repo_id
stringlengths
15
86
file_path
stringlengths
28
180
content
stringlengths
1
1.75M
__index_level_0__
int64
0
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_models_prior.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class PriorTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = PriorTransformer main_input_name = "hidden_states" @property def dummy_input(self): batch_size = 4 embedding_dim = 8 num_embeddings = 7 hidden_states = floats_tensor((batch_size, embedding_dim)).to(torch_device) proj_embedding = floats_tensor((batch_size, embedding_dim)).to(torch_device) encoder_hidden_states = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(torch_device) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def get_dummy_seed_input(self, seed=0): torch.manual_seed(seed) batch_size = 4 embedding_dim = 8 num_embeddings = 7 hidden_states = torch.randn((batch_size, embedding_dim)).to(torch_device) proj_embedding = torch.randn((batch_size, embedding_dim)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, num_embeddings, embedding_dim)).to(torch_device) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def input_shape(self): return (4, 8) @property def output_shape(self): return (4, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=True ) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) hidden_states = model(**self.dummy_input)[0] assert hidden_states is not None, "Make sure output is not None" def test_forward_signature(self): init_dict, _ = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], expected_arg_names) def test_output_pretrained(self): model = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy") model = model.to(torch_device) if hasattr(model, "set_default_attn_processor"): model.set_default_attn_processor() input = self.get_dummy_seed_input() with torch.no_grad(): output = model(**input)[0] output_slice = output[0, :5].flatten().cpu() print(output_slice) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. expected_output_slice = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239]) self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) @slow class PriorTransformerIntegrationTests(unittest.TestCase): def get_dummy_seed_input(self, batch_size=1, embedding_dim=768, num_embeddings=77, seed=0): torch.manual_seed(seed) batch_size = batch_size embedding_dim = embedding_dim num_embeddings = num_embeddings hidden_states = torch.randn((batch_size, embedding_dim)).to(torch_device) proj_embedding = torch.randn((batch_size, embedding_dim)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, num_embeddings, embedding_dim)).to(torch_device) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def test_kandinsky_prior(self, seed, expected_slice): model = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior") model.to(torch_device) input = self.get_dummy_seed_input(seed=seed) with torch.no_grad(): sample = model(**input)[0] assert list(sample.shape) == [1, 768] output_slice = sample[0, :8].flatten().cpu() print(output_slice) expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_models_unet_2d_condition.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import gc import os import tempfile import unittest import torch from parameterized import parameterized from pytest import mark from diffusers import UNet2DConditionModel from diffusers.models.attention_processor import CustomDiffusionAttnProcessor, LoRAAttnProcessor from diffusers.utils import ( floats_tensor, load_hf_numpy, logging, require_torch_gpu, slow, torch_all_close, torch_device, ) from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin logger = logging.get_logger(__name__) enable_full_determinism() def create_lora_layers(model, mock_weights: bool = True): lora_attn_procs = {} for name in model.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = model.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(model.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = model.config.block_out_channels[block_id] lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) lora_attn_procs[name] = lora_attn_procs[name].to(model.device) if mock_weights: # add 1 to weights to mock trained weights with torch.no_grad(): lora_attn_procs[name].to_q_lora.up.weight += 1 lora_attn_procs[name].to_k_lora.up.weight += 1 lora_attn_procs[name].to_v_lora.up.weight += 1 lora_attn_procs[name].to_out_lora.up.weight += 1 return lora_attn_procs def create_custom_diffusion_layers(model, mock_weights: bool = True): train_kv = True train_q_out = True custom_diffusion_attn_procs = {} st = model.state_dict() for name, _ in model.attn_processors.items(): cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = model.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(model.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = model.config.block_out_channels[block_id] layer_name = name.split(".processor")[0] weights = { "to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"], "to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"], } if train_q_out: weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"] weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"] weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"] if cross_attention_dim is not None: custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor( train_kv=train_kv, train_q_out=train_q_out, hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, ).to(model.device) custom_diffusion_attn_procs[name].load_state_dict(weights) if mock_weights: # add 1 to weights to mock trained weights with torch.no_grad(): custom_diffusion_attn_procs[name].to_k_custom_diffusion.weight += 1 custom_diffusion_attn_procs[name].to_v_custom_diffusion.weight += 1 else: custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor( train_kv=False, train_q_out=False, hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, ) del st return custom_diffusion_attn_procs class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = UNet2DConditionModel main_input_name = "sample" @property def dummy_input(self): batch_size = 4 num_channels = 4 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device) return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (32, 64), "down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"), "cross_attention_dim": 32, "attention_head_dim": 8, "out_channels": 4, "in_channels": 4, "layers_per_block": 2, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_enable_works(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.enable_xformers_memory_efficient_attention() assert ( model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ == "XFormersAttnProcessor" ), "xformers is not enabled" @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS") def test_gradient_checkpointing(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) assert not model.is_gradient_checkpointing and model.training out = model(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() labels = torch.randn_like(out) loss = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing model_2 = self.model_class(**init_dict) # clone model model_2.load_state_dict(model.state_dict()) model_2.to(torch_device) model_2.enable_gradient_checkpointing() assert model_2.is_gradient_checkpointing and model_2.training out_2 = model_2(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_2.zero_grad() loss_2 = (out_2 - labels).mean() loss_2.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_2).abs() < 1e-5) named_params = dict(model.named_parameters()) named_params_2 = dict(model_2.named_parameters()) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) def test_model_with_attention_head_dim_tuple(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_with_use_linear_projection(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["use_linear_projection"] = True model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_with_cross_attention_dim_tuple(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["cross_attention_dim"] = (32, 32) model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_with_simple_projection(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() batch_size, _, _, sample_size = inputs_dict["sample"].shape init_dict["class_embed_type"] = "simple_projection" init_dict["projection_class_embeddings_input_dim"] = sample_size inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_with_class_embeddings_concat(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() batch_size, _, _, sample_size = inputs_dict["sample"].shape init_dict["class_embed_type"] = "simple_projection" init_dict["projection_class_embeddings_input_dim"] = sample_size init_dict["class_embeddings_concat"] = True inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_attention_slicing(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) model.eval() model.set_attention_slice("auto") with torch.no_grad(): output = model(**inputs_dict) assert output is not None model.set_attention_slice("max") with torch.no_grad(): output = model(**inputs_dict) assert output is not None model.set_attention_slice(2) with torch.no_grad(): output = model(**inputs_dict) assert output is not None def test_model_sliceable_head_dim(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) def check_sliceable_dim_attr(module: torch.nn.Module): if hasattr(module, "set_attention_slice"): assert isinstance(module.sliceable_head_dim, int) for child in module.children(): check_sliceable_dim_attr(child) # retrieve number of attention layers for module in model.children(): check_sliceable_dim_attr(module) def test_special_attn_proc(self): class AttnEasyProc(torch.nn.Module): def __init__(self, num): super().__init__() self.weight = torch.nn.Parameter(torch.tensor(num)) self.is_run = False self.number = 0 self.counter = 0 def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None): batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) query = attn.to_q(hidden_states) encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states += self.weight self.is_run = True self.counter += 1 self.number = number return hidden_states # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) processor = AttnEasyProc(5.0) model.set_attn_processor(processor) model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample assert processor.counter == 12 assert processor.is_run assert processor.number == 123 @parameterized.expand( [ # fmt: off [torch.bool], [torch.long], [torch.float], # fmt: on ] ) def test_model_xattn_mask(self, mask_dtype): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)}) model.to(torch_device) model.eval() cond = inputs_dict["encoder_hidden_states"] with torch.no_grad(): full_cond_out = model(**inputs_dict).sample assert full_cond_out is not None keepall_mask = torch.ones(*cond.shape[:-1], device=cond.device, dtype=mask_dtype) full_cond_keepallmask_out = model(**{**inputs_dict, "encoder_attention_mask": keepall_mask}).sample assert full_cond_keepallmask_out.allclose( full_cond_out ), "a 'keep all' mask should give the same result as no mask" trunc_cond = cond[:, :-1, :] trunc_cond_out = model(**{**inputs_dict, "encoder_hidden_states": trunc_cond}).sample assert not trunc_cond_out.allclose( full_cond_out ), "discarding the last token from our cond should change the result" batch, tokens, _ = cond.shape mask_last = (torch.arange(tokens) < tokens - 1).expand(batch, -1).to(cond.device, mask_dtype) masked_cond_out = model(**{**inputs_dict, "encoder_attention_mask": mask_last}).sample assert masked_cond_out.allclose( trunc_cond_out ), "masking the last token from our cond should be equivalent to truncating that token out of the condition" # see diffusers.models.attention_processor::Attention#prepare_attention_mask # note: we may not need to fix mask padding to work for stable-diffusion cross-attn masks. # since the use-case (somebody passes in a too-short cross-attn mask) is pretty esoteric. # maybe it's fine that this only works for the unclip use-case. @mark.skip( reason="we currently pad mask by target_length tokens (what unclip needs), whereas stable-diffusion's cross-attn needs to instead pad by remaining_length." ) def test_model_xattn_padding(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)}) model.to(torch_device) model.eval() cond = inputs_dict["encoder_hidden_states"] with torch.no_grad(): full_cond_out = model(**inputs_dict).sample assert full_cond_out is not None batch, tokens, _ = cond.shape keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool) keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result" trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool) trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample assert trunc_mask_out.allclose( keeplast_out ), "a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask." def test_lora_processors(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): sample1 = model(**inputs_dict).sample lora_attn_procs = create_lora_layers(model) # make sure we can set a list of attention processors model.set_attn_processor(lora_attn_procs) model.to(torch_device) # test that attn processors can be set to itself model.set_attn_processor(model.attn_processors) with torch.no_grad(): sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample assert (sample1 - sample2).abs().max() < 3e-3 assert (sample3 - sample4).abs().max() < 3e-3 # sample 2 and sample 3 should be different assert (sample2 - sample3).abs().max() > 1e-4 def test_lora_save_load(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): old_sample = model(**inputs_dict).sample lora_attn_procs = create_lora_layers(model) model.set_attn_processor(lora_attn_procs) with torch.no_grad(): sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) torch.manual_seed(0) new_model = self.model_class(**init_dict) new_model.to(torch_device) new_model.load_attn_procs(tmpdirname) with torch.no_grad(): new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample assert (sample - new_sample).abs().max() < 1e-4 # LoRA and no LoRA should NOT be the same assert (sample - old_sample).abs().max() > 1e-4 def test_lora_save_load_safetensors(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): old_sample = model(**inputs_dict).sample lora_attn_procs = create_lora_layers(model) model.set_attn_processor(lora_attn_procs) with torch.no_grad(): sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname, safe_serialization=True) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) torch.manual_seed(0) new_model = self.model_class(**init_dict) new_model.to(torch_device) new_model.load_attn_procs(tmpdirname) with torch.no_grad(): new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample assert (sample - new_sample).abs().max() < 1e-4 # LoRA and no LoRA should NOT be the same assert (sample - old_sample).abs().max() > 1e-4 def test_lora_save_safetensors_load_torch(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) lora_attn_procs = create_lora_layers(model, mock_weights=False) model.set_attn_processor(lora_attn_procs) # Saving as torch, properly reloads with directly filename with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) torch.manual_seed(0) new_model = self.model_class(**init_dict) new_model.to(torch_device) new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.bin") def test_lora_save_torch_force_load_safetensors_error(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) lora_attn_procs = create_lora_layers(model, mock_weights=False) model.set_attn_processor(lora_attn_procs) # Saving as torch, properly reloads with directly filename with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) torch.manual_seed(0) new_model = self.model_class(**init_dict) new_model.to(torch_device) with self.assertRaises(IOError) as e: new_model.load_attn_procs(tmpdirname, use_safetensors=True) self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception)) def test_lora_on_off(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): old_sample = model(**inputs_dict).sample lora_attn_procs = create_lora_layers(model) model.set_attn_processor(lora_attn_procs) with torch.no_grad(): sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample model.set_default_attn_processor() with torch.no_grad(): new_sample = model(**inputs_dict).sample assert (sample - new_sample).abs().max() < 1e-4 assert (sample - old_sample).abs().max() < 3e-3 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_lora_xformers_on_off(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) lora_attn_procs = create_lora_layers(model) model.set_attn_processor(lora_attn_procs) # default with torch.no_grad(): sample = model(**inputs_dict).sample model.enable_xformers_memory_efficient_attention() on_sample = model(**inputs_dict).sample model.disable_xformers_memory_efficient_attention() off_sample = model(**inputs_dict).sample assert (sample - on_sample).abs().max() < 1e-4 assert (sample - off_sample).abs().max() < 1e-4 def test_custom_diffusion_processors(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): sample1 = model(**inputs_dict).sample custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) # make sure we can set a list of attention processors model.set_attn_processor(custom_diffusion_attn_procs) model.to(torch_device) # test that attn processors can be set to itself model.set_attn_processor(model.attn_processors) with torch.no_grad(): sample2 = model(**inputs_dict).sample assert (sample1 - sample2).abs().max() < 3e-3 def test_custom_diffusion_save_load(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): old_sample = model(**inputs_dict).sample custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) model.set_attn_processor(custom_diffusion_attn_procs) with torch.no_grad(): sample = model(**inputs_dict).sample with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin"))) torch.manual_seed(0) new_model = self.model_class(**init_dict) new_model.to(torch_device) new_model.load_attn_procs(tmpdirname, weight_name="pytorch_custom_diffusion_weights.bin") with torch.no_grad(): new_sample = new_model(**inputs_dict).sample assert (sample - new_sample).abs().max() < 1e-4 # custom diffusion and no custom diffusion should be the same assert (sample - old_sample).abs().max() < 3e-3 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_custom_diffusion_xformers_on_off(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) model.set_attn_processor(custom_diffusion_attn_procs) # default with torch.no_grad(): sample = model(**inputs_dict).sample model.enable_xformers_memory_efficient_attention() on_sample = model(**inputs_dict).sample model.disable_xformers_memory_efficient_attention() off_sample = model(**inputs_dict).sample assert (sample - on_sample).abs().max() < 1e-4 assert (sample - off_sample).abs().max() < 1e-4 def test_pickle(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = (8, 16) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): sample = model(**inputs_dict).sample sample_copy = copy.copy(sample) assert (sample - sample_copy).abs().max() < 1e-4 @slow class UNet2DConditionModelIntegrationTests(unittest.TestCase): def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"): revision = "fp16" if fp16 else None torch_dtype = torch.float16 if fp16 else torch.float32 model = UNet2DConditionModel.from_pretrained( model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision ) model.to(torch_device).eval() return model def test_set_attention_slice_auto(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() unet = self.get_unet_model() unet.set_attention_slice("auto") latents = self.get_latents(33) encoder_hidden_states = self.get_encoder_hidden_states(33) timestep = 1 with torch.no_grad(): _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 5 * 10**9 def test_set_attention_slice_max(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() unet = self.get_unet_model() unet.set_attention_slice("max") latents = self.get_latents(33) encoder_hidden_states = self.get_encoder_hidden_states(33) timestep = 1 with torch.no_grad(): _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 5 * 10**9 def test_set_attention_slice_int(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() unet = self.get_unet_model() unet.set_attention_slice(2) latents = self.get_latents(33) encoder_hidden_states = self.get_encoder_hidden_states(33) timestep = 1 with torch.no_grad(): _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 5 * 10**9 def test_set_attention_slice_list(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() # there are 32 sliceable layers slice_list = 16 * [2, 3] unet = self.get_unet_model() unet.set_attention_slice(slice_list) latents = self.get_latents(33) encoder_hidden_states = self.get_encoder_hidden_states(33) timestep = 1 with torch.no_grad(): _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 5 * 10**9 def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False): dtype = torch.float16 if fp16 else torch.float32 hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return hidden_states @parameterized.expand( [ # fmt: off [33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]], [47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]], [21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]], [9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_v1_4(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4") latents = self.get_latents(seed) encoder_hidden_states = self.get_encoder_hidden_states(seed) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True) latents = self.get_latents(seed, fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand( [ # fmt: off [33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]], [47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]], [21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]], [9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_v1_5(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5") latents = self.get_latents(seed) encoder_hidden_states = self.get_encoder_hidden_states(seed) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]], [17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]], [8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]], [3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True) latents = self.get_latents(seed, fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand( [ # fmt: off [33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]], [47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]], [21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]], [9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_inpaint(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting") latents = self.get_latents(seed, shape=(4, 9, 64, 64)) encoder_hidden_states = self.get_encoder_hidden_states(seed) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == (4, 4, 64, 64) output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) @parameterized.expand( [ # fmt: off [83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]], [17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]], [8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]], [3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True) latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == (4, 4, 64, 64) output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) @require_torch_gpu def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True) latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True) timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_modeling_common_flax.py
import inspect from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax @require_flax class FlaxModelTesterMixin: def test_output(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) variables = model.init(inputs_dict["prng_key"], inputs_dict["sample"]) jax.lax.stop_gradient(variables) output = model.apply(variables, inputs_dict["sample"]) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_forward_with_norm_groups(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["norm_num_groups"] = 16 init_dict["block_out_channels"] = (16, 32) model = self.model_class(**init_dict) variables = model.init(inputs_dict["prng_key"], inputs_dict["sample"]) jax.lax.stop_gradient(variables) output = model.apply(variables, inputs_dict["sample"]) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_deprecated_kwargs(self): has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0 if has_kwarg_in_model_class and not has_deprecated_kwarg: raise ValueError( f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs" " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are" " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" " [<deprecated_argument>]`" ) if not has_kwarg_in_model_class and has_deprecated_kwarg: raise ValueError( f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs" " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to" f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument" " from `_deprecated_kwargs = [<deprecated_argument>]`" )
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_models_vq.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class VQModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = VQModel main_input_name = "sample" @property def dummy_input(self, sizes=(32, 32)): batch_size = 4 num_channels = 3 image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_forward_signature(self): pass def test_training(self): pass def test_from_pretrained_hub(self): model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = VQModel.from_pretrained("fusing/vqgan-dummy") model.to(torch_device).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) image = image.to(torch_device) with torch.no_grad(): output = model(image).sample output_slice = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_layers_utils.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from torch import nn from diffusers.models.attention import GEGLU, AdaLayerNorm, ApproximateGELU from diffusers.models.embeddings import get_timestep_embedding from diffusers.models.lora import LoRACompatibleLinear from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D from diffusers.models.transformer_2d import Transformer2DModel from diffusers.utils import torch_device class EmbeddingsTests(unittest.TestCase): def test_timestep_embeddings(self): embedding_dim = 256 timesteps = torch.arange(16) t1 = get_timestep_embedding(timesteps, embedding_dim) # first vector should always be composed only of 0's and 1's assert (t1[0, : embedding_dim // 2] - 0).abs().sum() < 1e-5 assert (t1[0, embedding_dim // 2 :] - 1).abs().sum() < 1e-5 # last element of each vector should be one assert (t1[:, -1] - 1).abs().sum() < 1e-5 # For large embeddings (e.g. 128) the frequency of every vector is higher # than the previous one which means that the gradients of later vectors are # ALWAYS higher than the previous ones grad_mean = np.abs(np.gradient(t1, axis=-1)).mean(axis=1) prev_grad = 0.0 for grad in grad_mean: assert grad > prev_grad prev_grad = grad def test_timestep_defaults(self): embedding_dim = 16 timesteps = torch.arange(10) t1 = get_timestep_embedding(timesteps, embedding_dim) t2 = get_timestep_embedding( timesteps, embedding_dim, flip_sin_to_cos=False, downscale_freq_shift=1, max_period=10_000 ) assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3) def test_timestep_flip_sin_cos(self): embedding_dim = 16 timesteps = torch.arange(10) t1 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=True) t1 = torch.cat([t1[:, embedding_dim // 2 :], t1[:, : embedding_dim // 2]], dim=-1) t2 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=False) assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3) def test_timestep_downscale_freq_shift(self): embedding_dim = 16 timesteps = torch.arange(10) t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0) t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1) # get cosine half (vectors that are wrapped into cosine) cosine_half = (t1 - t2)[:, embedding_dim // 2 :] # cosine needs to be negative assert (np.abs((cosine_half <= 0).numpy()) - 1).sum() < 1e-5 def test_sinoid_embeddings_hardcoded(self): embedding_dim = 64 timesteps = torch.arange(128) # standard unet, score_vde t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1, flip_sin_to_cos=False) # glide, ldm t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0, flip_sin_to_cos=True) # grad-tts t3 = get_timestep_embedding(timesteps, embedding_dim, scale=1000) assert torch.allclose( t1[23:26, 47:50].flatten().cpu(), torch.tensor([0.9646, 0.9804, 0.9892, 0.9615, 0.9787, 0.9882, 0.9582, 0.9769, 0.9872]), 1e-3, ) assert torch.allclose( t2[23:26, 47:50].flatten().cpu(), torch.tensor([0.3019, 0.2280, 0.1716, 0.3146, 0.2377, 0.1790, 0.3272, 0.2474, 0.1864]), 1e-3, ) assert torch.allclose( t3[23:26, 47:50].flatten().cpu(), torch.tensor([-0.9801, -0.9464, -0.9349, -0.3952, 0.8887, -0.9709, 0.5299, -0.2853, -0.9927]), 1e-3, ) class Upsample2DBlockTests(unittest.TestCase): def test_upsample_default(self): torch.manual_seed(0) sample = torch.randn(1, 32, 32, 32) upsample = Upsample2D(channels=32, use_conv=False) with torch.no_grad(): upsampled = upsample(sample) assert upsampled.shape == (1, 32, 64, 64) output_slice = upsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([-0.2173, -1.2079, -1.2079, 0.2952, 1.1254, 1.1254, 0.2952, 1.1254, 1.1254]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_upsample_with_conv(self): torch.manual_seed(0) sample = torch.randn(1, 32, 32, 32) upsample = Upsample2D(channels=32, use_conv=True) with torch.no_grad(): upsampled = upsample(sample) assert upsampled.shape == (1, 32, 64, 64) output_slice = upsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([0.7145, 1.3773, 0.3492, 0.8448, 1.0839, -0.3341, 0.5956, 0.1250, -0.4841]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_upsample_with_conv_out_dim(self): torch.manual_seed(0) sample = torch.randn(1, 32, 32, 32) upsample = Upsample2D(channels=32, use_conv=True, out_channels=64) with torch.no_grad(): upsampled = upsample(sample) assert upsampled.shape == (1, 64, 64, 64) output_slice = upsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([0.2703, 0.1656, -0.2538, -0.0553, -0.2984, 0.1044, 0.1155, 0.2579, 0.7755]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_upsample_with_transpose(self): torch.manual_seed(0) sample = torch.randn(1, 32, 32, 32) upsample = Upsample2D(channels=32, use_conv=False, use_conv_transpose=True) with torch.no_grad(): upsampled = upsample(sample) assert upsampled.shape == (1, 32, 64, 64) output_slice = upsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([-0.3028, -0.1582, 0.0071, 0.0350, -0.4799, -0.1139, 0.1056, -0.1153, -0.1046]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) class Downsample2DBlockTests(unittest.TestCase): def test_downsample_default(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64) downsample = Downsample2D(channels=32, use_conv=False) with torch.no_grad(): downsampled = downsample(sample) assert downsampled.shape == (1, 32, 32, 32) output_slice = downsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([-0.0513, -0.3889, 0.0640, 0.0836, -0.5460, -0.0341, -0.0169, -0.6967, 0.1179]) max_diff = (output_slice.flatten() - expected_slice).abs().sum().item() assert max_diff <= 1e-3 # assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-1) def test_downsample_with_conv(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64) downsample = Downsample2D(channels=32, use_conv=True) with torch.no_grad(): downsampled = downsample(sample) assert downsampled.shape == (1, 32, 32, 32) output_slice = downsampled[0, -1, -3:, -3:] expected_slice = torch.tensor( [0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913], ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_downsample_with_conv_pad1(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64) downsample = Downsample2D(channels=32, use_conv=True, padding=1) with torch.no_grad(): downsampled = downsample(sample) assert downsampled.shape == (1, 32, 32, 32) output_slice = downsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_downsample_with_conv_out_dim(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64) downsample = Downsample2D(channels=32, use_conv=True, out_channels=16) with torch.no_grad(): downsampled = downsample(sample) assert downsampled.shape == (1, 16, 32, 32) output_slice = downsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) class ResnetBlock2DTests(unittest.TestCase): def test_resnet_default(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) temb = torch.randn(1, 128).to(torch_device) resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128).to(torch_device) with torch.no_grad(): output_tensor = resnet_block(sample, temb) assert output_tensor.shape == (1, 32, 64, 64) output_slice = output_tensor[0, -1, -3:, -3:] expected_slice = torch.tensor( [-1.9010, -0.2974, -0.8245, -1.3533, 0.8742, -0.9645, -2.0584, 1.3387, -0.4746], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_restnet_with_use_in_shortcut(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) temb = torch.randn(1, 128).to(torch_device) resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, use_in_shortcut=True).to(torch_device) with torch.no_grad(): output_tensor = resnet_block(sample, temb) assert output_tensor.shape == (1, 32, 64, 64) output_slice = output_tensor[0, -1, -3:, -3:] expected_slice = torch.tensor( [0.2226, -1.0791, -0.1629, 0.3659, -0.2889, -1.2376, 0.0582, 0.9206, 0.0044], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_resnet_up(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) temb = torch.randn(1, 128).to(torch_device) resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, up=True).to(torch_device) with torch.no_grad(): output_tensor = resnet_block(sample, temb) assert output_tensor.shape == (1, 32, 128, 128) output_slice = output_tensor[0, -1, -3:, -3:] expected_slice = torch.tensor( [1.2130, -0.8753, -0.9027, 1.5783, -0.5362, -0.5001, 1.0726, -0.7732, -0.4182], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_resnet_down(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) temb = torch.randn(1, 128).to(torch_device) resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, down=True).to(torch_device) with torch.no_grad(): output_tensor = resnet_block(sample, temb) assert output_tensor.shape == (1, 32, 32, 32) output_slice = output_tensor[0, -1, -3:, -3:] expected_slice = torch.tensor( [-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_restnet_with_kernel_fir(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) temb = torch.randn(1, 128).to(torch_device) resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="fir", down=True).to(torch_device) with torch.no_grad(): output_tensor = resnet_block(sample, temb) assert output_tensor.shape == (1, 32, 32, 32) output_slice = output_tensor[0, -1, -3:, -3:] expected_slice = torch.tensor( [-0.0934, -0.5729, 0.0909, -0.2710, -0.5044, 0.0243, -0.0665, -0.5267, -0.3136], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_restnet_with_kernel_sde_vp(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) temb = torch.randn(1, 128).to(torch_device) resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="sde_vp", down=True).to(torch_device) with torch.no_grad(): output_tensor = resnet_block(sample, temb) assert output_tensor.shape == (1, 32, 32, 32) output_slice = output_tensor[0, -1, -3:, -3:] expected_slice = torch.tensor( [-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) class Transformer2DModelTests(unittest.TestCase): def test_spatial_transformer_default(self): torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) spatial_transformer_block = Transformer2DModel( in_channels=32, num_attention_heads=1, attention_head_dim=32, dropout=0.0, cross_attention_dim=None, ).to(torch_device) with torch.no_grad(): attention_scores = spatial_transformer_block(sample).sample assert attention_scores.shape == (1, 32, 64, 64) output_slice = attention_scores[0, -1, -3:, -3:] expected_slice = torch.tensor( [-1.9455, -0.0066, -1.3933, -1.5878, 0.5325, -0.6486, -1.8648, 0.7515, -0.9689], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_spatial_transformer_cross_attention_dim(self): torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) sample = torch.randn(1, 64, 64, 64).to(torch_device) spatial_transformer_block = Transformer2DModel( in_channels=64, num_attention_heads=2, attention_head_dim=32, dropout=0.0, cross_attention_dim=64, ).to(torch_device) with torch.no_grad(): context = torch.randn(1, 4, 64).to(torch_device) attention_scores = spatial_transformer_block(sample, context).sample assert attention_scores.shape == (1, 64, 64, 64) output_slice = attention_scores[0, -1, -3:, -3:] expected_slice = torch.tensor( [0.0143, -0.6909, -2.1547, -1.8893, 1.4097, 0.1359, -0.2521, -1.3359, 0.2598], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_spatial_transformer_timestep(self): torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) num_embeds_ada_norm = 5 sample = torch.randn(1, 64, 64, 64).to(torch_device) spatial_transformer_block = Transformer2DModel( in_channels=64, num_attention_heads=2, attention_head_dim=32, dropout=0.0, cross_attention_dim=64, num_embeds_ada_norm=num_embeds_ada_norm, ).to(torch_device) with torch.no_grad(): timestep_1 = torch.tensor(1, dtype=torch.long).to(torch_device) timestep_2 = torch.tensor(2, dtype=torch.long).to(torch_device) attention_scores_1 = spatial_transformer_block(sample, timestep=timestep_1).sample attention_scores_2 = spatial_transformer_block(sample, timestep=timestep_2).sample assert attention_scores_1.shape == (1, 64, 64, 64) assert attention_scores_2.shape == (1, 64, 64, 64) output_slice_1 = attention_scores_1[0, -1, -3:, -3:] output_slice_2 = attention_scores_2[0, -1, -3:, -3:] expected_slice = torch.tensor( [-0.3923, -1.0923, -1.7144, -1.5570, 1.4154, 0.1738, -0.1157, -1.2998, -0.1703], device=torch_device ) expected_slice_2 = torch.tensor( [-0.4311, -1.1376, -1.7732, -1.5997, 1.3450, 0.0964, -0.1569, -1.3590, -0.2348], device=torch_device ) assert torch.allclose(output_slice_1.flatten(), expected_slice, atol=1e-3) assert torch.allclose(output_slice_2.flatten(), expected_slice_2, atol=1e-3) def test_spatial_transformer_dropout(self): torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) spatial_transformer_block = ( Transformer2DModel( in_channels=32, num_attention_heads=2, attention_head_dim=16, dropout=0.3, cross_attention_dim=None, ) .to(torch_device) .eval() ) with torch.no_grad(): attention_scores = spatial_transformer_block(sample).sample assert attention_scores.shape == (1, 32, 64, 64) output_slice = attention_scores[0, -1, -3:, -3:] expected_slice = torch.tensor( [-1.9380, -0.0083, -1.3771, -1.5819, 0.5209, -0.6441, -1.8545, 0.7563, -0.9615], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) @unittest.skipIf(torch_device == "mps", "MPS does not support float64") def test_spatial_transformer_discrete(self): torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) num_embed = 5 sample = torch.randint(0, num_embed, (1, 32)).to(torch_device) spatial_transformer_block = ( Transformer2DModel( num_attention_heads=1, attention_head_dim=32, num_vector_embeds=num_embed, sample_size=16, ) .to(torch_device) .eval() ) with torch.no_grad(): attention_scores = spatial_transformer_block(sample).sample assert attention_scores.shape == (1, num_embed - 1, 32) output_slice = attention_scores[0, -2:, -3:] expected_slice = torch.tensor([-1.7648, -1.0241, -2.0985, -1.8035, -1.6404, -1.2098], device=torch_device) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_spatial_transformer_default_norm_layers(self): spatial_transformer_block = Transformer2DModel(num_attention_heads=1, attention_head_dim=32, in_channels=32) assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == nn.LayerNorm assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm def test_spatial_transformer_ada_norm_layers(self): spatial_transformer_block = Transformer2DModel( num_attention_heads=1, attention_head_dim=32, in_channels=32, num_embeds_ada_norm=5, ) assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == AdaLayerNorm assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm def test_spatial_transformer_default_ff_layers(self): spatial_transformer_block = Transformer2DModel( num_attention_heads=1, attention_head_dim=32, in_channels=32, ) assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == GEGLU assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == LoRACompatibleLinear dim = 32 inner_dim = 128 # First dimension change assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim # NOTE: inner_dim * 2 because GEGLU assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim * 2 # Second dimension change assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim def test_spatial_transformer_geglu_approx_ff_layers(self): spatial_transformer_block = Transformer2DModel( num_attention_heads=1, attention_head_dim=32, in_channels=32, activation_fn="geglu-approximate", ) assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == ApproximateGELU assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == LoRACompatibleLinear dim = 32 inner_dim = 128 # First dimension change assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim # Second dimension change assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim def test_spatial_transformer_attention_bias(self): spatial_transformer_block = Transformer2DModel( num_attention_heads=1, attention_head_dim=32, in_channels=32, attention_bias=True ) assert spatial_transformer_block.transformer_blocks[0].attn1.to_q.bias is not None assert spatial_transformer_block.transformer_blocks[0].attn1.to_k.bias is not None assert spatial_transformer_block.transformer_blocks[0].attn1.to_v.bias is not None
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_models_vae_flax.py
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class FlaxAutoencoderKLTests(FlaxModelTesterMixin, unittest.TestCase): model_class = FlaxAutoencoderKL @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) prng_key = jax.random.PRNGKey(0) image = jax.random.uniform(prng_key, ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } inputs_dict = self.dummy_input return init_dict, inputs_dict
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_models_unet_2d.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import math import unittest import torch from diffusers import UNet2DModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin logger = logging.get_logger(__name__) enable_full_determinism() class Unet2DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = UNet2DModel main_input_name = "sample" @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict class UNetLDMModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = UNet2DModel main_input_name = "sample" @property def dummy_input(self): batch_size = 4 num_channels = 4 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU") def test_from_pretrained_accelerate(self): model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) model.to(torch_device) image = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU") def test_from_pretrained_accelerate_wont_change_results(self): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) model_accelerate.to(torch_device) model_accelerate.eval() noise = torch.randn( 1, model_accelerate.config.in_channels, model_accelerate.config.sample_size, model_accelerate.config.sample_size, generator=torch.manual_seed(0), ) noise = noise.to(torch_device) time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) arr_accelerate = model_accelerate(noise, time_step)["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() model_normal_load, _ = UNet2DModel.from_pretrained( "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False ) model_normal_load.to(torch_device) model_normal_load.eval() arr_normal_load = model_normal_load(noise, time_step)["sample"] assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3) def test_output_pretrained(self): model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update") model.eval() model.to(torch_device) noise = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0), ) noise = noise.to(torch_device) time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) # fmt: on self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3)) class NCSNppModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = UNet2DModel main_input_name = "sample" @property def dummy_input(self, sizes=(32, 32)): batch_size = 4 num_channels = 3 noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } inputs_dict = self.dummy_input return init_dict, inputs_dict @slow def test_from_pretrained_hub(self): model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) inputs = self.dummy_input noise = floats_tensor((4, 3) + (256, 256)).to(torch_device) inputs["sample"] = noise image = model(**inputs) assert image is not None, "Make sure output is not None" @slow def test_output_pretrained_ve_mid(self): model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256") model.to(torch_device) batch_size = 4 num_channels = 3 sizes = (256, 256) noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608]) # fmt: on self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) def test_output_pretrained_ve_large(self): model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") model.to(torch_device) batch_size = 4 num_channels = 3 sizes = (32, 32) noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256]) # fmt: on self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) def test_forward_with_norm_groups(self): # not required for this model pass
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_models_unet_2d_flax.py
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNet2DConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class FlaxUNet2DConditionModelIntegrationTests(unittest.TestCase): def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False): dtype = jnp.bfloat16 if fp16 else jnp.float32 image = jnp.array(load_hf_numpy(self.get_file_format(seed, shape)), dtype=dtype) return image def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"): dtype = jnp.bfloat16 if fp16 else jnp.float32 revision = "bf16" if fp16 else None model, params = FlaxUNet2DConditionModel.from_pretrained( model_id, subfolder="unet", dtype=dtype, revision=revision ) return model, params def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False): dtype = jnp.bfloat16 if fp16 else jnp.float32 hidden_states = jnp.array(load_hf_numpy(self.get_file_format(seed, shape)), dtype=dtype) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def test_compvis_sd_v1_4_flax_vs_torch_fp16(self, seed, timestep, expected_slice): model, params = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True) latents = self.get_latents(seed, fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) sample = model.apply( {"params": params}, latents, jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=encoder_hidden_states, ).sample assert sample.shape == latents.shape output_slice = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())), dtype=jnp.float32) expected_output_slice = jnp.array(expected_slice, dtype=jnp.float32) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(output_slice, expected_output_slice, atol=1e-2) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def test_stabilityai_sd_v2_flax_vs_torch_fp16(self, seed, timestep, expected_slice): model, params = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True) latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True) sample = model.apply( {"params": params}, latents, jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=encoder_hidden_states, ).sample assert sample.shape == latents.shape output_slice = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())), dtype=jnp.float32) expected_output_slice = jnp.array(expected_slice, dtype=jnp.float32) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(output_slice, expected_output_slice, atol=1e-2)
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_models_unet_3d_condition.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest import numpy as np import torch from diffusers.models import ModelMixin, UNet3DConditionModel from diffusers.models.attention_processor import AttnProcessor, LoRAAttnProcessor from diffusers.utils import ( floats_tensor, logging, skip_mps, torch_device, ) from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() logger = logging.get_logger(__name__) def create_lora_layers(model, mock_weights: bool = True): lora_attn_procs = {} for name in model.attn_processors.keys(): has_cross_attention = name.endswith("attn2.processor") and not ( name.startswith("transformer_in") or "temp_attentions" in name.split(".") ) cross_attention_dim = model.config.cross_attention_dim if has_cross_attention else None if name.startswith("mid_block"): hidden_size = model.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(model.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = model.config.block_out_channels[block_id] elif name.startswith("transformer_in"): # Note that the `8 * ...` comes from: https://github.com/huggingface/diffusers/blob/7139f0e874f10b2463caa8cbd585762a309d12d6/src/diffusers/models/unet_3d_condition.py#L148 hidden_size = 8 * model.config.attention_head_dim lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) lora_attn_procs[name] = lora_attn_procs[name].to(model.device) if mock_weights: # add 1 to weights to mock trained weights with torch.no_grad(): lora_attn_procs[name].to_q_lora.up.weight += 1 lora_attn_procs[name].to_k_lora.up.weight += 1 lora_attn_procs[name].to_v_lora.up.weight += 1 lora_attn_procs[name].to_out_lora.up.weight += 1 return lora_attn_procs @skip_mps class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = UNet3DConditionModel main_input_name = "sample" @property def dummy_input(self): batch_size = 4 num_channels = 4 num_frames = 4 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device) return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} @property def input_shape(self): return (4, 4, 32, 32) @property def output_shape(self): return (4, 4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (32, 64), "down_block_types": ( "CrossAttnDownBlock3D", "DownBlock3D", ), "up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"), "cross_attention_dim": 32, "attention_head_dim": 8, "out_channels": 4, "in_channels": 4, "layers_per_block": 1, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_enable_works(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.enable_xformers_memory_efficient_attention() assert ( model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ == "XFormersAttnProcessor" ), "xformers is not enabled" # Overriding to set `norm_num_groups` needs to be different for this model. def test_forward_with_norm_groups(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["norm_num_groups"] = 32 model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") # Overriding since the UNet3D outputs a different structure. def test_determinism(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): # Warmup pass when using mps (see #372) if torch_device == "mps" and isinstance(model, ModelMixin): model(**self.dummy_input) first = model(**inputs_dict) if isinstance(first, dict): first = first.sample second = model(**inputs_dict) if isinstance(second, dict): second = second.sample out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_model_attention_slicing(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = 8 model = self.model_class(**init_dict) model.to(torch_device) model.eval() model.set_attention_slice("auto") with torch.no_grad(): output = model(**inputs_dict) assert output is not None model.set_attention_slice("max") with torch.no_grad(): output = model(**inputs_dict) assert output is not None model.set_attention_slice(2) with torch.no_grad(): output = model(**inputs_dict) assert output is not None def test_lora_processors(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = 8 model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): sample1 = model(**inputs_dict).sample lora_attn_procs = create_lora_layers(model) # make sure we can set a list of attention processors model.set_attn_processor(lora_attn_procs) model.to(torch_device) # test that attn processors can be set to itself model.set_attn_processor(model.attn_processors) with torch.no_grad(): sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample assert (sample1 - sample2).abs().max() < 3e-3 assert (sample3 - sample4).abs().max() < 3e-3 # sample 2 and sample 3 should be different assert (sample2 - sample3).abs().max() > 3e-3 def test_lora_save_load(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = 8 torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): old_sample = model(**inputs_dict).sample lora_attn_procs = create_lora_layers(model) model.set_attn_processor(lora_attn_procs) with torch.no_grad(): sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) torch.manual_seed(0) new_model = self.model_class(**init_dict) new_model.to(torch_device) new_model.load_attn_procs(tmpdirname) with torch.no_grad(): new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample assert (sample - new_sample).abs().max() < 1e-3 # LoRA and no LoRA should NOT be the same assert (sample - old_sample).abs().max() > 1e-4 def test_lora_save_load_safetensors(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = 8 torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): old_sample = model(**inputs_dict).sample lora_attn_procs = create_lora_layers(model) model.set_attn_processor(lora_attn_procs) with torch.no_grad(): sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname, safe_serialization=True) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) torch.manual_seed(0) new_model = self.model_class(**init_dict) new_model.to(torch_device) new_model.load_attn_procs(tmpdirname) with torch.no_grad(): new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample assert (sample - new_sample).abs().max() < 3e-3 # LoRA and no LoRA should NOT be the same assert (sample - old_sample).abs().max() > 1e-4 def test_lora_save_safetensors_load_torch(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = 8 torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) lora_attn_procs = create_lora_layers(model, mock_weights=False) model.set_attn_processor(lora_attn_procs) # Saving as torch, properly reloads with directly filename with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) torch.manual_seed(0) new_model = self.model_class(**init_dict) new_model.to(torch_device) new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.bin") def test_lora_save_torch_force_load_safetensors_error(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = 8 torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) lora_attn_procs = create_lora_layers(model, mock_weights=False) model.set_attn_processor(lora_attn_procs) # Saving as torch, properly reloads with directly filename with tempfile.TemporaryDirectory() as tmpdirname: model.save_attn_procs(tmpdirname) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) torch.manual_seed(0) new_model = self.model_class(**init_dict) new_model.to(torch_device) with self.assertRaises(IOError) as e: new_model.load_attn_procs(tmpdirname, use_safetensors=True) self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception)) def test_lora_on_off(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = 8 torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) with torch.no_grad(): old_sample = model(**inputs_dict).sample lora_attn_procs = create_lora_layers(model) model.set_attn_processor(lora_attn_procs) with torch.no_grad(): sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample model.set_attn_processor(AttnProcessor()) with torch.no_grad(): new_sample = model(**inputs_dict).sample assert (sample - new_sample).abs().max() < 1e-4 assert (sample - old_sample).abs().max() < 3e-3 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_lora_xformers_on_off(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["attention_head_dim"] = 4 torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) lora_attn_procs = create_lora_layers(model) model.set_attn_processor(lora_attn_procs) # default with torch.no_grad(): sample = model(**inputs_dict).sample model.enable_xformers_memory_efficient_attention() on_sample = model(**inputs_dict).sample model.disable_xformers_memory_efficient_attention() off_sample = model(**inputs_dict).sample assert (sample - on_sample).abs().max() < 1e-4 assert (sample - off_sample).abs().max() < 1e-4 def test_feed_forward_chunking(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["norm_num_groups"] = 32 model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict)[0] model.enable_forward_chunking() with torch.no_grad(): output_2 = model(**inputs_dict)[0] self.assertEqual(output.shape, output_2.shape, "Shape doesn't match") assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2 # (todo: sayakpaul) implement SLOW tests.
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_modeling_common.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import tempfile import traceback import unittest import unittest.mock as mock from typing import Dict, List, Tuple import numpy as np import requests_mock import torch from requests.exceptions import HTTPError from diffusers.models import UNet2DConditionModel from diffusers.models.attention_processor import AttnProcessor, AttnProcessor2_0, XFormersAttnProcessor from diffusers.training_utils import EMAModel from diffusers.utils import logging, torch_device from diffusers.utils.testing_utils import CaptureLogger, require_torch_2, require_torch_gpu, run_test_in_subprocess # Will be run via run_test_in_subprocess def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout): error = None try: init_dict, model_class = in_queue.get(timeout=timeout) model = model_class(**init_dict) model.to(torch_device) model = torch.compile(model) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) new_model = model_class.from_pretrained(tmpdirname) new_model.to(torch_device) assert new_model.__class__ == model_class except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() class ModelUtilsTest(unittest.TestCase): def tearDown(self): super().tearDown() import diffusers diffusers.utils.import_utils._safetensors_available = True def test_accelerate_loading_error_message(self): with self.assertRaises(ValueError) as error_context: UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet") # make sure that error message states what keys are missing assert "conv_out.bias" in str(error_context.exception) def test_cached_files_are_used_when_no_internet(self): # A mock response for an HTTP head request to emulate server down response_mock = mock.Mock() response_mock.status_code = 500 response_mock.headers = {} response_mock.raise_for_status.side_effect = HTTPError response_mock.json.return_value = {} # Download this model to make sure it's in the cache. orig_model = UNet2DConditionModel.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.request", return_value=response_mock): # Download this model to make sure it's in the cache. model = UNet2DConditionModel.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True ) for p1, p2 in zip(orig_model.parameters(), model.parameters()): if p1.data.ne(p2.data).sum() > 0: assert False, "Parameters not the same!" def test_one_request_upon_cached(self): # TODO: For some reason this test fails on MPS where no HEAD call is made. if torch_device == "mps": return import diffusers diffusers.utils.import_utils._safetensors_available = False with tempfile.TemporaryDirectory() as tmpdirname: with requests_mock.mock(real_http=True) as m: UNet2DConditionModel.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", cache_dir=tmpdirname ) download_requests = [r.method for r in m.request_history] assert download_requests.count("HEAD") == 2, "2 HEAD requests one for config, one for model" assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model" with requests_mock.mock(real_http=True) as m: UNet2DConditionModel.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", cache_dir=tmpdirname ) cache_requests = [r.method for r in m.request_history] assert ( "HEAD" == cache_requests[0] and len(cache_requests) == 1 ), "We should call only `model_info` to check for _commit hash and `send_telemetry`" diffusers.utils.import_utils._safetensors_available = True def test_weight_overwrite(self): with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context: UNet2DConditionModel.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", cache_dir=tmpdirname, in_channels=9, ) # make sure that error message states what keys are missing assert "Cannot load" in str(error_context.exception) with tempfile.TemporaryDirectory() as tmpdirname: model = UNet2DConditionModel.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", cache_dir=tmpdirname, in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True, ) assert model.config.in_channels == 9 class UNetTesterMixin: def test_forward_signature(self): init_dict, _ = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["sample", "timestep"] self.assertListEqual(arg_names[:2], expected_arg_names) def test_forward_with_norm_groups(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["norm_num_groups"] = 16 init_dict["block_out_channels"] = (16, 32) model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.to_tuple()[0] self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") class ModelTesterMixin: main_input_name = None # overwrite in model specific tester class base_precision = 1e-3 def test_from_save_pretrained(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) if hasattr(model, "set_default_attn_processor"): model.set_default_attn_processor() model.to(torch_device) model.eval() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) new_model = self.model_class.from_pretrained(tmpdirname) if hasattr(new_model, "set_default_attn_processor"): new_model.set_default_attn_processor() new_model.to(torch_device) with torch.no_grad(): image = model(**inputs_dict) if isinstance(image, dict): image = image.to_tuple()[0] new_image = new_model(**inputs_dict) if isinstance(new_image, dict): new_image = new_image.to_tuple()[0] max_diff = (image - new_image).abs().sum().item() self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes") def test_getattr_is_correct(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) # save some things to test model.dummy_attribute = 5 model.register_to_config(test_attribute=5) logger = logging.get_logger("diffusers.models.modeling_utils") # 30 for warning logger.setLevel(30) with CaptureLogger(logger) as cap_logger: assert hasattr(model, "dummy_attribute") assert getattr(model, "dummy_attribute") == 5 assert model.dummy_attribute == 5 # no warning should be thrown assert cap_logger.out == "" logger = logging.get_logger("diffusers.models.modeling_utils") # 30 for warning logger.setLevel(30) with CaptureLogger(logger) as cap_logger: assert hasattr(model, "save_pretrained") fn = model.save_pretrained fn_1 = getattr(model, "save_pretrained") assert fn == fn_1 # no warning should be thrown assert cap_logger.out == "" # warning should be thrown with self.assertWarns(FutureWarning): assert model.test_attribute == 5 with self.assertWarns(FutureWarning): assert getattr(model, "test_attribute") == 5 with self.assertRaises(AttributeError) as error: model.does_not_exist assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'" @require_torch_gpu def test_set_attn_processor_for_determinism(self): torch.use_deterministic_algorithms(False) init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) if not hasattr(model, "set_attn_processor"): # If not has `set_attn_processor`, skip test return assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values()) with torch.no_grad(): output_1 = model(**inputs_dict)[0] model.set_default_attn_processor() assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values()) with torch.no_grad(): output_2 = model(**inputs_dict)[0] model.enable_xformers_memory_efficient_attention() assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values()) with torch.no_grad(): output_3 = model(**inputs_dict)[0] model.set_attn_processor(AttnProcessor2_0()) assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values()) with torch.no_grad(): output_4 = model(**inputs_dict)[0] model.set_attn_processor(AttnProcessor()) assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values()) with torch.no_grad(): output_5 = model(**inputs_dict)[0] model.set_attn_processor(XFormersAttnProcessor()) assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values()) with torch.no_grad(): output_6 = model(**inputs_dict)[0] torch.use_deterministic_algorithms(True) # make sure that outputs match assert torch.allclose(output_2, output_1, atol=self.base_precision) assert torch.allclose(output_2, output_3, atol=self.base_precision) assert torch.allclose(output_2, output_4, atol=self.base_precision) assert torch.allclose(output_2, output_5, atol=self.base_precision) assert torch.allclose(output_2, output_6, atol=self.base_precision) def test_from_save_pretrained_variant(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) if hasattr(model, "set_default_attn_processor"): model.set_default_attn_processor() model.to(torch_device) model.eval() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, variant="fp16") new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16") if hasattr(new_model, "set_default_attn_processor"): new_model.set_default_attn_processor() # non-variant cannot be loaded with self.assertRaises(OSError) as error_context: self.model_class.from_pretrained(tmpdirname) # make sure that error message states what keys are missing assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception) new_model.to(torch_device) with torch.no_grad(): image = model(**inputs_dict) if isinstance(image, dict): image = image.to_tuple()[0] new_image = new_model(**inputs_dict) if isinstance(new_image, dict): new_image = new_image.to_tuple()[0] max_diff = (image - new_image).abs().sum().item() self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes") @require_torch_2 def test_from_save_pretrained_dynamo(self): init_dict, _ = self.prepare_init_args_and_inputs_for_common() inputs = [init_dict, self.model_class] run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs) def test_from_save_pretrained_dtype(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() for dtype in [torch.float32, torch.float16, torch.bfloat16]: if torch_device == "mps" and dtype == torch.bfloat16: continue with tempfile.TemporaryDirectory() as tmpdirname: model.to(dtype) model.save_pretrained(tmpdirname) new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype) assert new_model.dtype == dtype new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype) assert new_model.dtype == dtype def test_determinism(self, expected_max_diff=1e-5): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**inputs_dict) if isinstance(first, dict): first = first.to_tuple()[0] second = model(**inputs_dict) if isinstance(second, dict): second = second.to_tuple()[0] out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, expected_max_diff) def test_output(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.to_tuple()[0] self.assertIsNotNone(output) # input & output have to have the same shape input_tensor = inputs_dict[self.main_input_name] expected_shape = input_tensor.shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_model_from_pretrained(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() # test if the model can be loaded from the config # and has all the expected shape with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) new_model = self.model_class.from_pretrained(tmpdirname) new_model.to(torch_device) new_model.eval() # check if all parameters shape are the same for param_name in model.state_dict().keys(): param_1 = model.state_dict()[param_name] param_2 = new_model.state_dict()[param_name] self.assertEqual(param_1.shape, param_2.shape) with torch.no_grad(): output_1 = model(**inputs_dict) if isinstance(output_1, dict): output_1 = output_1.to_tuple()[0] output_2 = new_model(**inputs_dict) if isinstance(output_2, dict): output_2 = output_2.to_tuple()[0] self.assertEqual(output_1.shape, output_2.shape) @unittest.skipIf(torch_device == "mps", "Training is not supported in mps") def test_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.train() output = model(**inputs_dict) if isinstance(output, dict): output = output.to_tuple()[0] input_tensor = inputs_dict[self.main_input_name] noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward() @unittest.skipIf(torch_device == "mps", "Training is not supported in mps") def test_ema_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.train() ema_model = EMAModel(model.parameters()) output = model(**inputs_dict) if isinstance(output, dict): output = output.to_tuple()[0] input_tensor = inputs_dict[self.main_input_name] noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward() ema_model.step(model.parameters()) def test_outputs_equivalence(self): def set_nan_tensor_to_zero(t): # Temporary fallback until `aten::_index_put_impl_` is implemented in mps # Track progress in https://github.com/pytorch/pytorch/issues/77764 device = t.device if device.type == "mps": t = t.to("cpu") t[t != t] = 0 return t.to(device) def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): outputs_dict = model(**inputs_dict) outputs_tuple = model(**inputs_dict, return_dict=False) recursive_check(outputs_tuple, outputs_dict) @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS") def test_enable_disable_gradient_checkpointing(self): if not self.model_class._supports_gradient_checkpointing: return # Skip test if model does not support gradient checkpointing init_dict, _ = self.prepare_init_args_and_inputs_for_common() # at init model should have gradient checkpointing disabled model = self.model_class(**init_dict) self.assertFalse(model.is_gradient_checkpointing) # check enable works model.enable_gradient_checkpointing() self.assertTrue(model.is_gradient_checkpointing) # check disable works model.disable_gradient_checkpointing() self.assertFalse(model.is_gradient_checkpointing) def test_deprecated_kwargs(self): has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0 if has_kwarg_in_model_class and not has_deprecated_kwarg: raise ValueError( f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs" " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are" " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" " [<deprecated_argument>]`" ) if not has_kwarg_in_model_class and has_deprecated_kwarg: raise ValueError( f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs" " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to" f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument" " from `_deprecated_kwargs = [<deprecated_argument>]`" )
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_unet_blocks_common.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UNetBlockTesterMixin: @property def dummy_input(self): return self.get_dummy_input() @property def output_shape(self): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.") def get_dummy_input( self, include_temb=True, include_res_hidden_states_tuple=False, include_encoder_hidden_states=False, include_skip_sample=False, ): batch_size = 4 num_channels = 32 sizes = (32, 32) generator = torch.manual_seed(0) device = torch.device(torch_device) shape = (batch_size, num_channels) + sizes hidden_states = randn_tensor(shape, generator=generator, device=device) dummy_input = {"hidden_states": hidden_states} if include_temb: temb_channels = 128 dummy_input["temb"] = randn_tensor((batch_size, temb_channels), generator=generator, device=device) if include_res_hidden_states_tuple: generator_1 = torch.manual_seed(1) dummy_input["res_hidden_states_tuple"] = (randn_tensor(shape, generator=generator_1, device=device),) if include_encoder_hidden_states: dummy_input["encoder_hidden_states"] = floats_tensor((batch_size, 32, 32)).to(torch_device) if include_skip_sample: dummy_input["skip_sample"] = randn_tensor(((batch_size, 3) + sizes), generator=generator, device=device) return dummy_input def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": init_dict["prev_output_channel"] = 32 if self.block_type == "mid": init_dict.pop("out_channels") inputs_dict = self.dummy_input return init_dict, inputs_dict def test_output(self, expected_slice): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() unet_block = self.block_class(**init_dict) unet_block.to(torch_device) unet_block.eval() with torch.no_grad(): output = unet_block(**inputs_dict) if isinstance(output, Tuple): output = output[0] self.assertEqual(output.shape, self.output_shape) output_slice = output[0, -1, -3:, -3:] expected_slice = torch.tensor(expected_slice).to(torch_device) assert torch_all_close(output_slice.flatten(), expected_slice, atol=5e-3) @unittest.skipIf(torch_device == "mps", "Training is not supported in mps") def test_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.block_class(**init_dict) model.to(torch_device) model.train() output = model(**inputs_dict) if isinstance(output, Tuple): output = output[0] device = torch.device(torch_device) noise = randn_tensor(output.shape, device=device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward()
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/models/test_attention_processor.py
import tempfile import unittest import numpy as np import torch from diffusers import DiffusionPipeline from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor class AttnAddedKVProcessorTests(unittest.TestCase): def get_constructor_arguments(self, only_cross_attention: bool = False): query_dim = 10 if only_cross_attention: cross_attention_dim = 12 else: # when only cross attention is not set, the cross attention dim must be the same as the query dim cross_attention_dim = query_dim return { "query_dim": query_dim, "cross_attention_dim": cross_attention_dim, "heads": 2, "dim_head": 4, "added_kv_proj_dim": 6, "norm_num_groups": 1, "only_cross_attention": only_cross_attention, "processor": AttnAddedKVProcessor(), } def get_forward_arguments(self, query_dim, added_kv_proj_dim): batch_size = 2 hidden_states = torch.rand(batch_size, query_dim, 3, 2) encoder_hidden_states = torch.rand(batch_size, 4, added_kv_proj_dim) attention_mask = None return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "attention_mask": attention_mask, } def test_only_cross_attention(self): # self and cross attention torch.manual_seed(0) constructor_args = self.get_constructor_arguments(only_cross_attention=False) attn = Attention(**constructor_args) self.assertTrue(attn.to_k is not None) self.assertTrue(attn.to_v is not None) forward_args = self.get_forward_arguments( query_dim=constructor_args["query_dim"], added_kv_proj_dim=constructor_args["added_kv_proj_dim"] ) self_and_cross_attn_out = attn(**forward_args) # only self attention torch.manual_seed(0) constructor_args = self.get_constructor_arguments(only_cross_attention=True) attn = Attention(**constructor_args) self.assertTrue(attn.to_k is None) self.assertTrue(attn.to_v is None) forward_args = self.get_forward_arguments( query_dim=constructor_args["query_dim"], added_kv_proj_dim=constructor_args["added_kv_proj_dim"] ) only_cross_attn_out = attn(**forward_args) self.assertTrue((only_cross_attn_out != self_and_cross_attn_out).all()) class DeprecatedAttentionBlockTests(unittest.TestCase): def test_conversion_when_using_device_map(self): pipe = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None) pre_conversion = pipe( "foo", num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np", ).images # the initial conversion succeeds pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", device_map="sequential", safety_checker=None ) conversion = pipe( "foo", num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np", ).images with tempfile.TemporaryDirectory() as tmpdir: # save the converted model pipe.save_pretrained(tmpdir) # can also load the converted weights pipe = DiffusionPipeline.from_pretrained(tmpdir, device_map="sequential", safety_checker=None) after_conversion = pipe( "foo", num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np", ).images self.assertTrue(np.allclose(pre_conversion, conversion, atol=1e-5)) self.assertTrue(np.allclose(conversion, after_conversion, atol=1e-5))
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/pipelines/test_pipelines_flax.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class DownloadTests(unittest.TestCase): def test_download_only_pytorch(self): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _ = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname ) all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))] files = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin") for f in files) @slow @require_flax class FlaxPipelineTests(unittest.TestCase): def test_dummy_all_tpus(self): pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None ) prompt = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) prng_seed = jax.random.PRNGKey(0) num_inference_steps = 4 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, num_samples) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 4.1514745) < 1e-3 assert np.abs(np.abs(images, dtype=np.float32).sum() - 49947.875) < 5e-1 images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(images_pil) == num_samples def test_stable_diffusion_v1_4(self): pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="flax", safety_checker=None ) prompt = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, num_samples) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3 assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1 def test_stable_diffusion_v1_4_bfloat_16(self): pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, safety_checker=None ) prompt = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, num_samples) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(images, dtype=np.float32).sum() - 2373516.75)) < 5e-1 def test_stable_diffusion_v1_4_bfloat_16_with_safety(self): pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16 ) prompt = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, num_samples) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(images, dtype=np.float32).sum() - 2373516.75)) < 5e-1 def test_stable_diffusion_v1_4_bfloat_16_ddim(self): scheduler = FlaxDDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", set_alpha_to_one=False, steps_offset=1, ) pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, scheduler=scheduler, safety_checker=None, ) scheduler_state = scheduler.create_state() params["scheduler"] = scheduler_state prompt = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, num_samples) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3 assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1 def test_jax_memory_efficient_attention(self): prompt = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) num_samples = jax.device_count() prompt = num_samples * [prompt] prng_seed = jax.random.split(jax.random.PRNGKey(0), num_samples) pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, safety_checker=None, ) params = replicate(params) prompt_ids = pipeline.prepare_inputs(prompt) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, jit=True).images assert images.shape == (num_samples, 1, 512, 512, 3) slice = images[2, 0, 256, 10:17, 1] # With memory efficient attention pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, safety_checker=None, use_memory_efficient_attention=True, ) params = replicate(params) prompt_ids = pipeline.prepare_inputs(prompt) prompt_ids = shard(prompt_ids) images_eff = pipeline(prompt_ids, params, prng_seed, jit=True).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) slice_eff = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/pipelines/pipeline_params.py
# These are canonical sets of parameters for different types of pipelines. # They are set on subclasses of `PipelineTesterMixin` as `params` and # `batch_params`. # # If a pipeline's set of arguments has minor changes from one of the common sets # of arguments, do not make modifications to the existing common sets of arguments. # I.e. a text to image pipeline with non-configurable height and width arguments # should set its attribute as `params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. TEXT_TO_IMAGE_PARAMS = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) TEXT_TO_IMAGE_BATCH_PARAMS = frozenset(["prompt", "negative_prompt"]) TEXT_TO_IMAGE_IMAGE_PARAMS = frozenset([]) IMAGE_TO_IMAGE_IMAGE_PARAMS = frozenset(["image"]) IMAGE_VARIATION_PARAMS = frozenset( [ "image", "height", "width", "guidance_scale", ] ) IMAGE_VARIATION_BATCH_PARAMS = frozenset(["image"]) TEXT_GUIDED_IMAGE_VARIATION_PARAMS = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS = frozenset(["prompt", "image", "negative_prompt"]) TEXT_GUIDED_IMAGE_INPAINTING_PARAMS = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) IMAGE_INPAINTING_PARAMS = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) IMAGE_INPAINTING_BATCH_PARAMS = frozenset(["image", "mask_image"]) IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS = frozenset(["example_image", "image", "mask_image"]) CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS = frozenset(["class_labels"]) CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS = frozenset(["class_labels"]) UNCONDITIONAL_IMAGE_GENERATION_PARAMS = frozenset(["batch_size"]) UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS = frozenset([]) UNCONDITIONAL_AUDIO_GENERATION_PARAMS = frozenset(["batch_size"]) UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS = frozenset([]) TEXT_TO_AUDIO_PARAMS = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) TEXT_TO_AUDIO_BATCH_PARAMS = frozenset(["prompt", "negative_prompt"]) TOKENS_TO_AUDIO_GENERATION_PARAMS = frozenset(["input_tokens"]) TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS = frozenset(["input_tokens"])
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/pipelines/test_pipeline_utils.py
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class IsSafetensorsCompatibleTests(unittest.TestCase): def test_all_is_compatible(self): filenames = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(filenames)) def test_diffusers_model_is_compatible(self): filenames = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(filenames)) def test_diffusers_model_is_not_compatible(self): filenames = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(filenames)) def test_transformer_model_is_compatible(self): filenames = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(filenames)) def test_transformer_model_is_not_compatible(self): filenames = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(filenames)) def test_all_is_compatible_variant(self): filenames = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] variant = "fp16" self.assertTrue(is_safetensors_compatible(filenames, variant=variant)) def test_diffusers_model_is_compatible_variant(self): filenames = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] variant = "fp16" self.assertTrue(is_safetensors_compatible(filenames, variant=variant)) def test_diffusers_model_is_compatible_variant_partial(self): # pass variant but use the non-variant filenames filenames = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] variant = "fp16" self.assertTrue(is_safetensors_compatible(filenames, variant=variant)) def test_diffusers_model_is_not_compatible_variant(self): filenames = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] variant = "fp16" self.assertFalse(is_safetensors_compatible(filenames, variant=variant)) def test_transformer_model_is_compatible_variant(self): filenames = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] variant = "fp16" self.assertTrue(is_safetensors_compatible(filenames, variant=variant)) def test_transformer_model_is_compatible_variant_partial(self): # pass variant but use the non-variant filenames filenames = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] variant = "fp16" self.assertTrue(is_safetensors_compatible(filenames, variant=variant)) def test_transformer_model_is_not_compatible_variant(self): filenames = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] variant = "fp16" self.assertFalse(is_safetensors_compatible(filenames, variant=variant))
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/pipelines/test_pipelines.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import glob import json import os import random import shutil import sys import tempfile import traceback import unittest import unittest.mock as mock import numpy as np import PIL import requests_mock import safetensors.torch import torch from parameterized import parameterized from PIL import Image from requests.exceptions import HTTPError from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ConfigMixin, DDIMPipeline, DDIMScheduler, DDPMPipeline, DDPMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, ModelMixin, PNDMScheduler, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionPipeline, UNet2DConditionModel, UNet2DModel, UniPCMultistepScheduler, logging, ) from diffusers.pipelines.pipeline_utils import variant_compatible_siblings from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME from diffusers.utils import ( CONFIG_NAME, WEIGHTS_NAME, floats_tensor, is_compiled_module, nightly, require_torch_2, slow, torch_device, ) from diffusers.utils.testing_utils import ( CaptureLogger, enable_full_determinism, get_tests_dir, load_numpy, require_compel, require_flax, require_torch_gpu, run_test_in_subprocess, ) enable_full_determinism() # Will be run via run_test_in_subprocess def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout): error = None try: # 1. Load models model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) model = torch.compile(model) scheduler = DDPMScheduler(num_train_timesteps=10) ddpm = DDPMPipeline(model, scheduler) # previous diffusers versions stripped compilation off # compiled modules assert is_compiled_module(ddpm.unet) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) with tempfile.TemporaryDirectory() as tmpdirname: ddpm.save_pretrained(tmpdirname) new_ddpm = DDPMPipeline.from_pretrained(tmpdirname) new_ddpm.to(torch_device) generator = torch.Generator(device=torch_device).manual_seed(0) image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images generator = torch.Generator(device=torch_device).manual_seed(0) new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() class CustomEncoder(ModelMixin, ConfigMixin): def __init__(self): super().__init__() class CustomPipeline(DiffusionPipeline): def __init__(self, encoder: CustomEncoder, scheduler: DDIMScheduler): super().__init__() self.register_modules(encoder=encoder, scheduler=scheduler) class DownloadTests(unittest.TestCase): def test_one_request_upon_cached(self): # TODO: For some reason this test fails on MPS where no HEAD call is made. if torch_device == "mps": return with tempfile.TemporaryDirectory() as tmpdirname: with requests_mock.mock(real_http=True) as m: DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe", cache_dir=tmpdirname) download_requests = [r.method for r in m.request_history] assert download_requests.count("HEAD") == 15, "15 calls to files" assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json" assert ( len(download_requests) == 32 ), "2 calls per file (15 files) + send_telemetry, model_info and model_index.json" with requests_mock.mock(real_http=True) as m: DiffusionPipeline.download( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname ) cache_requests = [r.method for r in m.request_history] assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD" assert cache_requests.count("GET") == 1, "model info is only GET" assert ( len(cache_requests) == 2 ), "We should call only `model_info` to check for _commit hash and `send_telemetry`" def test_less_downloads_passed_object(self): with tempfile.TemporaryDirectory() as tmpdirname: cached_folder = DiffusionPipeline.download( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname ) # make sure safety checker is not downloaded assert "safety_checker" not in os.listdir(cached_folder) # make sure rest is downloaded assert "unet" in os.listdir(cached_folder) assert "tokenizer" in os.listdir(cached_folder) assert "vae" in os.listdir(cached_folder) assert "model_index.json" in os.listdir(cached_folder) assert "scheduler" in os.listdir(cached_folder) assert "feature_extractor" in os.listdir(cached_folder) def test_less_downloads_passed_object_calls(self): # TODO: For some reason this test fails on MPS where no HEAD call is made. if torch_device == "mps": return with tempfile.TemporaryDirectory() as tmpdirname: with requests_mock.mock(real_http=True) as m: DiffusionPipeline.download( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname ) download_requests = [r.method for r in m.request_history] # 15 - 2 because no call to config or model file for `safety_checker` assert download_requests.count("HEAD") == 13, "13 calls to files" # 17 - 2 because no call to config or model file for `safety_checker` assert download_requests.count("GET") == 15, "13 calls to files + model_info + model_index.json" assert ( len(download_requests) == 28 ), "2 calls per file (13 files) + send_telemetry, model_info and model_index.json" with requests_mock.mock(real_http=True) as m: DiffusionPipeline.download( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname ) cache_requests = [r.method for r in m.request_history] assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD" assert cache_requests.count("GET") == 1, "model info is only GET" assert ( len(cache_requests) == 2 ), "We should call only `model_info` to check for _commit hash and `send_telemetry`" def test_download_only_pytorch(self): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights tmpdirname = DiffusionPipeline.download( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname ) all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))] files = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a flax file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack assert not any(f.endswith(".msgpack") for f in files) # We need to never convert this tiny model to safetensors for this test to pass assert not any(f.endswith(".safetensors") for f in files) def test_force_safetensors_error(self): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights with self.assertRaises(EnvironmentError): tmpdirname = DiffusionPipeline.download( "hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors", safety_checker=None, cache_dir=tmpdirname, use_safetensors=True, ) def test_download_safetensors(self): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights tmpdirname = DiffusionPipeline.download( "hf-internal-testing/tiny-stable-diffusion-pipe-safetensors", safety_checker=None, cache_dir=tmpdirname, ) all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))] files = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a pytorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack assert not any(f.endswith(".bin") for f in files) def test_download_safetensors_index(self): for variant in ["fp16", None]: with tempfile.TemporaryDirectory() as tmpdirname: tmpdirname = DiffusionPipeline.download( "hf-internal-testing/tiny-stable-diffusion-pipe-indexes", cache_dir=tmpdirname, use_safetensors=True, variant=variant, ) all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))] files = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a safetensors file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder if variant is None: assert not any("fp16" in f for f in files) else: model_files = [f for f in files if "safetensors" in f] assert all("fp16" in f for f in model_files) assert len([f for f in files if ".safetensors" in f]) == 8 assert not any(".bin" in f for f in files) def test_download_bin_index(self): for variant in ["fp16", None]: with tempfile.TemporaryDirectory() as tmpdirname: tmpdirname = DiffusionPipeline.download( "hf-internal-testing/tiny-stable-diffusion-pipe-indexes", cache_dir=tmpdirname, use_safetensors=False, variant=variant, ) all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))] files = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a safetensors file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder if variant is None: assert not any("fp16" in f for f in files) else: model_files = [f for f in files if "bin" in f] assert all("fp16" in f for f in model_files) assert len([f for f in files if ".bin" in f]) == 8 assert not any(".safetensors" in f for f in files) def test_download_no_safety_checker(self): prompt = "hello" pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None ) pipe = pipe.to(torch_device) generator = torch.manual_seed(0) out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch") pipe_2 = pipe_2.to(torch_device) generator = torch.manual_seed(0) out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images assert np.max(np.abs(out - out_2)) < 1e-3 def test_load_no_safety_checker_explicit_locally(self): prompt = "hello" pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None ) pipe = pipe.to(torch_device) generator = torch.manual_seed(0) out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None) pipe_2 = pipe_2.to(torch_device) generator = torch.manual_seed(0) out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images assert np.max(np.abs(out - out_2)) < 1e-3 def test_load_no_safety_checker_default_locally(self): prompt = "hello" pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch") pipe = pipe.to(torch_device) generator = torch.manual_seed(0) out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname) pipe_2 = pipe_2.to(torch_device) generator = torch.manual_seed(0) out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images assert np.max(np.abs(out - out_2)) < 1e-3 def test_cached_files_are_used_when_no_internet(self): # A mock response for an HTTP head request to emulate server down response_mock = mock.Mock() response_mock.status_code = 500 response_mock.headers = {} response_mock.raise_for_status.side_effect = HTTPError response_mock.json.return_value = {} # Download this model to make sure it's in the cache. orig_pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None ) orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")} # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.request", return_value=response_mock): # Download this model to make sure it's in the cache. pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None ) comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")} for m1, m2 in zip(orig_comps.values(), comps.values()): for p1, p2 in zip(m1.parameters(), m2.parameters()): if p1.data.ne(p2.data).sum() > 0: assert False, "Parameters not the same!" def test_download_from_variant_folder(self): for safe_avail in [False, True]: import diffusers diffusers.utils.import_utils._safetensors_available = safe_avail other_format = ".bin" if safe_avail else ".safetensors" with tempfile.TemporaryDirectory() as tmpdirname: tmpdirname = StableDiffusionPipeline.download( "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname ) all_root_files = [t[-1] for t in os.walk(tmpdirname)] files = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a variant file even if we have some here: # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet assert len(files) == 15, f"We should only download 15 files, not {len(files)}" assert not any(f.endswith(other_format) for f in files) # no variants assert not any(len(f.split(".")) == 3 for f in files) diffusers.utils.import_utils._safetensors_available = True def test_download_variant_all(self): for safe_avail in [False, True]: import diffusers diffusers.utils.import_utils._safetensors_available = safe_avail other_format = ".bin" if safe_avail else ".safetensors" this_format = ".safetensors" if safe_avail else ".bin" variant = "fp16" with tempfile.TemporaryDirectory() as tmpdirname: tmpdirname = StableDiffusionPipeline.download( "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant ) all_root_files = [t[-1] for t in os.walk(tmpdirname)] files = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a non-variant file even if we have some here: # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet assert len(files) == 15, f"We should only download 15 files, not {len(files)}" # unet, vae, text_encoder, safety_checker assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4 # all checkpoints should have variant ending assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) assert not any(f.endswith(other_format) for f in files) diffusers.utils.import_utils._safetensors_available = True def test_download_variant_partly(self): for safe_avail in [False, True]: import diffusers diffusers.utils.import_utils._safetensors_available = safe_avail other_format = ".bin" if safe_avail else ".safetensors" this_format = ".safetensors" if safe_avail else ".bin" variant = "no_ema" with tempfile.TemporaryDirectory() as tmpdirname: tmpdirname = StableDiffusionPipeline.download( "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant ) all_root_files = [t[-1] for t in os.walk(tmpdirname)] files = [item for sublist in all_root_files for item in sublist] unet_files = os.listdir(os.path.join(tmpdirname, "unet")) # Some of the downloaded files should be a non-variant file, check: # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet assert len(files) == 15, f"We should only download 15 files, not {len(files)}" # only unet has "no_ema" variant assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1 # vae, safety_checker and text_encoder should have no variant assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3 assert not any(f.endswith(other_format) for f in files) diffusers.utils.import_utils._safetensors_available = True def test_download_broken_variant(self): for safe_avail in [False, True]: import diffusers diffusers.utils.import_utils._safetensors_available = safe_avail # text encoder is missing no variant and "no_ema" variant weights, so the following can't work for variant in [None, "no_ema"]: with self.assertRaises(OSError) as error_context: with tempfile.TemporaryDirectory() as tmpdirname: tmpdirname = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/stable-diffusion-broken-variants", cache_dir=tmpdirname, variant=variant, ) assert "Error no file name" in str(error_context.exception) # text encoder has fp16 variants so we can load it with tempfile.TemporaryDirectory() as tmpdirname: tmpdirname = StableDiffusionPipeline.download( "hf-internal-testing/stable-diffusion-broken-variants", cache_dir=tmpdirname, variant="fp16" ) all_root_files = [t[-1] for t in os.walk(tmpdirname)] files = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a non-variant file even if we have some here: # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet assert len(files) == 15, f"We should only download 15 files, not {len(files)}" # only unet has "no_ema" variant diffusers.utils.import_utils._safetensors_available = True def test_local_save_load_index(self): prompt = "hello" for variant in [None, "fp16"]: for use_safe in [True, False]: pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe-indexes", variant=variant, use_safetensors=use_safe, safety_checker=None, ) pipe = pipe.to(torch_device) generator = torch.manual_seed(0) out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe_2 = StableDiffusionPipeline.from_pretrained( tmpdirname, safe_serialization=use_safe, variant=variant ) pipe_2 = pipe_2.to(torch_device) generator = torch.manual_seed(0) out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images assert np.max(np.abs(out - out_2)) < 1e-3 def test_text_inversion_download(self): pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None ) pipe = pipe.to(torch_device) num_tokens = len(pipe.tokenizer) # single token load local with tempfile.TemporaryDirectory() as tmpdirname: ten = {"<*>": torch.ones((32,))} torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin")) pipe.load_textual_inversion(tmpdirname) token = pipe.tokenizer.convert_tokens_to_ids("<*>") assert token == num_tokens, "Added token must be at spot `num_tokens`" assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32 assert pipe._maybe_convert_prompt("<*>", pipe.tokenizer) == "<*>" prompt = "hey <*>" out = pipe(prompt, num_inference_steps=1, output_type="numpy").images assert out.shape == (1, 128, 128, 3) # single token load local with weight name with tempfile.TemporaryDirectory() as tmpdirname: ten = {"<**>": 2 * torch.ones((1, 32))} torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin")) pipe.load_textual_inversion(tmpdirname, weight_name="learned_embeds.bin") token = pipe.tokenizer.convert_tokens_to_ids("<**>") assert token == num_tokens + 1, "Added token must be at spot `num_tokens`" assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64 assert pipe._maybe_convert_prompt("<**>", pipe.tokenizer) == "<**>" prompt = "hey <**>" out = pipe(prompt, num_inference_steps=1, output_type="numpy").images assert out.shape == (1, 128, 128, 3) # multi token load with tempfile.TemporaryDirectory() as tmpdirname: ten = {"<***>": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])} torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin")) pipe.load_textual_inversion(tmpdirname) token = pipe.tokenizer.convert_tokens_to_ids("<***>") token_1 = pipe.tokenizer.convert_tokens_to_ids("<***>_1") token_2 = pipe.tokenizer.convert_tokens_to_ids("<***>_2") assert token == num_tokens + 2, "Added token must be at spot `num_tokens`" assert token_1 == num_tokens + 3, "Added token must be at spot `num_tokens`" assert token_2 == num_tokens + 4, "Added token must be at spot `num_tokens`" assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96 assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128 assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160 assert pipe._maybe_convert_prompt("<***>", pipe.tokenizer) == "<***> <***>_1 <***>_2" prompt = "hey <***>" out = pipe(prompt, num_inference_steps=1, output_type="numpy").images assert out.shape == (1, 128, 128, 3) # multi token load a1111 with tempfile.TemporaryDirectory() as tmpdirname: ten = { "string_to_param": { "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))]) }, "name": "<****>", } torch.save(ten, os.path.join(tmpdirname, "a1111.bin")) pipe.load_textual_inversion(tmpdirname, weight_name="a1111.bin") token = pipe.tokenizer.convert_tokens_to_ids("<****>") token_1 = pipe.tokenizer.convert_tokens_to_ids("<****>_1") token_2 = pipe.tokenizer.convert_tokens_to_ids("<****>_2") assert token == num_tokens + 5, "Added token must be at spot `num_tokens`" assert token_1 == num_tokens + 6, "Added token must be at spot `num_tokens`" assert token_2 == num_tokens + 7, "Added token must be at spot `num_tokens`" assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96 assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128 assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160 assert pipe._maybe_convert_prompt("<****>", pipe.tokenizer) == "<****> <****>_1 <****>_2" prompt = "hey <****>" out = pipe(prompt, num_inference_steps=1, output_type="numpy").images assert out.shape == (1, 128, 128, 3) # multi embedding load with tempfile.TemporaryDirectory() as tmpdirname1: with tempfile.TemporaryDirectory() as tmpdirname2: ten = {"<*****>": torch.ones((32,))} torch.save(ten, os.path.join(tmpdirname1, "learned_embeds.bin")) ten = {"<******>": 2 * torch.ones((1, 32))} torch.save(ten, os.path.join(tmpdirname2, "learned_embeds.bin")) pipe.load_textual_inversion([tmpdirname1, tmpdirname2]) token = pipe.tokenizer.convert_tokens_to_ids("<*****>") assert token == num_tokens + 8, "Added token must be at spot `num_tokens`" assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32 assert pipe._maybe_convert_prompt("<*****>", pipe.tokenizer) == "<*****>" token = pipe.tokenizer.convert_tokens_to_ids("<******>") assert token == num_tokens + 9, "Added token must be at spot `num_tokens`" assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64 assert pipe._maybe_convert_prompt("<******>", pipe.tokenizer) == "<******>" prompt = "hey <*****> <******>" out = pipe(prompt, num_inference_steps=1, output_type="numpy").images assert out.shape == (1, 128, 128, 3) # single token state dict load ten = {"<x>": torch.ones((32,))} pipe.load_textual_inversion(ten) token = pipe.tokenizer.convert_tokens_to_ids("<x>") assert token == num_tokens + 10, "Added token must be at spot `num_tokens`" assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32 assert pipe._maybe_convert_prompt("<x>", pipe.tokenizer) == "<x>" prompt = "hey <x>" out = pipe(prompt, num_inference_steps=1, output_type="numpy").images assert out.shape == (1, 128, 128, 3) # multi embedding state dict load ten1 = {"<xxxxx>": torch.ones((32,))} ten2 = {"<xxxxxx>": 2 * torch.ones((1, 32))} pipe.load_textual_inversion([ten1, ten2]) token = pipe.tokenizer.convert_tokens_to_ids("<xxxxx>") assert token == num_tokens + 11, "Added token must be at spot `num_tokens`" assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32 assert pipe._maybe_convert_prompt("<xxxxx>", pipe.tokenizer) == "<xxxxx>" token = pipe.tokenizer.convert_tokens_to_ids("<xxxxxx>") assert token == num_tokens + 12, "Added token must be at spot `num_tokens`" assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64 assert pipe._maybe_convert_prompt("<xxxxxx>", pipe.tokenizer) == "<xxxxxx>" prompt = "hey <xxxxx> <xxxxxx>" out = pipe(prompt, num_inference_steps=1, output_type="numpy").images assert out.shape == (1, 128, 128, 3) # auto1111 multi-token state dict load ten = { "string_to_param": { "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))]) }, "name": "<xxxx>", } pipe.load_textual_inversion(ten) token = pipe.tokenizer.convert_tokens_to_ids("<xxxx>") token_1 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_1") token_2 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_2") assert token == num_tokens + 13, "Added token must be at spot `num_tokens`" assert token_1 == num_tokens + 14, "Added token must be at spot `num_tokens`" assert token_2 == num_tokens + 15, "Added token must be at spot `num_tokens`" assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96 assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128 assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160 assert pipe._maybe_convert_prompt("<xxxx>", pipe.tokenizer) == "<xxxx> <xxxx>_1 <xxxx>_2" prompt = "hey <xxxx>" out = pipe(prompt, num_inference_steps=1, output_type="numpy").images assert out.shape == (1, 128, 128, 3) # multiple references to multi embedding ten = {"<cat>": torch.ones(3, 32)} pipe.load_textual_inversion(ten) assert ( pipe._maybe_convert_prompt("<cat> <cat>", pipe.tokenizer) == "<cat> <cat>_1 <cat>_2 <cat> <cat>_1 <cat>_2" ) prompt = "hey <cat> <cat>" out = pipe(prompt, num_inference_steps=1, output_type="numpy").images assert out.shape == (1, 128, 128, 3) def test_download_ignore_files(self): # Check https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files/blob/72f58636e5508a218c6b3f60550dc96445547817/model_index.json#L4 with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights tmpdirname = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files") all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))] files = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a pytorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack assert not any(f in ["vae/diffusion_pytorch_model.bin", "text_encoder/config.json"] for f in files) assert len(files) == 14 class CustomPipelineTests(unittest.TestCase): def test_load_custom_pipeline(self): pipeline = DiffusionPipeline.from_pretrained( "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline" ) pipeline = pipeline.to(torch_device) # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24 assert pipeline.__class__.__name__ == "CustomPipeline" def test_load_custom_github(self): pipeline = DiffusionPipeline.from_pretrained( "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main" ) # make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690 with torch.no_grad(): output = pipeline() assert output.numel() == output.sum() # hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python # Could in the future work with hashes instead. del sys.modules["diffusers_modules.git.one_step_unet"] pipeline = DiffusionPipeline.from_pretrained( "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2" ) with torch.no_grad(): output = pipeline() assert output.numel() != output.sum() assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline" def test_run_custom_pipeline(self): pipeline = DiffusionPipeline.from_pretrained( "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline" ) pipeline = pipeline.to(torch_device) images, output_str = pipeline(num_inference_steps=2, output_type="np") assert images[0].shape == (1, 32, 32, 3) # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102 assert output_str == "This is a test" def test_local_custom_pipeline_repo(self): local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline") pipeline = DiffusionPipeline.from_pretrained( "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path ) pipeline = pipeline.to(torch_device) images, output_str = pipeline(num_inference_steps=2, output_type="np") assert pipeline.__class__.__name__ == "CustomLocalPipeline" assert images[0].shape == (1, 32, 32, 3) # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102 assert output_str == "This is a local test" def test_local_custom_pipeline_file(self): local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline") local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py") pipeline = DiffusionPipeline.from_pretrained( "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path ) pipeline = pipeline.to(torch_device) images, output_str = pipeline(num_inference_steps=2, output_type="np") assert pipeline.__class__.__name__ == "CustomLocalPipeline" assert images[0].shape == (1, 32, 32, 3) # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102 assert output_str == "This is a local test" def test_custom_model_and_pipeline(self): pipe = CustomPipeline( encoder=CustomEncoder(), scheduler=DDIMScheduler(), ) with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe_new = CustomPipeline.from_pretrained(tmpdirname) pipe_new.save_pretrained(tmpdirname) conf_1 = dict(pipe.config) conf_2 = dict(pipe_new.config) del conf_2["_name_or_path"] assert conf_1 == conf_2 @slow @require_torch_gpu def test_download_from_git(self): # Because adaptive_avg_pool2d_backward_cuda # does not have a deterministic implementation. clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K" feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id) clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16) pipeline = DiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", custom_pipeline="clip_guided_stable_diffusion", clip_model=clip_model, feature_extractor=feature_extractor, torch_dtype=torch.float16, ) pipeline.enable_attention_slicing() pipeline = pipeline.to(torch_device) # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under: # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion" image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0] assert image.shape == (512, 512, 3) def test_save_pipeline_change_config(self): pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None ) with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = DiffusionPipeline.from_pretrained(tmpdirname) assert pipe.scheduler.__class__.__name__ == "PNDMScheduler" # let's make sure that changing the scheduler is correctly reflected with tempfile.TemporaryDirectory() as tmpdirname: pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.save_pretrained(tmpdirname) pipe = DiffusionPipeline.from_pretrained(tmpdirname) assert pipe.scheduler.__class__.__name__ == "DPMSolverMultistepScheduler" class PipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() import diffusers diffusers.utils.import_utils._safetensors_available = True def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image def dummy_uncond_unet(self, sample_size=32): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=sample_size, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def dummy_cond_unet(self, sample_size=32): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=sample_size, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config) @property def dummy_extractor(self): def extract(*args, **kwargs): class Out: def __init__(self): self.pixel_values = torch.ones([0]) def to(self, device): self.pixel_values.to(device) return self return Out() return extract @parameterized.expand( [ [DDIMScheduler, DDIMPipeline, 32], [DDPMScheduler, DDPMPipeline, 32], [DDIMScheduler, DDIMPipeline, (32, 64)], [DDPMScheduler, DDPMPipeline, (64, 32)], ] ) def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32): unet = self.dummy_uncond_unet(sample_size) scheduler = scheduler_fn() pipeline = pipeline_fn(unet, scheduler).to(torch_device) generator = torch.manual_seed(0) out_image = pipeline( generator=generator, num_inference_steps=2, output_type="np", ).images sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size assert out_image.shape == (1, *sample_size, 3) def test_stable_diffusion_components(self): """Test that components property works correctly""" unet = self.dummy_cond_unet() scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB") mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32)) # make sure here that pndm scheduler skips prk inpaint = StableDiffusionInpaintPipelineLegacy( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ).to(torch_device) img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device) text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image_inpaint = inpaint( [prompt], generator=generator, num_inference_steps=2, output_type="np", image=init_image, mask_image=mask_image, ).images image_img2img = img2img( [prompt], generator=generator, num_inference_steps=2, output_type="np", image=init_image, ).images image_text2img = text2img( [prompt], generator=generator, num_inference_steps=2, output_type="np", ).images assert image_inpaint.shape == (1, 32, 32, 3) assert image_img2img.shape == (1, 32, 32, 3) assert image_text2img.shape == (1, 64, 64, 3) @require_torch_gpu def test_pipe_false_offload_warn(self): unet = self.dummy_cond_unet() scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") sd = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd.enable_model_cpu_offload() logger = logging.get_logger("diffusers.pipelines.pipeline_utils") with CaptureLogger(logger) as cap_logger: sd.to("cuda") assert "It is strongly recommended against doing so" in str(cap_logger) sd = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) def test_set_scheduler(self): unet = self.dummy_cond_unet() scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") sd = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config) assert isinstance(sd.scheduler, DDIMScheduler) sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config) assert isinstance(sd.scheduler, DDPMScheduler) sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config) assert isinstance(sd.scheduler, PNDMScheduler) sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config) assert isinstance(sd.scheduler, LMSDiscreteScheduler) sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config) assert isinstance(sd.scheduler, EulerDiscreteScheduler) sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config) assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler) sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config) assert isinstance(sd.scheduler, DPMSolverMultistepScheduler) def test_set_component_to_none(self): unet = self.dummy_cond_unet() scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") pipeline = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "This is a flower" out_image = pipeline( prompt=prompt, generator=generator, num_inference_steps=1, output_type="np", ).images pipeline.feature_extractor = None generator = torch.Generator(device="cpu").manual_seed(0) out_image_2 = pipeline( prompt=prompt, generator=generator, num_inference_steps=1, output_type="np", ).images assert out_image.shape == (1, 64, 64, 3) assert np.abs(out_image - out_image_2).max() < 1e-3 def test_set_scheduler_consistency(self): unet = self.dummy_cond_unet() pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler") ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler") vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") sd = StableDiffusionPipeline( unet=unet, scheduler=pndm, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) pndm_config = sd.scheduler.config sd.scheduler = DDPMScheduler.from_config(pndm_config) sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config) pndm_config_2 = sd.scheduler.config pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config} assert dict(pndm_config) == dict(pndm_config_2) sd = StableDiffusionPipeline( unet=unet, scheduler=ddim, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) ddim_config = sd.scheduler.config sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config) sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config) ddim_config_2 = sd.scheduler.config ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config} assert dict(ddim_config) == dict(ddim_config_2) def test_save_safe_serialization(self): pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch") with tempfile.TemporaryDirectory() as tmpdirname: pipeline.save_pretrained(tmpdirname, safe_serialization=True) # Validate that the VAE safetensor exists and are of the correct format vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors") assert os.path.exists(vae_path), f"Could not find {vae_path}" _ = safetensors.torch.load_file(vae_path) # Validate that the UNet safetensor exists and are of the correct format unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors") assert os.path.exists(unet_path), f"Could not find {unet_path}" _ = safetensors.torch.load_file(unet_path) # Validate that the text encoder safetensor exists and are of the correct format text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors") assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}" _ = safetensors.torch.load_file(text_encoder_path) pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname) assert pipeline.unet is not None assert pipeline.vae is not None assert pipeline.text_encoder is not None assert pipeline.scheduler is not None assert pipeline.feature_extractor is not None def test_no_pytorch_download_when_doing_safetensors(self): # by default we don't download with tempfile.TemporaryDirectory() as tmpdirname: _ = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname ) path = os.path.join( tmpdirname, "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all", "snapshots", "07838d72e12f9bcec1375b0482b80c1d399be843", "unet", ) # safetensors exists assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors")) # pytorch does not assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin")) def test_no_safetensors_download_when_doing_pytorch(self): # mock diffusers safetensors not available import diffusers diffusers.utils.import_utils._safetensors_available = False with tempfile.TemporaryDirectory() as tmpdirname: _ = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname ) path = os.path.join( tmpdirname, "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all", "snapshots", "07838d72e12f9bcec1375b0482b80c1d399be843", "unet", ) # safetensors does not exists assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors")) # pytorch does assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin")) diffusers.utils.import_utils._safetensors_available = True def test_optional_components(self): unet = self.dummy_cond_unet() pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler") vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") orig_sd = StableDiffusionPipeline( unet=unet, scheduler=pndm, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=unet, feature_extractor=self.dummy_extractor, ) sd = orig_sd assert sd.config.requires_safety_checker is True with tempfile.TemporaryDirectory() as tmpdirname: sd.save_pretrained(tmpdirname) # Test that passing None works sd = StableDiffusionPipeline.from_pretrained( tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False ) assert sd.config.requires_safety_checker is False assert sd.config.safety_checker == (None, None) assert sd.config.feature_extractor == (None, None) with tempfile.TemporaryDirectory() as tmpdirname: sd.save_pretrained(tmpdirname) # Test that loading previous None works sd = StableDiffusionPipeline.from_pretrained(tmpdirname) assert sd.config.requires_safety_checker is False assert sd.config.safety_checker == (None, None) assert sd.config.feature_extractor == (None, None) orig_sd.save_pretrained(tmpdirname) # Test that loading without any directory works shutil.rmtree(os.path.join(tmpdirname, "safety_checker")) with open(os.path.join(tmpdirname, sd.config_name)) as f: config = json.load(f) config["safety_checker"] = [None, None] with open(os.path.join(tmpdirname, sd.config_name), "w") as f: json.dump(config, f) sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False) sd.save_pretrained(tmpdirname) sd = StableDiffusionPipeline.from_pretrained(tmpdirname) assert sd.config.requires_safety_checker is False assert sd.config.safety_checker == (None, None) assert sd.config.feature_extractor == (None, None) # Test that loading from deleted model index works with open(os.path.join(tmpdirname, sd.config_name)) as f: config = json.load(f) del config["safety_checker"] del config["feature_extractor"] with open(os.path.join(tmpdirname, sd.config_name), "w") as f: json.dump(config, f) sd = StableDiffusionPipeline.from_pretrained(tmpdirname) assert sd.config.requires_safety_checker is False assert sd.config.safety_checker == (None, None) assert sd.config.feature_extractor == (None, None) with tempfile.TemporaryDirectory() as tmpdirname: sd.save_pretrained(tmpdirname) # Test that partially loading works sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor) assert sd.config.requires_safety_checker is False assert sd.config.safety_checker == (None, None) assert sd.config.feature_extractor != (None, None) # Test that partially loading works sd = StableDiffusionPipeline.from_pretrained( tmpdirname, feature_extractor=self.dummy_extractor, safety_checker=unet, requires_safety_checker=[True, True], ) assert sd.config.requires_safety_checker == [True, True] assert sd.config.safety_checker != (None, None) assert sd.config.feature_extractor != (None, None) with tempfile.TemporaryDirectory() as tmpdirname: sd.save_pretrained(tmpdirname) sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor) assert sd.config.requires_safety_checker == [True, True] assert sd.config.safety_checker != (None, None) assert sd.config.feature_extractor != (None, None) def test_name_or_path(self): model_path = "hf-internal-testing/tiny-stable-diffusion-torch" sd = DiffusionPipeline.from_pretrained(model_path) assert sd.name_or_path == model_path with tempfile.TemporaryDirectory() as tmpdirname: sd.save_pretrained(tmpdirname) sd = DiffusionPipeline.from_pretrained(tmpdirname) assert sd.name_or_path == tmpdirname def test_warning_no_variant_available(self): variant = "fp16" with self.assertWarns(FutureWarning) as warning_context: cached_folder = StableDiffusionPipeline.download( "hf-internal-testing/diffusers-stable-diffusion-tiny-all", variant=variant ) assert "but no such modeling files are available" in str(warning_context.warning) assert variant in str(warning_context.warning) def get_all_filenames(directory): filenames = glob.glob(directory + "/**", recursive=True) filenames = [f for f in filenames if os.path.isfile(f)] return filenames filenames = get_all_filenames(str(cached_folder)) all_model_files, variant_model_files = variant_compatible_siblings(filenames, variant=variant) # make sure that none of the model names are variant model names assert len(variant_model_files) == 0 assert len(all_model_files) > 0 @slow @require_torch_gpu class PipelineSlowTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_smart_download(self): model_id = "hf-internal-testing/unet-pipeline-dummy" with tempfile.TemporaryDirectory() as tmpdirname: _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True) local_repo_name = "--".join(["models"] + model_id.split("/")) snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots") snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0]) # inspect all downloaded files to make sure that everything is included assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name)) assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME)) assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME)) assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME)) assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME)) assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME)) assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME)) # let's make sure the super large numpy file: # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy # is not downloaded, but all the expected ones assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy")) def test_warning_unused_kwargs(self): model_id = "hf-internal-testing/unet-pipeline-dummy" logger = logging.get_logger("diffusers.pipelines") with tempfile.TemporaryDirectory() as tmpdirname: with CaptureLogger(logger) as cap_logger: DiffusionPipeline.from_pretrained( model_id, not_used=True, cache_dir=tmpdirname, force_download=True, ) assert ( cap_logger.out.strip().split("\n")[-1] == "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored." ) def test_from_save_pretrained(self): # 1. Load models model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) scheduler = DDPMScheduler(num_train_timesteps=10) ddpm = DDPMPipeline(model, scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) with tempfile.TemporaryDirectory() as tmpdirname: ddpm.save_pretrained(tmpdirname) new_ddpm = DDPMPipeline.from_pretrained(tmpdirname) new_ddpm.to(torch_device) generator = torch.Generator(device=torch_device).manual_seed(0) image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images generator = torch.Generator(device=torch_device).manual_seed(0) new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" @require_torch_2 def test_from_save_pretrained_dynamo(self): run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=None) def test_from_pretrained_hub(self): model_path = "google/ddpm-cifar10-32" scheduler = DDPMScheduler(num_train_timesteps=10) ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler) ddpm = ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler) ddpm_from_hub = ddpm_from_hub.to(torch_device) ddpm_from_hub.set_progress_bar_config(disable=None) generator = torch.Generator(device=torch_device).manual_seed(0) image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images generator = torch.Generator(device=torch_device).manual_seed(0) new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" def test_from_pretrained_hub_pass_model(self): model_path = "google/ddpm-cifar10-32" scheduler = DDPMScheduler(num_train_timesteps=10) # pass unet into DiffusionPipeline unet = UNet2DModel.from_pretrained(model_path) ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler) ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device) ddpm_from_hub_custom_model.set_progress_bar_config(disable=None) ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler) ddpm_from_hub = ddpm_from_hub.to(torch_device) ddpm_from_hub_custom_model.set_progress_bar_config(disable=None) generator = torch.Generator(device=torch_device).manual_seed(0) image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="numpy").images generator = torch.Generator(device=torch_device).manual_seed(0) new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" def test_output_format(self): model_path = "google/ddpm-cifar10-32" scheduler = DDIMScheduler.from_pretrained(model_path) pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) images = pipe(output_type="numpy").images assert images.shape == (1, 32, 32, 3) assert isinstance(images, np.ndarray) images = pipe(output_type="pil", num_inference_steps=4).images assert isinstance(images, list) assert len(images) == 1 assert isinstance(images[0], PIL.Image.Image) # use PIL by default images = pipe(num_inference_steps=4).images assert isinstance(images, list) assert isinstance(images[0], PIL.Image.Image) @require_flax def test_from_flax_from_pt(self): pipe_pt = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None ) pipe_pt.to(torch_device) from diffusers import FlaxStableDiffusionPipeline with tempfile.TemporaryDirectory() as tmpdirname: pipe_pt.save_pretrained(tmpdirname) pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained( tmpdirname, safety_checker=None, from_pt=True ) with tempfile.TemporaryDirectory() as tmpdirname: pipe_flax.save_pretrained(tmpdirname, params=params) pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True) pipe_pt_2.to(torch_device) prompt = "Hello" generator = torch.manual_seed(0) image_0 = pipe_pt( [prompt], generator=generator, num_inference_steps=2, output_type="np", ).images[0] generator = torch.manual_seed(0) image_1 = pipe_pt_2( [prompt], generator=generator, num_inference_steps=2, output_type="np", ).images[0] assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass" @require_compel def test_weighted_prompts_compel(self): from compel import Compel pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.enable_attention_slicing() compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder) prompt = "a red cat playing with a ball{}" prompts = [prompt.format(s) for s in ["", "++", "--"]] prompt_embeds = compel(prompts) generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])] images = pipe( prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="numpy" ).images for i, image in enumerate(images): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f"/compel/forest_{i}.npy" ) assert np.abs(image - expected_image).max() < 3e-1 @nightly @require_torch_gpu class PipelineNightlyTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_ddpm_ddim_equality_batched(self): seed = 0 model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) ddpm_scheduler = DDPMScheduler() ddim_scheduler = DDIMScheduler() ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler) ddim.to(torch_device) ddim.set_progress_bar_config(disable=None) generator = torch.Generator(device=torch_device).manual_seed(seed) ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images generator = torch.Generator(device=torch_device).manual_seed(seed) ddim_images = ddim( batch_size=2, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy", use_clipped_model_output=True, # Need this to make DDIM match DDPM ).images # the values aren't exactly equal, but the images look the same visually assert np.abs(ddpm_images - ddim_images).max() < 1e-1
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/pipelines/test_pipelines_auto.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest from collections import OrderedDict import torch from diffusers import ( AutoPipelineForImage2Image, AutoPipelineForInpainting, AutoPipelineForText2Image, ControlNetModel, ) from diffusers.pipelines.auto_pipeline import ( AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, AUTO_INPAINT_PIPELINES_MAPPING, AUTO_TEXT2IMAGE_PIPELINES_MAPPING, ) from diffusers.utils import slow PRETRAINED_MODEL_REPO_MAPPING = OrderedDict( [ ("stable-diffusion", "runwayml/stable-diffusion-v1-5"), ("if", "DeepFloyd/IF-I-XL-v1.0"), ("kandinsky", "kandinsky-community/kandinsky-2-1"), ("kandinsky22", "kandinsky-community/kandinsky-2-2-decoder"), ] ) class AutoPipelineFastTest(unittest.TestCase): def test_from_pipe_consistent(self): pipe = AutoPipelineForText2Image.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False ) original_config = dict(pipe.config) pipe = AutoPipelineForImage2Image.from_pipe(pipe) assert dict(pipe.config) == original_config pipe = AutoPipelineForText2Image.from_pipe(pipe) assert dict(pipe.config) == original_config def test_from_pipe_override(self): pipe = AutoPipelineForText2Image.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False ) pipe = AutoPipelineForImage2Image.from_pipe(pipe, requires_safety_checker=True) assert pipe.config.requires_safety_checker is True pipe = AutoPipelineForText2Image.from_pipe(pipe, requires_safety_checker=True) assert pipe.config.requires_safety_checker is True def test_from_pipe_consistent_sdxl(self): pipe = AutoPipelineForImage2Image.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-xl-pipe", requires_aesthetics_score=True, force_zeros_for_empty_prompt=False, ) original_config = dict(pipe.config) pipe = AutoPipelineForText2Image.from_pipe(pipe) pipe = AutoPipelineForImage2Image.from_pipe(pipe) assert dict(pipe.config) == original_config @slow class AutoPipelineIntegrationTest(unittest.TestCase): def test_pipe_auto(self): for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items(): # test txt2img pipe_txt2img = AutoPipelineForText2Image.from_pretrained( model_repo, variant="fp16", torch_dtype=torch.float16 ) self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name]) pipe_to = AutoPipelineForText2Image.from_pipe(pipe_txt2img) self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name]) pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_txt2img) self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name]) if "kandinsky" not in model_name: pipe_to = AutoPipelineForInpainting.from_pipe(pipe_txt2img) self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name]) del pipe_txt2img, pipe_to gc.collect() # test img2img pipe_img2img = AutoPipelineForImage2Image.from_pretrained( model_repo, variant="fp16", torch_dtype=torch.float16 ) self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name]) pipe_to = AutoPipelineForText2Image.from_pipe(pipe_img2img) self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name]) pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_img2img) self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name]) if "kandinsky" not in model_name: pipe_to = AutoPipelineForInpainting.from_pipe(pipe_img2img) self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name]) del pipe_img2img, pipe_to gc.collect() # test inpaint if "kandinsky" not in model_name: pipe_inpaint = AutoPipelineForInpainting.from_pretrained( model_repo, variant="fp16", torch_dtype=torch.float16 ) self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING[model_name]) pipe_to = AutoPipelineForText2Image.from_pipe(pipe_inpaint) self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name]) pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_inpaint) self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name]) pipe_to = AutoPipelineForInpainting.from_pipe(pipe_inpaint) self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name]) del pipe_inpaint, pipe_to gc.collect() def test_from_pipe_consistent(self): for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items(): if model_name in ["kandinsky", "kandinsky22"]: auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image] else: auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting] # test from_pretrained for pipe_from_class in auto_pipes: pipe_from = pipe_from_class.from_pretrained(model_repo, variant="fp16", torch_dtype=torch.float16) pipe_from_config = dict(pipe_from.config) for pipe_to_class in auto_pipes: pipe_to = pipe_to_class.from_pipe(pipe_from) self.assertEqual(dict(pipe_to.config), pipe_from_config) del pipe_from, pipe_to gc.collect() def test_controlnet(self): # test from_pretrained model_repo = "runwayml/stable-diffusion-v1-5" controlnet_repo = "lllyasviel/sd-controlnet-canny" controlnet = ControlNetModel.from_pretrained(controlnet_repo, torch_dtype=torch.float16) pipe_txt2img = AutoPipelineForText2Image.from_pretrained( model_repo, controlnet=controlnet, torch_dtype=torch.float16 ) self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"]) pipe_img2img = AutoPipelineForImage2Image.from_pretrained( model_repo, controlnet=controlnet, torch_dtype=torch.float16 ) self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"]) pipe_inpaint = AutoPipelineForInpainting.from_pretrained( model_repo, controlnet=controlnet, torch_dtype=torch.float16 ) self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"]) # test from_pipe for pipe_from in [pipe_txt2img, pipe_img2img, pipe_inpaint]: pipe_to = AutoPipelineForText2Image.from_pipe(pipe_from) self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"]) self.assertEqual(dict(pipe_to.config), dict(pipe_txt2img.config)) pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_from) self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"]) self.assertEqual(dict(pipe_to.config), dict(pipe_img2img.config)) pipe_to = AutoPipelineForInpainting.from_pipe(pipe_from) self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"]) self.assertEqual(dict(pipe_to.config), dict(pipe_inpaint.config))
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/pipelines/test_pipelines_onnx_common.py
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class OnnxPipelineTesterMixin: """ This mixin is designed to be used with unittest.TestCase classes. It provides a set of common tests for each ONNXRuntime pipeline, e.g. saving and loading the pipeline, equivalence of dict and tuple outputs, etc. """ pass
0
hf_public_repos/diffusers/tests
hf_public_repos/diffusers/tests/pipelines/test_pipelines_common.py
import contextlib import gc import inspect import io import re import tempfile import unittest from typing import Callable, Union import numpy as np import PIL import torch import diffusers from diffusers import DiffusionPipeline from diffusers.image_processor import VaeImageProcessor from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import logging from diffusers.utils.import_utils import is_accelerate_available, is_accelerate_version, is_xformers_available from diffusers.utils.testing_utils import CaptureLogger, require_torch, torch_device def to_np(tensor): if isinstance(tensor, torch.Tensor): tensor = tensor.detach().cpu().numpy() return tensor def check_same_shape(tensor_list): shapes = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:]) class PipelineLatentTesterMixin: """ This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes. It provides a set of common tests for PyTorch pipeline that has vae, e.g. equivalence of different input and output types, etc. """ @property def image_params(self) -> frozenset: raise NotImplementedError( "You need to set the attribute `image_params` in the child test class. " "`image_params` are tested for if all accepted input image types (i.e. `pt`,`pil`,`np`) are producing same results" ) @property def image_latents_params(self) -> frozenset: raise NotImplementedError( "You need to set the attribute `image_latents_params` in the child test class. " "`image_latents_params` are tested for if passing latents directly are producing same results" ) def get_dummy_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"): inputs = self.get_dummy_inputs(device, seed) def convert_to_pt(image): if isinstance(image, torch.Tensor): input_image = image elif isinstance(image, np.ndarray): input_image = VaeImageProcessor.numpy_to_pt(image) elif isinstance(image, PIL.Image.Image): input_image = VaeImageProcessor.pil_to_numpy(image) input_image = VaeImageProcessor.numpy_to_pt(input_image) else: raise ValueError(f"unsupported input_image_type {type(image)}") return input_image def convert_pt_to_type(image, input_image_type): if input_image_type == "pt": input_image = image elif input_image_type == "np": input_image = VaeImageProcessor.pt_to_numpy(image) elif input_image_type == "pil": input_image = VaeImageProcessor.pt_to_numpy(image) input_image = VaeImageProcessor.numpy_to_pil(input_image) else: raise ValueError(f"unsupported input_image_type {input_image_type}.") return input_image for image_param in self.image_params: if image_param in inputs.keys(): inputs[image_param] = convert_pt_to_type( convert_to_pt(inputs[image_param]).to(device), input_image_type ) inputs["output_type"] = output_type return inputs def test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4): self._test_pt_np_pil_outputs_equivalent(expected_max_diff=expected_max_diff) def _test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4, input_image_type="pt"): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) output_pt = pipe( **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pt") )[0] output_np = pipe( **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="np") )[0] output_pil = pipe( **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pil") )[0] max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max() self.assertLess( max_diff, expected_max_diff, "`output_type=='pt'` generate different results from `output_type=='np'`" ) max_diff = np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max() self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`") def test_pt_np_pil_inputs_equivalent(self): if len(self.image_params) == 0: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) out_input_pt = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0] out_input_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0] out_input_pil = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pil"))[0] max_diff = np.abs(out_input_pt - out_input_np).max() self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`") max_diff = np.abs(out_input_pil - out_input_np).max() self.assertLess(max_diff, 1e-2, "`input_type=='pt'` generate different result from `input_type=='np'`") def test_latents_input(self): if len(self.image_latents_params) == 0: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0] vae = components["vae"] inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt") generator = inputs["generator"] for image_param in self.image_latents_params: if image_param in inputs.keys(): inputs[image_param] = ( vae.encode(inputs[image_param]).latent_dist.sample(generator) * vae.config.scaling_factor ) out_latents_inputs = pipe(**inputs)[0] max_diff = np.abs(out - out_latents_inputs).max() self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image") @require_torch class PipelineKarrasSchedulerTesterMixin: """ This mixin is designed to be used with unittest.TestCase classes. It provides a set of common tests for each PyTorch pipeline that makes use of KarrasDiffusionSchedulers equivalence of dict and tuple outputs, etc. """ def test_karras_schedulers_shape(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=True) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 2 if "strength" in inputs: inputs["num_inference_steps"] = 4 inputs["strength"] = 0.5 outputs = [] for scheduler_enum in KarrasDiffusionSchedulers: if "KDPM2" in scheduler_enum.name: inputs["num_inference_steps"] = 5 scheduler_cls = getattr(diffusers, scheduler_enum.name) pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config) output = pipe(**inputs)[0] outputs.append(output) if "KDPM2" in scheduler_enum.name: inputs["num_inference_steps"] = 2 assert check_same_shape(outputs) @require_torch class PipelineTesterMixin: """ This mixin is designed to be used with unittest.TestCase classes. It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline, equivalence of dict and tuple outputs, etc. """ # Canonical parameters that are passed to `__call__` regardless # of the type of pipeline. They are always optional and have common # sense default values. required_optional_params = frozenset( [ "num_inference_steps", "num_images_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) # set these parameters to False in the child class if the pipeline does not support the corresponding functionality test_attention_slicing = True test_xformers_attention = True def get_generator(self, seed): device = torch_device if torch_device != "mps" else "cpu" generator = torch.Generator(device).manual_seed(seed) return generator @property def pipeline_class(self) -> Union[Callable, DiffusionPipeline]: raise NotImplementedError( "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. " "See existing pipeline tests for reference." ) def get_dummy_components(self): raise NotImplementedError( "You need to implement `get_dummy_components(self)` in the child test class. " "See existing pipeline tests for reference." ) def get_dummy_inputs(self, device, seed=0): raise NotImplementedError( "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. " "See existing pipeline tests for reference." ) @property def params(self) -> frozenset: raise NotImplementedError( "You need to set the attribute `params` in the child test class. " "`params` are checked for if all values are present in `__call__`'s signature." " You can set `params` using one of the common set of parameters defined in `pipeline_params.py`" " e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to " "image pipelines, including prompts and prompt embedding overrides." "If your pipeline's set of arguments has minor changes from one of the common sets of arguments, " "do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline " "with non-configurable height and width arguments should set the attribute as " "`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. " "See existing pipeline tests for reference." ) @property def batch_params(self) -> frozenset: raise NotImplementedError( "You need to set the attribute `batch_params` in the child test class. " "`batch_params` are the parameters required to be batched when passed to the pipeline's " "`__call__` method. `pipeline_params.py` provides some common sets of parameters such as " "`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's " "set of batch arguments has minor changes from one of the common sets of batch arguments, " "do not make modifications to the existing common sets of batch arguments. I.e. a text to " "image pipeline `negative_prompt` is not batched should set the attribute as " "`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. " "See existing pipeline tests for reference." ) def tearDown(self): # clean up the VRAM after each test in case of CUDA runtime errors super().tearDown() gc.collect() torch.cuda.empty_cache() def test_save_load_local(self, expected_max_difference=1e-4): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] logger = logging.get_logger("diffusers.pipelines.pipeline_utils") logger.setLevel(diffusers.logging.INFO) with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) with CaptureLogger(logger) as cap_logger: pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) for name in pipe_loaded.components.keys(): if name not in pipe_loaded._optional_components: assert name in str(cap_logger) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() self.assertLess(max_diff, expected_max_difference) def test_pipeline_call_signature(self): self.assertTrue( hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method" ) parameters = inspect.signature(self.pipeline_class.__call__).parameters optional_parameters = set() for k, v in parameters.items(): if v.default != inspect._empty: optional_parameters.add(k) parameters = set(parameters.keys()) parameters.remove("self") parameters.discard("kwargs") # kwargs can be added if arguments of pipeline call function are deprecated remaining_required_parameters = set() for param in self.params: if param not in parameters: remaining_required_parameters.add(param) self.assertTrue( len(remaining_required_parameters) == 0, f"Required parameters not present: {remaining_required_parameters}", ) remaining_required_optional_parameters = set() for param in self.required_optional_params: if param not in optional_parameters: remaining_required_optional_parameters.add(param) self.assertTrue( len(remaining_required_optional_parameters) == 0, f"Required optional parameters not present: {remaining_required_optional_parameters}", ) def test_inference_batch_consistent(self, batch_sizes=[2, 4, 13]): self._test_inference_batch_consistent(batch_sizes=batch_sizes) def _test_inference_batch_consistent( self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"] ): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) logger = logging.get_logger(pipe.__module__) logger.setLevel(level=diffusers.logging.FATAL) # batchify inputs for batch_size in batch_sizes: batched_inputs = {} for name, value in inputs.items(): if name in self.batch_params: # prompt is string if name == "prompt": len_prompt = len(value) # make unequal batch sizes batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] # make last batch super long batched_inputs[name][-1] = 2000 * "very long" # or else we have images else: batched_inputs[name] = batch_size * [value] elif name == "batch_size": batched_inputs[name] = batch_size else: batched_inputs[name] = value for arg in additional_params_copy_to_batched_inputs: batched_inputs[arg] = inputs[arg] batched_inputs["output_type"] = "np" if self.pipeline_class.__name__ == "DanceDiffusionPipeline": batched_inputs.pop("output_type") output = pipe(**batched_inputs) assert len(output[0]) == batch_size batched_inputs["output_type"] = "np" if self.pipeline_class.__name__ == "DanceDiffusionPipeline": batched_inputs.pop("output_type") output = pipe(**batched_inputs)[0] assert output.shape[0] == batch_size logger.setLevel(level=diffusers.logging.WARNING) def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4): self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff) def _test_inference_batch_single_identical( self, batch_size=3, test_max_difference=None, test_mean_pixel_difference=None, relax_max_difference=False, expected_max_diff=1e-4, additional_params_copy_to_batched_inputs=["num_inference_steps"], ): if test_max_difference is None: # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems # make sure that batched and non-batched is identical test_max_difference = torch_device != "mps" if test_mean_pixel_difference is None: # TODO same as above test_mean_pixel_difference = torch_device != "mps" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) logger = logging.get_logger(pipe.__module__) logger.setLevel(level=diffusers.logging.FATAL) # batchify inputs batched_inputs = {} batch_size = batch_size for name, value in inputs.items(): if name in self.batch_params: # prompt is string if name == "prompt": len_prompt = len(value) # make unequal batch sizes batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] # make last batch super long batched_inputs[name][-1] = 2000 * "very long" # or else we have images else: batched_inputs[name] = batch_size * [value] elif name == "batch_size": batched_inputs[name] = batch_size elif name == "generator": batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)] else: batched_inputs[name] = value for arg in additional_params_copy_to_batched_inputs: batched_inputs[arg] = inputs[arg] if self.pipeline_class.__name__ != "DanceDiffusionPipeline": batched_inputs["output_type"] = "np" output_batch = pipe(**batched_inputs) assert output_batch[0].shape[0] == batch_size inputs["generator"] = self.get_generator(0) output = pipe(**inputs) logger.setLevel(level=diffusers.logging.WARNING) if test_max_difference: if relax_max_difference: # Taking the median of the largest <n> differences # is resilient to outliers diff = np.abs(output_batch[0][0] - output[0][0]) diff = diff.flatten() diff.sort() max_diff = np.median(diff[-5:]) else: max_diff = np.abs(output_batch[0][0] - output[0][0]).max() assert max_diff < expected_max_diff if test_mean_pixel_difference: assert_mean_pixel_difference(output_batch[0][0], output[0][0]) def test_dict_tuple_outputs_equivalent(self, expected_max_difference=1e-4): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(torch_device))[0] output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0] max_diff = np.abs(to_np(output) - to_np(output_tuple)).max() self.assertLess(max_diff, expected_max_difference) def test_components_function(self): init_components = self.get_dummy_components() pipe = self.pipeline_class(**init_components) self.assertTrue(hasattr(pipe, "components")) self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") def test_float16_inference(self, expected_max_diff=1e-2): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe_fp16 = self.pipeline_class(**components) pipe_fp16.to(torch_device, torch.float16) pipe_fp16.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(torch_device))[0] output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0] max_diff = np.abs(to_np(output) - to_np(output_fp16)).max() self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.") @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") def test_save_load_float16(self, expected_max_diff=1e-2): components = self.get_dummy_components() for name, module in components.items(): if hasattr(module, "half"): components[name] = module.to(torch_device).half() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for name, component in pipe_loaded.components.items(): if hasattr(component, "dtype"): self.assertTrue( component.dtype == torch.float16, f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.", ) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() self.assertLess( max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading." ) def test_save_load_optional_components(self, expected_max_difference=1e-4): if not hasattr(self.pipeline_class, "_optional_components"): return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # set all optional components to None for optional_component in pipe._optional_components: setattr(pipe, optional_component, None) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for optional_component in pipe._optional_components: self.assertTrue( getattr(pipe_loaded, optional_component) is None, f"`{optional_component}` did not stay set to None after loading.", ) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() self.assertLess(max_diff, expected_max_difference) @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices") def test_to_device(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) pipe.to("cpu") model_devices = [component.device.type for component in components.values() if hasattr(component, "device")] self.assertTrue(all(device == "cpu" for device in model_devices)) output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] self.assertTrue(np.isnan(output_cpu).sum() == 0) pipe.to("cuda") model_devices = [component.device.type for component in components.values() if hasattr(component, "device")] self.assertTrue(all(device == "cuda" for device in model_devices)) output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) def test_to_dtype(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")] self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) pipe.to(torch_dtype=torch.float16) model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")] self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) def test_attention_slicing_forward_pass(self, expected_max_diff=1e-3): self._test_attention_slicing_forward_pass(expected_max_diff=expected_max_diff) def _test_attention_slicing_forward_pass( self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 ): if not self.test_attention_slicing: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output_without_slicing = pipe(**inputs)[0] pipe.enable_attention_slicing(slice_size=1) inputs = self.get_dummy_inputs(torch_device) output_with_slicing = pipe(**inputs)[0] if test_max_difference: max_diff = np.abs(to_np(output_with_slicing) - to_np(output_without_slicing)).max() self.assertLess(max_diff, expected_max_diff, "Attention slicing should not affect the inference results") if test_mean_pixel_difference: assert_mean_pixel_difference(output_with_slicing[0], output_without_slicing[0]) @unittest.skipIf( torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"), reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher", ) def test_cpu_offload_forward_pass(self, expected_max_diff=1e-4): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output_without_offload = pipe(**inputs)[0] pipe.enable_sequential_cpu_offload() inputs = self.get_dummy_inputs(torch_device) output_with_offload = pipe(**inputs)[0] max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results") @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass() def _test_xformers_attention_forwardGenerator_pass( self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-4 ): if not self.test_xformers_attention: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output_without_offload = pipe(**inputs)[0] output_without_offload = ( output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload ) pipe.enable_xformers_memory_efficient_attention() inputs = self.get_dummy_inputs(torch_device) output_with_offload = pipe(**inputs)[0] output_with_offload = ( output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload ) if test_max_difference: max_diff = np.abs(output_with_offload - output_without_offload).max() self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results") if test_mean_pixel_difference: assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0]) def test_progress_bar(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) inputs = self.get_dummy_inputs(torch_device) with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): _ = pipe(**inputs) stderr = stderr.getvalue() # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img, # so we just match "5" in "#####| 1/5 [00:01<00:00]" max_steps = re.search("/(.*?) ", stderr).group(1) self.assertTrue(max_steps is not None and len(max_steps) > 0) self.assertTrue( f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step" ) pipe.set_progress_bar_config(disable=True) with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): _ = pipe(**inputs) self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled") def test_num_images_per_prompt(self): sig = inspect.signature(self.pipeline_class.__call__) if "num_images_per_prompt" not in sig.parameters: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) batch_sizes = [1, 2] num_images_per_prompts = [1, 2] for batch_size in batch_sizes: for num_images_per_prompt in num_images_per_prompts: inputs = self.get_dummy_inputs(torch_device) for key in inputs.keys(): if key in self.batch_params: inputs[key] = batch_size * [inputs[key]] images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0] assert images.shape[0] == batch_size * num_images_per_prompt def test_cfg(self): sig = inspect.signature(self.pipeline_class.__call__) if "guidance_scale" not in sig.parameters: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["guidance_scale"] = 1.0 out_no_cfg = pipe(**inputs)[0] inputs["guidance_scale"] = 7.5 out_cfg = pipe(**inputs)[0] assert out_cfg.shape == out_no_cfg.shape # Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used. # This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a # reference image. def assert_mean_pixel_difference(image, expected_image, expected_max_diff=10): image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32) expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32) avg_diff = np.abs(image - expected_image).mean() assert avg_diff < expected_max_diff, f"Error image deviates {avg_diff} pixels on average"
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_safe/test_safe_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class SafeDiffusionPipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_cond_unet(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config) @property def dummy_extractor(self): def extract(*args, **kwargs): class Out: def __init__(self): self.pixel_values = torch.ones([0]) def to(self, device): self.pixel_values.to(device) return self return Out() return extract def test_safe_diffusion_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_pndm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_no_safety_checker(self): pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None ) assert isinstance(pipe, StableDiffusionPipeline) assert isinstance(pipe.scheduler, LMSDiscreteScheduler) assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) # sanity check that the pipeline still works assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_stable_diffusion_fp16(self): """Test that stable diffusion works with fp16""" unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # put models in fp16 unet = unet.half() vae = vae.half() bert = bert.half() # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class SafeDiffusionPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_harm_safe_stable_diffusion(self): sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) seed = 4003660346 guidance_scale = 7 # without safety guidance (sld_guidance_scale = 0) generator = torch.manual_seed(seed) output = sd_pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, sld_guidance_scale=0, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) generator = torch.manual_seed(seed) output = sd_pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_nudity_safe_stable_diffusion(self): sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "padme amidala taking a bath artwork, safe for work, no nudity" seed = 2734971755 guidance_scale = 7 generator = torch.manual_seed(seed) output = sd_pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, sld_guidance_scale=0, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 generator = torch.manual_seed(seed) output = sd_pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_nudity_safetychecker_safe_stable_diffusion(self): sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) seed = 1044355234 guidance_scale = 12 generator = torch.manual_seed(seed) output = sd_pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, sld_guidance_scale=0, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 generator = torch.manual_seed(seed) output = sd_pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/unidiffuser/test_unidiffuser.py
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, GPT2Tokenizer, ) from diffusers import ( AutoencoderKL, DPMSolverMultistepScheduler, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, ) from diffusers.utils import floats_tensor, load_image, randn_tensor, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin class UniDiffuserPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = UniDiffuserPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS def get_dummy_components(self): unet = UniDiffuserModel.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="unet", ) scheduler = DPMSolverMultistepScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", solver_order=3, ) vae = AutoencoderKL.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="vae", ) text_encoder = CLIPTextModel.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="text_encoder", ) clip_tokenizer = CLIPTokenizer.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="clip_tokenizer", ) image_encoder = CLIPVisionModelWithProjection.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="image_encoder", ) # From the Stable Diffusion Image Variation pipeline tests image_processor = CLIPImageProcessor(crop_size=32, size=32) # image_processor = CLIPImageProcessor.from_pretrained("hf-internal-testing/tiny-random-clip") text_tokenizer = GPT2Tokenizer.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="text_tokenizer", ) text_decoder = UniDiffuserTextDecoder.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="text_decoder", ) components = { "vae": vae, "text_encoder": text_encoder, "image_encoder": image_encoder, "image_processor": image_processor, "clip_tokenizer": clip_tokenizer, "text_decoder": text_decoder, "text_tokenizer": text_tokenizer, "unet": unet, "scheduler": scheduler, } return components def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB") if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "an elephant under the sea", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def get_fixed_latents(self, device, seed=0): if type(device) == str: device = torch.device(device) generator = torch.Generator(device=device).manual_seed(seed) # Hardcode the shapes for now. prompt_latents = randn_tensor((1, 77, 32), generator=generator, device=device, dtype=torch.float32) vae_latents = randn_tensor((1, 4, 16, 16), generator=generator, device=device, dtype=torch.float32) clip_latents = randn_tensor((1, 1, 32), generator=generator, device=device, dtype=torch.float32) latents = { "prompt_latents": prompt_latents, "vae_latents": vae_latents, "clip_latents": clip_latents, } return latents def get_dummy_inputs_with_latents(self, device, seed=0): # image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) # image = image.cpu().permute(0, 2, 3, 1)[0] # image = Image.fromarray(np.uint8(image)).convert("RGB") image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg", ) image = image.resize((32, 32)) latents = self.get_fixed_latents(device, seed=seed) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "an elephant under the sea", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "prompt_latents": latents.get("prompt_latents"), "vae_latents": latents.get("vae_latents"), "clip_latents": latents.get("clip_latents"), } return inputs def test_unidiffuser_default_joint_v0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'joint' unidiffuser_pipe.set_joint_mode() assert unidiffuser_pipe.mode == "joint" # inputs = self.get_dummy_inputs(device) inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] sample = unidiffuser_pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_default_joint_no_cfg_v0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'joint' unidiffuser_pipe.set_joint_mode() assert unidiffuser_pipe.mode == "joint" # inputs = self.get_dummy_inputs(device) inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] # Set guidance scale to 1.0 to turn off CFG inputs["guidance_scale"] = 1.0 sample = unidiffuser_pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_default_text2img_v0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'text2img' unidiffuser_pipe.set_text_to_image_mode() assert unidiffuser_pipe.mode == "text2img" inputs = self.get_dummy_inputs_with_latents(device) # Delete image for text-conditioned image generation del inputs["image"] image = unidiffuser_pipe(**inputs).images assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.5758, 0.6269, 0.6570, 0.4967, 0.4639, 0.5664, 0.5257, 0.5067, 0.5715]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_unidiffuser_default_image_0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img' unidiffuser_pipe.set_image_mode() assert unidiffuser_pipe.mode == "img" inputs = self.get_dummy_inputs(device) # Delete prompt and image for unconditional ("marginal") text generation. del inputs["prompt"] del inputs["image"] image = unidiffuser_pipe(**inputs).images assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.5760, 0.6270, 0.6571, 0.4966, 0.4638, 0.5663, 0.5254, 0.5068, 0.5715]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_unidiffuser_default_text_v0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img' unidiffuser_pipe.set_text_mode() assert unidiffuser_pipe.mode == "text" inputs = self.get_dummy_inputs(device) # Delete prompt and image for unconditional ("marginal") text generation. del inputs["prompt"] del inputs["image"] text = unidiffuser_pipe(**inputs).text expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_default_img2text_v0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img2text' unidiffuser_pipe.set_image_to_text_mode() assert unidiffuser_pipe.mode == "img2text" inputs = self.get_dummy_inputs_with_latents(device) # Delete text for image-conditioned text generation del inputs["prompt"] text = unidiffuser_pipe(**inputs).text expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_default_joint_v1(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1") unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'joint' unidiffuser_pipe.set_joint_mode() assert unidiffuser_pipe.mode == "joint" # inputs = self.get_dummy_inputs(device) inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] inputs["data_type"] = 1 sample = unidiffuser_pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_default_text2img_v1(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1") unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'text2img' unidiffuser_pipe.set_text_to_image_mode() assert unidiffuser_pipe.mode == "text2img" inputs = self.get_dummy_inputs_with_latents(device) # Delete image for text-conditioned image generation del inputs["image"] image = unidiffuser_pipe(**inputs).images assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.5758, 0.6269, 0.6570, 0.4967, 0.4639, 0.5664, 0.5257, 0.5067, 0.5715]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_unidiffuser_default_img2text_v1(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1") unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img2text' unidiffuser_pipe.set_image_to_text_mode() assert unidiffuser_pipe.mode == "img2text" inputs = self.get_dummy_inputs_with_latents(device) # Delete text for image-conditioned text generation del inputs["prompt"] text = unidiffuser_pipe(**inputs).text expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_text2img_multiple_images(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'text2img' unidiffuser_pipe.set_text_to_image_mode() assert unidiffuser_pipe.mode == "text2img" inputs = self.get_dummy_inputs(device) # Delete image for text-conditioned image generation del inputs["image"] inputs["num_images_per_prompt"] = 2 inputs["num_prompts_per_image"] = 3 image = unidiffuser_pipe(**inputs).images assert image.shape == (2, 32, 32, 3) def test_unidiffuser_img2text_multiple_prompts(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img2text' unidiffuser_pipe.set_image_to_text_mode() assert unidiffuser_pipe.mode == "img2text" inputs = self.get_dummy_inputs(device) # Delete text for image-conditioned text generation del inputs["prompt"] inputs["num_images_per_prompt"] = 2 inputs["num_prompts_per_image"] = 3 text = unidiffuser_pipe(**inputs).text assert len(text) == 3 def test_unidiffuser_text2img_multiple_images_with_latents(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'text2img' unidiffuser_pipe.set_text_to_image_mode() assert unidiffuser_pipe.mode == "text2img" inputs = self.get_dummy_inputs_with_latents(device) # Delete image for text-conditioned image generation del inputs["image"] inputs["num_images_per_prompt"] = 2 inputs["num_prompts_per_image"] = 3 image = unidiffuser_pipe(**inputs).images assert image.shape == (2, 32, 32, 3) def test_unidiffuser_img2text_multiple_prompts_with_latents(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img2text' unidiffuser_pipe.set_image_to_text_mode() assert unidiffuser_pipe.mode == "img2text" inputs = self.get_dummy_inputs_with_latents(device) # Delete text for image-conditioned text generation del inputs["prompt"] inputs["num_images_per_prompt"] = 2 inputs["num_prompts_per_image"] = 3 text = unidiffuser_pipe(**inputs).text assert len(text) == 3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=2e-4) @require_torch_gpu def test_unidiffuser_default_joint_v1_cuda_fp16(self): device = "cuda" unidiffuser_pipe = UniDiffuserPipeline.from_pretrained( "hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16 ) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'joint' unidiffuser_pipe.set_joint_mode() assert unidiffuser_pipe.mode == "joint" inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] inputs["data_type"] = 1 sample = unidiffuser_pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.5049, 0.5498, 0.5854, 0.3052, 0.4460, 0.6489, 0.5122, 0.4810, 0.6138]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 expected_text_prefix = '" This This' assert text[0][: len(expected_text_prefix)] == expected_text_prefix @require_torch_gpu def test_unidiffuser_default_text2img_v1_cuda_fp16(self): device = "cuda" unidiffuser_pipe = UniDiffuserPipeline.from_pretrained( "hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16 ) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'text2img' unidiffuser_pipe.set_text_to_image_mode() assert unidiffuser_pipe.mode == "text2img" inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["image"] inputs["data_type"] = 1 sample = unidiffuser_pipe(**inputs) image = sample.images assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.5054, 0.5498, 0.5854, 0.3052, 0.4458, 0.6489, 0.5122, 0.4810, 0.6138]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 @require_torch_gpu def test_unidiffuser_default_img2text_v1_cuda_fp16(self): device = "cuda" unidiffuser_pipe = UniDiffuserPipeline.from_pretrained( "hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16 ) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img2text' unidiffuser_pipe.set_image_to_text_mode() assert unidiffuser_pipe.mode == "img2text" inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["prompt"] inputs["data_type"] = 1 text = unidiffuser_pipe(**inputs).text expected_text_prefix = '" This This' assert text[0][: len(expected_text_prefix)] == expected_text_prefix @slow @require_torch_gpu class UniDiffuserPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, seed=0, generate_latents=False): generator = torch.manual_seed(seed) image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg" ) inputs = { "prompt": "an elephant under the sea", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 8.0, "output_type": "numpy", } if generate_latents: latents = self.get_fixed_latents(device, seed=seed) for latent_name, latent_tensor in latents.items(): inputs[latent_name] = latent_tensor return inputs def get_fixed_latents(self, device, seed=0): if type(device) == str: device = torch.device(device) latent_device = torch.device("cpu") generator = torch.Generator(device=latent_device).manual_seed(seed) # Hardcode the shapes for now. prompt_latents = randn_tensor((1, 77, 768), generator=generator, device=device, dtype=torch.float32) vae_latents = randn_tensor((1, 4, 64, 64), generator=generator, device=device, dtype=torch.float32) clip_latents = randn_tensor((1, 1, 512), generator=generator, device=device, dtype=torch.float32) # Move latents onto desired device. prompt_latents = prompt_latents.to(device) vae_latents = vae_latents.to(device) clip_latents = clip_latents.to(device) latents = { "prompt_latents": prompt_latents, "vae_latents": vae_latents, "clip_latents": clip_latents, } return latents def test_unidiffuser_default_joint_v1(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() # inputs = self.get_dummy_inputs(device) inputs = self.get_inputs(device=torch_device, generate_latents=True) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] sample = pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 512, 512, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-1 expected_text_prefix = "a living room" assert text[0][: len(expected_text_prefix)] == expected_text_prefix def test_unidiffuser_default_text2img_v1(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(device=torch_device, generate_latents=True) del inputs["image"] sample = pipe(**inputs) image = sample.images assert image.shape == (1, 512, 512, 3) image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.0242, 0.0103, 0.0022, 0.0129, 0.0000, 0.0090, 0.0376, 0.0508, 0.0005]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_unidiffuser_default_img2text_v1(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(device=torch_device, generate_latents=True) del inputs["prompt"] sample = pipe(**inputs) text = sample.text expected_text_prefix = "An astronaut" assert text[0][: len(expected_text_prefix)] == expected_text_prefix def test_unidiffuser_default_joint_v1_fp16(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() # inputs = self.get_dummy_inputs(device) inputs = self.get_inputs(device=torch_device, generate_latents=True) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] sample = pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 512, 512, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 2e-1 expected_text_prefix = "a living room" assert text[0][: len(expected_text_prefix)] == expected_text_prefix def test_unidiffuser_default_text2img_v1_fp16(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(device=torch_device, generate_latents=True) del inputs["image"] sample = pipe(**inputs) image = sample.images assert image.shape == (1, 512, 512, 3) image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.0242, 0.0103, 0.0022, 0.0129, 0.0000, 0.0090, 0.0376, 0.0508, 0.0005]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_unidiffuser_default_img2text_v1_fp16(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(device=torch_device, generate_latents=True) del inputs["prompt"] sample = pipe(**inputs) text = sample.text expected_text_prefix = "An astronaut" assert text[0][: len(expected_text_prefix)] == expected_text_prefix
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/audioldm/test_audioldm.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechT5HifiGan, SpeechT5HifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class AudioLDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = AudioLDMPipeline params = TEXT_TO_AUDIO_PARAMS batch_params = TEXT_TO_AUDIO_BATCH_PARAMS required_optional_params = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=(32, 64), class_embed_type="simple_projection", projection_class_embeddings_input_dim=32, class_embeddings_concat=True, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=1, out_channels=1, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = ClapTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, projection_dim=32, ) text_encoder = ClapTextModelWithProjection(text_encoder_config) tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77) vocoder_config = SpeechT5HifiGanConfig( model_in_dim=8, sampling_rate=16000, upsample_initial_channel=16, upsample_rates=[2, 2], upsample_kernel_sizes=[4, 4], resblock_kernel_sizes=[3, 7], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], normalize_before=False, ) vocoder = SpeechT5HifiGan(vocoder_config) components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def test_audioldm_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() audioldm_pipe = AudioLDMPipeline(**components) audioldm_pipe = audioldm_pipe.to(torch_device) audioldm_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = audioldm_pipe(**inputs) audio = output.audios[0] assert audio.ndim == 1 assert len(audio) == 256 audio_slice = audio[:10] expected_slice = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice).max() < 1e-2 def test_audioldm_prompt_embeds(self): components = self.get_dummy_components() audioldm_pipe = AudioLDMPipeline(**components) audioldm_pipe = audioldm_pipe.to(torch_device) audioldm_pipe = audioldm_pipe.to(torch_device) audioldm_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = audioldm_pipe(**inputs) audio_1 = output.audios[0] inputs = self.get_dummy_inputs(torch_device) prompt = 3 * [inputs.pop("prompt")] text_inputs = audioldm_pipe.tokenizer( prompt, padding="max_length", max_length=audioldm_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_inputs = text_inputs["input_ids"].to(torch_device) prompt_embeds = audioldm_pipe.text_encoder( text_inputs, ) prompt_embeds = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state prompt_embeds = F.normalize(prompt_embeds, dim=-1) inputs["prompt_embeds"] = prompt_embeds # forward output = audioldm_pipe(**inputs) audio_2 = output.audios[0] assert np.abs(audio_1 - audio_2).max() < 1e-2 def test_audioldm_negative_prompt_embeds(self): components = self.get_dummy_components() audioldm_pipe = AudioLDMPipeline(**components) audioldm_pipe = audioldm_pipe.to(torch_device) audioldm_pipe = audioldm_pipe.to(torch_device) audioldm_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = audioldm_pipe(**inputs) audio_1 = output.audios[0] inputs = self.get_dummy_inputs(torch_device) prompt = 3 * [inputs.pop("prompt")] embeds = [] for p in [prompt, negative_prompt]: text_inputs = audioldm_pipe.tokenizer( p, padding="max_length", max_length=audioldm_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_inputs = text_inputs["input_ids"].to(torch_device) text_embeds = audioldm_pipe.text_encoder( text_inputs, ) text_embeds = text_embeds.text_embeds # additional L_2 normalization over each hidden-state text_embeds = F.normalize(text_embeds, dim=-1) embeds.append(text_embeds) inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds # forward output = audioldm_pipe(**inputs) audio_2 = output.audios[0] assert np.abs(audio_1 - audio_2).max() < 1e-2 def test_audioldm_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler(skip_prk_steps=True) audioldm_pipe = AudioLDMPipeline(**components) audioldm_pipe = audioldm_pipe.to(device) audioldm_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "egg cracking" output = audioldm_pipe(**inputs, negative_prompt=negative_prompt) audio = output.audios[0] assert audio.ndim == 1 assert len(audio) == 256 audio_slice = audio[:10] expected_slice = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice).max() < 1e-2 def test_audioldm_num_waveforms_per_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler(skip_prk_steps=True) audioldm_pipe = AudioLDMPipeline(**components) audioldm_pipe = audioldm_pipe.to(device) audioldm_pipe.set_progress_bar_config(disable=None) prompt = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) audios = audioldm_pipe(prompt, num_inference_steps=2).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts batch_size = 2 audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt num_waveforms_per_prompt = 2 audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts batch_size = 2 audios = audioldm_pipe( [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def test_audioldm_audio_length_in_s(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() audioldm_pipe = AudioLDMPipeline(**components) audioldm_pipe = audioldm_pipe.to(torch_device) audioldm_pipe.set_progress_bar_config(disable=None) vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate inputs = self.get_dummy_inputs(device) output = audioldm_pipe(audio_length_in_s=0.016, **inputs) audio = output.audios[0] assert audio.ndim == 1 assert len(audio) / vocoder_sampling_rate == 0.016 output = audioldm_pipe(audio_length_in_s=0.032, **inputs) audio = output.audios[0] assert audio.ndim == 1 assert len(audio) / vocoder_sampling_rate == 0.032 def test_audioldm_vocoder_model_in_dim(self): components = self.get_dummy_components() audioldm_pipe = AudioLDMPipeline(**components) audioldm_pipe = audioldm_pipe.to(torch_device) audioldm_pipe.set_progress_bar_config(disable=None) prompt = ["hey"] output = audioldm_pipe(prompt, num_inference_steps=1) audio_shape = output.audios.shape assert audio_shape == (1, 256) config = audioldm_pipe.vocoder.config config.model_in_dim *= 2 audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device) output = audioldm_pipe(prompt, num_inference_steps=1) audio_shape = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def test_attention_slicing_forward_pass(self): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(test_mean_pixel_difference=False) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False) @slow class AudioLDMPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def test_audioldm(self): audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm") audioldm_pipe = audioldm_pipe.to(torch_device) audioldm_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 25 audio = audioldm_pipe(**inputs).audios[0] assert audio.ndim == 1 assert len(audio) == 81920 audio_slice = audio[77230:77240] expected_slice = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) max_diff = np.abs(expected_slice - audio_slice).max() assert max_diff < 1e-2 def test_audioldm_lms(self): audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm") audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) audioldm_pipe = audioldm_pipe.to(torch_device) audioldm_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) audio = audioldm_pipe(**inputs).audios[0] assert audio.ndim == 1 assert len(audio) == 81920 audio_slice = audio[27780:27790] expected_slice = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212]) max_diff = np.abs(expected_slice - audio_slice).max() assert max_diff < 3e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel, ) from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionXLImg2ImgPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): pipeline_class = StableDiffusionXLImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self, skip_first_text_encoder=False): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64 if not skip_first_text_encoder else 32, ) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip", local_files_only=True) text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip", local_files_only=True) components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder if not skip_first_text_encoder else None, "tokenizer": tokenizer if not skip_first_text_encoder else None, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, } return components def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image / 2 + 0.5 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.8, } return inputs def test_stable_diffusion_xl_img2img_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_xl_refiner(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components(skip_first_text_encoder=True) sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4676, 0.4865, 0.4335, 0.6715, 0.5578, 0.4497, 0.5847, 0.5967, 0.5198]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) # TODO(Patrick, Sayak) - skip for now as this requires more refiner tests def test_save_load_optional_components(self): pass def test_stable_diffusion_xl_img2img_negative_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward without prompt embeds inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with prompt embeds inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] prompt = 3 * [inputs.pop("prompt")] ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt) output = sd_pipe( **inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) image_slice_2 = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 @require_torch_gpu def test_stable_diffusion_xl_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: pipe.unet.set_default_attn_processor() inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_stable_diffusion_xl_multi_prompts(self): components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) # forward with single prompt inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 inputs["prompt_2"] = inputs["prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different prompt inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 inputs["prompt_2"] = "different prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 # manually set a negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 inputs["negative_prompt"] = "negative prompt" output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same negative_prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = inputs["negative_prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = "different negative prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_instruction_pix2pix.py
# coding=utf-8 # Copyright 2023 Harutatsu Akiyama and HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_instruct_pix2pix import ( StableDiffusionXLInstructPix2PixPipeline, ) from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionXLInstructPix2PixPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionXLInstructPix2PixPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=8, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip", local_files_only=True) text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip", local_files_only=True) components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, # "safety_checker": None, # "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image / 2 + 0.5 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=2e-3) # Overwrite the default test_latents_inputs because pix2pix encode the image differently def test_latents_input(self): components = self.get_dummy_components() pipe = StableDiffusionXLInstructPix2PixPipeline(**components) pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0] vae = components["vae"] inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt") for image_param in self.image_latents_params: if image_param in inputs.keys(): inputs[image_param] = vae.encode(inputs[image_param]).latent_dist.mode() out_latents_inputs = pipe(**inputs)[0] max_diff = np.abs(out - out_latents_inputs).max() self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image") def test_cfg(self): pass
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, StableDiffusionXLInpaintPipeline, UNet2DConditionModel, UniPCMultistepScheduler, ) from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionXLInpaintPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): pipeline_class = StableDiffusionXLInpaintPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = frozenset([]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess image_latents_params = frozenset([]) def get_dummy_components(self, skip_first_text_encoder=False): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64 if not skip_first_text_encoder else 32, ) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip", local_files_only=True) text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip", local_files_only=True) components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder if not skip_first_text_encoder else None, "tokenizer": tokenizer if not skip_first_text_encoder else None, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, } return components def get_dummy_inputs(self, device, seed=0): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) # create mask image[8:, 8:, :] = 255 mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64)) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_xl_inpaint_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionXLInpaintPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.6965, 0.5584, 0.5693, 0.5739, 0.6092, 0.6620, 0.5902, 0.5612, 0.5319]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) # TODO(Patrick, Sayak) - skip for now as this requires more refiner tests def test_save_load_optional_components(self): pass def test_stable_diffusion_xl_inpaint_negative_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = StableDiffusionXLInpaintPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward without prompt embeds inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with prompt embeds inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] prompt = 3 * [inputs.pop("prompt")] ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt) output = sd_pipe( **inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) image_slice_2 = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 @require_torch_gpu def test_stable_diffusion_xl_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = StableDiffusionXLInpaintPipeline(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = StableDiffusionXLInpaintPipeline(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = StableDiffusionXLInpaintPipeline(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: pipe.unet.set_default_attn_processor() inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_stable_diffusion_xl_refiner(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components(skip_first_text_encoder=True) sd_pipe = self.pipeline_class(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] print(torch.from_numpy(image_slice).flatten()) assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.9106, 0.6563, 0.6766, 0.6537, 0.6709, 0.7367, 0.6537, 0.5937, 0.5418]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_two_xl_mixture_of_denoiser(self): components = self.get_dummy_components() pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) pipe_1.unet.set_default_attn_processor() pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) pipe_2.unet.set_default_attn_processor() def assert_run_mixture( num_steps, split, scheduler_cls_orig, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps ): inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = num_steps class scheduler_cls(scheduler_cls_orig): pass pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) # Let's retrieve the number of timesteps we want to use pipe_1.scheduler.set_timesteps(num_steps) expected_steps = pipe_1.scheduler.timesteps.tolist() split_ts = num_train_timesteps - int(round(num_train_timesteps * split)) expected_steps_1 = expected_steps[:split_ts] expected_steps_2 = expected_steps[split_ts:] expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps)) expected_steps_2 = list(filter(lambda ts: ts < split_ts, expected_steps)) # now we monkey patch step `done_steps` # list into the step function for testing done_steps = [] old_step = copy.copy(scheduler_cls.step) def new_step(self, *args, **kwargs): done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t` return old_step(self, *args, **kwargs) scheduler_cls.step = new_step inputs_1 = {**inputs, **{"denoising_end": split, "output_type": "latent"}} latents = pipe_1(**inputs_1).images[0] assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" inputs_2 = {**inputs, **{"denoising_start": split, "image": latents}} pipe_2(**inputs_2).images[0] assert expected_steps_2 == done_steps[len(expected_steps_1) :] assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" for steps in [5, 8, 20]: for split in [0.33, 0.49, 0.71]: for scheduler_cls in [ DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler, UniPCMultistepScheduler, HeunDiscreteScheduler, ]: assert_run_mixture(steps, split, scheduler_cls) def test_stable_diffusion_three_xl_mixture_of_denoiser(self): components = self.get_dummy_components() pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) pipe_1.unet.set_default_attn_processor() pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) pipe_2.unet.set_default_attn_processor() pipe_3 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) pipe_3.unet.set_default_attn_processor() def assert_run_mixture( num_steps, split_1, split_2, scheduler_cls_orig, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, ): inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = num_steps class scheduler_cls(scheduler_cls_orig): pass pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) pipe_3.scheduler = scheduler_cls.from_config(pipe_3.scheduler.config) # Let's retrieve the number of timesteps we want to use pipe_1.scheduler.set_timesteps(num_steps) expected_steps = pipe_1.scheduler.timesteps.tolist() split_1_ts = num_train_timesteps - int(round(num_train_timesteps * split_1)) split_2_ts = num_train_timesteps - int(round(num_train_timesteps * split_2)) expected_steps_1 = expected_steps[:split_1_ts] expected_steps_2 = expected_steps[split_1_ts:split_2_ts] expected_steps_3 = expected_steps[split_2_ts:] expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps)) expected_steps_2 = list(filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps)) expected_steps_3 = list(filter(lambda ts: ts < split_2_ts, expected_steps)) # now we monkey patch step `done_steps` # list into the step function for testing done_steps = [] old_step = copy.copy(scheduler_cls.step) def new_step(self, *args, **kwargs): done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t` return old_step(self, *args, **kwargs) scheduler_cls.step = new_step inputs_1 = {**inputs, **{"denoising_end": split_1, "output_type": "latent"}} latents = pipe_1(**inputs_1).images[0] assert ( expected_steps_1 == done_steps ), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}" inputs_2 = { **inputs, **{"denoising_start": split_1, "denoising_end": split_2, "image": latents, "output_type": "latent"}, } pipe_2(**inputs_2).images[0] assert expected_steps_2 == done_steps[len(expected_steps_1) :] inputs_3 = {**inputs, **{"denoising_start": split_2, "image": latents}} pipe_3(**inputs_3).images[0] assert expected_steps_3 == done_steps[len(expected_steps_1) + len(expected_steps_2) :] assert ( expected_steps == done_steps ), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}" for steps in [7, 11, 20]: for split_1, split_2 in zip([0.19, 0.32], [0.81, 0.68]): for scheduler_cls in [ DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler, UniPCMultistepScheduler, HeunDiscreteScheduler, ]: assert_run_mixture(steps, split_1, split_2, scheduler_cls) def test_stable_diffusion_xl_multi_prompts(self): components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) # forward with single prompt inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 inputs["prompt_2"] = inputs["prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different prompt inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 inputs["prompt_2"] = "different prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 # manually set a negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 inputs["negative_prompt"] = "negative prompt" output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same negative_prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = inputs["negative_prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 5 inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = "different negative prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, UNet2DConditionModel, UniPCMultistepScheduler, ) from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionXLPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): pipeline_class = StableDiffusionXLPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip", local_files_only=True) text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip", local_files_only=True) components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, # "safety_checker": None, # "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", } return inputs def test_stable_diffusion_xl_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionXLPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5873, 0.6128, 0.4797, 0.5122, 0.5674, 0.4639, 0.5227, 0.5149, 0.4747]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_xl_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = StableDiffusionXLPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward without prompt embeds inputs = self.get_dummy_inputs(torch_device) inputs["prompt"] = 2 * [inputs["prompt"]] inputs["num_images_per_prompt"] = 2 output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with prompt embeds inputs = self.get_dummy_inputs(torch_device) prompt = 2 * [inputs.pop("prompt")] ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = sd_pipe.encode_prompt(prompt) output = sd_pipe( **inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) image_slice_2 = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_xl_negative_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = StableDiffusionXLPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward without prompt embeds inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with prompt embeds inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] prompt = 3 * [inputs.pop("prompt")] ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt) output = sd_pipe( **inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) image_slice_2 = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @require_torch_gpu def test_stable_diffusion_xl_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = StableDiffusionXLPipeline(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = StableDiffusionXLPipeline(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = StableDiffusionXLPipeline(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: pipe.unet.set_default_attn_processor() inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_stable_diffusion_two_xl_mixture_of_denoiser(self): components = self.get_dummy_components() pipe_1 = StableDiffusionXLPipeline(**components).to(torch_device) pipe_1.unet.set_default_attn_processor() pipe_2 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) pipe_2.unet.set_default_attn_processor() def assert_run_mixture( num_steps, split, scheduler_cls_orig, expected_tss, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, ): inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = num_steps class scheduler_cls(scheduler_cls_orig): pass pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) # Let's retrieve the number of timesteps we want to use pipe_1.scheduler.set_timesteps(num_steps) expected_steps = pipe_1.scheduler.timesteps.tolist() expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) expected_steps_2 = list(filter(lambda ts: ts < split, expected_tss)) # now we monkey patch step `done_steps` # list into the step function for testing done_steps = [] old_step = copy.copy(scheduler_cls.step) def new_step(self, *args, **kwargs): done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t` return old_step(self, *args, **kwargs) scheduler_cls.step = new_step inputs_1 = { **inputs, **{ "denoising_end": 1.0 - (split / num_train_timesteps), "output_type": "latent", }, } latents = pipe_1(**inputs_1).images[0] assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" inputs_2 = { **inputs, **{ "denoising_start": 1.0 - (split / num_train_timesteps), "image": latents, }, } pipe_2(**inputs_2).images[0] assert expected_steps_2 == done_steps[len(expected_steps_1) :] assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" steps = 10 for split in [300, 500, 700]: for scheduler_cls_timesteps in [ (DDIMScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]), (EulerDiscreteScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]), (DPMSolverMultistepScheduler, [901, 811, 721, 631, 541, 451, 361, 271, 181, 91]), (UniPCMultistepScheduler, [901, 811, 721, 631, 541, 451, 361, 271, 181, 91]), ( HeunDiscreteScheduler, [ 901.0, 801.0, 801.0, 701.0, 701.0, 601.0, 601.0, 501.0, 501.0, 401.0, 401.0, 301.0, 301.0, 201.0, 201.0, 101.0, 101.0, 1.0, 1.0, ], ), ]: assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1]) steps = 25 for split in [300, 500, 700]: for scheduler_cls_timesteps in [ ( DDIMScheduler, [ 961, 921, 881, 841, 801, 761, 721, 681, 641, 601, 561, 521, 481, 441, 401, 361, 321, 281, 241, 201, 161, 121, 81, 41, 1, ], ), ( EulerDiscreteScheduler, [ 961.0, 921.0, 881.0, 841.0, 801.0, 761.0, 721.0, 681.0, 641.0, 601.0, 561.0, 521.0, 481.0, 441.0, 401.0, 361.0, 321.0, 281.0, 241.0, 201.0, 161.0, 121.0, 81.0, 41.0, 1.0, ], ), ( DPMSolverMultistepScheduler, [ 951, 913, 875, 837, 799, 761, 723, 685, 647, 609, 571, 533, 495, 457, 419, 381, 343, 305, 267, 229, 191, 153, 115, 77, 39, ], ), ( UniPCMultistepScheduler, [ 951, 913, 875, 837, 799, 761, 723, 685, 647, 609, 571, 533, 495, 457, 419, 381, 343, 305, 267, 229, 191, 153, 115, 77, 39, ], ), ( HeunDiscreteScheduler, [ 961.0, 921.0, 921.0, 881.0, 881.0, 841.0, 841.0, 801.0, 801.0, 761.0, 761.0, 721.0, 721.0, 681.0, 681.0, 641.0, 641.0, 601.0, 601.0, 561.0, 561.0, 521.0, 521.0, 481.0, 481.0, 441.0, 441.0, 401.0, 401.0, 361.0, 361.0, 321.0, 321.0, 281.0, 281.0, 241.0, 241.0, 201.0, 201.0, 161.0, 161.0, 121.0, 121.0, 81.0, 81.0, 41.0, 41.0, 1.0, 1.0, ], ), ]: assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1]) def test_stable_diffusion_three_xl_mixture_of_denoiser(self): components = self.get_dummy_components() pipe_1 = StableDiffusionXLPipeline(**components).to(torch_device) pipe_1.unet.set_default_attn_processor() pipe_2 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) pipe_2.unet.set_default_attn_processor() pipe_3 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) pipe_3.unet.set_default_attn_processor() def assert_run_mixture( num_steps, split_1, split_2, scheduler_cls_orig, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, ): inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = num_steps class scheduler_cls(scheduler_cls_orig): pass pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) pipe_3.scheduler = scheduler_cls.from_config(pipe_3.scheduler.config) # Let's retrieve the number of timesteps we want to use pipe_1.scheduler.set_timesteps(num_steps) expected_steps = pipe_1.scheduler.timesteps.tolist() split_1_ts = num_train_timesteps - int(round(num_train_timesteps * split_1)) split_2_ts = num_train_timesteps - int(round(num_train_timesteps * split_2)) expected_steps_1 = expected_steps[:split_1_ts] expected_steps_2 = expected_steps[split_1_ts:split_2_ts] expected_steps_3 = expected_steps[split_2_ts:] expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps)) expected_steps_2 = list(filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps)) expected_steps_3 = list(filter(lambda ts: ts < split_2_ts, expected_steps)) # now we monkey patch step `done_steps` # list into the step function for testing done_steps = [] old_step = copy.copy(scheduler_cls.step) def new_step(self, *args, **kwargs): done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t` return old_step(self, *args, **kwargs) scheduler_cls.step = new_step inputs_1 = {**inputs, **{"denoising_end": split_1, "output_type": "latent"}} latents = pipe_1(**inputs_1).images[0] assert ( expected_steps_1 == done_steps ), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}" with self.assertRaises(ValueError) as cm: inputs_2 = { **inputs, **{ "denoising_start": split_2, "denoising_end": split_1, "image": latents, "output_type": "latent", }, } pipe_2(**inputs_2).images[0] assert "cannot be larger than or equal to `denoising_end`" in str(cm.exception) inputs_2 = { **inputs, **{"denoising_start": split_1, "denoising_end": split_2, "image": latents, "output_type": "latent"}, } pipe_2(**inputs_2).images[0] assert expected_steps_2 == done_steps[len(expected_steps_1) :] inputs_3 = {**inputs, **{"denoising_start": split_2, "image": latents}} pipe_3(**inputs_3).images[0] assert expected_steps_3 == done_steps[len(expected_steps_1) + len(expected_steps_2) :] assert ( expected_steps == done_steps ), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}" for steps in [7, 11, 20]: for split_1, split_2 in zip([0.19, 0.32], [0.81, 0.68]): for scheduler_cls in [ DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler, UniPCMultistepScheduler, HeunDiscreteScheduler, ]: assert_run_mixture(steps, split_1, split_2, scheduler_cls) def test_stable_diffusion_xl_multi_prompts(self): components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) # forward with single prompt inputs = self.get_dummy_inputs(torch_device) output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["prompt_2"] = inputs["prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different prompt inputs = self.get_dummy_inputs(torch_device) inputs["prompt_2"] = "different prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 # manually set a negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same negative_prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = inputs["negative_prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = "different negative prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/ddim/test_ddim.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = DDIMPipeline params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) scheduler = DDIMScheduler() components = {"unet": unet, "scheduler": scheduler} return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 32, 32, 3)) expected_slice = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_dict_tuple_outputs_equivalent(self): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def test_save_load_local(self): super().test_save_load_local(expected_max_difference=3e-3) def test_save_load_optional_components(self): super().test_save_load_optional_components(expected_max_difference=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class DDIMPipelineIntegrationTests(unittest.TestCase): def test_inference_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDIMScheduler() ddim = DDIMPipeline(unet=unet, scheduler=scheduler) ddim.to(torch_device) ddim.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddim(generator=generator, eta=0.0, output_type="numpy").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_ema_bedroom(self): model_id = "google/ddpm-ema-bedroom-256" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDIMScheduler.from_pretrained(model_id) ddpm = DDIMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="numpy").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/shap_e/test_shap_e.py
# Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class ShapEPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = ShapEPipeline params = ["prompt"] batch_params = ["prompt"] required_optional_params = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] test_xformers_attention = False @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def time_embed_dim(self): return self.time_input_dim * 4 @property def renderer_dim(self): return 8 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config) @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } model = PriorTransformer(**model_kwargs) return model @property def dummy_renderer(self): torch.manual_seed(0) model_kwargs = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } model = ShapERenderer(**model_kwargs) return model def get_dummy_components(self): prior = self.dummy_prior text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer shap_e_renderer = self.dummy_renderer scheduler = HeunDiscreteScheduler( beta_schedule="exp", num_train_timesteps=1024, prediction_type="sample", use_karras_sigmas=True, clip_sample=True, clip_sample_range=1.0, ) components = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "shap_e_renderer": shap_e_renderer, "scheduler": scheduler, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def test_shap_e(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images[0] image_slice = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) expected_slice = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_batch_consistent(self): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def test_inference_batch_single_identical(self): test_max_difference = torch_device == "cpu" relax_max_difference = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=test_max_difference, relax_max_difference=relax_max_difference, ) def test_num_images_per_prompt(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) batch_size = 1 num_images_per_prompt = 2 inputs = self.get_dummy_inputs(torch_device) for key in inputs.keys(): if key in self.batch_params: inputs[key] = batch_size * [inputs[key]] images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class ShapEPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_shap_e(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) pipe = ShapEPipeline.from_pretrained("openai/shap-e") pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device=torch_device).manual_seed(0) images = pipe( "a shark", generator=generator, guidance_scale=15.0, num_inference_steps=64, frame_size=64, output_type="np", ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(images, expected_image)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/shap_e/test_shap_e_img2img.py
# Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImg2ImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class ShapEImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = ShapEImg2ImgPipeline params = ["image"] batch_params = ["image"] required_optional_params = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] test_xformers_attention = False @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def time_embed_dim(self): return self.time_input_dim * 4 @property def renderer_dim(self): return 8 @property def dummy_image_encoder(self): torch.manual_seed(0) config = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) model = CLIPVisionModel(config) return model @property def dummy_image_processor(self): image_processor = CLIPImageProcessor( crop_size=224, do_center_crop=True, do_normalize=True, do_resize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], resample=3, size=224, ) return image_processor @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } model = PriorTransformer(**model_kwargs) return model @property def dummy_renderer(self): torch.manual_seed(0) model_kwargs = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } model = ShapERenderer(**model_kwargs) return model def get_dummy_components(self): prior = self.dummy_prior image_encoder = self.dummy_image_encoder image_processor = self.dummy_image_processor shap_e_renderer = self.dummy_renderer scheduler = HeunDiscreteScheduler( beta_schedule="exp", num_train_timesteps=1024, prediction_type="sample", use_karras_sigmas=True, clip_sample=True, clip_sample_range=1.0, ) components = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "shap_e_renderer": shap_e_renderer, "scheduler": scheduler, } return components def get_dummy_inputs(self, device, seed=0): input_image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def test_shap_e(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images[0] image_slice = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) expected_slice = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_batch_consistent(self): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def test_inference_batch_single_identical(self): test_max_difference = torch_device == "cpu" relax_max_difference = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=test_max_difference, relax_max_difference=relax_max_difference, ) def test_num_images_per_prompt(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) batch_size = 1 num_images_per_prompt = 2 inputs = self.get_dummy_inputs(torch_device) for key in inputs.keys(): if key in self.batch_params: inputs[key] = batch_size * [inputs[key]] images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class ShapEImg2ImgPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_shap_e_img2img(self): input_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) pipe = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img") pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device=torch_device).manual_seed(0) images = pipe( input_image, generator=generator, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type="np", ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(images, expected_image)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/controlnet/test_flax_controlnet.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class FlaxControlNetPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() def test_canny(self): controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.bfloat16 ) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16 ) params["controlnet"] = controlnet_params prompts = "bird" num_samples = jax.device_count() prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) canny_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) rng = jax.random.PRNGKey(0) rng = jax.random.split(rng, jax.device_count()) p_params = replicate(params) prompt_ids = shard(prompt_ids) processed_image = shard(processed_image) images = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=rng, num_inference_steps=50, jit=True, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) image_slice = images[0, 253:256, 253:256, -1] output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) expected_slice = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f"output_slice: {output_slice}") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def test_pose(self): controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose", from_pt=True, dtype=jnp.bfloat16 ) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16 ) params["controlnet"] = controlnet_params prompts = "Chef in the kitchen" num_samples = jax.device_count() prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) pose_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) processed_image = pipe.prepare_image_inputs([pose_image] * num_samples) rng = jax.random.PRNGKey(0) rng = jax.random.split(rng, jax.device_count()) p_params = replicate(params) prompt_ids = shard(prompt_ids) processed_image = shard(processed_image) images = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=rng, num_inference_steps=50, jit=True, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) image_slice = images[0, 253:256, 253:256, -1] output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) expected_slice = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f"output_slice: {output_slice}") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/controlnet/test_controlnet_inpaint.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This model implementation is heavily based on: import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetInpaintPipeline, UNet2DConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class ControlNetInpaintPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionControlNetInpaintPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = frozenset({"control_image"}) # skip `image` and `mask` for now, only test for control_image image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 control_image = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ) init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) init_image = init_image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64)) mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64)) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "mask_image": mask_image, "control_image": control_image, } return inputs def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) class ControlNetSimpleInpaintPipelineFastTests(ControlNetInpaintPipelineFastTests): pipeline_class = StableDiffusionControlNetInpaintPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = frozenset([]) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components class MultiControlNetInpaintPipelineFastTests( PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionControlNetInpaintPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) def init_weights(m): if isinstance(m, torch.nn.Conv2d): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) controlnet1 = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlnet1.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) controlnet2 = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlnet2.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") controlnet = MultiControlNetModel([controlnet1, controlnet2]) components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 control_image = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), ] init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) init_image = init_image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64)) mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64)) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "mask_image": mask_image, "control_image": control_image, } return inputs def test_control_guidance_switch(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) scale = 10.0 steps = 4 inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_1 = pipe(**inputs)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_1 - output_2)) > 1e-3 assert np.sum(np.abs(output_1 - output_3)) > 1e-3 assert np.sum(np.abs(output_1 - output_4)) > 1e-3 def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) def test_save_pretrained_raise_not_implemented_exception(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(tmpdir) except NotImplementedError: pass @slow @require_torch_gpu class ControlNetInpaintPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_canny(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512)) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ).resize((512, 512)) prompt = "pitch black hole" control_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512)) output = pipe( prompt, image=image, mask_image=mask_image, control_image=control_image, generator=generator, output_type="np", num_inference_steps=3, ) image = output.images[0] assert image.shape == (512, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/inpaint.npy" ) assert np.abs(expected_image - image).max() < 9e-2 def test_inpaint(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint") pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(33) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png" ) init_image = init_image.resize((512, 512)) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png" ) mask_image = mask_image.resize((512, 512)) prompt = "a handsome man with ray-ban sunglasses" def make_inpaint_condition(image, image_mask): image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" image[image_mask > 0.5] = -1.0 # set as masked pixel image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) image = torch.from_numpy(image) return image control_image = make_inpaint_condition(init_image, mask_image) output = pipe( prompt, image=init_image, mask_image=mask_image, control_image=control_image, guidance_scale=9.0, eta=1.0, generator=generator, num_inference_steps=20, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/boy_ray_ban.npy" ) assert np.abs(expected_image - image).max() < 9e-2 def test_load_local(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") pipe_1 = StableDiffusionControlNetInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) controlnet = ControlNetModel.from_single_file( "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" ) pipe_2 = StableDiffusionControlNetInpaintPipeline.from_single_file( "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors", safety_checker=None, controlnet=controlnet, ) control_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512)) image = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512)) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ).resize((512, 512)) pipes = [pipe_1, pipe_2] images = [] for pipe in pipes: pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "bird" output = pipe( prompt, image=image, control_image=control_image, mask_image=mask_image, strength=0.9, generator=generator, output_type="np", num_inference_steps=3, ) images.append(output.images[0]) del pipe gc.collect() torch.cuda.empty_cache() assert np.abs(images[0] - images[1]).sum() < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/controlnet/test_controlnet_img2img.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImg2ImgPipeline, UNet2DConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class ControlNetImg2ImgPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionControlNetImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"}) image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 control_image = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ) image = floats_tensor(control_image.shape, rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) class StableDiffusionMultiControlNetPipelineFastTests( PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionControlNetImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) def init_weights(m): if isinstance(m, torch.nn.Conv2d): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) controlnet1 = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlnet1.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) controlnet2 = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlnet2.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") controlnet = MultiControlNetModel([controlnet1, controlnet2]) components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 control_image = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), ] image = floats_tensor(control_image[0].shape, rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def test_control_guidance_switch(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) scale = 10.0 steps = 4 inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_1 = pipe(**inputs)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_1 - output_2)) > 1e-3 assert np.sum(np.abs(output_1 - output_3)) > 1e-3 assert np.sum(np.abs(output_1 - output_4)) > 1e-3 def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) def test_save_pretrained_raise_not_implemented_exception(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(tmpdir) except NotImplementedError: pass @slow @require_torch_gpu class ControlNetImg2ImgPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_canny(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "evil space-punk bird" control_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512)) image = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512)) output = pipe( prompt, image, control_image=control_image, generator=generator, output_type="np", num_inference_steps=50, strength=0.6, ) image = output.images[0] assert image.shape == (512, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image).max() < 9e-2 def test_load_local(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") pipe_1 = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) controlnet = ControlNetModel.from_single_file( "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" ) pipe_2 = StableDiffusionControlNetImg2ImgPipeline.from_single_file( "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors", safety_checker=None, controlnet=controlnet, ) control_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512)) image = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512)) pipes = [pipe_1, pipe_2] images = [] for pipe in pipes: pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "bird" output = pipe( prompt, image=image, control_image=control_image, strength=0.9, generator=generator, output_type="np", num_inference_steps=3, ) images.append(output.images[0]) del pipe gc.collect() torch.cuda.empty_cache() assert np.abs(images[0] - images[1]).sum() < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/controlnet/test_controlnet.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import traceback import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, EulerDiscreteScheduler, StableDiffusionControlNetPipeline, UNet2DConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_2, require_torch_gpu, run_test_in_subprocess, ) from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() # Will be run via run_test_in_subprocess def _test_stable_diffusion_compile(in_queue, out_queue, timeout): error = None try: _ = in_queue.get(timeout=timeout) controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.to("cuda") pipe.set_progress_bar_config(disable=None) pipe.unet.to(memory_format=torch.channels_last) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.controlnet.to(memory_format=torch.channels_last) pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "bird" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) output = pipe(prompt, image, generator=generator, output_type="np") image = output.images[0] assert image.shape == (768, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy" ) assert np.abs(expected_image - image).max() < 1.0 except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() class ControlNetPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionControlNetPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 image = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, } return inputs def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) class StableDiffusionMultiControlNetPipelineFastTests( PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionControlNetPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) def init_weights(m): if isinstance(m, torch.nn.Conv2d): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) controlnet1 = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlnet1.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) controlnet2 = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlnet2.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") controlnet = MultiControlNetModel([controlnet1, controlnet2]) components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 images = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), ] inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": images, } return inputs def test_control_guidance_switch(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) scale = 10.0 steps = 4 inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_1 = pipe(**inputs)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_1 - output_2)) > 1e-3 assert np.sum(np.abs(output_1 - output_3)) > 1e-3 assert np.sum(np.abs(output_1 - output_4)) > 1e-3 def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) def test_save_pretrained_raise_not_implemented_exception(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(tmpdir) except NotImplementedError: pass class StableDiffusionMultiControlNetOneModelPipelineFastTests( PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionControlNetPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) def init_weights(m): if isinstance(m, torch.nn.Conv2d): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlnet.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") controlnet = MultiControlNetModel([controlnet]) components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 images = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), ] inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": images, } return inputs def test_control_guidance_switch(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) scale = 10.0 steps = 4 inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_1 = pipe(**inputs)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_3 = pipe( **inputs, control_guidance_start=[0.1], control_guidance_end=[0.2], )[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0] # make sure that all outputs are different assert np.sum(np.abs(output_1 - output_2)) > 1e-3 assert np.sum(np.abs(output_1 - output_3)) > 1e-3 assert np.sum(np.abs(output_1 - output_4)) > 1e-3 def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) def test_save_pretrained_raise_not_implemented_exception(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(tmpdir) except NotImplementedError: pass @slow @require_torch_gpu class ControlNetPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_canny(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "bird" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) image = output.images[0] assert image.shape == (768, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy" ) assert np.abs(expected_image - image).max() < 9e-2 def test_depth(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "Stormtrooper's lecture" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" ) output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) image = output.images[0] assert image.shape == (512, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy" ) assert np.abs(expected_image - image).max() < 8e-1 def test_hed(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "oil painting of handsome old man, masterpiece" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png" ) output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) image = output.images[0] assert image.shape == (704, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy" ) assert np.abs(expected_image - image).max() < 8e-2 def test_mlsd(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "room" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png" ) output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) image = output.images[0] assert image.shape == (704, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy" ) assert np.abs(expected_image - image).max() < 5e-2 def test_normal(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "cute toy" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png" ) output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) image = output.images[0] assert image.shape == (512, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy" ) assert np.abs(expected_image - image).max() < 5e-2 def test_openpose(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "Chef in the kitchen" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) image = output.images[0] assert image.shape == (768, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy" ) assert np.abs(expected_image - image).max() < 8e-2 def test_scribble(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(5) prompt = "bag" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png" ) output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) image = output.images[0] assert image.shape == (640, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy" ) assert np.abs(expected_image - image).max() < 8e-2 def test_seg(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(5) prompt = "house" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png" ) output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) image = output.images[0] assert image.shape == (512, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy" ) assert np.abs(expected_image - image).max() < 8e-2 def test_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() prompt = "house" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png" ) _ = pipe( prompt, image, num_inference_steps=2, output_type="np", ) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 4 * 10**9 def test_canny_guess_mode(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) output = pipe( prompt, image, generator=generator, output_type="np", num_inference_steps=3, guidance_scale=3.0, guess_mode=True, ) image = output.images[0] assert image.shape == (768, 512, 3) image_slice = image[-3:, -3:, -1] expected_slice = np.array([0.2724, 0.2846, 0.2724, 0.3843, 0.3682, 0.2736, 0.4675, 0.3862, 0.2887]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_canny_guess_mode_euler(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) output = pipe( prompt, image, generator=generator, output_type="np", num_inference_steps=3, guidance_scale=3.0, guess_mode=True, ) image = output.images[0] assert image.shape == (768, 512, 3) image_slice = image[-3:, -3:, -1] expected_slice = np.array([0.1655, 0.1721, 0.1623, 0.1685, 0.1711, 0.1646, 0.1651, 0.1631, 0.1494]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @require_torch_2 def test_stable_diffusion_compile(self): run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None) def test_v11_shuffle_global_pool_conditions(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "New York" image = load_image( "https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png" ) output = pipe( prompt, image, generator=generator, output_type="np", num_inference_steps=3, guidance_scale=7.0, ) image = output.images[0] assert image.shape == (512, 640, 3) image_slice = image[-3:, -3:, -1] expected_slice = np.array([0.1338, 0.1597, 0.1202, 0.1687, 0.1377, 0.1017, 0.2070, 0.1574, 0.1348]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_load_local(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") pipe_1 = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) controlnet = ControlNetModel.from_single_file( "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" ) pipe_2 = StableDiffusionControlNetPipeline.from_single_file( "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors", safety_checker=None, controlnet=controlnet, ) pipes = [pipe_1, pipe_2] images = [] for pipe in pipes: pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "bird" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) images.append(output.images[0]) del pipe gc.collect() torch.cuda.empty_cache() assert np.abs(images[0] - images[1]).sum() < 1e-3 @slow @require_torch_gpu class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_pose_and_canny(self): controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=[controlnet_pose, controlnet_canny] ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "bird and Chef" image_canny = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) image_pose = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3) image = output.images[0] assert image.shape == (768, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy" ) assert np.abs(expected_image - image).max() < 5e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/controlnet/test_controlnet_sdxl.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, EulerDiscreteScheduler, StableDiffusionXLControlNetPipeline, UNet2DConditionModel, ) from diffusers.utils import randn_tensor, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class ControlNetPipelineSDXLFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionXLControlNetPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), conditioning_embedding_out_channels=(16, 32), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) torch.manual_seed(0) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 image = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, } return inputs def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) @require_torch_gpu def test_stable_diffusion_xl_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: pipe.unet.set_default_attn_processor() inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_stable_diffusion_xl_multi_prompts(self): components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) # forward with single prompt inputs = self.get_dummy_inputs(torch_device) output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["prompt_2"] = inputs["prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different prompt inputs = self.get_dummy_inputs(torch_device) inputs["prompt_2"] = "different prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 # manually set a negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same negative_prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = inputs["negative_prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = "different negative prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/pndm/test_pndm.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNet2DModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class PNDMPipelineFastTests(unittest.TestCase): @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def test_inference(self): unet = self.dummy_uncond_unet scheduler = PNDMScheduler() pndm = PNDMPipeline(unet=unet, scheduler=scheduler) pndm.to(torch_device) pndm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images generator = torch.manual_seed(0) image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class PNDMPipelineIntegrationTests(unittest.TestCase): def test_inference_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = PNDMScheduler() pndm = PNDMPipeline(unet=unet, scheduler=scheduler) pndm.to(torch_device) pndm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = pndm(generator=generator, output_type="numpy").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky_v22/test_kandinsky.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyV22Pipeline, KandinskyV22PriorPipeline, UNet2DConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 32 @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): unet = self.dummy_unet movq = self.dummy_movq scheduler = DDIMScheduler( num_train_timesteps=1000, beta_schedule="linear", beta_start=0.00085, beta_end=0.012, clip_sample=False, set_alpha_to_one=False, steps_offset=1, prediction_type="epsilon", thresholding=False, ) components = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to( device ) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs class KandinskyV22PipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22Pipeline params = [ "image_embeds", "negative_image_embeds", ] batch_params = ["image_embeds", "negative_image_embeds"] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_inputs(self, device, seed=0): dummies = Dummies() return dummies.get_dummy_inputs(device=device, seed=seed) def get_dummy_components(self): dummies = Dummies() return dummies.get_dummy_components() def test_kandinsky(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.3420, 0.9505, 0.3919, 1.0000, 0.5188, 0.3109, 0.6139, 0.5624, 0.6811]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class KandinskyV22PipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_text2img(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) pipe_prior = KandinskyV22PriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyV22Pipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) prompt = "red cat, 4k photo" generator = torch.Generator(device="cuda").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() generator = torch.Generator(device="cuda").manual_seed(0) output = pipeline( image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(image, expected_image)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky_v22/test_kandinsky_prior_emb2emb.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from PIL import Image from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyV22PriorEmb2EmbPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class KandinskyV22PriorEmb2EmbPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22PriorEmb2EmbPipeline params = ["prompt", "image"] batch_params = ["prompt", "image"] required_optional_params = [ "num_images_per_prompt", "strength", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] test_xformers_attention = False @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config) @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } model = PriorTransformer(**model_kwargs) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def dummy_image_encoder(self): torch.manual_seed(0) config = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=224, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=14, ) model = CLIPVisionModelWithProjection(config) return model @property def dummy_image_processor(self): image_processor = CLIPImageProcessor( crop_size=224, do_center_crop=True, do_normalize=True, do_resize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], resample=3, size=224, ) return image_processor def get_dummy_components(self): prior = self.dummy_prior image_encoder = self.dummy_image_encoder text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer image_processor = self.dummy_image_processor scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="sample", num_train_timesteps=1000, clip_sample=True, clip_sample_range=10.0, ) components = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) inputs = { "prompt": "horse", "image": init_image, "strength": 0.5, "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def test_kandinsky_prior_emb2emb(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.image_embeds image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -10:] image_from_tuple_slice = image_from_tuple[0, -10:] assert image.shape == (1, 32) expected_slice = np.array( [ 0.1071284, 1.3330271, 0.61260223, -0.6691065, -0.3846852, -1.0303661, 0.22716111, 0.03348901, 0.30040675, -0.24805029, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def test_inference_batch_single_identical(self): test_max_difference = torch_device == "cpu" relax_max_difference = True test_mean_pixel_difference = False self._test_inference_batch_single_identical( test_max_difference=test_max_difference, relax_max_difference=relax_max_difference, test_mean_pixel_difference=test_mean_pixel_difference, ) @skip_mps def test_attention_slicing_forward_pass(self): test_max_difference = torch_device == "cpu" test_mean_pixel_difference = False self._test_attention_slicing_forward_pass( test_max_difference=test_max_difference, test_mean_pixel_difference=test_mean_pixel_difference, )
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky_v22/test_kandinsky_img2img.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline, UNet2DConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 32 @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): unet = self.dummy_unet movq = self.dummy_movq ddim_config = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } scheduler = DDIMScheduler(**ddim_config) components = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to( device ) # create init_image image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs class KandinskyV22Img2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22Img2ImgPipeline params = ["image_embeds", "negative_image_embeds", "image"] batch_params = [ "image_embeds", "negative_image_embeds", "image", ] required_optional_params = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummies = Dummies() return dummies.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummies = Dummies() return dummies.get_dummy_inputs(device=device, seed=seed) def test_kandinsky_img2img(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5712, 0.5443, 0.4725, 0.6195, 0.5184, 0.4651, 0.4473, 0.4590, 0.5016]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class KandinskyV22Img2ImgPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_img2img(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) prompt = "A red cartoon frog, 4k" pipe_prior = KandinskyV22PriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyV22Img2ImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() output = pipeline( image=init_image, image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, height=768, width=768, strength=0.2, output_type="np", ) image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky_v22/test_kandinsky_inpaint.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyV22InpaintPipeline, KandinskyV22PriorPipeline, UNet2DConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 32 @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): unet = self.dummy_unet movq = self.dummy_movq scheduler = DDIMScheduler( num_train_timesteps=1000, beta_schedule="linear", beta_start=0.00085, beta_end=0.012, clip_sample=False, set_alpha_to_one=False, steps_offset=1, prediction_type="epsilon", thresholding=False, ) components = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to( device ) # create init_image image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) # create mask mask = np.zeros((64, 64), dtype=np.float32) mask[:32, :32] = 1 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs class KandinskyV22InpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22InpaintPipeline params = ["image_embeds", "negative_image_embeds", "image", "mask_image"] batch_params = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummies = Dummies() return dummies.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummies = Dummies() return dummies.get_dummy_inputs(device=device, seed=seed) def test_kandinsky_inpaint(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array( [0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class KandinskyV22InpaintPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_inpaint(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" ) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) mask = np.zeros((768, 768), dtype=np.float32) mask[:250, 250:-250] = 1 prompt = "a hat" pipe_prior = KandinskyV22PriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyV22InpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() output = pipeline( image=init_image, mask_image=mask, image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, height=768, width=768, output_type="np", ) image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky_v22/test_kandinsky_combined.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from diffusers import ( KandinskyV22CombinedPipeline, KandinskyV22Img2ImgCombinedPipeline, KandinskyV22InpaintCombinedPipeline, ) from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin from .test_kandinsky import Dummies from .test_kandinsky_img2img import Dummies as Img2ImgDummies from .test_kandinsky_inpaint import Dummies as InpaintDummies from .test_kandinsky_prior import Dummies as PriorDummies enable_full_determinism() class KandinskyV22PipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22CombinedPipeline params = [ "prompt", ] batch_params = ["prompt", "negative_prompt"] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummy = Dummies() prior_dummy = PriorDummies() components = dummy.get_dummy_components() components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) return components def get_dummy_inputs(self, device, seed=0): prior_dummy = PriorDummies() inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) inputs.update( { "height": 64, "width": 64, } ) return inputs def test_kandinsky(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.3013, 0.0471, 0.5176, 0.1817, 0.2566, 0.7076, 0.6712, 0.4421, 0.7503]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=1e-2) class KandinskyV22PipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22Img2ImgCombinedPipeline params = ["prompt", "image"] batch_params = ["prompt", "negative_prompt", "image"] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummy = Img2ImgDummies() prior_dummy = PriorDummies() components = dummy.get_dummy_components() components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) return components def get_dummy_inputs(self, device, seed=0): prior_dummy = PriorDummies() dummy = Img2ImgDummies() inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) inputs.update(dummy.get_dummy_inputs(device=device, seed=seed)) inputs.pop("image_embeds") inputs.pop("negative_image_embeds") return inputs def test_kandinsky(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4353, 0.4710, 0.5128, 0.4806, 0.5054, 0.5348, 0.5224, 0.4603, 0.5025]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=1e-2) class KandinskyV22PipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22InpaintCombinedPipeline params = ["prompt", "image", "mask_image"] batch_params = ["prompt", "negative_prompt", "image", "mask_image"] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummy = InpaintDummies() prior_dummy = PriorDummies() components = dummy.get_dummy_components() components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) return components def get_dummy_inputs(self, device, seed=0): prior_dummy = PriorDummies() dummy = InpaintDummies() inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) inputs.update(dummy.get_dummy_inputs(device=device, seed=seed)) inputs.pop("image_embeds") inputs.pop("negative_image_embeds") return inputs def test_kandinsky(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5039, 0.4926, 0.4898, 0.4978, 0.4838, 0.4942, 0.4738, 0.4702, 0.4816]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=1e-2)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky_v22/test_kandinsky_controlnet_img2img.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyV22ControlnetImg2ImgPipeline, KandinskyV22PriorEmb2EmbPipeline, UNet2DConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class KandinskyV22ControlnetImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22ControlnetImg2ImgPipeline params = ["image_embeds", "negative_image_embeds", "image", "hint"] batch_params = ["image_embeds", "negative_image_embeds", "image", "hint"] required_optional_params = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): unet = self.dummy_unet movq = self.dummy_movq ddim_config = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } scheduler = DDIMScheduler(**ddim_config) components = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to( device ) # create init_image image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) # create hint hint = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def test_kandinsky_controlnet_img2img(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class KandinskyV22ControlnetImg2ImgPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_controlnet_img2img(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) init_image = init_image.resize((512, 512)) hint = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) hint = torch.from_numpy(np.array(hint)).float() / 255.0 hint = hint.permute(2, 0, 1).unsqueeze(0) prompt = "A robot, 4k photo" pipe_prior = KandinskyV22PriorEmb2EmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyV22ControlnetImg2ImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, image=init_image, strength=0.85, generator=generator, negative_prompt="", ).to_tuple() output = pipeline( image=init_image, image_embeds=image_emb, negative_image_embeds=zero_image_emb, hint=hint, generator=generator, num_inference_steps=100, height=512, width=512, strength=0.5, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(image, expected_image)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky_v22/test_kandinsky_prior.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyV22PriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config) @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } model = PriorTransformer(**model_kwargs) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def dummy_image_encoder(self): torch.manual_seed(0) config = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=224, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=14, ) model = CLIPVisionModelWithProjection(config) return model @property def dummy_image_processor(self): image_processor = CLIPImageProcessor( crop_size=224, do_center_crop=True, do_normalize=True, do_resize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], resample=3, size=224, ) return image_processor def get_dummy_components(self): prior = self.dummy_prior image_encoder = self.dummy_image_encoder text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer image_processor = self.dummy_image_processor scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="sample", num_train_timesteps=1000, clip_sample=True, clip_sample_range=10.0, ) components = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs class KandinskyV22PriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22PriorPipeline params = ["prompt"] batch_params = ["prompt", "negative_prompt"] required_optional_params = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummies = Dummies() return dummies.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummies = Dummies() return dummies.get_dummy_inputs(device=device, seed=seed) def test_kandinsky_prior(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.image_embeds image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -10:] image_from_tuple_slice = image_from_tuple[0, -10:] assert image.shape == (1, 32) expected_slice = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def test_inference_batch_single_identical(self): test_max_difference = torch_device == "cpu" relax_max_difference = True test_mean_pixel_difference = False self._test_inference_batch_single_identical( test_max_difference=test_max_difference, relax_max_difference=relax_max_difference, test_mean_pixel_difference=test_mean_pixel_difference, ) @skip_mps def test_attention_slicing_forward_pass(self): test_max_difference = torch_device == "cpu" test_mean_pixel_difference = False self._test_attention_slicing_forward_pass( test_max_difference=test_max_difference, test_mean_pixel_difference=test_mean_pixel_difference, )
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky_v22/test_kandinsky_controlnet.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyV22ControlnetPipeline, KandinskyV22PriorPipeline, UNet2DConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class KandinskyV22ControlnetPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyV22ControlnetPipeline params = ["image_embeds", "negative_image_embeds", "hint"] batch_params = ["image_embeds", "negative_image_embeds", "hint"] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): unet = self.dummy_unet movq = self.dummy_movq scheduler = DDIMScheduler( num_train_timesteps=1000, beta_schedule="linear", beta_start=0.00085, beta_end=0.012, clip_sample=False, set_alpha_to_one=False, steps_offset=1, prediction_type="epsilon", thresholding=False, ) components = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to( device ) # create hint hint = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def test_kandinsky_controlnet(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class KandinskyV22ControlnetPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_controlnet(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) hint = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) hint = torch.from_numpy(np.array(hint)).float() / 255.0 hint = hint.permute(2, 0, 1).unsqueeze(0) pipe_prior = KandinskyV22PriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyV22ControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) prompt = "A robot, 4k photo" generator = torch.Generator(device="cuda").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() generator = torch.Generator(device="cuda").manual_seed(0) output = pipeline( image_embeds=image_emb, negative_image_embeds=zero_image_emb, hint=hint, generator=generator, num_inference_steps=100, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(image, expected_image)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_depth.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import ( CLIPTextConfig, CLIPTextModel, CLIPTokenizer, DPTConfig, DPTFeatureExtractor, DPTForDepthEstimation, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionDepth2ImgPipeline, UNet2DConditionModel, ) from diffusers.utils import ( floats_tensor, is_accelerate_available, is_accelerate_version, load_image, load_numpy, nightly, slow, torch_device, ) from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class StableDiffusionDepth2ImgPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionDepth2ImgPipeline test_save_load_optional_components = False params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=5, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=True, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") backbone_config = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } depth_estimator_config = DPTConfig( image_size=32, patch_size=16, num_channels=3, hidden_size=32, num_hidden_layers=4, backbone_out_indices=(0, 1, 2, 3), num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, is_decoder=False, initializer_range=0.02, is_hybrid=True, backbone_config=backbone_config, backbone_featmap_shape=[1, 384, 24, 24], ) depth_estimator = DPTForDepthEstimation(depth_estimator_config).eval() feature_extractor = DPTFeatureExtractor.from_pretrained( "hf-internal-testing/tiny-random-DPTForDepthEstimation" ) components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "depth_estimator": depth_estimator, "feature_extractor": feature_extractor, } return components def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32)) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_save_load_local(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(output - output_loaded).max() self.assertLess(max_diff, 1e-4) @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") def test_save_load_float16(self): components = self.get_dummy_components() for name, module in components.items(): if hasattr(module, "half"): components[name] = module.to(torch_device).half() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for name, component in pipe_loaded.components.items(): if hasattr(component, "dtype"): self.assertTrue( component.dtype == torch.float16, f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.", ) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(output - output_loaded).max() self.assertLess(max_diff, 2e-2, "The output of the fp16 pipeline changed after saving and loading.") @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") def test_float16_inference(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) for name, module in components.items(): if hasattr(module, "half"): components[name] = module.half() pipe_fp16 = self.pipeline_class(**components) pipe_fp16.to(torch_device) pipe_fp16.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(torch_device))[0] output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0] max_diff = np.abs(output - output_fp16).max() self.assertLess(max_diff, 1.3e-2, "The outputs of the fp16 and fp32 pipelines are too different.") @unittest.skipIf( torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"), reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher", ) def test_cpu_offload_forward_pass(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output_without_offload = pipe(**inputs)[0] pipe.enable_sequential_cpu_offload() inputs = self.get_dummy_inputs(torch_device) output_with_offload = pipe(**inputs)[0] max_diff = np.abs(output_with_offload - output_without_offload).max() self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results") def test_dict_tuple_outputs_equivalent(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(torch_device))[0] output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0] max_diff = np.abs(output - output_tuple).max() self.assertLess(max_diff, 1e-4) def test_progress_bar(self): super().test_progress_bar() def test_stable_diffusion_depth2img_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = StableDiffusionDepth2ImgPipeline(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) if torch_device == "mps": expected_slice = np.array([0.6071, 0.5035, 0.4378, 0.5776, 0.5753, 0.4316, 0.4513, 0.5263, 0.4546]) else: expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_depth2img_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = StableDiffusionDepth2ImgPipeline(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = pipe(**inputs, negative_prompt=negative_prompt) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) if torch_device == "mps": expected_slice = np.array([0.6296, 0.5125, 0.3890, 0.4456, 0.5955, 0.4621, 0.3810, 0.5310, 0.4626]) else: expected_slice = np.array([0.6012, 0.4507, 0.3769, 0.4121, 0.5566, 0.4585, 0.3803, 0.5045, 0.4631]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_depth2img_multiple_init_images(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = StableDiffusionDepth2ImgPipeline(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["prompt"] = [inputs["prompt"]] * 2 inputs["image"] = 2 * [inputs["image"]] image = pipe(**inputs).images image_slice = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) if torch_device == "mps": expected_slice = np.array([0.6501, 0.5150, 0.4939, 0.6688, 0.5437, 0.5758, 0.5115, 0.4406, 0.4551]) else: expected_slice = np.array([0.6557, 0.6214, 0.6254, 0.5775, 0.4785, 0.5949, 0.5904, 0.4785, 0.4730]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_depth2img_pil(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = StableDiffusionDepth2ImgPipeline(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] if torch_device == "mps": expected_slice = np.array([0.53232, 0.47015, 0.40868, 0.45651, 0.4891, 0.4668, 0.4287, 0.48822, 0.47439]) else: expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @skip_mps def test_attention_slicing_forward_pass(self): return super().test_attention_slicing_forward_pass() def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=7e-3) @slow @require_torch_gpu class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png" ) inputs = { "prompt": "two tigers", "image": init_image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_depth2img_pipeline_default(self): pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-2-depth", safety_checker=None ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 480, 640, 3) expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655]) assert np.abs(expected_slice - image_slice).max() < 6e-1 def test_stable_diffusion_depth2img_pipeline_k_lms(self): pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-2-depth", safety_checker=None ) pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 480, 640, 3) expected_slice = np.array([0.6363, 0.6274, 0.6309, 0.6370, 0.6226, 0.6286, 0.6213, 0.6453, 0.6306]) assert np.abs(expected_slice - image_slice).max() < 8e-4 def test_stable_diffusion_depth2img_pipeline_ddim(self): pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-2-depth", safety_checker=None ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 480, 640, 3) expected_slice = np.array([0.6424, 0.6524, 0.6249, 0.6041, 0.6634, 0.6420, 0.6522, 0.6555, 0.6436]) assert np.abs(expected_slice - image_slice).max() < 5e-4 def test_stable_diffusion_depth2img_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 60, 80) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.7168, -1.5137, -0.1418, -2.9219, -2.7266, -2.4414, -2.1035, -3.0078, -1.7051] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 60, 80) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.7109, -1.5068, -0.1403, -2.9160, -2.7207, -2.4414, -2.1035, -3.0059, -1.7090] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-2-depth", safety_checker=None, torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(dtype=torch.float16) pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 2 def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-2-depth", safety_checker=None, torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(dtype=torch.float16) _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9 @nightly @require_torch_gpu class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png" ) inputs = { "prompt": "two tigers", "image": init_image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_depth2img_pndm(self): pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs() image = pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_depth2img/stable_diffusion_2_0_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_depth2img_ddim(self): pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs() image = pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_depth2img/stable_diffusion_2_0_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_img2img_lms(self): pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth") pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs() image = pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_depth2img/stable_diffusion_2_0_lms.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_img2img_dpm(self): pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs() inputs["num_inference_steps"] = 30 image = pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_depth2img/stable_diffusion_2_0_dpm_multi.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_flax.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class FlaxStableDiffusion2PipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() def test_stable_diffusion_flax(self): sd_pipe, params = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2", revision="bf16", dtype=jnp.bfloat16, ) prompt = "A painting of a squirrel eating a burger" num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = sd_pipe.prepare_inputs(prompt) params = replicate(params) prompt_ids = shard(prompt_ids) prng_seed = jax.random.PRNGKey(0) prng_seed = jax.random.split(prng_seed, jax.device_count()) images = sd_pipe(prompt_ids, params, prng_seed, num_inference_steps=25, jit=True)[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) image_slice = images[0, 253:256, 253:256, -1] output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) expected_slice = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512]) print(f"output_slice: {output_slice}") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def test_stable_diffusion_dpm_flax(self): model_id = "stabilityai/stable-diffusion-2" scheduler, scheduler_params = FlaxDPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler") sd_pipe, params = FlaxStableDiffusionPipeline.from_pretrained( model_id, scheduler=scheduler, revision="bf16", dtype=jnp.bfloat16, ) params["scheduler"] = scheduler_params prompt = "A painting of a squirrel eating a burger" num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = sd_pipe.prepare_inputs(prompt) params = replicate(params) prompt_ids = shard(prompt_ids) prng_seed = jax.random.PRNGKey(0) prng_seed = jax.random.split(prng_seed, jax.device_count()) images = sd_pipe(prompt_ids, params, prng_seed, num_inference_steps=25, jit=True)[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) image_slice = images[0, 253:256, 253:256, -1] output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) expected_slice = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297]) print(f"output_slice: {output_slice}") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_flax_inpaint.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class FlaxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() def test_stable_diffusion_inpaint_pipeline(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) model_id = "xvjiarui/stable-diffusion-2-inpainting" pipeline, params = FlaxStableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None) prompt = "Face of a yellow cat, high resolution, sitting on a park bench" prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] init_image = num_samples * [init_image] mask_image = num_samples * [mask_image] prompt_ids, processed_masked_images, processed_masks = pipeline.prepare_inputs(prompt, init_image, mask_image) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, jax.device_count()) prompt_ids = shard(prompt_ids) processed_masked_images = shard(processed_masked_images) processed_masks = shard(processed_masks) output = pipeline( prompt_ids, processed_masks, processed_masked_images, params, prng_seed, num_inference_steps, jit=True ) images = output.images.reshape(num_samples, 512, 512, 3) image_slice = images[0, 253:256, 253:256, -1] output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) expected_slice = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel, logging, ) from diffusers.utils import load_numpy, nightly, slow, torch_device from diffusers.utils.testing_utils import CaptureLogger, enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusion2PipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5753, 0.6113, 0.5005, 0.5036, 0.5464, 0.4725, 0.4982, 0.4865, 0.4861]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_pndm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler(skip_prk_steps=True) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5121, 0.5714, 0.4827, 0.5057, 0.5646, 0.4766, 0.5189, 0.4895, 0.4990]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_k_lms(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_k_euler_ancestral(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4864, 0.5440, 0.4842, 0.4994, 0.5543, 0.4846, 0.5196, 0.4942, 0.5063]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_k_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_unflawed(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = DDIMScheduler.from_config( components["scheduler"].config, timestep_spacing="trailing" ) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["guidance_rescale"] = 0.7 inputs["num_inference_steps"] = 10 image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4736, 0.5405, 0.4705, 0.4955, 0.5675, 0.4812, 0.5310, 0.4967, 0.5064]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_long_prompt(self): components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) do_classifier_free_guidance = True negative_prompt = None num_images_per_prompt = 1 logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion") prompt = 25 * "@" with CaptureLogger(logger) as cap_logger_3: text_embeddings_3 = sd_pipe._encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) prompt = 100 * "@" with CaptureLogger(logger) as cap_logger: text_embeddings = sd_pipe._encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) negative_prompt = "Hello" with CaptureLogger(logger) as cap_logger_2: text_embeddings_2 = sd_pipe._encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape assert text_embeddings.shape[1] == 77 assert cap_logger.out == cap_logger_2.out # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25 assert cap_logger.out.count("@") == 25 assert cap_logger_3.out == "" def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class StableDiffusion2PipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_default_ddim(self): pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506]) assert np.abs(image_slice - expected_slice).max() < 7e-3 def test_stable_diffusion_pndm(self): pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base") pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506]) assert np.abs(image_slice - expected_slice).max() < 7e-3 def test_stable_diffusion_k_lms(self): pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base") pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.10440, 0.13115, 0.11100, 0.10141, 0.11440, 0.07215, 0.11332, 0.09693, 0.10006]) assert np.abs(image_slice - expected_slice).max() < 3e-3 def test_stable_diffusion_attention_slicing(self): torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # enable attention slicing pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) image_sliced = pipe(**inputs).images mem_bytes = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() # make sure that less than 3.3 GB is allocated assert mem_bytes < 3.3 * 10**9 # disable slicing pipe.disable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) image = pipe(**inputs).images # make sure that more than 3.3 GB is allocated mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes > 3.3 * 10**9 assert np.abs(image_sliced - image).max() < 1e-3 def test_stable_diffusion_text2img_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == inputs["num_inference_steps"] def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(torch_device, dtype=torch.float16) _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.8 GB is allocated assert mem_bytes < 2.8 * 10**9 def test_stable_diffusion_pipeline_with_model_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() inputs = self.get_inputs(torch_device, dtype=torch.float16) # Normal inference pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16, ) pipe.unet.set_default_attn_processor() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) outputs = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # With model offloading # Reload but don't move to cuda pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16, ) pipe.unet.set_default_attn_processor() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device, dtype=torch.float16) outputs_offloaded = pipe(**inputs) mem_bytes_offloaded = torch.cuda.max_memory_allocated() assert np.abs(outputs.images - outputs_offloaded.images).max() < 1e-3 assert mem_bytes_offloaded < mem_bytes assert mem_bytes_offloaded < 3 * 10**9 for module in pipe.text_encoder, pipe.unet, pipe.vae: assert module.device == torch.device("cpu") # With attention slicing torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe.enable_attention_slicing() _ = pipe(**inputs) mem_bytes_slicing = torch.cuda.max_memory_allocated() assert mem_bytes_slicing < mem_bytes_offloaded @nightly @require_torch_gpu class StableDiffusion2PipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_2_0_default_ddim(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base").to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_0_base_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_2_1_default_pndm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_ddim(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_lms(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_lms.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_euler(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_euler.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_dpm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 25 image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_dpm_multi.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_attend_and_excite.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNet2DConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin torch.backends.cuda.matmul.allow_tf32 = False @skip_mps class StableDiffusionAttendAndExcitePipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionAttendAndExcitePipeline test_attention_slicing = False params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"}) image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS # Attend and excite requires being able to run a backward pass at # inference time. There's no deterministic backward operator for pad @classmethod def setUpClass(cls): super().setUpClass() torch.use_deterministic_algorithms(False) @classmethod def tearDownClass(cls): super().tearDownClass() torch.use_deterministic_algorithms(True) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=1, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = inputs = { "prompt": "a cat and a frog", "token_indices": [2, 5], "generator": generator, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", "max_iter_to_alter": 2, "thresholds": {0: 0.7}, } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 64, 64, 3)) expected_slice = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_cpu_offload_forward_pass(self): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4) def test_inference_batch_consistent(self): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(batch_size=2, expected_max_diff=7e-4) def test_dict_tuple_outputs_equivalent(self): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def test_pt_np_pil_outputs_equivalent(self): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4) def test_save_load_local(self): super().test_save_load_local(expected_max_difference=5e-4) def test_save_load_optional_components(self): super().test_save_load_optional_components(expected_max_difference=4e-4) @require_torch_gpu @slow class StableDiffusionAttendAndExcitePipelineIntegrationTests(unittest.TestCase): # Attend and excite requires being able to run a backward pass at # inference time. There's no deterministic backward operator for pad @classmethod def setUpClass(cls): super().setUpClass() torch.use_deterministic_algorithms(False) @classmethod def tearDownClass(cls): super().tearDownClass() torch.use_deterministic_algorithms(True) def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_attend_and_excite_fp16(self): generator = torch.manual_seed(51) pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.to("cuda") prompt = "a painting of an elephant with glasses" token_indices = [5, 7] image = pipe( prompt=prompt, token_indices=token_indices, guidance_scale=7.5, generator=generator, num_inference_steps=5, max_iter_to_alter=5, output_type="numpy", ).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy" ) assert np.abs((expected_image - image).max()) < 5e-1
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_inpaint.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusion2InpaintPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionInpaintPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess image_latents_params = frozenset([]) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64)) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_inpaint(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionInpaintPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_inpaint_pipeline(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) model_id = "stabilityai/stable-diffusion-2-inpainting" pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "Face of a yellow cat, high resolution, sitting on a park bench" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def test_stable_diffusion_inpaint_pipeline_fp16(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) model_id = "stabilityai/stable-diffusion-2-inpainting" pipe = StableDiffusionInpaintPipeline.from_pretrained( model_id, torch_dtype=torch.float16, safety_checker=None, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "Face of a yellow cat, high resolution, sitting on a park bench" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) model_id = "stabilityai/stable-diffusion-2-inpainting" pndm = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionInpaintPipeline.from_pretrained( model_id, safety_checker=None, scheduler=pndm, torch_dtype=torch.float16, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() prompt = "Face of a yellow cat, high resolution, sitting on a park bench" generator = torch.manual_seed(0) _ = pipe( prompt=prompt, image=init_image, mask_image=mask_image, generator=generator, num_inference_steps=2, output_type="np", ) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_latent_upscale.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNet2DConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def check_same_shape(tensor_list): shapes = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:]) class StableDiffusionLatentUpscalePipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionLatentUpscalePipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } required_optional_params = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess image_latents_params = frozenset([]) @property def dummy_image(self): batch_size = 1 num_channels = 4 sizes = (16, 16) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image def get_dummy_components(self): torch.manual_seed(0) model = UNet2DConditionModel( act_fn="gelu", attention_head_dim=8, norm_num_groups=None, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=160, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ), in_channels=8, mid_block_type=None, only_cross_attention=False, out_channels=5, resnet_time_scale_shift="scale_shift", time_embedding_type="fourier", timestep_post_act="gelu", up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"), ) vae = AutoencoderKL( block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) scheduler = EulerDiscreteScheduler(prediction_type="sample") text_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="quick_gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 256, 256, 3)) expected_slice = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3) def test_cpu_offload_forward_pass(self): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3) def test_dict_tuple_outputs_equivalent(self): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=7e-3) def test_pt_np_pil_outputs_equivalent(self): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3) def test_save_load_local(self): super().test_save_load_local(expected_max_difference=3e-3) def test_save_load_optional_components(self): super().test_save_load_optional_components(expected_max_difference=3e-3) def test_karras_schedulers_shape(self): skip_schedulers = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] components = self.get_dummy_components() pipe = self.pipeline_class(**components) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=True) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = 2 outputs = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue scheduler_cls = getattr(diffusers, scheduler_enum.name) pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config) output = pipe(**inputs)[0] outputs.append(output) assert check_same_shape(outputs) @require_torch_gpu @slow class StableDiffusionLatentUpscalePipelineIntegrationTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_latent_upscaler_fp16(self): generator = torch.manual_seed(33) pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe.to("cuda") upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16 ) upscaler.to("cuda") prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic" low_res_latents = pipe(prompt, generator=generator, output_type="latent").images image = upscaler( prompt=prompt, image=low_res_latents, num_inference_steps=20, guidance_scale=0, generator=generator, output_type="np", ).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean()) < 5e-2 def test_latent_upscaler_fp16_image(self): generator = torch.manual_seed(33) upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16 ) upscaler.to("cuda") prompt = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" low_res_img = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) image = upscaler( prompt=prompt, image=low_res_img, num_inference_steps=20, guidance_scale=0, generator=generator, output_type="np", ).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max()) < 5e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_upscale.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNet2DConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class StableDiffusionUpscalePipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_cond_unet_upscale(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 32, 64), layers_per_block=2, sample_size=32, in_channels=7, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=8, use_linear_projection=True, only_cross_attention=(True, True, False), num_class_embeds=100, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=512, ) return CLIPTextModel(config) def test_stable_diffusion_upscale(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet_upscale low_res_scheduler = DDPMScheduler() scheduler = DDIMScheduler(prediction_type="v_prediction") vae = self.dummy_vae text_encoder = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionUpscalePipeline( unet=unet, low_res_scheduler=low_res_scheduler, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, max_noise_level=350, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe( [prompt], image=low_res_image, generator=generator, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", ) image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], image=low_res_image, generator=generator, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] expected_height_width = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_upscale_batch(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet_upscale low_res_scheduler = DDPMScheduler() scheduler = DDIMScheduler(prediction_type="v_prediction") vae = self.dummy_vae text_encoder = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionUpscalePipeline( unet=unet, low_res_scheduler=low_res_scheduler, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, max_noise_level=350, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" output = sd_pipe( 2 * [prompt], image=2 * [low_res_image], guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", ) image = output.images assert image.shape[0] == 2 generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe( [prompt], image=low_res_image, generator=generator, num_images_per_prompt=2, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", ) image = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_stable_diffusion_upscale_fp16(self): """Test that stable diffusion upscale works with fp16""" unet = self.dummy_cond_unet_upscale low_res_scheduler = DDPMScheduler() scheduler = DDIMScheduler(prediction_type="v_prediction") vae = self.dummy_vae text_encoder = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) # put models in fp16, except vae as it overflows in fp16 unet = unet.half() text_encoder = text_encoder.half() # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionUpscalePipeline( unet=unet, low_res_scheduler=low_res_scheduler, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, max_noise_level=350, ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = sd_pipe( [prompt], image=low_res_image, generator=generator, num_inference_steps=2, output_type="np", ).images expected_height_width = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_upscale_pipeline(self): image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) model_id = "stabilityai/stable-diffusion-x4-upscaler" pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "a cat sitting on a park bench" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=image, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1e-3 def test_stable_diffusion_upscale_pipeline_fp16(self): image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) model_id = "stabilityai/stable-diffusion-x4-upscaler" pipe = StableDiffusionUpscalePipeline.from_pretrained( model_id, torch_dtype=torch.float16, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "a cat sitting on a park bench" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=image, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) model_id = "stabilityai/stable-diffusion-x4-upscaler" pipe = StableDiffusionUpscalePipeline.from_pretrained( model_id, torch_dtype=torch.float16, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() prompt = "a cat sitting on a park bench" generator = torch.manual_seed(0) _ = pipe( prompt=prompt, image=image, generator=generator, num_inference_steps=5, output_type="np", ) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_v_pred.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import time import unittest import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, EulerDiscreteScheduler, StableDiffusionPipeline, UNet2DConditionModel, ) from diffusers.models.attention_processor import AttnProcessor from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class StableDiffusion2VPredictionPipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_cond_unet(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=64, ) return CLIPTextModel(config) def test_stable_diffusion_v_pred_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, prediction_type="v_prediction", ) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=None, requires_safety_checker=False, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.6569, 0.6525, 0.5142, 0.4968, 0.4923, 0.4601, 0.4996, 0.5041, 0.4544]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_v_pred_k_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", prediction_type="v_prediction" ) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=None, requires_safety_checker=False, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5644, 0.6514, 0.5190, 0.5663, 0.5287, 0.4953, 0.5430, 0.5243, 0.4778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_stable_diffusion_v_pred_fp16(self): """Test that stable diffusion v-prediction works with fp16""" unet = self.dummy_cond_unet scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, prediction_type="v_prediction", ) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # put models in fp16 unet = unet.half() vae = vae.half() bert = bert.half() # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=None, requires_safety_checker=False, ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images assert image.shape == (1, 64, 64, 3) @slow @require_torch_gpu class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_v_pred_default(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2") sd_pipe = sd_pipe.to(torch_device) sd_pipe.enable_attention_slicing() sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=20, output_type="np") image = output.images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 768, 768, 3) expected_slice = np.array([0.1868, 0.1922, 0.1527, 0.1921, 0.1908, 0.1624, 0.1779, 0.1652, 0.1734]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_v_pred_upcast_attention(self): sd_pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.enable_attention_slicing() sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=20, output_type="np") image = output.images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 768, 768, 3) expected_slice = np.array([0.4209, 0.4087, 0.4097, 0.4209, 0.3860, 0.4329, 0.4280, 0.4324, 0.4187]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def test_stable_diffusion_v_pred_euler(self): scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler") sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler) sd_pipe = sd_pipe.to(torch_device) sd_pipe.enable_attention_slicing() sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = sd_pipe([prompt], generator=generator, num_inference_steps=5, output_type="numpy") image = output.images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 768, 768, 3) expected_slice = np.array([0.1781, 0.1695, 0.1661, 0.1705, 0.1588, 0.1699, 0.2005, 0.1589, 0.1677]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_v_pred_dpm(self): """ TODO: update this test after making DPM compatible with V-prediction! """ scheduler = DPMSolverMultistepScheduler.from_pretrained( "stabilityai/stable-diffusion-2", subfolder="scheduler" ) sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler) sd_pipe = sd_pipe.to(torch_device) sd_pipe.enable_attention_slicing() sd_pipe.set_progress_bar_config(disable=None) prompt = "a photograph of an astronaut riding a horse" generator = torch.manual_seed(0) image = sd_pipe( [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=5, output_type="numpy" ).images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 768, 768, 3) expected_slice = np.array([0.3303, 0.3184, 0.3291, 0.3300, 0.3256, 0.3113, 0.2965, 0.3134, 0.3192]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_attention_slicing_v_pred(self): torch.cuda.reset_peak_memory_stats() model_id = "stabilityai/stable-diffusion-2" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "a photograph of an astronaut riding a horse" # make attention efficient pipe.enable_attention_slicing() generator = torch.manual_seed(0) output_chunked = pipe( [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" ) image_chunked = output_chunked.images mem_bytes = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() # make sure that less than 5.5 GB is allocated assert mem_bytes < 5.5 * 10**9 # disable slicing pipe.disable_attention_slicing() generator = torch.manual_seed(0) output = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy") image = output.images # make sure that more than 5.5 GB is allocated mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes > 5.5 * 10**9 assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3 def test_stable_diffusion_text2img_pipeline_v_pred_default(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" "sd2-text2img/astronaut_riding_a_horse_v_pred.npy" ) pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2") pipe.to(torch_device) pipe.enable_attention_slicing() pipe.set_progress_bar_config(disable=None) prompt = "astronaut riding a horse" generator = torch.manual_seed(0) output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np") image = output.images[0] assert image.shape == (768, 768, 3) assert np.abs(expected_image - image).max() < 9e-1 def test_stable_diffusion_text2img_pipeline_unflawed(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" "sd2-text2img/lion_galaxy.npy" ) pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1") pipe.scheduler = DDIMScheduler.from_config( pipe.scheduler.config, timestep_spacing="trailing", rescale_betas_zero_snr=True ) pipe.to(torch_device) pipe.enable_attention_slicing() pipe.set_progress_bar_config(disable=None) prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k" generator = torch.manual_seed(0) output = pipe(prompt=prompt, guidance_scale=7.5, guidance_rescale=0.7, generator=generator, output_type="np") image = output.images[0] assert image.shape == (768, 768, 3) assert np.abs(expected_image - image).max() < 5e-1 def test_stable_diffusion_text2img_pipeline_v_pred_fp16(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" "sd2-text2img/astronaut_riding_a_horse_v_pred_fp16.npy" ) pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "astronaut riding a horse" generator = torch.manual_seed(0) output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np") image = output.images[0] assert image.shape == (768, 768, 3) assert np.abs(expected_image - image).max() < 7.5e-1 def test_download_local(self): filename = hf_hub_download("stabilityai/stable-diffusion-2-1", filename="v2-1_768-ema-pruned.safetensors") pipe = StableDiffusionPipeline.from_single_file(filename, torch_dtype=torch.float16) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") image_out = pipe("test", num_inference_steps=1, output_type="np").images[0] assert image_out.shape == (768, 768, 3) def test_download_ckpt_diff_format_is_same(self): single_file_path = ( "https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors" ) pipe_single = StableDiffusionPipeline.from_single_file(single_file_path) pipe_single.scheduler = DDIMScheduler.from_config(pipe_single.scheduler.config) pipe_single.unet.set_attn_processor(AttnProcessor()) pipe_single.to("cuda") generator = torch.Generator(device="cpu").manual_seed(0) image_ckpt = pipe_single("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0] pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.unet.set_attn_processor(AttnProcessor()) pipe.to("cuda") generator = torch.Generator(device="cpu").manual_seed(0) image = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0] assert np.max(np.abs(image - image_ckpt)) < 1e-3 def test_stable_diffusion_text2img_intermediate_state_v_pred(self): number_of_steps = 0 def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: test_callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 0: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 96, 96) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([0.7749, 0.0325, 0.5088, 0.1619, 0.3372, 0.3667, -0.5186, 0.6860, 1.4326]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 19: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 96, 96) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([1.3887, 1.0273, 1.7266, 0.0726, 0.6611, 0.1598, -1.0547, 0.1522, 0.0227]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 test_callback_fn.has_been_called = False pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "Andromeda galaxy in a bottle" generator = torch.manual_seed(0) pipe( prompt=prompt, num_inference_steps=20, guidance_scale=7.5, generator=generator, callback=test_callback_fn, callback_steps=1, ) assert test_callback_fn.has_been_called assert number_of_steps == 20 def test_stable_diffusion_low_cpu_mem_usage_v_pred(self): pipeline_id = "stabilityai/stable-diffusion-2" start_time = time.time() pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16) pipeline_low_cpu_mem_usage.to(torch_device) low_cpu_mem_usage_time = time.time() - start_time start_time = time.time() _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False) normal_load_time = time.time() - start_time assert 2 * low_cpu_mem_usage_time < normal_load_time def test_stable_diffusion_pipeline_with_sequential_cpu_offloading_v_pred(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipeline_id = "stabilityai/stable-diffusion-2" prompt = "Andromeda galaxy in a bottle" pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16) pipeline = pipeline.to(torch_device) pipeline.enable_attention_slicing(1) pipeline.enable_sequential_cpu_offload() generator = torch.manual_seed(0) _ = pipeline(prompt, generator=generator, num_inference_steps=5) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.8 GB is allocated assert mem_bytes < 2.8 * 10**9
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_diffedit.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNet2DConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionDiffEditPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): pipeline_class = StableDiffusionDiffEditPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} image_params = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess image_latents_params = frozenset([]) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) inverse_scheduler = DDIMInverseScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_zero=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): mask = floats_tensor((1, 16, 16), rng=random.Random(seed)).to(device) latents = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(seed)).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def get_dummy_mask_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB") if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def get_dummy_inversion_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB") if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def test_save_load_optional_components(self): if not hasattr(self.pipeline_class, "_optional_components"): return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(pipe, optional_component, None) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for optional_component in pipe._optional_components: self.assertTrue( getattr(pipe_loaded, optional_component) is None, f"`{optional_component}` did not stay set to None after loading.", ) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(output - output_loaded).max() self.assertLess(max_diff, 1e-4) def test_mask(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_mask_inputs(device) mask = pipe.generate_mask(**inputs) mask_slice = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16)) expected_slice = np.array([0] * 9) max_diff = np.abs(mask_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) self.assertEqual(mask[0, -3, -4], 0) def test_inversion(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inversion_inputs(device) image = pipe.invert(**inputs).images image_slice = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3)) expected_slice = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5105, 0.5015, 0.4407, 0.4799], ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=5e-3) def test_inversion_dpm(self): device = "cpu" components = self.get_dummy_components() scheduler_args = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} components["scheduler"] = DPMSolverMultistepScheduler(**scheduler_args) components["inverse_scheduler"] = DPMSolverMultistepInverseScheduler(**scheduler_args) pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inversion_inputs(device) image = pipe.invert(**inputs).images image_slice = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3)) expected_slice = np.array( [0.5305, 0.4673, 0.5314, 0.5308, 0.4886, 0.5279, 0.5142, 0.4724, 0.4892], ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) @require_torch_gpu @slow class StableDiffusionDiffEditPipelineIntegrationTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def setUpClass(cls): raw_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) raw_image = raw_image.convert("RGB").resize((768, 768)) cls.raw_image = raw_image def test_stable_diffusion_diffedit_full(self): generator = torch.manual_seed(0) pipe = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) source_prompt = "a bowl of fruit" target_prompt = "a bowl of pears" mask_image = pipe.generate_mask( image=self.raw_image, source_prompt=source_prompt, target_prompt=target_prompt, generator=generator, ) inv_latents = pipe.invert( prompt=source_prompt, image=self.raw_image, inpaint_strength=0.7, generator=generator ).latents image = pipe( prompt=target_prompt, mask_image=mask_image, image_latents=inv_latents, generator=generator, negative_prompt=source_prompt, inpaint_strength=0.7, output_type="numpy", ).images[0] expected_image = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768)) ) / 255 ) assert np.abs((expected_image - image).max()) < 5e-1 def test_stable_diffusion_diffedit_dpm(self): generator = torch.manual_seed(0) pipe = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.inverse_scheduler = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) source_prompt = "a bowl of fruit" target_prompt = "a bowl of pears" mask_image = pipe.generate_mask( image=self.raw_image, source_prompt=source_prompt, target_prompt=target_prompt, generator=generator, ) inv_latents = pipe.invert( prompt=source_prompt, image=self.raw_image, inpaint_strength=0.7, generator=generator, num_inference_steps=25, ).latents image = pipe( prompt=target_prompt, mask_image=mask_image, image_latents=inv_latents, generator=generator, negative_prompt=source_prompt, inpaint_strength=0.7, num_inference_steps=25, output_type="numpy", ).images[0] expected_image = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768)) ) / 255 ) assert np.abs((expected_image - image).max()) < 5e-1
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/dit/test_dit.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, Transformer2DModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class DiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = DiTPipeline params = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } batch_params = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS def get_dummy_components(self): torch.manual_seed(0) transformer = Transformer2DModel( sample_size=16, num_layers=2, patch_size=4, attention_head_dim=8, num_attention_heads=2, in_channels=4, out_channels=8, attention_bias=True, activation_fn="gelu-approximate", num_embeds_ada_norm=1000, norm_type="ada_norm_zero", norm_elementwise_affine=False, ) vae = AutoencoderKL() scheduler = DDIMScheduler() components = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 16, 16, 3)) expected_slice = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457]) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(relax_max_difference=True, expected_max_diff=1e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @require_torch_gpu @slow class DiTPipelineIntegrationTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_dit_256(self): generator = torch.manual_seed(0) pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256") pipe.to("cuda") words = ["vase", "umbrella", "white shark", "white wolf"] ids = pipe.get_label_ids(words) images = pipe(ids, generator=generator, num_inference_steps=40, output_type="np").images for word, image in zip(words, images): expected_image = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max()) < 1e-2 def test_dit_512(self): pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") words = ["vase", "umbrella"] ids = pipe.get_label_ids(words) generator = torch.manual_seed(0) images = pipe(ids, generator=generator, num_inference_steps=25, output_type="np").images for word, image in zip(words, images): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max()) < 1e-1
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from diffusers import DDPMScheduler, MidiProcessor, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder from diffusers.utils import require_torch_gpu, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_note_seq, require_onnxruntime from ..pipeline_params import TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS, TOKENS_TO_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() MIDI_FILE = "./tests/fixtures/elise_format0.mid" # The note-seq package throws an error on import because the default installed version of Ipython # is not compatible with python 3.8 which we run in the CI. # https://github.com/huggingface/diffusers/actions/runs/4830121056/jobs/8605954838#step:7:98 @unittest.skip("The note-seq package currently throws an error on import") class SpectrogramDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = SpectrogramDiffusionPipeline required_optional_params = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } test_attention_slicing = False batch_params = TOKENS_TO_AUDIO_GENERATION_PARAMS params = TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS def get_dummy_components(self): torch.manual_seed(0) notes_encoder = SpectrogramNotesEncoder( max_length=2048, vocab_size=1536, d_model=768, dropout_rate=0.1, num_layers=1, num_heads=1, d_kv=4, d_ff=2048, feed_forward_proj="gated-gelu", ) continuous_encoder = SpectrogramContEncoder( input_dims=128, targets_context_length=256, d_model=768, dropout_rate=0.1, num_layers=1, num_heads=1, d_kv=4, d_ff=2048, feed_forward_proj="gated-gelu", ) decoder = T5FilmDecoder( input_dims=128, targets_length=256, max_decoder_noise_time=20000.0, d_model=768, num_layers=1, num_heads=1, d_kv=4, d_ff=2048, dropout_rate=0.1, ) scheduler = DDPMScheduler() components = { "notes_encoder": notes_encoder.eval(), "continuous_encoder": continuous_encoder.eval(), "decoder": decoder.eval(), "scheduler": scheduler, "melgan": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "input_tokens": [ [1134, 90, 1135, 1133, 1080, 112, 1132, 1080, 1133, 1079, 133, 1132, 1079, 1133, 1] + [0] * 2033 ], "generator": generator, "num_inference_steps": 4, "output_type": "mel", } return inputs def test_spectrogram_diffusion(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = SpectrogramDiffusionPipeline(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = pipe(**inputs) mel = output.audios mel_slice = mel[0, -3:, -3:] assert mel_slice.shape == (3, 3) expected_slice = np.array( [-11.512925, -4.788215, -0.46172905, -2.051715, -10.539147, -10.970963, -9.091634, 4.0, 4.0] ) assert np.abs(mel_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def test_save_load_local(self): return super().test_save_load_local() @skip_mps def test_dict_tuple_outputs_equivalent(self): return super().test_dict_tuple_outputs_equivalent() @skip_mps def test_save_load_optional_components(self): return super().test_save_load_optional_components() @skip_mps def test_attention_slicing_forward_pass(self): return super().test_attention_slicing_forward_pass() def test_inference_batch_single_identical(self): pass def test_inference_batch_consistent(self): pass @skip_mps def test_progress_bar(self): return super().test_progress_bar() @slow @require_torch_gpu @require_onnxruntime @require_note_seq class PipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_callback(self): # TODO - test that pipeline can decode tokens in a callback # so that music can be played live device = torch_device pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") melgan = pipe.melgan pipe.melgan = None pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) def callback(step, mel_output): # decode mel to audio audio = melgan(input_features=mel_output.astype(np.float32))[0] assert len(audio[0]) == 81920 * (step + 1) # simulate that audio is played return audio processor = MidiProcessor() input_tokens = processor(MIDI_FILE) input_tokens = input_tokens[:3] generator = torch.manual_seed(0) pipe(input_tokens, num_inference_steps=5, generator=generator, callback=callback, output_type="mel") def test_spectrogram_fast(self): device = torch_device pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) processor = MidiProcessor() input_tokens = processor(MIDI_FILE) # just run two denoising loops input_tokens = input_tokens[:2] generator = torch.manual_seed(0) output = pipe(input_tokens, num_inference_steps=2, generator=generator) audio = output.audios[0] assert abs(np.abs(audio).sum() - 3612.841) < 1e-1 def test_spectrogram(self): device = torch_device pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) processor = MidiProcessor() input_tokens = processor(MIDI_FILE) # just run 4 denoising loops input_tokens = input_tokens[:4] generator = torch.manual_seed(0) output = pipe(input_tokens, num_inference_steps=100, generator=generator) audio = output.audios[0] assert abs(np.abs(audio).sum() - 9389.1111) < 5e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/paint_by_example/test_paint_by_example.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPImageProcessor, CLIPVisionConfig from diffusers import AutoencoderKL, PaintByExamplePipeline, PNDMScheduler, UNet2DConditionModel from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class PaintByExamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = PaintByExamplePipeline params = IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS batch_params = IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = frozenset([]) # TO_DO: update the image_prams once refactored VaeImageProcessor.preprocess def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) config = CLIPVisionConfig( hidden_size=32, projection_dim=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, image_size=32, patch_size=4, ) image_encoder = PaintByExampleImageEncoder(config, proj_size=32) feature_extractor = CLIPImageProcessor(crop_size=32, size=32) components = { "unet": unet, "scheduler": scheduler, "vae": vae, "image_encoder": image_encoder, "safety_checker": None, "feature_extractor": feature_extractor, } return components def convert_to_pt(self, image): image = np.array(image.convert("RGB")) image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 return image def get_dummy_inputs(self, device="cpu", seed=0): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64)) example_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32)) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "example_image": example_image, "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_paint_by_example_inpaint(self): components = self.get_dummy_components() # make sure here that pndm scheduler skips prk pipe = PaintByExamplePipeline(**components) pipe = pipe.to("cpu") pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() output = pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4686, 0.5687, 0.4007, 0.5218, 0.5741, 0.4482, 0.4940, 0.4629, 0.4503]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_paint_by_example_image_tensor(self): device = "cpu" inputs = self.get_dummy_inputs() inputs.pop("mask_image") image = self.convert_to_pt(inputs.pop("image")) mask_image = image.clamp(0, 1) / 2 # make sure here that pndm scheduler skips prk pipe = PaintByExamplePipeline(**self.get_dummy_components()) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(image=image, mask_image=mask_image[:, 0], **inputs) out_1 = output.images image = image.cpu().permute(0, 2, 3, 1)[0] mask_image = mask_image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB") mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB") output = pipe(**self.get_dummy_inputs()) out_2 = output.images assert out_1.shape == (1, 64, 64, 3) assert np.abs(out_1.flatten() - out_2.flatten()).max() < 5e-2 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class PaintByExamplePipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_paint_by_example(self): # make sure here that pndm scheduler skips prk init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/paint_by_example/dog_in_bucket.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/paint_by_example/mask.png" ) example_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/paint_by_example/panda.jpg" ) pipe = PaintByExamplePipeline.from_pretrained("Fantasy-Studio/Paint-by-Example") pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(321) output = pipe( image=init_image, mask_image=mask_image, example_image=example_image, generator=generator, guidance_scale=5.0, num_inference_steps=50, output_type="np", ) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.4834, 0.4811, 0.4874, 0.5122, 0.5081, 0.5144, 0.5291, 0.5290, 0.5374]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/text_to_video/test_text_to_video_zero.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import DDIMScheduler, TextToVideoZeroPipeline from diffusers.utils import load_pt, require_torch_gpu, slow from ..test_pipelines_common import assert_mean_pixel_difference @slow @require_torch_gpu class TextToVideoZeroPipelineSlowTests(unittest.TestCase): def test_full_model(self): model_id = "runwayml/stable-diffusion-v1-5" pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) generator = torch.Generator(device="cuda").manual_seed(0) prompt = "A bear is playing a guitar on Times Square" result = pipe(prompt=prompt, generator=generator).images expected_result = load_pt( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text-to-video/A bear is playing a guitar on Times Square.pt" ) assert_mean_pixel_difference(result, expected_result)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/text_to_video/test_video_to_video.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNet3DConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class VideoToVideoSDPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = VideoToVideoSDPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"}) - {"image", "width", "height"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"}) - {"image"} required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} test_attention_slicing = False # No `output_type`. required_optional_params = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def get_dummy_components(self): torch.manual_seed(0) unet = UNet3DConditionModel( block_out_channels=(32, 64, 64, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D"), up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"), cross_attention_dim=32, attention_head_dim=4, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed=0): # 3 frames video = floats_tensor((1, 3, 3, 32, 32), rng=random.Random(seed)).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def test_text_to_video_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = VideoToVideoSDPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["output_type"] = "np" frames = sd_pipe(**inputs).frames image_slice = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) expected_slice = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=5e-3) # (todo): sayakpaul @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") def test_inference_batch_consistent(self): pass # (todo): sayakpaul @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") def test_inference_batch_single_identical(self): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.") def test_num_images_per_prompt(self): pass def test_progress_bar(self): return super().test_progress_bar() @slow @skip_mps class VideoToVideoSDPipelineSlowTests(unittest.TestCase): def test_two_step_model(self): pipe = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float16) pipe.enable_model_cpu_offload() # 10 frames generator = torch.Generator(device="cpu").manual_seed(0) video = torch.randn((1, 10, 3, 1024, 576), generator=generator) video = video.to("cuda") prompt = "Spiderman is surfing" video_frames = pipe(prompt, video=video, generator=generator, num_inference_steps=3, output_type="pt").frames expected_array = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656]) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array).sum() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/text_to_video/test_text_to_video.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNet3DConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class TextToVideoSDPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = TextToVideoSDPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. required_optional_params = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def get_dummy_components(self): torch.manual_seed(0) unet = UNet3DConditionModel( block_out_channels=(32, 64, 64, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D"), up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"), cross_attention_dim=32, attention_head_dim=4, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def test_text_to_video_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = TextToVideoSDPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["output_type"] = "np" frames = sd_pipe(**inputs).frames image_slice = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) expected_slice = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_attention_slicing_forward_pass(self): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False, expected_max_diff=3e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=1e-2) # (todo): sayakpaul @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") def test_inference_batch_consistent(self): pass # (todo): sayakpaul @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") def test_inference_batch_single_identical(self): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.") def test_num_images_per_prompt(self): pass def test_progress_bar(self): return super().test_progress_bar() @slow @skip_mps class TextToVideoSDPipelineSlowTests(unittest.TestCase): def test_full_model(self): expected_video = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) pipe = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "Spiderman is surfing" generator = torch.Generator(device="cpu").manual_seed(0) video_frames = pipe(prompt, generator=generator, num_inference_steps=25, output_type="pt").frames video = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5e-2 def test_two_step_model(self): expected_video = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) pipe = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b") pipe = pipe.to("cuda") prompt = "Spiderman is surfing" generator = torch.Generator(device="cpu").manual_seed(0) video_frames = pipe(prompt, generator=generator, num_inference_steps=2, output_type="pt").frames video = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/score_sde_ve/test_score_sde_ve.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNet2DModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class ScoreSdeVeipelineFastTests(unittest.TestCase): @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def test_inference(self): unet = self.dummy_uncond_unet scheduler = ScoreSdeVeScheduler() sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler) sde_ve.to(torch_device) sde_ve.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images generator = torch.manual_seed(0) image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[ 0 ] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class ScoreSdeVePipelineIntegrationTests(unittest.TestCase): def test_inference(self): model_id = "google/ncsnpp-church-256" model = UNet2DModel.from_pretrained(model_id) scheduler = ScoreSdeVeScheduler.from_pretrained(model_id) sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler) sde_ve.to(torch_device) sde_ve.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/latent_diffusion/test_latent_diffusion_superresolution.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel from diffusers.utils import PIL_INTERPOLATION, floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch enable_full_determinism() class LDMSuperResolutionPipelineFastTests(unittest.TestCase): @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=6, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model @property def dummy_vq_model(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, ) return model def test_inference_superresolution(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(device) generator = torch.Generator(device=device).manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="numpy").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_inference_superresolution_fp16(self): unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model # put models in fp16 unet = unet.half() vqvae = vqvae.half() ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(torch_device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(torch_device) image = ldm(init_image, num_inference_steps=2, output_type="numpy").images assert image.shape == (1, 64, 64, 3) @slow @require_torch class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase): def test_inference_superresolution(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool.png" ) init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"]) ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution", device_map="auto") ldm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="numpy").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/latent_diffusion/test_latent_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = LDMTextToImagePipeline params = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } required_optional_params = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } batch_params = TEXT_TO_IMAGE_BATCH_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=(32, 64), in_channels=3, out_channels=3, down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"), up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"), latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_inference_text2img(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = LDMTextToImagePipeline(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) expected_slice = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @slow @require_torch_gpu class LDMTextToImagePipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, dtype=torch.float32, seed=0): generator = torch.manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_ldm_default_ddim(self): pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878]) max_diff = np.abs(expected_slice - image_slice).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class LDMTextToImagePipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, dtype=torch.float32, seed=0): generator = torch.manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_ldm_default_ddim(self): pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/latent_diffusion/test_latent_diffusion_uncond.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNet2DModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class LDMPipelineFastTests(unittest.TestCase): @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model @property def dummy_vq_model(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config) def test_inference_uncond(self): unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vae = self.dummy_vq_model ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler) ldm.to(torch_device) ldm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images generator = torch.manual_seed(0) image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172]) tolerance = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class LDMPipelineIntegrationTests(unittest.TestCase): def test_inference_uncond(self): ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256") ldm.to(torch_device) ldm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447]) tolerance = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/versatile_diffusion/test_versatile_diffusion_mega.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device torch.backends.cuda.matmul.allow_tf32 = False class VersatileDiffusionMegaPipelineFastTests(unittest.TestCase): pass @nightly @require_torch_gpu class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_from_save_pretrained(self): pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) generator = torch.manual_seed(0) image = pipe.dual_guided( prompt="first prompt", image=prompt_image, text_to_image_strength=0.75, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy", ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator = generator.manual_seed(0) new_image = pipe.dual_guided( prompt="first prompt", image=prompt_image, text_to_image_strength=0.75, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy", ).images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def test_inference_dual_guided_then_text_to_image(self): pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "cyberpunk 2077" init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) generator = torch.manual_seed(0) image = pipe.dual_guided( prompt=prompt, image=init_image, text_to_image_strength=0.75, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy", ).images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 prompt = "A painting of a squirrel eating a burger " generator = torch.manual_seed(0) image = pipe.text_to_image( prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy" ).images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/versatile_diffusion/test_versatile_diffusion_image_variation.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device torch.backends.cuda.matmul.allow_tf32 = False class VersatileDiffusionImageVariationPipelineFastTests(unittest.TestCase): pass @slow @require_torch_gpu class VersatileDiffusionImageVariationPipelineIntegrationTests(unittest.TestCase): def test_inference_image_variations(self): pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) image_prompt = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) generator = torch.manual_seed(0) image = pipe( image=image_prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy", ).images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/versatile_diffusion/test_versatile_diffusion_text_to_image.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device torch.backends.cuda.matmul.allow_tf32 = False class VersatileDiffusionTextToImagePipelineFastTests(unittest.TestCase): pass @nightly @require_torch_gpu class VersatileDiffusionTextToImagePipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_remove_unused_weights_save_load(self): pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion") # remove text_unet pipe.remove_unused_weights() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger " generator = torch.manual_seed(0) image = pipe( prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = VersatileDiffusionTextToImagePipeline.from_pretrained(tmpdirname) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator = generator.manual_seed(0) new_image = pipe( prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy" ).images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def test_inference_text2img(self): pipe = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger " generator = torch.manual_seed(0) image = pipe( prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy" ).images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/versatile_diffusion/test_versatile_diffusion_dual_guided.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionDualGuidedPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device torch.backends.cuda.matmul.allow_tf32 = False @nightly @require_torch_gpu class VersatileDiffusionDualGuidedPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_remove_unused_weights_save_load(self): pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion") # remove text_unet pipe.remove_unused_weights() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) second_prompt = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) generator = torch.manual_seed(0) image = pipe( prompt="first prompt", image=second_prompt, text_to_image_strength=0.75, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy", ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained(tmpdirname) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator = generator.manual_seed(0) new_image = pipe( prompt="first prompt", image=second_prompt, text_to_image_strength=0.75, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy", ).images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def test_inference_dual_guided(self): pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion") pipe.remove_unused_weights() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) first_prompt = "cyberpunk 2077" second_prompt = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) generator = torch.manual_seed(0) image = pipe( prompt=first_prompt, image=second_prompt, text_to_image_strength=0.75, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy", ).images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0787, 0.0849, 0.0826, 0.0812, 0.0807, 0.0795, 0.0818, 0.0798, 0.0779]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/altdiffusion/test_alt_diffusion_img2img.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImg2ImgPipeline, AutoencoderKL, PNDMScheduler, UNet2DConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_cond_unet(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=5006, ) return RobertaSeriesModelWithTransformation(config) @property def dummy_extractor(self): def extract(*args, **kwargs): class Out: def __init__(self): self.pixel_values = torch.ones([0]) def to(self, device): self.pixel_values.to(device) return self return Out() return extract def test_stable_diffusion_img2img_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") tokenizer.model_max_length = 77 init_image = self.dummy_image.to(device) init_image = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk alt_pipe = AltDiffusionImg2ImgPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) alt_pipe.image_processor = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=True) alt_pipe = alt_pipe.to(device) alt_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = alt_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", image=init_image, ) image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = alt_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", image=init_image, return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_stable_diffusion_img2img_fp16(self): """Test that stable diffusion img2img works with fp16""" unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") tokenizer.model_max_length = 77 init_image = self.dummy_image.to(torch_device) # put models in fp16 unet = unet.half() vae = vae.half() bert = bert.half() # make sure here that pndm scheduler skips prk alt_pipe = AltDiffusionImg2ImgPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) alt_pipe.image_processor = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=False) alt_pipe = alt_pipe.to(torch_device) alt_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = alt_pipe( [prompt], generator=generator, num_inference_steps=2, output_type="np", image=init_image, ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_stable_diffusion_img2img_pipeline_multiple_of_8(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 init_image = init_image.resize((760, 504)) model_id = "BAAI/AltDiffusion" pipe = AltDiffusionImg2ImgPipeline.from_pretrained( model_id, safety_checker=None, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "A fantasy landscape, trending on artstation" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np", ) image = output.images[0] image_slice = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) expected_slice = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class AltDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_img2img_pipeline_default(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) init_image = init_image.resize((768, 512)) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) model_id = "BAAI/AltDiffusion" pipe = AltDiffusionImg2ImgPipeline.from_pretrained( model_id, safety_checker=None, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "A fantasy landscape, trending on artstation" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/altdiffusion/test_alt_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class AltDiffusionPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = AltDiffusionPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, projection_dim=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=5002, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") tokenizer.model_max_length = 77 components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) def test_alt_diffusion_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() torch.manual_seed(0) text_encoder_config = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, vocab_size=5002, ) # TODO: remove after fixing the non-deterministic text encoder text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) components["text_encoder"] = text_encoder alt_pipe = AltDiffusionPipeline(**components) alt_pipe = alt_pipe.to(device) alt_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["prompt"] = "A photo of an astronaut" output = alt_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_alt_diffusion_pndm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) text_encoder_config = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, vocab_size=5002, ) # TODO: remove after fixing the non-deterministic text encoder text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) components["text_encoder"] = text_encoder alt_pipe = AltDiffusionPipeline(**components) alt_pipe = alt_pipe.to(device) alt_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = alt_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class AltDiffusionPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_alt_diffusion(self): # make sure here that pndm scheduler skips prk alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None) alt_pipe = alt_pipe.to(torch_device) alt_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np") image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_alt_diffusion_fast_ddim(self): scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler") alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None) alt_pipe = alt_pipe.to(torch_device) alt_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy") image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/repaint/test_repaint.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_image, load_numpy, nightly, require_torch_gpu, skip_mps, torch_device, ) from ..pipeline_params import IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = RePaintPipeline params = IMAGE_INPAINTING_PARAMS - {"width", "height", "guidance_scale"} required_optional_params = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } batch_params = IMAGE_INPAINTING_BATCH_PARAMS def get_dummy_components(self): torch.manual_seed(0) torch.manual_seed(0) unet = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) scheduler = RePaintScheduler() components = {"unet": unet, "scheduler": scheduler} return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32)) image = torch.from_numpy(image).to(device=device, dtype=torch.float32) mask = (image > 0).to(device=device, dtype=torch.float32) inputs = { "image": image, "mask_image": mask, "generator": generator, "num_inference_steps": 5, "eta": 0.0, "jump_length": 2, "jump_n_sample": 2, "output_type": "numpy", } return inputs def test_repaint(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = RePaintPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @skip_mps def test_save_load_local(self): return super().test_save_load_local() # RePaint can hardly be made deterministic since the scheduler is currently always # nondeterministic @unittest.skip("non-deterministic pipeline") def test_inference_batch_single_identical(self): return super().test_inference_batch_single_identical() @skip_mps def test_dict_tuple_outputs_equivalent(self): return super().test_dict_tuple_outputs_equivalent() @skip_mps def test_save_load_optional_components(self): return super().test_save_load_optional_components() @skip_mps def test_attention_slicing_forward_pass(self): return super().test_attention_slicing_forward_pass() @nightly @require_torch_gpu class RepaintPipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_celebahq(self): original_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" "repaint/celeba_hq_256.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" "repaint/celeba_hq_256_result.npy" ) model_id = "google/ddpm-ema-celebahq-256" unet = UNet2DModel.from_pretrained(model_id) scheduler = RePaintScheduler.from_pretrained(model_id) repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device) repaint.set_progress_bar_config(disable=None) repaint.enable_attention_slicing() generator = torch.manual_seed(0) output = repaint( original_image, mask_image, num_inference_steps=250, eta=0.0, jump_length=10, jump_n_sample=10, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).mean() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/vq_diffusion/test_vq_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu torch.backends.cuda.matmul.allow_tf32 = False class VQDiffusionPipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def num_embed(self): return 12 @property def num_embeds_ada_norm(self): return 12 @property def text_embedder_hidden_size(self): return 32 @property def dummy_vqvae(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config) @property def dummy_transformer(self): torch.manual_seed(0) height = 12 width = 12 model_kwargs = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } model = Transformer2DModel(**model_kwargs) return model def test_vq_diffusion(self): device = "cpu" vqvae = self.dummy_vqvae text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer transformer = self.dummy_transformer scheduler = VQDiffusionScheduler(self.num_embed) learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(learnable=False) pipe = VQDiffusionPipeline( vqvae=vqvae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, ) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) prompt = "teddy bear playing in the pool" generator = torch.Generator(device=device).manual_seed(0) output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = pipe( [prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2 )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) expected_slice = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_vq_diffusion_classifier_free_sampling(self): device = "cpu" vqvae = self.dummy_vqvae text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer transformer = self.dummy_transformer scheduler = VQDiffusionScheduler(self.num_embed) learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings( learnable=True, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) pipe = VQDiffusionPipeline( vqvae=vqvae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, ) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) prompt = "teddy bear playing in the pool" generator = torch.Generator(device=device).manual_seed(0) output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = pipe( [prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2 )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) expected_slice = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class VQDiffusionPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_vq_diffusion_classifier_free_sampling(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) pipeline = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq") pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though generator = torch.Generator(device=torch_device).manual_seed(0) output = pipeline( "teddy bear playing in the pool", num_images_per_prompt=1, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/dance_diffusion/test_dance_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class DanceDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = DanceDiffusionPipeline params = UNCONDITIONAL_AUDIO_GENERATION_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } batch_params = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS test_attention_slicing = False def get_dummy_components(self): torch.manual_seed(0) unet = UNet1DModel( block_out_channels=(32, 32, 64), extra_in_channels=16, sample_size=512, sample_rate=16_000, in_channels=2, out_channels=2, flip_sin_to_cos=True, use_timestep_embedding=False, time_embedding_type="fourier", mid_block_type="UNetMidBlock1D", down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), ) scheduler = IPNDMScheduler() components = { "unet": unet, "scheduler": scheduler, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def test_dance_diffusion(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = DanceDiffusionPipeline(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = pipe(**inputs) audio = output.audios audio_slice = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000]) assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def test_save_load_local(self): return super().test_save_load_local() @skip_mps def test_dict_tuple_outputs_equivalent(self): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) @skip_mps def test_save_load_optional_components(self): return super().test_save_load_optional_components() @skip_mps def test_attention_slicing_forward_pass(self): return super().test_attention_slicing_forward_pass() def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class PipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_dance_diffusion(self): device = torch_device pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k") pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096) audio = output.audios audio_slice = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) expected_slice = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020]) assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 def test_dance_diffusion_fp16(self): device = torch_device pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k", torch_dtype=torch.float16) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096) audio = output.audios audio_slice = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) expected_slice = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341]) assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_img2img.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImg2ImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class OnnxStableDiffusionImg2ImgPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): hub_checkpoint = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def get_dummy_inputs(self, seed=0): image = floats_tensor((1, 3, 128, 128), rng=random.Random(seed)) generator = np.random.RandomState(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_pipeline_default_ddim(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def test_pipeline_pndm(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_lms(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) # warmup pass to apply optimizations _ = pipe(**self.get_dummy_inputs()) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_euler(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_euler_ancestral(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_dpm_multistep(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class OnnxStableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase): @property def gpu_provider(self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def gpu_options(self): options = ort.SessionOptions() options.enable_mem_pattern = False return options def test_inference_default_pndm(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) init_image = init_image.resize((768, 512)) # using the PNDM scheduler by default pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A fantasy landscape, trending on artstation" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) expected_slice = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def test_inference_k_lms(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) init_image = init_image.resize((768, 512)) lms_scheduler = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx" ) pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=lms_scheduler, safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A fantasy landscape, trending on artstation" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) expected_slice = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_panorama.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNet2DConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class StableDiffusionPanoramaPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): pipeline_class = StableDiffusionPanoramaPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=1, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler() torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): generator = torch.manual_seed(seed) inputs = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_panorama_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPanoramaPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_panorama_circular_padding_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPanoramaPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs, circular_padding=True).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.6127, 0.6299, 0.4595, 0.4051, 0.4543, 0.3925, 0.5510, 0.5693, 0.5031]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # override to speed the overall test timing up. def test_inference_batch_consistent(self): super().test_inference_batch_consistent(batch_sizes=[1, 2]) # override to speed the overall test timing up. def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=3.25e-3) def test_stable_diffusion_panorama_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPanoramaPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = sd_pipe(**inputs, negative_prompt=negative_prompt) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_panorama_views_batch(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPanoramaPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs, view_batch_size=2) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_panorama_views_batch_circular_padding(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPanoramaPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs, circular_padding=True, view_batch_size=2) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.6127, 0.6299, 0.4595, 0.4051, 0.4543, 0.3925, 0.5510, 0.5693, 0.5031]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_panorama_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = EulerAncestralDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) sd_pipe = StableDiffusionPanoramaPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_panorama_pndm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True ) sd_pipe = StableDiffusionPanoramaPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class StableDiffusionPanoramaSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, seed=0): generator = torch.manual_seed(seed) inputs = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_panorama_default(self): model_ckpt = "stabilityai/stable-diffusion-2-base" scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler") pipe = StableDiffusionPanoramaPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) expected_slice = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice).max() < 1e-2 def test_stable_diffusion_panorama_k_lms(self): pipe = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", safety_checker=None ) pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) expected_slice = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice).max() < 1e-3 def test_stable_diffusion_panorama_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False model_ckpt = "stabilityai/stable-diffusion-2-base" scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler") pipe = StableDiffusionPanoramaPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def test_stable_diffusion_panorama_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() model_ckpt = "stabilityai/stable-diffusion-2-base" scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler") pipe = StableDiffusionPanoramaPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs() _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import time import traceback import unittest import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel, logging, ) from diffusers.models.attention_processor import AttnProcessor, LoRAXFormersAttnProcessor from diffusers.utils import load_numpy, nightly, slow, torch_device from diffusers.utils.testing_utils import ( CaptureLogger, enable_full_determinism, require_torch_2, require_torch_gpu, run_test_in_subprocess, ) from ...models.test_lora_layers import create_unet_lora_layers from ...models.test_models_unet_2d_condition import create_lora_layers from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() # Will be run via run_test_in_subprocess def _test_stable_diffusion_compile(in_queue, out_queue, timeout): error = None try: inputs = in_queue.get(timeout=timeout) torch_device = inputs.pop("torch_device") seed = inputs.pop("seed") inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.unet.to(memory_format=torch.channels_last) sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True) sd_pipe.set_progress_bar_config(disable=None) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239]) assert np.abs(image_slice - expected_slice).max() < 5e-3 except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() class StableDiffusionPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_lora(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward 1 inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] # set lora layers lora_attn_procs = create_lora_layers(sd_pipe.unet) sd_pipe.unet.set_attn_processor(lora_attn_procs) sd_pipe = sd_pipe.to(torch_device) # forward 2 inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0}) image = output.images image_slice_1 = image[0, -3:, -3:, -1] # forward 3 inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5}) image = output.images image_slice_2 = image[0, -3:, -3:, -1] assert np.abs(image_slice - image_slice_1).max() < 1e-2 assert np.abs(image_slice - image_slice_2).max() > 1e-2 def test_stable_diffusion_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] inputs = self.get_dummy_inputs(torch_device) prompt = 3 * [inputs.pop("prompt")] text_inputs = sd_pipe.tokenizer( prompt, padding="max_length", max_length=sd_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_inputs = text_inputs["input_ids"].to(torch_device) prompt_embeds = sd_pipe.text_encoder(text_inputs)[0] inputs["prompt_embeds"] = prompt_embeds # forward output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_negative_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] inputs = self.get_dummy_inputs(torch_device) prompt = 3 * [inputs.pop("prompt")] embeds = [] for p in [prompt, negative_prompt]: text_inputs = sd_pipe.tokenizer( p, padding="max_length", max_length=sd_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_inputs = text_inputs["input_ids"].to(torch_device) embeds.append(sd_pipe.text_encoder(text_inputs)[0]) inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds # forward output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self): components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = negative_prompt prompt = 3 * [inputs.pop("prompt")] text_inputs = sd_pipe.tokenizer( prompt, padding="max_length", max_length=sd_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_inputs = text_inputs["input_ids"].to(torch_device) prompt_embeds = sd_pipe.text_encoder(text_inputs)[0] inputs["prompt_embeds"] = prompt_embeds # forward output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_ddim_factor_8(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs, height=136, width=136) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 136, 136, 3) expected_slice = np.array([0.5524, 0.5626, 0.6069, 0.4727, 0.386, 0.3995, 0.4613, 0.4328, 0.4269]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_pndm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5122, 0.5712, 0.4825, 0.5053, 0.5646, 0.4769, 0.5179, 0.4894, 0.4994]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf(not torch.cuda.is_available(), reason="xformers requires cuda") def test_stable_diffusion_attn_processors(self): # disable_full_determinism() device = "cuda" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) # run normal sd pipe image = sd_pipe(**inputs).images assert image.shape == (1, 64, 64, 3) # run xformers attention sd_pipe.enable_xformers_memory_efficient_attention() image = sd_pipe(**inputs).images assert image.shape == (1, 64, 64, 3) # run attention slicing sd_pipe.enable_attention_slicing() image = sd_pipe(**inputs).images assert image.shape == (1, 64, 64, 3) # run vae attention slicing sd_pipe.enable_vae_slicing() image = sd_pipe(**inputs).images assert image.shape == (1, 64, 64, 3) # run lora attention attn_processors, _ = create_unet_lora_layers(sd_pipe.unet) attn_processors = {k: v.to("cuda") for k, v in attn_processors.items()} sd_pipe.unet.set_attn_processor(attn_processors) image = sd_pipe(**inputs).images assert image.shape == (1, 64, 64, 3) # run lora xformers attention attn_processors, _ = create_unet_lora_layers(sd_pipe.unet) attn_processors = { k: LoRAXFormersAttnProcessor(hidden_size=v.hidden_size, cross_attention_dim=v.cross_attention_dim) for k, v in attn_processors.items() } attn_processors = {k: v.to("cuda") for k, v in attn_processors.items()} sd_pipe.unet.set_attn_processor(attn_processors) image = sd_pipe(**inputs).images assert image.shape == (1, 64, 64, 3) # enable_full_determinism() def test_stable_diffusion_no_safety_checker(self): pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None ) assert isinstance(pipe, StableDiffusionPipeline) assert isinstance(pipe.scheduler, LMSDiscreteScheduler) assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) # sanity check that the pipeline still works assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None def test_stable_diffusion_k_lms(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_k_euler_ancestral(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4872, 0.5444, 0.4846, 0.5003, 0.5549, 0.4850, 0.5189, 0.4941, 0.5067]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_k_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_vae_slicing(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) image_count = 4 inputs = self.get_dummy_inputs(device) inputs["prompt"] = [inputs["prompt"]] * image_count output_1 = sd_pipe(**inputs) # make sure sliced vae decode yields the same result sd_pipe.enable_vae_slicing() inputs = self.get_dummy_inputs(device) inputs["prompt"] = [inputs["prompt"]] * image_count output_2 = sd_pipe(**inputs) # there is a small discrepancy at image borders vs. full batch decode assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3 def test_stable_diffusion_vae_tiling(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() # make sure here that pndm scheduler skips prk components["safety_checker"] = None sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" # Test that tiled decode at 512x512 yields the same result as the non-tiled decode generator = torch.Generator(device=device).manual_seed(0) output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") # make sure tiled vae decode yields the same result sd_pipe.enable_vae_tiling() generator = torch.Generator(device=device).manual_seed(0) output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1 # test that tiled decode works with various shapes shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] for shape in shapes: zeros = torch.zeros(shape).to(device) sd_pipe.vae.decode(zeros) def test_stable_diffusion_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler(skip_prk_steps=True) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = sd_pipe(**inputs, negative_prompt=negative_prompt) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5114, 0.5706, 0.4772, 0.5028, 0.5637, 0.4732, 0.5169, 0.4881, 0.4977]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_long_prompt(self): components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) do_classifier_free_guidance = True negative_prompt = None num_images_per_prompt = 1 logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion") prompt = 25 * "@" with CaptureLogger(logger) as cap_logger_3: text_embeddings_3 = sd_pipe._encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) prompt = 100 * "@" with CaptureLogger(logger) as cap_logger: text_embeddings = sd_pipe._encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) negative_prompt = "Hello" with CaptureLogger(logger) as cap_logger_2: text_embeddings_2 = sd_pipe._encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape assert text_embeddings.shape[1] == 77 assert cap_logger.out == cap_logger_2.out # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25 assert cap_logger.out.count("@") == 25 assert cap_logger_3.out == "" def test_stable_diffusion_height_width_opt(self): components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "hey" output = sd_pipe(prompt, num_inference_steps=1, output_type="np") image_shape = output.images[0].shape[:2] assert image_shape == (64, 64) output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np") image_shape = output.images[0].shape[:2] assert image_shape == (96, 96) config = dict(sd_pipe.unet.config) config["sample_size"] = 96 sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device) output = sd_pipe(prompt, num_inference_steps=1, output_type="np") image_shape = output.images[0].shape[:2] assert image_shape == (192, 192) def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class StableDiffusionPipelineSlowTests(unittest.TestCase): def setUp(self): gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_1_1_pndm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1") sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.43625, 0.43554, 0.36670, 0.40660, 0.39703, 0.38658, 0.43936, 0.43557, 0.40592]) assert np.abs(image_slice - expected_slice).max() < 3e-3 def test_stable_diffusion_1_4_pndm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.57400, 0.47841, 0.31625, 0.63583, 0.58306, 0.55056, 0.50825, 0.56306, 0.55748]) assert np.abs(image_slice - expected_slice).max() < 3e-3 def test_stable_diffusion_ddim(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239]) assert np.abs(image_slice - expected_slice).max() < 1e-4 def test_stable_diffusion_lms(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455]) assert np.abs(image_slice - expected_slice).max() < 3e-3 def test_stable_diffusion_dpm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000]) assert np.abs(image_slice - expected_slice).max() < 3e-3 def test_stable_diffusion_attention_slicing(self): torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # enable attention slicing pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) image_sliced = pipe(**inputs).images mem_bytes = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() # make sure that less than 3.75 GB is allocated assert mem_bytes < 3.75 * 10**9 # disable slicing pipe.disable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) image = pipe(**inputs).images # make sure that more than 3.75 GB is allocated mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes > 3.75 * 10**9 assert np.abs(image_sliced - image).max() < 1e-3 def test_stable_diffusion_vae_slicing(self): torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() # enable vae slicing pipe.enable_vae_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) inputs["prompt"] = [inputs["prompt"]] * 4 inputs["latents"] = torch.cat([inputs["latents"]] * 4) image_sliced = pipe(**inputs).images mem_bytes = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() # make sure that less than 4 GB is allocated assert mem_bytes < 4e9 # disable vae slicing pipe.disable_vae_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) inputs["prompt"] = [inputs["prompt"]] * 4 inputs["latents"] = torch.cat([inputs["latents"]] * 4) image = pipe(**inputs).images # make sure that more than 4 GB is allocated mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes > 4e9 # There is a small discrepancy at the image borders vs. a fully batched version. assert np.abs(image_sliced - image).max() < 1e-2 def test_stable_diffusion_vae_tiling(self): torch.cuda.reset_peak_memory_stats() model_id = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() pipe.unet = pipe.unet.to(memory_format=torch.channels_last) pipe.vae = pipe.vae.to(memory_format=torch.channels_last) prompt = "a photograph of an astronaut riding a horse" # enable vae tiling pipe.enable_vae_tiling() pipe.enable_model_cpu_offload() generator = torch.Generator(device="cpu").manual_seed(0) output_chunked = pipe( [prompt], width=1024, height=1024, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy", ) image_chunked = output_chunked.images mem_bytes = torch.cuda.max_memory_allocated() # disable vae tiling pipe.disable_vae_tiling() generator = torch.Generator(device="cpu").manual_seed(0) output = pipe( [prompt], width=1024, height=1024, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy", ) image = output.images assert mem_bytes < 1e10 assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-2 def test_stable_diffusion_fp16_vs_autocast(self): # this test makes sure that the original model with autocast # and the new model with fp16 yield the same result pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device, dtype=torch.float16) image_fp16 = pipe(**inputs).images with torch.autocast(torch_device): inputs = self.get_inputs(torch_device) image_autocast = pipe(**inputs).images # Make sure results are close enough diff = np.abs(image_fp16.flatten() - image_autocast.flatten()) # They ARE different since ops are not run always at the same precision # however, they should be extremely close. assert diff.mean() < 2e-2 def test_stable_diffusion_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == inputs["num_inference_steps"] def test_stable_diffusion_low_cpu_mem_usage(self): pipeline_id = "CompVis/stable-diffusion-v1-4" start_time = time.time() pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16) pipeline_low_cpu_mem_usage.to(torch_device) low_cpu_mem_usage_time = time.time() - start_time start_time = time.time() _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False) normal_load_time = time.time() - start_time assert 2 * low_cpu_mem_usage_time < normal_load_time def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(torch_device, dtype=torch.float16) _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.8 GB is allocated assert mem_bytes < 2.8 * 10**9 def test_stable_diffusion_pipeline_with_model_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() inputs = self.get_inputs(torch_device, dtype=torch.float16) # Normal inference pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, ) pipe.unet.set_default_attn_processor() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) outputs = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # With model offloading # Reload but don't move to cuda pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, ) pipe.unet.set_default_attn_processor() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device, dtype=torch.float16) outputs_offloaded = pipe(**inputs) mem_bytes_offloaded = torch.cuda.max_memory_allocated() assert np.abs(outputs.images - outputs_offloaded.images).max() < 1e-3 assert mem_bytes_offloaded < mem_bytes assert mem_bytes_offloaded < 3.5 * 10**9 for module in pipe.text_encoder, pipe.unet, pipe.vae, pipe.safety_checker: assert module.device == torch.device("cpu") # With attention slicing torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe.enable_attention_slicing() _ = pipe(**inputs) mem_bytes_slicing = torch.cuda.max_memory_allocated() assert mem_bytes_slicing < mem_bytes_offloaded assert mem_bytes_slicing < 3 * 10**9 def test_stable_diffusion_textual_inversion(self): pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons") a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt") a111_file_neg = hf_hub_download( "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt" ) pipe.load_textual_inversion(a111_file) pipe.load_textual_inversion(a111_file_neg) pipe.to("cuda") generator = torch.Generator(device="cpu").manual_seed(1) prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>" neg_prompt = "Style-Winter-neg" image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0] expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 8e-1 @require_torch_2 def test_stable_diffusion_compile(self): seed = 0 inputs = self.get_inputs(torch_device, seed=seed) # Can't pickle a Generator object del inputs["generator"] inputs["torch_device"] = torch_device inputs["seed"] = seed run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs) @slow @require_torch_gpu class StableDiffusionPipelineCkptTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_download_from_hub(self): ckpt_paths = [ "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix_base.ckpt", ] for ckpt_path in ckpt_paths: pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") image_out = pipe("test", num_inference_steps=1, output_type="np").images[0] assert image_out.shape == (512, 512, 3) def test_download_local(self): filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt") pipe = StableDiffusionPipeline.from_single_file(filename, torch_dtype=torch.float16) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") image_out = pipe("test", num_inference_steps=1, output_type="np").images[0] assert image_out.shape == (512, 512, 3) def test_download_ckpt_diff_format_is_same(self): ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt" pipe = StableDiffusionPipeline.from_single_file(ckpt_path) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.unet.set_attn_processor(AttnProcessor()) pipe.to("cuda") generator = torch.Generator(device="cpu").manual_seed(0) image_ckpt = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0] pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.unet.set_attn_processor(AttnProcessor()) pipe.to("cuda") generator = torch.Generator(device="cpu").manual_seed(0) image = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0] assert np.max(np.abs(image - image_ckpt)) < 1e-4 @nightly @require_torch_gpu class StableDiffusionPipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_1_4_pndm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_1_5_pndm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_ddim(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 3e-3 def test_stable_diffusion_lms(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_euler(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_dpm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 25 image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_4_dpm_multi.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_img2img.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import traceback import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, HeunDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionImg2ImgPipeline, UNet2DConditionModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_2, require_torch_gpu, run_test_in_subprocess, skip_mps, ) from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() # Will be run via run_test_in_subprocess def _test_img2img_compile(in_queue, out_queue, timeout): error = None try: inputs = in_queue.get(timeout=timeout) torch_device = inputs.pop("torch_device") seed = inputs.pop("seed") inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.unet.to(memory_format=torch.channels_last) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 768, 3) expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781]) assert np.abs(expected_slice - image_slice).max() < 1e-3 except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() class StableDiffusionImg2ImgPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image / 2 + 0.5 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_img2img_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4555, 0.3216, 0.4049, 0.4620, 0.4618, 0.4126, 0.4122, 0.4629, 0.4579]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_img2img_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = sd_pipe(**inputs, negative_prompt=negative_prompt) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4593, 0.3408, 0.4232, 0.4749, 0.4476, 0.4115, 0.4357, 0.4733, 0.4663]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_img2img_multiple_init_images(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["prompt"] = [inputs["prompt"]] * 2 inputs["image"] = inputs["image"].repeat(2, 1, 1, 1) image = sd_pipe(**inputs).images image_slice = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) expected_slice = np.array([0.4241, 0.5576, 0.5711, 0.4792, 0.4311, 0.5952, 0.5827, 0.5138, 0.5109]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_img2img_k_lms(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) sd_pipe = StableDiffusionImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4398, 0.4949, 0.4337, 0.6580, 0.5555, 0.4338, 0.5769, 0.5955, 0.5175]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @skip_mps def test_save_load_local(self): return super().test_save_load_local() @skip_mps def test_dict_tuple_outputs_equivalent(self): return super().test_dict_tuple_outputs_equivalent() @skip_mps def test_save_load_optional_components(self): return super().test_save_load_optional_components() @skip_mps def test_attention_slicing_forward_pass(self): return super().test_attention_slicing_forward_pass(expected_max_diff=5e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_img2img/sketch-mountains-input.png" ) inputs = { "prompt": "a fantasy landscape, concept art, high resolution", "image": init_image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_stable_diffusion_img2img_default(self): pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 768, 3) expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def test_stable_diffusion_img2img_k_lms(self): pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 768, 3) expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def test_stable_diffusion_img2img_ddim(self): pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 768, 3) expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def test_stable_diffusion_img2img_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 96) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 96) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False pipe = StableDiffusionImg2ImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 2 def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionImg2ImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(torch_device, dtype=torch.float16) _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def test_stable_diffusion_pipeline_with_model_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() inputs = self.get_inputs(torch_device, dtype=torch.float16) # Normal inference pipe = StableDiffusionImg2ImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # With model offloading # Reload but don't move to cuda pipe = StableDiffusionImg2ImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16, ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) _ = pipe(**inputs) mem_bytes_offloaded = torch.cuda.max_memory_allocated() assert mem_bytes_offloaded < mem_bytes for module in pipe.text_encoder, pipe.unet, pipe.vae: assert module.device == torch.device("cpu") def test_img2img_2nd_order(self): sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe.scheduler = HeunDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 10 inputs["strength"] = 0.75 image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/img2img_heun.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 5e-2 inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 11 inputs["strength"] = 0.75 image_other = sd_pipe(**inputs).images[0] mean_diff = np.abs(image - image_other).mean() # images should be very similar assert mean_diff < 5e-2 def test_stable_diffusion_img2img_pipeline_multiple_of_8(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 init_image = init_image.resize((760, 504)) model_id = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionImg2ImgPipeline.from_pretrained( model_id, safety_checker=None, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "A fantasy landscape, trending on artstation" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np", ) image = output.images[0] image_slice = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 def test_img2img_safety_checker_works(self): sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 20 # make sure the safety checker is activated inputs["prompt"] = "naked, sex, porn" out = sd_pipe(**inputs) assert out.nsfw_content_detected[0], f"Safety checker should work for prompt: {inputs['prompt']}" assert np.abs(out.images[0]).sum() < 1e-5 # should be all zeros @require_torch_2 def test_img2img_compile(self): seed = 0 inputs = self.get_inputs(torch_device, seed=seed) # Can't pickle a Generator object del inputs["generator"] inputs["torch_device"] = torch_device inputs["seed"] = seed run_test_in_subprocess(test_case=self, target_func=_test_img2img_compile, inputs=inputs) @nightly @require_torch_gpu class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_img2img/sketch-mountains-input.png" ) inputs = { "prompt": "a fantasy landscape, concept art, high resolution", "image": init_image, "generator": generator, "num_inference_steps": 50, "strength": 0.75, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_img2img_pndm(self): sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_img2img_ddim(self): sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_img2img_lms(self): sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_img2img_dpm(self): sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 30 image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_pix2pix_zero.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DDPMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, StableDiffusionPix2PixZeroPipeline, UNet2DConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, load_pt, require_torch_gpu, skip_mps from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, ) from ..test_pipelines_common import ( PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() @skip_mps class StableDiffusionPix2PixZeroPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): pipeline_class = StableDiffusionPix2PixZeroPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"image"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def setUpClass(cls): cls.source_embeds = load_pt( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/src_emb_0.pt" ) cls.target_embeds = load_pt( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/tgt_emb_0.pt" ) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler() inverse_scheduler = DDIMInverseScheduler() torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "inverse_scheduler": inverse_scheduler, "caption_generator": None, "caption_processor": None, } return components def get_dummy_inputs(self, device, seed=0): generator = torch.manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "cross_attention_guidance_amount": 0.15, "source_embeds": self.source_embeds, "target_embeds": self.target_embeds, "output_type": "numpy", } return inputs def get_dummy_inversion_inputs(self, device, seed=0): dummy_image = floats_tensor((2, 3, 32, 32), rng=random.Random(seed)).to(torch_device) dummy_image = dummy_image / 2 + 0.5 generator = torch.manual_seed(seed) inputs = { "prompt": [ "A painting of a squirrel eating a burger", "A painting of a burger eating a squirrel", ], "image": dummy_image.cpu(), "num_inference_steps": 2, "guidance_scale": 6.0, "generator": generator, "output_type": "numpy", } return inputs def get_dummy_inversion_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"): inputs = self.get_dummy_inversion_inputs(device, seed) if input_image_type == "pt": image = inputs["image"] elif input_image_type == "np": image = VaeImageProcessor.pt_to_numpy(inputs["image"]) elif input_image_type == "pil": image = VaeImageProcessor.pt_to_numpy(inputs["image"]) image = VaeImageProcessor.numpy_to_pil(image) else: raise ValueError(f"unsupported input_image_type {input_image_type}") inputs["image"] = image inputs["output_type"] = output_type return inputs def test_save_load_optional_components(self): if not hasattr(self.pipeline_class, "_optional_components"): return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(pipe, optional_component, None) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for optional_component in pipe._optional_components: self.assertTrue( getattr(pipe_loaded, optional_component) is None, f"`{optional_component}` did not stay set to None after loading.", ) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(output - output_loaded).max() self.assertLess(max_diff, 1e-4) def test_stable_diffusion_pix2pix_zero_inversion(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inversion_inputs(device) inputs["image"] = inputs["image"][:1] inputs["prompt"] = inputs["prompt"][:1] image = sd_pipe.invert(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4823, 0.4783, 0.5638, 0.5201, 0.5247, 0.5644, 0.5029, 0.5404, 0.5062]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_inversion_batch(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inversion_inputs(device) image = sd_pipe.invert(**inputs).images image_slice = image[1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) expected_slice = np.array([0.6446, 0.5232, 0.4914, 0.4441, 0.4654, 0.5546, 0.4650, 0.4938, 0.5044]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4863, 0.5053, 0.5033, 0.4007, 0.3571, 0.4768, 0.5176, 0.5277, 0.4940]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = sd_pipe(**inputs, negative_prompt=negative_prompt) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5177, 0.5097, 0.5047, 0.4076, 0.3667, 0.4767, 0.5238, 0.5307, 0.4958]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = EulerAncestralDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5421, 0.5525, 0.6085, 0.5279, 0.4658, 0.5317, 0.4418, 0.4815, 0.5132]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_ddpm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = DDPMScheduler() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4861, 0.5053, 0.5038, 0.3994, 0.3562, 0.4768, 0.5172, 0.5280, 0.4938]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_inversion_pt_np_pil_outputs_equivalent(self): device = torch_device components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) output_pt = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="pt")).images output_np = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="np")).images output_pil = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="pil")).images max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max() self.assertLess(max_diff, 1e-4, "`output_type=='pt'` generate different results from `output_type=='np'`") max_diff = np.abs(np.array(output_pil[0]) - (output_np[0] * 255).round()).max() self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`") def test_stable_diffusion_pix2pix_zero_inversion_pt_np_pil_inputs_equivalent(self): device = torch_device components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) out_input_pt = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, input_image_type="pt")).images out_input_np = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, input_image_type="np")).images out_input_pil = sd_pipe.invert( **self.get_dummy_inversion_inputs_by_type(device, input_image_type="pil") ).images max_diff = np.abs(out_input_pt - out_input_np).max() self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`") assert_mean_pixel_difference(out_input_pil, out_input_np, expected_max_diff=1) # Non-determinism caused by the scheduler optimizing the latent inputs during inference @unittest.skip("non-deterministic pipeline") def test_inference_batch_single_identical(self): return super().test_inference_batch_single_identical() @slow @require_torch_gpu class StableDiffusionPix2PixZeroPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def setUpClass(cls): cls.source_embeds = load_pt( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat.pt" ) cls.target_embeds = load_pt( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog.pt" ) def get_inputs(self, seed=0): generator = torch.manual_seed(seed) inputs = { "prompt": "turn him into a cyborg", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "cross_attention_guidance_amount": 0.15, "source_embeds": self.source_embeds, "target_embeds": self.target_embeds, "output_type": "numpy", } return inputs def test_stable_diffusion_pix2pix_zero_default(self): pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.5742, 0.5757, 0.5747, 0.5781, 0.5688, 0.5713, 0.5742, 0.5664, 0.5747]) assert np.abs(expected_slice - image_slice).max() < 5e-2 def test_stable_diffusion_pix2pix_zero_k_lms(self): pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.6367, 0.5459, 0.5146, 0.5479, 0.4905, 0.4753, 0.4961, 0.4629, 0.4624]) assert np.abs(expected_slice - image_slice).max() < 5e-2 def test_stable_diffusion_pix2pix_zero_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([0.1345, 0.268, 0.1539, 0.0726, 0.0959, 0.2261, -0.2673, 0.0277, -0.2062]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([0.1393, 0.2637, 0.1617, 0.0724, 0.0987, 0.2271, -0.2666, 0.0299, -0.2104]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs() _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 8.2 GB is allocated assert mem_bytes < 8.2 * 10**9 @slow @require_torch_gpu class InversionPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def setUpClass(cls): raw_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png" ) raw_image = raw_image.convert("RGB").resize((512, 512)) cls.raw_image = raw_image def test_stable_diffusion_pix2pix_inversion(self): pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) caption = "a photography of a cat with flowers" pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10) inv_latents = output[0] image_slice = inv_latents[0, -3:, -3:, -1].flatten() assert inv_latents.shape == (1, 4, 64, 64) expected_slice = np.array([0.8447, -0.0730, 0.7588, -1.2070, -0.4678, 0.1511, -0.8555, 1.1816, -0.7666]) assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2 def test_stable_diffusion_2_pix2pix_inversion(self): pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 ) pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) caption = "a photography of a cat with flowers" pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10) inv_latents = output[0] image_slice = inv_latents[0, -3:, -3:, -1].flatten() assert inv_latents.shape == (1, 4, 64, 64) expected_slice = np.array([0.8970, -0.1611, 0.4766, -1.1162, -0.5923, 0.1050, -0.9678, 1.0537, -0.6050]) assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2 def test_stable_diffusion_pix2pix_full(self): # numpy array of https://huggingface.co/datasets/hf-internal-testing/diffusers-images/blob/main/pix2pix/dog.png expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog.npy" ) pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) caption = "a photography of a cat with flowers" pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipe.invert(caption, image=self.raw_image, generator=generator) inv_latents = output[0] source_prompts = 4 * ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"] target_prompts = 4 * ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"] source_embeds = pipe.get_embeds(source_prompts) target_embeds = pipe.get_embeds(target_prompts) image = pipe( caption, source_embeds=source_embeds, target_embeds=target_embeds, num_inference_steps=50, cross_attention_guidance_amount=0.15, generator=generator, latents=inv_latents, negative_prompt=caption, output_type="np", ).images max_diff = np.abs(expected_image - image).mean() assert max_diff < 0.05 def test_stable_diffusion_2_pix2pix_full(self): # numpy array of https://huggingface.co/datasets/hf-internal-testing/diffusers-images/blob/main/pix2pix/dog_2.png expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog_2.npy" ) pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 ) pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) caption = "a photography of a cat with flowers" pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipe.invert(caption, image=self.raw_image, generator=generator) inv_latents = output[0] source_prompts = 4 * ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"] target_prompts = 4 * ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"] source_embeds = pipe.get_embeds(source_prompts) target_embeds = pipe.get_embeds(target_prompts) image = pipe( caption, source_embeds=source_embeds, target_embeds=target_embeds, num_inference_steps=125, cross_attention_guidance_amount=0.015, generator=generator, latents=inv_latents, negative_prompt=caption, output_type="np", ).images mean_diff = np.abs(expected_image - image).mean() assert mean_diff < 0.25
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_upscale.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class OnnxStableDiffusionUpscalePipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): # TODO: is there an appropriate internal test set? hub_checkpoint = "ssube/stable-diffusion-x4-upscaler-onnx" def get_dummy_inputs(self, seed=0): image = floats_tensor((1, 3, 128, 128), rng=random.Random(seed)) generator = torch.manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_pipeline_default_ddpm(self): pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) expected_slice = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice).max() < 1e-1 def test_pipeline_pndm(self): pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_dpm_multistep(self): pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_euler(self): pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_euler_ancestral(self): pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class OnnxStableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase): @property def gpu_provider(self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def gpu_options(self): options = ort.SessionOptions() options.enable_mem_pattern = False return options def test_inference_default_ddpm(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) init_image = init_image.resize((128, 128)) # using the PNDM scheduler by default pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A fantasy landscape, trending on artstation" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) expected_slice = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def test_inference_k_lms(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) init_image = init_image.resize((128, 128)) lms_scheduler = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=lms_scheduler, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A fantasy landscape, trending on artstation" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, guidance_scale=7.5, num_inference_steps=20, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) expected_slice = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import traceback import unittest import numpy as np import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AsymmetricAutoencoderKL, AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel, ) from diffusers.models.attention_processor import AttnProcessor from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_2, require_torch_gpu, run_test_in_subprocess, ) from ...models.test_models_unet_2d_condition import create_lora_layers from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() # Will be run via run_test_in_subprocess def _test_inpaint_compile(in_queue, out_queue, timeout): error = None try: inputs = in_queue.get(timeout=timeout) torch_device = inputs.pop("torch_device") seed = inputs.pop("seed") inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.unet.to(memory_format=torch.channels_last) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272]) assert np.abs(expected_slice - image_slice).max() < 3e-3 except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() class StableDiffusionInpaintPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionInpaintPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = frozenset([]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess image_latents_params = frozenset([]) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64)) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_inpaint(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionInpaintPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_inpaint_image_tensor(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionInpaintPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) out_pil = output.images inputs = self.get_dummy_inputs(device) inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0) inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0) output = sd_pipe(**inputs) out_tensor = output.images assert out_pil.shape == (1, 64, 64, 3) assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2 def test_stable_diffusion_inpaint_lora(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionInpaintPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward 1 inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] # set lora layers lora_attn_procs = create_lora_layers(sd_pipe.unet) sd_pipe.unet.set_attn_processor(lora_attn_procs) sd_pipe = sd_pipe.to(torch_device) # forward 2 inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0}) image = output.images image_slice_1 = image[0, -3:, -3:, -1] # forward 3 inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5}) image = output.images image_slice_2 = image[0, -3:, -3:, -1] assert np.abs(image_slice - image_slice_1).max() < 1e-2 assert np.abs(image_slice - image_slice_2).max() > 1e-2 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) def test_stable_diffusion_inpaint_strength_zero_test(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionInpaintPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) # check that the pipeline raises value error when num_inference_steps is < 1 inputs["strength"] = 0.01 with self.assertRaises(ValueError): sd_pipe(**inputs).images class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests): pipeline_class = StableDiffusionInpaintPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = frozenset([]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def test_stable_diffusion_inpaint(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionInpaintPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4925, 0.4967, 0.4100, 0.5234, 0.5322, 0.4532, 0.5805, 0.5877, 0.4151]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skip("skipped here because area stays unchanged due to mask") def test_stable_diffusion_inpaint_lora(self): ... @slow @require_torch_gpu class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase): def setUp(self): super().setUp() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ) inputs = { "prompt": "Face of a yellow cat, high resolution, sitting on a park bench", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_inpaint_ddim(self): pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794]) assert np.abs(expected_slice - image_slice).max() < 6e-4 def test_stable_diffusion_inpaint_fp16(self): pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.1350, 0.1123, 0.1350, 0.1641, 0.1328, 0.1230, 0.1289, 0.1531, 0.1687]) assert np.abs(expected_slice - image_slice).max() < 5e-2 def test_stable_diffusion_inpaint_pndm(self): pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272]) assert np.abs(expected_slice - image_slice).max() < 5e-3 def test_stable_diffusion_inpaint_k_lms(self): pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633]) assert np.abs(expected_slice - image_slice).max() < 6e-3 def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(torch_device, dtype=torch.float16) _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 @require_torch_2 def test_inpaint_compile(self): seed = 0 inputs = self.get_inputs(torch_device, seed=seed) # Can't pickle a Generator object del inputs["generator"] inputs["torch_device"] = torch_device inputs["seed"] = seed run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs) def test_stable_diffusion_inpaint_pil_input_resolution_test(self): pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) # change input image to a random size (one that would cause a tensor mismatch error) inputs["image"] = inputs["image"].resize((127, 127)) inputs["mask_image"] = inputs["mask_image"].resize((127, 127)) inputs["height"] = 128 inputs["width"] = 128 image = pipe(**inputs).images # verify that the returned image has the same height and width as the input height and width assert image.shape == (1, inputs["height"], inputs["width"], 3) def test_stable_diffusion_inpaint_strength_test(self): pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) # change input strength inputs["strength"] = 0.75 image = pipe(**inputs).images # verify that the returned image has the same height and width as the input height and width assert image.shape == (1, 512, 512, 3) image_slice = image[0, 253:256, 253:256, -1].flatten() expected_slice = np.array([0.0021, 0.2350, 0.3712, 0.0575, 0.2485, 0.3451, 0.1857, 0.3156, 0.3943]) assert np.abs(expected_slice - image_slice).max() < 3e-3 def test_stable_diffusion_simple_inpaint_ddim(self): pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.5157, 0.6858, 0.6873, 0.4619, 0.6416, 0.6898, 0.3702, 0.5960, 0.6935]) assert np.abs(expected_slice - image_slice).max() < 6e-4 def test_download_local(self): filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt") pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 1 image_out = pipe(**inputs).images[0] assert image_out.shape == (512, 512, 3) def test_download_ckpt_diff_format_is_same(self): ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt" pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.unet.set_attn_processor(AttnProcessor()) pipe.to("cuda") inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 5 image_ckpt = pipe(**inputs).images[0] pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.unet.set_attn_processor(AttnProcessor()) pipe.to("cuda") inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 5 image = pipe(**inputs).images[0] assert np.max(np.abs(image - image_ckpt)) < 1e-4 @slow @require_torch_gpu class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase): def setUp(self): super().setUp() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ) inputs = { "prompt": "Face of a yellow cat, high resolution, sitting on a park bench", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_inpaint_ddim(self): vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.vae = vae pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0521, 0.0606, 0.0602, 0.0446, 0.0495, 0.0434, 0.1175, 0.1290, 0.1431]) assert np.abs(expected_slice - image_slice).max() < 6e-4 def test_stable_diffusion_inpaint_fp16(self): vae = AsymmetricAutoencoderKL.from_pretrained( "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 ) pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None ) pipe.vae = vae pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179]) assert np.abs(expected_slice - image_slice).max() < 5e-2 def test_stable_diffusion_inpaint_pndm(self): vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.vae = vae pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0976, 0.1071, 0.1119, 0.1363, 0.1260, 0.1150, 0.3745, 0.3586, 0.3340]) assert np.abs(expected_slice - image_slice).max() < 5e-3 def test_stable_diffusion_inpaint_k_lms(self): vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.vae = vae pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.8909, 0.8620, 0.9024, 0.8501, 0.8558, 0.9074, 0.8790, 0.7540, 0.9003]) assert np.abs(expected_slice - image_slice).max() < 6e-3 def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() vae = AsymmetricAutoencoderKL.from_pretrained( "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 ) pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16 ) pipe.vae = vae pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(torch_device, dtype=torch.float16) _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.45 GB is allocated assert mem_bytes < 2.45 * 10**9 @require_torch_2 def test_inpaint_compile(self): pass def test_stable_diffusion_inpaint_pil_input_resolution_test(self): vae = AsymmetricAutoencoderKL.from_pretrained( "cross-attention/asymmetric-autoencoder-kl-x-1-5", ) pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.vae = vae pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) # change input image to a random size (one that would cause a tensor mismatch error) inputs["image"] = inputs["image"].resize((127, 127)) inputs["mask_image"] = inputs["mask_image"].resize((127, 127)) inputs["height"] = 128 inputs["width"] = 128 image = pipe(**inputs).images # verify that the returned image has the same height and width as the input height and width assert image.shape == (1, inputs["height"], inputs["width"], 3) def test_stable_diffusion_inpaint_strength_test(self): vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None ) pipe.vae = vae pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) # change input strength inputs["strength"] = 0.75 image = pipe(**inputs).images # verify that the returned image has the same height and width as the input height and width assert image.shape == (1, 512, 512, 3) image_slice = image[0, 253:256, 253:256, -1].flatten() expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661]) assert np.abs(expected_slice - image_slice).max() < 3e-3 def test_stable_diffusion_simple_inpaint_ddim(self): vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) pipe.vae = vae pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.3312, 0.4052, 0.4103, 0.4153, 0.4347, 0.4154, 0.4932, 0.4920, 0.4431]) assert np.abs(expected_slice - image_slice).max() < 6e-4 def test_download_local(self): vae = AsymmetricAutoencoderKL.from_pretrained( "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 ) filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt") pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16) pipe.vae = vae pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 1 image_out = pipe(**inputs).images[0] assert image_out.shape == (512, 512, 3) def test_download_ckpt_diff_format_is_same(self): pass @nightly @require_torch_gpu class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ) inputs = { "prompt": "Face of a yellow cat, high resolution, sitting on a park bench", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_inpaint_ddim(self): sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_inpaint_pndm(self): sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_inpaint_lms(self): sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_inpaint_dpm(self): sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 30 image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase): def test_pil_inputs(self): height, width = 32, 32 im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8) im = Image.fromarray(im) mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5 mask = Image.fromarray((mask * 255).astype(np.uint8)) t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True) self.assertTrue(isinstance(t_mask, torch.Tensor)) self.assertTrue(isinstance(t_masked, torch.Tensor)) self.assertTrue(isinstance(t_image, torch.Tensor)) self.assertEqual(t_mask.ndim, 4) self.assertEqual(t_masked.ndim, 4) self.assertEqual(t_image.ndim, 4) self.assertEqual(t_mask.shape, (1, 1, height, width)) self.assertEqual(t_masked.shape, (1, 3, height, width)) self.assertEqual(t_image.shape, (1, 3, height, width)) self.assertTrue(t_mask.dtype == torch.float32) self.assertTrue(t_masked.dtype == torch.float32) self.assertTrue(t_image.dtype == torch.float32) self.assertTrue(t_mask.min() >= 0.0) self.assertTrue(t_mask.max() <= 1.0) self.assertTrue(t_masked.min() >= -1.0) self.assertTrue(t_masked.min() <= 1.0) self.assertTrue(t_image.min() >= -1.0) self.assertTrue(t_image.min() >= -1.0) self.assertTrue(t_mask.sum() > 0.0) def test_np_inputs(self): height, width = 32, 32 im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8) im_pil = Image.fromarray(im_np) mask_np = ( np.random.randint( 0, 255, ( height, width, ), dtype=np.uint8, ) > 127.5 ) mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8)) t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( im_np, mask_np, height, width, return_image=True ) t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image( im_pil, mask_pil, height, width, return_image=True ) self.assertTrue((t_mask_np == t_mask_pil).all()) self.assertTrue((t_masked_np == t_masked_pil).all()) self.assertTrue((t_image_np == t_image_pil).all()) def test_torch_3D_2D_inputs(self): height, width = 32, 32 im_tensor = torch.randint( 0, 255, ( 3, height, width, ), dtype=torch.uint8, ) mask_tensor = ( torch.randint( 0, 255, ( height, width, ), dtype=torch.uint8, ) > 127.5 ) im_np = im_tensor.numpy().transpose(1, 2, 0) mask_np = mask_tensor.numpy() t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True ) t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( im_np, mask_np, height, width, return_image=True ) self.assertTrue((t_mask_tensor == t_mask_np).all()) self.assertTrue((t_masked_tensor == t_masked_np).all()) self.assertTrue((t_image_tensor == t_image_np).all()) def test_torch_3D_3D_inputs(self): height, width = 32, 32 im_tensor = torch.randint( 0, 255, ( 3, height, width, ), dtype=torch.uint8, ) mask_tensor = ( torch.randint( 0, 255, ( 1, height, width, ), dtype=torch.uint8, ) > 127.5 ) im_np = im_tensor.numpy().transpose(1, 2, 0) mask_np = mask_tensor.numpy()[0] t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True ) t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( im_np, mask_np, height, width, return_image=True ) self.assertTrue((t_mask_tensor == t_mask_np).all()) self.assertTrue((t_masked_tensor == t_masked_np).all()) self.assertTrue((t_image_tensor == t_image_np).all()) def test_torch_4D_2D_inputs(self): height, width = 32, 32 im_tensor = torch.randint( 0, 255, ( 1, 3, height, width, ), dtype=torch.uint8, ) mask_tensor = ( torch.randint( 0, 255, ( height, width, ), dtype=torch.uint8, ) > 127.5 ) im_np = im_tensor.numpy()[0].transpose(1, 2, 0) mask_np = mask_tensor.numpy() t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True ) t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( im_np, mask_np, height, width, return_image=True ) self.assertTrue((t_mask_tensor == t_mask_np).all()) self.assertTrue((t_masked_tensor == t_masked_np).all()) self.assertTrue((t_image_tensor == t_image_np).all()) def test_torch_4D_3D_inputs(self): height, width = 32, 32 im_tensor = torch.randint( 0, 255, ( 1, 3, height, width, ), dtype=torch.uint8, ) mask_tensor = ( torch.randint( 0, 255, ( 1, height, width, ), dtype=torch.uint8, ) > 127.5 ) im_np = im_tensor.numpy()[0].transpose(1, 2, 0) mask_np = mask_tensor.numpy()[0] t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True ) t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( im_np, mask_np, height, width, return_image=True ) self.assertTrue((t_mask_tensor == t_mask_np).all()) self.assertTrue((t_masked_tensor == t_masked_np).all()) self.assertTrue((t_image_tensor == t_image_np).all()) def test_torch_4D_4D_inputs(self): height, width = 32, 32 im_tensor = torch.randint( 0, 255, ( 1, 3, height, width, ), dtype=torch.uint8, ) mask_tensor = ( torch.randint( 0, 255, ( 1, 1, height, width, ), dtype=torch.uint8, ) > 127.5 ) im_np = im_tensor.numpy()[0].transpose(1, 2, 0) mask_np = mask_tensor.numpy()[0][0] t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True ) t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( im_np, mask_np, height, width, return_image=True ) self.assertTrue((t_mask_tensor == t_mask_np).all()) self.assertTrue((t_masked_tensor == t_masked_np).all()) self.assertTrue((t_image_tensor == t_image_np).all()) def test_torch_batch_4D_3D(self): height, width = 32, 32 im_tensor = torch.randint( 0, 255, ( 2, 3, height, width, ), dtype=torch.uint8, ) mask_tensor = ( torch.randint( 0, 255, ( 2, height, width, ), dtype=torch.uint8, ) > 127.5 ) im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor] mask_nps = [mask.numpy() for mask in mask_tensor] t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True ) nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)] t_mask_np = torch.cat([n[0] for n in nps]) t_masked_np = torch.cat([n[1] for n in nps]) t_image_np = torch.cat([n[2] for n in nps]) self.assertTrue((t_mask_tensor == t_mask_np).all()) self.assertTrue((t_masked_tensor == t_masked_np).all()) self.assertTrue((t_image_tensor == t_image_np).all()) def test_torch_batch_4D_4D(self): height, width = 32, 32 im_tensor = torch.randint( 0, 255, ( 2, 3, height, width, ), dtype=torch.uint8, ) mask_tensor = ( torch.randint( 0, 255, ( 2, 1, height, width, ), dtype=torch.uint8, ) > 127.5 ) im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor] mask_nps = [mask.numpy()[0] for mask in mask_tensor] t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True ) nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)] t_mask_np = torch.cat([n[0] for n in nps]) t_masked_np = torch.cat([n[1] for n in nps]) t_image_np = torch.cat([n[2] for n in nps]) self.assertTrue((t_mask_tensor == t_mask_np).all()) self.assertTrue((t_masked_tensor == t_masked_np).all()) self.assertTrue((t_image_tensor == t_image_np).all()) def test_shape_mismatch(self): height, width = 32, 32 # test height and width with self.assertRaises(AssertionError): prepare_mask_and_masked_image( torch.randn( 3, height, width, ), torch.randn(64, 64), height, width, return_image=True, ) # test batch dim with self.assertRaises(AssertionError): prepare_mask_and_masked_image( torch.randn( 2, 3, height, width, ), torch.randn(4, 64, 64), height, width, return_image=True, ) # test batch dim with self.assertRaises(AssertionError): prepare_mask_and_masked_image( torch.randn( 2, 3, height, width, ), torch.randn(4, 1, 64, 64), height, width, return_image=True, ) def test_type_mismatch(self): height, width = 32, 32 # test tensors-only with self.assertRaises(TypeError): prepare_mask_and_masked_image( torch.rand( 3, height, width, ), torch.rand( 3, height, width, ).numpy(), height, width, return_image=True, ) # test tensors-only with self.assertRaises(TypeError): prepare_mask_and_masked_image( torch.rand( 3, height, width, ).numpy(), torch.rand( 3, height, width, ), height, width, return_image=True, ) def test_channels_first(self): height, width = 32, 32 # test channels first for 3D tensors with self.assertRaises(AssertionError): prepare_mask_and_masked_image( torch.rand(height, width, 3), torch.rand( 3, height, width, ), height, width, return_image=True, ) def test_tensor_range(self): height, width = 32, 32 # test im <= 1 with self.assertRaises(ValueError): prepare_mask_and_masked_image( torch.ones( 3, height, width, ) * 2, torch.rand( height, width, ), height, width, return_image=True, ) # test im >= -1 with self.assertRaises(ValueError): prepare_mask_and_masked_image( torch.ones( 3, height, width, ) * (-2), torch.rand( height, width, ), height, width, return_image=True, ) # test mask <= 1 with self.assertRaises(ValueError): prepare_mask_and_masked_image( torch.rand( 3, height, width, ), torch.ones( height, width, ) * 2, height, width, return_image=True, ) # test mask >= 0 with self.assertRaises(ValueError): prepare_mask_and_masked_image( torch.rand( 3, height, width, ), torch.ones( height, width, ) * -1, height, width, return_image=True, )
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_image_variation.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModelWithProjection from diffusers import ( AutoencoderKL, DPMSolverMultistepScheduler, PNDMScheduler, StableDiffusionImageVariationPipeline, UNet2DConditionModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionImageVariationPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionImageVariationPipeline params = IMAGE_VARIATION_PARAMS batch_params = IMAGE_VARIATION_BATCH_PARAMS image_params = frozenset([]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess image_latents_params = frozenset([]) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) image_encoder_config = CLIPVisionConfig( hidden_size=32, projection_dim=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, image_size=32, patch_size=4, ) image_encoder = CLIPVisionModelWithProjection(image_encoder_config) feature_extractor = CLIPImageProcessor(crop_size=32, size=32) components = { "unet": unet, "scheduler": scheduler, "vae": vae, "image_encoder": image_encoder, "feature_extractor": feature_extractor, "safety_checker": None, } return components def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32)) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_img_variation_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionImageVariationPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5239, 0.5723, 0.4796, 0.5049, 0.5550, 0.4685, 0.5329, 0.4891, 0.4921]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_img_variation_multiple_images(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionImageVariationPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["image"] = 2 * [inputs["image"]] output = sd_pipe(**inputs) image = output.images image_slice = image[-1, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) expected_slice = np.array([0.6892, 0.5637, 0.5836, 0.5771, 0.6254, 0.6409, 0.5580, 0.5569, 0.5289]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class StableDiffusionImageVariationPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_imgvar/input_image_vermeer.png" ) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "image": init_image, "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_img_variation_pipeline_default(self): sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained( "lambdalabs/sd-image-variations-diffusers", safety_checker=None ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.84491, 0.90789, 0.75708, 0.78734, 0.83485, 0.70099, 0.66938, 0.68727, 0.61379]) assert np.abs(image_slice - expected_slice).max() < 6e-3 def test_stable_diffusion_img_variation_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.1621, 0.2837, -0.7979, -0.1221, -1.3057, 0.7681, -2.1191, 0.0464, 1.6309] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([0.6299, 1.7500, 1.1992, -2.1582, -1.8994, 0.7334, -0.7090, 1.0137, 1.5273]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False pipe = StableDiffusionImageVariationPipeline.from_pretrained( "fusing/sd-image-variations-diffusers", safety_checker=None, torch_dtype=torch.float16, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == inputs["num_inference_steps"] def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() model_id = "fusing/sd-image-variations-diffusers" pipe = StableDiffusionImageVariationPipeline.from_pretrained( model_id, safety_checker=None, torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(torch_device, dtype=torch.float16) _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.6 GB is allocated assert mem_bytes < 2.6 * 10**9 @nightly @require_torch_gpu class StableDiffusionImageVariationPipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_imgvar/input_image_vermeer.png" ) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "image": init_image, "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_img_variation_pndm(self): sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained("fusing/sd-image-variations-diffusers") sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_imgvar/lambdalabs_variations_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_img_variation_dpm(self): sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained("fusing/sd-image-variations-diffusers") sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 25 image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_imgvar/lambdalabs_variations_dpm_multi.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_k_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class StableDiffusionPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_1(self): sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_scheduler("sample_euler") prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np") image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_2(self): sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_scheduler("sample_euler") prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np") image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-1 def test_stable_diffusion_karras_sigmas(self): sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_scheduler("sample_dpmpp_2m") prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) output = sd_pipe( [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=15, output_type="np", use_karras_sigmas=True, ) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_noise_sampler_seed(self): sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_scheduler("sample_dpmpp_sde") prompt = "A painting of a squirrel eating a burger" seed = 0 images1 = sd_pipe( [prompt], generator=torch.manual_seed(seed), noise_sampler_seed=seed, guidance_scale=9.0, num_inference_steps=20, output_type="np", ).images images2 = sd_pipe( [prompt], generator=torch.manual_seed(seed), noise_sampler_seed=seed, guidance_scale=9.0, num_inference_steps=20, output_type="np", ).images assert images1.shape == (1, 512, 512, 3) assert images2.shape == (1, 512, 512, 3) assert np.abs(images1.flatten() - images2.flatten()).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_sag.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNet2DConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionSAGPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): pipeline_class = StableDiffusionSAGPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class StableDiffusionPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_1(self): sag_pipe = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") sag_pipe = sag_pipe.to(torch_device) sag_pipe.set_progress_bar_config(disable=None) prompt = "." generator = torch.manual_seed(0) output = sag_pipe( [prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np" ) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def test_stable_diffusion_2(self): sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") sag_pipe = sag_pipe.to(torch_device) sag_pipe.set_progress_bar_config(disable=None) prompt = "." generator = torch.manual_seed(0) output = sag_pipe( [prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np" ) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def test_stable_diffusion_2_non_square(self): sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") sag_pipe = sag_pipe.to(torch_device) sag_pipe.set_progress_bar_config(disable=None) prompt = "." generator = torch.manual_seed(0) output = sag_pipe( [prompt], width=768, height=512, generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np", ) image = output.images assert image.shape == (1, 512, 768, 3)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_adapter.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, PNDMScheduler, StableDiffusionAdapterPipeline, T2IAdapter, UNet2DConditionModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class AdapterTests: pipeline_class = StableDiffusionAdapterPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS def get_dummy_components(self, adapter_type): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") torch.manual_seed(0) adapter = T2IAdapter( in_channels=3, channels=[32, 64], num_res_blocks=2, downscale_factor=2, adapter_type=adapter_type, ) components = { "adapter": adapter, "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) class StableDiffusionFullAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase): def get_dummy_components(self): return super().get_dummy_components("full_adapter") def test_stable_diffusion_adapter_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionAdapterPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4858, 0.5500, 0.4278, 0.4669, 0.6184, 0.4322, 0.5010, 0.5033, 0.4746]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 class StableDiffusionLightAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase): def get_dummy_components(self): return super().get_dummy_components("light_adapter") def test_stable_diffusion_adapter_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionAdapterPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4965, 0.5548, 0.4330, 0.4771, 0.6226, 0.4382, 0.5037, 0.5071, 0.4782]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 @slow @require_torch_gpu class StableDiffusionAdapterPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_adapter(self): test_cases = [ ( "TencentARC/t2iadapter_color_sd14v1", "CompVis/stable-diffusion-v1-4", "snail", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/color.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_color_sd14v1.npy", ), ( "TencentARC/t2iadapter_depth_sd14v1", "CompVis/stable-diffusion-v1-4", "desk", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd14v1.npy", ), ( "TencentARC/t2iadapter_depth_sd15v2", "runwayml/stable-diffusion-v1-5", "desk", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd15v2.npy", ), ( "TencentARC/t2iadapter_keypose_sd14v1", "CompVis/stable-diffusion-v1-4", "person", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/person_keypose.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_keypose_sd14v1.npy", ), ( "TencentARC/t2iadapter_openpose_sd14v1", "CompVis/stable-diffusion-v1-4", "person", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/iron_man_pose.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_openpose_sd14v1.npy", ), ( "TencentARC/t2iadapter_seg_sd14v1", "CompVis/stable-diffusion-v1-4", "motorcycle", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_seg_sd14v1.npy", ), ( "TencentARC/t2iadapter_zoedepth_sd15v1", "runwayml/stable-diffusion-v1-5", "motorcycle", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motorcycle.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_zoedepth_sd15v1.npy", ), ( "TencentARC/t2iadapter_canny_sd14v1", "CompVis/stable-diffusion-v1-4", "toy", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png", 1, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd14v1.npy", ), ( "TencentARC/t2iadapter_canny_sd15v2", "runwayml/stable-diffusion-v1-5", "toy", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png", 1, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd15v2.npy", ), ( "TencentARC/t2iadapter_sketch_sd14v1", "CompVis/stable-diffusion-v1-4", "cat", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png", 1, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd14v1.npy", ), ( "TencentARC/t2iadapter_sketch_sd15v2", "runwayml/stable-diffusion-v1-5", "cat", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png", 1, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd15v2.npy", ), ] for adapter_model, sd_model, prompt, image_url, input_channels, out_url in test_cases: image = load_image(image_url) expected_out = load_numpy(out_url) if input_channels == 1: image = image.convert("L") adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() generator = torch.Generator(device="cpu").manual_seed(0) out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images self.assertTrue(np.allclose(out, expected_out)) def test_stable_diffusion_adapter_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_seg_sd14v1") pipe = StableDiffusionAdapterPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", adapter=adapter, safety_checker=None ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png" ) pipe(prompt="foo", image=image, num_inference_steps=2) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 5 * 10**9
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_instruction_pix2pix.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPix2PixPipeline, UNet2DConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionInstructPix2PixPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionInstructPix2PixPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=8, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB") if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def test_stable_diffusion_pix2pix_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionInstructPix2PixPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionInstructPix2PixPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = sd_pipe(**inputs, negative_prompt=negative_prompt) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_multiple_init_images(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionInstructPix2PixPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["prompt"] = [inputs["prompt"]] * 2 image = np.array(inputs["image"]).astype(np.float32) / 255.0 image = torch.from_numpy(image).unsqueeze(0).to(device) image = image / 2 + 0.5 image = image.permute(0, 3, 1, 2) inputs["image"] = image.repeat(2, 1, 1, 1) image = sd_pipe(**inputs).images image_slice = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) expected_slice = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = EulerAncestralDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) sd_pipe = StableDiffusionInstructPix2PixPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] slice = [round(x, 4) for x in image_slice.flatten().tolist()] print(",".join([str(x) for x in slice])) assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) # Overwrite the default test_latents_inputs because pix2pix encode the image differently def test_latents_input(self): components = self.get_dummy_components() pipe = StableDiffusionInstructPix2PixPipeline(**components) pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0] vae = components["vae"] inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt") for image_param in self.image_latents_params: if image_param in inputs.keys(): inputs[image_param] = vae.encode(inputs[image_param]).latent_dist.mode() out_latents_inputs = pipe(**inputs)[0] max_diff = np.abs(out - out_latents_inputs).max() self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image") @slow @require_torch_gpu class StableDiffusionInstructPix2PixPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, seed=0): generator = torch.manual_seed(seed) image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) inputs = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def test_stable_diffusion_pix2pix_default(self): pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( "timbrooks/instruct-pix2pix", safety_checker=None ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_k_lms(self): pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( "timbrooks/instruct-pix2pix", safety_checker=None ) pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_ddim(self): pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( "timbrooks/instruct-pix2pix", safety_checker=None ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( "timbrooks/instruct-pix2pix", safety_checker=None, torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( "timbrooks/instruct-pix2pix", safety_checker=None, torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs() _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def test_stable_diffusion_pix2pix_pipeline_multiple_of_8(self): inputs = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 inputs["image"] = inputs["image"].resize((504, 504)) model_id = "timbrooks/instruct-pix2pix" pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_id, safety_checker=None, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() output = pipe(**inputs) image = output.images[0] image_slice = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) expected_slice = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_model_editing.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, PNDMScheduler, StableDiffusionModelEditingPipeline, UNet2DConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class StableDiffusionModelEditingPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionModelEditingPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler() torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): generator = torch.manual_seed(seed) inputs = { "prompt": "A field of roses", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_model_editing_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionModelEditingPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4755, 0.5132, 0.4976, 0.3904, 0.3554, 0.4765, 0.5139, 0.5158, 0.4889]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_model_editing_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionModelEditingPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = sd_pipe(**inputs, negative_prompt=negative_prompt) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4992, 0.5101, 0.5004, 0.3949, 0.3604, 0.4735, 0.5216, 0.5204, 0.4913]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_model_editing_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = EulerAncestralDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) sd_pipe = StableDiffusionModelEditingPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4747, 0.5372, 0.4779, 0.4982, 0.5543, 0.4816, 0.5238, 0.4904, 0.5027]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_model_editing_pndm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler() sd_pipe = StableDiffusionModelEditingPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) # the pipeline does not expect pndm so test if it raises error. with self.assertRaises(ValueError): _ = sd_pipe(**inputs).images def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=5e-3) def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=5e-3) @slow @require_torch_gpu class StableDiffusionModelEditingSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, seed=0): generator = torch.manual_seed(seed) inputs = { "prompt": "A field of roses", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_model_editing_default(self): model_ckpt = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionModelEditingPipeline.from_pretrained(model_ckpt, safety_checker=None) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array( [0.6749496, 0.6386453, 0.51443267, 0.66094905, 0.61921215, 0.5491332, 0.5744417, 0.58075106, 0.5174658] ) assert np.abs(expected_slice - image_slice).max() < 1e-2 # make sure image changes after editing pipe.edit_model("A pack of roses", "A pack of blue roses") image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) assert np.abs(expected_slice - image_slice).max() > 1e-1 def test_stable_diffusion_model_editing_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() model_ckpt = "CompVis/stable-diffusion-v1-4" scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler") pipe = StableDiffusionModelEditingPipeline.from_pretrained( model_ckpt, scheduler=scheduler, safety_checker=None ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs() _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 4.4 GB is allocated assert mem_bytes < 4.4 * 10**9
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_inpaint.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): @property def gpu_provider(self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def gpu_options(self): options = ort.SessionOptions() options.enable_mem_pattern = False return options def test_inference_default_pndm(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="onnx", safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A red cat sitting on a park bench" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) expected_slice = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_inference_k_lms(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lms_scheduler = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting", subfolder="scheduler", revision="onnx" ) pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="onnx", scheduler=lms_scheduler, safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A red cat sitting on a park bench" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, guidance_scale=7.5, num_inference_steps=20, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) expected_slice = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_onnx_stable_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): hub_checkpoint = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def get_dummy_inputs(self, seed=0): generator = np.random.RandomState(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_pipeline_default_ddim(self): pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_pipeline_pndm(self): pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_pipeline_lms(self): pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_pipeline_euler(self): pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_pipeline_euler_ancestral(self): pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_pipeline_dpm_multistep(self): pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_prompt_embeds(self): pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] inputs = self.get_dummy_inputs() prompt = 3 * [inputs.pop("prompt")] text_inputs = pipe.tokenizer( prompt, padding="max_length", max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_inputs = text_inputs["input_ids"] prompt_embeds = pipe.text_encoder(input_ids=text_inputs.astype(np.int32))[0] inputs["prompt_embeds"] = prompt_embeds # forward output = pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_negative_prompt_embeds(self): pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] inputs = self.get_dummy_inputs() prompt = 3 * [inputs.pop("prompt")] embeds = [] for p in [prompt, negative_prompt]: text_inputs = pipe.tokenizer( p, padding="max_length", max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_inputs = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.int32))[0]) inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds # forward output = pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase): @property def gpu_provider(self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def gpu_options(self): options = ort.SessionOptions() options.enable_mem_pattern = False return options def test_inference_default_pndm(self): # using the PNDM scheduler by default sd_pipe = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" np.random.seed(0) output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=10, output_type="np") image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_inference_ddim(self): ddim_scheduler = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx" ) sd_pipe = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=ddim_scheduler, safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=None) prompt = "open neural network exchange" generator = np.random.RandomState(0) output = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np") image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_inference_k_lms(self): lms_scheduler = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx" ) sd_pipe = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=lms_scheduler, safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=None) prompt = "open neural network exchange" generator = np.random.RandomState(0) output = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np") image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_intermediate_state(self): number_of_steps = 0 def test_callback_fn(step: int, timestep: int, latents: np.ndarray) -> None: test_callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 test_callback_fn.has_been_called = False pipe = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "Andromeda galaxy in a bottle" generator = np.random.RandomState(0) pipe( prompt=prompt, num_inference_steps=5, guidance_scale=7.5, generator=generator, callback=test_callback_fn, callback_steps=1, ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def test_stable_diffusion_no_safety_checker(self): pipe = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) assert isinstance(pipe, OnnxStableDiffusionPipeline) assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = OnnxStableDiffusionPipeline.from_pretrained(tmpdirname) # sanity check that the pipeline still works assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint_legacy.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInpaintPipelineLegacy, UNet2DConditionModel, UNet2DModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, preprocess_image, require_torch_gpu enable_full_determinism() class StableDiffusionInpaintLegacyPipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model @property def dummy_cond_unet(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) return model @property def dummy_cond_unet_inpaint(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) return model @property def dummy_vq_model(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config) @property def dummy_extractor(self): def extract(*args, **kwargs): class Out: def __init__(self): self.pixel_values = torch.ones([0]) def to(self, device): self.pixel_values.to(device) return self return Out() return extract def test_stable_diffusion_inpaint_legacy(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB") mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32)) # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionInpaintPipelineLegacy( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", image=init_image, mask_image=mask_image, ) image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", image=init_image, mask_image=mask_image, return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4941, 0.5396, 0.4689, 0.6338, 0.5392, 0.4094, 0.5477, 0.5904, 0.5165]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_inpaint_legacy_batched(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB") init_images_tens = preprocess_image(init_image, batch_size=2) init_masks_tens = init_images_tens + 4 # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionInpaintPipelineLegacy( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) images = sd_pipe( [prompt] * 2, generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", image=init_images_tens, mask_image=init_masks_tens, ).images assert images.shape == (2, 32, 32, 3) image_slice_0 = images[0, -3:, -3:, -1].flatten() image_slice_1 = images[1, -3:, -3:, -1].flatten() expected_slice_0 = np.array([0.4697, 0.3770, 0.4096, 0.4653, 0.4497, 0.4183, 0.3950, 0.4668, 0.4672]) expected_slice_1 = np.array([0.4105, 0.4987, 0.5771, 0.4921, 0.4237, 0.5684, 0.5496, 0.4645, 0.5272]) assert np.abs(expected_slice_0 - image_slice_0).max() < 1e-2 assert np.abs(expected_slice_1 - image_slice_1).max() < 1e-2 def test_stable_diffusion_inpaint_legacy_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB") mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32)) # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionInpaintPipelineLegacy( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" negative_prompt = "french fries" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe( prompt, negative_prompt=negative_prompt, generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", image=init_image, mask_image=mask_image, ) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4941, 0.5396, 0.4689, 0.6338, 0.5392, 0.4094, 0.5477, 0.5904, 0.5165]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_inpaint_legacy_num_images_per_prompt(self): device = "cpu" unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB") mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32)) # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionInpaintPipelineLegacy( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" # test num_images_per_prompt=1 (default) images = sd_pipe( prompt, num_inference_steps=2, output_type="np", image=init_image, mask_image=mask_image, ).images assert images.shape == (1, 32, 32, 3) # test num_images_per_prompt=1 (default) for batch of prompts batch_size = 2 images = sd_pipe( [prompt] * batch_size, num_inference_steps=2, output_type="np", image=init_image, mask_image=mask_image, ).images assert images.shape == (batch_size, 32, 32, 3) # test num_images_per_prompt for single prompt num_images_per_prompt = 2 images = sd_pipe( prompt, num_inference_steps=2, output_type="np", image=init_image, mask_image=mask_image, num_images_per_prompt=num_images_per_prompt, ).images assert images.shape == (num_images_per_prompt, 32, 32, 3) # test num_images_per_prompt for batch of prompts batch_size = 2 images = sd_pipe( [prompt] * batch_size, num_inference_steps=2, output_type="np", image=init_image, mask_image=mask_image, num_images_per_prompt=num_images_per_prompt, ).images assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3) @slow @require_torch_gpu class StableDiffusionInpaintLegacyPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, generator_device="cpu", seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ) inputs = { "prompt": "A red cat sitting on a park bench", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_inpaint_legacy_pndm(self): pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.5665, 0.6117, 0.6430, 0.4057, 0.4594, 0.5658, 0.1596, 0.3106, 0.4305]) assert np.abs(expected_slice - image_slice).max() < 3e-3 def test_stable_diffusion_inpaint_legacy_batched(self): pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() inputs["prompt"] = [inputs["prompt"]] * 2 inputs["image"] = preprocess_image(inputs["image"], batch_size=2) mask = inputs["mask_image"].convert("L") mask = np.array(mask).astype(np.float32) / 255.0 mask = torch.from_numpy(1 - mask) masks = torch.vstack([mask[None][None]] * 2) inputs["mask_image"] = masks image = pipe(**inputs).images assert image.shape == (2, 512, 512, 3) image_slice_0 = image[0, 253:256, 253:256, -1].flatten() image_slice_1 = image[1, 253:256, 253:256, -1].flatten() expected_slice_0 = np.array( [0.52093095, 0.4176447, 0.32752383, 0.6175223, 0.50563973, 0.36470804, 0.65460044, 0.5775188, 0.44332123] ) expected_slice_1 = np.array( [0.3592432, 0.4233033, 0.3914635, 0.31014425, 0.3702293, 0.39412856, 0.17526966, 0.2642669, 0.37480092] ) assert np.abs(expected_slice_0 - image_slice_0).max() < 3e-3 assert np.abs(expected_slice_1 - image_slice_1).max() < 3e-3 def test_stable_diffusion_inpaint_legacy_k_lms(self): pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None ) pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, 253:256, 253:256, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.4534, 0.4467, 0.4329, 0.4329, 0.4339, 0.4220, 0.4244, 0.4332, 0.4426]) assert np.abs(expected_slice - image_slice).max() < 3e-3 def test_stable_diffusion_inpaint_legacy_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([0.5977, 1.5449, 1.0586, -0.3250, 0.7383, -0.0862, 0.4631, -0.2571, -1.1289]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([0.5190, 1.1621, 0.6885, 0.2424, 0.3337, -0.1617, 0.6914, -0.1957, -0.5474]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 callback_fn.has_been_called = False pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 2 @nightly @require_torch_gpu class StableDiffusionInpaintLegacyPipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ) inputs = { "prompt": "A red cat sitting on a park bench", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 50, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_inpaint_pndm(self): sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_inpaint_ddim(self): sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_inpaint_lms(self): sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_lms.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_inpaint_dpm(self): sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 30 image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_dpm_multi.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_cycle_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class CycleDiffusionPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): pipeline_class = CycleDiffusionPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"}) image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image / 2 + 0.5 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def test_stable_diffusion_cycle(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = CycleDiffusionPipeline(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = pipe(**inputs) images = output.images image_slice = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_stable_diffusion_cycle_fp16(self): components = self.get_dummy_components() for name, module in components.items(): if hasattr(module, "half"): components[name] = module.half() pipe = CycleDiffusionPipeline(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs) images = output.images image_slice = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def test_save_load_local(self): return super().test_save_load_local() @unittest.skip("non-deterministic pipeline") def test_inference_batch_single_identical(self): return super().test_inference_batch_single_identical() @skip_mps def test_dict_tuple_outputs_equivalent(self): return super().test_dict_tuple_outputs_equivalent() @skip_mps def test_save_load_optional_components(self): return super().test_save_load_optional_components() @skip_mps def test_attention_slicing_forward_pass(self): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class CycleDiffusionPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_cycle_diffusion_pipeline_fp16(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) init_image = init_image.resize((512, 512)) model_id = "CompVis/stable-diffusion-v1-4" scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = CycleDiffusionPipeline.from_pretrained( model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16" ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() source_prompt = "A black colored car" prompt = "A blue colored car" generator = torch.manual_seed(0) output = pipe( prompt=prompt, source_prompt=source_prompt, image=init_image, num_inference_steps=100, eta=0.1, strength=0.85, guidance_scale=3, source_guidance_scale=1, generator=generator, output_type="np", ) image = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image).max() < 5e-1 def test_cycle_diffusion_pipeline(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) init_image = init_image.resize((512, 512)) model_id = "CompVis/stable-diffusion-v1-4" scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() source_prompt = "A black colored car" prompt = "A blue colored car" generator = torch.manual_seed(0) output = pipe( prompt=prompt, source_prompt=source_prompt, image=init_image, num_inference_steps=100, eta=0.1, strength=0.85, guidance_scale=3, source_guidance_scale=1, generator=generator, output_type="np", ) image = output.images assert np.abs(image - expected_image).max() < 2e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_inpaint_legacy.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class StableDiffusionOnnxInpaintLegacyPipelineIntegrationTests(unittest.TestCase): @property def gpu_provider(self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def gpu_options(self): options = ort.SessionOptions() options.enable_mem_pattern = False return options def test_inference(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default pipe = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A red cat sitting on a park bench" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_ldm3d.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDM3DPipeline, UNet2DConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class StableDiffusionLDM3DPipelineFastTests(unittest.TestCase): pipeline_class = StableDiffusionLDM3DPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=6, out_channels=6, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) ldm3d_pipe = ldm3d_pipe.to(torch_device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = ldm3d_pipe(**inputs) rgb, depth = output.rgb, output.depth image_slice_rgb = rgb[0, -3:, -3:, -1] image_slice_depth = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) expected_slice_rgb = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) expected_slice_depth = np.array([103.46727, 85.812004, 87.849236]) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth).max() < 1e-2 def test_stable_diffusion_prompt_embeds(self): components = self.get_dummy_components() ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) ldm3d_pipe = ldm3d_pipe.to(torch_device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = ldm3d_pipe(**inputs) rgb_slice_1, depth_slice_1 = output.rgb, output.depth rgb_slice_1 = rgb_slice_1[0, -3:, -3:, -1] depth_slice_1 = depth_slice_1[0, -3:, -1] inputs = self.get_dummy_inputs(torch_device) prompt = 3 * [inputs.pop("prompt")] text_inputs = ldm3d_pipe.tokenizer( prompt, padding="max_length", max_length=ldm3d_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_inputs = text_inputs["input_ids"].to(torch_device) prompt_embeds = ldm3d_pipe.text_encoder(text_inputs)[0] inputs["prompt_embeds"] = prompt_embeds # forward output = ldm3d_pipe(**inputs) rgb_slice_2, depth_slice_2 = output.rgb, output.depth rgb_slice_2 = rgb_slice_2[0, -3:, -3:, -1] depth_slice_2 = depth_slice_2[0, -3:, -1] assert np.abs(rgb_slice_1.flatten() - rgb_slice_2.flatten()).max() < 1e-4 assert np.abs(depth_slice_1.flatten() - depth_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler(skip_prk_steps=True) ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) ldm3d_pipe = ldm3d_pipe.to(device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = ldm3d_pipe(**inputs, negative_prompt=negative_prompt) rgb, depth = output.rgb, output.depth rgb_slice = rgb[0, -3:, -3:, -1] depth_slice = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) expected_slice_rgb = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) expected_slice_depth = np.array([107.84738, 84.62802, 89.962135]) assert np.abs(rgb_slice.flatten() - expected_slice_rgb).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth).max() < 1e-2 @slow @require_torch_gpu class StableDiffusionLDM3DPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_ldm3d_stable_diffusion(self): ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d") ldm3d_pipe = ldm3d_pipe.to(torch_device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) output = ldm3d_pipe(**inputs) rgb, depth = output.rgb, output.depth rgb_slice = rgb[0, -3:, -3:, -1].flatten() depth_slice = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) expected_slice_rgb = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) expected_slice_depth = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth).max() < 3e-3 @nightly @require_torch_gpu class StableDiffusionPipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_ldm3d(self): ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d").to(torch_device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) output = ldm3d_pipe(**inputs) rgb, depth = output.rgb, output.depth expected_rgb_mean = 0.495586 expected_rgb_std = 0.33795515 expected_depth_mean = 112.48518 expected_depth_std = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3 assert np.abs(expected_rgb_std - rgb.std()) < 1e-3 assert np.abs(expected_depth_mean - depth.mean()) < 1e-3 assert np.abs(expected_depth_std - depth.std()) < 1e-3 def test_ldm3d_v2(self): ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c").to(torch_device) ldm3d_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) output = ldm3d_pipe(**inputs) rgb, depth = output.rgb, output.depth expected_rgb_mean = 0.4194127 expected_rgb_std = 0.35375586 expected_depth_mean = 0.5638502 expected_depth_std = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3 assert np.abs(expected_rgb_std - rgb.std()) < 1e-3 assert np.abs(expected_depth_mean - depth.mean()) < 1e-3 assert np.abs(expected_depth_std - depth.std()) < 1e-3
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_paradigms.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMParallelScheduler, DDPMParallelScheduler, StableDiffusionParadigmsPipeline, UNet2DConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_gpu, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionParadigmsPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): pipeline_class = StableDiffusionParadigmsPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, ) scheduler = DDIMParallelScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "a photograph of an astronaut riding a horse", "generator": generator, "num_inference_steps": 10, "guidance_scale": 6.0, "output_type": "numpy", "parallel": 3, "debug": True, } return inputs def test_stable_diffusion_paradigms_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionParadigmsPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4773, 0.5417, 0.4723, 0.4925, 0.5631, 0.4752, 0.5240, 0.4935, 0.5023]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_paradigms_default_case_ddpm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() torch.manual_seed(0) components["scheduler"] = DDPMParallelScheduler() torch.manual_seed(0) sd_pipe = StableDiffusionParadigmsPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.3573, 0.4420, 0.4960, 0.4799, 0.3796, 0.3879, 0.4819, 0.4365, 0.4468]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # override to speed the overall test timing up. def test_inference_batch_consistent(self): super().test_inference_batch_consistent(batch_sizes=[1, 2]) # override to speed the overall test timing up. def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=3e-3) def test_stable_diffusion_paradigms_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionParadigmsPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = sd_pipe(**inputs, negative_prompt=negative_prompt) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4771, 0.5420, 0.4683, 0.4918, 0.5636, 0.4725, 0.5230, 0.4923, 0.5015]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class StableDiffusionParadigmsPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, seed=0): generator = torch.Generator(device=torch_device).manual_seed(seed) inputs = { "prompt": "a photograph of an astronaut riding a horse", "generator": generator, "num_inference_steps": 10, "guidance_scale": 7.5, "output_type": "numpy", "parallel": 3, "debug": True, } return inputs def test_stable_diffusion_paradigms_default(self): model_ckpt = "stabilityai/stable-diffusion-2-base" scheduler = DDIMParallelScheduler.from_pretrained(model_ckpt, subfolder="scheduler") pipe = StableDiffusionParadigmsPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.9622, 0.9602, 0.9748, 0.9591, 0.9630, 0.9691, 0.9661, 0.9631, 0.9741]) assert np.abs(expected_slice - image_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/semantic_stable_diffusion/test_semantic_diffusion.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel from diffusers.pipelines.semantic_stable_diffusion import SemanticStableDiffusionPipeline as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SafeDiffusionPipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_cond_unet(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config) @property def dummy_extractor(self): def extract(*args, **kwargs): class Out: def __init__(self): self.pixel_values = torch.ones([0]) def to(self, device): self.pixel_values.to(device) return self return Out() return extract def test_semantic_diffusion_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5753, 0.6114, 0.5001, 0.5034, 0.5470, 0.4729, 0.4971, 0.4867, 0.4867]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_semantic_diffusion_pndm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5122, 0.5712, 0.4825, 0.5053, 0.5646, 0.4769, 0.5179, 0.4894, 0.4994]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_semantic_diffusion_no_safety_checker(self): pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None ) assert isinstance(pipe, StableDiffusionPipeline) assert isinstance(pipe.scheduler, LMSDiscreteScheduler) assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) # sanity check that the pipeline still works assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_semantic_diffusion_fp16(self): """Test that stable diffusion works with fp16""" unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # put models in fp16 unet = unet.half() vae = vae.half() bert = bert.half() # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_positive_guidance(self): torch_device = "cuda" pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "a photo of a cat" edit = { "editing_prompt": ["sunglasses"], "reverse_editing_direction": [False], "edit_warmup_steps": 10, "edit_guidance_scale": 6, "edit_threshold": 0.95, "edit_momentum_scale": 0.5, "edit_mom_beta": 0.6, } seed = 3 guidance_scale = 7 # no sega enabled generator = torch.Generator(torch_device) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.34673113, 0.38492733, 0.37597352, 0.34086335, 0.35650748, 0.35579205, 0.3384763, 0.34340236, 0.3573271, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # with sega enabled # generator = torch.manual_seed(seed) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, **edit, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.41887826, 0.37728766, 0.30138272, 0.41416335, 0.41664985, 0.36283392, 0.36191246, 0.43364465, 0.43001732, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_negative_guidance(self): torch_device = "cuda" pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "an image of a crowded boulevard, realistic, 4k" edit = { "editing_prompt": "crowd, crowded, people", "reverse_editing_direction": True, "edit_warmup_steps": 10, "edit_guidance_scale": 8.3, "edit_threshold": 0.9, "edit_momentum_scale": 0.5, "edit_mom_beta": 0.6, } seed = 9 guidance_scale = 7 # no sega enabled generator = torch.Generator(torch_device) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.43497998, 0.91814065, 0.7540739, 0.55580205, 0.8467265, 0.5389691, 0.62574506, 0.58897763, 0.50926757, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # with sega enabled # generator = torch.manual_seed(seed) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, **edit, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.3089719, 0.30500144, 0.29016042, 0.30630964, 0.325687, 0.29419225, 0.2908091, 0.28723598, 0.27696294, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_multi_cond_guidance(self): torch_device = "cuda" pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "a castle next to a river" edit = { "editing_prompt": ["boat on a river, boat", "monet, impression, sunrise"], "reverse_editing_direction": False, "edit_warmup_steps": [15, 18], "edit_guidance_scale": 6, "edit_threshold": [0.9, 0.8], "edit_momentum_scale": 0.5, "edit_mom_beta": 0.6, } seed = 48 guidance_scale = 7 # no sega enabled generator = torch.Generator(torch_device) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.75163555, 0.76037145, 0.61785, 0.9189673, 0.8627701, 0.85189694, 0.8512813, 0.87012076, 0.8312857, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # with sega enabled # generator = torch.manual_seed(seed) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, **edit, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.73553365, 0.7537271, 0.74341905, 0.66480356, 0.6472925, 0.63039416, 0.64812905, 0.6749717, 0.6517102, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_guidance_fp16(self): torch_device = "cuda" pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "a photo of a cat" edit = { "editing_prompt": ["sunglasses"], "reverse_editing_direction": [False], "edit_warmup_steps": 10, "edit_guidance_scale": 6, "edit_threshold": 0.95, "edit_momentum_scale": 0.5, "edit_mom_beta": 0.6, } seed = 3 guidance_scale = 7 # no sega enabled generator = torch.Generator(torch_device) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.34887695, 0.3876953, 0.375, 0.34423828, 0.3581543, 0.35717773, 0.3383789, 0.34570312, 0.359375, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # with sega enabled # generator = torch.manual_seed(seed) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, **edit, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.42285156, 0.36914062, 0.29077148, 0.42041016, 0.41918945, 0.35498047, 0.3618164, 0.4423828, 0.43115234, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky/test_kandinsky.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 32 @property def dummy_tokenizer(self): tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=1005, ) text_encoder = MultilingualCLIP(config) text_encoder = text_encoder.eval() return text_encoder @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer unet = self.dummy_unet movq = self.dummy_movq scheduler = DDIMScheduler( num_train_timesteps=1000, beta_schedule="linear", beta_start=0.00085, beta_end=0.012, clip_sample=False, set_alpha_to_one=False, steps_offset=1, prediction_type="epsilon", thresholding=False, ) components = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs class KandinskyPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyPipeline params = [ "prompt", "image_embeds", "negative_image_embeds", ] batch_params = ["prompt", "negative_prompt", "image_embeds", "negative_image_embeds"] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummy = Dummies() return dummy.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummy = Dummies() return dummy.get_dummy_inputs(device=device, seed=seed) def test_kandinsky(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([1.0000, 1.0000, 0.2766, 1.0000, 0.5447, 0.1737, 1.0000, 0.4316, 0.9024]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 @slow @require_torch_gpu class KandinskyPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_text2img(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_text2img_cat_fp16.npy" ) pipe_prior = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) prompt = "red cat, 4k photo" generator = torch.Generator(device="cuda").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() generator = torch.Generator(device="cuda").manual_seed(0) output = pipeline( prompt, image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(image, expected_image)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky/test_kandinsky_img2img.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import ( DDIMScheduler, DDPMScheduler, KandinskyImg2ImgPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel, ) from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 32 @property def dummy_tokenizer(self): tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=1005, ) text_encoder = MultilingualCLIP(config) text_encoder = text_encoder.eval() return text_encoder @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer unet = self.dummy_unet movq = self.dummy_movq ddim_config = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } scheduler = DDIMScheduler(**ddim_config) components = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device) # create init_image image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs class KandinskyImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyImg2ImgPipeline params = ["prompt", "image_embeds", "negative_image_embeds", "image"] batch_params = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] required_optional_params = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummies = Dummies() return dummies.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummies = Dummies() return dummies.get_dummy_inputs(device=device, seed=seed) def test_kandinsky_img2img(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5816, 0.5872, 0.4634, 0.5982, 0.4767, 0.4710, 0.4669, 0.4717, 0.4966]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 @slow @require_torch_gpu class KandinskyImg2ImgPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_img2img(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) prompt = "A red cartoon frog, 4k" pipe_prior = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyImg2ImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() output = pipeline( prompt, image=init_image, image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, height=768, width=768, strength=0.2, output_type="np", ) image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image) def test_kandinsky_img2img_ddpm(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_ddpm_frog.npy" ) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/frog.png" ) prompt = "A red cartoon frog, 4k" pipe_prior = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler") pipeline = KandinskyImg2ImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() output = pipeline( prompt, image=init_image, image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, height=768, width=768, strength=0.2, output_type="np", ) image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky/test_kandinsky_inpaint.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 32 @property def dummy_tokenizer(self): tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=1005, ) text_encoder = MultilingualCLIP(config) text_encoder = text_encoder.eval() return text_encoder @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer unet = self.dummy_unet movq = self.dummy_movq scheduler = DDIMScheduler( num_train_timesteps=1000, beta_schedule="linear", beta_start=0.00085, beta_end=0.012, clip_sample=False, set_alpha_to_one=False, steps_offset=1, prediction_type="epsilon", thresholding=False, ) components = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device) # create init_image image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) # create mask mask = np.zeros((64, 64), dtype=np.float32) mask[:32, :32] = 1 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs class KandinskyInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyInpaintPipeline params = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] batch_params = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummies = Dummies() return dummies.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummies = Dummies() return dummies.get_dummy_inputs(device=device, seed=seed) def test_kandinsky_inpaint(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.8222, 0.8896, 0.4373, 0.8088, 0.4905, 0.2609, 0.6816, 0.4291, 0.5129]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 @slow @require_torch_gpu class KandinskyInpaintPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_inpaint(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) mask = np.zeros((768, 768), dtype=np.float32) mask[:250, 250:-250] = 1 prompt = "a hat" pipe_prior = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() output = pipeline( prompt, image=init_image, mask_image=mask, image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, height=768, width=768, output_type="np", ) image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky/test_kandinsky_combined.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from diffusers import KandinskyCombinedPipeline, KandinskyImg2ImgCombinedPipeline, KandinskyInpaintCombinedPipeline from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin from .test_kandinsky import Dummies from .test_kandinsky_img2img import Dummies as Img2ImgDummies from .test_kandinsky_inpaint import Dummies as InpaintDummies from .test_kandinsky_prior import Dummies as PriorDummies enable_full_determinism() class KandinskyPipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyCombinedPipeline params = [ "prompt", ] batch_params = ["prompt", "negative_prompt"] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummy = Dummies() prior_dummy = PriorDummies() components = dummy.get_dummy_components() components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) return components def get_dummy_inputs(self, device, seed=0): prior_dummy = PriorDummies() inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) inputs.update( { "height": 64, "width": 64, } ) return inputs def test_kandinsky(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.0000, 0.0000, 0.6777, 0.1363, 0.3624, 0.7868, 0.3869, 0.3395, 0.5068]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=1e-2) class KandinskyPipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyImg2ImgCombinedPipeline params = ["prompt", "image"] batch_params = ["prompt", "negative_prompt", "image"] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummy = Img2ImgDummies() prior_dummy = PriorDummies() components = dummy.get_dummy_components() components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) return components def get_dummy_inputs(self, device, seed=0): prior_dummy = PriorDummies() dummy = Img2ImgDummies() inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) inputs.update(dummy.get_dummy_inputs(device=device, seed=seed)) inputs.pop("image_embeds") inputs.pop("negative_image_embeds") return inputs def test_kandinsky(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4260, 0.3596, 0.4571, 0.3890, 0.4087, 0.5137, 0.4819, 0.4116, 0.5053]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=1e-2) class KandinskyPipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyInpaintCombinedPipeline params = ["prompt", "image", "mask_image"] batch_params = ["prompt", "negative_prompt", "image", "mask_image"] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummy = InpaintDummies() prior_dummy = PriorDummies() components = dummy.get_dummy_components() components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) return components def get_dummy_inputs(self, device, seed=0): prior_dummy = PriorDummies() dummy = InpaintDummies() inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) inputs.update(dummy.get_dummy_inputs(device=device, seed=seed)) inputs.pop("image_embeds") inputs.pop("negative_image_embeds") return inputs def test_kandinsky(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.0477, 0.0808, 0.2972, 0.2705, 0.3620, 0.6247, 0.4464, 0.2870, 0.3530]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=1e-2)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/kandinsky/test_kandinsky_prior.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config) @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } model = PriorTransformer(**model_kwargs) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def dummy_image_encoder(self): torch.manual_seed(0) config = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=224, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=14, ) model = CLIPVisionModelWithProjection(config) return model @property def dummy_image_processor(self): image_processor = CLIPImageProcessor( crop_size=224, do_center_crop=True, do_normalize=True, do_resize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], resample=3, size=224, ) return image_processor def get_dummy_components(self): prior = self.dummy_prior image_encoder = self.dummy_image_encoder text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer image_processor = self.dummy_image_processor scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="sample", num_train_timesteps=1000, clip_sample=True, clip_sample_range=10.0, ) components = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs class KandinskyPriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyPriorPipeline params = ["prompt"] batch_params = ["prompt", "negative_prompt"] required_optional_params = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummy = Dummies() return dummy.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummy = Dummies() return dummy.get_dummy_inputs(device=device, seed=seed) def test_kandinsky_prior(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.image_embeds image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -10:] image_from_tuple_slice = image_from_tuple[0, -10:] assert image.shape == (1, 32) expected_slice = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def test_inference_batch_single_identical(self): test_max_difference = torch_device == "cpu" relax_max_difference = True test_mean_pixel_difference = False self._test_inference_batch_single_identical( test_max_difference=test_max_difference, relax_max_difference=relax_max_difference, test_mean_pixel_difference=test_mean_pixel_difference, ) @skip_mps def test_attention_slicing_forward_pass(self): test_max_difference = torch_device == "cpu" test_mean_pixel_difference = False self._test_attention_slicing_forward_pass( test_max_difference=test_max_difference, test_mean_pixel_difference=test_mean_pixel_difference, )
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/deepfloyd_if/__init__.py
import tempfile import numpy as np import torch from transformers import AutoTokenizer, T5EncoderModel from diffusers import DDPMScheduler, UNet2DConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np # WARN: the hf-internal-testing/tiny-random-t5 text encoder has some non-determinism in the `save_load` tests. class IFPipelineTesterMixin: def _get_dummy_components(self): torch.manual_seed(0) text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) unet = UNet2DConditionModel( sample_size=32, layers_per_block=1, block_out_channels=[32, 64], down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ], mid_block_type="UNetMidBlock2DSimpleCrossAttn", up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"], in_channels=3, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type="text", addition_embed_type_num_heads=2, cross_attention_norm="group_norm", resnet_time_scale_shift="scale_shift", act_fn="gelu", ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) scheduler = DDPMScheduler( num_train_timesteps=1000, beta_schedule="squaredcos_cap_v2", beta_start=0.0001, beta_end=0.02, thresholding=True, dynamic_thresholding_ratio=0.95, sample_max_value=1.0, prediction_type="epsilon", variance_type="learned_range", ) torch.manual_seed(0) watermarker = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _get_superresolution_dummy_components(self): torch.manual_seed(0) text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) unet = UNet2DConditionModel( sample_size=32, layers_per_block=[1, 2], block_out_channels=[32, 64], down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ], mid_block_type="UNetMidBlock2DSimpleCrossAttn", up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"], in_channels=6, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type="text", addition_embed_type_num_heads=2, cross_attention_norm="group_norm", resnet_time_scale_shift="scale_shift", act_fn="gelu", class_embed_type="timestep", mid_block_scale_factor=1.414, time_embedding_act_fn="gelu", time_embedding_dim=32, ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) scheduler = DDPMScheduler( num_train_timesteps=1000, beta_schedule="squaredcos_cap_v2", beta_start=0.0001, beta_end=0.02, thresholding=True, dynamic_thresholding_ratio=0.95, sample_max_value=1.0, prediction_type="epsilon", variance_type="learned_range", ) torch.manual_seed(0) image_noising_scheduler = DDPMScheduler( num_train_timesteps=1000, beta_schedule="squaredcos_cap_v2", beta_start=0.0001, beta_end=0.02, ) torch.manual_seed(0) watermarker = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } # this test is modified from the base class because if pipelines set the text encoder # as optional with the intention that the user is allowed to encode the prompt once # and then pass the embeddings directly to the pipeline. The base class test uses # the unmodified arguments from `self.get_dummy_inputs` which will pass the unencoded # prompt to the pipeline when the text encoder is set to None, throwing an error. # So we make the test reflect the intended usage of setting the text encoder to None. def _test_save_load_optional_components(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) prompt = inputs["prompt"] generator = inputs["generator"] num_inference_steps = inputs["num_inference_steps"] output_type = inputs["output_type"] if "image" in inputs: image = inputs["image"] else: image = None if "mask_image" in inputs: mask_image = inputs["mask_image"] else: mask_image = None if "original_image" in inputs: original_image = inputs["original_image"] else: original_image = None prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt) # inputs with prompt converted to embeddings inputs = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: inputs["image"] = image if mask_image is not None: inputs["mask_image"] = mask_image if original_image is not None: inputs["original_image"] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(pipe, optional_component, None) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(pipe_loaded, optional_component) is None, f"`{optional_component}` did not stay set to None after loading.", ) inputs = self.get_dummy_inputs(torch_device) generator = inputs["generator"] num_inference_steps = inputs["num_inference_steps"] output_type = inputs["output_type"] # inputs with prompt converted to embeddings inputs = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: inputs["image"] = image if mask_image is not None: inputs["mask_image"] = mask_image if original_image is not None: inputs["original_image"] = original_image output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() self.assertLess(max_diff, 1e-4) # Modified from `PipelineTesterMixin` to set the attn processor as it's not serialized. # This should be handled in the base test and then this method can be removed. def _test_save_load_local(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() self.assertLess(max_diff, 1e-4)
0
hf_public_repos/diffusers/tests/pipelines
hf_public_repos/diffusers/tests/pipelines/deepfloyd_if/test_if.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import torch from diffusers import ( IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase): pipeline_class = IFPipeline params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} def get_dummy_components(self): return self._get_dummy_components() def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def test_save_load_optional_components(self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") def test_save_load_float16(self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_float16(expected_max_diff=1e-1) def test_attention_slicing_forward_pass(self): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def test_save_load_local(self): self._test_save_load_local() def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class IFPipelineSlowTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_all(self): # if pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) pipe_2 = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.float16, text_encoder=None, tokenizer=None ) # pre compute text embeddings and remove T5 to save memory pipe_1.text_encoder.to("cuda") prompt_embeds, negative_prompt_embeds = pipe_1.encode_prompt("anime turtle", device="cuda") del pipe_1.tokenizer del pipe_1.text_encoder gc.collect() pipe_1.tokenizer = None pipe_1.text_encoder = None pipe_1.enable_model_cpu_offload() pipe_2.enable_model_cpu_offload() pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) pipe_1.remove_all_hooks() pipe_2.remove_all_hooks() # img2img pipe_1 = IFImg2ImgPipeline(**pipe_1.components) pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components) pipe_1.enable_model_cpu_offload() pipe_2.enable_model_cpu_offload() pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_img2img(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) pipe_1.remove_all_hooks() pipe_2.remove_all_hooks() # inpainting pipe_1 = IFInpaintingPipeline(**pipe_1.components) pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components) pipe_1.enable_model_cpu_offload() pipe_2.enable_model_cpu_offload() pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) def _test_if(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): # pipeline 1 _start_torch_memory_measurement() generator = torch.Generator(device="cpu").manual_seed(0) output = pipe_1( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=2, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (64, 64, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(image, expected_image) # pipeline 2 _start_torch_memory_measurement() generator = torch.Generator(device="cpu").manual_seed(0) image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) output = pipe_2( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=image, generator=generator, num_inference_steps=2, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(image, expected_image) def _test_if_img2img(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): # pipeline 1 _start_torch_memory_measurement() image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) generator = torch.Generator(device="cpu").manual_seed(0) output = pipe_1( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=image, num_inference_steps=2, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (64, 64, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(image, expected_image) # pipeline 2 _start_torch_memory_measurement() generator = torch.Generator(device="cpu").manual_seed(0) original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device) image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) output = pipe_2( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=image, original_image=original_image, generator=generator, num_inference_steps=2, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(image, expected_image) def _test_if_inpainting(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): # pipeline 1 _start_torch_memory_measurement() image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) mask_image = floats_tensor((1, 3, 64, 64), rng=random.Random(1)).to(torch_device) generator = torch.Generator(device="cpu").manual_seed(0) output = pipe_1( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=image, mask_image=mask_image, num_inference_steps=2, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (64, 64, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(image, expected_image) # pipeline 2 _start_torch_memory_measurement() generator = torch.Generator(device="cpu").manual_seed(0) image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device) mask_image = floats_tensor((1, 3, 256, 256), rng=random.Random(1)).to(torch_device) output = pipe_2( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=image, mask_image=mask_image, original_image=original_image, generator=generator, num_inference_steps=2, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(image, expected_image) def _start_torch_memory_measurement(): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
0