
module_name = getattr(obj, "__module__", None)
if module_name is None:
module_name = dill._dill.__builtin__.__name__
module = dill._dill._import_module(module_name, safe=True)
_pypy_builtin = False
try:
found, _ = dill._dill._getattribute(module, obj.__qualname__)
if getattr(found, "__func__", None) is obj:
_pypy_builtin = True
except AttributeError:
pass
if _pypy_builtin:
dill._dill.logger.trace(pickler, "F3: %s", obj)
pickler.save_reduce(getattr, (found, "__func__"), obj=obj)
dill._dill.logger.trace(pickler, "# F3")
return
dill._dill.logger.trace(pickler, "F1: %s", obj)
_recurse = getattr(pickler, "_recurse", None)
_postproc = getattr(pickler, "_postproc", None)
_main_modified = getattr(pickler, "_main_modified", None)
_original_main = getattr(pickler, "_original_main", dill._dill.__builtin__) # 'None'
postproc_list = []
if _recurse:
# recurse to get all globals referred to by obj
from dill.detect import globalvars
globs_copy = globalvars(obj, recurse=True, builtin=True)
# Add the name of the module to the globs dictionary to prevent
# the duplication of the dictionary. Pickle the unpopulated
# globals dictionary and set the remaining items after the function
# is created to correctly handle recursion.
globs = {"__name__": obj.__module__}
else:
globs_copy = obj.__globals__
# If the globals is the __dict__ from the module being saved as a
# session, substitute it by the dictionary being actually saved.
if _main_modified and globs_copy is _original_main.__dict__:
globs_copy = getattr(pickler, "_main", _original_main).__dict__
globs = globs_copy
# If the globals is a module __dict__, do not save it in the pickle.
elif (
globs_copy is not None
and obj.__module__ is not None
and getattr(dill._dill._import_module(obj.__module__, True), "__dict__", None) is globs_copy
):
globs = globs_copy
else:
globs = {"__name__": obj.__module__}
########################################################################################################
# Modification here for huggingface/datasets
# - globs is a dictionary with keys = var names (str) and values = python objects
# - globs_copy is a dictionary with keys = var names (str) and values = ids of the python objects
# However the dictionary is not always loaded in the same order,
# therefore we have to sort the keys to make deterministic.
# This is important to make `dump` deterministic.
# Only these line are different from the original implementation:
# START
globs_is_globs_copy = globs is globs_copy
globs = dict(sorted(globs.items()))
if globs_is_globs_copy:
globs_copy = globs
elif globs_copy is not None:
globs_copy = dict(sorted(globs_copy.items()))
# END
########################################################################################################
if globs_copy is not None and globs is not globs_copy:
# In the case that the globals are copied, we need to ensure that
# the globals dictionary is updated when all objects in the
# dictionary are already created.
glob_ids = {id(g) for g in globs_copy.values()}
for stack_element in _postproc:
if stack_element in glob_ids:
_postproc[stack_element].append((dill._dill._setitems, (globs, globs_copy)))
break
else:
postproc_list.append((dill._dill._setitems, (globs, globs_copy)))
closure = obj.__closure__
state_dict = {}
for fattrname in ("__doc__", "__kwdefaults__", "__annotations__"):
fattr = getattr(obj, fattrname, None)
if fattr is not None:
state_dict[fattrname] = fattr
if obj.__qualname__ != obj.__name__:
state_dict["__qualname__"] = obj.__qualname__
if "__name__" not in globs or obj.__module__ != globs["__name__"]:
state_dict["__module__"] = obj.__module__
state = obj.__dict__
if type(state) is not dict:
state_dict["__dict__"] = state
state = None
if state_dict:
state = state, state_dict
dill._dill._save_with_postproc(
pickler,
(dill._dill._create_function, (obj.__code__, globs, obj.__name__, obj.__defaults__, closure), state),
obj=obj,
postproc_list=postproc_list,
)
# Lift closure cell update to earliest function (#458)
if _postproc:
topmost_postproc = next(iter(_postproc.values()), None)
if closure and topmost_postproc:
for cell in closure:
possible_postproc = (setattr, (cell, "cell_contents", obj))
try:
topmost_postproc.remove(possible_postproc)
except ValueError:
continue
# Change the value of the cell
pickler.save_reduce(*possible_postproc)
# pop None created by calling preprocessing step off stack
pickler.write(bytes("0", "UTF-8"))
dill._dill.logger.trace(pickler, "# F1")
else:
dill._dill.logger.trace(pickler, "F2: %s", obj)
name = getattr(obj, "__qualname__", getattr(obj, "__name__", None))
dill._dill.StockPickler.save_global(pickler, obj, name=name)
dill._dill.logger.trace(pickler, "# F2")
return
def copyfunc(func):
result = types.FunctionType(func.__code__, func.__globals__, func.__name__, func.__defaults__, func.__closure__)
result.__kwdefaults__ = func.__kwdefaults__
return result
Y = TypeVar("Y")
def _write_generator_to_queue(queue: queue.Queue, func: Callable[..., Iterable[Y]], kwargs: dict) -> int:
for i, result in enumerate(func(**kwargs)):
queue.put(result)
return i
def _get_pool_pid(pool: Union[multiprocessing.pool.Pool, multiprocess.pool.Pool]) -> Set[int]:
return {f.pid for f in pool._pool}
def iflatmap_unordered(
pool: Union[multiprocessing.pool.Pool, multiprocess.pool.Pool],
func: Callable[..., Iterable[Y]],
*,
kwargs_iterable: Iterable[dict],
) -> Iterable[Y]:
initial_pool_pid = _get_pool_pid(pool)
pool_changed = False
manager_cls = Manager if isinstance(pool, multiprocessing.pool.Pool) else multiprocess.Manager
with manager_cls() as manager:
queue = manager.Queue()
async_results = [
pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable
]
try:
while True:
try:
yield queue.get(timeout=0.05)
except Empty:
if all(async_result.ready() for async_result in async_results) and queue.empty():
break
if _get_pool_pid(pool) != initial_pool_pid:
pool_changed = True
# One of the subprocesses has died. We should not wait forever.
raise RuntimeError(
"One of the subprocesses has abruptly died during map operation."
"To debug the error, disable multiprocessing."
)
finally:
if not pool_changed:
# we get the result in case there's an error to raise
[async_result.get(timeout=0.05) for async_result in async_results]
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/utils/filelock.py | # This is free and unencumbered software released into the public domain.
#
# Anyone is free to copy, modify, publish, use, compile, sell, or
# distribute this software, either in source code form or as a compiled
# binary, for any purpose, commercial or non-commercial, and by any
# means.
#
# In jurisdictions that recognize copyright laws, the author or authors
# of this software dedicate any and all copyright interest in the
# software to the public domain. We make this dedication for the benefit
# of the public at large and to the detriment of our heirs and
# successors. We intend this dedication to be an overt act of
# relinquishment in perpetuity of all present and future rights to this
# software under copyright law.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
#
# For more information, please refer to <http://unlicense.org>
"""
A platform independent file lock that supports the with-statement.
"""
# Modules
# ------------------------------------------------
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
warnings = None
try:
import msvcrt
except ImportError:
msvcrt = None
try:
import fcntl
except ImportError:
fcntl = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
TimeoutError = OSError
# Data
# ------------------------------------------------
__all__ = [
"Timeout",
"BaseFileLock",
"WindowsFileLock",
"UnixFileLock",
"SoftFileLock",
"FileLock",
]
__version__ = "3.0.12"
_logger = None
def logger():
"""Returns the logger instance used in this module."""
global _logger
_logger = _logger or logging.getLogger(__name__)
return _logger
# Exceptions
# ------------------------------------------------
class Timeout(TimeoutError):
"""
Raised when the lock could not be acquired in *timeout*
seconds.
"""
def __init__(self, lock_file):
""" """
#: The path of the file lock.
self.lock_file = lock_file
return None
def __str__(self):
temp = f"The file lock '{self.lock_file}' could not be acquired."
return temp
# Classes
# ------------------------------------------------
# This is a helper class which is returned by :meth:`BaseFileLock.acquire`
# and wraps the lock to make sure __enter__ is not called twice when entering
# the with statement.
# If we would simply return *self*, the lock would be acquired again
# in the *__enter__* method of the BaseFileLock, but not released again
# automatically.
#
# :seealso: issue #37 (memory leak)
class _Acquire_ReturnProxy:
def __init__(self, lock):
self.lock = lock
return None
def __enter__(self):
return self.lock
def __exit__(self, exc_type, exc_value, traceback):
self.lock.release()
return None
class BaseFileLock:
"""
Implements the base class of a file lock.
"""
def __init__(self, lock_file, timeout=-1, max_filename_length=None):
""" """
max_filename_length = max_filename_length if max_filename_length is not None else 255
# Hash the filename if it's too long
lock_file = self.hash_filename_if_too_long(lock_file, max_filename_length)
# The path to the lock file.
self._lock_file = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
self._lock_file_fd = None
# The default timeout value.
self.timeout = timeout
# We use this lock primarily for the lock counter.
self._thread_lock = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
self._lock_counter = 0
return None
@property
def lock_file(self):
"""
The path to the lock file.
"""
return self._lock_file
@property
def timeout(self):
"""
You can set a default timeout for the filelock. It will be used as
fallback value in the acquire method, if no timeout value (*None*) is
given.
If you want to disable the timeout, set it to a negative value.
A timeout of 0 means, that there is exactly one attempt to acquire the
file lock.
*New in version 2.0.0*
"""
return self._timeout
@timeout.setter
def timeout(self, value):
""" """
self._timeout = float(value)
return None
# Platform dependent locking
# --------------------------------------------
def _acquire(self):
"""
Platform dependent. If the file lock could be
acquired, self._lock_file_fd holds the file descriptor
of the lock file.
"""
raise NotImplementedError()
def _release(self):
"""
Releases the lock and sets self._lock_file_fd to None.
"""
raise NotImplementedError()
# Platform independent methods
# --------------------------------------------
@property
def is_locked(self):
"""
True, if the object holds the file lock.
This was previously a method and is now a property.
"""
return self._lock_file_fd is not None
def acquire(self, timeout=None, poll_intervall=0.05):
"""
Acquires the file lock or fails with a :exc:`Timeout` error.
```py
# You can use this method in the context manager (recommended)
with lock.acquire():
pass
# Or use an equivalent try-finally construct:
lock.acquire()
try:
pass
finally:
lock.release()
```
:arg float timeout:
The maximum time waited for the file lock.
If ``timeout < 0``, there is no timeout and this method will
block until the lock could be acquired.
If ``timeout`` is None, the default :attr:`~timeout` is used.
:arg float poll_intervall:
We check once in *poll_intervall* seconds if we can acquire the
file lock.
:raises Timeout:
if the lock could not be acquired in *timeout* seconds.
This method returns now a *proxy* object instead of *self*,
so that it can be used in a with statement without side effects.
"""
# Use the default timeout, if no timeout is provided.
if timeout is None:
timeout = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
lock_id = id(self)
lock_filename = self._lock_file
start_time = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f"Attempting to acquire lock {lock_id} on {lock_filename}")
self._acquire()
if self.is_locked:
logger().debug(f"Lock {lock_id} acquired on {lock_filename}")
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f"Timeout on acquiring lock {lock_id} on {lock_filename}")
raise Timeout(self._lock_file)
else:
logger().debug(
f"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..."
)
time.sleep(poll_intervall)
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
self._lock_counter = max(0, self._lock_counter - 1)
raise
return _Acquire_ReturnProxy(lock=self)
def release(self, force=False):
"""
Releases the file lock.
Please note, that the lock is only completly released, if the lock
counter is 0.
Also note, that the lock file itself is not automatically deleted.
:arg bool force:
If true, the lock counter is ignored and the lock is released in
every case.
"""
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
lock_id = id(self)
lock_filename = self._lock_file
logger().debug(f"Attempting to release lock {lock_id} on {lock_filename}")
self._release()
self._lock_counter = 0
logger().debug(f"Lock {lock_id} released on {lock_filename}")
return None
def __enter__(self):
self.acquire()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.release()
return None
def __del__(self):
self.release(force=True)
return None
def hash_filename_if_too_long(self, path: str, max_length: int) -> str:
filename = os.path.basename(path)
if len(filename) > max_length and max_length > 0:
dirname = os.path.dirname(path)
hashed_filename = str(hash(filename))
new_filename = filename[: max_length - len(hashed_filename) - 8] + "..." + hashed_filename + ".lock"
return os.path.join(dirname, new_filename)
else:
return path
# Windows locking mechanism
# ~~~~~~~~~~~~~~~~~~~~~~~~~
class WindowsFileLock(BaseFileLock):
"""
Uses the :func:`msvcrt.locking` function to hard lock the lock file on
windows systems.
"""
def __init__(self, lock_file, timeout=-1, max_filename_length=None):
from .file_utils import relative_to_absolute_path
super().__init__(lock_file, timeout=timeout, max_filename_length=max_filename_length)
self._lock_file = "\\\\?\\" + relative_to_absolute_path(self.lock_file)
def _acquire(self):
open_mode = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
fd = os.open(self._lock_file, open_mode)
except OSError:
pass
else:
try:
msvcrt.locking(fd, msvcrt.LK_NBLCK, 1)
except OSError:
os.close(fd)
else:
self._lock_file_fd = fd
return None
def _release(self):
fd = self._lock_file_fd
self._lock_file_fd = None
msvcrt.locking(fd, msvcrt.LK_UNLCK, 1)
os.close(fd)
try:
os.remove(self._lock_file)
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
# Unix locking mechanism
# ~~~~~~~~~~~~~~~~~~~~~~
class UnixFileLock(BaseFileLock):
"""
Uses the :func:`fcntl.flock` to hard lock the lock file on unix systems.
"""
def __init__(self, lock_file, timeout=-1, max_filename_length=None):
max_filename_length = os.statvfs(os.path.dirname(lock_file)).f_namemax
super().__init__(lock_file, timeout=timeout, max_filename_length=max_filename_length)
def _acquire(self):
open_mode = os.O_RDWR | os.O_CREAT | os.O_TRUNC
fd = os.open(self._lock_file, open_mode)
try:
fcntl.flock(fd, fcntl.LOCK_EX | fcntl.LOCK_NB)
except OSError:
os.close(fd)
else:
self._lock_file_fd = fd
return None
def _release(self):
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
fd = self._lock_file_fd
self._lock_file_fd = None
fcntl.flock(fd, fcntl.LOCK_UN)
os.close(fd)
return None
# Soft lock
# ~~~~~~~~~
class SoftFileLock(BaseFileLock):
"""
Simply watches the existence of the lock file.
"""
def _acquire(self):
open_mode = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
fd = os.open(self._lock_file, open_mode)
except OSError:
pass
else:
self._lock_file_fd = fd
return None
def _release(self):
os.close(self._lock_file_fd)
self._lock_file_fd = None
try:
os.remove(self._lock_file)
# The file is already deleted and that's what we want.
except OSError:
pass
return None
# Platform filelock
# ~~~~~~~~~~~~~~~~~
#: Alias for the lock, which should be used for the current platform. On
#: Windows, this is an alias for :class:`WindowsFileLock`, on Unix for
#: :class:`UnixFileLock` and otherwise for :class:`SoftFileLock`.
FileLock = None
if msvcrt:
FileLock = WindowsFileLock
elif fcntl:
FileLock = UnixFileLock
else:
FileLock = SoftFileLock
if warnings is not None:
warnings.warn("only soft file lock is available")
| 0 |
hf_public_repos/datasets/src/datasets/utils | hf_public_repos/datasets/src/datasets/utils/resources/multilingualities.json | {
"monolingual": "contains a single language",
"multilingual": "contains multiple languages",
"translation": "contains translated or aligned text",
"other": "other type of language distribution"
}
| 0 |
hf_public_repos/datasets/src/datasets/utils | hf_public_repos/datasets/src/datasets/utils/resources/languages.json | {
"code": "Programming language (C++, Java, Javascript, Python, etc.)",
"aa": "Afar",
"aaa": "Ghotuo",
"aab": "Alumu-Tesu",
"aac": "Ari",
"aad": "Amal",
"aae": "Arbëreshë Albanian",
"aaf": "Aranadan",
"aag": "Ambrak",
"aah": "Abu' Arapesh",
"aai": "Arifama-Miniafia",
"aak": "Ankave",
"aal": "Afade",
"aan": "Anambé",
"aao": "Algerian Saharan Arabic",
"aap": "Pará Arára",
"aaq": "Eastern Abnaki",
"aas": "Aasáx",
"aat": "Arvanitika Albanian",
"aau": "Abau",
"aav": "Austro-Asiatic languages",
"aaw": "Solong",
"aax": "Mandobo Atas",
"aaz": "Amarasi",
"ab": "Abkhazian",
"aba": "Abé",
"abb": "Bankon",
"abc": "Ambala Ayta",
"abd": "Manide",
"abe": "Western Abnaki",
"abf": "Abai Sungai",
"abg": "Abaga",
"abh": "Tajiki Arabic",
"abi": "Abidji",
"abj": "Aka-Bea",
"abl": "Lampung Nyo",
"abm": "Abanyom",
"abn": "Abua",
"abo": "Abon",
"abp": "Abellen Ayta",
"abq": "Abaza",
"abr": "Abron",
"abs": "Ambonese Malay",
"abt": "Ambulas",
"abu": "Abure",
"abv": "Baharna Arabic",
"abw": "Pal",
"abx": "Inabaknon",
"aby": "Aneme Wake",
"abz": "Abui",
"aca": "Achagua",
"acb": "Áncá",
"acd": "Gikyode",
"ace": "Achinese",
"acf": "Saint Lucian Creole French",
"ach": "Acoli",
"aci": "Aka-Cari",
"ack": "Aka-Kora",
"acl": "Akar-Bale",
"acm": "Mesopotamian Arabic",
"acn": "Achang",
"acp": "Eastern Acipa",
"acq": "Ta'izzi-Adeni Arabic",
"acr": "Achi",
"acs": "Acroá",
"act": "Achterhoeks",
"acu": "Achuar-Shiwiar",
"acv": "Achumawi",
"acw": "Hijazi Arabic",
"acx": "Omani Arabic",
"acy": "Cypriot Arabic",
"acz": "Acheron",
"ada": "Adangme",
"adb": "Atauran",
"add": "Lidzonka; Dzodinka",
"ade": "Adele",
"adf": "Dhofari Arabic",
"adg": "Andegerebinha",
"adh": "Adhola",
"adi": "Adi",
"adj": "Adioukrou",
"adl": "Galo",
"adn": "Adang",
"ado": "Abu",
"adq": "Adangbe",
"adr": "Adonara",
"ads": "Adamorobe Sign Language",
"adt": "Adnyamathanha",
"adu": "Aduge",
"adw": "Amundava",
"adx": "Amdo Tibetan",
"ady": "Adyghe; Adygei",
"adz": "Adzera",
"ae": "Avestan",
"aea": "Areba",
"aeb": "Tunisian Arabic",
"aec": "Saidi Arabic",
"aed": "Argentine Sign Language",
"aee": "Northeast Pashai; Northeast Pashayi",
"aek": "Haeke",
"ael": "Ambele",
"aem": "Arem",
"aen": "Armenian Sign Language",
"aeq": "Aer",
"aer": "Eastern Arrernte",
"aes": "Alsea",
"aeu": "Akeu",
"aew": "Ambakich",
"aey": "Amele",
"aez": "Aeka",
"af": "Afrikaans",
"afa": "Afro-Asiatic languages",
"afb": "Gulf Arabic",
"afd": "Andai",
"afe": "Putukwam",
"afg": "Afghan Sign Language",
"afh": "Afrihili",
"afi": "Akrukay; Chini",
"afk": "Nanubae",
"afn": "Defaka",
"afo": "Eloyi",
"afp": "Tapei",
"afs": "Afro-Seminole Creole",
"aft": "Afitti",
"afu": "Awutu",
"afz": "Obokuitai",
"aga": "Aguano",
"agb": "Legbo",
"agc": "Agatu",
"agd": "Agarabi",
"age": "Angal",
"agf": "Arguni",
"agg": "Angor",
"agh": "Ngelima",
"agi": "Agariya",
"agj": "Argobba",
"agk": "Isarog Agta",
"agl": "Fembe",
"agm": "Angaataha",
"agn": "Agutaynen",
"ago": "Tainae",
"agq": "Aghem",
"agr": "Aguaruna",
"ags": "Esimbi",
"agt": "Central Cagayan Agta",
"agu": "Aguacateco",
"agv": "Remontado Dumagat",
"agw": "Kahua",
"agx": "Aghul",
"agy": "Southern Alta",
"agz": "Mt. Iriga Agta",
"aha": "Ahanta",
"ahb": "Axamb",
"ahg": "Qimant",
"ahh": "Aghu",
"ahi": "Tiagbamrin Aizi",
"ahk": "Akha",
"ahl": "Igo",
"ahm": "Mobumrin Aizi",
"ahn": "Àhàn",
"aho": "Ahom",
"ahp": "Aproumu Aizi",
"ahr": "Ahirani",
"ahs": "Ashe",
"aht": "Ahtena",
"aia": "Arosi",
"aib": "Ainu (China)",
"aic": "Ainbai",
"aid": "Alngith",
"aie": "Amara",
"aif": "Agi",
"aig": "Antigua and Barbuda Creole English",
"aih": "Ai-Cham",
"aii": "Assyrian Neo-Aramaic",
"aij": "Lishanid Noshan",
"aik": "Ake",
"ail": "Aimele",
"aim": "Aimol",
"ain": "Ainu (Japan)",
"aio": "Aiton",
"aip": "Burumakok",
"aiq": "Aimaq",
"air": "Airoran",
"ait": "Arikem",
"aiw": "Aari",
"aix": "Aighon",
"aiy": "Ali",
"aja": "Aja (South Sudan)",
"ajg": "Aja (Benin)",
"aji": "Ajië",
"ajn": "Andajin",
"ajp": "South Levantine Arabic",
"ajs": "Algerian Jewish Sign Language",
"aju": "Judeo-Moroccan Arabic",
"ajw": "Ajawa",
"ajz": "Amri Karbi",
"ak": "Akan",
"akb": "Batak Angkola",
"akc": "Mpur",
"akd": "Ukpet-Ehom",
"ake": "Akawaio",
"akf": "Akpa",
"akg": "Anakalangu",
"akh": "Angal Heneng",
"aki": "Aiome",
"akj": "Aka-Jeru",
"akk": "Akkadian",
"akl": "Aklanon",
"akm": "Aka-Bo",
"ako": "Akurio",
"akp": "Siwu",
"akq": "Ak",
"akr": "Araki",
"aks": "Akaselem",
"akt": "Akolet",
"aku": "Akum",
"akv": "Akhvakh",
"akw": "Akwa",
"akx": "Aka-Kede",
"aky": "Aka-Kol",
"akz": "Alabama",
"ala": "Alago",
"alc": "Qawasqar",
"ald": "Alladian",
"ale": "Aleut",
"alf": "Alege",
"alg": "Algonquian languages",
"alh": "Alawa",
"ali": "Amaimon",
"alj": "Alangan",
"alk": "Alak",
"all": "Allar",
"alm": "Amblong",
"aln": "Gheg Albanian",
"alo": "Larike-Wakasihu",
"alp": "Alune",
"alq": "Algonquin",
"alr": "Alutor",
"als": "Tosk Albanian",
"alt": "Southern Altai",
"alu": "'Are'are",
"alv": "Atlantic-Congo languages",
"alw": "Alaba-K’abeena; Wanbasana",
"alx": "Amol",
"aly": "Alyawarr",
"alz": "Alur",
"am": "Amharic",
"ama": "Amanayé",
"amb": "Ambo",
"amc": "Amahuaca",
"ame": "Yanesha'",
"amf": "Hamer-Banna",
"amg": "Amurdak",
"ami": "Amis",
"amj": "Amdang",
"amk": "Ambai",
"aml": "War-Jaintia",
"amm": "Ama (Papua New Guinea)",
"amn": "Amanab",
"amo": "Amo",
"amp": "Alamblak",
"amq": "Amahai",
"amr": "Amarakaeri",
"ams": "Southern Amami-Oshima",
"amt": "Amto",
"amu": "Guerrero Amuzgo",
"amv": "Ambelau",
"amw": "Western Neo-Aramaic",
"amx": "Anmatyerre",
"amy": "Ami",
"amz": "Atampaya",
"an": "Aragonese",
"ana": "Andaqui",
"anb": "Andoa",
"anc": "Ngas",
"and": "Ansus",
"ane": "Xârâcùù",
"anf": "Animere",
"ang": "Old English (ca. 450-1100)",
"anh": "Nend",
"ani": "Andi",
"anj": "Anor",
"ank": "Goemai",
"anl": "Anu-Hkongso Chin",
"anm": "Anal",
"ann": "Obolo",
"ano": "Andoque",
"anp": "Angika",
"anq": "Jarawa (India)",
"anr": "Andh",
"ans": "Anserma",
"ant": "Antakarinya; Antikarinya",
"anu": "Anuak",
"anv": "Denya",
"anw": "Anaang",
"anx": "Andra-Hus",
"any": "Anyin",
"anz": "Anem",
"aoa": "Angolar",
"aob": "Abom",
"aoc": "Pemon",
"aod": "Andarum",
"aoe": "Angal Enen",
"aof": "Bragat",
"aog": "Angoram",
"aoi": "Anindilyakwa",
"aoj": "Mufian",
"aok": "Arhö",
"aol": "Alor",
"aom": "Ömie",
"aon": "Bumbita Arapesh",
"aor": "Aore",
"aos": "Taikat",
"aot": "Atong (India); A'tong",
"aou": "A'ou",
"aox": "Atorada",
"aoz": "Uab Meto",
"apa": "Apache languages",
"apb": "Sa'a",
"apc": "North Levantine Arabic",
"apd": "Sudanese Arabic",
"ape": "Bukiyip",
"apf": "Pahanan Agta",
"apg": "Ampanang",
"aph": "Athpariya",
"api": "Apiaká",
"apj": "Jicarilla Apache",
"apk": "Kiowa Apache",
"apl": "Lipan Apache",
"apm": "Mescalero-Chiricahua Apache",
"apn": "Apinayé",
"apo": "Ambul",
"app": "Apma",
"apq": "A-Pucikwar",
"apr": "Arop-Lokep",
"aps": "Arop-Sissano",
"apt": "Apatani",
"apu": "Apurinã",
"apv": "Alapmunte",
"apw": "Western Apache",
"apx": "Aputai",
"apy": "Apalaí",
"apz": "Safeyoka",
"aqa": "Alacalufan languages",
"aqc": "Archi",
"aqd": "Ampari Dogon",
"aqg": "Arigidi",
"aqk": "Aninka",
"aql": "Algic languages",
"aqm": "Atohwaim",
"aqn": "Northern Alta",
"aqp": "Atakapa",
"aqr": "Arhâ",
"aqt": "Angaité",
"aqz": "Akuntsu",
"ar": "Arabic",
"arb": "Standard Arabic",
"arc": "Official Aramaic (700-300 BCE); Imperial Aramaic (700-300 BCE)",
"ard": "Arabana",
"are": "Western Arrarnta",
"arh": "Arhuaco",
"ari": "Arikara",
"arj": "Arapaso",
"ark": "Arikapú",
"arl": "Arabela",
"arn": "Mapudungun; Mapuche",
"aro": "Araona",
"arp": "Arapaho",
"arq": "Algerian Arabic",
"arr": "Karo (Brazil)",
"ars": "Najdi Arabic",
"art": "Artificial languages",
"aru": "Aruá (Amazonas State); Arawá",
"arv": "Arbore",
"arw": "Arawak",
"arx": "Aruá (Rodonia State)",
"ary": "Moroccan Arabic",
"arz": "Egyptian Arabic",
"as": "Assamese",
"asa": "Asu (Tanzania)",
"asb": "Assiniboine",
"asc": "Casuarina Coast Asmat",
"ase": "American Sign Language",
"asf": "Auslan; Australian Sign Language",
"asg": "Cishingini",
"ash": "Abishira",
"asi": "Buruwai",
"asj": "Sari",
"ask": "Ashkun",
"asl": "Asilulu",
"asn": "Xingú Asuriní",
"aso": "Dano",
"asp": "Algerian Sign Language",
"asq": "Austrian Sign Language",
"asr": "Asuri",
"ass": "Ipulo",
"ast": "Asturian; Asturleonese; Bable; Leonese",
"asu": "Tocantins Asurini",
"asv": "Asoa",
"asw": "Australian Aborigines Sign Language",
"asx": "Muratayak",
"asy": "Yaosakor Asmat",
"asz": "As",
"ata": "Pele-Ata",
"atb": "Zaiwa",
"atc": "Atsahuaca",
"atd": "Ata Manobo",
"ate": "Atemble",
"atg": "Ivbie North-Okpela-Arhe",
"ath": "Athapascan languages",
"ati": "Attié",
"atj": "Atikamekw",
"atk": "Ati",
"atl": "Mt. Iraya Agta",
"atm": "Ata",
"atn": "Ashtiani",
"ato": "Atong (Cameroon)",
"atp": "Pudtol Atta",
"atq": "Aralle-Tabulahan",
"atr": "Waimiri-Atroari",
"ats": "Gros Ventre",
"att": "Pamplona Atta",
"atu": "Reel",
"atv": "Northern Altai",
"atw": "Atsugewi",
"atx": "Arutani",
"aty": "Aneityum",
"atz": "Arta",
"aua": "Asumboa",
"aub": "Alugu",
"auc": "Waorani",
"aud": "Anuta",
"auf": "Arauan languages",
"aug": "Aguna",
"auh": "Aushi",
"aui": "Anuki",
"auj": "Awjilah",
"auk": "Heyo",
"aul": "Aulua",
"aum": "Asu (Nigeria)",
"aun": "Molmo One",
"auo": "Auyokawa",
"aup": "Makayam",
"auq": "Anus; Korur",
"aur": "Aruek",
"aus": "Australian languages",
"aut": "Austral",
"auu": "Auye",
"auw": "Awyi",
"aux": "Aurá",
"auy": "Awiyaana",
"auz": "Uzbeki Arabic",
"av": "Avaric",
"avb": "Avau",
"avd": "Alviri-Vidari",
"avi": "Avikam",
"avk": "Kotava",
"avl": "Eastern Egyptian Bedawi Arabic",
"avm": "Angkamuthi",
"avn": "Avatime",
"avo": "Agavotaguerra",
"avs": "Aushiri",
"avt": "Au",
"avu": "Avokaya",
"avv": "Avá-Canoeiro",
"awa": "Awadhi",
"awb": "Awa (Papua New Guinea)",
"awc": "Cicipu",
"awd": "Arawakan languages",
"awe": "Awetí",
"awg": "Anguthimri",
"awh": "Awbono",
"awi": "Aekyom",
"awk": "Awabakal",
"awm": "Arawum",
"awn": "Awngi",
"awo": "Awak",
"awr": "Awera",
"aws": "South Awyu",
"awt": "Araweté",
"awu": "Central Awyu",
"awv": "Jair Awyu",
"aww": "Awun",
"awx": "Awara",
"awy": "Edera Awyu",
"axb": "Abipon",
"axe": "Ayerrerenge",
"axg": "Mato Grosso Arára",
"axk": "Yaka (Central African Republic)",
"axl": "Lower Southern Aranda",
"axm": "Middle Armenian",
"axx": "Xârâgurè",
"ay": "Aymara",
"aya": "Awar",
"ayb": "Ayizo Gbe",
"ayc": "Southern Aymara",
"ayd": "Ayabadhu",
"aye": "Ayere",
"ayg": "Ginyanga",
"ayh": "Hadrami Arabic",
"ayi": "Leyigha",
"ayk": "Akuku",
"ayl": "Libyan Arabic",
"ayn": "Sanaani Arabic",
"ayo": "Ayoreo",
"ayp": "North Mesopotamian Arabic",
"ayq": "Ayi (Papua New Guinea)",
"ayr": "Central Aymara",
"ays": "Sorsogon Ayta",
"ayt": "Magbukun Ayta",
"ayu": "Ayu",
"ayz": "Mai Brat",
"az": "Azerbaijani",
"aza": "Azha",
"azb": "South Azerbaijani",
"azc": "Uto-Aztecan languages",
"azd": "Eastern Durango Nahuatl",
"azg": "San Pedro Amuzgos Amuzgo",
"azj": "North Azerbaijani",
"azm": "Ipalapa Amuzgo",
"azn": "Western Durango Nahuatl",
"azo": "Awing",
"azt": "Faire Atta",
"azz": "Highland Puebla Nahuatl",
"ba": "Bashkir",
"baa": "Babatana",
"bab": "Bainouk-Gunyuño",
"bac": "Badui",
"bad": "Banda languages",
"bae": "Baré",
"baf": "Nubaca",
"bag": "Tuki",
"bah": "Bahamas Creole English",
"bai": "Bamileke languages",
"baj": "Barakai",
"bal": "Baluchi",
"ban": "Balinese",
"bao": "Waimaha",
"bap": "Bantawa",
"bar": "Bavarian",
"bas": "Basa (Cameroon)",
"bat": "Baltic languages",
"bau": "Bada (Nigeria)",
"bav": "Vengo",
"baw": "Bambili-Bambui",
"bax": "Bamun",
"bay": "Batuley",
"bba": "Baatonum",
"bbb": "Barai",
"bbc": "Batak Toba",
"bbd": "Bau",
"bbe": "Bangba",
"bbf": "Baibai",
"bbg": "Barama",
"bbh": "Bugan",
"bbi": "Barombi",
"bbj": "Ghomálá'",
"bbk": "Babanki",
"bbl": "Bats",
"bbm": "Babango",
"bbn": "Uneapa",
"bbo": "Northern Bobo Madaré; Konabéré",
"bbp": "West Central Banda",
"bbq": "Bamali",
"bbr": "Girawa",
"bbs": "Bakpinka",
"bbt": "Mburku",
"bbu": "Kulung (Nigeria)",
"bbv": "Karnai",
"bbw": "Baba",
"bbx": "Bubia",
"bby": "Befang",
"bca": "Central Bai",
"bcb": "Bainouk-Samik",
"bcc": "Southern Balochi",
"bcd": "North Babar",
"bce": "Bamenyam",
"bcf": "Bamu",
"bcg": "Baga Pokur",
"bch": "Bariai",
"bci": "Baoulé",
"bcj": "Bardi",
"bck": "Bunuba",
"bcl": "Central Bikol",
"bcm": "Bannoni",
"bcn": "Bali (Nigeria)",
"bco": "Kaluli",
"bcp": "Bali (Democratic Republic of Congo)",
"bcq": "Bench",
"bcr": "Babine",
"bcs": "Kohumono",
"bct": "Bendi",
"bcu": "Awad Bing",
"bcv": "Shoo-Minda-Nye",
"bcw": "Bana",
"bcy": "Bacama",
"bcz": "Bainouk-Gunyaamolo",
"bda": "Bayot",
"bdb": "Basap",
"bdc": "Emberá-Baudó",
"bdd": "Bunama",
"bde": "Bade",
"bdf": "Biage",
"bdg": "Bonggi",
"bdh": "Baka (South Sudan)",
"bdi": "Burun",
"bdj": "Bai (South Sudan); Bai",
"bdk": "Budukh",
"bdl": "Indonesian Bajau",
"bdm": "Buduma",
"bdn": "Baldemu",
"bdo": "Morom",
"bdp": "Bende",
"bdq": "Bahnar",
"bdr": "West Coast Bajau",
"bds": "Burunge",
"bdt": "Bokoto",
"bdu": "Oroko",
"bdv": "Bodo Parja",
"bdw": "Baham",
"bdx": "Budong-Budong",
"bdy": "Bandjalang",
"bdz": "Badeshi",
"be": "Belarusian",
"bea": "Beaver",
"beb": "Bebele",
"bec": "Iceve-Maci",
"bed": "Bedoanas",
"bee": "Byangsi",
"bef": "Benabena",
"beg": "Belait",
"beh": "Biali",
"bei": "Bekati'",
"bej": "Beja; Bedawiyet",
"bek": "Bebeli",
"bem": "Bemba (Zambia)",
"beo": "Beami",
"bep": "Besoa",
"beq": "Beembe",
"ber": "Berber languages",
"bes": "Besme",
"bet": "Guiberoua Béte",
"beu": "Blagar",
"bev": "Daloa Bété",
"bew": "Betawi",
"bex": "Jur Modo",
"bey": "Beli (Papua New Guinea)",
"bez": "Bena (Tanzania)",
"bfa": "Bari",
"bfb": "Pauri Bareli",
"bfc": "Panyi Bai; Northern Bai",
"bfd": "Bafut",
"bfe": "Betaf; Tena",
"bff": "Bofi",
"bfg": "Busang Kayan",
"bfh": "Blafe",
"bfi": "British Sign Language",
"bfj": "Bafanji",
"bfk": "Ban Khor Sign Language",
"bfl": "Banda-Ndélé",
"bfm": "Mmen",
"bfn": "Bunak",
"bfo": "Malba Birifor",
"bfp": "Beba",
"bfq": "Badaga",
"bfr": "Bazigar",
"bfs": "Southern Bai",
"bft": "Balti",
"bfu": "Gahri",
"bfw": "Bondo",
"bfx": "Bantayanon",
"bfy": "Bagheli",
"bfz": "Mahasu Pahari",
"bg": "Bulgarian",
"bga": "Gwamhi-Wuri",
"bgb": "Bobongko",
"bgc": "Haryanvi",
"bgd": "Rathwi Bareli",
"bge": "Bauria",
"bgf": "Bangandu",
"bgg": "Bugun",
"bgi": "Giangan",
"bgj": "Bangolan",
"bgk": "Bit; Buxinhua",
"bgl": "Bo (Laos)",
"bgn": "Western Balochi",
"bgo": "Baga Koga",
"bgp": "Eastern Balochi",
"bgq": "Bagri",
"bgr": "Bawm Chin",
"bgs": "Tagabawa",
"bgt": "Bughotu",
"bgu": "Mbongno",
"bgv": "Warkay-Bipim",
"bgw": "Bhatri",
"bgx": "Balkan Gagauz Turkish",
"bgy": "Benggoi",
"bgz": "Banggai",
"bh": "Bihari languages",
"bha": "Bharia",
"bhb": "Bhili",
"bhc": "Biga",
"bhd": "Bhadrawahi",
"bhe": "Bhaya",
"bhf": "Odiai",
"bhg": "Binandere",
"bhh": "Bukharic",
"bhi": "Bhilali",
"bhj": "Bahing",
"bhl": "Bimin",
"bhm": "Bathari",
"bhn": "Bohtan Neo-Aramaic",
"bho": "Bhojpuri",
"bhp": "Bima",
"bhq": "Tukang Besi South",
"bhr": "Bara Malagasy",
"bhs": "Buwal",
"bht": "Bhattiyali",
"bhu": "Bhunjia",
"bhv": "Bahau",
"bhw": "Biak",
"bhx": "Bhalay",
"bhy": "Bhele",
"bhz": "Bada (Indonesia)",
"bi": "Bislama",
"bia": "Badimaya",
"bib": "Bissa; Bisa",
"bid": "Bidiyo",
"bie": "Bepour",
"bif": "Biafada",
"big": "Biangai",
"bik": "Bikol",
"bil": "Bile",
"bim": "Bimoba",
"bin": "Bini; Edo",
"bio": "Nai",
"bip": "Bila",
"biq": "Bipi",
"bir": "Bisorio",
"bit": "Berinomo",
"biu": "Biete",
"biv": "Southern Birifor",
"biw": "Kol (Cameroon)",
"bix": "Bijori",
"biy": "Birhor",
"biz": "Baloi",
"bja": "Budza",
"bjb": "Banggarla",
"bjc": "Bariji",
"bje": "Biao-Jiao Mien",
"bjf": "Barzani Jewish Neo-Aramaic",
"bjg": "Bidyogo",
"bjh": "Bahinemo",
"bji": "Burji",
"bjj": "Kanauji",
"bjk": "Barok",
"bjl": "Bulu (Papua New Guinea)",
"bjm": "Bajelani",
"bjn": "Banjar",
"bjo": "Mid-Southern Banda",
"bjp": "Fanamaket",
"bjr": "Binumarien",
"bjs": "Bajan",
"bjt": "Balanta-Ganja",
"bju": "Busuu",
"bjv": "Bedjond",
"bjw": "Bakwé",
"bjx": "Banao Itneg",
"bjy": "Bayali",
"bjz": "Baruga",
"bka": "Kyak",
"bkc": "Baka (Cameroon)",
"bkd": "Binukid; Talaandig",
"bkf": "Beeke",
"bkg": "Buraka",
"bkh": "Bakoko",
"bki": "Baki",
"bkj": "Pande",
"bkk": "Brokskat",
"bkl": "Berik",
"bkm": "Kom (Cameroon)",
"bkn": "Bukitan",
"bko": "Kwa'",
"bkp": "Boko (Democratic Republic of Congo)",
"bkq": "Bakairí",
"bkr": "Bakumpai",
"bks": "Northern Sorsoganon",
"bkt": "Boloki",
"bku": "Buhid",
"bkv": "Bekwarra",
"bkw": "Bekwel",
"bkx": "Baikeno",
"bky": "Bokyi",
"bkz": "Bungku",
"bla": "Siksika",
"blb": "Bilua",
"blc": "Bella Coola",
"bld": "Bolango",
"ble": "Balanta-Kentohe",
"blf": "Buol",
"blh": "Kuwaa",
"bli": "Bolia",
"blj": "Bolongan",
"blk": "Pa'o Karen; Pa'O",
"bll": "Biloxi",
"blm": "Beli (South Sudan)",
"bln": "Southern Catanduanes Bikol",
"blo": "Anii",
"blp": "Blablanga",
"blq": "Baluan-Pam",
"blr": "Blang",
"bls": "Balaesang",
"blt": "Tai Dam",
"blv": "Kibala; Bolo",
"blw": "Balangao",
"blx": "Mag-Indi Ayta",
"bly": "Notre",
"blz": "Balantak",
"bm": "Bambara",
"bma": "Lame",
"bmb": "Bembe",
"bmc": "Biem",
"bmd": "Baga Manduri",
"bme": "Limassa",
"bmf": "Bom-Kim",
"bmg": "Bamwe",
"bmh": "Kein",
"bmi": "Bagirmi",
"bmj": "Bote-Majhi",
"bmk": "Ghayavi",
"bml": "Bomboli",
"bmm": "Northern Betsimisaraka Malagasy",
"bmn": "Bina (Papua New Guinea)",
"bmo": "Bambalang",
"bmp": "Bulgebi",
"bmq": "Bomu",
"bmr": "Muinane",
"bms": "Bilma Kanuri",
"bmt": "Biao Mon",
"bmu": "Somba-Siawari",
"bmv": "Bum",
"bmw": "Bomwali",
"bmx": "Baimak",
"bmz": "Baramu",
"bn": "Bengali; Bangla",
"bna": "Bonerate",
"bnb": "Bookan",
"bnc": "Bontok",
"bnd": "Banda (Indonesia)",
"bne": "Bintauna",
"bnf": "Masiwang",
"bng": "Benga",
"bni": "Bangi",
"bnj": "Eastern Tawbuid",
"bnk": "Bierebo",
"bnl": "Boon",
"bnm": "Batanga",
"bnn": "Bunun",
"bno": "Bantoanon",
"bnp": "Bola",
"bnq": "Bantik",
"bnr": "Butmas-Tur",
"bns": "Bundeli",
"bnt": "Bantu languages",
"bnu": "Bentong",
"bnv": "Bonerif; Beneraf; Edwas",
"bnw": "Bisis",
"bnx": "Bangubangu",
"bny": "Bintulu",
"bnz": "Beezen",
"bo": "Tibetan",
"boa": "Bora",
"bob": "Aweer",
"boe": "Mundabli",
"bof": "Bolon",
"bog": "Bamako Sign Language",
"boh": "Boma",
"boi": "Barbareño",
"boj": "Anjam",
"bok": "Bonjo",
"bol": "Bole",
"bom": "Berom",
"bon": "Bine",
"boo": "Tiemacèwè Bozo",
"bop": "Bonkiman",
"boq": "Bogaya",
"bor": "Borôro",
"bot": "Bongo",
"bou": "Bondei",
"bov": "Tuwuli",
"bow": "Rema",
"box": "Buamu",
"boy": "Bodo (Central African Republic)",
"boz": "Tiéyaxo Bozo",
"bpa": "Daakaka",
"bpc": "Mbuk",
"bpd": "Banda-Banda",
"bpe": "Bauni",
"bpg": "Bonggo",
"bph": "Botlikh",
"bpi": "Bagupi",
"bpj": "Binji",
"bpk": "Orowe; 'Ôrôê",
"bpl": "Broome Pearling Lugger Pidgin",
"bpm": "Biyom",
"bpn": "Dzao Min",
"bpo": "Anasi",
"bpp": "Kaure",
"bpq": "Banda Malay",
"bpr": "Koronadal Blaan",
"bps": "Sarangani Blaan",
"bpt": "Barrow Point",
"bpu": "Bongu",
"bpv": "Bian Marind",
"bpw": "Bo (Papua New Guinea)",
"bpx": "Palya Bareli",
"bpy": "Bishnupriya",
"bpz": "Bilba",
"bqa": "Tchumbuli",
"bqb": "Bagusa",
"bqc": "Boko (Benin); Boo",
"bqd": "Bung",
"bqf": "Baga Kaloum",
"bqg": "Bago-Kusuntu",
"bqh": "Baima",
"bqi": "Bakhtiari",
"bqj": "Bandial",
"bqk": "Banda-Mbrès",
"bql": "Bilakura",
"bqm": "Wumboko",
"bqn": "Bulgarian Sign Language",
"bqo": "Balo",
"bqp": "Busa",
"bqq": "Biritai",
"bqr": "Burusu",
"bqs": "Bosngun",
"bqt": "Bamukumbit",
"bqu": "Boguru",
"bqv": "Koro Wachi; Begbere-Ejar",
"bqw": "Buru (Nigeria)",
"bqx": "Baangi",
"bqy": "Bengkala Sign Language",
"bqz": "Bakaka",
"br": "Breton",
"bra": "Braj",
"brb": "Brao; Lave",
"brc": "Berbice Creole Dutch",
"brd": "Baraamu",
"brf": "Bira",
"brg": "Baure",
"brh": "Brahui",
"bri": "Mokpwe",
"brj": "Bieria",
"brk": "Birked",
"brl": "Birwa",
"brm": "Barambu",
"brn": "Boruca",
"bro": "Brokkat",
"brp": "Barapasi",
"brq": "Breri",
"brr": "Birao",
"brs": "Baras",
"brt": "Bitare",
"bru": "Eastern Bru",
"brv": "Western Bru",
"brw": "Bellari",
"brx": "Bodo (India)",
"bry": "Burui",
"brz": "Bilbil",
"bs": "Bosnian",
"bsa": "Abinomn",
"bsb": "Brunei Bisaya",
"bsc": "Bassari; Oniyan",
"bse": "Wushi",
"bsf": "Bauchi",
"bsg": "Bashkardi",
"bsh": "Kati",
"bsi": "Bassossi",
"bsj": "Bangwinji",
"bsk": "Burushaski",
"bsl": "Basa-Gumna",
"bsm": "Busami",
"bsn": "Barasana-Eduria",
"bso": "Buso",
"bsp": "Baga Sitemu",
"bsq": "Bassa",
"bsr": "Bassa-Kontagora",
"bss": "Akoose",
"bst": "Basketo",
"bsu": "Bahonsuai",
"bsv": "Baga Sobané",
"bsw": "Baiso",
"bsx": "Yangkam",
"bsy": "Sabah Bisaya",
"bta": "Bata",
"btc": "Bati (Cameroon)",
"btd": "Batak Dairi",
"bte": "Gamo-Ningi",
"btf": "Birgit",
"btg": "Gagnoa Bété",
"bth": "Biatah Bidayuh",
"bti": "Burate",
"btj": "Bacanese Malay",
"btk": "Batak languages",
"btm": "Batak Mandailing",
"btn": "Ratagnon",
"bto": "Rinconada Bikol",
"btp": "Budibud",
"btq": "Batek",
"btr": "Baetora",
"bts": "Batak Simalungun",
"btt": "Bete-Bendi",
"btu": "Batu",
"btv": "Bateri",
"btw": "Butuanon",
"btx": "Batak Karo",
"bty": "Bobot",
"btz": "Batak Alas-Kluet",
"bua": "Buriat",
"bub": "Bua",
"buc": "Bushi",
"bud": "Ntcham",
"bue": "Beothuk",
"buf": "Bushoong",
"bug": "Buginese",
"buh": "Younuo Bunu",
"bui": "Bongili",
"buj": "Basa-Gurmana",
"buk": "Bugawac",
"bum": "Bulu (Cameroon)",
"bun": "Sherbro",
"buo": "Terei",
"bup": "Busoa",
"buq": "Brem",
"bus": "Bokobaru",
"but": "Bungain",
"buu": "Budu",
"buv": "Bun",
"buw": "Bubi",
"bux": "Boghom",
"buy": "Bullom So",
"buz": "Bukwen",
"bva": "Barein",
"bvb": "Bube",
"bvc": "Baelelea",
"bvd": "Baeggu",
"bve": "Berau Malay",
"bvf": "Boor",
"bvg": "Bonkeng",
"bvh": "Bure",
"bvi": "Belanda Viri",
"bvj": "Baan",
"bvk": "Bukat",
"bvl": "Bolivian Sign Language",
"bvm": "Bamunka",
"bvn": "Buna",
"bvo": "Bolgo",
"bvp": "Bumang",
"bvq": "Birri",
"bvr": "Burarra",
"bvt": "Bati (Indonesia)",
"bvu": "Bukit Malay",
"bvv": "Baniva",
"bvw": "Boga",
"bvx": "Dibole",
"bvy": "Baybayanon",
"bvz": "Bauzi",
"bwa": "Bwatoo",
"bwb": "Namosi-Naitasiri-Serua",
"bwc": "Bwile",
"bwd": "Bwaidoka",
"bwe": "Bwe Karen",
"bwf": "Boselewa",
"bwg": "Barwe",
"bwh": "Bishuo",
"bwi": "Baniwa",
"bwj": "Láá Láá Bwamu",
"bwk": "Bauwaki",
"bwl": "Bwela",
"bwm": "Biwat",
"bwn": "Wunai Bunu",
"bwo": "Boro (Ethiopia); Borna (Ethiopia)",
"bwp": "Mandobo Bawah",
"bwq": "Southern Bobo Madaré",
"bwr": "Bura-Pabir",
"bws": "Bomboma",
"bwt": "Bafaw-Balong",
"bwu": "Buli (Ghana)",
"bww": "Bwa",
"bwx": "Bu-Nao Bunu",
"bwy": "Cwi Bwamu",
"bwz": "Bwisi",
"bxa": "Tairaha",
"bxb": "Belanda Bor",
"bxc": "Molengue",
"bxd": "Pela",
"bxe": "Birale",
"bxf": "Bilur; Minigir",
"bxg": "Bangala",
"bxh": "Buhutu",
"bxi": "Pirlatapa",
"bxj": "Bayungu",
"bxk": "Bukusu; Lubukusu",
"bxl": "Jalkunan",
"bxm": "Mongolia Buriat",
"bxn": "Burduna",
"bxo": "Barikanchi",
"bxp": "Bebil",
"bxq": "Beele",
"bxr": "Russia Buriat",
"bxs": "Busam",
"bxu": "China Buriat",
"bxv": "Berakou",
"bxw": "Bankagooma",
"bxz": "Binahari",
"bya": "Batak",
"byb": "Bikya",
"byc": "Ubaghara",
"byd": "Benyadu'",
"bye": "Pouye",
"byf": "Bete",
"byg": "Baygo",
"byh": "Bhujel",
"byi": "Buyu",
"byj": "Bina (Nigeria)",
"byk": "Biao",
"byl": "Bayono",
"bym": "Bidjara",
"byn": "Bilin; Blin",
"byo": "Biyo",
"byp": "Bumaji",
"byq": "Basay",
"byr": "Baruya; Yipma",
"bys": "Burak",
"byt": "Berti",
"byv": "Medumba",
"byw": "Belhariya",
"byx": "Qaqet",
"byz": "Banaro",
"bza": "Bandi",
"bzb": "Andio",
"bzc": "Southern Betsimisaraka Malagasy",
"bzd": "Bribri",
"bze": "Jenaama Bozo",
"bzf": "Boikin",
"bzg": "Babuza",
"bzh": "Mapos Buang",
"bzi": "Bisu",
"bzj": "Belize Kriol English",
"bzk": "Nicaragua Creole English",
"bzl": "Boano (Sulawesi)",
"bzm": "Bolondo",
"bzn": "Boano (Maluku)",
"bzo": "Bozaba",
"bzp": "Kemberano",
"bzq": "Buli (Indonesia)",
"bzr": "Biri",
"bzs": "Brazilian Sign Language",
"bzt": "Brithenig",
"bzu": "Burmeso",
"bzv": "Naami",
"bzw": "Basa (Nigeria)",
"bzx": "Kɛlɛngaxo Bozo",
"bzy": "Obanliku",
"bzz": "Evant",
"ca": "Catalan; Valencian",
"caa": "Chortí",
"cab": "Garifuna",
"cac": "Chuj",
"cad": "Caddo",
"cae": "Lehar; Laalaa",
"caf": "Southern Carrier",
"cag": "Nivaclé",
"cah": "Cahuarano",
"cai": "Central American Indian languages",
"caj": "Chané",
"cak": "Kaqchikel; Cakchiquel",
"cal": "Carolinian",
"cam": "Cemuhî",
"can": "Chambri",
"cao": "Chácobo",
"cap": "Chipaya",
"caq": "Car Nicobarese",
"car": "Galibi Carib",
"cas": "Tsimané",
"cau": "Caucasian languages",
"cav": "Cavineña",
"caw": "Callawalla",
"cax": "Chiquitano",
"cay": "Cayuga",
"caz": "Canichana",
"cba": "Chibchan languages",
"cbb": "Cabiyarí",
"cbc": "Carapana",
"cbd": "Carijona",
"cbg": "Chimila",
"cbi": "Chachi",
"cbj": "Ede Cabe",
"cbk": "Chavacano",
"cbl": "Bualkhaw Chin",
"cbn": "Nyahkur",
"cbo": "Izora",
"cbq": "Tsucuba; Cuba",
"cbr": "Cashibo-Cacataibo",
"cbs": "Cashinahua",
"cbt": "Chayahuita",
"cbu": "Candoshi-Shapra",
"cbv": "Cacua",
"cbw": "Kinabalian",
"cby": "Carabayo",
"ccc": "Chamicuro",
"ccd": "Cafundo Creole",
"cce": "Chopi",
"ccg": "Samba Daka",
"cch": "Atsam",
"ccj": "Kasanga",
"ccl": "Cutchi-Swahili",
"ccm": "Malaccan Creole Malay",
"ccn": "North Caucasian languages",
"cco": "Comaltepec Chinantec",
"ccp": "Chakma",
"ccr": "Cacaopera",
"ccs": "South Caucasian languages",
"cda": "Choni",
"cdc": "Chadic languages",
"cdd": "Caddoan languages",
"cde": "Chenchu",
"cdf": "Chiru",
"cdh": "Chambeali",
"cdi": "Chodri",
"cdj": "Churahi",
"cdm": "Chepang",
"cdn": "Chaudangsi",
"cdo": "Min Dong Chinese",
"cdr": "Cinda-Regi-Tiyal",
"cds": "Chadian Sign Language",
"cdy": "Chadong",
"cdz": "Koda",
"ce": "Chechen",
"cea": "Lower Chehalis",
"ceb": "Cebuano",
"ceg": "Chamacoco",
"cek": "Eastern Khumi Chin",
"cel": "Celtic languages",
"cen": "Cen",
"cet": "Centúúm",
"cey": "Ekai Chin",
"cfa": "Dijim-Bwilim",
"cfd": "Cara",
"cfg": "Como Karim",
"cfm": "Falam Chin",
"cga": "Changriwa",
"cgc": "Kagayanen",
"cgg": "Chiga",
"cgk": "Chocangacakha",
"ch": "Chamorro",
"chb": "Chibcha",
"chc": "Catawba",
"chd": "Highland Oaxaca Chontal",
"chf": "Tabasco Chontal",
"chg": "Chagatai",
"chh": "Chinook",
"chj": "Ojitlán Chinantec",
"chk": "Chuukese",
"chl": "Cahuilla",
"chm": "Mari (Russia)",
"chn": "Chinook jargon",
"cho": "Choctaw",
"chp": "Chipewyan; Dene Suline",
"chq": "Quiotepec Chinantec",
"chr": "Cherokee",
"cht": "Cholón",
"chw": "Chuwabu",
"chx": "Chantyal",
"chy": "Cheyenne",
"chz": "Ozumacín Chinantec",
"cia": "Cia-Cia",
"cib": "Ci Gbe",
"cic": "Chickasaw",
"cid": "Chimariko",
"cie": "Cineni",
"cih": "Chinali",
"cik": "Chitkuli Kinnauri",
"cim": "Cimbrian",
"cin": "Cinta Larga",
"cip": "Chiapanec",
"cir": "Tiri; Haméa; Méa",
"ciw": "Chippewa",
"ciy": "Chaima",
"cja": "Western Cham",
"cje": "Chru",
"cjh": "Upper Chehalis",
"cji": "Chamalal",
"cjk": "Chokwe",
"cjm": "Eastern Cham",
"cjn": "Chenapian",
"cjo": "Ashéninka Pajonal",
"cjp": "Cabécar",
"cjs": "Shor",
"cjv": "Chuave",
"cjy": "Jinyu Chinese",
"ckb": "Central Kurdish",
"ckh": "Chak",
"ckl": "Cibak",
"ckm": "Chakavian",
"ckn": "Kaang Chin",
"cko": "Anufo",
"ckq": "Kajakse",
"ckr": "Kairak",
"cks": "Tayo",
"ckt": "Chukot",
"cku": "Koasati",
"ckv": "Kavalan",
"ckx": "Caka",
"cky": "Cakfem-Mushere",
"ckz": "Cakchiquel-Quiché Mixed Language",
"cla": "Ron",
"clc": "Chilcotin",
"cld": "Chaldean Neo-Aramaic",
"cle": "Lealao Chinantec",
"clh": "Chilisso",
"cli": "Chakali",
"clj": "Laitu Chin",
"clk": "Idu-Mishmi",
"cll": "Chala",
"clm": "Clallam",
"clo": "Lowland Oaxaca Chontal",
"clt": "Lautu Chin",
"clu": "Caluyanun",
"clw": "Chulym",
"cly": "Eastern Highland Chatino",
"cma": "Maa",
"cmc": "Chamic languages",
"cme": "Cerma",
"cmg": "Classical Mongolian",
"cmi": "Emberá-Chamí",
"cml": "Campalagian",
"cmm": "Michigamea",
"cmn": "Mandarin Chinese",
"cmo": "Central Mnong",
"cmr": "Mro-Khimi Chin",
"cms": "Messapic",
"cmt": "Camtho",
"cna": "Changthang",
"cnb": "Chinbon Chin",
"cnc": "Côông",
"cng": "Northern Qiang",
"cnh": "Hakha Chin; Haka Chin",
"cni": "Asháninka",
"cnk": "Khumi Chin",
"cnl": "Lalana Chinantec",
"cno": "Con",
"cnp": "Northern Ping Chinese; Northern Pinghua",
"cnq": "Chung",
"cnr": "Montenegrin",
"cns": "Central Asmat",
"cnt": "Tepetotutla Chinantec",
"cnu": "Chenoua",
"cnw": "Ngawn Chin",
"cnx": "Middle Cornish",
"co": "Corsican",
"coa": "Cocos Islands Malay",
"cob": "Chicomuceltec",
"coc": "Cocopa",
"cod": "Cocama-Cocamilla",
"coe": "Koreguaje",
"cof": "Colorado",
"cog": "Chong",
"coh": "Chonyi-Dzihana-Kauma; Chichonyi-Chidzihana-Chikauma",
"coj": "Cochimi",
"cok": "Santa Teresa Cora",
"col": "Columbia-Wenatchi",
"com": "Comanche",
"con": "Cofán",
"coo": "Comox",
"cop": "Coptic",
"coq": "Coquille",
"cot": "Caquinte",
"cou": "Wamey",
"cov": "Cao Miao",
"cow": "Cowlitz",
"cox": "Nanti",
"coz": "Chochotec",
"cpa": "Palantla Chinantec",
"cpb": "Ucayali-Yurúa Ashéninka",
"cpc": "Ajyíninka Apurucayali",
"cpe": "English-based creoles and pidgins",
"cpf": "French-based creoles and pidgins",
"cpg": "Cappadocian Greek",
"cpi": "Chinese Pidgin English",
"cpn": "Cherepon",
"cpo": "Kpeego",
"cpp": "Portuguese-based creoles and pidgins",
"cps": "Capiznon",
"cpu": "Pichis Ashéninka",
"cpx": "Pu-Xian Chinese",
"cpy": "South Ucayali Ashéninka",
"cqd": "Chuanqiandian Cluster Miao",
"cr": "Cree",
"cra": "Chara",
"crb": "Island Carib",
"crc": "Lonwolwol",
"crd": "Coeur d'Alene",
"crf": "Caramanta",
"crg": "Michif",
"crh": "Crimean Tatar; Crimean Turkish",
"cri": "Sãotomense",
"crj": "Southern East Cree",
"crk": "Plains Cree",
"crl": "Northern East Cree",
"crm": "Moose Cree",
"crn": "El Nayar Cora",
"cro": "Crow",
"crp": "Creoles and pidgins",
"crq": "Iyo'wujwa Chorote",
"crr": "Carolina Algonquian",
"crs": "Seselwa Creole French",
"crt": "Iyojwa'ja Chorote",
"crv": "Chaura",
"crw": "Chrau",
"crx": "Carrier",
"cry": "Cori",
"crz": "Cruzeño",
"cs": "Czech",
"csa": "Chiltepec Chinantec",
"csb": "Kashubian",
"csc": "Catalan Sign Language; Lengua de señas catalana; Llengua de Signes Catalana",
"csd": "Chiangmai Sign Language",
"cse": "Czech Sign Language",
"csf": "Cuba Sign Language",
"csg": "Chilean Sign Language",
"csh": "Asho Chin",
"csi": "Coast Miwok",
"csj": "Songlai Chin",
"csk": "Jola-Kasa",
"csl": "Chinese Sign Language",
"csm": "Central Sierra Miwok",
"csn": "Colombian Sign Language",
"cso": "Sochiapam Chinantec; Sochiapan Chinantec",
"csp": "Southern Ping Chinese; Southern Pinghua",
"csq": "Croatia Sign Language",
"csr": "Costa Rican Sign Language",
"css": "Southern Ohlone",
"cst": "Northern Ohlone",
"csu": "Central Sudanic languages",
"csv": "Sumtu Chin",
"csw": "Swampy Cree",
"csx": "Cambodian Sign Language",
"csy": "Siyin Chin",
"csz": "Coos",
"cta": "Tataltepec Chatino",
"ctc": "Chetco",
"ctd": "Tedim Chin",
"cte": "Tepinapa Chinantec",
"ctg": "Chittagonian",
"cth": "Thaiphum Chin",
"ctl": "Tlacoatzintepec Chinantec",
"ctm": "Chitimacha",
"ctn": "Chhintange",
"cto": "Emberá-Catío",
"ctp": "Western Highland Chatino",
"cts": "Northern Catanduanes Bikol",
"ctt": "Wayanad Chetti",
"ctu": "Chol",
"cty": "Moundadan Chetty",
"ctz": "Zacatepec Chatino",
"cu": "Church Slavic; Church Slavonic; Old Bulgarian; Old Church Slavonic; Old Slavonic",
"cua": "Cua",
"cub": "Cubeo",
"cuc": "Usila Chinantec",
"cuh": "Chuka; Gichuka",
"cui": "Cuiba",
"cuj": "Mashco Piro",
"cuk": "San Blas Kuna",
"cul": "Culina; Kulina",
"cuo": "Cumanagoto",
"cup": "Cupeño",
"cuq": "Cun",
"cur": "Chhulung",
"cus": "Cushitic languages",
"cut": "Teutila Cuicatec",
"cuu": "Tai Ya",
"cuv": "Cuvok",
"cuw": "Chukwa",
"cux": "Tepeuxila Cuicatec",
"cuy": "Cuitlatec",
"cv": "Chuvash",
"cvg": "Chug",
"cvn": "Valle Nacional Chinantec",
"cwa": "Kabwa",
"cwb": "Maindo",
"cwd": "Woods Cree",
"cwe": "Kwere",
"cwg": "Chewong; Cheq Wong",
"cwt": "Kuwaataay",
"cy": "Welsh",
"cya": "Nopala Chatino",
"cyb": "Cayubaba",
"cyo": "Cuyonon",
"czh": "Huizhou Chinese",
"czk": "Knaanic",
"czn": "Zenzontepec Chatino",
"czo": "Min Zhong Chinese",
"czt": "Zotung Chin",
"da": "Danish",
"daa": "Dangaléat",
"dac": "Dambi",
"dad": "Marik",
"dae": "Duupa",
"dag": "Dagbani",
"dah": "Gwahatike",
"dai": "Day",
"daj": "Dar Fur Daju",
"dak": "Dakota",
"dal": "Dahalo",
"dam": "Damakawa",
"dao": "Daai Chin",
"daq": "Dandami Maria",
"dar": "Dargwa",
"das": "Daho-Doo",
"dau": "Dar Sila Daju",
"dav": "Taita; Dawida",
"daw": "Davawenyo",
"dax": "Dayi",
"day": "Land Dayak languages",
"daz": "Dao",
"dba": "Bangime",
"dbb": "Deno",
"dbd": "Dadiya",
"dbe": "Dabe",
"dbf": "Edopi",
"dbg": "Dogul Dom Dogon",
"dbi": "Doka",
"dbj": "Ida'an",
"dbl": "Dyirbal",
"dbm": "Duguri",
"dbn": "Duriankere",
"dbo": "Dulbu",
"dbp": "Duwai",
"dbq": "Daba",
"dbr": "Dabarre",
"dbt": "Ben Tey Dogon",
"dbu": "Bondum Dom Dogon",
"dbv": "Dungu",
"dbw": "Bankan Tey Dogon",
"dby": "Dibiyaso",
"dcc": "Deccan",
"dcr": "Negerhollands",
"dda": "Dadi Dadi",
"ddd": "Dongotono",
"dde": "Doondo",
"ddg": "Fataluku",
"ddi": "West Goodenough",
"ddj": "Jaru",
"ddn": "Dendi (Benin)",
"ddo": "Dido",
"ddr": "Dhudhuroa",
"dds": "Donno So Dogon",
"ddw": "Dawera-Daweloor",
"de": "German",
"dec": "Dagik",
"ded": "Dedua",
"dee": "Dewoin",
"def": "Dezfuli",
"deg": "Degema",
"deh": "Dehwari",
"dei": "Demisa",
"dek": "Dek",
"del": "Delaware",
"dem": "Dem",
"den": "Slave (Athapascan)",
"dep": "Pidgin Delaware",
"deq": "Dendi (Central African Republic)",
"der": "Deori",
"des": "Desano",
"dev": "Domung",
"dez": "Dengese",
"dga": "Southern Dagaare",
"dgb": "Bunoge Dogon",
"dgc": "Casiguran Dumagat Agta",
"dgd": "Dagaari Dioula",
"dge": "Degenan",
"dgg": "Doga",
"dgh": "Dghwede",
"dgi": "Northern Dagara",
"dgk": "Dagba",
"dgl": "Andaandi; Dongolawi",
"dgn": "Dagoman",
"dgo": "Dogri (individual language)",
"dgr": "Dogrib; Tłı̨chǫ",
"dgs": "Dogoso",
"dgt": "Ndra'ngith",
"dgw": "Daungwurrung",
"dgx": "Doghoro",
"dgz": "Daga",
"dhd": "Dhundari",
"dhg": "Dhangu-Djangu; Dhangu; Djangu",
"dhi": "Dhimal",
"dhl": "Dhalandji",
"dhm": "Zemba",
"dhn": "Dhanki",
"dho": "Dhodia",
"dhr": "Dhargari",
"dhs": "Dhaiso",
"dhu": "Dhurga",
"dhv": "Dehu; Drehu",
"dhw": "Dhanwar (Nepal)",
"dhx": "Dhungaloo",
"dia": "Dia",
"dib": "South Central Dinka",
"dic": "Lakota Dida",
"did": "Didinga",
"dif": "Dieri; Diyari",
"dig": "Digo; Chidigo",
"dih": "Kumiai",
"dii": "Dimbong",
"dij": "Dai",
"dik": "Southwestern Dinka",
"dil": "Dilling",
"dim": "Dime",
"din": "Dinka",
"dio": "Dibo",
"dip": "Northeastern Dinka",
"diq": "Dimli (individual language)",
"dir": "Dirim",
"dis": "Dimasa",
"diu": "Diriku",
"diw": "Northwestern Dinka",
"dix": "Dixon Reef",
"diy": "Diuwe",
"diz": "Ding",
"dja": "Djadjawurrung",
"djb": "Djinba",
"djc": "Dar Daju Daju",
"djd": "Djamindjung; Ngaliwurru",
"dje": "Zarma",
"djf": "Djangun",
"dji": "Djinang",
"djj": "Djeebbana",
"djk": "Eastern Maroon Creole; Businenge Tongo; Nenge",
"djm": "Jamsay Dogon",
"djn": "Jawoyn; Djauan",
"djo": "Jangkang",
"djr": "Djambarrpuyngu",
"dju": "Kapriman",
"djw": "Djawi",
"dka": "Dakpakha",
"dkg": "Kadung",
"dkk": "Dakka",
"dkr": "Kuijau",
"dks": "Southeastern Dinka",
"dkx": "Mazagway",
"dlg": "Dolgan",
"dlk": "Dahalik",
"dlm": "Dalmatian",
"dln": "Darlong",
"dma": "Duma",
"dmb": "Mombo Dogon",
"dmc": "Gavak",
"dmd": "Madhi Madhi",
"dme": "Dugwor",
"dmf": "Medefaidrin",
"dmg": "Upper Kinabatangan",
"dmk": "Domaaki",
"dml": "Dameli",
"dmm": "Dama",
"dmn": "Mande languages",
"dmo": "Kemedzung",
"dmr": "East Damar",
"dms": "Dampelas",
"dmu": "Dubu; Tebi",
"dmv": "Dumpas",
"dmw": "Mudburra",
"dmx": "Dema",
"dmy": "Demta; Sowari",
"dna": "Upper Grand Valley Dani",
"dnd": "Daonda",
"dne": "Ndendeule",
"dng": "Dungan",
"dni": "Lower Grand Valley Dani",
"dnj": "Dan",
"dnk": "Dengka",
"dnn": "Dzùùngoo",
"dno": "Ndrulo; Northern Lendu",
"dnr": "Danaru",
"dnt": "Mid Grand Valley Dani",
"dnu": "Danau",
"dnv": "Danu",
"dnw": "Western Dani",
"dny": "Dení",
"doa": "Dom",
"dob": "Dobu",
"doc": "Northern Dong",
"doe": "Doe",
"dof": "Domu",
"doh": "Dong",
"doi": "Dogri (macrolanguage)",
"dok": "Dondo",
"dol": "Doso",
"don": "Toura (Papua New Guinea)",
"doo": "Dongo",
"dop": "Lukpa",
"doq": "Dominican Sign Language",
"dor": "Dori'o",
"dos": "Dogosé",
"dot": "Dass",
"dov": "Dombe",
"dow": "Doyayo",
"dox": "Bussa",
"doy": "Dompo",
"doz": "Dorze",
"dpp": "Papar",
"dra": "Dravidian languages",
"drb": "Dair",
"drc": "Minderico",
"drd": "Darmiya",
"dre": "Dolpo",
"drg": "Rungus",
"dri": "C'Lela",
"drl": "Paakantyi",
"drn": "West Damar",
"dro": "Daro-Matu Melanau",
"drq": "Dura",
"drs": "Gedeo",
"drt": "Drents",
"dru": "Rukai",
"dry": "Darai",
"dsb": "Lower Sorbian",
"dse": "Dutch Sign Language",
"dsh": "Daasanach",
"dsi": "Disa",
"dsl": "Danish Sign Language",
"dsn": "Dusner",
"dso": "Desiya",
"dsq": "Tadaksahak",
"dsz": "Mardin Sign Language",
"dta": "Daur",
"dtb": "Labuk-Kinabatangan Kadazan",
"dtd": "Ditidaht",
"dth": "Adithinngithigh",
"dti": "Ana Tinga Dogon",
"dtk": "Tene Kan Dogon",
"dtm": "Tomo Kan Dogon",
"dtn": "Daatsʼíin",
"dto": "Tommo So Dogon",
"dtp": "Kadazan Dusun; Central Dusun",
"dtr": "Lotud",
"dts": "Toro So Dogon",
"dtt": "Toro Tegu Dogon",
"dtu": "Tebul Ure Dogon",
"dty": "Dotyali",
"dua": "Duala",
"dub": "Dubli",
"duc": "Duna",
"due": "Umiray Dumaget Agta",
"duf": "Dumbea; Drubea",
"dug": "Duruma; Chiduruma",
"duh": "Dungra Bhil",
"dui": "Dumun",
"duk": "Uyajitaya",
"dul": "Alabat Island Agta",
"dum": "Middle Dutch (ca. 1050-1350)",
"dun": "Dusun Deyah",
"duo": "Dupaninan Agta",
"dup": "Duano",
"duq": "Dusun Malang",
"dur": "Dii",
"dus": "Dumi",
"duu": "Drung",
"duv": "Duvle",
"duw": "Dusun Witu",
"dux": "Duungooma",
"duy": "Dicamay Agta",
"duz": "Duli-Gey",
"dv": "Dhivehi; Divehi; Maldivian",
"dva": "Duau",
"dwa": "Diri",
"dwk": "Dawik Kui",
"dwr": "Dawro",
"dws": "Dutton World Speedwords",
"dwu": "Dhuwal",
"dww": "Dawawa",
"dwy": "Dhuwaya",
"dwz": "Dewas Rai",
"dya": "Dyan",
"dyb": "Dyaberdyaber",
"dyd": "Dyugun",
"dyg": "Villa Viciosa Agta",
"dyi": "Djimini Senoufo",
"dym": "Yanda Dom Dogon",
"dyn": "Dyangadi; Dhanggatti",
"dyo": "Jola-Fonyi",
"dyu": "Dyula",
"dyy": "Djabugay; Dyaabugay",
"dz": "Dzongkha",
"dza": "Tunzu",
"dze": "Djiwarli",
"dzg": "Dazaga",
"dzl": "Dzalakha",
"dzn": "Dzando",
"eaa": "Karenggapa",
"ebc": "Beginci",
"ebg": "Ebughu",
"ebk": "Eastern Bontok",
"ebo": "Teke-Ebo",
"ebr": "Ebrié",
"ebu": "Embu; Kiembu",
"ecr": "Eteocretan",
"ecs": "Ecuadorian Sign Language",
"ecy": "Eteocypriot",
"ee": "Ewe",
"eee": "E",
"efa": "Efai",
"efe": "Efe",
"efi": "Efik",
"ega": "Ega",
"egl": "Emilian",
"egm": "Benamanga",
"ego": "Eggon",
"egx": "Egyptian languages",
"egy": "Egyptian (Ancient)",
"ehs": "Miyakubo Sign Language",
"ehu": "Ehueun",
"eip": "Eipomek",
"eit": "Eitiep",
"eiv": "Askopan",
"eja": "Ejamat",
"eka": "Ekajuk",
"eke": "Ekit",
"ekg": "Ekari",
"eki": "Eki",
"ekk": "Standard Estonian",
"ekl": "Kol (Bangladesh); Kol",
"ekm": "Elip",
"eko": "Koti",
"ekp": "Ekpeye",
"ekr": "Yace",
"eky": "Eastern Kayah",
"el": "Modern Greek (1453-)",
"ele": "Elepi",
"elh": "El Hugeirat",
"eli": "Nding",
"elk": "Elkei",
"elm": "Eleme",
"elo": "El Molo",
"elu": "Elu",
"elx": "Elamite",
"ema": "Emai-Iuleha-Ora",
"emb": "Embaloh",
"eme": "Emerillon",
"emg": "Eastern Meohang",
"emi": "Mussau-Emira",
"emk": "Eastern Maninkakan",
"emm": "Mamulique",
"emn": "Eman",
"emp": "Northern Emberá",
"emq": "Eastern Minyag",
"ems": "Pacific Gulf Yupik",
"emu": "Eastern Muria",
"emw": "Emplawas",
"emx": "Erromintxela",
"emy": "Epigraphic Mayan",
"emz": "Mbessa",
"en": "English",
"ena": "Apali",
"enb": "Markweeta",
"enc": "En",
"end": "Ende",
"enf": "Forest Enets",
"enh": "Tundra Enets",
"enl": "Enlhet",
"enm": "Middle English (1100-1500)",
"enn": "Engenni",
"eno": "Enggano",
"enq": "Enga",
"enr": "Emumu; Emem",
"enu": "Enu",
"env": "Enwan (Edo State)",
"enw": "Enwan (Akwa Ibom State)",
"enx": "Enxet",
"eo": "Esperanto",
"eot": "Beti (Côte d'Ivoire)",
"epi": "Epie",
"era": "Eravallan",
"erg": "Sie",
"erh": "Eruwa",
"eri": "Ogea",
"erk": "South Efate",
"ero": "Horpa",
"err": "Erre",
"ers": "Ersu",
"ert": "Eritai",
"erw": "Erokwanas",
"es": "Spanish; Castilian",
"ese": "Ese Ejja",
"esg": "Aheri Gondi",
"esh": "Eshtehardi",
"esi": "North Alaskan Inupiatun",
"esk": "Northwest Alaska Inupiatun",
"esl": "Egypt Sign Language",
"esm": "Esuma",
"esn": "Salvadoran Sign Language",
"eso": "Estonian Sign Language",
"esq": "Esselen",
"ess": "Central Siberian Yupik",
"esu": "Central Yupik",
"esx": "Eskimo-Aleut languages",
"esy": "Eskayan",
"et": "Estonian",
"etb": "Etebi",
"etc": "Etchemin",
"eth": "Ethiopian Sign Language",
"etn": "Eton (Vanuatu)",
"eto": "Eton (Cameroon)",
"etr": "Edolo",
"ets": "Yekhee",
"ett": "Etruscan",
"etu": "Ejagham",
"etx": "Eten",
"etz": "Semimi",
"eu": "Basque",
"euq": "Basque (family)",
"eve": "Even",
"evh": "Uvbie",
"evn": "Evenki",
"ewo": "Ewondo",
"ext": "Extremaduran",
"eya": "Eyak",
"eyo": "Keiyo",
"eza": "Ezaa",
"eze": "Uzekwe",
"fa": "Persian",
"faa": "Fasu",
"fab": "Fa d'Ambu",
"fad": "Wagi",
"faf": "Fagani",
"fag": "Finongan",
"fah": "Baissa Fali",
"fai": "Faiwol",
"faj": "Faita",
"fak": "Fang (Cameroon)",
"fal": "South Fali",
"fam": "Fam",
"fan": "Fang (Equatorial Guinea)",
"fap": "Paloor",
"far": "Fataleka",
"fat": "Fanti",
"fau": "Fayu",
"fax": "Fala",
"fay": "Southwestern Fars",
"faz": "Northwestern Fars",
"fbl": "West Albay Bikol",
"fcs": "Quebec Sign Language",
"fer": "Feroge",
"ff": "Fulah",
"ffi": "Foia Foia",
"ffm": "Maasina Fulfulde",
"fgr": "Fongoro",
"fi": "Finnish",
"fia": "Nobiin",
"fie": "Fyer",
"fif": "Faifi",
"fil": "Filipino; Pilipino",
"fip": "Fipa",
"fir": "Firan",
"fit": "Tornedalen Finnish; Meänkieli",
"fiu": "Finno-Ugrian languages",
"fiw": "Fiwaga",
"fj": "Fijian",
"fkk": "Kirya-Konzəl",
"fkv": "Kven Finnish",
"fla": "Kalispel-Pend d'Oreille",
"flh": "Foau",
"fli": "Fali",
"fll": "North Fali",
"fln": "Flinders Island",
"flr": "Fuliiru",
"fly": "Flaaitaal; Tsotsitaal",
"fmp": "Fe'fe'",
"fmu": "Far Western Muria",
"fnb": "Fanbak",
"fng": "Fanagalo",
"fni": "Fania",
"fo": "Faroese",
"fod": "Foodo",
"foi": "Foi",
"fom": "Foma",
"fon": "Fon",
"for": "Fore",
"fos": "Siraya",
"fox": "Formosan languages",
"fpe": "Fernando Po Creole English",
"fqs": "Fas",
"fr": "French",
"frc": "Cajun French",
"frd": "Fordata",
"frk": "Frankish",
"frm": "Middle French (ca. 1400-1600)",
"fro": "Old French (842-ca. 1400)",
"frp": "Arpitan; Francoprovençal",
"frq": "Forak",
"frr": "Northern Frisian",
"frs": "Eastern Frisian",
"frt": "Fortsenal",
"fse": "Finnish Sign Language",
"fsl": "French Sign Language",
"fss": "Finland-Swedish Sign Language; finlandssvenskt teckenspråk; suomenruotsalainen viittomakieli",
"fub": "Adamawa Fulfulde",
"fuc": "Pulaar",
"fud": "East Futuna",
"fue": "Borgu Fulfulde",
"fuf": "Pular",
"fuh": "Western Niger Fulfulde",
"fui": "Bagirmi Fulfulde",
"fuj": "Ko",
"fum": "Fum",
"fun": "Fulniô",
"fuq": "Central-Eastern Niger Fulfulde",
"fur": "Friulian",
"fut": "Futuna-Aniwa",
"fuu": "Furu",
"fuv": "Nigerian Fulfulde",
"fuy": "Fuyug",
"fvr": "Fur",
"fwa": "Fwâi",
"fwe": "Fwe",
"fy": "Western Frisian",
"ga": "Irish",
"gaa": "Ga",
"gab": "Gabri",
"gac": "Mixed Great Andamanese",
"gad": "Gaddang",
"gae": "Guarequena",
"gaf": "Gende",
"gag": "Gagauz",
"gah": "Alekano",
"gai": "Borei",
"gaj": "Gadsup",
"gak": "Gamkonora",
"gal": "Galolen",
"gam": "Kandawo",
"gan": "Gan Chinese",
"gao": "Gants",
"gap": "Gal",
"gaq": "Gata'",
"gar": "Galeya",
"gas": "Adiwasi Garasia",
"gat": "Kenati",
"gau": "Mudhili Gadaba",
"gaw": "Nobonob",
"gax": "Borana-Arsi-Guji Oromo",
"gay": "Gayo",
"gaz": "West Central Oromo",
"gba": "Gbaya (Central African Republic)",
"gbb": "Kaytetye",
"gbd": "Karajarri",
"gbe": "Niksek",
"gbf": "Gaikundi",
"gbg": "Gbanziri",
"gbh": "Defi Gbe",
"gbi": "Galela",
"gbj": "Bodo Gadaba",
"gbk": "Gaddi",
"gbl": "Gamit",
"gbm": "Garhwali",
"gbn": "Mo'da",
"gbo": "Northern Grebo",
"gbp": "Gbaya-Bossangoa",
"gbq": "Gbaya-Bozoum",
"gbr": "Gbagyi",
"gbs": "Gbesi Gbe",
"gbu": "Gagadu",
"gbv": "Gbanu",
"gbw": "Gabi-Gabi",
"gbx": "Eastern Xwla Gbe",
"gby": "Gbari",
"gbz": "Zoroastrian Dari",
"gcc": "Mali",
"gcd": "Ganggalida",
"gce": "Galice",
"gcf": "Guadeloupean Creole French",
"gcl": "Grenadian Creole English",
"gcn": "Gaina",
"gcr": "Guianese Creole French",
"gct": "Colonia Tovar German",
"gd": "Scottish Gaelic; Gaelic",
"gda": "Gade Lohar",
"gdb": "Pottangi Ollar Gadaba",
"gdc": "Gugu Badhun",
"gdd": "Gedaged",
"gde": "Gude",
"gdf": "Guduf-Gava",
"gdg": "Ga'dang",
"gdh": "Gadjerawang; Gajirrabeng",
"gdi": "Gundi",
"gdj": "Gurdjar",
"gdk": "Gadang",
"gdl": "Dirasha",
"gdm": "Laal",
"gdn": "Umanakaina",
"gdo": "Ghodoberi",
"gdq": "Mehri",
"gdr": "Wipi",
"gds": "Ghandruk Sign Language",
"gdt": "Kungardutyi",
"gdu": "Gudu",
"gdx": "Godwari",
"gea": "Geruma",
"geb": "Kire",
"gec": "Gboloo Grebo",
"ged": "Gade",
"gef": "Gerai",
"geg": "Gengle",
"geh": "Hutterite German; Hutterisch",
"gei": "Gebe",
"gej": "Gen",
"gek": "Ywom",
"gel": "ut-Ma'in",
"gem": "Germanic languages",
"geq": "Geme",
"ges": "Geser-Gorom",
"gev": "Eviya",
"gew": "Gera",
"gex": "Garre",
"gey": "Enya",
"gez": "Geez",
"gfk": "Patpatar",
"gft": "Gafat",
"gga": "Gao",
"ggb": "Gbii",
"ggd": "Gugadj",
"gge": "Gurr-goni",
"ggg": "Gurgula",
"ggk": "Kungarakany",
"ggl": "Ganglau",
"ggt": "Gitua",
"ggu": "Gagu; Gban",
"ggw": "Gogodala",
"gha": "Ghadamès",
"ghc": "Hiberno-Scottish Gaelic",
"ghe": "Southern Ghale",
"ghh": "Northern Ghale",
"ghk": "Geko Karen",
"ghl": "Ghulfan",
"ghn": "Ghanongga",
"gho": "Ghomara",
"ghr": "Ghera",
"ghs": "Guhu-Samane",
"ght": "Kuke; Kutang Ghale",
"gia": "Kija",
"gib": "Gibanawa",
"gic": "Gail",
"gid": "Gidar",
"gie": "Gaɓogbo; Guébie",
"gig": "Goaria",
"gih": "Githabul",
"gii": "Girirra",
"gil": "Gilbertese",
"gim": "Gimi (Eastern Highlands)",
"gin": "Hinukh",
"gip": "Gimi (West New Britain)",
"giq": "Green Gelao",
"gir": "Red Gelao",
"gis": "North Giziga",
"git": "Gitxsan",
"giu": "Mulao",
"giw": "White Gelao",
"gix": "Gilima",
"giy": "Giyug",
"giz": "South Giziga",
"gjk": "Kachi Koli",
"gjm": "Gunditjmara",
"gjn": "Gonja",
"gjr": "Gurindji Kriol",
"gju": "Gujari",
"gka": "Guya",
"gkd": "Magɨ (Madang Province)",
"gke": "Ndai",
"gkn": "Gokana",
"gko": "Kok-Nar",
"gkp": "Guinea Kpelle",
"gku": "ǂUngkue",
"gl": "Galician",
"glb": "Belning",
"glc": "Bon Gula",
"gld": "Nanai",
"glh": "Northwest Pashai; Northwest Pashayi",
"glj": "Gula Iro",
"glk": "Gilaki",
"gll": "Garlali",
"glo": "Galambu",
"glr": "Glaro-Twabo",
"glu": "Gula (Chad)",
"glw": "Glavda",
"gly": "Gule",
"gma": "Gambera",
"gmb": "Gula'alaa",
"gmd": "Mághdì",
"gme": "East Germanic languages",
"gmg": "Magɨyi",
"gmh": "Middle High German (ca. 1050-1500)",
"gml": "Middle Low German",
"gmm": "Gbaya-Mbodomo",
"gmn": "Gimnime",
"gmq": "North Germanic languages",
"gmr": "Mirning; Mirniny",
"gmu": "Gumalu",
"gmv": "Gamo",
"gmw": "West Germanic languages",
"gmx": "Magoma",
"gmy": "Mycenaean Greek",
"gmz": "Mgbolizhia",
"gn": "Guarani",
"gna": "Kaansa",
"gnb": "Gangte",
"gnc": "Guanche",
"gnd": "Zulgo-Gemzek",
"gne": "Ganang",
"gng": "Ngangam",
"gnh": "Lere",
"gni": "Gooniyandi",
"gnj": "Ngen",
"gnk": "ǁGana",
"gnl": "Gangulu",
"gnm": "Ginuman",
"gnn": "Gumatj",
"gno": "Northern Gondi",
"gnq": "Gana",
"gnr": "Gureng Gureng",
"gnt": "Guntai",
"gnu": "Gnau",
"gnw": "Western Bolivian Guaraní",
"gnz": "Ganzi",
"goa": "Guro",
"gob": "Playero",
"goc": "Gorakor",
"god": "Godié",
"goe": "Gongduk",
"gof": "Gofa",
"gog": "Gogo",
"goh": "Old High German (ca. 750-1050)",
"goi": "Gobasi",
"goj": "Gowlan",
"gok": "Gowli",
"gol": "Gola",
"gom": "Goan Konkani",
"gon": "Gondi",
"goo": "Gone Dau",
"gop": "Yeretuar",
"goq": "Gorap",
"gor": "Gorontalo",
"gos": "Gronings",
"got": "Gothic",
"gou": "Gavar",
"gov": "Goo",
"gow": "Gorowa",
"gox": "Gobu",
"goy": "Goundo",
"goz": "Gozarkhani",
"gpa": "Gupa-Abawa",
"gpe": "Ghanaian Pidgin English",
"gpn": "Taiap",
"gqa": "Ga'anda",
"gqi": "Guiqiong",
"gqn": "Guana (Brazil)",
"gqr": "Gor",
"gqu": "Qau",
"gra": "Rajput Garasia",
"grb": "Grebo",
"grc": "Ancient Greek (to 1453)",
"grd": "Guruntum-Mbaaru",
"grg": "Madi",
"grh": "Gbiri-Niragu",
"gri": "Ghari",
"grj": "Southern Grebo",
"grk": "Greek languages",
"grm": "Kota Marudu Talantang",
"gro": "Groma",
"grq": "Gorovu",
"grr": "Taznatit",
"grs": "Gresi",
"grt": "Garo",
"gru": "Kistane",
"grv": "Central Grebo",
"grw": "Gweda",
"grx": "Guriaso",
"gry": "Barclayville Grebo",
"grz": "Guramalum",
"gse": "Ghanaian Sign Language",
"gsg": "German Sign Language",
"gsl": "Gusilay",
"gsm": "Guatemalan Sign Language",
"gsn": "Nema; Gusan",
"gso": "Southwest Gbaya",
"gsp": "Wasembo",
"gss": "Greek Sign Language",
"gsw": "Swiss German; Alemannic; Alsatian",
"gta": "Guató",
"gtu": "Aghu-Tharnggala",
"gu": "Gujarati",
"gua": "Shiki",
"gub": "Guajajára",
"guc": "Wayuu",
"gud": "Yocoboué Dida",
"gue": "Gurindji",
"guf": "Gupapuyngu",
"gug": "Paraguayan Guaraní",
"guh": "Guahibo",
"gui": "Eastern Bolivian Guaraní",
"guk": "Gumuz",
"gul": "Sea Island Creole English",
"gum": "Guambiano",
"gun": "Mbyá Guaraní",
"guo": "Guayabero",
"gup": "Gunwinggu",
"guq": "Aché",
"gur": "Farefare",
"gus": "Guinean Sign Language",
"gut": "Maléku Jaíka",
"guu": "Yanomamö",
"guw": "Gun",
"gux": "Gourmanchéma",
"guz": "Gusii; Ekegusii",
"gv": "Manx",
"gva": "Guana (Paraguay)",
"gvc": "Guanano",
"gve": "Duwet",
"gvf": "Golin",
"gvj": "Guajá",
"gvl": "Gulay",
"gvm": "Gurmana",
"gvn": "Kuku-Yalanji",
"gvo": "Gavião Do Jiparaná",
"gvp": "Pará Gavião",
"gvr": "Gurung",
"gvs": "Gumawana",
"gvy": "Guyani",
"gwa": "Mbato",
"gwb": "Gwa",
"gwc": "Gawri; Kalami",
"gwd": "Gawwada",
"gwe": "Gweno",
"gwf": "Gowro",
"gwg": "Moo",
"gwi": "Gwichʼin",
"gwj": "ǀGwi",
"gwm": "Awngthim",
"gwn": "Gwandara",
"gwr": "Gwere",
"gwt": "Gawar-Bati",
"gwu": "Guwamu",
"gww": "Kwini",
"gwx": "Gua",
"gxx": "Wè Southern",
"gya": "Northwest Gbaya",
"gyb": "Garus",
"gyd": "Kayardild",
"gye": "Gyem",
"gyf": "Gungabula",
"gyg": "Gbayi",
"gyi": "Gyele",
"gyl": "Gayil",
"gym": "Ngäbere",
"gyn": "Guyanese Creole English",
"gyo": "Gyalsumdo",
"gyr": "Guarayu",
"gyy": "Gunya",
"gyz": "Geji; Gyaazi",
"gza": "Ganza",
"gzi": "Gazi",
"gzn": "Gane",
"ha": "Hausa",
"haa": "Han",
"hab": "Hanoi Sign Language",
"hac": "Gurani",
"had": "Hatam",
"hae": "Eastern Oromo",
"haf": "Haiphong Sign Language",
"hag": "Hanga",
"hah": "Hahon",
"hai": "Haida",
"haj": "Hajong",
"hak": "Hakka Chinese",
"hal": "Halang",
"ham": "Hewa",
"han": "Hangaza",
"hao": "Hakö",
"hap": "Hupla",
"haq": "Ha",
"har": "Harari",
"has": "Haisla",
"hav": "Havu",
"haw": "Hawaiian",
"hax": "Southern Haida",
"hay": "Haya",
"haz": "Hazaragi",
"hba": "Hamba",
"hbb": "Huba",
"hbn": "Heiban",
"hbo": "Ancient Hebrew",
"hbu": "Habu",
"hca": "Andaman Creole Hindi",
"hch": "Huichol",
"hdn": "Northern Haida",
"hds": "Honduras Sign Language",
"hdy": "Hadiyya",
"he": "Hebrew",
"hea": "Northern Qiandong Miao",
"hed": "Herdé",
"heg": "Helong",
"heh": "Hehe",
"hei": "Heiltsuk",
"hem": "Hemba",
"hgm": "Haiǁom",
"hgw": "Haigwai",
"hhi": "Hoia Hoia",
"hhr": "Kerak",
"hhy": "Hoyahoya",
"hi": "Hindi",
"hia": "Lamang",
"hib": "Hibito",
"hid": "Hidatsa",
"hif": "Fiji Hindi",
"hig": "Kamwe",
"hih": "Pamosu",
"hii": "Hinduri",
"hij": "Hijuk",
"hik": "Seit-Kaitetu",
"hil": "Hiligaynon",
"him": "Himachali languages; Western Pahari languages",
"hio": "Tsoa",
"hir": "Himarimã",
"hit": "Hittite",
"hiw": "Hiw",
"hix": "Hixkaryána",
"hji": "Haji",
"hka": "Kahe",
"hke": "Hunde",
"hkh": "Khah; Poguli",
"hkk": "Hunjara-Kaina Ke",
"hkn": "Mel-Khaonh",
"hks": "Hong Kong Sign Language; Heung Kong Sau Yue",
"hla": "Halia",
"hlb": "Halbi",
"hld": "Halang Doan",
"hle": "Hlersu",
"hlt": "Matu Chin",
"hlu": "Hieroglyphic Luwian",
"hma": "Southern Mashan Hmong; Southern Mashan Miao",
"hmb": "Humburi Senni Songhay",
"hmc": "Central Huishui Hmong; Central Huishui Miao",
"hmd": "Large Flowery Miao; A-hmaos; Da-Hua Miao",
"hme": "Eastern Huishui Hmong; Eastern Huishui Miao",
"hmf": "Hmong Don",
"hmg": "Southwestern Guiyang Hmong",
"hmh": "Southwestern Huishui Hmong; Southwestern Huishui Miao",
"hmi": "Northern Huishui Hmong; Northern Huishui Miao",
"hmj": "Ge; Gejia",
"hmk": "Maek",
"hml": "Luopohe Hmong; Luopohe Miao",
"hmm": "Central Mashan Hmong; Central Mashan Miao",
"hmn": "Hmong; Mong",
"hmp": "Northern Mashan Hmong; Northern Mashan Miao",
"hmq": "Eastern Qiandong Miao",
"hmr": "Hmar",
"hms": "Southern Qiandong Miao",
"hmt": "Hamtai",
"hmu": "Hamap",
"hmv": "Hmong Dô",
"hmw": "Western Mashan Hmong; Western Mashan Miao",
"hmx": "Hmong-Mien languages",
"hmy": "Southern Guiyang Hmong; Southern Guiyang Miao",
"hmz": "Hmong Shua; Sinicized Miao",
"hna": "Mina (Cameroon)",
"hnd": "Southern Hindko",
"hne": "Chhattisgarhi",
"hng": "Hungu",
"hnh": "ǁAni",
"hni": "Hani",
"hnj": "Hmong Njua; Mong Leng; Mong Njua",
"hnn": "Hanunoo",
"hno": "Northern Hindko",
"hns": "Caribbean Hindustani",
"hnu": "Hung",
"ho": "Hiri Motu",
"hoa": "Hoava",
"hob": "Mari (Madang Province)",
"hoc": "Ho",
"hod": "Holma",
"hoe": "Horom",
"hoh": "Hobyót",
"hoi": "Holikachuk",
"hoj": "Hadothi; Haroti",
"hok": "Hokan languages",
"hol": "Holu",
"hom": "Homa",
"hoo": "Holoholo",
"hop": "Hopi",
"hor": "Horo",
"hos": "Ho Chi Minh City Sign Language",
"hot": "Hote; Malê",
"hov": "Hovongan",
"how": "Honi",
"hoy": "Holiya",
"hoz": "Hozo",
"hpo": "Hpon",
"hps": "Hawai'i Sign Language (HSL); Hawai'i Pidgin Sign Language",
"hr": "Croatian",
"hra": "Hrangkhol",
"hrc": "Niwer Mil",
"hre": "Hre",
"hrk": "Haruku",
"hrm": "Horned Miao",
"hro": "Haroi",
"hrp": "Nhirrpi",
"hrt": "Hértevin",
"hru": "Hruso",
"hrw": "Warwar Feni",
"hrx": "Hunsrik",
"hrz": "Harzani",
"hsb": "Upper Sorbian",
"hsh": "Hungarian Sign Language",
"hsl": "Hausa Sign Language",
"hsn": "Xiang Chinese",
"hss": "Harsusi",
"ht": "Haitian; Haitian Creole",
"hti": "Hoti",
"hto": "Minica Huitoto",
"hts": "Hadza",
"htu": "Hitu",
"htx": "Middle Hittite",
"hu": "Hungarian",
"hub": "Huambisa",
"huc": "ǂHua; ǂʼAmkhoe",
"hud": "Huaulu",
"hue": "San Francisco Del Mar Huave",
"huf": "Humene",
"hug": "Huachipaeri",
"huh": "Huilliche",
"hui": "Huli",
"huj": "Northern Guiyang Hmong; Northern Guiyang Miao",
"huk": "Hulung",
"hul": "Hula",
"hum": "Hungana",
"huo": "Hu",
"hup": "Hupa",
"huq": "Tsat",
"hur": "Halkomelem",
"hus": "Huastec",
"hut": "Humla",
"huu": "Murui Huitoto",
"huv": "San Mateo Del Mar Huave",
"huw": "Hukumina",
"hux": "Nüpode Huitoto",
"huy": "Hulaulá",
"huz": "Hunzib",
"hvc": "Haitian Vodoun Culture Language",
"hve": "San Dionisio Del Mar Huave",
"hvk": "Haveke",
"hvn": "Sabu",
"hvv": "Santa María Del Mar Huave",
"hwa": "Wané",
"hwc": "Hawai'i Creole English; Hawai'i Pidgin",
"hwo": "Hwana",
"hy": "Armenian",
"hya": "Hya",
"hyw": "Western Armenian",
"hyx": "Armenian (family)",
"hz": "Herero",
"ia": "Interlingua (International Auxiliary Language Association)",
"iai": "Iaai",
"ian": "Iatmul",
"iar": "Purari",
"iba": "Iban",
"ibb": "Ibibio",
"ibd": "Iwaidja",
"ibe": "Akpes",
"ibg": "Ibanag",
"ibh": "Bih",
"ibl": "Ibaloi",
"ibm": "Agoi",
"ibn": "Ibino",
"ibr": "Ibuoro",
"ibu": "Ibu",
"iby": "Ibani",
"ica": "Ede Ica",
"ich": "Etkywan",
"icl": "Icelandic Sign Language",
"icr": "Islander Creole English",
"id": "Indonesian",
"ida": "Idakho-Isukha-Tiriki; Luidakho-Luisukha-Lutirichi",
"idb": "Indo-Portuguese",
"idc": "Idon; Ajiya",
"idd": "Ede Idaca",
"ide": "Idere",
"idi": "Idi",
"idr": "Indri",
"ids": "Idesa",
"idt": "Idaté",
"idu": "Idoma",
"ie": "Interlingue; Occidental",
"ifa": "Amganad Ifugao",
"ifb": "Batad Ifugao; Ayangan Ifugao",
"ife": "Ifè",
"iff": "Ifo",
"ifk": "Tuwali Ifugao",
"ifm": "Teke-Fuumu",
"ifu": "Mayoyao Ifugao",
"ify": "Keley-I Kallahan",
"ig": "Igbo",
"igb": "Ebira",
"ige": "Igede",
"igg": "Igana",
"igl": "Igala",
"igm": "Kanggape",
"ign": "Ignaciano",
"igo": "Isebe",
"igs": "Interglossa",
"igw": "Igwe",
"ihb": "Iha Based Pidgin",
"ihi": "Ihievbe",
"ihp": "Iha",
"ihw": "Bidhawal",
"ii": "Sichuan Yi; Nuosu",
"iin": "Thiin",
"iir": "Indo-Iranian languages",
"ijc": "Izon",
"ije": "Biseni",
"ijj": "Ede Ije",
"ijn": "Kalabari",
"ijo": "Ijo languages",
"ijs": "Southeast Ijo",
"ik": "Inupiaq",
"ike": "Eastern Canadian Inuktitut",
"iki": "Iko",
"ikk": "Ika",
"ikl": "Ikulu",
"iko": "Olulumo-Ikom",
"ikp": "Ikpeshi",
"ikr": "Ikaranggal",
"iks": "Inuit Sign Language",
"ikt": "Inuinnaqtun; Western Canadian Inuktitut",
"ikv": "Iku-Gora-Ankwa",
"ikw": "Ikwere",
"ikx": "Ik",
"ikz": "Ikizu",
"ila": "Ile Ape",
"ilb": "Ila",
"ilg": "Garig-Ilgar",
"ili": "Ili Turki",
"ilk": "Ilongot",
"ilm": "Iranun (Malaysia)",
"ilo": "Iloko",
"ilp": "Iranun (Philippines)",
"ils": "International Sign",
"ilu": "Ili'uun",
"ilv": "Ilue",
"ima": "Mala Malasar",
"imi": "Anamgura",
"iml": "Miluk",
"imn": "Imonda",
"imo": "Imbongu",
"imr": "Imroing",
"ims": "Marsian",
"imt": "Imotong",
"imy": "Milyan",
"inb": "Inga",
"inc": "Indic languages",
"ine": "Indo-European languages",
"ing": "Degexit'an",
"inh": "Ingush",
"inj": "Jungle Inga",
"inl": "Indonesian Sign Language",
"inm": "Minaean",
"inn": "Isinai",
"ino": "Inoke-Yate",
"inp": "Iñapari",
"ins": "Indian Sign Language",
"int": "Intha",
"inz": "Ineseño",
"io": "Ido",
"ior": "Inor",
"iou": "Tuma-Irumu",
"iow": "Iowa-Oto",
"ipi": "Ipili",
"ipo": "Ipiko",
"iqu": "Iquito",
"iqw": "Ikwo",
"ira": "Iranian languages",
"ire": "Iresim",
"irh": "Irarutu",
"iri": "Rigwe; Irigwe",
"irk": "Iraqw",
"irn": "Irántxe",
"iro": "Iroquoian languages",
"irr": "Ir",
"iru": "Irula",
"irx": "Kamberau",
"iry": "Iraya",
"is": "Icelandic",
"isa": "Isabi",
"isc": "Isconahua",
"isd": "Isnag",
"ise": "Italian Sign Language",
"isg": "Irish Sign Language",
"ish": "Esan",
"isi": "Nkem-Nkum",
"isk": "Ishkashimi",
"ism": "Masimasi",
"isn": "Isanzu",
"iso": "Isoko",
"isr": "Israeli Sign Language",
"ist": "Istriot",
"isu": "Isu (Menchum Division)",
"it": "Italian",
"itb": "Binongan Itneg",
"itc": "Italic languages",
"itd": "Southern Tidung",
"ite": "Itene",
"iti": "Inlaod Itneg",
"itk": "Judeo-Italian",
"itl": "Itelmen",
"itm": "Itu Mbon Uzo",
"ito": "Itonama",
"itr": "Iteri",
"its": "Isekiri",
"itt": "Maeng Itneg",
"itv": "Itawit",
"itw": "Ito",
"itx": "Itik",
"ity": "Moyadan Itneg",
"itz": "Itzá",
"iu": "Inuktitut",
"ium": "Iu Mien",
"ivb": "Ibatan",
"ivv": "Ivatan",
"iwk": "I-Wak",
"iwm": "Iwam",
"iwo": "Iwur",
"iws": "Sepik Iwam",
"ixc": "Ixcatec",
"ixl": "Ixil",
"iya": "Iyayu",
"iyo": "Mesaka",
"iyx": "Yaka (Congo)",
"izh": "Ingrian",
"izr": "Izere",
"izz": "Izii",
"ja": "Japanese",
"jaa": "Jamamadí",
"jab": "Hyam",
"jac": "Popti'; Jakalteko",
"jad": "Jahanka",
"jae": "Yabem",
"jaf": "Jara",
"jah": "Jah Hut",
"jaj": "Zazao",
"jak": "Jakun",
"jal": "Yalahatan",
"jam": "Jamaican Creole English",
"jan": "Jandai",
"jao": "Yanyuwa",
"jaq": "Yaqay",
"jas": "New Caledonian Javanese",
"jat": "Jakati",
"jau": "Yaur",
"jax": "Jambi Malay",
"jay": "Yan-nhangu; Nhangu",
"jaz": "Jawe",
"jbe": "Judeo-Berber",
"jbi": "Badjiri",
"jbj": "Arandai",
"jbk": "Barikewa",
"jbm": "Bijim",
"jbn": "Nafusi",
"jbo": "Lojban",
"jbr": "Jofotek-Bromnya",
"jbt": "Jabutí",
"jbu": "Jukun Takum",
"jbw": "Yawijibaya",
"jcs": "Jamaican Country Sign Language",
"jct": "Krymchak",
"jda": "Jad",
"jdg": "Jadgali",
"jdt": "Judeo-Tat",
"jeb": "Jebero",
"jee": "Jerung",
"jeh": "Jeh",
"jei": "Yei",
"jek": "Jeri Kuo",
"jel": "Yelmek",
"jen": "Dza",
"jer": "Jere",
"jet": "Manem",
"jeu": "Jonkor Bourmataguil",
"jgb": "Ngbee",
"jge": "Judeo-Georgian",
"jgk": "Gwak",
"jgo": "Ngomba",
"jhi": "Jehai",
"jhs": "Jhankot Sign Language",
"jia": "Jina",
"jib": "Jibu",
"jic": "Tol",
"jid": "Bu (Kaduna State)",
"jie": "Jilbe",
"jig": "Jingulu; Djingili",
"jih": "sTodsde; Shangzhai",
"jii": "Jiiddu",
"jil": "Jilim",
"jim": "Jimi (Cameroon)",
"jio": "Jiamao",
"jiq": "Guanyinqiao; Lavrung",
"jit": "Jita",
"jiu": "Youle Jinuo",
"jiv": "Shuar",
"jiy": "Buyuan Jinuo",
"jje": "Jejueo",
"jjr": "Bankal",
"jka": "Kaera",
"jkm": "Mobwa Karen",
"jko": "Kubo",
"jkp": "Paku Karen",
"jkr": "Koro (India)",
"jks": "Amami Koniya Sign Language",
"jku": "Labir",
"jle": "Ngile",
"jls": "Jamaican Sign Language",
"jma": "Dima",
"jmb": "Zumbun",
"jmc": "Machame",
"jmd": "Yamdena",
"jmi": "Jimi (Nigeria)",
"jml": "Jumli",
"jmn": "Makuri Naga",
"jmr": "Kamara",
"jms": "Mashi (Nigeria)",
"jmw": "Mouwase",
"jmx": "Western Juxtlahuaca Mixtec",
"jna": "Jangshung",
"jnd": "Jandavra",
"jng": "Yangman",
"jni": "Janji",
"jnj": "Yemsa",
"jnl": "Rawat",
"jns": "Jaunsari",
"job": "Joba",
"jod": "Wojenaka",
"jog": "Jogi",
"jor": "Jorá",
"jos": "Jordanian Sign Language",
"jow": "Jowulu",
"jpa": "Jewish Palestinian Aramaic",
"jpr": "Judeo-Persian",
"jpx": "Japanese (family)",
"jqr": "Jaqaru",
"jra": "Jarai",
"jrb": "Judeo-Arabic",
"jrr": "Jiru",
"jrt": "Jakattoe",
"jru": "Japrería",
"jsl": "Japanese Sign Language",
"jua": "Júma",
"jub": "Wannu",
"juc": "Jurchen",
"jud": "Worodougou",
"juh": "Hõne",
"jui": "Ngadjuri",
"juk": "Wapan",
"jul": "Jirel",
"jum": "Jumjum",
"jun": "Juang",
"juo": "Jiba",
"jup": "Hupdë",
"jur": "Jurúna",
"jus": "Jumla Sign Language",
"jut": "Jutish",
"juu": "Ju",
"juw": "Wãpha",
"juy": "Juray",
"jv": "Javanese",
"jvd": "Javindo",
"jvn": "Caribbean Javanese",
"jwi": "Jwira-Pepesa",
"jya": "Jiarong",
"jye": "Judeo-Yemeni Arabic",
"jyy": "Jaya",
"ka": "Georgian",
"kaa": "Kara-Kalpak; Karakalpak",
"kab": "Kabyle",
"kac": "Kachin; Jingpho",
"kad": "Adara",
"kae": "Ketangalan",
"kaf": "Katso",
"kag": "Kajaman",
"kah": "Kara (Central African Republic)",
"kai": "Karekare",
"kaj": "Jju",
"kak": "Kalanguya; Kayapa Kallahan",
"kam": "Kamba (Kenya)",
"kao": "Xaasongaxango",
"kap": "Bezhta",
"kaq": "Capanahua",
"kar": "Karen languages",
"kav": "Katukína",
"kaw": "Kawi",
"kax": "Kao",
"kay": "Kamayurá",
"kba": "Kalarko",
"kbb": "Kaxuiâna",
"kbc": "Kadiwéu",
"kbd": "Kabardian",
"kbe": "Kanju",
"kbg": "Khamba",
"kbh": "Camsá",
"kbi": "Kaptiau",
"kbj": "Kari",
"kbk": "Grass Koiari",
"kbl": "Kanembu",
"kbm": "Iwal",
"kbn": "Kare (Central African Republic)",
"kbo": "Keliko",
"kbp": "Kabiyè",
"kbq": "Kamano",
"kbr": "Kafa",
"kbs": "Kande",
"kbt": "Abadi",
"kbu": "Kabutra",
"kbv": "Dera (Indonesia)",
"kbw": "Kaiep",
"kbx": "Ap Ma",
"kby": "Manga Kanuri",
"kbz": "Duhwa",
"kca": "Khanty",
"kcb": "Kawacha",
"kcc": "Lubila",
"kcd": "Ngkâlmpw Kanum",
"kce": "Kaivi",
"kcf": "Ukaan",
"kcg": "Tyap",
"kch": "Vono",
"kci": "Kamantan",
"kcj": "Kobiana",
"kck": "Kalanga",
"kcl": "Kela (Papua New Guinea); Kala",
"kcm": "Gula (Central African Republic)",
"kcn": "Nubi",
"kco": "Kinalakna",
"kcp": "Kanga",
"kcq": "Kamo",
"kcr": "Katla",
"kcs": "Koenoem",
"kct": "Kaian",
"kcu": "Kami (Tanzania)",
"kcv": "Kete",
"kcw": "Kabwari",
"kcx": "Kachama-Ganjule",
"kcy": "Korandje",
"kcz": "Konongo",
"kda": "Worimi",
"kdc": "Kutu",
"kdd": "Yankunytjatjara",
"kde": "Makonde",
"kdf": "Mamusi",
"kdg": "Seba",
"kdh": "Tem",
"kdi": "Kumam",
"kdj": "Karamojong",
"kdk": "Numèè; Kwényi",
"kdl": "Tsikimba",
"kdm": "Kagoma",
"kdn": "Kunda",
"kdo": "Kordofanian languages",
"kdp": "Kaningdon-Nindem",
"kdq": "Koch",
"kdr": "Karaim",
"kdt": "Kuy",
"kdu": "Kadaru",
"kdw": "Koneraw",
"kdx": "Kam",
"kdy": "Keder; Keijar",
"kdz": "Kwaja",
"kea": "Kabuverdianu",
"keb": "Kélé",
"kec": "Keiga",
"ked": "Kerewe",
"kee": "Eastern Keres",
"kef": "Kpessi",
"keg": "Tese",
"keh": "Keak",
"kei": "Kei",
"kej": "Kadar",
"kek": "Kekchí",
"kel": "Kela (Democratic Republic of Congo)",
"kem": "Kemak",
"ken": "Kenyang",
"keo": "Kakwa",
"kep": "Kaikadi",
"keq": "Kamar",
"ker": "Kera",
"kes": "Kugbo",
"ket": "Ket",
"keu": "Akebu",
"kev": "Kanikkaran",
"kew": "West Kewa",
"kex": "Kukna",
"key": "Kupia",
"kez": "Kukele",
"kfa": "Kodava",
"kfb": "Northwestern Kolami",
"kfc": "Konda-Dora",
"kfd": "Korra Koraga",
"kfe": "Kota (India)",
"kff": "Koya",
"kfg": "Kudiya",
"kfh": "Kurichiya",
"kfi": "Kannada Kurumba",
"kfj": "Kemiehua",
"kfk": "Kinnauri",
"kfl": "Kung",
"kfm": "Khunsari",
"kfn": "Kuk",
"kfo": "Koro (Côte d'Ivoire)",
"kfp": "Korwa",
"kfq": "Korku",
"kfr": "Kachhi; Kutchi",
"kfs": "Bilaspuri",
"kft": "Kanjari",
"kfu": "Katkari",
"kfv": "Kurmukar",
"kfw": "Kharam Naga",
"kfx": "Kullu Pahari",
"kfy": "Kumaoni",
"kfz": "Koromfé",
"kg": "Kongo",
"kga": "Koyaga",
"kgb": "Kawe",
"kge": "Komering",
"kgf": "Kube",
"kgg": "Kusunda",
"kgi": "Selangor Sign Language",
"kgj": "Gamale Kham",
"kgk": "Kaiwá",
"kgl": "Kunggari",
"kgm": "Karipúna",
"kgn": "Karingani",
"kgo": "Krongo",
"kgp": "Kaingang",
"kgq": "Kamoro",
"kgr": "Abun",
"kgs": "Kumbainggar",
"kgt": "Somyev",
"kgu": "Kobol",
"kgv": "Karas",
"kgw": "Karon Dori",
"kgx": "Kamaru",
"kgy": "Kyerung",
"kha": "Khasi",
"khb": "Lü",
"khc": "Tukang Besi North",
"khd": "Bädi Kanum",
"khe": "Korowai",
"khf": "Khuen",
"khg": "Khams Tibetan",
"khh": "Kehu",
"khi": "Khoisan languages",
"khj": "Kuturmi",
"khk": "Halh Mongolian",
"khl": "Lusi",
"khn": "Khandesi",
"kho": "Khotanese; Sakan",
"khp": "Kapori; Kapauri",
"khq": "Koyra Chiini Songhay",
"khr": "Kharia",
"khs": "Kasua",
"kht": "Khamti",
"khu": "Nkhumbi",
"khv": "Khvarshi",
"khw": "Khowar",
"khx": "Kanu",
"khy": "Kele (Democratic Republic of Congo)",
"khz": "Keapara",
"ki": "Kikuyu; Gikuyu",
"kia": "Kim",
"kib": "Koalib",
"kic": "Kickapoo",
"kid": "Koshin",
"kie": "Kibet",
"kif": "Eastern Parbate Kham",
"kig": "Kimaama; Kimaghima",
"kih": "Kilmeri",
"kii": "Kitsai",
"kij": "Kilivila",
"kil": "Kariya",
"kim": "Karagas",
"kio": "Kiowa",
"kip": "Sheshi Kham",
"kiq": "Kosadle; Kosare",
"kis": "Kis",
"kit": "Agob",
"kiu": "Kirmanjki (individual language)",
"kiv": "Kimbu",
"kiw": "Northeast Kiwai",
"kix": "Khiamniungan Naga",
"kiy": "Kirikiri",
"kiz": "Kisi",
"kj": "Kuanyama; Kwanyama",
"kja": "Mlap",
"kjb": "Q'anjob'al; Kanjobal",
"kjc": "Coastal Konjo",
"kjd": "Southern Kiwai",
"kje": "Kisar",
"kjg": "Khmu",
"kjh": "Khakas",
"kji": "Zabana",
"kjj": "Khinalugh",
"kjk": "Highland Konjo",
"kjl": "Western Parbate Kham",
"kjm": "Kháng",
"kjn": "Kunjen",
"kjo": "Harijan Kinnauri",
"kjp": "Pwo Eastern Karen",
"kjq": "Western Keres",
"kjr": "Kurudu",
"kjs": "East Kewa",
"kjt": "Phrae Pwo Karen",
"kju": "Kashaya",
"kjv": "Kaikavian Literary Language",
"kjx": "Ramopa",
"kjy": "Erave",
"kjz": "Bumthangkha",
"kk": "Kazakh",
"kka": "Kakanda",
"kkb": "Kwerisa",
"kkc": "Odoodee",
"kkd": "Kinuku",
"kke": "Kakabe",
"kkf": "Kalaktang Monpa",
"kkg": "Mabaka Valley Kalinga",
"kkh": "Khün",
"kki": "Kagulu",
"kkj": "Kako",
"kkk": "Kokota",
"kkl": "Kosarek Yale",
"kkm": "Kiong",
"kkn": "Kon Keu",
"kko": "Karko",
"kkp": "Gugubera; Koko-Bera",
"kkq": "Kaeku",
"kkr": "Kir-Balar",
"kks": "Giiwo",
"kkt": "Koi",
"kku": "Tumi",
"kkv": "Kangean",
"kkw": "Teke-Kukuya",
"kkx": "Kohin",
"kky": "Guugu Yimidhirr; Guguyimidjir",
"kkz": "Kaska",
"kl": "Kalaallisut; Greenlandic",
"kla": "Klamath-Modoc",
"klb": "Kiliwa",
"klc": "Kolbila",
"kld": "Gamilaraay",
"kle": "Kulung (Nepal)",
"klf": "Kendeje",
"klg": "Tagakaulo",
"klh": "Weliki",
"kli": "Kalumpang",
"klj": "Khalaj",
"klk": "Kono (Nigeria)",
"kll": "Kagan Kalagan",
"klm": "Migum",
"kln": "Kalenjin",
"klo": "Kapya",
"klp": "Kamasa",
"klq": "Rumu",
"klr": "Khaling",
"kls": "Kalasha",
"klt": "Nukna",
"klu": "Klao",
"klv": "Maskelynes",
"klw": "Tado; Lindu",
"klx": "Koluwawa",
"kly": "Kalao",
"klz": "Kabola",
"km": "Khmer; Central Khmer",
"kma": "Konni",
"kmb": "Kimbundu",
"kmc": "Southern Dong",
"kmd": "Majukayang Kalinga",
"kme": "Bakole",
"kmf": "Kare (Papua New Guinea)",
"kmg": "Kâte",
"kmh": "Kalam",
"kmi": "Kami (Nigeria)",
"kmj": "Kumarbhag Paharia",
"kmk": "Limos Kalinga",
"kml": "Tanudan Kalinga",
"kmm": "Kom (India)",
"kmn": "Awtuw",
"kmo": "Kwoma",
"kmp": "Gimme",
"kmq": "Kwama",
"kmr": "Northern Kurdish",
"kms": "Kamasau",
"kmt": "Kemtuik",
"kmu": "Kanite",
"kmv": "Karipúna Creole French",
"kmw": "Komo (Democratic Republic of Congo)",
"kmx": "Waboda",
"kmy": "Koma",
"kmz": "Khorasani Turkish",
"kn": "Kannada",
"kna": "Dera (Nigeria)",
"knb": "Lubuagan Kalinga",
"knc": "Central Kanuri",
"knd": "Konda",
"kne": "Kankanaey",
"knf": "Mankanya",
"kng": "Koongo",
"kni": "Kanufi",
"knj": "Western Kanjobal",
"knk": "Kuranko",
"knl": "Keninjal",
"knm": "Kanamarí",
"knn": "Konkani (individual language)",
"kno": "Kono (Sierra Leone)",
"knp": "Kwanja",
"knq": "Kintaq",
"knr": "Kaningra",
"kns": "Kensiu",
"knt": "Panoan Katukína",
"knu": "Kono (Guinea)",
"knv": "Tabo",
"knw": "Kung-Ekoka",
"knx": "Kendayan; Salako",
"kny": "Kanyok",
"knz": "Kalamsé",
"ko": "Korean",
"koa": "Konomala",
"koc": "Kpati",
"kod": "Kodi",
"koe": "Kacipo-Bale Suri",
"kof": "Kubi",
"kog": "Cogui; Kogi",
"koh": "Koyo",
"koi": "Komi-Permyak",
"kok": "Konkani (macrolanguage)",
"kol": "Kol (Papua New Guinea)",
"koo": "Konzo",
"kop": "Waube",
"koq": "Kota (Gabon)",
"kos": "Kosraean",
"kot": "Lagwan",
"kou": "Koke",
"kov": "Kudu-Camo",
"kow": "Kugama",
"koy": "Koyukon",
"koz": "Korak",
"kpa": "Kutto",
"kpb": "Mullu Kurumba",
"kpc": "Curripaco",
"kpd": "Koba",
"kpe": "Kpelle",
"kpf": "Komba",
"kpg": "Kapingamarangi",
"kph": "Kplang",
"kpi": "Kofei",
"kpj": "Karajá",
"kpk": "Kpan",
"kpl": "Kpala",
"kpm": "Koho",
"kpn": "Kepkiriwát",
"kpo": "Ikposo",
"kpq": "Korupun-Sela",
"kpr": "Korafe-Yegha",
"kps": "Tehit",
"kpt": "Karata",
"kpu": "Kafoa",
"kpv": "Komi-Zyrian",
"kpw": "Kobon",
"kpx": "Mountain Koiali",
"kpy": "Koryak",
"kpz": "Kupsabiny",
"kqa": "Mum",
"kqb": "Kovai",
"kqc": "Doromu-Koki",
"kqd": "Koy Sanjaq Surat",
"kqe": "Kalagan",
"kqf": "Kakabai",
"kqg": "Khe",
"kqh": "Kisankasa",
"kqi": "Koitabu",
"kqj": "Koromira",
"kqk": "Kotafon Gbe",
"kql": "Kyenele",
"kqm": "Khisa",
"kqn": "Kaonde",
"kqo": "Eastern Krahn",
"kqp": "Kimré",
"kqq": "Krenak",
"kqr": "Kimaragang",
"kqs": "Northern Kissi",
"kqt": "Klias River Kadazan",
"kqu": "Seroa",
"kqv": "Okolod",
"kqw": "Kandas",
"kqx": "Mser",
"kqy": "Koorete",
"kqz": "Korana",
"kr": "Kanuri",
"kra": "Kumhali",
"krb": "Karkin",
"krc": "Karachay-Balkar",
"krd": "Kairui-Midiki",
"kre": "Panará",
"krf": "Koro (Vanuatu)",
"krh": "Kurama",
"kri": "Krio",
"krj": "Kinaray-A",
"krk": "Kerek",
"krl": "Karelian",
"krn": "Sapo",
"kro": "Kru languages",
"krp": "Korop",
"krr": "Krung",
"krs": "Gbaya (Sudan)",
"krt": "Tumari Kanuri",
"kru": "Kurukh",
"krv": "Kavet",
"krw": "Western Krahn",
"krx": "Karon",
"kry": "Kryts",
"krz": "Sota Kanum",
"ks": "Kashmiri",
"ksa": "Shuwa-Zamani",
"ksb": "Shambala",
"ksc": "Southern Kalinga",
"ksd": "Kuanua",
"kse": "Kuni",
"ksf": "Bafia",
"ksg": "Kusaghe",
"ksh": "Kölsch",
"ksi": "Krisa; I'saka",
"ksj": "Uare",
"ksk": "Kansa",
"ksl": "Kumalu",
"ksm": "Kumba",
"ksn": "Kasiguranin",
"kso": "Kofa",
"ksp": "Kaba",
"ksq": "Kwaami",
"ksr": "Borong",
"kss": "Southern Kisi",
"kst": "Winyé",
"ksu": "Khamyang",
"ksv": "Kusu",
"ksw": "S'gaw Karen",
"ksx": "Kedang",
"ksy": "Kharia Thar",
"ksz": "Kodaku",
"kta": "Katua",
"ktb": "Kambaata",
"ktc": "Kholok",
"ktd": "Kokata; Kukatha",
"kte": "Nubri",
"ktf": "Kwami",
"ktg": "Kalkutung",
"kth": "Karanga",
"kti": "North Muyu",
"ktj": "Plapo Krumen",
"ktk": "Kaniet",
"ktl": "Koroshi",
"ktm": "Kurti",
"ktn": "Karitiâna",
"kto": "Kuot",
"ktp": "Kaduo",
"ktq": "Katabaga",
"kts": "South Muyu",
"ktt": "Ketum",
"ktu": "Kituba (Democratic Republic of Congo)",
"ktv": "Eastern Katu",
"ktw": "Kato",
"ktx": "Kaxararí",
"kty": "Kango (Bas-Uélé District)",
"ktz": "Juǀʼhoan; Juǀʼhoansi",
"ku": "Kurdish",
"kub": "Kutep",
"kuc": "Kwinsu",
"kud": "'Auhelawa",
"kue": "Kuman (Papua New Guinea)",
"kuf": "Western Katu",
"kug": "Kupa",
"kuh": "Kushi",
"kui": "Kuikúro-Kalapálo; Kalapalo",
"kuj": "Kuria",
"kuk": "Kepo'",
"kul": "Kulere",
"kum": "Kumyk",
"kun": "Kunama",
"kuo": "Kumukio",
"kup": "Kunimaipa",
"kuq": "Karipuna",
"kus": "Kusaal",
"kut": "Kutenai",
"kuu": "Upper Kuskokwim",
"kuv": "Kur",
"kuw": "Kpagua",
"kux": "Kukatja",
"kuy": "Kuuku-Ya'u",
"kuz": "Kunza",
"kv": "Komi",
"kva": "Bagvalal",
"kvb": "Kubu",
"kvc": "Kove",
"kvd": "Kui (Indonesia)",
"kve": "Kalabakan",
"kvf": "Kabalai",
"kvg": "Kuni-Boazi",
"kvh": "Komodo",
"kvi": "Kwang",
"kvj": "Psikye",
"kvk": "Korean Sign Language",
"kvl": "Kayaw",
"kvm": "Kendem",
"kvn": "Border Kuna",
"kvo": "Dobel",
"kvp": "Kompane",
"kvq": "Geba Karen",
"kvr": "Kerinci",
"kvt": "Lahta Karen; Lahta",
"kvu": "Yinbaw Karen",
"kvv": "Kola",
"kvw": "Wersing",
"kvx": "Parkari Koli",
"kvy": "Yintale Karen; Yintale",
"kvz": "Tsakwambo; Tsaukambo",
"kw": "Cornish",
"kwa": "Dâw",
"kwb": "Kwa",
"kwc": "Likwala",
"kwd": "Kwaio",
"kwe": "Kwerba",
"kwf": "Kwara'ae",
"kwg": "Sara Kaba Deme",
"kwh": "Kowiai",
"kwi": "Awa-Cuaiquer",
"kwj": "Kwanga",
"kwk": "Kwakiutl",
"kwl": "Kofyar",
"kwm": "Kwambi",
"kwn": "Kwangali",
"kwo": "Kwomtari",
"kwp": "Kodia",
"kwr": "Kwer",
"kws": "Kwese",
"kwt": "Kwesten",
"kwu": "Kwakum",
"kwv": "Sara Kaba Náà",
"kww": "Kwinti",
"kwx": "Khirwar",
"kwy": "San Salvador Kongo",
"kwz": "Kwadi",
"kxa": "Kairiru",
"kxb": "Krobu",
"kxc": "Konso; Khonso",
"kxd": "Brunei",
"kxf": "Manumanaw Karen; Manumanaw",
"kxh": "Karo (Ethiopia)",
"kxi": "Keningau Murut",
"kxj": "Kulfa",
"kxk": "Zayein Karen",
"kxm": "Northern Khmer",
"kxn": "Kanowit-Tanjong Melanau",
"kxo": "Kanoé",
"kxp": "Wadiyara Koli",
"kxq": "Smärky Kanum",
"kxr": "Koro (Papua New Guinea)",
"kxs": "Kangjia",
"kxt": "Koiwat",
"kxv": "Kuvi",
"kxw": "Konai",
"kxx": "Likuba",
"kxy": "Kayong",
"kxz": "Kerewo",
"ky": "Kirghiz; Kyrgyz",
"kya": "Kwaya",
"kyb": "Butbut Kalinga",
"kyc": "Kyaka",
"kyd": "Karey",
"kye": "Krache",
"kyf": "Kouya",
"kyg": "Keyagana",
"kyh": "Karok",
"kyi": "Kiput",
"kyj": "Karao",
"kyk": "Kamayo",
"kyl": "Kalapuya",
"kym": "Kpatili",
"kyn": "Northern Binukidnon",
"kyo": "Kelon",
"kyp": "Kang",
"kyq": "Kenga",
"kyr": "Kuruáya",
"kys": "Baram Kayan",
"kyt": "Kayagar",
"kyu": "Western Kayah",
"kyv": "Kayort",
"kyw": "Kudmali",
"kyx": "Rapoisi",
"kyy": "Kambaira",
"kyz": "Kayabí",
"kza": "Western Karaboro",
"kzb": "Kaibobo",
"kzc": "Bondoukou Kulango",
"kzd": "Kadai",
"kze": "Kosena",
"kzf": "Da'a Kaili",
"kzg": "Kikai",
"kzi": "Kelabit",
"kzk": "Kazukuru",
"kzl": "Kayeli",
"kzm": "Kais",
"kzn": "Kokola",
"kzo": "Kaningi",
"kzp": "Kaidipang",
"kzq": "Kaike",
"kzr": "Karang",
"kzs": "Sugut Dusun",
"kzu": "Kayupulau",
"kzv": "Komyandaret",
"kzw": "Karirí-Xocó",
"kzx": "Kamarian",
"kzy": "Kango (Tshopo District)",
"kzz": "Kalabra",
"la": "Latin",
"laa": "Southern Subanen",
"lab": "Linear A",
"lac": "Lacandon",
"lad": "Ladino",
"lae": "Pattani",
"laf": "Lafofa",
"lag": "Langi",
"lah": "Lahnda",
"lai": "Lambya",
"laj": "Lango (Uganda)",
"lal": "Lalia",
"lam": "Lamba",
"lan": "Laru",
"lap": "Laka (Chad)",
"laq": "Qabiao",
"lar": "Larteh",
"las": "Lama (Togo)",
"lau": "Laba",
"law": "Lauje",
"lax": "Tiwa",
"lay": "Lama Bai",
"laz": "Aribwatsa",
"lb": "Luxembourgish; Letzeburgesch",
"lbb": "Label",
"lbc": "Lakkia",
"lbe": "Lak",
"lbf": "Tinani",
"lbg": "Laopang",
"lbi": "La'bi",
"lbj": "Ladakhi",
"lbk": "Central Bontok",
"lbl": "Libon Bikol",
"lbm": "Lodhi",
"lbn": "Rmeet",
"lbo": "Laven",
"lbq": "Wampar",
"lbr": "Lohorung",
"lbs": "Libyan Sign Language",
"lbt": "Lachi",
"lbu": "Labu",
"lbv": "Lavatbura-Lamusong",
"lbw": "Tolaki",
"lbx": "Lawangan",
"lby": "Lamalama; Lamu-Lamu",
"lbz": "Lardil",
"lcc": "Legenyem",
"lcd": "Lola",
"lce": "Loncong; Sekak",
"lcf": "Lubu",
"lch": "Luchazi",
"lcl": "Lisela",
"lcm": "Tungag",
"lcp": "Western Lawa",
"lcq": "Luhu",
"lcs": "Lisabata-Nuniali",
"lda": "Kla-Dan",
"ldb": "Dũya",
"ldd": "Luri",
"ldg": "Lenyima",
"ldh": "Lamja-Dengsa-Tola",
"ldi": "Laari",
"ldj": "Lemoro",
"ldk": "Leelau",
"ldl": "Kaan",
"ldm": "Landoma",
"ldn": "Láadan",
"ldo": "Loo",
"ldp": "Tso",
"ldq": "Lufu",
"lea": "Lega-Shabunda",
"leb": "Lala-Bisa",
"lec": "Leco",
"led": "Lendu",
"lee": "Lyélé",
"lef": "Lelemi",
"leh": "Lenje",
"lei": "Lemio",
"lej": "Lengola",
"lek": "Leipon",
"lel": "Lele (Democratic Republic of Congo)",
"lem": "Nomaande",
"len": "Lenca",
"leo": "Leti (Cameroon)",
"lep": "Lepcha",
"leq": "Lembena",
"ler": "Lenkau",
"les": "Lese",
"let": "Lesing-Gelimi; Amio-Gelimi",
"leu": "Kara (Papua New Guinea)",
"lev": "Lamma",
"lew": "Ledo Kaili",
"lex": "Luang",
"ley": "Lemolang",
"lez": "Lezghian",
"lfa": "Lefa",
"lfn": "Lingua Franca Nova",
"lg": "Ganda; Luganda",
"lga": "Lungga",
"lgb": "Laghu",
"lgg": "Lugbara",
"lgh": "Laghuu",
"lgi": "Lengilu",
"lgk": "Lingarak; Neverver",
"lgl": "Wala",
"lgm": "Lega-Mwenga",
"lgn": "T'apo; Opuuo",
"lgo": "Lango (South Sudan)",
"lgq": "Logba",
"lgr": "Lengo",
"lgt": "Pahi",
"lgu": "Longgu",
"lgz": "Ligenza",
"lha": "Laha (Viet Nam)",
"lhh": "Laha (Indonesia)",
"lhi": "Lahu Shi",
"lhl": "Lahul Lohar",
"lhm": "Lhomi",
"lhn": "Lahanan",
"lhp": "Lhokpu",
"lhs": "Mlahsö",
"lht": "Lo-Toga",
"lhu": "Lahu",
"li": "Limburgan; Limburger; Limburgish",
"lia": "West-Central Limba",
"lib": "Likum",
"lic": "Hlai",
"lid": "Nyindrou",
"lie": "Likila",
"lif": "Limbu",
"lig": "Ligbi",
"lih": "Lihir",
"lij": "Ligurian",
"lik": "Lika",
"lil": "Lillooet",
"lio": "Liki",
"lip": "Sekpele",
"liq": "Libido",
"lir": "Liberian English",
"lis": "Lisu",
"liu": "Logorik",
"liv": "Liv",
"liw": "Col",
"lix": "Liabuku",
"liy": "Banda-Bambari",
"liz": "Libinza",
"lja": "Golpa",
"lje": "Rampi",
"lji": "Laiyolo",
"ljl": "Li'o",
"ljp": "Lampung Api",
"ljw": "Yirandali",
"ljx": "Yuru",
"lka": "Lakalei",
"lkb": "Kabras; Lukabaras",
"lkc": "Kucong",
"lkd": "Lakondê",
"lke": "Kenyi",
"lkh": "Lakha",
"lki": "Laki",
"lkj": "Remun",
"lkl": "Laeko-Libuat",
"lkm": "Kalaamaya",
"lkn": "Lakon; Vure",
"lko": "Khayo; Olukhayo",
"lkr": "Päri",
"lks": "Kisa; Olushisa",
"lkt": "Lakota",
"lku": "Kungkari",
"lky": "Lokoya",
"lla": "Lala-Roba",
"llb": "Lolo",
"llc": "Lele (Guinea)",
"lld": "Ladin",
"lle": "Lele (Papua New Guinea)",
"llf": "Hermit",
"llg": "Lole",
"llh": "Lamu",
"lli": "Teke-Laali",
"llj": "Ladji Ladji",
"llk": "Lelak",
"lll": "Lilau",
"llm": "Lasalimu",
"lln": "Lele (Chad)",
"llp": "North Efate",
"llq": "Lolak",
"lls": "Lithuanian Sign Language",
"llu": "Lau",
"llx": "Lauan",
"lma": "East Limba",
"lmb": "Merei",
"lmc": "Limilngan",
"lmd": "Lumun",
"lme": "Pévé",
"lmf": "South Lembata",
"lmg": "Lamogai",
"lmh": "Lambichhong",
"lmi": "Lombi",
"lmj": "West Lembata",
"lmk": "Lamkang",
"lml": "Hano",
"lmn": "Lambadi",
"lmo": "Lombard",
"lmp": "Limbum",
"lmq": "Lamatuka",
"lmr": "Lamalera",
"lmu": "Lamenu",
"lmv": "Lomaiviti",
"lmw": "Lake Miwok",
"lmx": "Laimbue",
"lmy": "Lamboya",
"ln": "Lingala",
"lna": "Langbashe",
"lnb": "Mbalanhu",
"lnd": "Lundayeh; Lun Bawang",
"lng": "Langobardic",
"lnh": "Lanoh",
"lni": "Daantanai'",
"lnj": "Leningitij",
"lnl": "South Central Banda",
"lnm": "Langam",
"lnn": "Lorediakarkar",
"lns": "Lamnso'",
"lnu": "Longuda",
"lnw": "Lanima",
"lnz": "Lonzo",
"lo": "Lao",
"loa": "Loloda",
"lob": "Lobi",
"loc": "Inonhan",
"loe": "Saluan",
"lof": "Logol",
"log": "Logo",
"loh": "Narim",
"loi": "Loma (Côte d'Ivoire)",
"loj": "Lou",
"lok": "Loko",
"lol": "Mongo",
"lom": "Loma (Liberia)",
"lon": "Malawi Lomwe",
"loo": "Lombo",
"lop": "Lopa",
"loq": "Lobala",
"lor": "Téén",
"los": "Loniu",
"lot": "Otuho",
"lou": "Louisiana Creole",
"lov": "Lopi",
"low": "Tampias Lobu",
"lox": "Loun",
"loy": "Loke",
"loz": "Lozi",
"lpa": "Lelepa",
"lpe": "Lepki",
"lpn": "Long Phuri Naga",
"lpo": "Lipo",
"lpx": "Lopit",
"lqr": "Logir",
"lra": "Rara Bakati'",
"lrc": "Northern Luri",
"lre": "Laurentian",
"lrg": "Laragia",
"lri": "Marachi; Olumarachi",
"lrk": "Loarki",
"lrl": "Lari",
"lrm": "Marama; Olumarama",
"lrn": "Lorang",
"lro": "Laro",
"lrr": "Southern Yamphu",
"lrt": "Larantuka Malay",
"lrv": "Larevat",
"lrz": "Lemerig",
"lsa": "Lasgerdi",
"lsb": "Burundian Sign Language; Langue des Signes Burundaise",
"lsc": "Albarradas Sign Language; Lengua de señas Albarradas",
"lsd": "Lishana Deni",
"lse": "Lusengo",
"lsh": "Lish",
"lsi": "Lashi",
"lsl": "Latvian Sign Language",
"lsm": "Saamia; Olusamia",
"lsn": "Tibetan Sign Language",
"lso": "Laos Sign Language",
"lsp": "Panamanian Sign Language; Lengua de Señas Panameñas",
"lsr": "Aruop",
"lss": "Lasi",
"lst": "Trinidad and Tobago Sign Language",
"lsv": "Sivia Sign Language",
"lsw": "Seychelles Sign Language; Lalang Siny Seselwa; Langue des Signes Seychelloise",
"lsy": "Mauritian Sign Language",
"lt": "Lithuanian",
"ltc": "Late Middle Chinese",
"ltg": "Latgalian",
"lth": "Thur",
"lti": "Leti (Indonesia)",
"ltn": "Latundê",
"lto": "Tsotso; Olutsotso",
"lts": "Tachoni; Lutachoni",
"ltu": "Latu",
"lu": "Luba-Katanga",
"lua": "Luba-Lulua",
"luc": "Aringa",
"lud": "Ludian",
"lue": "Luvale",
"luf": "Laua",
"lui": "Luiseno",
"luj": "Luna",
"luk": "Lunanakha",
"lul": "Olu'bo",
"lum": "Luimbi",
"lun": "Lunda",
"luo": "Luo (Kenya and Tanzania); Dholuo",
"lup": "Lumbu",
"luq": "Lucumi",
"lur": "Laura",
"lus": "Lushai",
"lut": "Lushootseed",
"luu": "Lumba-Yakkha",
"luv": "Luwati",
"luw": "Luo (Cameroon)",
"luy": "Luyia; Oluluyia",
"luz": "Southern Luri",
"lv": "Latvian",
"lva": "Maku'a",
"lvi": "Lavi",
"lvk": "Lavukaleve",
"lvs": "Standard Latvian",
"lvu": "Levuka",
"lwa": "Lwalu",
"lwe": "Lewo Eleng",
"lwg": "Wanga; Oluwanga",
"lwh": "White Lachi",
"lwl": "Eastern Lawa",
"lwm": "Laomian",
"lwo": "Luwo",
"lws": "Malawian Sign Language",
"lwt": "Lewotobi",
"lwu": "Lawu",
"lww": "Lewo",
"lxm": "Lakurumau",
"lya": "Layakha",
"lyg": "Lyngngam",
"lyn": "Luyana",
"lzh": "Literary Chinese",
"lzl": "Litzlitz",
"lzn": "Leinong Naga",
"lzz": "Laz",
"maa": "San Jerónimo Tecóatl Mazatec",
"mab": "Yutanduchi Mixtec",
"mad": "Madurese",
"mae": "Bo-Rukul",
"maf": "Mafa",
"mag": "Magahi",
"mai": "Maithili",
"maj": "Jalapa De Díaz Mazatec",
"mak": "Makasar",
"mam": "Mam",
"man": "Mandingo; Manding",
"map": "Austronesian languages",
"maq": "Chiquihuitlán Mazatec",
"mas": "Masai",
"mat": "San Francisco Matlatzinca",
"mau": "Huautla Mazatec",
"mav": "Sateré-Mawé",
"maw": "Mampruli",
"max": "North Moluccan Malay",
"maz": "Central Mazahua",
"mba": "Higaonon",
"mbb": "Western Bukidnon Manobo",
"mbc": "Macushi",
"mbd": "Dibabawon Manobo",
"mbe": "Molale",
"mbf": "Baba Malay",
"mbh": "Mangseng",
"mbi": "Ilianen Manobo",
"mbj": "Nadëb",
"mbk": "Malol",
"mbl": "Maxakalí",
"mbm": "Ombamba",
"mbn": "Macaguán",
"mbo": "Mbo (Cameroon)",
"mbp": "Malayo",
"mbq": "Maisin",
"mbr": "Nukak Makú",
"mbs": "Sarangani Manobo",
"mbt": "Matigsalug Manobo",
"mbu": "Mbula-Bwazza",
"mbv": "Mbulungish",
"mbw": "Maring",
"mbx": "Mari (East Sepik Province)",
"mby": "Memoni",
"mbz": "Amoltepec Mixtec",
"mca": "Maca",
"mcb": "Machiguenga",
"mcc": "Bitur",
"mcd": "Sharanahua",
"mce": "Itundujia Mixtec",
"mcf": "Matsés",
"mcg": "Mapoyo",
"mch": "Maquiritari",
"mci": "Mese",
"mcj": "Mvanip",
"mck": "Mbunda",
"mcl": "Macaguaje",
"mcm": "Malaccan Creole Portuguese",
"mcn": "Masana",
"mco": "Coatlán Mixe",
"mcp": "Makaa",
"mcq": "Ese",
"mcr": "Menya",
"mcs": "Mambai",
"mct": "Mengisa",
"mcu": "Cameroon Mambila",
"mcv": "Minanibai",
"mcw": "Mawa (Chad)",
"mcx": "Mpiemo",
"mcy": "South Watut",
"mcz": "Mawan",
"mda": "Mada (Nigeria)",
"mdb": "Morigi",
"mdc": "Male (Papua New Guinea)",
"mdd": "Mbum",
"mde": "Maba (Chad)",
"mdf": "Moksha",
"mdg": "Massalat",
"mdh": "Maguindanaon",
"mdi": "Mamvu",
"mdj": "Mangbetu",
"mdk": "Mangbutu",
"mdl": "Maltese Sign Language",
"mdm": "Mayogo",
"mdn": "Mbati",
"mdp": "Mbala",
"mdq": "Mbole",
"mdr": "Mandar",
"mds": "Maria (Papua New Guinea)",
"mdt": "Mbere",
"mdu": "Mboko",
"mdv": "Santa Lucía Monteverde Mixtec",
"mdw": "Mbosi",
"mdx": "Dizin",
"mdy": "Male (Ethiopia)",
"mdz": "Suruí Do Pará",
"mea": "Menka",
"meb": "Ikobi",
"mec": "Marra",
"med": "Melpa",
"mee": "Mengen",
"mef": "Megam",
"meh": "Southwestern Tlaxiaco Mixtec",
"mei": "Midob",
"mej": "Meyah",
"mek": "Mekeo",
"mel": "Central Melanau",
"mem": "Mangala",
"men": "Mende (Sierra Leone)",
"meo": "Kedah Malay",
"mep": "Miriwoong",
"meq": "Merey",
"mer": "Meru",
"mes": "Masmaje",
"met": "Mato",
"meu": "Motu",
"mev": "Mano",
"mew": "Maaka",
"mey": "Hassaniyya",
"mez": "Menominee",
"mfa": "Pattani Malay",
"mfb": "Bangka",
"mfc": "Mba",
"mfd": "Mendankwe-Nkwen",
"mfe": "Morisyen",
"mff": "Naki",
"mfg": "Mogofin",
"mfh": "Matal",
"mfi": "Wandala",
"mfj": "Mefele",
"mfk": "North Mofu",
"mfl": "Putai",
"mfm": "Marghi South",
"mfn": "Cross River Mbembe",
"mfo": "Mbe",
"mfp": "Makassar Malay",
"mfq": "Moba",
"mfr": "Marrithiyel",
"mfs": "Mexican Sign Language",
"mft": "Mokerang",
"mfu": "Mbwela",
"mfv": "Mandjak",
"mfw": "Mulaha",
"mfx": "Melo",
"mfy": "Mayo",
"mfz": "Mabaan",
"mg": "Malagasy",
"mga": "Middle Irish (900-1200)",
"mgb": "Mararit",
"mgc": "Morokodo",
"mgd": "Moru",
"mge": "Mango",
"mgf": "Maklew",
"mgg": "Mpumpong",
"mgh": "Makhuwa-Meetto",
"mgi": "Lijili",
"mgj": "Abureni",
"mgk": "Mawes",
"mgl": "Maleu-Kilenge",
"mgm": "Mambae",
"mgn": "Mbangi",
"mgo": "Meta'",
"mgp": "Eastern Magar",
"mgq": "Malila",
"mgr": "Mambwe-Lungu",
"mgs": "Manda (Tanzania)",
"mgt": "Mongol",
"mgu": "Mailu",
"mgv": "Matengo",
"mgw": "Matumbi",
"mgy": "Mbunga",
"mgz": "Mbugwe",
"mh": "Marshallese",
"mha": "Manda (India)",
"mhb": "Mahongwe",
"mhc": "Mocho",
"mhd": "Mbugu",
"mhe": "Besisi; Mah Meri",
"mhf": "Mamaa",
"mhg": "Margu",
"mhi": "Ma'di",
"mhj": "Mogholi",
"mhk": "Mungaka",
"mhl": "Mauwake",
"mhm": "Makhuwa-Moniga",
"mhn": "Mócheno",
"mho": "Mashi (Zambia)",
"mhp": "Balinese Malay",
"mhq": "Mandan",
"mhr": "Eastern Mari",
"mhs": "Buru (Indonesia)",
"mht": "Mandahuaca",
"mhu": "Digaro-Mishmi; Darang Deng",
"mhw": "Mbukushu",
"mhx": "Maru; Lhaovo",
"mhy": "Ma'anyan",
"mhz": "Mor (Mor Islands)",
"mi": "Maori",
"mia": "Miami",
"mib": "Atatláhuca Mixtec",
"mic": "Mi'kmaq; Micmac",
"mid": "Mandaic",
"mie": "Ocotepec Mixtec",
"mif": "Mofu-Gudur",
"mig": "San Miguel El Grande Mixtec",
"mih": "Chayuco Mixtec",
"mii": "Chigmecatitlán Mixtec",
"mij": "Abar; Mungbam",
"mik": "Mikasuki",
"mil": "Peñoles Mixtec",
"mim": "Alacatlatzala Mixtec",
"min": "Minangkabau",
"mio": "Pinotepa Nacional Mixtec",
"mip": "Apasco-Apoala Mixtec",
"miq": "Mískito",
"mir": "Isthmus Mixe",
"mit": "Southern Puebla Mixtec",
"miu": "Cacaloxtepec Mixtec",
"miw": "Akoye",
"mix": "Mixtepec Mixtec",
"miy": "Ayutla Mixtec",
"miz": "Coatzospan Mixtec",
"mjb": "Makalero",
"mjc": "San Juan Colorado Mixtec",
"mjd": "Northwest Maidu",
"mje": "Muskum",
"mjg": "Tu",
"mjh": "Mwera (Nyasa)",
"mji": "Kim Mun",
"mjj": "Mawak",
"mjk": "Matukar",
"mjl": "Mandeali",
"mjm": "Medebur",
"mjn": "Ma (Papua New Guinea)",
"mjo": "Malankuravan",
"mjp": "Malapandaram",
"mjq": "Malaryan",
"mjr": "Malavedan",
"mjs": "Miship",
"mjt": "Sauria Paharia",
"mju": "Manna-Dora",
"mjv": "Mannan",
"mjw": "Karbi",
"mjx": "Mahali",
"mjy": "Mahican",
"mjz": "Majhi",
"mk": "Macedonian",
"mka": "Mbre",
"mkb": "Mal Paharia",
"mkc": "Siliput",
"mke": "Mawchi",
"mkf": "Miya",
"mkg": "Mak (China)",
"mkh": "Mon-Khmer languages",
"mki": "Dhatki",
"mkj": "Mokilese",
"mkk": "Byep",
"mkl": "Mokole",
"mkm": "Moklen",
"mkn": "Kupang Malay",
"mko": "Mingang Doso",
"mkp": "Moikodi",
"mkq": "Bay Miwok",
"mkr": "Malas",
"mks": "Silacayoapan Mixtec",
"mkt": "Vamale",
"mku": "Konyanka Maninka",
"mkv": "Mafea",
"mkw": "Kituba (Congo)",
"mkx": "Kinamiging Manobo",
"mky": "East Makian",
"mkz": "Makasae",
"ml": "Malayalam",
"mla": "Malo",
"mlb": "Mbule",
"mlc": "Cao Lan",
"mle": "Manambu",
"mlf": "Mal",
"mlh": "Mape",
"mli": "Malimpung",
"mlj": "Miltu",
"mlk": "Ilwana; Kiwilwana",
"mll": "Malua Bay",
"mlm": "Mulam",
"mln": "Malango",
"mlo": "Mlomp",
"mlp": "Bargam",
"mlq": "Western Maninkakan",
"mlr": "Vame",
"mls": "Masalit",
"mlu": "To'abaita",
"mlv": "Motlav; Mwotlap",
"mlw": "Moloko",
"mlx": "Malfaxal; Naha'ai",
"mlz": "Malaynon",
"mma": "Mama",
"mmb": "Momina",
"mmc": "Michoacán Mazahua",
"mmd": "Maonan",
"mme": "Mae",
"mmf": "Mundat",
"mmg": "North Ambrym",
"mmh": "Mehináku",
"mmi": "Musar",
"mmj": "Majhwar",
"mmk": "Mukha-Dora",
"mml": "Man Met",
"mmm": "Maii",
"mmn": "Mamanwa",
"mmo": "Mangga Buang",
"mmp": "Siawi",
"mmq": "Musak",
"mmr": "Western Xiangxi Miao",
"mmt": "Malalamai",
"mmu": "Mmaala",
"mmv": "Miriti",
"mmw": "Emae",
"mmx": "Madak",
"mmy": "Migaama",
"mmz": "Mabaale",
"mn": "Mongolian",
"mna": "Mbula",
"mnb": "Muna",
"mnc": "Manchu",
"mnd": "Mondé",
"mne": "Naba",
"mnf": "Mundani",
"mng": "Eastern Mnong",
"mnh": "Mono (Democratic Republic of Congo)",
"mni": "Manipuri",
"mnj": "Munji",
"mnk": "Mandinka",
"mnl": "Tiale",
"mnm": "Mapena",
"mnn": "Southern Mnong",
"mno": "Manobo languages",
"mnp": "Min Bei Chinese",
"mnq": "Minriq",
"mnr": "Mono (USA)",
"mns": "Mansi",
"mnu": "Mer",
"mnv": "Rennell-Bellona",
"mnw": "Mon",
"mnx": "Manikion",
"mny": "Manyawa",
"mnz": "Moni",
"moa": "Mwan",
"moc": "Mocoví",
"mod": "Mobilian",
"moe": "Innu; Montagnais",
"mog": "Mongondow",
"moh": "Mohawk",
"moi": "Mboi",
"moj": "Monzombo",
"mok": "Morori",
"mom": "Mangue",
"moo": "Monom",
"mop": "Mopán Maya",
"moq": "Mor (Bomberai Peninsula)",
"mor": "Moro",
"mos": "Mossi",
"mot": "Barí",
"mou": "Mogum",
"mov": "Mohave",
"mow": "Moi (Congo)",
"mox": "Molima",
"moy": "Shekkacho",
"moz": "Mukulu; Gergiko",
"mpa": "Mpoto",
"mpb": "Malak Malak; Mullukmulluk",
"mpc": "Mangarrayi",
"mpd": "Machinere",
"mpe": "Majang",
"mpg": "Marba",
"mph": "Maung",
"mpi": "Mpade",
"mpj": "Martu Wangka; Wangkajunga",
"mpk": "Mbara (Chad)",
"mpl": "Middle Watut",
"mpm": "Yosondúa Mixtec",
"mpn": "Mindiri",
"mpo": "Miu",
"mpp": "Migabac",
"mpq": "Matís",
"mpr": "Vangunu",
"mps": "Dadibi",
"mpt": "Mian",
"mpu": "Makuráp",
"mpv": "Mungkip",
"mpw": "Mapidian",
"mpx": "Misima-Panaeati",
"mpy": "Mapia",
"mpz": "Mpi",
"mqa": "Maba (Indonesia)",
"mqb": "Mbuko",
"mqc": "Mangole",
"mqe": "Matepi",
"mqf": "Momuna",
"mqg": "Kota Bangun Kutai Malay",
"mqh": "Tlazoyaltepec Mixtec",
"mqi": "Mariri",
"mqj": "Mamasa",
"mqk": "Rajah Kabunsuwan Manobo",
"mql": "Mbelime",
"mqm": "South Marquesan",
"mqn": "Moronene",
"mqo": "Modole",
"mqp": "Manipa",
"mqq": "Minokok",
"mqr": "Mander",
"mqs": "West Makian",
"mqt": "Mok",
"mqu": "Mandari",
"mqv": "Mosimo",
"mqw": "Murupi",
"mqx": "Mamuju",
"mqy": "Manggarai",
"mqz": "Pano",
"mr": "Marathi",
"mra": "Mlabri",
"mrb": "Marino",
"mrc": "Maricopa",
"mrd": "Western Magar",
"mre": "Martha's Vineyard Sign Language",
"mrf": "Elseng",
"mrg": "Mising",
"mrh": "Mara Chin",
"mrj": "Western Mari",
"mrk": "Hmwaveke",
"mrl": "Mortlockese",
"mrm": "Merlav; Mwerlap",
"mrn": "Cheke Holo",
"mro": "Mru",
"mrp": "Morouas",
"mrq": "North Marquesan",
"mrr": "Maria (India)",
"mrs": "Maragus",
"mrt": "Marghi Central",
"mru": "Mono (Cameroon)",
"mrv": "Mangareva",
"mrw": "Maranao",
"mrx": "Maremgi; Dineor",
"mry": "Mandaya",
"mrz": "Marind",
"ms": "Malay (macrolanguage)",
"msb": "Masbatenyo",
"msc": "Sankaran Maninka",
"msd": "Yucatec Maya Sign Language",
"mse": "Musey",
"msf": "Mekwei",
"msg": "Moraid",
"msh": "Masikoro Malagasy",
"msi": "Sabah Malay",
"msj": "Ma (Democratic Republic of Congo)",
"msk": "Mansaka",
"msl": "Molof; Poule",
"msm": "Agusan Manobo",
"msn": "Vurës",
"mso": "Mombum",
"msp": "Maritsauá",
"msq": "Caac",
"msr": "Mongolian Sign Language",
"mss": "West Masela",
"msu": "Musom",
"msv": "Maslam",
"msw": "Mansoanka",
"msx": "Moresada",
"msy": "Aruamu",
"msz": "Momare",
"mt": "Maltese",
"mta": "Cotabato Manobo",
"mtb": "Anyin Morofo",
"mtc": "Munit",
"mtd": "Mualang",
"mte": "Mono (Solomon Islands)",
"mtf": "Murik (Papua New Guinea)",
"mtg": "Una",
"mth": "Munggui",
"mti": "Maiwa (Papua New Guinea)",
"mtj": "Moskona",
"mtk": "Mbe'",
"mtl": "Montol",
"mtm": "Mator",
"mtn": "Matagalpa",
"mto": "Totontepec Mixe",
"mtp": "Wichí Lhamtés Nocten",
"mtq": "Muong",
"mtr": "Mewari",
"mts": "Yora",
"mtt": "Mota",
"mtu": "Tututepec Mixtec",
"mtv": "Asaro'o",
"mtw": "Southern Binukidnon",
"mtx": "Tidaá Mixtec",
"mty": "Nabi",
"mua": "Mundang",
"mub": "Mubi",
"muc": "Ajumbu",
"mud": "Mednyj Aleut",
"mue": "Media Lengua",
"mug": "Musgu",
"muh": "Mündü",
"mui": "Musi",
"muj": "Mabire",
"muk": "Mugom",
"mum": "Maiwala",
"mun": "Munda languages",
"muo": "Nyong",
"mup": "Malvi",
"muq": "Eastern Xiangxi Miao",
"mur": "Murle",
"mus": "Creek",
"mut": "Western Muria",
"muu": "Yaaku",
"muv": "Muthuvan",
"mux": "Bo-Ung",
"muy": "Muyang",
"muz": "Mursi",
"mva": "Manam",
"mvb": "Mattole",
"mvd": "Mamboru",
"mve": "Marwari (Pakistan)",
"mvf": "Peripheral Mongolian",
"mvg": "Yucuañe Mixtec",
"mvh": "Mulgi",
"mvi": "Miyako",
"mvk": "Mekmek",
"mvl": "Mbara (Australia)",
"mvn": "Minaveha",
"mvo": "Marovo",
"mvp": "Duri",
"mvq": "Moere",
"mvr": "Marau",
"mvs": "Massep",
"mvt": "Mpotovoro",
"mvu": "Marfa",
"mvv": "Tagal Murut",
"mvw": "Machinga",
"mvx": "Meoswar",
"mvy": "Indus Kohistani",
"mvz": "Mesqan",
"mwa": "Mwatebu",
"mwb": "Juwal",
"mwc": "Are",
"mwe": "Mwera (Chimwera)",
"mwf": "Murrinh-Patha",
"mwg": "Aiklep",
"mwh": "Mouk-Aria",
"mwi": "Labo; Ninde",
"mwk": "Kita Maninkakan",
"mwl": "Mirandese",
"mwm": "Sar",
"mwn": "Nyamwanga",
"mwo": "Central Maewo",
"mwp": "Kala Lagaw Ya",
"mwq": "Mün Chin",
"mwr": "Marwari",
"mws": "Mwimbi-Muthambi",
"mwt": "Moken",
"mwu": "Mittu",
"mwv": "Mentawai",
"mww": "Hmong Daw",
"mwz": "Moingi",
"mxa": "Northwest Oaxaca Mixtec",
"mxb": "Tezoatlán Mixtec",
"mxc": "Manyika",
"mxd": "Modang",
"mxe": "Mele-Fila",
"mxf": "Malgbe",
"mxg": "Mbangala",
"mxh": "Mvuba",
"mxi": "Mozarabic",
"mxj": "Miju-Mishmi; Geman Deng",
"mxk": "Monumbo",
"mxl": "Maxi Gbe",
"mxm": "Meramera",
"mxn": "Moi (Indonesia)",
"mxo": "Mbowe",
"mxp": "Tlahuitoltepec Mixe",
"mxq": "Juquila Mixe",
"mxr": "Murik (Malaysia)",
"mxs": "Huitepec Mixtec",
"mxt": "Jamiltepec Mixtec",
"mxu": "Mada (Cameroon)",
"mxv": "Metlatónoc Mixtec",
"mxw": "Namo",
"mxx": "Mahou; Mawukakan",
"mxy": "Southeastern Nochixtlán Mixtec",
"mxz": "Central Masela",
"my": "Burmese",
"myb": "Mbay",
"myc": "Mayeka",
"mye": "Myene",
"myf": "Bambassi",
"myg": "Manta",
"myh": "Makah",
"myj": "Mangayat",
"myk": "Mamara Senoufo",
"myl": "Moma",
"mym": "Me'en",
"myn": "Mayan languages",
"myo": "Anfillo",
"myp": "Pirahã",
"myr": "Muniche",
"mys": "Mesmes",
"myu": "Mundurukú",
"myv": "Erzya",
"myw": "Muyuw",
"myx": "Masaaba",
"myy": "Macuna",
"myz": "Classical Mandaic",
"mza": "Santa María Zacatepec Mixtec",
"mzb": "Tumzabt",
"mzc": "Madagascar Sign Language",
"mzd": "Malimba",
"mze": "Morawa",
"mzg": "Monastic Sign Language",
"mzh": "Wichí Lhamtés Güisnay",
"mzi": "Ixcatlán Mazatec",
"mzj": "Manya",
"mzk": "Nigeria Mambila",
"mzl": "Mazatlán Mixe",
"mzm": "Mumuye",
"mzn": "Mazanderani",
"mzo": "Matipuhy",
"mzp": "Movima",
"mzq": "Mori Atas",
"mzr": "Marúbo",
"mzs": "Macanese",
"mzt": "Mintil",
"mzu": "Inapang",
"mzv": "Manza",
"mzw": "Deg",
"mzx": "Mawayana",
"mzy": "Mozambican Sign Language",
"mzz": "Maiadomu",
"na": "Nauru",
"naa": "Namla",
"nab": "Southern Nambikuára",
"nac": "Narak",
"nae": "Naka'ela",
"naf": "Nabak",
"nag": "Naga Pidgin",
"nah": "Nahuatl languages",
"nai": "North American Indian languages",
"naj": "Nalu",
"nak": "Nakanai",
"nal": "Nalik",
"nam": "Ngan'gityemerri",
"nan": "Min Nan Chinese",
"nao": "Naaba",
"nap": "Neapolitan",
"naq": "Khoekhoe; Nama (Namibia)",
"nar": "Iguta",
"nas": "Naasioi",
"nat": "Ca̱hungwa̱rya̱; Hungworo",
"naw": "Nawuri",
"nax": "Nakwi",
"nay": "Ngarrindjeri",
"naz": "Coatepec Nahuatl",
"nb": "Norwegian Bokmål",
"nba": "Nyemba",
"nbb": "Ndoe",
"nbc": "Chang Naga",
"nbd": "Ngbinda",
"nbe": "Konyak Naga",
"nbg": "Nagarchal",
"nbh": "Ngamo",
"nbi": "Mao Naga",
"nbj": "Ngarinyman",
"nbk": "Nake",
"nbm": "Ngbaka Ma'bo",
"nbn": "Kuri",
"nbo": "Nkukoli",
"nbp": "Nnam",
"nbq": "Nggem",
"nbr": "Numana",
"nbs": "Namibian Sign Language",
"nbt": "Na",
"nbu": "Rongmei Naga",
"nbv": "Ngamambo",
"nbw": "Southern Ngbandi",
"nby": "Ningera",
"nca": "Iyo",
"ncb": "Central Nicobarese",
"ncc": "Ponam",
"ncd": "Nachering",
"nce": "Yale",
"ncf": "Notsi",
"ncg": "Nisga'a",
"nch": "Central Huasteca Nahuatl",
"nci": "Classical Nahuatl",
"ncj": "Northern Puebla Nahuatl",
"nck": "Na-kara",
"ncl": "Michoacán Nahuatl",
"ncm": "Nambo",
"ncn": "Nauna",
"nco": "Sibe",
"ncq": "Northern Katang",
"ncr": "Ncane",
"ncs": "Nicaraguan Sign Language",
"nct": "Chothe Naga",
"ncu": "Chumburung",
"ncx": "Central Puebla Nahuatl",
"ncz": "Natchez",
"nd": "North Ndebele",
"nda": "Ndasa",
"ndb": "Kenswei Nsei",
"ndc": "Ndau",
"ndd": "Nde-Nsele-Nta",
"ndf": "Nadruvian",
"ndg": "Ndengereko",
"ndh": "Ndali",
"ndi": "Samba Leko",
"ndj": "Ndamba",
"ndk": "Ndaka",
"ndl": "Ndolo",
"ndm": "Ndam",
"ndn": "Ngundi",
"ndp": "Ndo",
"ndq": "Ndombe",
"ndr": "Ndoola",
"nds": "Low German; Low Saxon",
"ndt": "Ndunga",
"ndu": "Dugun",
"ndv": "Ndut",
"ndw": "Ndobo",
"ndx": "Nduga",
"ndy": "Lutos",
"ndz": "Ndogo",
"ne": "Nepali (macrolanguage)",
"nea": "Eastern Ngad'a",
"neb": "Toura (Côte d'Ivoire)",
"nec": "Nedebang",
"ned": "Nde-Gbite",
"nee": "Nêlêmwa-Nixumwak",
"nef": "Nefamese",
"neg": "Negidal",
"neh": "Nyenkha",
"nei": "Neo-Hittite",
"nej": "Neko",
"nek": "Neku",
"nem": "Nemi",
"nen": "Nengone",
"neo": "Ná-Meo",
"neq": "North Central Mixe",
"ner": "Yahadian",
"nes": "Bhoti Kinnauri",
"net": "Nete",
"neu": "Neo",
"nev": "Nyaheun",
"new": "Newari; Nepal Bhasa",
"nex": "Neme",
"ney": "Neyo",
"nez": "Nez Perce",
"nfa": "Dhao",
"nfd": "Ahwai",
"nfl": "Ayiwo; Äiwoo",
"nfr": "Nafaanra",
"nfu": "Mfumte",
"ng": "Ndonga",
"nga": "Ngbaka",
"ngb": "Northern Ngbandi",
"ngc": "Ngombe (Democratic Republic of Congo)",
"ngd": "Ngando (Central African Republic)",
"nge": "Ngemba",
"ngf": "Trans-New Guinea languages",
"ngg": "Ngbaka Manza",
"ngh": "Nǁng",
"ngi": "Ngizim",
"ngj": "Ngie",
"ngk": "Dalabon",
"ngl": "Lomwe",
"ngm": "Ngatik Men's Creole",
"ngn": "Ngwo",
"ngp": "Ngulu",
"ngq": "Ngurimi; Ngoreme",
"ngr": "Engdewu",
"ngs": "Gvoko",
"ngt": "Kriang; Ngeq",
"ngu": "Guerrero Nahuatl",
"ngv": "Nagumi",
"ngw": "Ngwaba",
"ngx": "Nggwahyi",
"ngy": "Tibea",
"ngz": "Ngungwel",
"nha": "Nhanda",
"nhb": "Beng",
"nhc": "Tabasco Nahuatl",
"nhd": "Chiripá; Ava Guaraní",
"nhe": "Eastern Huasteca Nahuatl",
"nhf": "Nhuwala",
"nhg": "Tetelcingo Nahuatl",
"nhh": "Nahari",
"nhi": "Zacatlán-Ahuacatlán-Tepetzintla Nahuatl",
"nhk": "Isthmus-Cosoleacaque Nahuatl",
"nhm": "Morelos Nahuatl",
"nhn": "Central Nahuatl",
"nho": "Takuu",
"nhp": "Isthmus-Pajapan Nahuatl",
"nhq": "Huaxcaleca Nahuatl",
"nhr": "Naro",
"nht": "Ometepec Nahuatl",
"nhu": "Noone",
"nhv": "Temascaltepec Nahuatl",
"nhw": "Western Huasteca Nahuatl",
"nhx": "Isthmus-Mecayapan Nahuatl",
"nhy": "Northern Oaxaca Nahuatl",
"nhz": "Santa María La Alta Nahuatl",
"nia": "Nias",
"nib": "Nakame",
"nic": "Niger-Kordofanian languages",
"nid": "Ngandi",
"nie": "Niellim",
"nif": "Nek",
"nig": "Ngalakgan",
"nih": "Nyiha (Tanzania)",
"nii": "Nii",
"nij": "Ngaju",
"nik": "Southern Nicobarese",
"nil": "Nila",
"nim": "Nilamba",
"nin": "Ninzo",
"nio": "Nganasan",
"niq": "Nandi",
"nir": "Nimboran",
"nis": "Nimi",
"nit": "Southeastern Kolami",
"niu": "Niuean",
"niv": "Gilyak",
"niw": "Nimo",
"nix": "Hema",
"niy": "Ngiti",
"niz": "Ningil",
"nja": "Nzanyi",
"njb": "Nocte Naga",
"njd": "Ndonde Hamba",
"njh": "Lotha Naga",
"nji": "Gudanji",
"njj": "Njen",
"njl": "Njalgulgule",
"njm": "Angami Naga",
"njn": "Liangmai Naga",
"njo": "Ao Naga",
"njr": "Njerep",
"njs": "Nisa",
"njt": "Ndyuka-Trio Pidgin",
"nju": "Ngadjunmaya",
"njx": "Kunyi",
"njy": "Njyem",
"njz": "Nyishi",
"nka": "Nkoya",
"nkb": "Khoibu Naga",
"nkc": "Nkongho",
"nkd": "Koireng",
"nke": "Duke",
"nkf": "Inpui Naga",
"nkg": "Nekgini",
"nkh": "Khezha Naga",
"nki": "Thangal Naga",
"nkj": "Nakai",
"nkk": "Nokuku",
"nkm": "Namat",
"nkn": "Nkangala",
"nko": "Nkonya",
"nkp": "Niuatoputapu",
"nkq": "Nkami",
"nkr": "Nukuoro",
"nks": "North Asmat",
"nkt": "Nyika (Tanzania)",
"nku": "Bouna Kulango",
"nkv": "Nyika (Malawi and Zambia)",
"nkw": "Nkutu",
"nkx": "Nkoroo",
"nkz": "Nkari",
"nl": "Dutch; Flemish",
"nla": "Ngombale",
"nlc": "Nalca",
"nle": "East Nyala",
"nlg": "Gela",
"nli": "Grangali",
"nlj": "Nyali",
"nlk": "Ninia Yali",
"nll": "Nihali",
"nlm": "Mankiyali",
"nlo": "Ngul",
"nlq": "Lao Naga",
"nlu": "Nchumbulu",
"nlv": "Orizaba Nahuatl",
"nlw": "Walangama",
"nlx": "Nahali",
"nly": "Nyamal",
"nlz": "Nalögo",
"nma": "Maram Naga",
"nmb": "Big Nambas; V'ënen Taut",
"nmc": "Ngam",
"nmd": "Ndumu",
"nme": "Mzieme Naga",
"nmf": "Tangkhul Naga (India)",
"nmg": "Kwasio",
"nmh": "Monsang Naga",
"nmi": "Nyam",
"nmj": "Ngombe (Central African Republic)",
"nmk": "Namakura",
"nml": "Ndemli",
"nmm": "Manangba",
"nmn": "ǃXóõ",
"nmo": "Moyon Naga",
"nmp": "Nimanbur",
"nmq": "Nambya",
"nmr": "Nimbari",
"nms": "Letemboi",
"nmt": "Namonuito",
"nmu": "Northeast Maidu",
"nmv": "Ngamini",
"nmw": "Nimoa; Rifao",
"nmx": "Nama (Papua New Guinea)",
"nmy": "Namuyi",
"nmz": "Nawdm",
"nn": "Norwegian Nynorsk",
"nna": "Nyangumarta",
"nnb": "Nande",
"nnc": "Nancere",
"nnd": "West Ambae",
"nne": "Ngandyera",
"nnf": "Ngaing",
"nng": "Maring Naga",
"nnh": "Ngiemboon",
"nni": "North Nuaulu",
"nnj": "Nyangatom",
"nnk": "Nankina",
"nnl": "Northern Rengma Naga",
"nnm": "Namia",
"nnn": "Ngete",
"nnp": "Wancho Naga",
"nnq": "Ngindo",
"nnr": "Narungga",
"nnt": "Nanticoke",
"nnu": "Dwang",
"nnv": "Nugunu (Australia)",
"nnw": "Southern Nuni",
"nny": "Nyangga",
"nnz": "Nda'nda'",
"no": "Norwegian",
"noa": "Woun Meu",
"noc": "Nuk",
"nod": "Northern Thai",
"noe": "Nimadi",
"nof": "Nomane",
"nog": "Nogai",
"noh": "Nomu",
"noi": "Noiri",
"noj": "Nonuya",
"nok": "Nooksack",
"nol": "Nomlaki",
"nom": "Nocamán",
"non": "Old Norse",
"nop": "Numanggang",
"noq": "Ngongo",
"nos": "Eastern Nisu",
"not": "Nomatsiguenga",
"nou": "Ewage-Notu",
"nov": "Novial",
"now": "Nyambo",
"noy": "Noy",
"noz": "Nayi",
"npa": "Nar Phu",
"npb": "Nupbikha",
"npg": "Ponyo-Gongwang Naga",
"nph": "Phom Naga",
"npi": "Nepali (individual language)",
"npl": "Southeastern Puebla Nahuatl",
"npn": "Mondropolon",
"npo": "Pochuri Naga",
"nps": "Nipsan",
"npu": "Puimei Naga",
"npx": "Noipx",
"npy": "Napu",
"nqg": "Southern Nago",
"nqk": "Kura Ede Nago",
"nql": "Ngendelengo",
"nqm": "Ndom",
"nqn": "Nen",
"nqo": "N'Ko; N’Ko",
"nqq": "Kyan-Karyaw Naga",
"nqt": "Nteng",
"nqy": "Akyaung Ari Naga",
"nr": "South Ndebele",
"nra": "Ngom",
"nrb": "Nara",
"nrc": "Noric",
"nre": "Southern Rengma Naga",
"nrf": "Jèrriais; Guernésiais",
"nrg": "Narango",
"nri": "Chokri Naga",
"nrk": "Ngarla",
"nrl": "Ngarluma",
"nrm": "Narom",
"nrn": "Norn",
"nrp": "North Picene",
"nrr": "Norra; Nora",
"nrt": "Northern Kalapuya",
"nru": "Narua",
"nrx": "Ngurmbur",
"nrz": "Lala",
"nsa": "Sangtam Naga",
"nsb": "Lower Nossob",
"nsc": "Nshi",
"nsd": "Southern Nisu",
"nse": "Nsenga",
"nsf": "Northwestern Nisu",
"nsg": "Ngasa",
"nsh": "Ngoshie",
"nsi": "Nigerian Sign Language",
"nsk": "Naskapi",
"nsl": "Norwegian Sign Language",
"nsm": "Sumi Naga",
"nsn": "Nehan",
"nso": "Pedi; Northern Sotho; Sepedi",
"nsp": "Nepalese Sign Language",
"nsq": "Northern Sierra Miwok",
"nsr": "Maritime Sign Language",
"nss": "Nali",
"nst": "Tase Naga",
"nsu": "Sierra Negra Nahuatl",
"nsv": "Southwestern Nisu",
"nsw": "Navut",
"nsx": "Nsongo",
"nsy": "Nasal",
"nsz": "Nisenan",
"ntd": "Northern Tidung",
"nte": "Nathembo",
"ntg": "Ngantangarra",
"nti": "Natioro",
"ntj": "Ngaanyatjarra",
"ntk": "Ikoma-Nata-Isenye",
"ntm": "Nateni",
"nto": "Ntomba",
"ntp": "Northern Tepehuan",
"ntr": "Delo",
"ntu": "Natügu",
"ntw": "Nottoway",
"ntx": "Tangkhul Naga (Myanmar)",
"nty": "Mantsi",
"ntz": "Natanzi",
"nua": "Yuanga",
"nub": "Nubian languages",
"nuc": "Nukuini",
"nud": "Ngala",
"nue": "Ngundu",
"nuf": "Nusu",
"nug": "Nungali",
"nuh": "Ndunda",
"nui": "Ngumbi",
"nuj": "Nyole",
"nuk": "Nuu-chah-nulth; Nuuchahnulth",
"nul": "Nusa Laut",
"num": "Niuafo'ou",
"nun": "Anong",
"nuo": "Nguôn",
"nup": "Nupe-Nupe-Tako",
"nuq": "Nukumanu",
"nur": "Nukuria",
"nus": "Nuer",
"nut": "Nung (Viet Nam)",
"nuu": "Ngbundu",
"nuv": "Northern Nuni",
"nuw": "Nguluwan",
"nux": "Mehek",
"nuy": "Nunggubuyu",
"nuz": "Tlamacazapa Nahuatl",
"nv": "Navajo; Navaho",
"nvh": "Nasarian",
"nvm": "Namiae",
"nvo": "Nyokon",
"nwa": "Nawathinehena",
"nwb": "Nyabwa",
"nwc": "Classical Newari; Classical Nepal Bhasa; Old Newari",
"nwe": "Ngwe",
"nwg": "Ngayawung",
"nwi": "Southwest Tanna",
"nwm": "Nyamusa-Molo",
"nwo": "Nauo",
"nwr": "Nawaru",
"nww": "Ndwewe",
"nwx": "Middle Newar",
"nwy": "Nottoway-Meherrin",
"nxa": "Nauete",
"nxd": "Ngando (Democratic Republic of Congo)",
"nxe": "Nage",
"nxg": "Ngad'a",
"nxi": "Nindi",
"nxk": "Koki Naga",
"nxl": "South Nuaulu",
"nxm": "Numidian",
"nxn": "Ngawun",
"nxo": "Ndambomo",
"nxq": "Naxi",
"nxr": "Ninggerum",
"nxx": "Nafri",
"ny": "Nyanja; Chewa; Chichewa",
"nyb": "Nyangbo",
"nyc": "Nyanga-li",
"nyd": "Nyore; Olunyole",
"nye": "Nyengo",
"nyf": "Giryama; Kigiryama",
"nyg": "Nyindu",
"nyh": "Nyikina",
"nyi": "Ama (Sudan)",
"nyj": "Nyanga",
"nyk": "Nyaneka",
"nyl": "Nyeu",
"nym": "Nyamwezi",
"nyn": "Nyankole",
"nyo": "Nyoro",
"nyp": "Nyang'i",
"nyq": "Nayini",
"nyr": "Nyiha (Malawi)",
"nys": "Nyungar",
"nyt": "Nyawaygi",
"nyu": "Nyungwe",
"nyv": "Nyulnyul",
"nyw": "Nyaw",
"nyx": "Nganyaywana",
"nyy": "Nyakyusa-Ngonde",
"nza": "Tigon Mbembe",
"nzb": "Njebi",
"nzd": "Nzadi",
"nzi": "Nzima",
"nzk": "Nzakara",
"nzm": "Zeme Naga",
"nzs": "New Zealand Sign Language",
"nzu": "Teke-Nzikou",
"nzy": "Nzakambay",
"nzz": "Nanga Dama Dogon",
"oaa": "Orok",
"oac": "Oroch",
"oar": "Old Aramaic (up to 700 BCE); Ancient Aramaic (up to 700 BCE)",
"oav": "Old Avar",
"obi": "Obispeño",
"obk": "Southern Bontok",
"obl": "Oblo",
"obm": "Moabite",
"obo": "Obo Manobo",
"obr": "Old Burmese",
"obt": "Old Breton",
"obu": "Obulom",
"oc": "Occitan (post 1500)",
"oca": "Ocaina",
"och": "Old Chinese",
"ocm": "Old Cham",
"oco": "Old Cornish",
"ocu": "Atzingo Matlatzinca",
"oda": "Odut",
"odk": "Od",
"odt": "Old Dutch",
"odu": "Odual",
"ofo": "Ofo",
"ofs": "Old Frisian",
"ofu": "Efutop",
"ogb": "Ogbia",
"ogc": "Ogbah",
"oge": "Old Georgian",
"ogg": "Ogbogolo",
"ogo": "Khana",
"ogu": "Ogbronuagum",
"oht": "Old Hittite",
"ohu": "Old Hungarian",
"oia": "Oirata",
"oie": "Okolie",
"oin": "Inebu One",
"oj": "Ojibwa",
"ojb": "Northwestern Ojibwa",
"ojc": "Central Ojibwa",
"ojg": "Eastern Ojibwa",
"ojp": "Old Japanese",
"ojs": "Severn Ojibwa",
"ojv": "Ontong Java",
"ojw": "Western Ojibwa",
"oka": "Okanagan",
"okb": "Okobo",
"okc": "Kobo",
"okd": "Okodia",
"oke": "Okpe (Southwestern Edo)",
"okg": "Koko Babangk",
"okh": "Koresh-e Rostam",
"oki": "Okiek",
"okj": "Oko-Juwoi",
"okk": "Kwamtim One",
"okl": "Old Kentish Sign Language",
"okm": "Middle Korean (10th-16th cent.)",
"okn": "Oki-No-Erabu",
"oko": "Old Korean (3rd-9th cent.)",
"okr": "Kirike",
"oks": "Oko-Eni-Osayen",
"oku": "Oku",
"okv": "Orokaiva",
"okx": "Okpe (Northwestern Edo)",
"okz": "Old Khmer",
"ola": "Walungge",
"old": "Mochi",
"ole": "Olekha",
"olk": "Olkol",
"olm": "Oloma",
"olo": "Livvi",
"olr": "Olrat",
"olt": "Old Lithuanian",
"olu": "Kuvale",
"om": "Oromo",
"oma": "Omaha-Ponca",
"omb": "East Ambae",
"omc": "Mochica",
"omg": "Omagua",
"omi": "Omi",
"omk": "Omok",
"oml": "Ombo",
"omn": "Minoan",
"omo": "Utarmbung",
"omp": "Old Manipuri",
"omq": "Oto-Manguean languages",
"omr": "Old Marathi",
"omt": "Omotik",
"omu": "Omurano",
"omv": "Omotic languages",
"omw": "South Tairora",
"omx": "Old Mon",
"omy": "Old Malay",
"ona": "Ona",
"onb": "Lingao",
"one": "Oneida",
"ong": "Olo",
"oni": "Onin",
"onj": "Onjob",
"onk": "Kabore One",
"onn": "Onobasulu",
"ono": "Onondaga",
"onp": "Sartang",
"onr": "Northern One",
"ons": "Ono",
"ont": "Ontenu",
"onu": "Unua",
"onw": "Old Nubian",
"onx": "Onin Based Pidgin",
"ood": "Tohono O'odham",
"oog": "Ong",
"oon": "Önge",
"oor": "Oorlams",
"oos": "Old Ossetic",
"opa": "Okpamheri",
"opk": "Kopkaka",
"opm": "Oksapmin",
"opo": "Opao",
"opt": "Opata",
"opy": "Ofayé",
"or": "Oriya (macrolanguage); Odia (macrolanguage)",
"ora": "Oroha",
"orc": "Orma",
"ore": "Orejón",
"org": "Oring",
"orh": "Oroqen",
"orn": "Orang Kanaq",
"oro": "Orokolo",
"orr": "Oruma",
"ors": "Orang Seletar",
"ort": "Adivasi Oriya",
"oru": "Ormuri",
"orv": "Old Russian",
"orw": "Oro Win",
"orx": "Oro",
"ory": "Odia (individual language); Oriya (individual language)",
"orz": "Ormu",
"os": "Ossetian; Ossetic",
"osa": "Osage",
"osc": "Oscan",
"osi": "Osing",
"osn": "Old Sundanese",
"oso": "Ososo",
"osp": "Old Spanish",
"ost": "Osatu",
"osu": "Southern One",
"osx": "Old Saxon",
"ota": "Ottoman Turkish (1500-1928)",
"otb": "Old Tibetan",
"otd": "Ot Danum",
"ote": "Mezquital Otomi",
"oti": "Oti",
"otk": "Old Turkish",
"otl": "Tilapa Otomi",
"otm": "Eastern Highland Otomi",
"otn": "Tenango Otomi",
"oto": "Otomian languages",
"otq": "Querétaro Otomi",
"otr": "Otoro",
"ots": "Estado de México Otomi",
"ott": "Temoaya Otomi",
"otu": "Otuke",
"otw": "Ottawa",
"otx": "Texcatepec Otomi",
"oty": "Old Tamil",
"otz": "Ixtenco Otomi",
"oua": "Tagargrent",
"oub": "Glio-Oubi",
"oue": "Oune",
"oui": "Old Uighur",
"oum": "Ouma",
"ovd": "Elfdalian; Övdalian",
"owi": "Owiniga",
"owl": "Old Welsh",
"oyb": "Oy",
"oyd": "Oyda",
"oym": "Wayampi",
"oyy": "Oya'oya",
"ozm": "Koonzime",
"pa": "Panjabi; Punjabi",
"paa": "Papuan languages",
"pab": "Parecís",
"pac": "Pacoh",
"pad": "Paumarí",
"pae": "Pagibete",
"paf": "Paranawát",
"pag": "Pangasinan",
"pah": "Tenharim",
"pai": "Pe",
"pak": "Parakanã",
"pal": "Pahlavi",
"pam": "Pampanga; Kapampangan",
"pao": "Northern Paiute",
"pap": "Papiamento",
"paq": "Parya",
"par": "Panamint; Timbisha",
"pas": "Papasena",
"pau": "Palauan",
"pav": "Pakaásnovos",
"paw": "Pawnee",
"pax": "Pankararé",
"pay": "Pech",
"paz": "Pankararú",
"pbb": "Páez",
"pbc": "Patamona",
"pbe": "Mezontla Popoloca",
"pbf": "Coyotepec Popoloca",
"pbg": "Paraujano",
"pbh": "E'ñapa Woromaipu",
"pbi": "Parkwa",
"pbl": "Mak (Nigeria)",
"pbm": "Puebla Mazatec",
"pbn": "Kpasam",
"pbo": "Papel",
"pbp": "Badyara",
"pbr": "Pangwa",
"pbs": "Central Pame",
"pbt": "Southern Pashto",
"pbu": "Northern Pashto",
"pbv": "Pnar",
"pby": "Pyu (Papua New Guinea)",
"pca": "Santa Inés Ahuatempan Popoloca",
"pcb": "Pear",
"pcc": "Bouyei",
"pcd": "Picard",
"pce": "Ruching Palaung",
"pcf": "Paliyan",
"pcg": "Paniya",
"pch": "Pardhan",
"pci": "Duruwa",
"pcj": "Parenga",
"pck": "Paite Chin",
"pcl": "Pardhi",
"pcm": "Nigerian Pidgin",
"pcn": "Piti",
"pcp": "Pacahuara",
"pcw": "Pyapun",
"pda": "Anam",
"pdc": "Pennsylvania German",
"pdi": "Pa Di",
"pdn": "Podena; Fedan",
"pdo": "Padoe",
"pdt": "Plautdietsch",
"pdu": "Kayan",
"pea": "Peranakan Indonesian",
"peb": "Eastern Pomo",
"ped": "Mala (Papua New Guinea)",
"pee": "Taje",
"pef": "Northeastern Pomo",
"peg": "Pengo",
"peh": "Bonan",
"pei": "Chichimeca-Jonaz",
"pej": "Northern Pomo",
"pek": "Penchal",
"pel": "Pekal",
"pem": "Phende",
"peo": "Old Persian (ca. 600-400 B.C.)",
"pep": "Kunja",
"peq": "Southern Pomo",
"pes": "Iranian Persian",
"pev": "Pémono",
"pex": "Petats",
"pey": "Petjo",
"pez": "Eastern Penan",
"pfa": "Pááfang",
"pfe": "Pere",
"pfl": "Pfaelzisch",
"pga": "Sudanese Creole Arabic",
"pgd": "Gāndhārī",
"pgg": "Pangwali",
"pgi": "Pagi",
"pgk": "Rerep",
"pgl": "Primitive Irish",
"pgn": "Paelignian",
"pgs": "Pangseng",
"pgu": "Pagu",
"pgz": "Papua New Guinean Sign Language",
"pha": "Pa-Hng",
"phd": "Phudagi",
"phg": "Phuong",
"phh": "Phukha",
"phi": "Philippine languages",
"phj": "Pahari",
"phk": "Phake",
"phl": "Phalura; Palula",
"phm": "Phimbi",
"phn": "Phoenician",
"pho": "Phunoi",
"phq": "Phana'",
"phr": "Pahari-Potwari",
"pht": "Phu Thai",
"phu": "Phuan",
"phv": "Pahlavani",
"phw": "Phangduwali",
"pi": "Pali",
"pia": "Pima Bajo",
"pib": "Yine",
"pic": "Pinji",
"pid": "Piaroa",
"pie": "Piro",
"pif": "Pingelapese",
"pig": "Pisabo",
"pih": "Pitcairn-Norfolk",
"pij": "Pijao",
"pil": "Yom",
"pim": "Powhatan",
"pin": "Piame",
"pio": "Piapoco",
"pip": "Pero",
"pir": "Piratapuyo",
"pis": "Pijin",
"pit": "Pitta Pitta",
"piu": "Pintupi-Luritja",
"piv": "Pileni; Vaeakau-Taumako",
"piw": "Pimbwe",
"pix": "Piu",
"piy": "Piya-Kwonci",
"piz": "Pije",
"pjt": "Pitjantjatjara",
"pka": "Ardhamāgadhī Prākrit",
"pkb": "Pokomo; Kipfokomo",
"pkc": "Paekche",
"pkg": "Pak-Tong",
"pkh": "Pankhu",
"pkn": "Pakanha",
"pko": "Pökoot",
"pkp": "Pukapuka",
"pkr": "Attapady Kurumba",
"pks": "Pakistan Sign Language",
"pkt": "Maleng",
"pku": "Paku",
"pl": "Polish",
"pla": "Miani",
"plb": "Polonombauk",
"plc": "Central Palawano",
"pld": "Polari",
"ple": "Palu'e",
"plf": "Central Malayo-Polynesian languages",
"plg": "Pilagá",
"plh": "Paulohi",
"plj": "Polci",
"plk": "Kohistani Shina",
"pll": "Shwe Palaung",
"pln": "Palenquero",
"plo": "Oluta Popoluca",
"plq": "Palaic",
"plr": "Palaka Senoufo",
"pls": "San Marcos Tlacoyalco Popoloca; San Marcos Tlalcoyalco Popoloca",
"plt": "Plateau Malagasy",
"plu": "Palikúr",
"plv": "Southwest Palawano",
"plw": "Brooke's Point Palawano",
"ply": "Bolyu",
"plz": "Paluan",
"pma": "Paama",
"pmb": "Pambia",
"pmd": "Pallanganmiddang",
"pme": "Pwaamei",
"pmf": "Pamona",
"pmh": "Māhārāṣṭri Prākrit",
"pmi": "Northern Pumi",
"pmj": "Southern Pumi",
"pmk": "Pamlico",
"pml": "Lingua Franca",
"pmm": "Pomo",
"pmn": "Pam",
"pmo": "Pom",
"pmq": "Northern Pame",
"pmr": "Paynamar",
"pms": "Piemontese",
"pmt": "Tuamotuan",
"pmw": "Plains Miwok",
"pmx": "Poumei Naga",
"pmy": "Papuan Malay",
"pmz": "Southern Pame",
"pna": "Punan Bah-Biau",
"pnb": "Western Panjabi",
"pnc": "Pannei",
"pnd": "Mpinda",
"pne": "Western Penan",
"png": "Pangu; Pongu",
"pnh": "Penrhyn",
"pni": "Aoheng",
"pnj": "Pinjarup",
"pnk": "Paunaka",
"pnl": "Paleni",
"pnm": "Punan Batu 1",
"pnn": "Pinai-Hagahai",
"pno": "Panobo",
"pnp": "Pancana",
"pnq": "Pana (Burkina Faso)",
"pnr": "Panim",
"pns": "Ponosakan",
"pnt": "Pontic",
"pnu": "Jiongnai Bunu",
"pnv": "Pinigura",
"pnw": "Banyjima; Panytyima",
"pnx": "Phong-Kniang",
"pny": "Pinyin",
"pnz": "Pana (Central African Republic)",
"poc": "Poqomam",
"poe": "San Juan Atzingo Popoloca",
"pof": "Poke",
"pog": "Potiguára",
"poh": "Poqomchi'",
"poi": "Highland Popoluca",
"pok": "Pokangá",
"pom": "Southeastern Pomo",
"pon": "Pohnpeian",
"poo": "Central Pomo",
"pop": "Pwapwâ",
"poq": "Texistepec Popoluca",
"pos": "Sayula Popoluca",
"pot": "Potawatomi",
"pov": "Upper Guinea Crioulo",
"pow": "San Felipe Otlaltepec Popoloca",
"pox": "Polabian",
"poy": "Pogolo",
"poz": "Malayo-Polynesian languages",
"ppe": "Papi",
"ppi": "Paipai",
"ppk": "Uma",
"ppl": "Pipil; Nicarao",
"ppm": "Papuma",
"ppn": "Papapana",
"ppo": "Folopa",
"ppp": "Pelende",
"ppq": "Pei",
"pps": "San Luís Temalacayuca Popoloca",
"ppt": "Pare",
"ppu": "Papora",
"pqa": "Pa'a",
"pqe": "Eastern Malayo-Polynesian languages",
"pqm": "Malecite-Passamaquoddy",
"pqw": "Western Malayo-Polynesian languages",
"pra": "Prakrit languages",
"prc": "Parachi",
"prd": "Parsi-Dari",
"pre": "Principense",
"prf": "Paranan",
"prg": "Prussian",
"prh": "Porohanon",
"pri": "Paicî",
"prk": "Parauk",
"prl": "Peruvian Sign Language",
"prm": "Kibiri",
"prn": "Prasuni",
"pro": "Old Provençal (to 1500); Old Occitan (to 1500)",
"prp": "Parsi",
"prq": "Ashéninka Perené",
"prr": "Puri",
"prs": "Dari; Afghan Persian",
"prt": "Phai",
"pru": "Puragi",
"prw": "Parawen",
"prx": "Purik",
"prz": "Providencia Sign Language",
"ps": "Pushto; Pashto",
"psa": "Asue Awyu",
"psc": "Iranian Sign Language; Persian Sign Language",
"psd": "Plains Indian Sign Language",
"pse": "Central Malay",
"psg": "Penang Sign Language",
"psh": "Southwest Pashai; Southwest Pashayi",
"psi": "Southeast Pashai; Southeast Pashayi",
"psl": "Puerto Rican Sign Language",
"psm": "Pauserna",
"psn": "Panasuan",
"pso": "Polish Sign Language",
"psp": "Philippine Sign Language",
"psq": "Pasi",
"psr": "Portuguese Sign Language",
"pss": "Kaulong",
"pst": "Central Pashto",
"psu": "Sauraseni Prākrit",
"psw": "Port Sandwich",
"psy": "Piscataway",
"pt": "Portuguese",
"pta": "Pai Tavytera",
"pth": "Pataxó Hã-Ha-Hãe",
"pti": "Pindiini; Wangkatha",
"ptn": "Patani",
"pto": "Zo'é",
"ptp": "Patep",
"ptq": "Pattapu",
"ptr": "Piamatsina",
"ptt": "Enrekang",
"ptu": "Bambam",
"ptv": "Port Vato",
"ptw": "Pentlatch",
"pty": "Pathiya",
"pua": "Western Highland Purepecha",
"pub": "Purum",
"puc": "Punan Merap",
"pud": "Punan Aput",
"pue": "Puelche",
"puf": "Punan Merah",
"pug": "Phuie",
"pui": "Puinave",
"puj": "Punan Tubu",
"pum": "Puma",
"puo": "Puoc",
"pup": "Pulabu",
"puq": "Puquina",
"pur": "Puruborá",
"put": "Putoh",
"puu": "Punu",
"puw": "Puluwatese",
"pux": "Puare",
"puy": "Purisimeño",
"pwa": "Pawaia",
"pwb": "Panawa",
"pwg": "Gapapaiwa",
"pwi": "Patwin",
"pwm": "Molbog",
"pwn": "Paiwan",
"pwo": "Pwo Western Karen",
"pwr": "Powari",
"pww": "Pwo Northern Karen",
"pxm": "Quetzaltepec Mixe",
"pye": "Pye Krumen",
"pym": "Fyam",
"pyn": "Poyanáwa",
"pys": "Paraguayan Sign Language; Lengua de Señas del Paraguay",
"pyu": "Puyuma",
"pyx": "Pyu (Myanmar)",
"pyy": "Pyen",
"pzh": "Pazeh",
"pzn": "Jejara Naga; Para Naga",
"qu": "Quechua",
"qua": "Quapaw",
"qub": "Huallaga Huánuco Quechua",
"quc": "K'iche'; Quiché",
"qud": "Calderón Highland Quichua",
"quf": "Lambayeque Quechua",
"qug": "Chimborazo Highland Quichua",
"quh": "South Bolivian Quechua",
"qui": "Quileute",
"quk": "Chachapoyas Quechua",
"qul": "North Bolivian Quechua",
"qum": "Sipacapense",
"qun": "Quinault",
"qup": "Southern Pastaza Quechua",
"quq": "Quinqui",
"qur": "Yanahuanca Pasco Quechua",
"qus": "Santiago del Estero Quichua",
"quv": "Sacapulteco",
"quw": "Tena Lowland Quichua",
"qux": "Yauyos Quechua",
"quy": "Ayacucho Quechua",
"quz": "Cusco Quechua",
"qva": "Ambo-Pasco Quechua",
"qvc": "Cajamarca Quechua",
"qve": "Eastern Apurímac Quechua",
"qvh": "Huamalíes-Dos de Mayo Huánuco Quechua",
"qvi": "Imbabura Highland Quichua",
"qvj": "Loja Highland Quichua",
"qvl": "Cajatambo North Lima Quechua",
"qvm": "Margos-Yarowilca-Lauricocha Quechua",
"qvn": "North Junín Quechua",
"qvo": "Napo Lowland Quechua",
"qvp": "Pacaraos Quechua",
"qvs": "San Martín Quechua",
"qvw": "Huaylla Wanca Quechua",
"qvy": "Queyu",
"qvz": "Northern Pastaza Quichua",
"qwa": "Corongo Ancash Quechua",
"qwc": "Classical Quechua",
"qwe": "Quechuan (family)",
"qwh": "Huaylas Ancash Quechua",
"qwm": "Kuman (Russia)",
"qws": "Sihuas Ancash Quechua",
"qwt": "Kwalhioqua-Tlatskanai",
"qxa": "Chiquián Ancash Quechua",
"qxc": "Chincha Quechua",
"qxh": "Panao Huánuco Quechua",
"qxl": "Salasaca Highland Quichua",
"qxn": "Northern Conchucos Ancash Quechua",
"qxo": "Southern Conchucos Ancash Quechua",
"qxp": "Puno Quechua",
"qxq": "Qashqa'i",
"qxr": "Cañar Highland Quichua",
"qxs": "Southern Qiang",
"qxt": "Santa Ana de Tusi Pasco Quechua",
"qxu": "Arequipa-La Unión Quechua",
"qxw": "Jauja Wanca Quechua",
"qya": "Quenya",
"qyp": "Quiripi",
"raa": "Dungmali",
"rab": "Camling",
"rac": "Rasawa",
"rad": "Rade",
"raf": "Western Meohang",
"rag": "Logooli; Lulogooli",
"rah": "Rabha",
"rai": "Ramoaaina",
"raj": "Rajasthani",
"rak": "Tulu-Bohuai",
"ral": "Ralte",
"ram": "Canela",
"ran": "Riantana",
"rao": "Rao",
"rap": "Rapanui",
"raq": "Saam",
"rar": "Rarotongan; Cook Islands Maori",
"ras": "Tegali",
"rat": "Razajerdi",
"rau": "Raute",
"rav": "Sampang",
"raw": "Rawang",
"rax": "Rang",
"ray": "Rapa",
"raz": "Rahambuu",
"rbb": "Rumai Palaung",
"rbk": "Northern Bontok",
"rbl": "Miraya Bikol",
"rbp": "Barababaraba",
"rcf": "Réunion Creole French",
"rdb": "Rudbari",
"rea": "Rerau",
"reb": "Rembong",
"ree": "Rejang Kayan",
"reg": "Kara (Tanzania)",
"rei": "Reli",
"rej": "Rejang",
"rel": "Rendille",
"rem": "Remo",
"ren": "Rengao",
"rer": "Rer Bare",
"res": "Reshe",
"ret": "Retta",
"rey": "Reyesano",
"rga": "Roria",
"rge": "Romano-Greek",
"rgk": "Rangkas",
"rgn": "Romagnol",
"rgr": "Resígaro",
"rgs": "Southern Roglai",
"rgu": "Ringgou",
"rhg": "Rohingya",
"rhp": "Yahang",
"ria": "Riang (India)",
"rib": "Bribri Sign Language",
"rif": "Tarifit",
"ril": "Riang Lang; Riang (Myanmar)",
"rim": "Nyaturu",
"rin": "Nungu",
"rir": "Ribun",
"rit": "Ritharrngu",
"riu": "Riung",
"rjg": "Rajong",
"rji": "Raji",
"rjs": "Rajbanshi",
"rka": "Kraol",
"rkb": "Rikbaktsa",
"rkh": "Rakahanga-Manihiki",
"rki": "Rakhine",
"rkm": "Marka",
"rkt": "Rangpuri; Kamta",
"rkw": "Arakwal",
"rm": "Romansh",
"rma": "Rama",
"rmb": "Rembarrnga",
"rmc": "Carpathian Romani",
"rmd": "Traveller Danish",
"rme": "Angloromani",
"rmf": "Kalo Finnish Romani",
"rmg": "Traveller Norwegian",
"rmh": "Murkim",
"rmi": "Lomavren",
"rmk": "Romkun",
"rml": "Baltic Romani",
"rmm": "Roma",
"rmn": "Balkan Romani",
"rmo": "Sinte Romani",
"rmp": "Rempi",
"rmq": "Caló",
"rms": "Romanian Sign Language",
"rmt": "Domari",
"rmu": "Tavringer Romani",
"rmv": "Romanova",
"rmw": "Welsh Romani",
"rmx": "Romam",
"rmy": "Vlax Romani",
"rmz": "Marma",
"rn": "Rundi",
"rnb": "Brunca Sign Language",
"rnd": "Ruund",
"rng": "Ronga",
"rnl": "Ranglong",
"rnn": "Roon",
"rnp": "Rongpo",
"rnr": "Nari Nari",
"rnw": "Rungwa",
"ro": "Romanian; Moldavian; Moldovan",
"roa": "Romance languages",
"rob": "Tae'",
"roc": "Cacgia Roglai",
"rod": "Rogo",
"roe": "Ronji",
"rof": "Rombo",
"rog": "Northern Roglai",
"rol": "Romblomanon",
"rom": "Romany",
"roo": "Rotokas",
"rop": "Kriol",
"ror": "Rongga",
"rou": "Runga",
"row": "Dela-Oenale",
"rpn": "Repanbitip",
"rpt": "Rapting",
"rri": "Ririo",
"rro": "Waima",
"rrt": "Arritinngithigh",
"rsb": "Romano-Serbian",
"rsk": "Ruthenian; Rusyn",
"rsl": "Russian Sign Language",
"rsm": "Miriwoong Sign Language",
"rsn": "Rwandan Sign Language",
"rtc": "Rungtu Chin",
"rth": "Ratahan",
"rtm": "Rotuman",
"rts": "Yurats",
"rtw": "Rathawi",
"ru": "Russian",
"rub": "Gungu",
"ruc": "Ruuli",
"rue": "Rusyn",
"ruf": "Luguru",
"rug": "Roviana",
"ruh": "Ruga",
"rui": "Rufiji",
"ruk": "Che",
"ruo": "Istro Romanian",
"rup": "Macedo-Romanian; Aromanian; Arumanian",
"ruq": "Megleno Romanian",
"rut": "Rutul",
"ruu": "Lanas Lobu",
"ruy": "Mala (Nigeria)",
"ruz": "Ruma",
"rw": "Kinyarwanda",
"rwa": "Rawo",
"rwk": "Rwa",
"rwl": "Ruwila",
"rwm": "Amba (Uganda)",
"rwo": "Rawa",
"rwr": "Marwari (India)",
"rxd": "Ngardi",
"rxw": "Karuwali; Garuwali",
"ryn": "Northern Amami-Oshima",
"rys": "Yaeyama",
"ryu": "Central Okinawan",
"rzh": "Rāziḥī",
"sa": "Sanskrit",
"saa": "Saba",
"sab": "Buglere",
"sac": "Meskwaki",
"sad": "Sandawe",
"sae": "Sabanê",
"saf": "Safaliba",
"sah": "Yakut",
"sai": "South American Indian languages",
"saj": "Sahu",
"sak": "Sake",
"sal": "Salishan languages",
"sam": "Samaritan Aramaic",
"sao": "Sause",
"saq": "Samburu",
"sar": "Saraveca",
"sas": "Sasak",
"sat": "Santali",
"sau": "Saleman",
"sav": "Saafi-Saafi",
"saw": "Sawi",
"sax": "Sa",
"say": "Saya",
"saz": "Saurashtra",
"sba": "Ngambay",
"sbb": "Simbo",
"sbc": "Kele (Papua New Guinea)",
"sbd": "Southern Samo",
"sbe": "Saliba",
"sbf": "Chabu; Shabo",
"sbg": "Seget",
"sbh": "Sori-Harengan",
"sbi": "Seti",
"sbj": "Surbakhal",
"sbk": "Safwa",
"sbl": "Botolan Sambal",
"sbm": "Sagala",
"sbn": "Sindhi Bhil",
"sbo": "Sabüm",
"sbp": "Sangu (Tanzania)",
"sbq": "Sileibi",
"sbr": "Sembakung Murut",
"sbs": "Subiya",
"sbt": "Kimki",
"sbu": "Stod Bhoti",
"sbv": "Sabine",
"sbw": "Simba",
"sbx": "Seberuang",
"sby": "Soli",
"sbz": "Sara Kaba",
"sc": "Sardinian",
"scb": "Chut",
"sce": "Dongxiang",
"scf": "San Miguel Creole French",
"scg": "Sanggau",
"sch": "Sakachep",
"sci": "Sri Lankan Creole Malay",
"sck": "Sadri",
"scl": "Shina",
"scn": "Sicilian",
"sco": "Scots",
"scp": "Hyolmo; Helambu Sherpa",
"scq": "Sa'och",
"scs": "North Slavey",
"sct": "Southern Katang",
"scu": "Shumcho",
"scv": "Sheni",
"scw": "Sha",
"scx": "Sicel",
"sd": "Sindhi",
"sda": "Toraja-Sa'dan",
"sdb": "Shabak",
"sdc": "Sassarese Sardinian",
"sde": "Surubu",
"sdf": "Sarli",
"sdg": "Savi",
"sdh": "Southern Kurdish",
"sdj": "Suundi",
"sdk": "Sos Kundi",
"sdl": "Saudi Arabian Sign Language",
"sdn": "Gallurese Sardinian",
"sdo": "Bukar-Sadung Bidayuh",
"sdp": "Sherdukpen",
"sdq": "Semandang",
"sdr": "Oraon Sadri",
"sds": "Sened",
"sdt": "Shuadit",
"sdu": "Sarudu",
"sdv": "Eastern Sudanic languages",
"sdx": "Sibu Melanau",
"sdz": "Sallands",
"se": "Northern Sami",
"sea": "Semai",
"seb": "Shempire Senoufo",
"sec": "Sechelt",
"sed": "Sedang",
"see": "Seneca",
"sef": "Cebaara Senoufo",
"seg": "Segeju",
"seh": "Sena",
"sei": "Seri",
"sej": "Sene",
"sek": "Sekani",
"sel": "Selkup",
"sem": "Semitic languages",
"sen": "Nanerigé Sénoufo",
"seo": "Suarmin",
"sep": "Sìcìté Sénoufo",
"seq": "Senara Sénoufo",
"ser": "Serrano",
"ses": "Koyraboro Senni Songhai",
"set": "Sentani",
"seu": "Serui-Laut",
"sev": "Nyarafolo Senoufo",
"sew": "Sewa Bay",
"sey": "Secoya",
"sez": "Senthang Chin",
"sfb": "Langue des signes de Belgique Francophone; French Belgian Sign Language",
"sfe": "Eastern Subanen",
"sfm": "Small Flowery Miao",
"sfs": "South African Sign Language",
"sfw": "Sehwi",
"sg": "Sango",
"sga": "Old Irish (to 900)",
"sgb": "Mag-antsi Ayta",
"sgc": "Kipsigis",
"sgd": "Surigaonon",
"sge": "Segai",
"sgg": "Swiss-German Sign Language",
"sgh": "Shughni",
"sgi": "Suga",
"sgj": "Surgujia",
"sgk": "Sangkong",
"sgm": "Singa",
"sgn": "Sign languages",
"sgp": "Singpho",
"sgr": "Sangisari",
"sgs": "Samogitian",
"sgt": "Brokpake",
"sgu": "Salas",
"sgw": "Sebat Bet Gurage",
"sgx": "Sierra Leone Sign Language",
"sgy": "Sanglechi",
"sgz": "Sursurunga",
"sh": "Serbo-Croatian",
"sha": "Shall-Zwall",
"shb": "Ninam",
"shc": "Sonde",
"shd": "Kundal Shahi",
"she": "Sheko",
"shg": "Shua",
"shh": "Shoshoni",
"shi": "Tachelhit",
"shj": "Shatt",
"shk": "Shilluk",
"shl": "Shendu",
"shm": "Shahrudi",
"shn": "Shan",
"sho": "Shanga",
"shp": "Shipibo-Conibo",
"shq": "Sala",
"shr": "Shi",
"shs": "Shuswap",
"sht": "Shasta",
"shu": "Chadian Arabic",
"shv": "Shehri",
"shw": "Shwai",
"shx": "She",
"shy": "Tachawit",
"shz": "Syenara Senoufo",
"si": "Sinhala; Sinhalese",
"sia": "Akkala Sami",
"sib": "Sebop",
"sid": "Sidamo",
"sie": "Simaa",
"sif": "Siamou",
"sig": "Paasaal",
"sih": "Zire; Sîshëë",
"sii": "Shom Peng",
"sij": "Numbami",
"sik": "Sikiana",
"sil": "Tumulung Sisaala",
"sim": "Mende (Papua New Guinea)",
"sio": "Siouan languages",
"sip": "Sikkimese",
"siq": "Sonia",
"sir": "Siri",
"sis": "Siuslaw",
"sit": "Sino-Tibetan languages",
"siu": "Sinagen",
"siv": "Sumariup",
"siw": "Siwai",
"six": "Sumau",
"siy": "Sivandi",
"siz": "Siwi",
"sja": "Epena",
"sjb": "Sajau Basap",
"sjd": "Kildin Sami",
"sje": "Pite Sami",
"sjg": "Assangori",
"sjk": "Kemi Sami",
"sjl": "Sajalong; Miji",
"sjm": "Mapun",
"sjn": "Sindarin",
"sjo": "Xibe",
"sjp": "Surjapuri",
"sjr": "Siar-Lak",
"sjs": "Senhaja De Srair",
"sjt": "Ter Sami",
"sju": "Ume Sami",
"sjw": "Shawnee",
"sk": "Slovak",
"ska": "Skagit",
"skb": "Saek",
"skc": "Ma Manda",
"skd": "Southern Sierra Miwok",
"ske": "Seke (Vanuatu)",
"skf": "Sakirabiá",
"skg": "Sakalava Malagasy",
"skh": "Sikule",
"ski": "Sika",
"skj": "Seke (Nepal)",
"skm": "Kutong",
"skn": "Kolibugan Subanon",
"sko": "Seko Tengah",
"skp": "Sekapan",
"skq": "Sininkere",
"skr": "Saraiki; Seraiki",
"sks": "Maia",
"skt": "Sakata",
"sku": "Sakao",
"skv": "Skou",
"skw": "Skepi Creole Dutch",
"skx": "Seko Padang",
"sky": "Sikaiana",
"skz": "Sekar",
"sl": "Slovenian",
"sla": "Slavic languages",
"slc": "Sáliba",
"sld": "Sissala",
"sle": "Sholaga",
"slf": "Swiss-Italian Sign Language",
"slg": "Selungai Murut",
"slh": "Southern Puget Sound Salish",
"sli": "Lower Silesian",
"slj": "Salumá",
"sll": "Salt-Yui",
"slm": "Pangutaran Sama",
"sln": "Salinan",
"slp": "Lamaholot",
"slq": "Salchuq",
"slr": "Salar",
"sls": "Singapore Sign Language",
"slt": "Sila",
"slu": "Selaru",
"slw": "Sialum",
"slx": "Salampasu",
"sly": "Selayar",
"slz": "Ma'ya",
"sm": "Samoan",
"sma": "Southern Sami",
"smb": "Simbari",
"smc": "Som",
"smf": "Auwe",
"smg": "Simbali",
"smh": "Samei",
"smi": "Sami languages",
"smj": "Lule Sami",
"smk": "Bolinao",
"sml": "Central Sama",
"smm": "Musasa",
"smn": "Inari Sami",
"smp": "Samaritan",
"smq": "Samo",
"smr": "Simeulue",
"sms": "Skolt Sami",
"smt": "Simte",
"smu": "Somray",
"smv": "Samvedi",
"smw": "Sumbawa",
"smx": "Samba",
"smy": "Semnani",
"smz": "Simeku",
"sn": "Shona",
"snc": "Sinaugoro",
"sne": "Bau Bidayuh",
"snf": "Noon",
"sng": "Sanga (Democratic Republic of Congo)",
"sni": "Sensi",
"snj": "Riverain Sango",
"snk": "Soninke",
"snl": "Sangil",
"snm": "Southern Ma'di",
"snn": "Siona",
"sno": "Snohomish",
"snp": "Siane",
"snq": "Sangu (Gabon)",
"snr": "Sihan",
"sns": "South West Bay; Nahavaq",
"snu": "Senggi; Viid",
"snv": "Sa'ban",
"snw": "Selee",
"snx": "Sam",
"sny": "Saniyo-Hiyewe",
"snz": "Kou",
"so": "Somali",
"soa": "Thai Song",
"sob": "Sobei",
"soc": "So (Democratic Republic of Congo)",
"sod": "Songoora",
"soe": "Songomeno",
"sog": "Sogdian",
"soh": "Aka",
"soi": "Sonha",
"soj": "Soi",
"sok": "Sokoro",
"sol": "Solos",
"son": "Songhai languages",
"soo": "Songo",
"sop": "Songe",
"soq": "Kanasi",
"sor": "Somrai",
"sos": "Seeku",
"sou": "Southern Thai",
"sov": "Sonsorol",
"sow": "Sowanda",
"sox": "Swo",
"soy": "Miyobe",
"soz": "Temi",
"spb": "Sepa (Indonesia)",
"spc": "Sapé",
"spd": "Saep",
"spe": "Sepa (Papua New Guinea)",
"spg": "Sian",
"spi": "Saponi",
"spk": "Sengo",
"spl": "Selepet",
"spm": "Akukem",
"spn": "Sanapaná",
"spo": "Spokane",
"spp": "Supyire Senoufo",
"spq": "Loreto-Ucayali Spanish",
"spr": "Saparua",
"sps": "Saposa",
"spt": "Spiti Bhoti",
"spu": "Sapuan",
"spv": "Sambalpuri; Kosli",
"spx": "South Picene",
"spy": "Sabaot",
"sq": "Albanian",
"sqa": "Shama-Sambuga",
"sqh": "Shau",
"sqj": "Albanian languages",
"sqk": "Albanian Sign Language",
"sqm": "Suma",
"sqn": "Susquehannock",
"sqo": "Sorkhei",
"sqq": "Sou",
"sqr": "Siculo Arabic",
"sqs": "Sri Lankan Sign Language",
"sqt": "Soqotri",
"squ": "Squamish",
"sqx": "Kufr Qassem Sign Language (KQSL)",
"sr": "Serbian",
"sra": "Saruga",
"srb": "Sora",
"src": "Logudorese Sardinian",
"sre": "Sara",
"srf": "Nafi",
"srg": "Sulod",
"srh": "Sarikoli",
"sri": "Siriano",
"srk": "Serudung Murut",
"srl": "Isirawa",
"srm": "Saramaccan",
"srn": "Sranan Tongo",
"sro": "Campidanese Sardinian",
"srq": "Sirionó",
"srr": "Serer",
"srs": "Sarsi",
"srt": "Sauri",
"sru": "Suruí",
"srv": "Southern Sorsoganon",
"srw": "Serua",
"srx": "Sirmauri",
"sry": "Sera",
"srz": "Shahmirzadi",
"ss": "Swati",
"ssa": "Nilo-Saharan languages",
"ssb": "Southern Sama",
"ssc": "Suba-Simbiti",
"ssd": "Siroi",
"sse": "Balangingi; Bangingih Sama",
"ssf": "Thao",
"ssg": "Seimat",
"ssh": "Shihhi Arabic",
"ssi": "Sansi",
"ssj": "Sausi",
"ssk": "Sunam",
"ssl": "Western Sisaala",
"ssm": "Semnam",
"ssn": "Waata",
"sso": "Sissano",
"ssp": "Spanish Sign Language",
"ssq": "So'a",
"ssr": "Swiss-French Sign Language",
"sss": "Sô",
"sst": "Sinasina",
"ssu": "Susuami",
"ssv": "Shark Bay",
"ssx": "Samberigi",
"ssy": "Saho",
"ssz": "Sengseng",
"st": "Southern Sotho",
"sta": "Settla",
"stb": "Northern Subanen",
"std": "Sentinel",
"ste": "Liana-Seti",
"stf": "Seta",
"stg": "Trieng",
"sth": "Shelta",
"sti": "Bulo Stieng",
"stj": "Matya Samo",
"stk": "Arammba",
"stl": "Stellingwerfs",
"stm": "Setaman",
"stn": "Owa",
"sto": "Stoney",
"stp": "Southeastern Tepehuan",
"stq": "Saterfriesisch",
"str": "Straits Salish",
"sts": "Shumashti",
"stt": "Budeh Stieng",
"stu": "Samtao",
"stv": "Silt'e",
"stw": "Satawalese",
"sty": "Siberian Tatar",
"su": "Sundanese",
"sua": "Sulka",
"sub": "Suku",
"suc": "Western Subanon",
"sue": "Suena",
"sug": "Suganga",
"sui": "Suki",
"suj": "Shubi",
"suk": "Sukuma",
"suo": "Bouni",
"suq": "Tirmaga-Chai Suri; Suri",
"sur": "Mwaghavul",
"sus": "Susu",
"sut": "Subtiaba",
"suv": "Puroik",
"suw": "Sumbwa",
"sux": "Sumerian",
"suy": "Suyá",
"suz": "Sunwar",
"sv": "Swedish",
"sva": "Svan",
"svb": "Ulau-Suain",
"svc": "Vincentian Creole English",
"sve": "Serili",
"svk": "Slovakian Sign Language",
"svm": "Slavomolisano",
"svs": "Savosavo",
"svx": "Skalvian",
"sw": "Swahili (macrolanguage)",
"swb": "Maore Comorian",
"swc": "Congo Swahili",
"swf": "Sere",
"swg": "Swabian",
"swh": "Swahili (individual language); Kiswahili",
"swi": "Sui",
"swj": "Sira",
"swk": "Malawi Sena",
"swl": "Swedish Sign Language",
"swm": "Samosa",
"swn": "Sawknah",
"swo": "Shanenawa",
"swp": "Suau",
"swq": "Sharwa",
"swr": "Saweru",
"sws": "Seluwasan",
"swt": "Sawila",
"swu": "Suwawa",
"swv": "Shekhawati",
"sww": "Sowa",
"swx": "Suruahá",
"swy": "Sarua",
"sxb": "Suba",
"sxc": "Sicanian",
"sxe": "Sighu",
"sxg": "Shuhi; Shixing",
"sxk": "Southern Kalapuya",
"sxl": "Selian",
"sxm": "Samre",
"sxn": "Sangir",
"sxo": "Sorothaptic",
"sxr": "Saaroa",
"sxs": "Sasaru",
"sxu": "Upper Saxon",
"sxw": "Saxwe Gbe",
"sya": "Siang",
"syb": "Central Subanen",
"syc": "Classical Syriac",
"syd": "Samoyedic languages",
"syi": "Seki",
"syk": "Sukur",
"syl": "Sylheti",
"sym": "Maya Samo",
"syn": "Senaya",
"syo": "Suoy",
"syr": "Syriac",
"sys": "Sinyar",
"syw": "Kagate",
"syx": "Samay",
"syy": "Al-Sayyid Bedouin Sign Language",
"sza": "Semelai",
"szb": "Ngalum",
"szc": "Semaq Beri",
"szd": "Seru",
"sze": "Seze",
"szg": "Sengele",
"szl": "Silesian",
"szn": "Sula",
"szp": "Suabo",
"szs": "Solomon Islands Sign Language",
"szv": "Isu (Fako Division)",
"szw": "Sawai",
"szy": "Sakizaya",
"ta": "Tamil",
"taa": "Lower Tanana",
"tab": "Tabassaran",
"tac": "Lowland Tarahumara",
"tad": "Tause",
"tae": "Tariana",
"taf": "Tapirapé",
"tag": "Tagoi",
"tai": "Tai languages",
"taj": "Eastern Tamang",
"tak": "Tala",
"tal": "Tal",
"tan": "Tangale",
"tao": "Yami",
"tap": "Taabwa",
"taq": "Tamasheq",
"tar": "Central Tarahumara",
"tas": "Tay Boi",
"tau": "Upper Tanana",
"tav": "Tatuyo",
"taw": "Tai",
"tax": "Tamki",
"tay": "Atayal",
"taz": "Tocho",
"tba": "Aikanã",
"tbc": "Takia",
"tbd": "Kaki Ae",
"tbe": "Tanimbili",
"tbf": "Mandara",
"tbg": "North Tairora",
"tbh": "Dharawal; Thurawal",
"tbi": "Gaam",
"tbj": "Tiang",
"tbk": "Calamian Tagbanwa",
"tbl": "Tboli",
"tbm": "Tagbu",
"tbn": "Barro Negro Tunebo",
"tbo": "Tawala",
"tbp": "Taworta; Diebroud",
"tbq": "Tibeto-Burman languages",
"tbr": "Tumtum",
"tbs": "Tanguat",
"tbt": "Tembo (Kitembo)",
"tbu": "Tubar",
"tbv": "Tobo",
"tbw": "Tagbanwa",
"tbx": "Kapin",
"tby": "Tabaru",
"tbz": "Ditammari",
"tca": "Ticuna",
"tcb": "Tanacross",
"tcc": "Datooga",
"tcd": "Tafi",
"tce": "Southern Tutchone",
"tcf": "Malinaltepec Me'phaa; Malinaltepec Tlapanec",
"tcg": "Tamagario",
"tch": "Turks And Caicos Creole English",
"tci": "Wára",
"tck": "Tchitchege",
"tcl": "Taman (Myanmar)",
"tcm": "Tanahmerah",
"tcn": "Tichurong",
"tco": "Taungyo",
"tcp": "Tawr Chin",
"tcq": "Kaiy",
"tcs": "Torres Strait Creole; Yumplatok",
"tct": "T'en",
"tcu": "Southeastern Tarahumara",
"tcw": "Tecpatlán Totonac",
"tcx": "Toda",
"tcy": "Tulu",
"tcz": "Thado Chin",
"tda": "Tagdal",
"tdb": "Panchpargania",
"tdc": "Emberá-Tadó",
"tdd": "Tai Nüa",
"tde": "Tiranige Diga Dogon",
"tdf": "Talieng",
"tdg": "Western Tamang",
"tdh": "Thulung",
"tdi": "Tomadino",
"tdj": "Tajio",
"tdk": "Tambas",
"tdl": "Sur",
"tdm": "Taruma",
"tdn": "Tondano",
"tdo": "Teme",
"tdq": "Tita",
"tdr": "Todrah",
"tds": "Doutai",
"tdt": "Tetun Dili",
"tdv": "Toro",
"tdx": "Tandroy-Mahafaly Malagasy",
"tdy": "Tadyawan",
"te": "Telugu",
"tea": "Temiar",
"teb": "Tetete",
"tec": "Terik",
"ted": "Tepo Krumen",
"tee": "Huehuetla Tepehua",
"tef": "Teressa",
"teg": "Teke-Tege",
"teh": "Tehuelche",
"tei": "Torricelli",
"tek": "Ibali Teke",
"tem": "Timne",
"ten": "Tama (Colombia)",
"teo": "Teso",
"tep": "Tepecano",
"teq": "Temein",
"ter": "Tereno",
"tes": "Tengger",
"tet": "Tetum",
"teu": "Soo",
"tev": "Teor",
"tew": "Tewa (USA)",
"tex": "Tennet",
"tey": "Tulishi",
"tez": "Tetserret",
"tfi": "Tofin Gbe",
"tfn": "Tanaina",
"tfo": "Tefaro",
"tfr": "Teribe",
"tft": "Ternate",
"tg": "Tajik",
"tga": "Sagalla",
"tgb": "Tobilung",
"tgc": "Tigak",
"tgd": "Ciwogai",
"tge": "Eastern Gorkha Tamang",
"tgf": "Chalikha",
"tgh": "Tobagonian Creole English",
"tgi": "Lawunuia",
"tgj": "Tagin",
"tgn": "Tandaganon",
"tgo": "Sudest",
"tgp": "Tangoa",
"tgq": "Tring",
"tgr": "Tareng",
"tgs": "Nume",
"tgt": "Central Tagbanwa",
"tgu": "Tanggu",
"tgv": "Tingui-Boto",
"tgw": "Tagwana Senoufo",
"tgx": "Tagish",
"tgy": "Togoyo",
"tgz": "Tagalaka",
"th": "Thai",
"thd": "Kuuk Thaayorre; Thayore",
"the": "Chitwania Tharu",
"thf": "Thangmi",
"thh": "Northern Tarahumara",
"thi": "Tai Long",
"thk": "Tharaka; Kitharaka",
"thl": "Dangaura Tharu",
"thm": "Aheu",
"thn": "Thachanadan",
"thp": "Thompson",
"thq": "Kochila Tharu",
"thr": "Rana Tharu",
"ths": "Thakali",
"tht": "Tahltan",
"thu": "Thuri",
"thv": "Tahaggart Tamahaq",
"thy": "Tha",
"thz": "Tayart Tamajeq",
"ti": "Tigrinya",
"tia": "Tidikelt Tamazight",
"tic": "Tira",
"tif": "Tifal",
"tig": "Tigre",
"tih": "Timugon Murut",
"tii": "Tiene",
"tij": "Tilung",
"tik": "Tikar",
"til": "Tillamook",
"tim": "Timbe",
"tin": "Tindi",
"tio": "Teop",
"tip": "Trimuris",
"tiq": "Tiéfo",
"tis": "Masadiit Itneg",
"tit": "Tinigua",
"tiu": "Adasen",
"tiv": "Tiv",
"tiw": "Tiwi",
"tix": "Southern Tiwa",
"tiy": "Tiruray",
"tiz": "Tai Hongjin",
"tja": "Tajuasohn",
"tjg": "Tunjung",
"tji": "Northern Tujia",
"tjj": "Tjungundji",
"tjl": "Tai Laing",
"tjm": "Timucua",
"tjn": "Tonjon",
"tjo": "Temacine Tamazight",
"tjp": "Tjupany",
"tjs": "Southern Tujia",
"tju": "Tjurruru",
"tjw": "Djabwurrung",
"tk": "Turkmen",
"tka": "Truká",
"tkb": "Buksa",
"tkd": "Tukudede",
"tke": "Takwane",
"tkf": "Tukumanféd",
"tkg": "Tesaka Malagasy",
"tkl": "Tokelau",
"tkm": "Takelma",
"tkn": "Toku-No-Shima",
"tkp": "Tikopia",
"tkq": "Tee",
"tkr": "Tsakhur",
"tks": "Takestani",
"tkt": "Kathoriya Tharu",
"tku": "Upper Necaxa Totonac",
"tkv": "Mur Pano",
"tkw": "Teanu",
"tkx": "Tangko",
"tkz": "Takua",
"tl": "Tagalog",
"tla": "Southwestern Tepehuan",
"tlb": "Tobelo",
"tlc": "Yecuatla Totonac",
"tld": "Talaud",
"tlf": "Telefol",
"tlg": "Tofanma",
"tlh": "Klingon; tlhIngan Hol",
"tli": "Tlingit",
"tlj": "Talinga-Bwisi",
"tlk": "Taloki",
"tll": "Tetela",
"tlm": "Tolomako",
"tln": "Talondo'",
"tlo": "Talodi",
"tlp": "Filomena Mata-Coahuitlán Totonac",
"tlq": "Tai Loi",
"tlr": "Talise",
"tls": "Tambotalo",
"tlt": "Sou Nama; Teluti",
"tlu": "Tulehu",
"tlv": "Taliabu",
"tlx": "Khehek",
"tly": "Talysh",
"tma": "Tama (Chad)",
"tmb": "Katbol; Avava",
"tmc": "Tumak",
"tmd": "Haruai",
"tme": "Tremembé",
"tmf": "Toba-Maskoy",
"tmg": "Ternateño",
"tmh": "Tamashek",
"tmi": "Tutuba",
"tmj": "Samarokena",
"tmk": "Northwestern Tamang",
"tml": "Tamnim Citak",
"tmm": "Tai Thanh",
"tmn": "Taman (Indonesia)",
"tmo": "Temoq",
"tmq": "Tumleo",
"tmr": "Jewish Babylonian Aramaic (ca. 200-1200 CE)",
"tms": "Tima",
"tmt": "Tasmate",
"tmu": "Iau",
"tmv": "Tembo (Motembo)",
"tmw": "Temuan",
"tmy": "Tami",
"tmz": "Tamanaku",
"tn": "Tswana",
"tna": "Tacana",
"tnb": "Western Tunebo",
"tnc": "Tanimuca-Retuarã",
"tnd": "Angosturas Tunebo",
"tng": "Tobanga",
"tnh": "Maiani",
"tni": "Tandia",
"tnk": "Kwamera",
"tnl": "Lenakel",
"tnm": "Tabla",
"tnn": "North Tanna",
"tno": "Toromono",
"tnp": "Whitesands",
"tnq": "Taino",
"tnr": "Ménik",
"tns": "Tenis",
"tnt": "Tontemboan",
"tnu": "Tay Khang",
"tnv": "Tangchangya",
"tnw": "Tonsawang",
"tnx": "Tanema",
"tny": "Tongwe",
"tnz": "Ten'edn",
"to": "Tonga (Tonga Islands)",
"tob": "Toba",
"toc": "Coyutla Totonac",
"tod": "Toma",
"tof": "Gizrra",
"tog": "Tonga (Nyasa)",
"toh": "Gitonga",
"toi": "Tonga (Zambia)",
"toj": "Tojolabal",
"tok": "Toki Pona",
"tol": "Tolowa",
"tom": "Tombulu",
"too": "Xicotepec De Juárez Totonac",
"top": "Papantla Totonac",
"toq": "Toposa",
"tor": "Togbo-Vara Banda",
"tos": "Highland Totonac",
"tou": "Tho",
"tov": "Upper Taromi",
"tow": "Jemez",
"tox": "Tobian",
"toy": "Topoiyo",
"toz": "To",
"tpa": "Taupota",
"tpc": "Azoyú Me'phaa; Azoyú Tlapanec",
"tpe": "Tippera",
"tpf": "Tarpia",
"tpg": "Kula",
"tpi": "Tok Pisin",
"tpj": "Tapieté",
"tpk": "Tupinikin",
"tpl": "Tlacoapa Me'phaa; Tlacoapa Tlapanec",
"tpm": "Tampulma",
"tpn": "Tupinambá",
"tpo": "Tai Pao",
"tpp": "Pisaflores Tepehua",
"tpq": "Tukpa",
"tpr": "Tuparí",
"tpt": "Tlachichilco Tepehua",
"tpu": "Tampuan",
"tpv": "Tanapag",
"tpw": "Tupí",
"tpx": "Acatepec Me'phaa; Acatepec Tlapanec",
"tpy": "Trumai",
"tpz": "Tinputz",
"tqb": "Tembé",
"tql": "Lehali",
"tqm": "Turumsa",
"tqn": "Tenino",
"tqo": "Toaripi",
"tqp": "Tomoip",
"tqq": "Tunni",
"tqr": "Torona",
"tqt": "Western Totonac",
"tqu": "Touo",
"tqw": "Tonkawa",
"tr": "Turkish",
"tra": "Tirahi",
"trb": "Terebu",
"trc": "Copala Triqui",
"trd": "Turi",
"tre": "East Tarangan",
"trf": "Trinidadian Creole English",
"trg": "Lishán Didán",
"trh": "Turaka",
"tri": "Trió",
"trj": "Toram",
"trk": "Turkic languages",
"trl": "Traveller Scottish",
"trm": "Tregami",
"trn": "Trinitario",
"tro": "Tarao Naga",
"trp": "Kok Borok",
"trq": "San Martín Itunyoso Triqui",
"trr": "Taushiro",
"trs": "Chicahuaxtla Triqui",
"trt": "Tunggare",
"tru": "Turoyo; Surayt",
"trv": "Sediq; Seediq; Taroko",
"trw": "Torwali",
"trx": "Tringgus-Sembaan Bidayuh",
"try": "Turung",
"trz": "Torá",
"ts": "Tsonga",
"tsa": "Tsaangi",
"tsb": "Tsamai",
"tsc": "Tswa",
"tsd": "Tsakonian",
"tse": "Tunisian Sign Language",
"tsg": "Tausug",
"tsh": "Tsuvan",
"tsi": "Tsimshian",
"tsj": "Tshangla",
"tsk": "Tseku",
"tsl": "Ts'ün-Lao",
"tsm": "Turkish Sign Language; Türk İşaret Dili",
"tsp": "Northern Toussian",
"tsq": "Thai Sign Language",
"tsr": "Akei",
"tss": "Taiwan Sign Language",
"tst": "Tondi Songway Kiini",
"tsu": "Tsou",
"tsv": "Tsogo",
"tsw": "Tsishingini",
"tsx": "Mubami",
"tsy": "Tebul Sign Language",
"tsz": "Purepecha",
"tt": "Tatar",
"tta": "Tutelo",
"ttb": "Gaa",
"ttc": "Tektiteko",
"ttd": "Tauade",
"tte": "Bwanabwana",
"ttf": "Tuotomb",
"ttg": "Tutong",
"tth": "Upper Ta'oih",
"tti": "Tobati",
"ttj": "Tooro",
"ttk": "Totoro",
"ttl": "Totela",
"ttm": "Northern Tutchone",
"ttn": "Towei",
"tto": "Lower Ta'oih",
"ttp": "Tombelala",
"ttq": "Tawallammat Tamajaq",
"ttr": "Tera",
"tts": "Northeastern Thai",
"ttt": "Muslim Tat",
"ttu": "Torau",
"ttv": "Titan",
"ttw": "Long Wat",
"tty": "Sikaritai",
"ttz": "Tsum",
"tua": "Wiarumus",
"tub": "Tübatulabal",
"tuc": "Mutu",
"tud": "Tuxá",
"tue": "Tuyuca",
"tuf": "Central Tunebo",
"tug": "Tunia",
"tuh": "Taulil",
"tui": "Tupuri",
"tuj": "Tugutil",
"tul": "Tula",
"tum": "Tumbuka",
"tun": "Tunica",
"tuo": "Tucano",
"tup": "Tupi languages",
"tuq": "Tedaga",
"tus": "Tuscarora",
"tut": "Altaic languages",
"tuu": "Tututni",
"tuv": "Turkana",
"tuw": "Tungus languages",
"tux": "Tuxináwa",
"tuy": "Tugen",
"tuz": "Turka",
"tva": "Vaghua",
"tvd": "Tsuvadi",
"tve": "Te'un",
"tvk": "Southeast Ambrym",
"tvl": "Tuvalu",
"tvm": "Tela-Masbuar",
"tvn": "Tavoyan",
"tvo": "Tidore",
"tvs": "Taveta",
"tvt": "Tutsa Naga",
"tvu": "Tunen",
"tvw": "Sedoa",
"tvx": "Taivoan",
"tvy": "Timor Pidgin",
"tw": "Twi",
"twa": "Twana",
"twb": "Western Tawbuid",
"twc": "Teshenawa",
"twd": "Twents",
"twe": "Tewa (Indonesia)",
"twf": "Northern Tiwa",
"twg": "Tereweng",
"twh": "Tai Dón",
"twl": "Tawara",
"twm": "Tawang Monpa",
"twn": "Twendi",
"two": "Tswapong",
"twp": "Ere",
"twq": "Tasawaq",
"twr": "Southwestern Tarahumara",
"twt": "Turiwára",
"twu": "Termanu",
"tww": "Tuwari",
"twx": "Tewe",
"twy": "Tawoyan",
"txa": "Tombonuo",
"txb": "Tokharian B",
"txc": "Tsetsaut",
"txe": "Totoli",
"txg": "Tangut",
"txh": "Thracian",
"txi": "Ikpeng",
"txj": "Tarjumo",
"txm": "Tomini",
"txn": "West Tarangan",
"txo": "Toto",
"txq": "Tii",
"txr": "Tartessian",
"txs": "Tonsea",
"txt": "Citak",
"txu": "Kayapó",
"txx": "Tatana",
"txy": "Tanosy Malagasy",
"ty": "Tahitian",
"tya": "Tauya",
"tye": "Kyanga",
"tyh": "O'du",
"tyi": "Teke-Tsaayi",
"tyj": "Tai Do; Tai Yo",
"tyl": "Thu Lao",
"tyn": "Kombai",
"typ": "Thaypan",
"tyr": "Tai Daeng",
"tys": "Tày Sa Pa",
"tyt": "Tày Tac",
"tyu": "Kua",
"tyv": "Tuvinian",
"tyx": "Teke-Tyee",
"tyy": "Tiyaa",
"tyz": "Tày",
"tza": "Tanzanian Sign Language",
"tzh": "Tzeltal",
"tzj": "Tz'utujil",
"tzl": "Talossan",
"tzm": "Central Atlas Tamazight",
"tzn": "Tugun",
"tzo": "Tzotzil",
"tzx": "Tabriak",
"uam": "Uamué",
"uan": "Kuan",
"uar": "Tairuma",
"uba": "Ubang",
"ubi": "Ubi",
"ubl": "Buhi'non Bikol",
"ubr": "Ubir",
"ubu": "Umbu-Ungu",
"uby": "Ubykh",
"uda": "Uda",
"ude": "Udihe",
"udg": "Muduga",
"udi": "Udi",
"udj": "Ujir",
"udl": "Wuzlam",
"udm": "Udmurt",
"udu": "Uduk",
"ues": "Kioko",
"ufi": "Ufim",
"ug": "Uighur; Uyghur",
"uga": "Ugaritic",
"ugb": "Kuku-Ugbanh",
"uge": "Ughele",
"ugh": "Kubachi",
"ugn": "Ugandan Sign Language",
"ugo": "Ugong",
"ugy": "Uruguayan Sign Language",
"uha": "Uhami",
"uhn": "Damal",
"uis": "Uisai",
"uiv": "Iyive",
"uji": "Tanjijili",
"uk": "Ukrainian",
"uka": "Kaburi",
"ukg": "Ukuriguma",
"ukh": "Ukhwejo",
"uki": "Kui (India)",
"ukk": "Muak Sa-aak",
"ukl": "Ukrainian Sign Language",
"ukp": "Ukpe-Bayobiri",
"ukq": "Ukwa",
"uks": "Urubú-Kaapor Sign Language; Kaapor Sign Language",
"uku": "Ukue",
"ukv": "Kuku",
"ukw": "Ukwuani-Aboh-Ndoni",
"uky": "Kuuk-Yak",
"ula": "Fungwa",
"ulb": "Ulukwumi",
"ulc": "Ulch",
"ule": "Lule",
"ulf": "Usku; Afra",
"uli": "Ulithian",
"ulk": "Meriam Mir",
"ull": "Ullatan",
"ulm": "Ulumanda'",
"uln": "Unserdeutsch",
"ulu": "Uma' Lung",
"ulw": "Ulwa",
"uma": "Umatilla",
"umb": "Umbundu",
"umc": "Marrucinian",
"umd": "Umbindhamu",
"umg": "Morrobalama; Umbuygamu",
"umi": "Ukit",
"umm": "Umon",
"umn": "Makyan Naga",
"umo": "Umotína",
"ump": "Umpila",
"umr": "Umbugarla",
"ums": "Pendau",
"umu": "Munsee",
"una": "North Watut",
"und": "Undetermined",
"une": "Uneme",
"ung": "Ngarinyin",
"uni": "Uni",
"unk": "Enawené-Nawé",
"unm": "Unami",
"unn": "Kurnai",
"unr": "Mundari",
"unu": "Unubahe",
"unx": "Munda",
"unz": "Unde Kaili",
"uon": "Kulon",
"upi": "Umeda",
"upv": "Uripiv-Wala-Rano-Atchin",
"ur": "Urdu",
"ura": "Urarina",
"urb": "Urubú-Kaapor; Kaapor",
"urc": "Urningangg",
"ure": "Uru",
"urf": "Uradhi",
"urg": "Urigina",
"urh": "Urhobo",
"uri": "Urim",
"urj": "Uralic languages",
"urk": "Urak Lawoi'",
"url": "Urali",
"urm": "Urapmin",
"urn": "Uruangnirin",
"uro": "Ura (Papua New Guinea)",
"urp": "Uru-Pa-In",
"urr": "Lehalurup; Löyöp",
"urt": "Urat",
"uru": "Urumi",
"urv": "Uruava",
"urw": "Sop",
"urx": "Urimo",
"ury": "Orya",
"urz": "Uru-Eu-Wau-Wau",
"usa": "Usarufa",
"ush": "Ushojo",
"usi": "Usui",
"usk": "Usaghade",
"usp": "Uspanteco",
"uss": "us-Saare",
"usu": "Uya",
"uta": "Otank",
"ute": "Ute-Southern Paiute",
"uth": "ut-Hun",
"utp": "Amba (Solomon Islands)",
"utr": "Etulo",
"utu": "Utu",
"uum": "Urum",
"uur": "Ura (Vanuatu)",
"uuu": "U",
"uve": "West Uvean; Fagauvea",
"uvh": "Uri",
"uvl": "Lote",
"uwa": "Kuku-Uwanh",
"uya": "Doko-Uyanga",
"uz": "Uzbek",
"uzn": "Northern Uzbek",
"uzs": "Southern Uzbek",
"vaa": "Vaagri Booli",
"vae": "Vale",
"vaf": "Vafsi",
"vag": "Vagla",
"vah": "Varhadi-Nagpuri",
"vai": "Vai",
"vaj": "Sekele; Northwestern ǃKung; Vasekele",
"val": "Vehes",
"vam": "Vanimo",
"van": "Valman",
"vao": "Vao",
"vap": "Vaiphei",
"var": "Huarijio",
"vas": "Vasavi",
"vau": "Vanuma",
"vav": "Varli",
"vay": "Wayu",
"vbb": "Southeast Babar",
"vbk": "Southwestern Bontok",
"ve": "Venda",
"vec": "Venetian",
"ved": "Veddah",
"vel": "Veluws",
"vem": "Vemgo-Mabas",
"veo": "Ventureño",
"vep": "Veps",
"ver": "Mom Jango",
"vgr": "Vaghri",
"vgt": "Vlaamse Gebarentaal; Flemish Sign Language",
"vi": "Vietnamese",
"vic": "Virgin Islands Creole English",
"vid": "Vidunda",
"vif": "Vili",
"vig": "Viemo",
"vil": "Vilela",
"vin": "Vinza",
"vis": "Vishavan",
"vit": "Viti",
"viv": "Iduna",
"vka": "Kariyarra",
"vkj": "Kujarge",
"vkk": "Kaur",
"vkl": "Kulisusu",
"vkm": "Kamakan",
"vkn": "Koro Nulu",
"vko": "Kodeoha",
"vkp": "Korlai Creole Portuguese",
"vkt": "Tenggarong Kutai Malay",
"vku": "Kurrama",
"vkz": "Koro Zuba",
"vlp": "Valpei",
"vls": "Vlaams",
"vma": "Martuyhunira",
"vmb": "Barbaram",
"vmc": "Juxtlahuaca Mixtec",
"vmd": "Mudu Koraga",
"vme": "East Masela",
"vmf": "Mainfränkisch",
"vmg": "Lungalunga",
"vmh": "Maraghei",
"vmi": "Miwa",
"vmj": "Ixtayutla Mixtec",
"vmk": "Makhuwa-Shirima",
"vml": "Malgana",
"vmm": "Mitlatongo Mixtec",
"vmp": "Soyaltepec Mazatec",
"vmq": "Soyaltepec Mixtec",
"vmr": "Marenje",
"vms": "Moksela",
"vmu": "Muluridyi",
"vmv": "Valley Maidu",
"vmw": "Makhuwa",
"vmx": "Tamazola Mixtec",
"vmy": "Ayautla Mazatec",
"vmz": "Mazatlán Mazatec",
"vnk": "Vano; Lovono",
"vnm": "Vinmavis; Neve'ei",
"vnp": "Vunapu",
"vo": "Volapük",
"vor": "Voro",
"vot": "Votic",
"vra": "Vera'a",
"vro": "Võro",
"vrs": "Varisi",
"vrt": "Burmbar; Banam Bay",
"vsi": "Moldova Sign Language",
"vsl": "Venezuelan Sign Language",
"vsv": "Valencian Sign Language; Llengua de signes valenciana",
"vto": "Vitou",
"vum": "Vumbu",
"vun": "Vunjo",
"vut": "Vute",
"vwa": "Awa (China)",
"wa": "Walloon",
"waa": "Walla Walla",
"wab": "Wab",
"wac": "Wasco-Wishram",
"wad": "Wamesa; Wondama",
"wae": "Walser",
"waf": "Wakoná",
"wag": "Wa'ema",
"wah": "Watubela",
"wai": "Wares",
"waj": "Waffa",
"wak": "Wakashan languages",
"wal": "Wolaytta; Wolaitta",
"wam": "Wampanoag",
"wan": "Wan",
"wao": "Wappo",
"wap": "Wapishana",
"waq": "Wagiman",
"war": "Waray (Philippines)",
"was": "Washo",
"wat": "Kaninuwa",
"wau": "Waurá",
"wav": "Waka",
"waw": "Waiwai",
"wax": "Watam; Marangis",
"way": "Wayana",
"waz": "Wampur",
"wba": "Warao",
"wbb": "Wabo",
"wbe": "Waritai",
"wbf": "Wara",
"wbh": "Wanda",
"wbi": "Vwanji",
"wbj": "Alagwa",
"wbk": "Waigali",
"wbl": "Wakhi",
"wbm": "Wa",
"wbp": "Warlpiri",
"wbq": "Waddar",
"wbr": "Wagdi",
"wbs": "West Bengal Sign Language",
"wbt": "Warnman",
"wbv": "Wajarri",
"wbw": "Woi",
"wca": "Yanomámi",
"wci": "Waci Gbe",
"wdd": "Wandji",
"wdg": "Wadaginam",
"wdj": "Wadjiginy",
"wdk": "Wadikali",
"wdt": "Wendat",
"wdu": "Wadjigu",
"wdy": "Wadjabangayi",
"wea": "Wewaw",
"wec": "Wè Western",
"wed": "Wedau",
"weg": "Wergaia",
"weh": "Weh",
"wei": "Kiunum",
"wem": "Weme Gbe",
"wen": "Sorbian languages",
"weo": "Wemale",
"wep": "Westphalien",
"wer": "Weri",
"wes": "Cameroon Pidgin",
"wet": "Perai",
"weu": "Rawngtu Chin",
"wew": "Wejewa",
"wfg": "Yafi; Zorop",
"wga": "Wagaya",
"wgb": "Wagawaga",
"wgg": "Wangkangurru; Wangganguru",
"wgi": "Wahgi",
"wgo": "Waigeo",
"wgu": "Wirangu",
"wgy": "Warrgamay",
"wha": "Sou Upaa; Manusela",
"whg": "North Wahgi",
"whk": "Wahau Kenyah",
"whu": "Wahau Kayan",
"wib": "Southern Toussian",
"wic": "Wichita",
"wie": "Wik-Epa",
"wif": "Wik-Keyangan",
"wig": "Wik Ngathan",
"wih": "Wik-Me'anha",
"wii": "Minidien",
"wij": "Wik-Iiyanh",
"wik": "Wikalkan",
"wil": "Wilawila",
"wim": "Wik-Mungkan",
"win": "Ho-Chunk",
"wir": "Wiraféd",
"wiu": "Wiru",
"wiv": "Vitu",
"wiy": "Wiyot",
"wja": "Waja",
"wji": "Warji",
"wka": "Kw'adza",
"wkb": "Kumbaran",
"wkd": "Wakde; Mo",
"wkl": "Kalanadi",
"wkr": "Keerray-Woorroong",
"wku": "Kunduvadi",
"wkw": "Wakawaka",
"wky": "Wangkayutyuru",
"wla": "Walio",
"wlc": "Mwali Comorian",
"wle": "Wolane",
"wlg": "Kunbarlang",
"wlh": "Welaun",
"wli": "Waioli",
"wlk": "Wailaki",
"wll": "Wali (Sudan)",
"wlm": "Middle Welsh",
"wlo": "Wolio",
"wlr": "Wailapa",
"wls": "Wallisian",
"wlu": "Wuliwuli",
"wlv": "Wichí Lhamtés Vejoz",
"wlw": "Walak",
"wlx": "Wali (Ghana)",
"wly": "Waling",
"wma": "Mawa (Nigeria)",
"wmb": "Wambaya",
"wmc": "Wamas",
"wmd": "Mamaindé",
"wme": "Wambule",
"wmg": "Western Minyag",
"wmh": "Waima'a",
"wmi": "Wamin",
"wmm": "Maiwa (Indonesia)",
"wmn": "Waamwang",
"wmo": "Wom (Papua New Guinea)",
"wms": "Wambon",
"wmt": "Walmajarri",
"wmw": "Mwani",
"wmx": "Womo",
"wnb": "Wanambre",
"wnc": "Wantoat",
"wnd": "Wandarang",
"wne": "Waneci",
"wng": "Wanggom",
"wni": "Ndzwani Comorian",
"wnk": "Wanukaka",
"wnm": "Wanggamala",
"wnn": "Wunumara",
"wno": "Wano",
"wnp": "Wanap",
"wnu": "Usan",
"wnw": "Wintu",
"wny": "Wanyi; Waanyi",
"wo": "Wolof",
"woa": "Kuwema; Tyaraity",
"wob": "Wè Northern",
"woc": "Wogeo",
"wod": "Wolani",
"woe": "Woleaian",
"wof": "Gambian Wolof",
"wog": "Wogamusin",
"woi": "Kamang",
"wok": "Longto",
"wom": "Wom (Nigeria)",
"won": "Wongo",
"woo": "Manombai",
"wor": "Woria",
"wos": "Hanga Hundi",
"wow": "Wawonii",
"woy": "Weyto",
"wpc": "Maco",
"wrb": "Waluwarra; Warluwara",
"wrg": "Warungu; Gudjal",
"wrh": "Wiradjuri",
"wri": "Wariyangga",
"wrk": "Garrwa",
"wrl": "Warlmanpa",
"wrm": "Warumungu",
"wrn": "Warnang",
"wro": "Worrorra",
"wrp": "Waropen",
"wrr": "Wardaman",
"wrs": "Waris",
"wru": "Waru",
"wrv": "Waruna",
"wrw": "Gugu Warra",
"wrx": "Wae Rana",
"wry": "Merwari",
"wrz": "Waray (Australia)",
"wsa": "Warembori",
"wsg": "Adilabad Gondi",
"wsi": "Wusi",
"wsk": "Waskia",
"wsr": "Owenia",
"wss": "Wasa",
"wsu": "Wasu",
"wsv": "Wotapuri-Katarqalai",
"wtf": "Watiwa",
"wth": "Wathawurrung",
"wti": "Berta",
"wtk": "Watakataui",
"wtm": "Mewati",
"wtw": "Wotu",
"wua": "Wikngenchera",
"wub": "Wunambal",
"wud": "Wudu",
"wuh": "Wutunhua",
"wul": "Silimo",
"wum": "Wumbvu",
"wun": "Bungu",
"wur": "Wurrugu",
"wut": "Wutung",
"wuu": "Wu Chinese",
"wuv": "Wuvulu-Aua",
"wux": "Wulna",
"wuy": "Wauyai",
"wwa": "Waama",
"wwb": "Wakabunga",
"wwo": "Wetamut; Dorig",
"wwr": "Warrwa",
"www": "Wawa",
"wxa": "Waxianghua",
"wxw": "Wardandi",
"wyb": "Wangaaybuwan-Ngiyambaa",
"wyi": "Woiwurrung",
"wym": "Wymysorys",
"wyn": "Wyandot",
"wyr": "Wayoró",
"wyy": "Western Fijian",
"xaa": "Andalusian Arabic",
"xab": "Sambe",
"xac": "Kachari",
"xad": "Adai",
"xae": "Aequian",
"xag": "Aghwan",
"xai": "Kaimbé",
"xaj": "Ararandewára",
"xak": "Máku",
"xal": "Kalmyk; Oirat",
"xam": "ǀXam",
"xan": "Xamtanga",
"xao": "Khao",
"xap": "Apalachee",
"xaq": "Aquitanian",
"xar": "Karami",
"xas": "Kamas",
"xat": "Katawixi",
"xau": "Kauwera",
"xav": "Xavánte",
"xaw": "Kawaiisu",
"xay": "Kayan Mahakam",
"xbb": "Lower Burdekin",
"xbc": "Bactrian",
"xbd": "Bindal",
"xbe": "Bigambal",
"xbg": "Bunganditj",
"xbi": "Kombio",
"xbj": "Birrpayi",
"xbm": "Middle Breton",
"xbn": "Kenaboi",
"xbo": "Bolgarian",
"xbp": "Bibbulman",
"xbr": "Kambera",
"xbw": "Kambiwá",
"xby": "Batjala; Batyala",
"xcb": "Cumbric",
"xcc": "Camunic",
"xce": "Celtiberian",
"xcg": "Cisalpine Gaulish",
"xch": "Chemakum; Chimakum",
"xcl": "Classical Armenian",
"xcm": "Comecrudo",
"xcn": "Cotoname",
"xco": "Chorasmian",
"xcr": "Carian",
"xct": "Classical Tibetan",
"xcu": "Curonian",
"xcv": "Chuvantsy",
"xcw": "Coahuilteco",
"xcy": "Cayuse",
"xda": "Darkinyung",
"xdc": "Dacian",
"xdk": "Dharuk",
"xdm": "Edomite",
"xdo": "Kwandu",
"xdq": "Kaitag",
"xdy": "Malayic Dayak",
"xeb": "Eblan",
"xed": "Hdi",
"xeg": "ǁXegwi",
"xel": "Kelo",
"xem": "Kembayan",
"xep": "Epi-Olmec",
"xer": "Xerénte",
"xes": "Kesawai",
"xet": "Xetá",
"xeu": "Keoru-Ahia",
"xfa": "Faliscan",
"xga": "Galatian",
"xgb": "Gbin",
"xgd": "Gudang",
"xgf": "Gabrielino-Fernandeño",
"xgg": "Goreng",
"xgi": "Garingbal",
"xgl": "Galindan",
"xgm": "Dharumbal; Guwinmal",
"xgn": "Mongolian languages",
"xgr": "Garza",
"xgu": "Unggumi",
"xgw": "Guwa",
"xh": "Xhosa",
"xha": "Harami",
"xhc": "Hunnic",
"xhd": "Hadrami",
"xhe": "Khetrani",
"xhm": "Middle Khmer (1400 to 1850 CE)",
"xhr": "Hernican",
"xht": "Hattic",
"xhu": "Hurrian",
"xhv": "Khua",
"xib": "Iberian",
"xii": "Xiri",
"xil": "Illyrian",
"xin": "Xinca",
"xir": "Xiriâna",
"xis": "Kisan",
"xiv": "Indus Valley Language",
"xiy": "Xipaya",
"xjb": "Minjungbal",
"xjt": "Jaitmatang",
"xka": "Kalkoti",
"xkb": "Northern Nago",
"xkc": "Kho'ini",
"xkd": "Mendalam Kayan",
"xke": "Kereho",
"xkf": "Khengkha",
"xkg": "Kagoro",
"xki": "Kenyan Sign Language",
"xkj": "Kajali",
"xkk": "Kachok; Kaco'",
"xkl": "Mainstream Kenyah",
"xkn": "Kayan River Kayan",
"xko": "Kiorr",
"xkp": "Kabatei",
"xkq": "Koroni",
"xkr": "Xakriabá",
"xks": "Kumbewaha",
"xkt": "Kantosi",
"xku": "Kaamba",
"xkv": "Kgalagadi",
"xkw": "Kembra",
"xkx": "Karore",
"xky": "Uma' Lasan",
"xkz": "Kurtokha",
"xla": "Kamula",
"xlb": "Loup B",
"xlc": "Lycian",
"xld": "Lydian",
"xle": "Lemnian",
"xlg": "Ligurian (Ancient)",
"xli": "Liburnian",
"xln": "Alanic",
"xlo": "Loup A",
"xlp": "Lepontic",
"xls": "Lusitanian",
"xlu": "Cuneiform Luwian",
"xly": "Elymian",
"xma": "Mushungulu",
"xmb": "Mbonga",
"xmc": "Makhuwa-Marrevone",
"xmd": "Mbudum",
"xme": "Median",
"xmf": "Mingrelian",
"xmg": "Mengaka",
"xmh": "Kugu-Muminh",
"xmj": "Majera",
"xmk": "Ancient Macedonian",
"xml": "Malaysian Sign Language",
"xmm": "Manado Malay",
"xmn": "Manichaean Middle Persian",
"xmo": "Morerebi",
"xmp": "Kuku-Mu'inh",
"xmq": "Kuku-Mangk",
"xmr": "Meroitic",
"xms": "Moroccan Sign Language",
"xmt": "Matbat",
"xmu": "Kamu",
"xmv": "Antankarana Malagasy; Tankarana Malagasy",
"xmw": "Tsimihety Malagasy",
"xmx": "Salawati; Maden",
"xmy": "Mayaguduna",
"xmz": "Mori Bawah",
"xna": "Ancient North Arabian",
"xnb": "Kanakanabu",
"xnd": "Na-Dene languages",
"xng": "Middle Mongolian",
"xnh": "Kuanhua",
"xni": "Ngarigu",
"xnj": "Ngoni (Tanzania)",
"xnk": "Nganakarti",
"xnm": "Ngumbarl",
"xnn": "Northern Kankanay",
"xno": "Anglo-Norman",
"xnq": "Ngoni (Mozambique)",
"xnr": "Kangri",
"xns": "Kanashi",
"xnt": "Narragansett",
"xnu": "Nukunul",
"xny": "Nyiyaparli",
"xnz": "Kenzi; Mattoki",
"xoc": "O'chi'chi'",
"xod": "Kokoda",
"xog": "Soga",
"xoi": "Kominimung",
"xok": "Xokleng",
"xom": "Komo (Sudan)",
"xon": "Konkomba",
"xoo": "Xukurú",
"xop": "Kopar",
"xor": "Korubo",
"xow": "Kowaki",
"xpa": "Pirriya",
"xpb": "Northeastern Tasmanian; Pyemmairrener",
"xpc": "Pecheneg",
"xpd": "Oyster Bay Tasmanian",
"xpe": "Liberia Kpelle",
"xpf": "Southeast Tasmanian; Nuenonne",
"xpg": "Phrygian",
"xph": "North Midlands Tasmanian; Tyerrenoterpanner",
"xpi": "Pictish",
"xpj": "Mpalitjanh",
"xpk": "Kulina Pano",
"xpl": "Port Sorell Tasmanian",
"xpm": "Pumpokol",
"xpn": "Kapinawá",
"xpo": "Pochutec",
"xpp": "Puyo-Paekche",
"xpq": "Mohegan-Pequot",
"xpr": "Parthian",
"xps": "Pisidian",
"xpt": "Punthamara",
"xpu": "Punic",
"xpv": "Northern Tasmanian; Tommeginne",
"xpw": "Northwestern Tasmanian; Peerapper",
"xpx": "Southwestern Tasmanian; Toogee",
"xpy": "Puyo",
"xpz": "Bruny Island Tasmanian",
"xqa": "Karakhanid",
"xqt": "Qatabanian",
"xra": "Krahô",
"xrb": "Eastern Karaboro",
"xrd": "Gundungurra",
"xre": "Kreye",
"xrg": "Minang",
"xri": "Krikati-Timbira",
"xrm": "Armazic",
"xrn": "Arin",
"xrr": "Raetic",
"xrt": "Aranama-Tamique",
"xru": "Marriammu",
"xrw": "Karawa",
"xsa": "Sabaean",
"xsb": "Sambal",
"xsc": "Scythian",
"xsd": "Sidetic",
"xse": "Sempan",
"xsh": "Shamang",
"xsi": "Sio",
"xsj": "Subi",
"xsl": "South Slavey",
"xsm": "Kasem",
"xsn": "Sanga (Nigeria)",
"xso": "Solano",
"xsp": "Silopi",
"xsq": "Makhuwa-Saka",
"xsr": "Sherpa",
"xss": "Assan",
"xsu": "Sanumá",
"xsv": "Sudovian",
"xsy": "Saisiyat",
"xta": "Alcozauca Mixtec",
"xtb": "Chazumba Mixtec",
"xtc": "Katcha-Kadugli-Miri",
"xtd": "Diuxi-Tilantongo Mixtec",
"xte": "Ketengban",
"xtg": "Transalpine Gaulish",
"xth": "Yitha Yitha",
"xti": "Sinicahua Mixtec",
"xtj": "San Juan Teita Mixtec",
"xtl": "Tijaltepec Mixtec",
"xtm": "Magdalena Peñasco Mixtec",
"xtn": "Northern Tlaxiaco Mixtec",
"xto": "Tokharian A",
"xtp": "San Miguel Piedras Mixtec",
"xtq": "Tumshuqese",
"xtr": "Early Tripuri",
"xts": "Sindihui Mixtec",
"xtt": "Tacahua Mixtec",
"xtu": "Cuyamecalco Mixtec",
"xtv": "Thawa",
"xtw": "Tawandê",
"xty": "Yoloxochitl Mixtec",
"xua": "Alu Kurumba",
"xub": "Betta Kurumba",
"xud": "Umiida",
"xug": "Kunigami",
"xuj": "Jennu Kurumba",
"xul": "Ngunawal; Nunukul",
"xum": "Umbrian",
"xun": "Unggaranggu",
"xuo": "Kuo",
"xup": "Upper Umpqua",
"xur": "Urartian",
"xut": "Kuthant",
"xuu": "Kxoe; Khwedam",
"xve": "Venetic",
"xvi": "Kamviri",
"xvn": "Vandalic",
"xvo": "Volscian",
"xvs": "Vestinian",
"xwa": "Kwaza",
"xwc": "Woccon",
"xwd": "Wadi Wadi",
"xwe": "Xwela Gbe",
"xwg": "Kwegu",
"xwj": "Wajuk",
"xwk": "Wangkumara",
"xwl": "Western Xwla Gbe",
"xwo": "Written Oirat",
"xwr": "Kwerba Mamberamo",
"xwt": "Wotjobaluk",
"xww": "Wemba Wemba",
"xxb": "Boro (Ghana)",
"xxk": "Ke'o",
"xxm": "Minkin",
"xxr": "Koropó",
"xxt": "Tambora",
"xya": "Yaygir",
"xyb": "Yandjibara",
"xyj": "Mayi-Yapi",
"xyk": "Mayi-Kulan",
"xyl": "Yalakalore",
"xyt": "Mayi-Thakurti",
"xyy": "Yorta Yorta",
"xzh": "Zhang-Zhung",
"xzm": "Zemgalian",
"xzp": "Ancient Zapotec",
"yaa": "Yaminahua",
"yab": "Yuhup",
"yac": "Pass Valley Yali",
"yad": "Yagua",
"yae": "Pumé",
"yaf": "Yaka (Democratic Republic of Congo)",
"yag": "Yámana",
"yah": "Yazgulyam",
"yai": "Yagnobi",
"yaj": "Banda-Yangere",
"yak": "Yakama",
"yal": "Yalunka",
"yam": "Yamba",
"yan": "Mayangna",
"yao": "Yao",
"yap": "Yapese",
"yaq": "Yaqui",
"yar": "Yabarana",
"yas": "Nugunu (Cameroon)",
"yat": "Yambeta",
"yau": "Yuwana",
"yav": "Yangben",
"yaw": "Yawalapití",
"yax": "Yauma",
"yay": "Agwagwune",
"yaz": "Lokaa",
"yba": "Yala",
"ybb": "Yemba",
"ybe": "West Yugur",
"ybh": "Yakha",
"ybi": "Yamphu",
"ybj": "Hasha",
"ybk": "Bokha",
"ybl": "Yukuben",
"ybm": "Yaben",
"ybn": "Yabaâna",
"ybo": "Yabong",
"ybx": "Yawiyo",
"yby": "Yaweyuha",
"ych": "Chesu",
"ycl": "Lolopo",
"ycn": "Yucuna",
"ycp": "Chepya",
"yda": "Yanda",
"ydd": "Eastern Yiddish",
"yde": "Yangum Dey",
"ydg": "Yidgha",
"ydk": "Yoidik",
"yea": "Ravula",
"yec": "Yeniche",
"yee": "Yimas",
"yei": "Yeni",
"yej": "Yevanic",
"yel": "Yela",
"yer": "Tarok",
"yes": "Nyankpa",
"yet": "Yetfa",
"yeu": "Yerukula",
"yev": "Yapunda",
"yey": "Yeyi",
"yga": "Malyangapa",
"ygi": "Yiningayi",
"ygl": "Yangum Gel",
"ygm": "Yagomi",
"ygp": "Gepo",
"ygr": "Yagaria",
"ygs": "Yolŋu Sign Language",
"ygu": "Yugul",
"ygw": "Yagwoia",
"yha": "Baha Buyang",
"yhd": "Judeo-Iraqi Arabic",
"yhl": "Hlepho Phowa",
"yhs": "Yan-nhaŋu Sign Language",
"yi": "Yiddish",
"yia": "Yinggarda",
"yif": "Ache",
"yig": "Wusa Nasu",
"yih": "Western Yiddish",
"yii": "Yidiny",
"yij": "Yindjibarndi",
"yik": "Dongshanba Lalo",
"yil": "Yindjilandji",
"yim": "Yimchungru Naga",
"yin": "Riang Lai; Yinchia",
"yip": "Pholo",
"yiq": "Miqie",
"yir": "North Awyu",
"yis": "Yis",
"yit": "Eastern Lalu",
"yiu": "Awu",
"yiv": "Northern Nisu",
"yix": "Axi Yi",
"yiz": "Azhe",
"yka": "Yakan",
"ykg": "Northern Yukaghir",
"yki": "Yoke",
"ykk": "Yakaikeke",
"ykl": "Khlula",
"ykm": "Kap",
"ykn": "Kua-nsi",
"yko": "Yasa",
"ykr": "Yekora",
"ykt": "Kathu",
"yku": "Kuamasi",
"yky": "Yakoma",
"yla": "Yaul",
"ylb": "Yaleba",
"yle": "Yele",
"ylg": "Yelogu",
"yli": "Angguruk Yali",
"yll": "Yil",
"ylm": "Limi",
"yln": "Langnian Buyang",
"ylo": "Naluo Yi",
"ylr": "Yalarnnga",
"ylu": "Aribwaung",
"yly": "Nyâlayu; Nyelâyu",
"ymb": "Yambes",
"ymc": "Southern Muji",
"ymd": "Muda",
"yme": "Yameo",
"ymg": "Yamongeri",
"ymh": "Mili",
"ymi": "Moji",
"ymk": "Makwe",
"yml": "Iamalele",
"ymm": "Maay",
"ymn": "Yamna; Sunum",
"ymo": "Yangum Mon",
"ymp": "Yamap",
"ymq": "Qila Muji",
"ymr": "Malasar",
"yms": "Mysian",
"ymx": "Northern Muji",
"ymz": "Muzi",
"yna": "Aluo",
"ynd": "Yandruwandha",
"yne": "Lang'e",
"yng": "Yango",
"ynk": "Naukan Yupik",
"ynl": "Yangulam",
"ynn": "Yana",
"yno": "Yong",
"ynq": "Yendang",
"yns": "Yansi",
"ynu": "Yahuna",
"yo": "Yoruba",
"yob": "Yoba",
"yog": "Yogad",
"yoi": "Yonaguni",
"yok": "Yokuts",
"yol": "Yola",
"yom": "Yombe",
"yon": "Yongkom",
"yot": "Yotti",
"yox": "Yoron",
"yoy": "Yoy",
"ypa": "Phala",
"ypb": "Labo Phowa",
"ypg": "Phola",
"yph": "Phupha",
"ypk": "Yupik languages",
"ypm": "Phuma",
"ypn": "Ani Phowa",
"ypo": "Alo Phola",
"ypp": "Phupa",
"ypz": "Phuza",
"yra": "Yerakai",
"yrb": "Yareba",
"yre": "Yaouré",
"yrk": "Nenets",
"yrl": "Nhengatu",
"yrm": "Yirrk-Mel",
"yrn": "Yerong",
"yro": "Yaroamë",
"yrs": "Yarsun",
"yrw": "Yarawata",
"yry": "Yarluyandi",
"ysc": "Yassic",
"ysd": "Samatao",
"ysg": "Sonaga",
"ysl": "Yugoslavian Sign Language",
"ysm": "Myanmar Sign Language",
"ysn": "Sani",
"yso": "Nisi (China)",
"ysp": "Southern Lolopo",
"ysr": "Sirenik Yupik",
"yss": "Yessan-Mayo",
"ysy": "Sanie",
"yta": "Talu",
"ytl": "Tanglang",
"ytp": "Thopho",
"ytw": "Yout Wam",
"yty": "Yatay",
"yua": "Yucateco; Yucatec Maya",
"yub": "Yugambal",
"yuc": "Yuchi",
"yud": "Judeo-Tripolitanian Arabic",
"yue": "Yue Chinese; Cantonese",
"yuf": "Havasupai-Walapai-Yavapai",
"yug": "Yug",
"yui": "Yurutí",
"yuj": "Karkar-Yuri",
"yuk": "Yuki",
"yul": "Yulu",
"yum": "Quechan",
"yun": "Bena (Nigeria)",
"yup": "Yukpa",
"yuq": "Yuqui",
"yur": "Yurok",
"yut": "Yopno",
"yuw": "Yau (Morobe Province)",
"yux": "Southern Yukaghir",
"yuy": "East Yugur",
"yuz": "Yuracare",
"yva": "Yawa",
"yvt": "Yavitero",
"ywa": "Kalou",
"ywg": "Yinhawangka",
"ywl": "Western Lalu",
"ywn": "Yawanawa",
"ywq": "Wuding-Luquan Yi",
"ywr": "Yawuru",
"ywt": "Xishanba Lalo; Central Lalo",
"ywu": "Wumeng Nasu",
"yww": "Yawarawarga",
"yxa": "Mayawali",
"yxg": "Yagara",
"yxl": "Yardliyawarra",
"yxm": "Yinwum",
"yxu": "Yuyu",
"yxy": "Yabula Yabula",
"yyr": "Yir Yoront",
"yyu": "Yau (Sandaun Province)",
"yyz": "Ayizi",
"yzg": "E'ma Buyang",
"yzk": "Zokhuo",
"za": "Zhuang; Chuang",
"zaa": "Sierra de Juárez Zapotec",
"zab": "Western Tlacolula Valley Zapotec; San Juan Guelavía Zapotec",
"zac": "Ocotlán Zapotec",
"zad": "Cajonos Zapotec",
"zae": "Yareni Zapotec",
"zaf": "Ayoquesco Zapotec",
"zag": "Zaghawa",
"zah": "Zangwal",
"zai": "Isthmus Zapotec",
"zaj": "Zaramo",
"zak": "Zanaki",
"zal": "Zauzou",
"zam": "Miahuatlán Zapotec",
"zao": "Ozolotepec Zapotec",
"zap": "Zapotec",
"zaq": "Aloápam Zapotec",
"zar": "Rincón Zapotec",
"zas": "Santo Domingo Albarradas Zapotec",
"zat": "Tabaa Zapotec",
"zau": "Zangskari",
"zav": "Yatzachi Zapotec",
"zaw": "Mitla Zapotec",
"zax": "Xadani Zapotec",
"zay": "Zayse-Zergulla; Zaysete",
"zaz": "Zari",
"zba": "Balaibalan",
"zbc": "Central Berawan",
"zbe": "East Berawan",
"zbl": "Blissymbols; Bliss; Blissymbolics",
"zbt": "Batui",
"zbu": "Bu (Bauchi State)",
"zbw": "West Berawan",
"zca": "Coatecas Altas Zapotec",
"zcd": "Las Delicias Zapotec",
"zch": "Central Hongshuihe Zhuang",
"zdj": "Ngazidja Comorian",
"zea": "Zeeuws",
"zeg": "Zenag",
"zeh": "Eastern Hongshuihe Zhuang",
"zen": "Zenaga",
"zga": "Kinga",
"zgb": "Guibei Zhuang",
"zgh": "Standard Moroccan Tamazight",
"zgm": "Minz Zhuang",
"zgn": "Guibian Zhuang",
"zgr": "Magori",
"zh": "Chinese",
"zhb": "Zhaba",
"zhd": "Dai Zhuang",
"zhi": "Zhire",
"zhn": "Nong Zhuang",
"zhw": "Zhoa",
"zhx": "Chinese (family)",
"zia": "Zia",
"zib": "Zimbabwe Sign Language",
"zik": "Zimakani",
"zil": "Zialo",
"zim": "Mesme",
"zin": "Zinza",
"ziw": "Zigula",
"ziz": "Zizilivakan",
"zka": "Kaimbulawa",
"zkb": "Koibal",
"zkd": "Kadu",
"zkg": "Koguryo",
"zkh": "Khorezmian",
"zkk": "Karankawa",
"zkn": "Kanan",
"zko": "Kott",
"zkp": "São Paulo Kaingáng",
"zkr": "Zakhring",
"zkt": "Kitan",
"zku": "Kaurna",
"zkv": "Krevinian",
"zkz": "Khazar",
"zla": "Zula",
"zle": "East Slavic languages",
"zlj": "Liujiang Zhuang",
"zlm": "Malay (individual language)",
"zln": "Lianshan Zhuang",
"zlq": "Liuqian Zhuang",
"zls": "South Slavic languages",
"zlw": "West Slavic languages",
"zma": "Manda (Australia)",
"zmb": "Zimba",
"zmc": "Margany",
"zmd": "Maridan",
"zme": "Mangerr",
"zmf": "Mfinu",
"zmg": "Marti Ke",
"zmh": "Makolkol",
"zmi": "Negeri Sembilan Malay",
"zmj": "Maridjabin",
"zmk": "Mandandanyi",
"zml": "Matngala",
"zmm": "Marimanindji; Marramaninyshi",
"zmn": "Mbangwe",
"zmo": "Molo",
"zmp": "Mpuono",
"zmq": "Mituku",
"zmr": "Maranunggu",
"zms": "Mbesa",
"zmt": "Maringarr",
"zmu": "Muruwari",
"zmv": "Mbariman-Gudhinma",
"zmw": "Mbo (Democratic Republic of Congo)",
"zmx": "Bomitaba",
"zmy": "Mariyedi",
"zmz": "Mbandja",
"zna": "Zan Gula",
"znd": "Zande languages",
"zne": "Zande (individual language)",
"zng": "Mang",
"znk": "Manangkari",
"zns": "Mangas",
"zoc": "Copainalá Zoque",
"zoh": "Chimalapa Zoque",
"zom": "Zou",
"zoo": "Asunción Mixtepec Zapotec",
"zoq": "Tabasco Zoque",
"zor": "Rayón Zoque",
"zos": "Francisco León Zoque",
"zpa": "Lachiguiri Zapotec",
"zpb": "Yautepec Zapotec",
"zpc": "Choapan Zapotec",
"zpd": "Southeastern Ixtlán Zapotec",
"zpe": "Petapa Zapotec",
"zpf": "San Pedro Quiatoni Zapotec",
"zpg": "Guevea De Humboldt Zapotec",
"zph": "Totomachapan Zapotec",
"zpi": "Santa María Quiegolani Zapotec",
"zpj": "Quiavicuzas Zapotec",
"zpk": "Tlacolulita Zapotec",
"zpl": "Lachixío Zapotec",
"zpm": "Mixtepec Zapotec",
"zpn": "Santa Inés Yatzechi Zapotec",
"zpo": "Amatlán Zapotec",
"zpp": "El Alto Zapotec",
"zpq": "Zoogocho Zapotec",
"zpr": "Santiago Xanica Zapotec",
"zps": "Coatlán Zapotec",
"zpt": "San Vicente Coatlán Zapotec",
"zpu": "Yalálag Zapotec",
"zpv": "Chichicapan Zapotec",
"zpw": "Zaniza Zapotec",
"zpx": "San Baltazar Loxicha Zapotec",
"zpy": "Mazaltepec Zapotec",
"zpz": "Texmelucan Zapotec",
"zqe": "Qiubei Zhuang",
"zra": "Kara (Korea)",
"zrg": "Mirgan",
"zrn": "Zerenkel",
"zro": "Záparo",
"zrp": "Zarphatic",
"zrs": "Mairasi",
"zsa": "Sarasira",
"zsk": "Kaskean",
"zsl": "Zambian Sign Language",
"zsm": "Standard Malay",
"zsr": "Southern Rincon Zapotec",
"zsu": "Sukurum",
"zte": "Elotepec Zapotec",
"ztg": "Xanaguía Zapotec",
"ztl": "Lapaguía-Guivini Zapotec",
"ztm": "San Agustín Mixtepec Zapotec",
"ztn": "Santa Catarina Albarradas Zapotec",
"ztp": "Loxicha Zapotec",
"ztq": "Quioquitani-Quierí Zapotec",
"zts": "Tilquiapan Zapotec",
"ztt": "Tejalapan Zapotec",
"ztu": "Güilá Zapotec",
"ztx": "Zaachila Zapotec",
"zty": "Yatee Zapotec",
"zu": "Zulu",
"zua": "Zeem",
"zuh": "Tokano",
"zum": "Kumzari",
"zun": "Zuni",
"zuy": "Zumaya",
"zwa": "Zay",
"zyb": "Yongbei Zhuang",
"zyg": "Yang Zhuang",
"zyj": "Youjiang Zhuang",
"zyn": "Yongnan Zhuang",
"zyp": "Zyphe Chin",
"zza": "Zaza; Dimili; Dimli (macrolanguage); Kirdki; Kirmanjki (macrolanguage); Zazaki",
"zzj": "Zuojiang Zhuang"
} | 0 |
hf_public_repos/datasets/src/datasets/utils | hf_public_repos/datasets/src/datasets/utils/resources/readme_structure.yaml | name: "" # Filename comes here
allow_empty: false
allow_empty_text: true
subsections:
- name: "Dataset Card for X" # First-level markdown heading
allow_empty: false
allow_empty_text: true
subsections:
- name: "Table of Contents"
allow_empty: false
allow_empty_text: false
subsections: null # meaning it should not be checked.
- name: "Dataset Description"
allow_empty: false
allow_empty_text: false
subsections:
- name: "Dataset Summary"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Supported Tasks and Leaderboards"
allow_empty: true
allow_empty_text: true
subsections: null
- name: Languages
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Dataset Structure"
allow_empty: false
allow_empty_text: true
subsections:
- name: "Data Instances"
allow_empty: false
allow_empty_text: true
subsections: null
- name: "Data Fields"
allow_empty: false
allow_empty_text: true
subsections: null
- name: "Data Splits"
allow_empty: false
allow_empty_text: true
subsections: null
- name: "Dataset Creation"
allow_empty: false
allow_empty_text: true
subsections:
- name: "Curation Rationale"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Source Data"
allow_empty: false
allow_empty_text: true
subsections:
- name: "Initial Data Collection and Normalization"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Who are the source language producers?"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Annotations"
allow_empty: false
allow_empty_text: true
subsections:
- name: "Annotation process"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Who are the annotators?"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Personal and Sensitive Information"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Considerations for Using the Data"
allow_empty: true
allow_empty_text: true
subsections:
- name: "Social Impact of Dataset"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Discussion of Biases"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Other Known Limitations"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Additional Information"
allow_empty: true
allow_empty_text: true
subsections:
- name: "Dataset Curators"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Licensing Information"
allow_empty: true
allow_empty_text: true
subsections: null
- name: "Citation Information"
allow_empty: false
allow_empty_text: true
subsections: null
- name: "Contributions"
allow_empty: false
allow_empty_text: false
subsections: null
| 0 |
hf_public_repos/datasets/src/datasets/utils | hf_public_repos/datasets/src/datasets/utils/resources/size_categories.json | [
"unknown",
"n<1K",
"1K<n<10K",
"10K<n<100K",
"100K<n<1M",
"1M<n<10M",
"10M<n<100M",
"100M<n<1B",
"1B<n<10B",
"10B<n<100B",
"100B<n<1T",
"n>1T"
]
| 0 |
hf_public_repos/datasets/src/datasets/utils | hf_public_repos/datasets/src/datasets/utils/resources/creators.json | {
"language": [
"found",
"crowdsourced",
"expert-generated",
"machine-generated",
"other"
],
"annotations": [
"found",
"crowdsourced",
"expert-generated",
"machine-generated",
"no-annotation",
"other"
]
}
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/commands/dummy_data.py | import fnmatch
import json
import os
import shutil
import tempfile
import xml.etree.ElementTree as ET
from argparse import ArgumentParser
from pathlib import Path
from typing import Optional
from datasets import config
from datasets.commands import BaseDatasetsCLICommand
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadManager
from datasets.download.mock_download_manager import MockDownloadManager
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.deprecation_utils import deprecated
from datasets.utils.logging import get_logger, set_verbosity_warning
from datasets.utils.py_utils import map_nested
logger = get_logger(__name__)
DEFAULT_ENCODING = "utf-8"
def dummy_data_command_factory(args):
return DummyDataCommand(
args.path_to_dataset,
args.auto_generate,
args.n_lines,
args.json_field,
args.xml_tag,
args.match_text_files,
args.keep_uncompressed,
args.cache_dir,
args.encoding,
)
class DummyDataGeneratorDownloadManager(DownloadManager):
def __init__(self, mock_download_manager, *args, **kwargs):
super().__init__(*args, **kwargs)
self.mock_download_manager = mock_download_manager
self.downloaded_dummy_paths = []
self.expected_dummy_paths = []
def download(self, url_or_urls):
output = super().download(url_or_urls)
dummy_output = self.mock_download_manager.download(url_or_urls)
map_nested(self.downloaded_dummy_paths.append, output, map_tuple=True)
map_nested(self.expected_dummy_paths.append, dummy_output, map_tuple=True)
return output
def download_and_extract(self, url_or_urls):
output = super().extract(super().download(url_or_urls))
dummy_output = self.mock_download_manager.download(url_or_urls)
map_nested(self.downloaded_dummy_paths.append, output, map_tuple=True)
map_nested(self.expected_dummy_paths.append, dummy_output, map_tuple=True)
return output
def auto_generate_dummy_data_folder(
self,
n_lines: int = 5,
json_field: Optional[str] = None,
xml_tag: Optional[str] = None,
match_text_files: Optional[str] = None,
encoding: Optional[str] = None,
) -> bool:
os.makedirs(
os.path.join(
self.mock_download_manager.datasets_scripts_dir,
self.mock_download_manager.dataset_name,
self.mock_download_manager.dummy_data_folder,
"dummy_data",
),
exist_ok=True,
)
total = 0
self.mock_download_manager.load_existing_dummy_data = False
for src_path, relative_dst_path in zip(self.downloaded_dummy_paths, self.expected_dummy_paths):
dst_path = os.path.join(
self.mock_download_manager.datasets_scripts_dir,
self.mock_download_manager.dataset_name,
self.mock_download_manager.dummy_data_folder,
relative_dst_path,
)
total += self._create_dummy_data(
src_path,
dst_path,
n_lines=n_lines,
json_field=json_field,
xml_tag=xml_tag,
match_text_files=match_text_files,
encoding=encoding,
)
if total == 0:
logger.error(
"Dummy data generation failed: no dummy files were created. "
"Make sure the data files format is supported by the auto-generation."
)
return total > 0
def _create_dummy_data(
self,
src_path: str,
dst_path: str,
n_lines: int,
json_field: Optional[str] = None,
xml_tag: Optional[str] = None,
match_text_files: Optional[str] = None,
encoding: Optional[str] = None,
) -> int:
encoding = encoding or DEFAULT_ENCODING
if os.path.isfile(src_path):
logger.debug(f"Trying to generate dummy data file {dst_path}")
dst_path_extensions = Path(dst_path).suffixes
line_by_line_extensions = [".txt", ".csv", ".jsonl", ".tsv"]
is_line_by_line_text_file = any(extension in dst_path_extensions for extension in line_by_line_extensions)
if match_text_files is not None:
file_name = os.path.basename(dst_path)
for pattern in match_text_files.split(","):
is_line_by_line_text_file |= fnmatch.fnmatch(file_name, pattern)
# Line by line text file (txt, csv etc.)
if is_line_by_line_text_file:
Path(dst_path).parent.mkdir(exist_ok=True, parents=True)
with open(src_path, encoding=encoding) as src_file:
with open(dst_path, "w", encoding=encoding) as dst_file:
first_lines = []
for i, line in enumerate(src_file):
if i >= n_lines:
break
first_lines.append(line)
dst_file.write("".join(first_lines).strip())
return 1
# json file
elif ".json" in dst_path_extensions:
with open(src_path, encoding=encoding) as src_file:
json_data = json.load(src_file)
if json_field is not None:
json_data = json_data[json_field]
if isinstance(json_data, dict):
if not all(isinstance(v, list) for v in json_data.values()):
raise ValueError(
f"Couldn't parse columns {list(json_data.keys())}. "
"Maybe specify which json field must be used "
"to read the data with --json_field <my_field>."
)
first_json_data = {k: v[:n_lines] for k, v in json_data.items()}
else:
first_json_data = json_data[:n_lines]
if json_field is not None:
first_json_data = {json_field: first_json_data}
Path(dst_path).parent.mkdir(exist_ok=True, parents=True)
with open(dst_path, "w", encoding=encoding) as dst_file:
json.dump(first_json_data, dst_file)
return 1
# xml file
elif any(extension in dst_path_extensions for extension in [".xml", ".txm"]):
if xml_tag is None:
logger.warning("Found xml file but 'xml_tag' is set to None. Please provide --xml_tag")
else:
self._create_xml_dummy_data(src_path, dst_path, xml_tag, n_lines=n_lines, encoding=encoding)
return 1
logger.warning(
f"Couldn't generate dummy file '{dst_path}'. " "Ignore that if this file is not useful for dummy data."
)
return 0
# directory, iterate through all files
elif os.path.isdir(src_path):
total = 0
for path, _, files in os.walk(src_path):
for name in files:
if not name.startswith("."): # ignore files like .DS_Store etc.
src_file_path = os.path.join(path, name)
dst_file_path = os.path.join(dst_path, Path(src_file_path).relative_to(src_path))
total += self._create_dummy_data(
src_file_path,
dst_file_path,
n_lines=n_lines,
json_field=json_field,
xml_tag=xml_tag,
match_text_files=match_text_files,
encoding=encoding,
)
return total
@staticmethod
def _create_xml_dummy_data(src_path, dst_path, xml_tag, n_lines=5, encoding=DEFAULT_ENCODING):
Path(dst_path).parent.mkdir(exist_ok=True, parents=True)
with open(src_path, encoding=encoding) as src_file:
n_line = 0
parents = []
for event, elem in ET.iterparse(src_file, events=("start", "end")):
if event == "start":
parents.append(elem)
else:
_ = parents.pop()
if elem.tag == xml_tag:
if n_line < n_lines:
n_line += 1
else:
if parents:
parents[-1].remove(elem)
ET.ElementTree(element=elem).write(dst_path, encoding=encoding)
def compress_autogenerated_dummy_data(self, path_to_dataset):
root_dir = os.path.join(path_to_dataset, self.mock_download_manager.dummy_data_folder)
base_name = os.path.join(root_dir, "dummy_data")
base_dir = "dummy_data"
logger.info(f"Compressing dummy data folder to '{base_name}.zip'")
shutil.make_archive(base_name, "zip", root_dir, base_dir)
shutil.rmtree(base_name)
@deprecated(
"The `datasets` repository does not host the dataset scripts anymore. Therefore, dummy data is no longer needed to test their loading with CI."
)
class DummyDataCommand(BaseDatasetsCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
test_parser = parser.add_parser("dummy_data", help="Generate dummy data.")
test_parser.add_argument("--auto_generate", action="store_true", help="Automatically generate dummy data")
test_parser.add_argument(
"--n_lines", type=int, default=5, help="Number of lines or samples to keep when auto-generating dummy data"
)
test_parser.add_argument(
"--json_field",
type=str,
default=None,
help="Optional, json field to read the data from when auto-generating dummy data. In the json data files, this field must point to a list of samples as json objects (ex: the 'data' field for squad-like files)",
)
test_parser.add_argument(
"--xml_tag",
type=str,
default=None,
help="Optional, xml tag name of the samples inside the xml files when auto-generating dummy data.",
)
test_parser.add_argument(
"--match_text_files",
type=str,
default=None,
help="Optional, a comma separated list of file patterns that looks for line-by-line text files other than *.txt or *.csv. Example: --match_text_files *.label",
)
test_parser.add_argument(
"--keep_uncompressed",
action="store_true",
help="Whether to leave the dummy data folders uncompressed when auto-generating dummy data. Useful for debugging for to do manual adjustements before compressing.",
)
test_parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="Cache directory to download and cache files when auto-generating dummy data",
)
test_parser.add_argument(
"--encoding",
type=str,
default=None,
help=f"Encoding to use when auto-generating dummy data. Defaults to {DEFAULT_ENCODING}",
)
test_parser.add_argument("path_to_dataset", type=str, help="Path to the dataset (example: ./datasets/squad)")
test_parser.set_defaults(func=dummy_data_command_factory)
def __init__(
self,
path_to_dataset: str,
auto_generate: bool,
n_lines: int,
json_field: Optional[str],
xml_tag: Optional[str],
match_text_files: Optional[str],
keep_uncompressed: bool,
cache_dir: Optional[str],
encoding: Optional[str],
):
self._path_to_dataset = path_to_dataset
if os.path.isdir(path_to_dataset):
self._dataset_name = path_to_dataset.replace(os.sep, "/").split("/")[-1]
else:
self._dataset_name = path_to_dataset.replace(os.sep, "/").split("/")[-2]
cache_dir = os.path.expanduser(cache_dir or config.HF_DATASETS_CACHE)
self._auto_generate = auto_generate
self._n_lines = n_lines
self._json_field = json_field
self._xml_tag = xml_tag
self._match_text_files = match_text_files
self._keep_uncompressed = keep_uncompressed
self._cache_dir = cache_dir
self._encoding = encoding
def run(self):
set_verbosity_warning()
dataset_module = dataset_module_factory(self._path_to_dataset)
builder_cls = import_main_class(dataset_module.module_path)
# use `None` as config if no configs
builder_configs = builder_cls.BUILDER_CONFIGS or [None]
auto_generate_results = []
with tempfile.TemporaryDirectory() as tmp_dir:
for builder_config in builder_configs:
config_name = builder_config.name if builder_config else None
dataset_builder = builder_cls(config_name=config_name, hash=dataset_module.hash, cache_dir=tmp_dir)
version = builder_config.version if builder_config else dataset_builder.config.version
mock_dl_manager = MockDownloadManager(
dataset_name=self._dataset_name,
config=builder_config,
version=version,
use_local_dummy_data=True,
load_existing_dummy_data=False,
)
if self._auto_generate:
auto_generate_results.append(
self._autogenerate_dummy_data(
dataset_builder=dataset_builder,
mock_dl_manager=mock_dl_manager,
keep_uncompressed=self._keep_uncompressed,
)
)
else:
self._print_dummy_data_instructions(
dataset_builder=dataset_builder, mock_dl_manager=mock_dl_manager
)
if self._auto_generate and not self._keep_uncompressed:
if all(auto_generate_results):
print(f"Automatic dummy data generation succeeded for all configs of '{self._path_to_dataset}'")
else:
print(f"Automatic dummy data generation failed for some configs of '{self._path_to_dataset}'")
def _autogenerate_dummy_data(self, dataset_builder, mock_dl_manager, keep_uncompressed) -> Optional[bool]:
dl_cache_dir = (
os.path.join(self._cache_dir, config.DOWNLOADED_DATASETS_DIR)
if self._cache_dir
else config.DOWNLOADED_DATASETS_PATH
)
download_config = DownloadConfig(cache_dir=dl_cache_dir)
dl_manager = DummyDataGeneratorDownloadManager(
dataset_name=self._dataset_name, mock_download_manager=mock_dl_manager, download_config=download_config
)
dataset_builder._split_generators(dl_manager)
mock_dl_manager.load_existing_dummy_data = False # don't use real dummy data
dl_manager.auto_generate_dummy_data_folder(
n_lines=self._n_lines,
json_field=self._json_field,
xml_tag=self._xml_tag,
match_text_files=self._match_text_files,
encoding=self._encoding,
)
if not keep_uncompressed:
path_do_dataset = os.path.join(mock_dl_manager.datasets_scripts_dir, mock_dl_manager.dataset_name)
dl_manager.compress_autogenerated_dummy_data(path_do_dataset)
# now test that the dummy_data.zip file actually works
mock_dl_manager.load_existing_dummy_data = True # use real dummy data
n_examples_per_split = {}
os.makedirs(dataset_builder._cache_dir, exist_ok=True)
try:
split_generators = dataset_builder._split_generators(mock_dl_manager)
for split_generator in split_generators:
dataset_builder._prepare_split(split_generator, check_duplicate_keys=False)
n_examples_per_split[split_generator.name] = split_generator.split_info.num_examples
except OSError as e:
logger.error(
f"Failed to load dummy data for config '{dataset_builder.config.name}''.\nOriginal error:\n"
+ str(e)
)
return False
else:
if all(n_examples > 0 for n_examples in n_examples_per_split.values()):
logger.warning(
f"Dummy data generation done and dummy data test succeeded for config '{dataset_builder.config.name}''."
)
return True
else:
empty_splits = [
split_name for split_name in n_examples_per_split if n_examples_per_split[split_name] == 0
]
logger.warning(
f"Dummy data generation done but dummy data test failed since splits {empty_splits} have 0 examples for config '{dataset_builder.config.name}''."
)
return False
else:
generated_dummy_data_dir = os.path.join(self._path_to_dataset, mock_dl_manager.dummy_data_folder)
logger.info(
f"Dummy data generated in directory '{generated_dummy_data_dir}' but kept uncompressed. "
"Please compress this directory into a zip file to use it for dummy data tests."
)
def _print_dummy_data_instructions(self, dataset_builder, mock_dl_manager):
dummy_data_folder = os.path.join(self._path_to_dataset, mock_dl_manager.dummy_data_folder)
logger.info(f"Creating dummy folder structure for {dummy_data_folder}... ")
os.makedirs(dummy_data_folder, exist_ok=True)
try:
generator_splits = dataset_builder._split_generators(mock_dl_manager)
except FileNotFoundError as e:
print(
f"Dataset {self._dataset_name} with config {mock_dl_manager.config} seems to already open files in the method `_split_generators(...)`. You might consider to instead only open files in the method `_generate_examples(...)` instead. If this is not possible the dummy data has to be created with less guidance. Make sure you create the file {e.filename}."
)
files_to_create = set()
split_names = []
dummy_file_name = mock_dl_manager.dummy_file_name
for split in generator_splits:
logger.info(f"Collecting dummy data file paths to create for {split.name}")
split_names.append(split.name)
gen_kwargs = split.gen_kwargs
generator = dataset_builder._generate_examples(**gen_kwargs)
try:
dummy_data_guidance_print = "\n" + 30 * "=" + "DUMMY DATA INSTRUCTIONS" + 30 * "=" + "\n"
config_string = (
f"config {mock_dl_manager.config.name} of " if mock_dl_manager.config is not None else ""
)
dummy_data_guidance_print += (
"- In order to create the dummy data for "
+ config_string
+ f"{self._dataset_name}, please go into the folder '{dummy_data_folder}' with `cd {dummy_data_folder}` . \n\n"
)
# trigger generate function
for key, record in generator:
pass
dummy_data_guidance_print += f"- It appears that the function `_generate_examples(...)` expects one or more files in the folder {dummy_file_name} using the function `glob.glob(...)`. In this case, please refer to the `_generate_examples(...)` method to see under which filename the dummy data files should be created. \n\n"
except FileNotFoundError as e:
files_to_create.add(e.filename)
split_names = ", ".join(split_names)
if len(files_to_create) > 0:
# no glob.glob(...) in `_generate_examples(...)`
if len(files_to_create) == 1 and next(iter(files_to_create)) == dummy_file_name:
dummy_data_guidance_print += f"- Please create a single dummy data file called '{next(iter(files_to_create))}' from the folder '{dummy_data_folder}'. Make sure that the dummy data file provides at least one example for the split(s) '{split_names}' \n\n"
files_string = dummy_file_name
else:
files_string = ", ".join(files_to_create)
dummy_data_guidance_print += f"- Please create the following dummy data files '{files_string}' from the folder '{dummy_data_folder}'\n\n"
dummy_data_guidance_print += f"- For each of the splits '{split_names}', make sure that one or more of the dummy data files provide at least one example \n\n"
dummy_data_guidance_print += f"- If the method `_generate_examples(...)` includes multiple `open()` statements, you might have to create other files in addition to '{files_string}'. In this case please refer to the `_generate_examples(...)` method \n\n"
if len(files_to_create) == 1 and next(iter(files_to_create)) == dummy_file_name:
dummy_data_guidance_print += f"- After the dummy data file is created, it should be zipped to '{dummy_file_name}.zip' with the command `zip {dummy_file_name}.zip {dummy_file_name}` \n\n"
dummy_data_guidance_print += (
f"- You can now delete the file '{dummy_file_name}' with the command `rm {dummy_file_name}` \n\n"
)
dummy_data_guidance_print += f"- To get the file '{dummy_file_name}' back for further changes to the dummy data, simply unzip {dummy_file_name}.zip with the command `unzip {dummy_file_name}.zip` \n\n"
else:
dummy_data_guidance_print += f"- After all dummy data files are created, they should be zipped recursively to '{dummy_file_name}.zip' with the command `zip -r {dummy_file_name}.zip {dummy_file_name}/` \n\n"
dummy_data_guidance_print += (
f"- You can now delete the folder '{dummy_file_name}' with the command `rm -r {dummy_file_name}` \n\n"
)
dummy_data_guidance_print += f"- To get the folder '{dummy_file_name}' back for further changes to the dummy data, simply unzip {dummy_file_name}.zip with the command `unzip {dummy_file_name}.zip` \n\n"
dummy_data_guidance_print += (
f"- Make sure you have created the file '{dummy_file_name}.zip' in '{dummy_data_folder}' \n"
)
dummy_data_guidance_print += 83 * "=" + "\n"
print(dummy_data_guidance_print)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/commands/__init__.py | from abc import ABC, abstractmethod
from argparse import ArgumentParser
class BaseDatasetsCLICommand(ABC):
@staticmethod
@abstractmethod
def register_subcommand(parser: ArgumentParser):
raise NotImplementedError()
@abstractmethod
def run(self):
raise NotImplementedError()
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/commands/env.py | import platform
from argparse import ArgumentParser
import huggingface_hub
import pandas
import pyarrow
from datasets import __version__ as version
from datasets.commands import BaseDatasetsCLICommand
def info_command_factory(_):
return EnvironmentCommand()
class EnvironmentCommand(BaseDatasetsCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
download_parser = parser.add_parser("env", help="Print relevant system environment info.")
download_parser.set_defaults(func=info_command_factory)
def run(self):
info = {
"`datasets` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Huggingface_hub version": huggingface_hub.__version__,
"PyArrow version": pyarrow.__version__,
"Pandas version": pandas.__version__,
}
print("\nCopy-and-paste the text below in your GitHub issue.\n")
print(self.format_dict(info))
return info
@staticmethod
def format_dict(d):
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/commands/run_beam.py | import os
from argparse import ArgumentParser
from pathlib import Path
from shutil import copyfile
from typing import List
from datasets import config
from datasets.builder import DatasetBuilder
from datasets.commands import BaseDatasetsCLICommand
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadMode
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.info_utils import VerificationMode
def run_beam_command_factory(args, **kwargs):
return RunBeamCommand(
args.dataset,
args.name,
args.cache_dir,
args.beam_pipeline_options,
args.data_dir,
args.all_configs,
args.save_info or args.save_infos,
args.ignore_verifications,
args.force_redownload,
**kwargs,
)
class RunBeamCommand(BaseDatasetsCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
run_beam_parser = parser.add_parser("run_beam", help="Run a Beam dataset processing pipeline")
run_beam_parser.add_argument("dataset", type=str, help="Name of the dataset to download")
run_beam_parser.add_argument("--name", type=str, default=None, help="Dataset config name")
run_beam_parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="Cache directory where the datasets are stored",
)
run_beam_parser.add_argument(
"--beam_pipeline_options",
type=str,
default="",
help="Beam pipeline options, separated by commas. Example:: `--beam_pipeline_options=job_name=my-job,project=my-project`",
)
run_beam_parser.add_argument(
"--data_dir",
type=str,
default=None,
help="Can be used to specify a manual directory to get the files from",
)
run_beam_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations")
run_beam_parser.add_argument("--save_info", action="store_true", help="Save the dataset infos file")
run_beam_parser.add_argument(
"--ignore_verifications", action="store_true", help="Run the test without checksums and splits checks"
)
run_beam_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload")
# aliases
run_beam_parser.add_argument("--save_infos", action="store_true", help="alias for save_info")
run_beam_parser.set_defaults(func=run_beam_command_factory)
def __init__(
self,
dataset: str,
name: str,
cache_dir: str,
beam_pipeline_options: str,
data_dir: str,
all_configs: bool,
save_infos: bool,
ignore_verifications: bool,
force_redownload: bool,
**config_kwargs,
):
self._dataset = dataset
self._name = name
self._cache_dir = cache_dir
self._beam_pipeline_options = beam_pipeline_options
self._data_dir = data_dir
self._all_configs = all_configs
self._save_infos = save_infos
self._ignore_verifications = ignore_verifications
self._force_redownload = force_redownload
self._config_kwargs = config_kwargs
def run(self):
import apache_beam as beam
if self._name is not None and self._all_configs:
print("Both parameters `name` and `all_configs` can't be used at once.")
exit(1)
path, config_name = self._dataset, self._name
dataset_module = dataset_module_factory(path)
builder_cls = import_main_class(dataset_module.module_path)
builders: List[DatasetBuilder] = []
if self._beam_pipeline_options:
beam_options = beam.options.pipeline_options.PipelineOptions(
flags=[f"--{opt.strip()}" for opt in self._beam_pipeline_options.split(",") if opt]
)
else:
beam_options = None
if self._all_configs and len(builder_cls.BUILDER_CONFIGS) > 0:
for builder_config in builder_cls.BUILDER_CONFIGS:
builders.append(
builder_cls(
config_name=builder_config.name,
data_dir=self._data_dir,
hash=dataset_module.hash,
beam_options=beam_options,
cache_dir=self._cache_dir,
base_path=dataset_module.builder_kwargs.get("base_path"),
)
)
else:
builders.append(
builder_cls(
config_name=config_name,
data_dir=self._data_dir,
beam_options=beam_options,
cache_dir=self._cache_dir,
base_path=dataset_module.builder_kwargs.get("base_path"),
**self._config_kwargs,
)
)
for builder in builders:
builder.download_and_prepare(
download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS
if not self._force_redownload
else DownloadMode.FORCE_REDOWNLOAD,
download_config=DownloadConfig(cache_dir=config.DOWNLOADED_DATASETS_PATH),
verification_mode=VerificationMode.NO_CHECKS
if self._ignore_verifications
else VerificationMode.ALL_CHECKS,
try_from_hf_gcs=False,
)
if self._save_infos:
builder._save_infos()
print("Apache beam run successful.")
# If save_infos=True, the dataset infos file is created next to the loaded module file.
# Let's move it to the original directory of the dataset script, to allow the user to
# upload them on S3 at the same time afterwards.
if self._save_infos:
dataset_infos_path = os.path.join(builder_cls.get_imported_module_dir(), config.DATASETDICT_INFOS_FILENAME)
name = Path(path).name + ".py"
combined_path = os.path.join(path, name)
if os.path.isfile(path):
dataset_dir = os.path.dirname(path)
elif os.path.isfile(combined_path):
dataset_dir = path
else: # in case of a remote dataset
print(f"Dataset Infos file saved at {dataset_infos_path}")
exit(1)
# Move datasetinfo back to the user
user_dataset_infos_path = os.path.join(dataset_dir, config.DATASETDICT_INFOS_FILENAME)
copyfile(dataset_infos_path, user_dataset_infos_path)
print(f"Dataset Infos file saved at {user_dataset_infos_path}")
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/commands/convert.py | import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
HIGHLIGHT_MESSAGE_PRE = """<<<<<<< This should probably be modified because it mentions: """
HIGHLIGHT_MESSAGE_POST = """=======
>>>>>>>
"""
TO_HIGHLIGHT = [
"TextEncoderConfig",
"ByteTextEncoder",
"SubwordTextEncoder",
"encoder_config",
"maybe_build_from_corpus",
"manual_dir",
]
TO_CONVERT = [
# (pattern, replacement)
# Order is important here for some replacements
(r"tfds\.core", r"datasets"),
(r"tf\.io\.gfile\.GFile", r"open"),
(r"tf\.([\w\d]+)", r"datasets.Value('\1')"),
(r"tfds\.features\.Text\(\)", r"datasets.Value('string')"),
(r"tfds\.features\.Text\(", r"datasets.Value('string'),"),
(r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("),
(r"tfds\.features\.FeaturesDict\(", r"dict("),
(r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"),
(r"tfds\.", r"datasets."),
(r"dl_manager\.manual_dir", r"self.config.data_dir"),
(r"self\.builder_config", r"self.config"),
]
def convert_command_factory(args: Namespace):
"""
Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint.
Returns: ConvertCommand
"""
return ConvertCommand(args.tfds_path, args.datasets_directory)
class ConvertCommand(BaseDatasetsCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
"""
Register this command to argparse so it's available for the datasets-cli
Args:
parser: Root parser to register command-specific arguments
"""
train_parser = parser.add_parser(
"convert",
help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.",
)
train_parser.add_argument(
"--tfds_path",
type=str,
required=True,
help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.",
)
train_parser.add_argument(
"--datasets_directory", type=str, required=True, help="Path to the HuggingFace Datasets folder."
)
train_parser.set_defaults(func=convert_command_factory)
def __init__(self, tfds_path: str, datasets_directory: str, *args):
self._logger = get_logger("datasets-cli/converting")
self._tfds_path = tfds_path
self._datasets_directory = datasets_directory
def run(self):
if os.path.isdir(self._tfds_path):
abs_tfds_path = os.path.abspath(self._tfds_path)
elif os.path.isfile(self._tfds_path):
abs_tfds_path = os.path.dirname(self._tfds_path)
else:
raise ValueError("--tfds_path is neither a directory nor a file. Please check path.")
abs_datasets_path = os.path.abspath(self._datasets_directory)
self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}")
utils_files = []
with_manual_update = []
imports_to_builder_map = {}
if os.path.isdir(self._tfds_path):
file_names = os.listdir(abs_tfds_path)
else:
file_names = [os.path.basename(self._tfds_path)]
for f_name in file_names:
self._logger.info(f"Looking at file {f_name}")
input_file = os.path.join(abs_tfds_path, f_name)
output_file = os.path.join(abs_datasets_path, f_name)
if not os.path.isfile(input_file) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info("Skipping file")
continue
with open(input_file, encoding="utf-8") as f:
lines = f.readlines()
out_lines = []
is_builder = False
needs_manual_update = False
tfds_imports = []
for line in lines:
out_line = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
out_line = "import datasets\n"
elif "import tensorflow" in out_line:
# order is important here
out_line = ""
continue
elif "from absl import logging" in out_line:
out_line = "from datasets import logging\n"
elif "getLogger" in out_line:
out_line = out_line.replace("getLogger", "get_logger")
elif any(expression in out_line for expression in TO_HIGHLIGHT):
needs_manual_update = True
to_remove = list(filter(lambda e: e in out_line, TO_HIGHLIGHT))
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(to_remove) + "\n")
out_lines.append(out_line)
out_lines.append(HIGHLIGHT_MESSAGE_POST)
continue
else:
for pattern, replacement in TO_CONVERT:
out_line = re.sub(pattern, replacement, out_line)
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
match = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)", out_line)
tfds_imports.extend(imp.strip() for imp in match.group(1).split(","))
out_line = "from . import " + match.group(1)
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(f"Error converting {out_line.strip()}")
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
is_builder = True
out_lines.append(out_line)
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
dir_name = f_name.replace(".py", "")
output_dir = os.path.join(abs_datasets_path, dir_name)
output_file = os.path.join(output_dir, f_name)
os.makedirs(output_dir, exist_ok=True)
self._logger.info(f"Adding directory {output_dir}")
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports})
else:
# Utilities will be moved at the end
utils_files.append(output_file)
if needs_manual_update:
with_manual_update.append(output_file)
with open(output_file, "w", encoding="utf-8") as f:
f.writelines(out_lines)
self._logger.info(f"Converted in {output_file}")
for utils_file in utils_files:
try:
f_name = os.path.basename(utils_file)
dest_folder = imports_to_builder_map[f_name.replace(".py", "")]
self._logger.info(f"Moving {dest_folder} to {utils_file}")
shutil.copy(utils_file, dest_folder)
except KeyError:
self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually.")
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'."
)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/commands/test.py | import os
from argparse import ArgumentParser
from pathlib import Path
from shutil import copyfile, rmtree
from typing import Generator
import datasets.config
from datasets.builder import DatasetBuilder
from datasets.commands import BaseDatasetsCLICommand
from datasets.download.download_manager import DownloadMode
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.filelock import logger as fl_logger
from datasets.utils.info_utils import VerificationMode
from datasets.utils.logging import ERROR, get_logger
logger = get_logger(__name__)
def _test_command_factory(args):
return TestCommand(
args.dataset,
args.name,
args.cache_dir,
args.data_dir,
args.all_configs,
args.save_info or args.save_infos,
args.ignore_verifications,
args.force_redownload,
args.clear_cache,
)
class TestCommand(BaseDatasetsCLICommand):
__test__ = False # to tell pytest it's not a test class
@staticmethod
def register_subcommand(parser: ArgumentParser):
test_parser = parser.add_parser("test", help="Test dataset implementation.")
test_parser.add_argument("--name", type=str, default=None, help="Dataset processing name")
test_parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="Cache directory where the datasets are stored.",
)
test_parser.add_argument(
"--data_dir",
type=str,
default=None,
help="Can be used to specify a manual directory to get the files from.",
)
test_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations")
test_parser.add_argument(
"--save_info", action="store_true", help="Save the dataset infos in the dataset card (README.md)"
)
test_parser.add_argument(
"--ignore_verifications",
action="store_true",
help="Run the test without checksums and splits checks.",
)
test_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload")
test_parser.add_argument(
"--clear_cache",
action="store_true",
help="Remove downloaded files and cached datasets after each config test",
)
# aliases
test_parser.add_argument("--save_infos", action="store_true", help="alias to save_info")
test_parser.add_argument("dataset", type=str, help="Name of the dataset to download")
test_parser.set_defaults(func=_test_command_factory)
def __init__(
self,
dataset: str,
name: str,
cache_dir: str,
data_dir: str,
all_configs: bool,
save_infos: bool,
ignore_verifications: bool,
force_redownload: bool,
clear_cache: bool,
):
self._dataset = dataset
self._name = name
self._cache_dir = cache_dir
self._data_dir = data_dir
self._all_configs = all_configs
self._save_infos = save_infos
self._ignore_verifications = ignore_verifications
self._force_redownload = force_redownload
self._clear_cache = clear_cache
if clear_cache and not cache_dir:
print(
"When --clear_cache is used, specifying a cache directory is mandatory.\n"
"The 'download' folder of the cache directory and the dataset builder cache will be deleted after each configuration test.\n"
"Please provide a --cache_dir that will be used to test the dataset script."
)
exit(1)
if save_infos:
self._ignore_verifications = True
def run(self):
fl_logger().setLevel(ERROR)
if self._name is not None and self._all_configs:
print("Both parameters `config` and `all_configs` can't be used at once.")
exit(1)
path, config_name = self._dataset, self._name
module = dataset_module_factory(path)
builder_cls = import_main_class(module.module_path)
n_builders = len(builder_cls.BUILDER_CONFIGS) if self._all_configs and builder_cls.BUILDER_CONFIGS else 1
def get_builders() -> Generator[DatasetBuilder, None, None]:
if self._all_configs and builder_cls.BUILDER_CONFIGS:
for i, config in enumerate(builder_cls.BUILDER_CONFIGS):
if "config_name" in module.builder_kwargs:
yield builder_cls(
cache_dir=self._cache_dir,
data_dir=self._data_dir,
**module.builder_kwargs,
)
else:
yield builder_cls(
config_name=config.name,
cache_dir=self._cache_dir,
data_dir=self._data_dir,
**module.builder_kwargs,
)
else:
if "config_name" in module.builder_kwargs:
yield builder_cls(cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs)
else:
yield builder_cls(
config_name=config_name,
cache_dir=self._cache_dir,
data_dir=self._data_dir,
**module.builder_kwargs,
)
for j, builder in enumerate(get_builders()):
print(f"Testing builder '{builder.config.name}' ({j + 1}/{n_builders})")
builder._record_infos = os.path.exists(
os.path.join(builder.get_imported_module_dir(), datasets.config.DATASETDICT_INFOS_FILENAME)
) # record checksums only if we need to update a (deprecated) dataset_infos.json
builder.download_and_prepare(
download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS
if not self._force_redownload
else DownloadMode.FORCE_REDOWNLOAD,
verification_mode=VerificationMode.NO_CHECKS
if self._ignore_verifications
else VerificationMode.ALL_CHECKS,
try_from_hf_gcs=False,
)
builder.as_dataset()
if self._save_infos:
builder._save_infos()
# If save_infos=True, the dataset card (README.md) is created next to the loaded module file.
# The dataset_infos are saved in the YAML part of the README.md
# Let's move it to the original directory of the dataset script, to allow the user to
# upload them on S3 at the same time afterwards.
if self._save_infos:
dataset_readme_path = os.path.join(builder_cls.get_imported_module_dir(), "README.md")
name = Path(path).name + ".py"
combined_path = os.path.join(path, name)
if os.path.isfile(path):
dataset_dir = os.path.dirname(path)
elif os.path.isfile(combined_path):
dataset_dir = path
elif os.path.isdir(path): # for local directories containing only data files
dataset_dir = path
else: # in case of a remote dataset
dataset_dir = None
print(f"Dataset card saved at {dataset_readme_path}")
# Move dataset_info back to the user
if dataset_dir is not None:
user_dataset_readme_path = os.path.join(dataset_dir, "README.md")
copyfile(dataset_readme_path, user_dataset_readme_path)
print(f"Dataset card saved at {user_dataset_readme_path}")
# If clear_cache=True, the download folder and the dataset builder cache directory are deleted
if self._clear_cache:
if os.path.isdir(builder._cache_dir):
logger.warning(f"Clearing cache at {builder._cache_dir}")
rmtree(builder._cache_dir)
download_dir = os.path.join(self._cache_dir, datasets.config.DOWNLOADED_DATASETS_DIR)
if os.path.isdir(download_dir):
logger.warning(f"Clearing cache at {download_dir}")
rmtree(download_dir)
print("Test successful.")
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/commands/datasets_cli.py | #!/usr/bin/env python
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def parse_unknown_args(unknown_args):
return {key.lstrip("-"): value for key, value in zip(unknown_args[::2], unknown_args[1::2])}
def main():
parser = ArgumentParser(
"HuggingFace Datasets CLI tool", usage="datasets-cli <command> [<args>]", allow_abbrev=False
)
commands_parser = parser.add_subparsers(help="datasets-cli command helpers")
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(commands_parser)
EnvironmentCommand.register_subcommand(commands_parser)
TestCommand.register_subcommand(commands_parser)
RunBeamCommand.register_subcommand(commands_parser)
DummyDataCommand.register_subcommand(commands_parser)
# Parse args
args, unknown_args = parser.parse_known_args()
if not hasattr(args, "func"):
parser.print_help()
exit(1)
kwargs = parse_unknown_args(unknown_args)
# Run
service = args.func(args, **kwargs)
service.run()
if __name__ == "__main__":
main()
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/formatting/__init__.py | # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
logger = logging.get_logger(__name__)
_FORMAT_TYPES: Dict[Optional[str], Type[Formatter]] = {}
_FORMAT_TYPES_ALIASES: Dict[Optional[str], str] = {}
_FORMAT_TYPES_ALIASES_UNAVAILABLE: Dict[Optional[str], Exception] = {}
def _register_formatter(
formatter_cls: type,
format_type: Optional[str],
aliases: Optional[List[str]] = None,
):
"""
Register a Formatter object using a name and optional aliases.
This function must be used on a Formatter class.
"""
aliases = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})"
)
_FORMAT_TYPES[format_type] = formatter_cls
for alias in set(aliases + [format_type]):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})"
)
_FORMAT_TYPES_ALIASES[alias] = format_type
def _register_unavailable_formatter(
unavailable_error: Exception, format_type: Optional[str], aliases: Optional[List[str]] = None
):
"""
Register an unavailable Formatter object using a name and optional aliases.
This function must be used on an Exception object that is raised when trying to get the unavailable formatter.
"""
aliases = aliases if aliases is not None else []
for alias in set(aliases + [format_type]):
_FORMAT_TYPES_ALIASES_UNAVAILABLE[alias] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=["python"])
_register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"])
_register_formatter(NumpyFormatter, "numpy", aliases=["np"])
_register_formatter(PandasFormatter, "pandas", aliases=["pd"])
_register_formatter(CustomFormatter, "custom")
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"])
else:
_torch_error = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.")
_register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, "tensorflow", aliases=["tf"])
else:
_tf_error = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.")
_register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, "jax", aliases=[])
else:
_jax_error = ValueError("JAX needs to be installed to be able to return JAX arrays.")
_register_unavailable_formatter(_jax_error, "jax", aliases=[])
def get_format_type_from_alias(format_type: Optional[str]) -> Optional[str]:
"""If the given format type is a known alias, then return its main type name. Otherwise return the type with no change."""
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def get_formatter(format_type: Optional[str], **format_kwargs) -> Formatter:
"""
Factory function to get a Formatter given its type name and keyword arguments.
A formatter is an object that extracts and formats data from pyarrow table.
It defines the formatting for rows, colums and batches.
If the formatter for a given type name doesn't exist or is not available, an error is raised.
"""
format_type = get_format_type_from_alias(format_type)
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**format_kwargs)
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None)}, but got '{format_type}'"
)
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/formatting/formatting.py | # Copyright 2020 The HuggingFace Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Mapping, MutableMapping
from functools import partial
# Lint as: python3
from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar, Union
import numpy as np
import pandas as pd
import pyarrow as pa
from packaging import version
from .. import config
from ..features import Features
from ..features.features import _ArrayXDExtensionType, _is_zero_copy_only, decode_nested_example, pandas_types_mapper
from ..table import Table
from ..utils.py_utils import no_op_if_value_is_null
T = TypeVar("T")
RowFormat = TypeVar("RowFormat")
ColumnFormat = TypeVar("ColumnFormat")
BatchFormat = TypeVar("BatchFormat")
def _is_range_contiguous(key: range) -> bool:
return key.step == 1 and key.stop >= key.start
def _raise_bad_key_type(key: Any):
raise TypeError(
f"Wrong key type: '{key}' of type '{type(key)}'. Expected one of int, slice, range, str or Iterable."
)
def _query_table_with_indices_mapping(
table: Table, key: Union[int, slice, range, str, Iterable], indices: Table
) -> pa.Table:
"""
Query a pyarrow Table to extract the subtable that correspond to the given key.
The :obj:`indices` parameter corresponds to the indices mapping in case we cant to take into
account a shuffling or an indices selection for example.
The indices table must contain one column named "indices" of type uint64.
"""
if isinstance(key, int):
key = indices.fast_slice(key % indices.num_rows, 1).column(0)[0].as_py()
return _query_table(table, key)
if isinstance(key, slice):
key = range(*key.indices(indices.num_rows))
if isinstance(key, range):
if _is_range_contiguous(key) and key.start >= 0:
return _query_table(
table, [i.as_py() for i in indices.fast_slice(key.start, key.stop - key.start).column(0)]
)
else:
pass # treat as an iterable
if isinstance(key, str):
table = table.select([key])
return _query_table(table, indices.column(0).to_pylist())
if isinstance(key, Iterable):
return _query_table(table, [indices.fast_slice(i, 1).column(0)[0].as_py() for i in key])
_raise_bad_key_type(key)
def _query_table(table: Table, key: Union[int, slice, range, str, Iterable]) -> pa.Table:
"""
Query a pyarrow Table to extract the subtable that correspond to the given key.
"""
if isinstance(key, int):
return table.fast_slice(key % table.num_rows, 1)
if isinstance(key, slice):
key = range(*key.indices(table.num_rows))
if isinstance(key, range):
if _is_range_contiguous(key) and key.start >= 0:
return table.fast_slice(key.start, key.stop - key.start)
else:
pass # treat as an iterable
if isinstance(key, str):
return table.table.drop([column for column in table.column_names if column != key])
if isinstance(key, Iterable):
key = np.fromiter(key, np.int64)
if len(key) == 0:
return table.table.slice(0, 0)
# don't use pyarrow.Table.take even for pyarrow >=1.0 (see https://issues.apache.org/jira/browse/ARROW-9773)
return table.fast_gather(key % table.num_rows)
_raise_bad_key_type(key)
def _is_array_with_nulls(pa_array: pa.Array) -> bool:
return pa_array.null_count > 0
class BaseArrowExtractor(Generic[RowFormat, ColumnFormat, BatchFormat]):
"""
Arrow extractor are used to extract data from pyarrow tables.
It makes it possible to extract rows, columns and batches.
These three extractions types have to be implemented.
"""
def extract_row(self, pa_table: pa.Table) -> RowFormat:
raise NotImplementedError
def extract_column(self, pa_table: pa.Table) -> ColumnFormat:
raise NotImplementedError
def extract_batch(self, pa_table: pa.Table) -> BatchFormat:
raise NotImplementedError
def _unnest(py_dict: Dict[str, List[T]]) -> Dict[str, T]:
"""Return the first element of a batch (dict) as a row (dict)"""
return {key: array[0] for key, array in py_dict.items()}
class SimpleArrowExtractor(BaseArrowExtractor[pa.Table, pa.Array, pa.Table]):
def extract_row(self, pa_table: pa.Table) -> pa.Table:
return pa_table
def extract_column(self, pa_table: pa.Table) -> pa.Array:
return pa_table.column(0)
def extract_batch(self, pa_table: pa.Table) -> pa.Table:
return pa_table
class PythonArrowExtractor(BaseArrowExtractor[dict, list, dict]):
def extract_row(self, pa_table: pa.Table) -> dict:
return _unnest(pa_table.to_pydict())
def extract_column(self, pa_table: pa.Table) -> list:
return pa_table.column(0).to_pylist()
def extract_batch(self, pa_table: pa.Table) -> dict:
return pa_table.to_pydict()
class NumpyArrowExtractor(BaseArrowExtractor[dict, np.ndarray, dict]):
def __init__(self, **np_array_kwargs):
self.np_array_kwargs = np_array_kwargs
def extract_row(self, pa_table: pa.Table) -> dict:
return _unnest(self.extract_batch(pa_table))
def extract_column(self, pa_table: pa.Table) -> np.ndarray:
return self._arrow_array_to_numpy(pa_table[pa_table.column_names[0]])
def extract_batch(self, pa_table: pa.Table) -> dict:
return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names}
def _arrow_array_to_numpy(self, pa_array: pa.Array) -> np.ndarray:
if isinstance(pa_array, pa.ChunkedArray):
if isinstance(pa_array.type, _ArrayXDExtensionType):
# don't call to_pylist() to preserve dtype of the fixed-size array
zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True)
array: List = [
row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only)
]
else:
zero_copy_only = _is_zero_copy_only(pa_array.type) and all(
not _is_array_with_nulls(chunk) for chunk in pa_array.chunks
)
array: List = [
row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only)
]
else:
if isinstance(pa_array.type, _ArrayXDExtensionType):
# don't call to_pylist() to preserve dtype of the fixed-size array
zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True)
array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only)
else:
zero_copy_only = _is_zero_copy_only(pa_array.type) and not _is_array_with_nulls(pa_array)
array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist()
if len(array) > 0:
if any(
(isinstance(x, np.ndarray) and (x.dtype == object or x.shape != array[0].shape))
or (isinstance(x, float) and np.isnan(x))
for x in array
):
return np.array(array, copy=False, dtype=object)
return np.array(array, copy=False)
class PandasArrowExtractor(BaseArrowExtractor[pd.DataFrame, pd.Series, pd.DataFrame]):
def extract_row(self, pa_table: pa.Table) -> pd.DataFrame:
return pa_table.slice(length=1).to_pandas(types_mapper=pandas_types_mapper)
def extract_column(self, pa_table: pa.Table) -> pd.Series:
return pa_table.select([0]).to_pandas(types_mapper=pandas_types_mapper)[pa_table.column_names[0]]
def extract_batch(self, pa_table: pa.Table) -> pd.DataFrame:
return pa_table.to_pandas(types_mapper=pandas_types_mapper)
class PythonFeaturesDecoder:
def __init__(self, features: Optional[Features]):
self.features = features
def decode_row(self, row: dict) -> dict:
return self.features.decode_example(row) if self.features else row
def decode_column(self, column: list, column_name: str) -> list:
return self.features.decode_column(column, column_name) if self.features else column
def decode_batch(self, batch: dict) -> dict:
return self.features.decode_batch(batch) if self.features else batch
class PandasFeaturesDecoder:
def __init__(self, features: Optional[Features]):
self.features = features
def decode_row(self, row: pd.DataFrame) -> pd.DataFrame:
decode = (
{
column_name: no_op_if_value_is_null(partial(decode_nested_example, feature))
for column_name, feature in self.features.items()
if self.features._column_requires_decoding[column_name]
}
if self.features
else {}
)
if decode:
row[list(decode.keys())] = row.transform(decode)
return row
def decode_column(self, column: pd.Series, column_name: str) -> pd.Series:
decode = (
no_op_if_value_is_null(partial(decode_nested_example, self.features[column_name]))
if self.features and column_name in self.features and self.features._column_requires_decoding[column_name]
else None
)
if decode:
column = column.transform(decode)
return column
def decode_batch(self, batch: pd.DataFrame) -> pd.DataFrame:
return self.decode_row(batch)
class LazyDict(MutableMapping):
"""A dictionary backed by Arrow data. The values are formatted on-the-fly when accessing the dictionary."""
def __init__(self, pa_table: pa.Table, formatter: "Formatter"):
self.pa_table = pa_table
self.formatter = formatter
self.data = {key: None for key in pa_table.column_names}
self.keys_to_format = set(self.data.keys())
def __len__(self):
return len(self.data)
def __getitem__(self, key):
value = self.data[key]
if key in self.keys_to_format:
value = self.format(key)
self.data[key] = value
self.keys_to_format.remove(key)
return value
def __setitem__(self, key, value):
if key in self.keys_to_format:
self.keys_to_format.remove(key)
self.data[key] = value
def __delitem__(self, key) -> None:
if key in self.keys_to_format:
self.keys_to_format.remove(key)
del self.data[key]
def __iter__(self):
return iter(self.data)
def __contains__(self, key):
return key in self.data
def __repr__(self):
self._format_all()
return repr(self.data)
if config.PY_VERSION >= version.parse("3.9"):
# merging with the union ("|") operator is supported in Python 3.9+
def __or__(self, other):
if isinstance(other, LazyDict):
inst = self.copy()
other = other.copy()
other._format_all()
inst.keys_to_format -= other.data.keys()
inst.data = inst.data | other.data
return inst
if isinstance(other, dict):
inst = self.copy()
inst.keys_to_format -= other.keys()
inst.data = inst.data | other
return inst
return NotImplemented
def __ror__(self, other):
if isinstance(other, LazyDict):
inst = self.copy()
other = other.copy()
other._format_all()
inst.keys_to_format -= other.data.keys()
inst.data = other.data | inst.data
return inst
if isinstance(other, dict):
inst = self.copy()
inst.keys_to_format -= other.keys()
inst.data = other | inst.data
return inst
return NotImplemented
def __ior__(self, other):
if isinstance(other, LazyDict):
other = other.copy()
other._format_all()
self.keys_to_format -= other.data.keys()
self.data |= other.data
else:
self.keys_to_format -= other.keys()
self.data |= other
return self
def __copy__(self):
# Identical to `UserDict.__copy__`
inst = self.__class__.__new__(self.__class__)
inst.__dict__.update(self.__dict__)
# Create a copy and avoid triggering descriptors
inst.__dict__["data"] = self.__dict__["data"].copy()
inst.__dict__["keys_to_format"] = self.__dict__["keys_to_format"].copy()
return inst
def copy(self):
import copy
return copy.copy(self)
@classmethod
def fromkeys(cls, iterable, value=None):
raise NotImplementedError
def format(self, key):
raise NotImplementedError
def _format_all(self):
for key in self.keys_to_format:
self.data[key] = self.format(key)
self.keys_to_format.clear()
class LazyRow(LazyDict):
def format(self, key):
return self.formatter.format_column(self.pa_table.select([key]))[0]
class LazyBatch(LazyDict):
def format(self, key):
return self.formatter.format_column(self.pa_table.select([key]))
class Formatter(Generic[RowFormat, ColumnFormat, BatchFormat]):
"""
A formatter is an object that extracts and formats data from pyarrow tables.
It defines the formatting for rows, columns and batches.
"""
simple_arrow_extractor = SimpleArrowExtractor
python_arrow_extractor = PythonArrowExtractor
numpy_arrow_extractor = NumpyArrowExtractor
pandas_arrow_extractor = PandasArrowExtractor
def __init__(self, features: Optional[Features] = None):
self.features = features
self.python_features_decoder = PythonFeaturesDecoder(self.features)
self.pandas_features_decoder = PandasFeaturesDecoder(self.features)
def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]:
if query_type == "row":
return self.format_row(pa_table)
elif query_type == "column":
return self.format_column(pa_table)
elif query_type == "batch":
return self.format_batch(pa_table)
def format_row(self, pa_table: pa.Table) -> RowFormat:
raise NotImplementedError
def format_column(self, pa_table: pa.Table) -> ColumnFormat:
raise NotImplementedError
def format_batch(self, pa_table: pa.Table) -> BatchFormat:
raise NotImplementedError
class TensorFormatter(Formatter[RowFormat, ColumnFormat, BatchFormat]):
def recursive_tensorize(self, data_struct: dict):
raise NotImplementedError
class ArrowFormatter(Formatter[pa.Table, pa.Array, pa.Table]):
def format_row(self, pa_table: pa.Table) -> pa.Table:
return self.simple_arrow_extractor().extract_row(pa_table)
def format_column(self, pa_table: pa.Table) -> pa.Array:
return self.simple_arrow_extractor().extract_column(pa_table)
def format_batch(self, pa_table: pa.Table) -> pa.Table:
return self.simple_arrow_extractor().extract_batch(pa_table)
class PythonFormatter(Formatter[Mapping, list, Mapping]):
def __init__(self, features=None, lazy=False):
super().__init__(features)
self.lazy = lazy
def format_row(self, pa_table: pa.Table) -> Mapping:
if self.lazy:
return LazyRow(pa_table, self)
row = self.python_arrow_extractor().extract_row(pa_table)
row = self.python_features_decoder.decode_row(row)
return row
def format_column(self, pa_table: pa.Table) -> list:
column = self.python_arrow_extractor().extract_column(pa_table)
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
return column
def format_batch(self, pa_table: pa.Table) -> Mapping:
if self.lazy:
return LazyBatch(pa_table, self)
batch = self.python_arrow_extractor().extract_batch(pa_table)
batch = self.python_features_decoder.decode_batch(batch)
return batch
class PandasFormatter(Formatter[pd.DataFrame, pd.Series, pd.DataFrame]):
def format_row(self, pa_table: pa.Table) -> pd.DataFrame:
row = self.pandas_arrow_extractor().extract_row(pa_table)
row = self.pandas_features_decoder.decode_row(row)
return row
def format_column(self, pa_table: pa.Table) -> pd.Series:
column = self.pandas_arrow_extractor().extract_column(pa_table)
column = self.pandas_features_decoder.decode_column(column, pa_table.column_names[0])
return column
def format_batch(self, pa_table: pa.Table) -> pd.DataFrame:
row = self.pandas_arrow_extractor().extract_batch(pa_table)
row = self.pandas_features_decoder.decode_batch(row)
return row
class CustomFormatter(Formatter[dict, ColumnFormat, dict]):
"""
A user-defined custom formatter function defined by a ``transform``.
The transform must take as input a batch of data extracted for an arrow table using the python extractor,
and return a batch.
If the output batch is not a dict, then output_all_columns won't work.
If the ouput batch has several fields, then querying a single column won't work since we don't know which field
to return.
"""
def __init__(self, transform: Callable[[dict], dict], features=None, **kwargs):
super().__init__(features=features)
self.transform = transform
def format_row(self, pa_table: pa.Table) -> dict:
formatted_batch = self.format_batch(pa_table)
try:
return _unnest(formatted_batch)
except Exception as exc:
raise TypeError(
f"Custom formatting function must return a dict of sequences to be able to pick a row, but got {formatted_batch}"
) from exc
def format_column(self, pa_table: pa.Table) -> ColumnFormat:
formatted_batch = self.format_batch(pa_table)
if hasattr(formatted_batch, "keys"):
if len(formatted_batch.keys()) > 1:
raise TypeError(
"Tried to query a column but the custom formatting function returns too many columns. "
f"Only one column was expected but got columns {list(formatted_batch.keys())}."
)
else:
raise TypeError(
f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}"
)
try:
return formatted_batch[pa_table.column_names[0]]
except Exception as exc:
raise TypeError(
f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}"
) from exc
def format_batch(self, pa_table: pa.Table) -> dict:
batch = self.python_arrow_extractor().extract_batch(pa_table)
batch = self.python_features_decoder.decode_batch(batch)
return self.transform(batch)
def _check_valid_column_key(key: str, columns: List[str]) -> None:
if key not in columns:
raise KeyError(f"Column {key} not in the dataset. Current columns in the dataset: {columns}")
def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None:
if isinstance(key, int):
if (key < 0 and key + size < 0) or (key >= size):
raise IndexError(f"Invalid key: {key} is out of bounds for size {size}")
return
elif isinstance(key, slice):
pass
elif isinstance(key, range):
if len(key) > 0:
_check_valid_index_key(max(key), size=size)
_check_valid_index_key(min(key), size=size)
elif isinstance(key, Iterable):
if len(key) > 0:
_check_valid_index_key(int(max(key)), size=size)
_check_valid_index_key(int(min(key)), size=size)
else:
_raise_bad_key_type(key)
def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str:
if isinstance(key, int):
return "row"
elif isinstance(key, str):
return "column"
elif isinstance(key, (slice, range, Iterable)):
return "batch"
_raise_bad_key_type(key)
def query_table(
table: Table,
key: Union[int, slice, range, str, Iterable],
indices: Optional[Table] = None,
) -> pa.Table:
"""
Query a Table to extract the subtable that correspond to the given key.
Args:
table (``datasets.table.Table``): The input Table to query from
key (``Union[int, slice, range, str, Iterable]``): The key can be of different types:
- an integer i: the subtable containing only the i-th row
- a slice [i:j:k]: the subtable containing the rows that correspond to this slice
- a range(i, j, k): the subtable containing the rows that correspond to this range
- a string c: the subtable containing all the rows but only the column c
- an iterable l: the subtable that is the concatenation of all the i-th rows for all i in the iterable
indices (Optional ``datasets.table.Table``): If not None, it is used to re-map the given key to the table rows.
The indices table must contain one column named "indices" of type uint64.
This is used in case of shuffling or rows selection.
Returns:
``pyarrow.Table``: the result of the query on the input table
"""
# Check if key is valid
if not isinstance(key, (int, slice, range, str, Iterable)):
_raise_bad_key_type(key)
if isinstance(key, str):
_check_valid_column_key(key, table.column_names)
else:
size = indices.num_rows if indices is not None else table.num_rows
_check_valid_index_key(key, size)
# Query the main table
if indices is None:
pa_subtable = _query_table(table, key)
else:
pa_subtable = _query_table_with_indices_mapping(table, key, indices=indices)
return pa_subtable
def format_table(
table: Table,
key: Union[int, slice, range, str, Iterable],
formatter: Formatter,
format_columns: Optional[list] = None,
output_all_columns=False,
):
"""
Format a Table depending on the key that was used and a Formatter object.
Args:
table (``datasets.table.Table``): The input Table to format
key (``Union[int, slice, range, str, Iterable]``): Depending on the key that was used, the formatter formats
the table as either a row, a column or a batch.
formatter (``datasets.formatting.formatting.Formatter``): Any subclass of a Formatter such as
PythonFormatter, NumpyFormatter, etc.
format_columns (:obj:`List[str]`, optional): if not None, it defines the columns that will be formatted using the
given formatter. Other columns are discarded (unless ``output_all_columns`` is True)
output_all_columns (:obj:`bool`, defaults to False). If True, the formatted output is completed using the columns
that are not in the ``format_columns`` list. For these columns, the PythonFormatter is used.
Returns:
A row, column or batch formatted object defined by the Formatter:
- the PythonFormatter returns a dictionary for a row or a batch, and a list for a column.
- the NumpyFormatter returns a dictionary for a row or a batch, and a np.array for a column.
- the PandasFormatter returns a pd.DataFrame for a row or a batch, and a pd.Series for a column.
- the TorchFormatter returns a dictionary for a row or a batch, and a torch.Tensor for a column.
- the TFFormatter returns a dictionary for a row or a batch, and a tf.Tensor for a column.
"""
if isinstance(table, Table):
pa_table = table.table
else:
pa_table = table
query_type = key_to_query_type(key)
python_formatter = PythonFormatter(features=None)
if format_columns is None:
return formatter(pa_table, query_type=query_type)
elif query_type == "column":
if key in format_columns:
return formatter(pa_table, query_type)
else:
return python_formatter(pa_table, query_type=query_type)
else:
pa_table_to_format = pa_table.drop(col for col in pa_table.column_names if col not in format_columns)
formatted_output = formatter(pa_table_to_format, query_type=query_type)
if output_all_columns:
if isinstance(formatted_output, MutableMapping):
pa_table_with_remaining_columns = pa_table.drop(
col for col in pa_table.column_names if col in format_columns
)
remaining_columns_dict = python_formatter(pa_table_with_remaining_columns, query_type=query_type)
formatted_output.update(remaining_columns_dict)
else:
raise TypeError(
f"Custom formatting function must return a dict to work with output_all_columns=True, but got {formatted_output}"
)
return formatted_output
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/formatting/torch_formatter.py | # Copyright 2020 The HuggingFace Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class TorchFormatter(TensorFormatter[Mapping, "torch.Tensor", Mapping]):
def __init__(self, features=None, **torch_tensor_kwargs):
super().__init__(features=features)
self.torch_tensor_kwargs = torch_tensor_kwargs
import torch # noqa import torch at initialization
def _consolidate(self, column):
import torch
if isinstance(column, list) and column:
if all(
isinstance(x, torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column
):
return torch.stack(column)
return column
def _tensorize(self, value):
import torch
if isinstance(value, (str, bytes, type(None))):
return value
elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character):
return value.tolist()
default_dtype = {}
if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer):
default_dtype = {"dtype": torch.int64}
elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating):
default_dtype = {"dtype": torch.float32}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(value, PIL.Image.Image):
value = np.asarray(value)
return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs})
def _recursive_tensorize(self, data_struct):
import torch
# support for torch, tf, jax etc.
if hasattr(data_struct, "__array__") and not isinstance(data_struct, torch.Tensor):
data_struct = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(data_struct, np.ndarray):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
elif isinstance(data_struct, (list, tuple)):
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
return self._tensorize(data_struct)
def recursive_tensorize(self, data_struct: dict):
return map_nested(self._recursive_tensorize, data_struct, map_list=False)
def format_row(self, pa_table: pa.Table) -> Mapping:
row = self.numpy_arrow_extractor().extract_row(pa_table)
row = self.python_features_decoder.decode_row(row)
return self.recursive_tensorize(row)
def format_column(self, pa_table: pa.Table) -> "torch.Tensor":
column = self.numpy_arrow_extractor().extract_column(pa_table)
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
column = self.recursive_tensorize(column)
column = self._consolidate(column)
return column
def format_batch(self, pa_table: pa.Table) -> Mapping:
batch = self.numpy_arrow_extractor().extract_batch(pa_table)
batch = self.python_features_decoder.decode_batch(batch)
batch = self.recursive_tensorize(batch)
for column_name in batch:
batch[column_name] = self._consolidate(batch[column_name])
return batch
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/formatting/tf_formatter.py | # Copyright 2020 The HuggingFace Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import tensorflow as tf
class TFFormatter(TensorFormatter[Mapping, "tf.Tensor", Mapping]):
def __init__(self, features=None, **tf_tensor_kwargs):
super().__init__(features=features)
self.tf_tensor_kwargs = tf_tensor_kwargs
import tensorflow as tf # noqa: F401 - import tf at initialization
def _consolidate(self, column):
import tensorflow as tf
if isinstance(column, list) and column:
if all(
isinstance(x, tf.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column
):
return tf.stack(column)
elif all(
isinstance(x, (tf.Tensor, tf.RaggedTensor)) and x.ndim == 1 and x.dtype == column[0].dtype
for x in column
):
# only rag 1-D tensors, otherwise some dimensions become ragged even though they were consolidated
return tf.ragged.stack(column)
return column
def _tensorize(self, value):
import tensorflow as tf
if value is None:
return value
default_dtype = {}
if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer):
default_dtype = {"dtype": tf.int64}
elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating):
default_dtype = {"dtype": tf.float32}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(value, PIL.Image.Image):
value = np.asarray(value)
return tf.convert_to_tensor(value, **{**default_dtype, **self.tf_tensor_kwargs})
def _recursive_tensorize(self, data_struct):
import tensorflow as tf
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(data_struct, torch.Tensor):
return self._tensorize(data_struct.detach().cpu().numpy()[()])
if hasattr(data_struct, "__array__") and not isinstance(data_struct, tf.Tensor):
data_struct = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(data_struct, np.ndarray):
if data_struct.dtype == object: # tf tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
elif isinstance(data_struct, (list, tuple)):
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
return self._tensorize(data_struct)
def recursive_tensorize(self, data_struct: dict):
return map_nested(self._recursive_tensorize, data_struct, map_list=False)
def format_row(self, pa_table: pa.Table) -> Mapping:
row = self.numpy_arrow_extractor().extract_row(pa_table)
row = self.python_features_decoder.decode_row(row)
return self.recursive_tensorize(row)
def format_column(self, pa_table: pa.Table) -> "tf.Tensor":
column = self.numpy_arrow_extractor().extract_column(pa_table)
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
column = self.recursive_tensorize(column)
column = self._consolidate(column)
return column
def format_batch(self, pa_table: pa.Table) -> Mapping:
batch = self.numpy_arrow_extractor().extract_batch(pa_table)
batch = self.python_features_decoder.decode_batch(batch)
batch = self.recursive_tensorize(batch)
for column_name in batch:
batch[column_name] = self._consolidate(batch[column_name])
return batch
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/formatting/jax_formatter.py | # Copyright 2021 The HuggingFace Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
logger = get_logger()
DEVICE_MAPPING: Optional[dict] = None
class JaxFormatter(TensorFormatter[Mapping, "jax.Array", Mapping]):
def __init__(self, features=None, device=None, **jnp_array_kwargs):
super().__init__(features=features)
import jax
from jaxlib.xla_client import Device
if isinstance(device, Device):
raise ValueError(
f"Expected {device} to be a `str` not {type(device)}, as `jaxlib.xla_extension.Device` "
"is not serializable neither with `pickle` nor with `dill`. Instead you can surround "
"the device with `str()` to get its string identifier that will be internally mapped "
"to the actual `jaxlib.xla_extension.Device`."
)
self.device = device if isinstance(device, str) else str(jax.devices()[0])
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
DEVICE_MAPPING = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys()):
logger.warning(
f"Device with string identifier {self.device} not listed among the available "
f"devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default "
f"device: {str(jax.devices()[0])}."
)
self.device = str(jax.devices()[0])
self.jnp_array_kwargs = jnp_array_kwargs
@staticmethod
def _map_devices_to_str() -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(device): device for device in jax.devices()}
def _consolidate(self, column):
import jax
import jax.numpy as jnp
if isinstance(column, list) and column:
if all(
isinstance(x, jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column
):
return jnp.stack(column, axis=0)
return column
def _tensorize(self, value):
import jax
import jax.numpy as jnp
if isinstance(value, (str, bytes, type(None))):
return value
elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character):
return value.tolist()
default_dtype = {}
if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_x64:
default_dtype = {"dtype": jnp.int64}
else:
default_dtype = {"dtype": jnp.int32}
elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating):
default_dtype = {"dtype": jnp.float32}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(value, PIL.Image.Image):
value = np.asarray(value)
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
DEVICE_MAPPING = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device]):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(value, **{**default_dtype, **self.jnp_array_kwargs})
def _recursive_tensorize(self, data_struct):
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(data_struct, torch.Tensor):
return self._tensorize(data_struct.detach().cpu().numpy()[()])
if hasattr(data_struct, "__array__") and not isinstance(data_struct, jax.Array):
data_struct = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(data_struct, np.ndarray):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
elif isinstance(data_struct, (list, tuple)):
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
return self._tensorize(data_struct)
def recursive_tensorize(self, data_struct: dict):
return map_nested(self._recursive_tensorize, data_struct, map_list=False)
def format_row(self, pa_table: pa.Table) -> Mapping:
row = self.numpy_arrow_extractor().extract_row(pa_table)
row = self.python_features_decoder.decode_row(row)
return self.recursive_tensorize(row)
def format_column(self, pa_table: pa.Table) -> "jax.Array":
column = self.numpy_arrow_extractor().extract_column(pa_table)
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
column = self.recursive_tensorize(column)
column = self._consolidate(column)
return column
def format_batch(self, pa_table: pa.Table) -> Mapping:
batch = self.numpy_arrow_extractor().extract_batch(pa_table)
batch = self.python_features_decoder.decode_batch(batch)
batch = self.recursive_tensorize(batch)
for column_name in batch:
batch[column_name] = self._consolidate(batch[column_name])
return batch
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/formatting/np_formatter.py | # Copyright 2020 The HuggingFace Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from collections.abc import Mapping
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
class NumpyFormatter(TensorFormatter[Mapping, np.ndarray, Mapping]):
def __init__(self, features=None, **np_array_kwargs):
super().__init__(features=features)
self.np_array_kwargs = np_array_kwargs
def _consolidate(self, column):
if isinstance(column, list):
if column and all(
isinstance(x, np.ndarray) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column
):
return np.stack(column)
else:
# don't use np.array(column, dtype=object)
# since it fails in certain cases
# see https://stackoverflow.com/q/51005699
out = np.empty(len(column), dtype=object)
out[:] = column
return out
return column
def _tensorize(self, value):
if isinstance(value, (str, bytes, type(None))):
return value
elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character):
return value
elif isinstance(value, np.number):
return value
default_dtype = {}
if isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.integer):
default_dtype = {"dtype": np.int64}
elif isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.floating):
default_dtype = {"dtype": np.float32}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(value, PIL.Image.Image):
return np.asarray(value, **self.np_array_kwargs)
return np.asarray(value, **{**default_dtype, **self.np_array_kwargs})
def _recursive_tensorize(self, data_struct):
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(data_struct, torch.Tensor):
return self._tensorize(data_struct.detach().cpu().numpy()[()])
if hasattr(data_struct, "__array__") and not isinstance(data_struct, (np.ndarray, np.character, np.number)):
data_struct = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(data_struct, np.ndarray):
if data_struct.dtype == object:
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
if isinstance(data_struct, (list, tuple)):
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
return self._tensorize(data_struct)
def recursive_tensorize(self, data_struct: dict):
return map_nested(self._recursive_tensorize, data_struct, map_list=False)
def format_row(self, pa_table: pa.Table) -> Mapping:
row = self.numpy_arrow_extractor().extract_row(pa_table)
row = self.python_features_decoder.decode_row(row)
return self.recursive_tensorize(row)
def format_column(self, pa_table: pa.Table) -> np.ndarray:
column = self.numpy_arrow_extractor().extract_column(pa_table)
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
column = self.recursive_tensorize(column)
column = self._consolidate(column)
return column
def format_batch(self, pa_table: pa.Table) -> Mapping:
batch = self.numpy_arrow_extractor().extract_batch(pa_table)
batch = self.python_features_decoder.decode_batch(batch)
batch = self.recursive_tensorize(batch)
for column_name in batch:
batch[column_name] = self._consolidate(batch[column_name])
return batch
| 0 |
hf_public_repos/datasets/src/datasets | hf_public_repos/datasets/src/datasets/features/image.py | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.download_config import DownloadConfig
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
_IMAGE_COMPRESSION_FORMATS: Optional[List[str]] = None
_NATIVE_BYTEORDER = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
_VALID_IMAGE_ARRAY_DTPYES = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class Image:
"""Image [`Feature`] to read image data from an image file.
Input: The Image feature accepts as input:
- A `str`: Absolute path to the image file (i.e. random access is allowed).
- A `dict` with the keys:
- `path`: String with relative path of the image file to the archive file.
- `bytes`: Bytes of the image file.
This is useful for archived files with sequential access.
- An `np.ndarray`: NumPy array representing an image.
- A `PIL.Image.Image`: PIL image object.
Args:
decode (`bool`, defaults to `True`):
Whether to decode the image data. If `False`,
returns the underlying dictionary in the format `{"path": image_path, "bytes": image_bytes}`.
Examples:
```py
>>> from datasets import load_dataset, Image
>>> ds = load_dataset("beans", split="train")
>>> ds.features["image"]
Image(decode=True, id=None)
>>> ds[0]["image"]
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x500 at 0x15E52E7F0>
>>> ds = ds.cast_column('image', Image(decode=False))
{'bytes': None,
'path': '/root/.cache/huggingface/datasets/downloads/extracted/b0a21163f78769a2cf11f58dfc767fb458fc7cea5c05dccc0144a2c0f0bc1292/train/healthy/healthy_train.85.jpg'}
```
"""
decode: bool = True
id: Optional[str] = None
# Automatically constructed
dtype: ClassVar[str] = "PIL.Image.Image"
pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()})
_type: str = field(default="Image", init=False, repr=False)
def __call__(self):
return self.pa_type
def encode_example(self, value: Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict:
"""Encode example into a format for Arrow.
Args:
value (`str`, `np.ndarray`, `PIL.Image.Image` or `dict`):
Data passed as input to Image feature.
Returns:
`dict` with "path" and "bytes" fields
"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'.")
if isinstance(value, list):
value = np.array(value)
if isinstance(value, str):
return {"path": value, "bytes": None}
elif isinstance(value, bytes):
return {"path": None, "bytes": value}
elif isinstance(value, np.ndarray):
# convert the image array to PNG/TIFF bytes
return encode_np_array(value)
elif isinstance(value, PIL.Image.Image):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(value)
elif value.get("path") is not None and os.path.isfile(value["path"]):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("path")}
elif value.get("bytes") is not None or value.get("path") is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("bytes"), "path": value.get("path")}
else:
raise ValueError(
f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}."
)
def decode_example(self, value: dict, token_per_repo_id=None) -> "PIL.Image.Image":
"""Decode example image file into image data.
Args:
value (`str` or `dict`):
A string with the absolute image file path, a dictionary with
keys:
- `path`: String with absolute or relative image file path.
- `bytes`: The bytes of the image file.
token_per_repo_id (`dict`, *optional*):
To access and decode
image files from private repositories on the Hub, you can pass
a dictionary repo_id (`str`) -> token (`bool` or `str`).
Returns:
`PIL.Image.Image`
"""
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead.")
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support decoding images, please install 'Pillow'.")
if token_per_repo_id is None:
token_per_repo_id = {}
path, bytes_ = value["path"], value["bytes"]
if bytes_ is None:
if path is None:
raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}.")
else:
if is_local_path(path):
image = PIL.Image.open(path)
else:
source_url = path.split("::")[-1]
try:
repo_id = string_to_dict(source_url, config.HUB_DATASETS_URL)["repo_id"]
token = token_per_repo_id.get(repo_id)
except ValueError:
token = None
download_config = DownloadConfig(token=token)
with xopen(path, "rb", download_config=download_config) as f:
bytes_ = BytesIO(f.read())
image = PIL.Image.open(bytes_)
else:
image = PIL.Image.open(BytesIO(bytes_))
image.load() # to avoid "Too many open files" errors
return image
def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]:
"""If in the decodable state, return the feature itself, otherwise flatten the feature into a dictionary."""
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("binary"),
"path": Value("string"),
}
)
def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray:
"""Cast an Arrow array to the Image arrow storage type.
The Arrow types that can be converted to the Image pyarrow storage type are:
- `pa.string()` - it must contain the "path" data
- `pa.binary()` - it must contain the image bytes
- `pa.struct({"bytes": pa.binary()})`
- `pa.struct({"path": pa.string()})`
- `pa.struct({"bytes": pa.binary(), "path": pa.string()})` - order doesn't matter
- `pa.list(*)` - it must contain the image array data
Args:
storage (`Union[pa.StringArray, pa.StructArray, pa.ListArray]`):
PyArrow array to cast.
Returns:
`pa.StructArray`: Array in the Image arrow storage type, that is
`pa.struct({"bytes": pa.binary(), "path": pa.string()})`.
"""
if pa.types.is_string(storage.type):
bytes_array = pa.array([None] * len(storage), type=pa.binary())
storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null())
elif pa.types.is_binary(storage.type):
path_array = pa.array([None] * len(storage), type=pa.string())
storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null())
elif pa.types.is_struct(storage.type):
if storage.type.get_field_index("bytes") >= 0:
bytes_array = storage.field("bytes")
else:
bytes_array = pa.array([None] * len(storage), type=pa.binary())
if storage.type.get_field_index("path") >= 0:
path_array = storage.field("path")
else:
path_array = pa.array([None] * len(storage), type=pa.string())
storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null())
elif pa.types.is_list(storage.type):
bytes_array = pa.array(
[encode_np_array(np.array(arr))["bytes"] if arr is not None else None for arr in storage.to_pylist()],
type=pa.binary(),
)
path_array = pa.array([None] * len(storage), type=pa.string())
storage = pa.StructArray.from_arrays(
[bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()
)
return array_cast(storage, self.pa_type)
def embed_storage(self, storage: pa.StructArray) -> pa.StructArray:
"""Embed image files into the Arrow array.
Args:
storage (`pa.StructArray`):
PyArrow array to embed.
Returns:
`pa.StructArray`: Array in the Image arrow storage type, that is
`pa.struct({"bytes": pa.binary(), "path": pa.string()})`.
"""
@no_op_if_value_is_null
def path_to_bytes(path):
with xopen(path, "rb") as f:
bytes_ = f.read()
return bytes_
bytes_array = pa.array(
[
(path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
],
type=pa.binary(),
)
path_array = pa.array(
[os.path.basename(path) if path is not None else None for path in storage.field("path").to_pylist()],
type=pa.string(),
)
storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
return array_cast(storage, self.pa_type)
def list_image_compression_formats() -> List[str]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'.")
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
_IMAGE_COMPRESSION_FORMATS = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys()))
return _IMAGE_COMPRESSION_FORMATS
def image_to_bytes(image: "PIL.Image.Image") -> bytes:
"""Convert a PIL Image object to bytes using native compression if possible, otherwise use PNG/TIFF compression."""
buffer = BytesIO()
if image.format in list_image_compression_formats():
format = image.format
else:
format = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF"
image.save(buffer, format=format)
return buffer.getvalue()
def encode_pil_image(image: "PIL.Image.Image") -> dict:
if hasattr(image, "filename") and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(image)}
def encode_np_array(array: np.ndarray) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'.")
dtype = array.dtype
dtype_byteorder = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER
dtype_kind = dtype.kind
dtype_itemsize = dtype.itemsize
dest_dtype = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
dest_dtype = np.dtype("|u1")
if dtype_kind not in ["u", "i"]:
raise TypeError(
f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays."
)
if dtype is not dest_dtype:
warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'")
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
dest_dtype = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
dest_dtype_str = dtype_byteorder + dtype_kind + str(dtype_itemsize)
dest_dtype = np.dtype(dest_dtype_str)
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'")
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}"
)
image = PIL.Image.fromarray(array.astype(dest_dtype))
return {"path": None, "bytes": image_to_bytes(image)}
def objects_to_list_of_image_dicts(
objs: Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]]
) -> List[dict]:
"""Encode a list of objects into a format suitable for creating an extension array of type `ImageExtensionType`."""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'.")
if objs:
_, obj = first_non_null_value(objs)
if isinstance(obj, str):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(obj, np.ndarray):
obj_to_image_dict_func = no_op_if_value_is_null(encode_np_array)
return [obj_to_image_dict_func(obj) for obj in objs]
elif isinstance(obj, PIL.Image.Image):
obj_to_image_dict_func = no_op_if_value_is_null(encode_pil_image)
return [obj_to_image_dict_func(obj) for obj in objs]
else:
return objs
else:
return objs
| 0 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.