text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
stable
tokenizers/tokenizers/rust-toolchain/0
{ "file_path": "tokenizers/tokenizers/rust-toolchain", "repo_id": "tokenizers", "token_count": 2 }
218
//! Popular tokenizer models. pub mod bpe; pub mod unigram; pub mod wordlevel; pub mod wordpiece; use std::collections::HashMap; use std::path::{Path, PathBuf}; use serde::{Deserialize, Serialize, Serializer}; use crate::models::bpe::{BpeTrainer, BPE}; use crate::models::unigram::{Unigram, UnigramTrainer}; use crate::models::wordlevel::{WordLevel, WordLevelTrainer}; use crate::models::wordpiece::{WordPiece, WordPieceTrainer}; use crate::{AddedToken, Model, Result, Token, Trainer}; /// Wraps a vocab mapping (ID -> token) to a struct that will be serialized in order /// of token ID, smallest to largest. struct OrderedVocabIter<'a> { vocab_r: &'a HashMap<u32, String>, } impl<'a> OrderedVocabIter<'a> { fn new(vocab_r: &'a HashMap<u32, String>) -> Self { Self { vocab_r } } } impl<'a> Serialize for OrderedVocabIter<'a> { fn serialize<S>(&self, serializer: S) -> std::result::Result<S::Ok, S::Error> where S: Serializer, { // There could be holes so max + 1 is more correct than vocab_r.len() let mut holes = vec![]; let result = if let Some(max) = self.vocab_r.iter().map(|(key, _)| key).max() { let iter = (0..*max + 1).filter_map(|i| { if let Some(token) = self.vocab_r.get(&i) { Some((token, i)) } else { holes.push(i); None } }); serializer.collect_map(iter) } else { serializer.collect_map(std::iter::empty::<(&str, u32)>()) }; if !holes.is_empty() { warn!("The OrderedVocab you are attempting to save contains holes for indices {:?}, your vocabulary could be corrupted !", holes); println!("The OrderedVocab you are attempting to save contains holes for indices {:?}, your vocabulary could be corrupted !", holes); } result } } #[derive(Deserialize, Serialize, Debug, PartialEq, Clone)] #[serde(untagged)] pub enum ModelWrapper { BPE(BPE), // WordPiece must stay before WordLevel here for deserialization (for retrocompatibility // with the versions not including the "type"), since WordLevel is a subset of WordPiece WordPiece(WordPiece), WordLevel(WordLevel), Unigram(Unigram), } impl_enum_from!(WordLevel, ModelWrapper, WordLevel); impl_enum_from!(WordPiece, ModelWrapper, WordPiece); impl_enum_from!(BPE, ModelWrapper, BPE); impl_enum_from!(Unigram, ModelWrapper, Unigram); impl Model for ModelWrapper { type Trainer = TrainerWrapper; fn tokenize(&self, tokens: &str) -> Result<Vec<Token>> { match self { Self::WordLevel(t) => t.tokenize(tokens), Self::WordPiece(t) => t.tokenize(tokens), Self::BPE(t) => t.tokenize(tokens), Self::Unigram(t) => t.tokenize(tokens), } } fn token_to_id(&self, token: &str) -> Option<u32> { match self { Self::WordLevel(t) => t.token_to_id(token), Self::WordPiece(t) => t.token_to_id(token), Self::BPE(t) => t.token_to_id(token), Self::Unigram(t) => t.token_to_id(token), } } fn id_to_token(&self, id: u32) -> Option<String> { match self { Self::WordLevel(t) => t.id_to_token(id), Self::WordPiece(t) => t.id_to_token(id), Self::BPE(t) => t.id_to_token(id), Self::Unigram(t) => t.id_to_token(id), } } fn get_vocab(&self) -> HashMap<String, u32> { match self { Self::WordLevel(t) => t.get_vocab(), Self::WordPiece(t) => t.get_vocab(), Self::BPE(t) => t.get_vocab(), Self::Unigram(t) => t.get_vocab(), } } fn get_vocab_size(&self) -> usize { match self { Self::WordLevel(t) => t.get_vocab_size(), Self::WordPiece(t) => t.get_vocab_size(), Self::BPE(t) => t.get_vocab_size(), Self::Unigram(t) => t.get_vocab_size(), } } fn save(&self, folder: &Path, name: Option<&str>) -> Result<Vec<PathBuf>> { match self { Self::WordLevel(t) => t.save(folder, name), Self::WordPiece(t) => t.save(folder, name), Self::BPE(t) => t.save(folder, name), Self::Unigram(t) => t.save(folder, name), } } fn get_trainer(&self) -> Self::Trainer { match self { Self::WordLevel(t) => t.get_trainer().into(), Self::WordPiece(t) => t.get_trainer().into(), Self::BPE(t) => t.get_trainer().into(), Self::Unigram(t) => t.get_trainer().into(), } } } #[derive(Clone, Serialize, Deserialize)] pub enum TrainerWrapper { BpeTrainer(BpeTrainer), WordPieceTrainer(WordPieceTrainer), WordLevelTrainer(WordLevelTrainer), UnigramTrainer(UnigramTrainer), } impl Trainer for TrainerWrapper { type Model = ModelWrapper; fn should_show_progress(&self) -> bool { match self { Self::BpeTrainer(bpe) => bpe.should_show_progress(), Self::WordPieceTrainer(wpt) => wpt.should_show_progress(), Self::WordLevelTrainer(wpt) => wpt.should_show_progress(), Self::UnigramTrainer(wpt) => wpt.should_show_progress(), } } fn train(&self, model: &mut ModelWrapper) -> Result<Vec<AddedToken>> { match self { Self::BpeTrainer(t) => match model { ModelWrapper::BPE(bpe) => t.train(bpe), _ => Err("BpeTrainer can only train a BPE".into()), }, Self::WordPieceTrainer(t) => match model { ModelWrapper::WordPiece(wp) => t.train(wp), _ => Err("WordPieceTrainer can only train a WordPiece".into()), }, Self::WordLevelTrainer(t) => match model { ModelWrapper::WordLevel(wl) => t.train(wl), _ => Err("WordLevelTrainer can only train a WordLevel".into()), }, Self::UnigramTrainer(t) => match model { ModelWrapper::Unigram(u) => t.train(u), _ => Err("UnigramTrainer can only train a Unigram".into()), }, } } fn feed<I, S, F>(&mut self, iterator: I, process: F) -> Result<()> where I: Iterator<Item = S> + Send, S: AsRef<str> + Send, F: Fn(&str) -> Result<Vec<String>> + Sync, { match self { Self::BpeTrainer(bpe) => bpe.feed(iterator, process), Self::WordPieceTrainer(wpt) => wpt.feed(iterator, process), Self::WordLevelTrainer(wpt) => wpt.feed(iterator, process), Self::UnigramTrainer(wpt) => wpt.feed(iterator, process), } } } impl_enum_from!(BpeTrainer, TrainerWrapper, BpeTrainer); impl_enum_from!(WordPieceTrainer, TrainerWrapper, WordPieceTrainer); impl_enum_from!(UnigramTrainer, TrainerWrapper, UnigramTrainer); impl_enum_from!(WordLevelTrainer, TrainerWrapper, WordLevelTrainer); #[cfg(test)] mod tests { use super::*; #[test] fn trainer_wrapper_train_model_wrapper() { let trainer = TrainerWrapper::BpeTrainer(BpeTrainer::default()); let mut model = ModelWrapper::Unigram(Unigram::default()); let result = trainer.train(&mut model); assert!(result.is_err()); } #[test] fn incomplete_ordered_vocab() { let vocab_r: HashMap<u32, String> = HashMap::from([(0, "Hi".to_string()), (2, "There".to_string())]); let ordered = OrderedVocabIter::new(&vocab_r); let serialized = serde_json::to_string(&ordered).unwrap(); assert_eq!(serialized, "{\"Hi\":0,\"There\":2}"); } }
tokenizers/tokenizers/src/models/mod.rs/0
{ "file_path": "tokenizers/tokenizers/src/models/mod.rs", "repo_id": "tokenizers", "token_count": 3660 }
219
use crate::tokenizer::{NormalizedString, Normalizer, Result}; use serde::{Deserialize, Serialize}; #[derive(Clone, Debug, Deserialize, Serialize)] #[serde(tag = "type")] pub struct Prepend { pub prepend: String, } impl Prepend { pub fn new(prepend: String) -> Self { Self { prepend } } } impl Normalizer for Prepend { /// Strip the normalized string inplace fn normalize(&self, normalized: &mut NormalizedString) -> Result<()> { if !normalized.is_empty() { normalized.prepend(&self.prepend); } Ok(()) } } #[cfg(test)] mod tests { use super::*; #[test] fn test_prepend() { let original = "Hello"; let normalized = "▁Hello"; assert_ne!(original, normalized); let mut n = NormalizedString::from(original); let prepend = Prepend::new("▁".to_string()); prepend.normalize(&mut n).unwrap(); assert_eq!(&n.get(), &normalized); assert_eq!( n, NormalizedString::new( original.to_string(), normalized.to_string(), vec![ (0, 1), (0, 1), (0, 1), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5) ], 0 ) ); assert_eq!( n.alignments_original(), vec![(0, 4), (4, 5), (5, 6), (6, 7), (7, 8)] ); } }
tokenizers/tokenizers/src/normalizers/prepend.rs/0
{ "file_path": "tokenizers/tokenizers/src/normalizers/prepend.rs", "repo_id": "tokenizers", "token_count": 856 }
220
// Generated by modified Perl script at https://github.com/google/sentencepiece/blob/master/data/gen_unicode_scripts_code.pl // Unicode scripts : https://gist.github.com/Narsil/07556f26dc84a6baeff4d499e68d3cd2 // Rust adaptation : https://gist.github.com/Narsil/1df9fbbf5296a8d4d62de55dcb2fe700 #[derive(PartialEq, Debug, Clone, Copy, Eq)] pub enum Script { Any, Adlam, Ahom, AnatolianHieroglyphs, Arabic, Armenian, Avestan, Balinese, Bamum, BassaVah, Batak, Bengali, Bhaiksuki, Bopomofo, Brahmi, Braille, Buginese, Buhid, CanadianAboriginal, Carian, CaucasianAlbanian, Chakma, Cham, Cherokee, Common, Coptic, Cuneiform, Cypriot, Cyrillic, Deseret, Devanagari, Duployan, EgyptianHieroglyphs, Elbasan, Ethiopic, Georgian, Glagolitic, Gothic, Grantha, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hatran, Hebrew, Hiragana, ImperialAramaic, Inherited, InscriptionalPahlavi, InscriptionalParthian, Javanese, Kaithi, Kannada, Katakana, KayahLi, Kharoshthi, Khmer, Khojki, Khudawadi, Lao, Latin, Lepcha, Limbu, LinearA, LinearB, Lisu, Lycian, Lydian, Mahajani, Malayalam, Mandaic, Manichaean, Marchen, MeeteiMayek, MendeKikakui, MeroiticCursive, MeroiticHieroglyphs, Miao, Modi, Mongolian, Mro, Multani, Myanmar, Nabataean, NewTaiLue, Newa, Nko, Ogham, OlChiki, OldHungarian, OldItalic, OldNorthArabian, OldPermic, OldPersian, OldSouthArabian, OldTurkic, Oriya, Osage, Osmanya, PahawhHmong, Palmyrene, PauCinHau, PhagsPa, Phoenician, PsalterPahlavi, Rejang, Runic, Samaritan, Saurashtra, Sharada, Shavian, Siddham, SignWriting, Sinhala, SoraSompeng, Sundanese, SylotiNagri, Syriac, Tagalog, Tagbanwa, TaiLe, TaiTham, TaiViet, Takri, Tamil, Tangut, Telugu, Thaana, Thai, Tibetan, Tifinagh, Tirhuta, Ugaritic, Vai, WarangCiti, Yi, } pub fn get_script(c: char) -> Script { match c as u32 { 0x0000..=0x001F => Script::Common, 0x0020 => Script::Common, 0x0021..=0x0023 => Script::Common, 0x0024 => Script::Common, 0x0025..=0x0027 => Script::Common, 0x0028 => Script::Common, 0x0029 => Script::Common, 0x002A => Script::Common, 0x002B => Script::Common, 0x002C => Script::Common, 0x002D => Script::Common, 0x002E..=0x002F => Script::Common, 0x0030..=0x0039 => Script::Common, 0x003A..=0x003B => Script::Common, 0x003C..=0x003E => Script::Common, 0x003F..=0x0040 => Script::Common, 0x005B => Script::Common, 0x005C => Script::Common, 0x005D => Script::Common, 0x005E => Script::Common, 0x005F => Script::Common, 0x0060 => Script::Common, 0x007B => Script::Common, 0x007C => Script::Common, 0x007D => Script::Common, 0x007E => Script::Common, 0x007F..=0x009F => Script::Common, 0x00A0 => Script::Common, 0x00A1 => Script::Common, 0x00A2..=0x00A5 => Script::Common, 0x00A6 => Script::Common, 0x00A7 => Script::Common, 0x00A8 => Script::Common, 0x00A9 => Script::Common, 0x00AB => Script::Common, 0x00AC => Script::Common, 0x00AD => Script::Common, 0x00AE => Script::Common, 0x00AF => Script::Common, 0x00B0 => Script::Common, 0x00B1 => Script::Common, 0x00B2..=0x00B3 => Script::Common, 0x00B4 => Script::Common, 0x00B5 => Script::Common, 0x00B6..=0x00B7 => Script::Common, 0x00B8 => Script::Common, 0x00B9 => Script::Common, 0x00BB => Script::Common, 0x00BC..=0x00BE => Script::Common, 0x00BF => Script::Common, 0x00D7 => Script::Common, 0x00F7 => Script::Common, 0x02B9..=0x02C1 => Script::Common, 0x02C2..=0x02C5 => Script::Common, 0x02C6..=0x02D1 => Script::Common, 0x02D2..=0x02DF => Script::Common, 0x02E5..=0x02E9 => Script::Common, 0x02EC => Script::Common, 0x02ED => Script::Common, 0x02EE => Script::Common, 0x02EF..=0x02FF => Script::Common, 0x0374 => Script::Common, 0x037E => Script::Common, 0x0385 => Script::Common, 0x0387 => Script::Common, 0x0589 => Script::Common, 0x0605 => Script::Common, 0x060C => Script::Common, 0x061B => Script::Common, 0x061C => Script::Common, 0x061F => Script::Common, 0x0640 => Script::Common, 0x06DD => Script::Common, 0x08E2 => Script::Common, 0x0964..=0x0965 => Script::Common, 0x0E3F => Script::Common, 0x0FD5..=0x0FD8 => Script::Common, 0x10FB => Script::Common, 0x16EB..=0x16ED => Script::Common, 0x1735..=0x1736 => Script::Common, 0x1802..=0x1803 => Script::Common, 0x1805 => Script::Common, 0x1CD3 => Script::Common, 0x1CE1 => Script::Common, 0x1CE9..=0x1CEC => Script::Common, 0x1CEE..=0x1CF1 => Script::Common, 0x1CF2..=0x1CF3 => Script::Common, 0x1CF5..=0x1CF6 => Script::Common, 0x2000..=0x200A => Script::Common, 0x200B => Script::Common, 0x200E..=0x200F => Script::Common, 0x2010..=0x2015 => Script::Common, 0x2016..=0x2017 => Script::Common, 0x2018 => Script::Common, 0x2019 => Script::Common, 0x201A => Script::Common, 0x201B..=0x201C => Script::Common, 0x201D => Script::Common, 0x201E => Script::Common, 0x201F => Script::Common, 0x2020..=0x2027 => Script::Common, 0x2028 => Script::Common, 0x2029 => Script::Common, 0x202A..=0x202E => Script::Common, 0x202F => Script::Common, 0x2030..=0x2038 => Script::Common, 0x2039 => Script::Common, 0x203A => Script::Common, 0x203B..=0x203E => Script::Common, 0x203F..=0x2040 => Script::Common, 0x2041..=0x2043 => Script::Common, 0x2044 => Script::Common, 0x2045 => Script::Common, 0x2046 => Script::Common, 0x2047..=0x2051 => Script::Common, 0x2052 => Script::Common, 0x2053 => Script::Common, 0x2054 => Script::Common, 0x2055..=0x205E => Script::Common, 0x205F => Script::Common, 0x2060..=0x2064 => Script::Common, 0x2066..=0x206F => Script::Common, 0x2070 => Script::Common, 0x2074..=0x2079 => Script::Common, 0x207A..=0x207C => Script::Common, 0x207D => Script::Common, 0x207E => Script::Common, 0x2080..=0x2089 => Script::Common, 0x208A..=0x208C => Script::Common, 0x208D => Script::Common, 0x208E => Script::Common, 0x20A0..=0x20BE => Script::Common, 0x2100..=0x2101 => Script::Common, 0x2102 => Script::Common, 0x2103..=0x2106 => Script::Common, 0x2107 => Script::Common, 0x2108..=0x2109 => Script::Common, 0x210A..=0x2113 => Script::Common, 0x2114 => Script::Common, 0x2115 => Script::Common, 0x2116..=0x2117 => Script::Common, 0x2118 => Script::Common, 0x2119..=0x211D => Script::Common, 0x211E..=0x2123 => Script::Common, 0x2124 => Script::Common, 0x2125 => Script::Common, 0x2127 => Script::Common, 0x2128 => Script::Common, 0x2129 => Script::Common, 0x212C..=0x212D => Script::Common, 0x212E => Script::Common, 0x212F..=0x2131 => Script::Common, 0x2133..=0x2134 => Script::Common, 0x2135..=0x2138 => Script::Common, 0x2139 => Script::Common, 0x213A..=0x213B => Script::Common, 0x213C..=0x213F => Script::Common, 0x2140..=0x2144 => Script::Common, 0x2145..=0x2149 => Script::Common, 0x214A => Script::Common, 0x214B => Script::Common, 0x214C..=0x214D => Script::Common, 0x214F => Script::Common, 0x2150..=0x215F => Script::Common, 0x2189 => Script::Common, 0x218A..=0x218B => Script::Common, 0x2190..=0x2194 => Script::Common, 0x2195..=0x2199 => Script::Common, 0x219A..=0x219B => Script::Common, 0x219C..=0x219F => Script::Common, 0x21A0 => Script::Common, 0x21A1..=0x21A2 => Script::Common, 0x21A3 => Script::Common, 0x21A4..=0x21A5 => Script::Common, 0x21A6 => Script::Common, 0x21A7..=0x21AD => Script::Common, 0x21AE => Script::Common, 0x21AF..=0x21CD => Script::Common, 0x21CE..=0x21CF => Script::Common, 0x21D0..=0x21D1 => Script::Common, 0x21D2 => Script::Common, 0x21D3 => Script::Common, 0x21D4 => Script::Common, 0x21D5..=0x21F3 => Script::Common, 0x21F4..=0x22FF => Script::Common, 0x2300..=0x2307 => Script::Common, 0x2308 => Script::Common, 0x2309 => Script::Common, 0x230A => Script::Common, 0x230B => Script::Common, 0x230C..=0x231F => Script::Common, 0x2320..=0x2321 => Script::Common, 0x2322..=0x2328 => Script::Common, 0x2329 => Script::Common, 0x232A => Script::Common, 0x232B..=0x237B => Script::Common, 0x237C => Script::Common, 0x237D..=0x239A => Script::Common, 0x239B..=0x23B3 => Script::Common, 0x23B4..=0x23DB => Script::Common, 0x23DC..=0x23E1 => Script::Common, 0x23E2..=0x23FE => Script::Common, 0x2400..=0x2426 => Script::Common, 0x2440..=0x244A => Script::Common, 0x2460..=0x249B => Script::Common, 0x249C..=0x24E9 => Script::Common, 0x24EA..=0x24FF => Script::Common, 0x2500..=0x25B6 => Script::Common, 0x25B7 => Script::Common, 0x25B8..=0x25C0 => Script::Common, 0x25C1 => Script::Common, 0x25C2..=0x25F7 => Script::Common, 0x25F8..=0x25FF => Script::Common, 0x2600..=0x266E => Script::Common, 0x266F => Script::Common, 0x2670..=0x2767 => Script::Common, 0x2768 => Script::Common, 0x2769 => Script::Common, 0x276A => Script::Common, 0x276B => Script::Common, 0x276C => Script::Common, 0x276D => Script::Common, 0x276E => Script::Common, 0x276F => Script::Common, 0x2770 => Script::Common, 0x2771 => Script::Common, 0x2772 => Script::Common, 0x2773 => Script::Common, 0x2774 => Script::Common, 0x2775 => Script::Common, 0x2776..=0x2793 => Script::Common, 0x2794..=0x27BF => Script::Common, 0x27C0..=0x27C4 => Script::Common, 0x27C5 => Script::Common, 0x27C6 => Script::Common, 0x27C7..=0x27E5 => Script::Common, 0x27E6 => Script::Common, 0x27E7 => Script::Common, 0x27E8 => Script::Common, 0x27E9 => Script::Common, 0x27EA => Script::Common, 0x27EB => Script::Common, 0x27EC => Script::Common, 0x27ED => Script::Common, 0x27EE => Script::Common, 0x27EF => Script::Common, 0x27F0..=0x27FF => Script::Common, 0x2900..=0x2982 => Script::Common, 0x2983 => Script::Common, 0x2984 => Script::Common, 0x2985 => Script::Common, 0x2986 => Script::Common, 0x2987 => Script::Common, 0x2988 => Script::Common, 0x2989 => Script::Common, 0x298A => Script::Common, 0x298B => Script::Common, 0x298C => Script::Common, 0x298D => Script::Common, 0x298E => Script::Common, 0x298F => Script::Common, 0x2990 => Script::Common, 0x2991 => Script::Common, 0x2992 => Script::Common, 0x2993 => Script::Common, 0x2994 => Script::Common, 0x2995 => Script::Common, 0x2996 => Script::Common, 0x2997 => Script::Common, 0x2998 => Script::Common, 0x2999..=0x29D7 => Script::Common, 0x29D8 => Script::Common, 0x29D9 => Script::Common, 0x29DA => Script::Common, 0x29DB => Script::Common, 0x29DC..=0x29FB => Script::Common, 0x29FC => Script::Common, 0x29FD => Script::Common, 0x29FE..=0x2AFF => Script::Common, 0x2B00..=0x2B2F => Script::Common, 0x2B30..=0x2B44 => Script::Common, 0x2B45..=0x2B46 => Script::Common, 0x2B47..=0x2B4C => Script::Common, 0x2B4D..=0x2B73 => Script::Common, 0x2B76..=0x2B95 => Script::Common, 0x2B98..=0x2BB9 => Script::Common, 0x2BBD..=0x2BC8 => Script::Common, 0x2BCA..=0x2BD1 => Script::Common, 0x2BEC..=0x2BEF => Script::Common, 0x2E00..=0x2E01 => Script::Common, 0x2E02 => Script::Common, 0x2E03 => Script::Common, 0x2E04 => Script::Common, 0x2E05 => Script::Common, 0x2E06..=0x2E08 => Script::Common, 0x2E09 => Script::Common, 0x2E0A => Script::Common, 0x2E0B => Script::Common, 0x2E0C => Script::Common, 0x2E0D => Script::Common, 0x2E0E..=0x2E16 => Script::Common, 0x2E17 => Script::Common, 0x2E18..=0x2E19 => Script::Common, 0x2E1A => Script::Common, 0x2E1B => Script::Common, 0x2E1C => Script::Common, 0x2E1D => Script::Common, 0x2E1E..=0x2E1F => Script::Common, 0x2E20 => Script::Common, 0x2E21 => Script::Common, 0x2E22 => Script::Common, 0x2E23 => Script::Common, 0x2E24 => Script::Common, 0x2E25 => Script::Common, 0x2E26 => Script::Common, 0x2E27 => Script::Common, 0x2E28 => Script::Common, 0x2E29 => Script::Common, 0x2E2A..=0x2E2E => Script::Common, 0x2E2F => Script::Common, 0x2E30..=0x2E39 => Script::Common, 0x2E3A..=0x2E3B => Script::Common, 0x2E3C..=0x2E3F => Script::Common, 0x2E40 => Script::Common, 0x2E41 => Script::Common, 0x2E42 => Script::Common, 0x2E43..=0x2E44 => Script::Common, 0x2FF0..=0x2FFB => Script::Common, 0x3000 => Script::Common, 0x3001..=0x3003 => Script::Common, 0x3004 => Script::Common, 0x3006 => Script::Common, 0x3008 => Script::Common, 0x3009 => Script::Common, 0x300A => Script::Common, 0x300B => Script::Common, 0x300C => Script::Common, 0x300D => Script::Common, 0x300E => Script::Common, 0x300F => Script::Common, 0x3010 => Script::Common, 0x3011 => Script::Common, 0x3012..=0x3013 => Script::Common, 0x3014 => Script::Common, 0x3015 => Script::Common, 0x3016 => Script::Common, 0x3017 => Script::Common, 0x3018 => Script::Common, 0x3019 => Script::Common, 0x301A => Script::Common, 0x301B => Script::Common, 0x301C => Script::Common, 0x301D => Script::Common, 0x301E..=0x301F => Script::Common, 0x3020 => Script::Common, 0x3030 => Script::Common, 0x3031..=0x3035 => Script::Common, 0x3036..=0x3037 => Script::Common, 0x303C => Script::Common, 0x303D => Script::Common, 0x303E..=0x303F => Script::Common, 0x309B..=0x309C => Script::Common, 0x30A0 => Script::Common, 0x30FB => Script::Common, 0x30FC => Script::Common, 0x3190..=0x3191 => Script::Common, 0x3192..=0x3195 => Script::Common, 0x3196..=0x319F => Script::Common, 0x31C0..=0x31E3 => Script::Common, 0x3220..=0x3229 => Script::Common, 0x322A..=0x3247 => Script::Common, 0x3248..=0x324F => Script::Common, 0x3250 => Script::Common, 0x3251..=0x325F => Script::Common, 0x327F => Script::Common, 0x3280..=0x3289 => Script::Common, 0x328A..=0x32B0 => Script::Common, 0x32B1..=0x32BF => Script::Common, 0x32C0..=0x32CF => Script::Common, 0x3358..=0x33FF => Script::Common, 0x4DC0..=0x4DFF => Script::Common, 0xA700..=0xA716 => Script::Common, 0xA717..=0xA71F => Script::Common, 0xA720..=0xA721 => Script::Common, 0xA788 => Script::Common, 0xA789..=0xA78A => Script::Common, 0xA830..=0xA835 => Script::Common, 0xA836..=0xA837 => Script::Common, 0xA838 => Script::Common, 0xA839 => Script::Common, 0xA92E => Script::Common, 0xA9CF => Script::Common, 0xAB5B => Script::Common, 0xFD3E => Script::Common, 0xFD3F => Script::Common, 0xFE10..=0xFE16 => Script::Common, 0xFE17 => Script::Common, 0xFE18 => Script::Common, 0xFE19 => Script::Common, 0xFE30 => Script::Common, 0xFE31..=0xFE32 => Script::Common, 0xFE33..=0xFE34 => Script::Common, 0xFE35 => Script::Common, 0xFE36 => Script::Common, 0xFE37 => Script::Common, 0xFE38 => Script::Common, 0xFE39 => Script::Common, 0xFE3A => Script::Common, 0xFE3B => Script::Common, 0xFE3C => Script::Common, 0xFE3D => Script::Common, 0xFE3E => Script::Common, 0xFE3F => Script::Common, 0xFE40 => Script::Common, 0xFE41 => Script::Common, 0xFE42 => Script::Common, 0xFE43 => Script::Common, 0xFE44 => Script::Common, 0xFE45..=0xFE46 => Script::Common, 0xFE47 => Script::Common, 0xFE48 => Script::Common, 0xFE49..=0xFE4C => Script::Common, 0xFE4D..=0xFE4F => Script::Common, 0xFE50..=0xFE52 => Script::Common, 0xFE54..=0xFE57 => Script::Common, 0xFE58 => Script::Common, 0xFE59 => Script::Common, 0xFE5A => Script::Common, 0xFE5B => Script::Common, 0xFE5C => Script::Common, 0xFE5D => Script::Common, 0xFE5E => Script::Common, 0xFE5F..=0xFE61 => Script::Common, 0xFE62 => Script::Common, 0xFE63 => Script::Common, 0xFE64..=0xFE66 => Script::Common, 0xFE68 => Script::Common, 0xFE69 => Script::Common, 0xFE6A..=0xFE6B => Script::Common, 0xFEFF => Script::Common, 0xFF01..=0xFF03 => Script::Common, 0xFF04 => Script::Common, 0xFF05..=0xFF07 => Script::Common, 0xFF08 => Script::Common, 0xFF09 => Script::Common, 0xFF0A => Script::Common, 0xFF0B => Script::Common, 0xFF0C => Script::Common, 0xFF0D => Script::Common, 0xFF0E..=0xFF0F => Script::Common, 0xFF10..=0xFF19 => Script::Common, 0xFF1A..=0xFF1B => Script::Common, 0xFF1C..=0xFF1E => Script::Common, 0xFF1F..=0xFF20 => Script::Common, 0xFF3B => Script::Common, 0xFF3C => Script::Common, 0xFF3D => Script::Common, 0xFF3E => Script::Common, 0xFF3F => Script::Common, 0xFF40 => Script::Common, 0xFF5B => Script::Common, 0xFF5C => Script::Common, 0xFF5D => Script::Common, 0xFF5E => Script::Common, 0xFF5F => Script::Common, 0xFF60 => Script::Common, 0xFF61 => Script::Common, 0xFF62 => Script::Common, 0xFF63 => Script::Common, 0xFF64..=0xFF65 => Script::Common, 0xFF70 => Script::Common, 0xFF9E..=0xFF9F => Script::Common, 0xFFE0..=0xFFE1 => Script::Common, 0xFFE2 => Script::Common, 0xFFE3 => Script::Common, 0xFFE4 => Script::Common, 0xFFE5..=0xFFE6 => Script::Common, 0xFFE8 => Script::Common, 0xFFE9..=0xFFEC => Script::Common, 0xFFED..=0xFFEE => Script::Common, 0xFFF9..=0xFFFB => Script::Common, 0xFFFC..=0xFFFD => Script::Common, 0x10100..=0x10102 => Script::Common, 0x10107..=0x10133 => Script::Common, 0x10137..=0x1013F => Script::Common, 0x10190..=0x1019B => Script::Common, 0x101D0..=0x101FC => Script::Common, 0x102E1..=0x102FB => Script::Common, 0x1BCA0..=0x1BCA3 => Script::Common, 0x1D000..=0x1D0F5 => Script::Common, 0x1D100..=0x1D126 => Script::Common, 0x1D129..=0x1D164 => Script::Common, 0x1D165..=0x1D166 => Script::Common, 0x1D16A..=0x1D16C => Script::Common, 0x1D16D..=0x1D172 => Script::Common, 0x1D173..=0x1D17A => Script::Common, 0x1D183..=0x1D184 => Script::Common, 0x1D18C..=0x1D1A9 => Script::Common, 0x1D1AE..=0x1D1E8 => Script::Common, 0x1D300..=0x1D356 => Script::Common, 0x1D360..=0x1D371 => Script::Common, 0x1D400..=0x1D454 => Script::Common, 0x1D456..=0x1D49C => Script::Common, 0x1D49E..=0x1D49F => Script::Common, 0x1D4A2 => Script::Common, 0x1D4A5..=0x1D4A6 => Script::Common, 0x1D4A9..=0x1D4AC => Script::Common, 0x1D4AE..=0x1D4B9 => Script::Common, 0x1D4BB => Script::Common, 0x1D4BD..=0x1D4C3 => Script::Common, 0x1D4C5..=0x1D505 => Script::Common, 0x1D507..=0x1D50A => Script::Common, 0x1D50D..=0x1D514 => Script::Common, 0x1D516..=0x1D51C => Script::Common, 0x1D51E..=0x1D539 => Script::Common, 0x1D53B..=0x1D53E => Script::Common, 0x1D540..=0x1D544 => Script::Common, 0x1D546 => Script::Common, 0x1D54A..=0x1D550 => Script::Common, 0x1D552..=0x1D6A5 => Script::Common, 0x1D6A8..=0x1D6C0 => Script::Common, 0x1D6C1 => Script::Common, 0x1D6C2..=0x1D6DA => Script::Common, 0x1D6DB => Script::Common, 0x1D6DC..=0x1D6FA => Script::Common, 0x1D6FB => Script::Common, 0x1D6FC..=0x1D714 => Script::Common, 0x1D715 => Script::Common, 0x1D716..=0x1D734 => Script::Common, 0x1D735 => Script::Common, 0x1D736..=0x1D74E => Script::Common, 0x1D74F => Script::Common, 0x1D750..=0x1D76E => Script::Common, 0x1D76F => Script::Common, 0x1D770..=0x1D788 => Script::Common, 0x1D789 => Script::Common, 0x1D78A..=0x1D7A8 => Script::Common, 0x1D7A9 => Script::Common, 0x1D7AA..=0x1D7C2 => Script::Common, 0x1D7C3 => Script::Common, 0x1D7C4..=0x1D7CB => Script::Common, 0x1D7CE..=0x1D7FF => Script::Common, 0x1F000..=0x1F02B => Script::Common, 0x1F030..=0x1F093 => Script::Common, 0x1F0A0..=0x1F0AE => Script::Common, 0x1F0B1..=0x1F0BF => Script::Common, 0x1F0C1..=0x1F0CF => Script::Common, 0x1F0D1..=0x1F0F5 => Script::Common, 0x1F100..=0x1F10C => Script::Common, 0x1F110..=0x1F12E => Script::Common, 0x1F130..=0x1F16B => Script::Common, 0x1F170..=0x1F1AC => Script::Common, 0x1F1E6..=0x1F1FF => Script::Common, 0x1F201..=0x1F202 => Script::Common, 0x1F210..=0x1F23B => Script::Common, 0x1F240..=0x1F248 => Script::Common, 0x1F250..=0x1F251 => Script::Common, 0x1F300..=0x1F3FA => Script::Common, 0x1F3FB..=0x1F3FF => Script::Common, 0x1F400..=0x1F6D2 => Script::Common, 0x1F6E0..=0x1F6EC => Script::Common, 0x1F6F0..=0x1F6F6 => Script::Common, 0x1F700..=0x1F773 => Script::Common, 0x1F780..=0x1F7D4 => Script::Common, 0x1F800..=0x1F80B => Script::Common, 0x1F810..=0x1F847 => Script::Common, 0x1F850..=0x1F859 => Script::Common, 0x1F860..=0x1F887 => Script::Common, 0x1F890..=0x1F8AD => Script::Common, 0x1F910..=0x1F91E => Script::Common, 0x1F920..=0x1F927 => Script::Common, 0x1F930 => Script::Common, 0x1F933..=0x1F93E => Script::Common, 0x1F940..=0x1F94B => Script::Common, 0x1F950..=0x1F95E => Script::Common, 0x1F980..=0x1F991 => Script::Common, 0x1F9C0 => Script::Common, 0xE0001 => Script::Common, 0xE0020..=0xE007F => Script::Common, 0x0041..=0x005A => Script::Latin, 0x0061..=0x007A => Script::Latin, 0x00AA => Script::Latin, 0x00BA => Script::Latin, 0x00C0..=0x00D6 => Script::Latin, 0x00D8..=0x00F6 => Script::Latin, 0x00F8..=0x01BA => Script::Latin, 0x01BB => Script::Latin, 0x01BC..=0x01BF => Script::Latin, 0x01C0..=0x01C3 => Script::Latin, 0x01C4..=0x0293 => Script::Latin, 0x0294 => Script::Latin, 0x0295..=0x02AF => Script::Latin, 0x02B0..=0x02B8 => Script::Latin, 0x02E0..=0x02E4 => Script::Latin, 0x1D00..=0x1D25 => Script::Latin, 0x1D2C..=0x1D5C => Script::Latin, 0x1D62..=0x1D65 => Script::Latin, 0x1D6B..=0x1D77 => Script::Latin, 0x1D79..=0x1D9A => Script::Latin, 0x1D9B..=0x1DBE => Script::Latin, 0x1E00..=0x1EFF => Script::Latin, 0x2071 => Script::Latin, 0x207F => Script::Latin, 0x2090..=0x209C => Script::Latin, 0x212A..=0x212B => Script::Latin, 0x2132 => Script::Latin, 0x214E => Script::Latin, 0x2160..=0x2182 => Script::Latin, 0x2183..=0x2184 => Script::Latin, 0x2185..=0x2188 => Script::Latin, 0x2C60..=0x2C7B => Script::Latin, 0x2C7C..=0x2C7D => Script::Latin, 0x2C7E..=0x2C7F => Script::Latin, 0xA722..=0xA76F => Script::Latin, 0xA770 => Script::Latin, 0xA771..=0xA787 => Script::Latin, 0xA78B..=0xA78E => Script::Latin, 0xA78F => Script::Latin, 0xA790..=0xA7AE => Script::Latin, 0xA7B0..=0xA7B7 => Script::Latin, 0xA7F7 => Script::Latin, 0xA7F8..=0xA7F9 => Script::Latin, 0xA7FA => Script::Latin, 0xA7FB..=0xA7FF => Script::Latin, 0xAB30..=0xAB5A => Script::Latin, 0xAB5C..=0xAB5F => Script::Latin, 0xAB60..=0xAB64 => Script::Latin, 0xFB00..=0xFB06 => Script::Latin, 0xFF21..=0xFF3A => Script::Latin, 0xFF41..=0xFF5A => Script::Latin, 0x0370..=0x0373 => Script::Greek, 0x0375 => Script::Greek, 0x0376..=0x0377 => Script::Greek, 0x037A => Script::Greek, 0x037B..=0x037D => Script::Greek, 0x037F => Script::Greek, 0x0384 => Script::Greek, 0x0386 => Script::Greek, 0x0388..=0x038A => Script::Greek, 0x038C => Script::Greek, 0x038E..=0x03A1 => Script::Greek, 0x03A3..=0x03E1 => Script::Greek, 0x03F0..=0x03F5 => Script::Greek, 0x03F6 => Script::Greek, 0x03F7..=0x03FF => Script::Greek, 0x1D26..=0x1D2A => Script::Greek, 0x1D5D..=0x1D61 => Script::Greek, 0x1D66..=0x1D6A => Script::Greek, 0x1DBF => Script::Greek, 0x1F00..=0x1F15 => Script::Greek, 0x1F18..=0x1F1D => Script::Greek, 0x1F20..=0x1F45 => Script::Greek, 0x1F48..=0x1F4D => Script::Greek, 0x1F50..=0x1F57 => Script::Greek, 0x1F59 => Script::Greek, 0x1F5B => Script::Greek, 0x1F5D => Script::Greek, 0x1F5F..=0x1F7D => Script::Greek, 0x1F80..=0x1FB4 => Script::Greek, 0x1FB6..=0x1FBC => Script::Greek, 0x1FBD => Script::Greek, 0x1FBE => Script::Greek, 0x1FBF..=0x1FC1 => Script::Greek, 0x1FC2..=0x1FC4 => Script::Greek, 0x1FC6..=0x1FCC => Script::Greek, 0x1FCD..=0x1FCF => Script::Greek, 0x1FD0..=0x1FD3 => Script::Greek, 0x1FD6..=0x1FDB => Script::Greek, 0x1FDD..=0x1FDF => Script::Greek, 0x1FE0..=0x1FEC => Script::Greek, 0x1FED..=0x1FEF => Script::Greek, 0x1FF2..=0x1FF4 => Script::Greek, 0x1FF6..=0x1FFC => Script::Greek, 0x1FFD..=0x1FFE => Script::Greek, 0x2126 => Script::Greek, 0xAB65 => Script::Greek, 0x10140..=0x10174 => Script::Greek, 0x10175..=0x10178 => Script::Greek, 0x10179..=0x10189 => Script::Greek, 0x1018A..=0x1018B => Script::Greek, 0x1018C..=0x1018E => Script::Greek, 0x101A0 => Script::Greek, 0x1D200..=0x1D241 => Script::Greek, 0x1D242..=0x1D244 => Script::Greek, 0x1D245 => Script::Greek, 0x0400..=0x0481 => Script::Cyrillic, 0x0482 => Script::Cyrillic, 0x0483..=0x0484 => Script::Cyrillic, 0x0487 => Script::Cyrillic, 0x0488..=0x0489 => Script::Cyrillic, 0x048A..=0x052F => Script::Cyrillic, 0x1C80..=0x1C88 => Script::Cyrillic, 0x1D2B => Script::Cyrillic, 0x1D78 => Script::Cyrillic, 0x2DE0..=0x2DFF => Script::Cyrillic, 0xA640..=0xA66D => Script::Cyrillic, 0xA66E => Script::Cyrillic, 0xA66F => Script::Cyrillic, 0xA670..=0xA672 => Script::Cyrillic, 0xA673 => Script::Cyrillic, 0xA674..=0xA67D => Script::Cyrillic, 0xA67E => Script::Cyrillic, 0xA67F => Script::Cyrillic, 0xA680..=0xA69B => Script::Cyrillic, 0xA69C..=0xA69D => Script::Cyrillic, 0xA69E..=0xA69F => Script::Cyrillic, 0xFE2E..=0xFE2F => Script::Cyrillic, 0x0531..=0x0556 => Script::Armenian, 0x0559 => Script::Armenian, 0x055A..=0x055F => Script::Armenian, 0x0561..=0x0587 => Script::Armenian, 0x058A => Script::Armenian, 0x058D..=0x058E => Script::Armenian, 0x058F => Script::Armenian, 0xFB13..=0xFB17 => Script::Armenian, 0x0591..=0x05BD => Script::Hebrew, 0x05BE => Script::Hebrew, 0x05BF => Script::Hebrew, 0x05C0 => Script::Hebrew, 0x05C1..=0x05C2 => Script::Hebrew, 0x05C3 => Script::Hebrew, 0x05C4..=0x05C5 => Script::Hebrew, 0x05C6 => Script::Hebrew, 0x05C7 => Script::Hebrew, 0x05D0..=0x05EA => Script::Hebrew, 0x05F0..=0x05F2 => Script::Hebrew, 0x05F3..=0x05F4 => Script::Hebrew, 0xFB1D => Script::Hebrew, 0xFB1E => Script::Hebrew, 0xFB1F..=0xFB28 => Script::Hebrew, 0xFB29 => Script::Hebrew, 0xFB2A..=0xFB36 => Script::Hebrew, 0xFB38..=0xFB3C => Script::Hebrew, 0xFB3E => Script::Hebrew, 0xFB40..=0xFB41 => Script::Hebrew, 0xFB43..=0xFB44 => Script::Hebrew, 0xFB46..=0xFB4F => Script::Hebrew, 0x0600..=0x0604 => Script::Arabic, 0x0606..=0x0608 => Script::Arabic, 0x0609..=0x060A => Script::Arabic, 0x060B => Script::Arabic, 0x060D => Script::Arabic, 0x060E..=0x060F => Script::Arabic, 0x0610..=0x061A => Script::Arabic, 0x061E => Script::Arabic, 0x0620..=0x063F => Script::Arabic, 0x0641..=0x064A => Script::Arabic, 0x0656..=0x065F => Script::Arabic, 0x0660..=0x0669 => Script::Arabic, 0x066A..=0x066D => Script::Arabic, 0x066E..=0x066F => Script::Arabic, 0x0671..=0x06D3 => Script::Arabic, 0x06D4 => Script::Arabic, 0x06D5 => Script::Arabic, 0x06D6..=0x06DC => Script::Arabic, 0x06DE => Script::Arabic, 0x06DF..=0x06E4 => Script::Arabic, 0x06E5..=0x06E6 => Script::Arabic, 0x06E7..=0x06E8 => Script::Arabic, 0x06E9 => Script::Arabic, 0x06EA..=0x06ED => Script::Arabic, 0x06EE..=0x06EF => Script::Arabic, 0x06F0..=0x06F9 => Script::Arabic, 0x06FA..=0x06FC => Script::Arabic, 0x06FD..=0x06FE => Script::Arabic, 0x06FF => Script::Arabic, 0x0750..=0x077F => Script::Arabic, 0x08A0..=0x08B4 => Script::Arabic, 0x08B6..=0x08BD => Script::Arabic, 0x08D4..=0x08E1 => Script::Arabic, 0x08E3..=0x08FF => Script::Arabic, 0xFB50..=0xFBB1 => Script::Arabic, 0xFBB2..=0xFBC1 => Script::Arabic, 0xFBD3..=0xFD3D => Script::Arabic, 0xFD50..=0xFD8F => Script::Arabic, 0xFD92..=0xFDC7 => Script::Arabic, 0xFDF0..=0xFDFB => Script::Arabic, 0xFDFC => Script::Arabic, 0xFDFD => Script::Arabic, 0xFE70..=0xFE74 => Script::Arabic, 0xFE76..=0xFEFC => Script::Arabic, 0x10E60..=0x10E7E => Script::Arabic, 0x1EE00..=0x1EE03 => Script::Arabic, 0x1EE05..=0x1EE1F => Script::Arabic, 0x1EE21..=0x1EE22 => Script::Arabic, 0x1EE24 => Script::Arabic, 0x1EE27 => Script::Arabic, 0x1EE29..=0x1EE32 => Script::Arabic, 0x1EE34..=0x1EE37 => Script::Arabic, 0x1EE39 => Script::Arabic, 0x1EE3B => Script::Arabic, 0x1EE42 => Script::Arabic, 0x1EE47 => Script::Arabic, 0x1EE49 => Script::Arabic, 0x1EE4B => Script::Arabic, 0x1EE4D..=0x1EE4F => Script::Arabic, 0x1EE51..=0x1EE52 => Script::Arabic, 0x1EE54 => Script::Arabic, 0x1EE57 => Script::Arabic, 0x1EE59 => Script::Arabic, 0x1EE5B => Script::Arabic, 0x1EE5D => Script::Arabic, 0x1EE5F => Script::Arabic, 0x1EE61..=0x1EE62 => Script::Arabic, 0x1EE64 => Script::Arabic, 0x1EE67..=0x1EE6A => Script::Arabic, 0x1EE6C..=0x1EE72 => Script::Arabic, 0x1EE74..=0x1EE77 => Script::Arabic, 0x1EE79..=0x1EE7C => Script::Arabic, 0x1EE7E => Script::Arabic, 0x1EE80..=0x1EE89 => Script::Arabic, 0x1EE8B..=0x1EE9B => Script::Arabic, 0x1EEA1..=0x1EEA3 => Script::Arabic, 0x1EEA5..=0x1EEA9 => Script::Arabic, 0x1EEAB..=0x1EEBB => Script::Arabic, 0x1EEF0..=0x1EEF1 => Script::Arabic, 0x0700..=0x070D => Script::Syriac, 0x070F => Script::Syriac, 0x0710 => Script::Syriac, 0x0711 => Script::Syriac, 0x0712..=0x072F => Script::Syriac, 0x0730..=0x074A => Script::Syriac, 0x074D..=0x074F => Script::Syriac, 0x0780..=0x07A5 => Script::Thaana, 0x07A6..=0x07B0 => Script::Thaana, 0x07B1 => Script::Thaana, 0x0900..=0x0902 => Script::Devanagari, 0x0903 => Script::Devanagari, 0x0904..=0x0939 => Script::Devanagari, 0x093A => Script::Devanagari, 0x093B => Script::Devanagari, 0x093C => Script::Devanagari, 0x093D => Script::Devanagari, 0x093E..=0x0940 => Script::Devanagari, 0x0941..=0x0948 => Script::Devanagari, 0x0949..=0x094C => Script::Devanagari, 0x094D => Script::Devanagari, 0x094E..=0x094F => Script::Devanagari, 0x0950 => Script::Devanagari, 0x0953..=0x0957 => Script::Devanagari, 0x0958..=0x0961 => Script::Devanagari, 0x0962..=0x0963 => Script::Devanagari, 0x0966..=0x096F => Script::Devanagari, 0x0970 => Script::Devanagari, 0x0971 => Script::Devanagari, 0x0972..=0x097F => Script::Devanagari, 0xA8E0..=0xA8F1 => Script::Devanagari, 0xA8F2..=0xA8F7 => Script::Devanagari, 0xA8F8..=0xA8FA => Script::Devanagari, 0xA8FB => Script::Devanagari, 0xA8FC => Script::Devanagari, 0xA8FD => Script::Devanagari, 0x0980 => Script::Bengali, 0x0981 => Script::Bengali, 0x0982..=0x0983 => Script::Bengali, 0x0985..=0x098C => Script::Bengali, 0x098F..=0x0990 => Script::Bengali, 0x0993..=0x09A8 => Script::Bengali, 0x09AA..=0x09B0 => Script::Bengali, 0x09B2 => Script::Bengali, 0x09B6..=0x09B9 => Script::Bengali, 0x09BC => Script::Bengali, 0x09BD => Script::Bengali, 0x09BE..=0x09C0 => Script::Bengali, 0x09C1..=0x09C4 => Script::Bengali, 0x09C7..=0x09C8 => Script::Bengali, 0x09CB..=0x09CC => Script::Bengali, 0x09CD => Script::Bengali, 0x09CE => Script::Bengali, 0x09D7 => Script::Bengali, 0x09DC..=0x09DD => Script::Bengali, 0x09DF..=0x09E1 => Script::Bengali, 0x09E2..=0x09E3 => Script::Bengali, 0x09E6..=0x09EF => Script::Bengali, 0x09F0..=0x09F1 => Script::Bengali, 0x09F2..=0x09F3 => Script::Bengali, 0x09F4..=0x09F9 => Script::Bengali, 0x09FA => Script::Bengali, 0x09FB => Script::Bengali, 0x0A01..=0x0A02 => Script::Gurmukhi, 0x0A03 => Script::Gurmukhi, 0x0A05..=0x0A0A => Script::Gurmukhi, 0x0A0F..=0x0A10 => Script::Gurmukhi, 0x0A13..=0x0A28 => Script::Gurmukhi, 0x0A2A..=0x0A30 => Script::Gurmukhi, 0x0A32..=0x0A33 => Script::Gurmukhi, 0x0A35..=0x0A36 => Script::Gurmukhi, 0x0A38..=0x0A39 => Script::Gurmukhi, 0x0A3C => Script::Gurmukhi, 0x0A3E..=0x0A40 => Script::Gurmukhi, 0x0A41..=0x0A42 => Script::Gurmukhi, 0x0A47..=0x0A48 => Script::Gurmukhi, 0x0A4B..=0x0A4D => Script::Gurmukhi, 0x0A51 => Script::Gurmukhi, 0x0A59..=0x0A5C => Script::Gurmukhi, 0x0A5E => Script::Gurmukhi, 0x0A66..=0x0A6F => Script::Gurmukhi, 0x0A70..=0x0A71 => Script::Gurmukhi, 0x0A72..=0x0A74 => Script::Gurmukhi, 0x0A75 => Script::Gurmukhi, 0x0A81..=0x0A82 => Script::Gujarati, 0x0A83 => Script::Gujarati, 0x0A85..=0x0A8D => Script::Gujarati, 0x0A8F..=0x0A91 => Script::Gujarati, 0x0A93..=0x0AA8 => Script::Gujarati, 0x0AAA..=0x0AB0 => Script::Gujarati, 0x0AB2..=0x0AB3 => Script::Gujarati, 0x0AB5..=0x0AB9 => Script::Gujarati, 0x0ABC => Script::Gujarati, 0x0ABD => Script::Gujarati, 0x0ABE..=0x0AC0 => Script::Gujarati, 0x0AC1..=0x0AC5 => Script::Gujarati, 0x0AC7..=0x0AC8 => Script::Gujarati, 0x0AC9 => Script::Gujarati, 0x0ACB..=0x0ACC => Script::Gujarati, 0x0ACD => Script::Gujarati, 0x0AD0 => Script::Gujarati, 0x0AE0..=0x0AE1 => Script::Gujarati, 0x0AE2..=0x0AE3 => Script::Gujarati, 0x0AE6..=0x0AEF => Script::Gujarati, 0x0AF0 => Script::Gujarati, 0x0AF1 => Script::Gujarati, 0x0AF9 => Script::Gujarati, 0x0B01 => Script::Oriya, 0x0B02..=0x0B03 => Script::Oriya, 0x0B05..=0x0B0C => Script::Oriya, 0x0B0F..=0x0B10 => Script::Oriya, 0x0B13..=0x0B28 => Script::Oriya, 0x0B2A..=0x0B30 => Script::Oriya, 0x0B32..=0x0B33 => Script::Oriya, 0x0B35..=0x0B39 => Script::Oriya, 0x0B3C => Script::Oriya, 0x0B3D => Script::Oriya, 0x0B3E => Script::Oriya, 0x0B3F => Script::Oriya, 0x0B40 => Script::Oriya, 0x0B41..=0x0B44 => Script::Oriya, 0x0B47..=0x0B48 => Script::Oriya, 0x0B4B..=0x0B4C => Script::Oriya, 0x0B4D => Script::Oriya, 0x0B56 => Script::Oriya, 0x0B57 => Script::Oriya, 0x0B5C..=0x0B5D => Script::Oriya, 0x0B5F..=0x0B61 => Script::Oriya, 0x0B62..=0x0B63 => Script::Oriya, 0x0B66..=0x0B6F => Script::Oriya, 0x0B70 => Script::Oriya, 0x0B71 => Script::Oriya, 0x0B72..=0x0B77 => Script::Oriya, 0x0B82 => Script::Tamil, 0x0B83 => Script::Tamil, 0x0B85..=0x0B8A => Script::Tamil, 0x0B8E..=0x0B90 => Script::Tamil, 0x0B92..=0x0B95 => Script::Tamil, 0x0B99..=0x0B9A => Script::Tamil, 0x0B9C => Script::Tamil, 0x0B9E..=0x0B9F => Script::Tamil, 0x0BA3..=0x0BA4 => Script::Tamil, 0x0BA8..=0x0BAA => Script::Tamil, 0x0BAE..=0x0BB9 => Script::Tamil, 0x0BBE..=0x0BBF => Script::Tamil, 0x0BC0 => Script::Tamil, 0x0BC1..=0x0BC2 => Script::Tamil, 0x0BC6..=0x0BC8 => Script::Tamil, 0x0BCA..=0x0BCC => Script::Tamil, 0x0BCD => Script::Tamil, 0x0BD0 => Script::Tamil, 0x0BD7 => Script::Tamil, 0x0BE6..=0x0BEF => Script::Tamil, 0x0BF0..=0x0BF2 => Script::Tamil, 0x0BF3..=0x0BF8 => Script::Tamil, 0x0BF9 => Script::Tamil, 0x0BFA => Script::Tamil, 0x0C00 => Script::Telugu, 0x0C01..=0x0C03 => Script::Telugu, 0x0C05..=0x0C0C => Script::Telugu, 0x0C0E..=0x0C10 => Script::Telugu, 0x0C12..=0x0C28 => Script::Telugu, 0x0C2A..=0x0C39 => Script::Telugu, 0x0C3D => Script::Telugu, 0x0C3E..=0x0C40 => Script::Telugu, 0x0C41..=0x0C44 => Script::Telugu, 0x0C46..=0x0C48 => Script::Telugu, 0x0C4A..=0x0C4D => Script::Telugu, 0x0C55..=0x0C56 => Script::Telugu, 0x0C58..=0x0C5A => Script::Telugu, 0x0C60..=0x0C61 => Script::Telugu, 0x0C62..=0x0C63 => Script::Telugu, 0x0C66..=0x0C6F => Script::Telugu, 0x0C78..=0x0C7E => Script::Telugu, 0x0C7F => Script::Telugu, 0x0C80 => Script::Kannada, 0x0C81 => Script::Kannada, 0x0C82..=0x0C83 => Script::Kannada, 0x0C85..=0x0C8C => Script::Kannada, 0x0C8E..=0x0C90 => Script::Kannada, 0x0C92..=0x0CA8 => Script::Kannada, 0x0CAA..=0x0CB3 => Script::Kannada, 0x0CB5..=0x0CB9 => Script::Kannada, 0x0CBC => Script::Kannada, 0x0CBD => Script::Kannada, 0x0CBE => Script::Kannada, 0x0CBF => Script::Kannada, 0x0CC0..=0x0CC4 => Script::Kannada, 0x0CC6 => Script::Kannada, 0x0CC7..=0x0CC8 => Script::Kannada, 0x0CCA..=0x0CCB => Script::Kannada, 0x0CCC..=0x0CCD => Script::Kannada, 0x0CD5..=0x0CD6 => Script::Kannada, 0x0CDE => Script::Kannada, 0x0CE0..=0x0CE1 => Script::Kannada, 0x0CE2..=0x0CE3 => Script::Kannada, 0x0CE6..=0x0CEF => Script::Kannada, 0x0CF1..=0x0CF2 => Script::Kannada, 0x0D01 => Script::Malayalam, 0x0D02..=0x0D03 => Script::Malayalam, 0x0D05..=0x0D0C => Script::Malayalam, 0x0D0E..=0x0D10 => Script::Malayalam, 0x0D12..=0x0D3A => Script::Malayalam, 0x0D3D => Script::Malayalam, 0x0D3E..=0x0D40 => Script::Malayalam, 0x0D41..=0x0D44 => Script::Malayalam, 0x0D46..=0x0D48 => Script::Malayalam, 0x0D4A..=0x0D4C => Script::Malayalam, 0x0D4D => Script::Malayalam, 0x0D4E => Script::Malayalam, 0x0D4F => Script::Malayalam, 0x0D54..=0x0D56 => Script::Malayalam, 0x0D57 => Script::Malayalam, 0x0D58..=0x0D5E => Script::Malayalam, 0x0D5F..=0x0D61 => Script::Malayalam, 0x0D62..=0x0D63 => Script::Malayalam, 0x0D66..=0x0D6F => Script::Malayalam, 0x0D70..=0x0D78 => Script::Malayalam, 0x0D79 => Script::Malayalam, 0x0D7A..=0x0D7F => Script::Malayalam, 0x0D82..=0x0D83 => Script::Sinhala, 0x0D85..=0x0D96 => Script::Sinhala, 0x0D9A..=0x0DB1 => Script::Sinhala, 0x0DB3..=0x0DBB => Script::Sinhala, 0x0DBD => Script::Sinhala, 0x0DC0..=0x0DC6 => Script::Sinhala, 0x0DCA => Script::Sinhala, 0x0DCF..=0x0DD1 => Script::Sinhala, 0x0DD2..=0x0DD4 => Script::Sinhala, 0x0DD6 => Script::Sinhala, 0x0DD8..=0x0DDF => Script::Sinhala, 0x0DE6..=0x0DEF => Script::Sinhala, 0x0DF2..=0x0DF3 => Script::Sinhala, 0x0DF4 => Script::Sinhala, 0x111E1..=0x111F4 => Script::Sinhala, 0x0E01..=0x0E30 => Script::Thai, 0x0E31 => Script::Thai, 0x0E32..=0x0E33 => Script::Thai, 0x0E34..=0x0E3A => Script::Thai, 0x0E40..=0x0E45 => Script::Thai, 0x0E46 => Script::Thai, 0x0E47..=0x0E4E => Script::Thai, 0x0E4F => Script::Thai, 0x0E50..=0x0E59 => Script::Thai, 0x0E5A..=0x0E5B => Script::Thai, 0x0E81..=0x0E82 => Script::Lao, 0x0E84 => Script::Lao, 0x0E87..=0x0E88 => Script::Lao, 0x0E8A => Script::Lao, 0x0E8D => Script::Lao, 0x0E94..=0x0E97 => Script::Lao, 0x0E99..=0x0E9F => Script::Lao, 0x0EA1..=0x0EA3 => Script::Lao, 0x0EA5 => Script::Lao, 0x0EA7 => Script::Lao, 0x0EAA..=0x0EAB => Script::Lao, 0x0EAD..=0x0EB0 => Script::Lao, 0x0EB1 => Script::Lao, 0x0EB2..=0x0EB3 => Script::Lao, 0x0EB4..=0x0EB9 => Script::Lao, 0x0EBB..=0x0EBC => Script::Lao, 0x0EBD => Script::Lao, 0x0EC0..=0x0EC4 => Script::Lao, 0x0EC6 => Script::Lao, 0x0EC8..=0x0ECD => Script::Lao, 0x0ED0..=0x0ED9 => Script::Lao, 0x0EDC..=0x0EDF => Script::Lao, 0x0F00 => Script::Tibetan, 0x0F01..=0x0F03 => Script::Tibetan, 0x0F04..=0x0F12 => Script::Tibetan, 0x0F13 => Script::Tibetan, 0x0F14 => Script::Tibetan, 0x0F15..=0x0F17 => Script::Tibetan, 0x0F18..=0x0F19 => Script::Tibetan, 0x0F1A..=0x0F1F => Script::Tibetan, 0x0F20..=0x0F29 => Script::Tibetan, 0x0F2A..=0x0F33 => Script::Tibetan, 0x0F34 => Script::Tibetan, 0x0F35 => Script::Tibetan, 0x0F36 => Script::Tibetan, 0x0F37 => Script::Tibetan, 0x0F38 => Script::Tibetan, 0x0F39 => Script::Tibetan, 0x0F3A => Script::Tibetan, 0x0F3B => Script::Tibetan, 0x0F3C => Script::Tibetan, 0x0F3D => Script::Tibetan, 0x0F3E..=0x0F3F => Script::Tibetan, 0x0F40..=0x0F47 => Script::Tibetan, 0x0F49..=0x0F6C => Script::Tibetan, 0x0F71..=0x0F7E => Script::Tibetan, 0x0F7F => Script::Tibetan, 0x0F80..=0x0F84 => Script::Tibetan, 0x0F85 => Script::Tibetan, 0x0F86..=0x0F87 => Script::Tibetan, 0x0F88..=0x0F8C => Script::Tibetan, 0x0F8D..=0x0F97 => Script::Tibetan, 0x0F99..=0x0FBC => Script::Tibetan, 0x0FBE..=0x0FC5 => Script::Tibetan, 0x0FC6 => Script::Tibetan, 0x0FC7..=0x0FCC => Script::Tibetan, 0x0FCE..=0x0FCF => Script::Tibetan, 0x0FD0..=0x0FD4 => Script::Tibetan, 0x0FD9..=0x0FDA => Script::Tibetan, 0x1000..=0x102A => Script::Myanmar, 0x102B..=0x102C => Script::Myanmar, 0x102D..=0x1030 => Script::Myanmar, 0x1031 => Script::Myanmar, 0x1032..=0x1037 => Script::Myanmar, 0x1038 => Script::Myanmar, 0x1039..=0x103A => Script::Myanmar, 0x103B..=0x103C => Script::Myanmar, 0x103D..=0x103E => Script::Myanmar, 0x103F => Script::Myanmar, 0x1040..=0x1049 => Script::Myanmar, 0x104A..=0x104F => Script::Myanmar, 0x1050..=0x1055 => Script::Myanmar, 0x1056..=0x1057 => Script::Myanmar, 0x1058..=0x1059 => Script::Myanmar, 0x105A..=0x105D => Script::Myanmar, 0x105E..=0x1060 => Script::Myanmar, 0x1061 => Script::Myanmar, 0x1062..=0x1064 => Script::Myanmar, 0x1065..=0x1066 => Script::Myanmar, 0x1067..=0x106D => Script::Myanmar, 0x106E..=0x1070 => Script::Myanmar, 0x1071..=0x1074 => Script::Myanmar, 0x1075..=0x1081 => Script::Myanmar, 0x1082 => Script::Myanmar, 0x1083..=0x1084 => Script::Myanmar, 0x1085..=0x1086 => Script::Myanmar, 0x1087..=0x108C => Script::Myanmar, 0x108D => Script::Myanmar, 0x108E => Script::Myanmar, 0x108F => Script::Myanmar, 0x1090..=0x1099 => Script::Myanmar, 0x109A..=0x109C => Script::Myanmar, 0x109D => Script::Myanmar, 0x109E..=0x109F => Script::Myanmar, 0xA9E0..=0xA9E4 => Script::Myanmar, 0xA9E5 => Script::Myanmar, 0xA9E6 => Script::Myanmar, 0xA9E7..=0xA9EF => Script::Myanmar, 0xA9F0..=0xA9F9 => Script::Myanmar, 0xA9FA..=0xA9FE => Script::Myanmar, 0xAA60..=0xAA6F => Script::Myanmar, 0xAA70 => Script::Myanmar, 0xAA71..=0xAA76 => Script::Myanmar, 0xAA77..=0xAA79 => Script::Myanmar, 0xAA7A => Script::Myanmar, 0xAA7B => Script::Myanmar, 0xAA7C => Script::Myanmar, 0xAA7D => Script::Myanmar, 0xAA7E..=0xAA7F => Script::Myanmar, 0x10A0..=0x10C5 => Script::Georgian, 0x10C7 => Script::Georgian, 0x10CD => Script::Georgian, 0x10D0..=0x10FA => Script::Georgian, 0x10FC => Script::Georgian, 0x10FD..=0x10FF => Script::Georgian, 0x2D00..=0x2D25 => Script::Georgian, 0x2D27 => Script::Georgian, 0x2D2D => Script::Georgian, 0x1100..=0x11FF => Script::Hangul, 0x302E..=0x302F => Script::Hangul, 0x3131..=0x318E => Script::Hangul, 0x3200..=0x321E => Script::Hangul, 0x3260..=0x327E => Script::Hangul, 0xA960..=0xA97C => Script::Hangul, 0xAC00..=0xD7A3 => Script::Hangul, 0xD7B0..=0xD7C6 => Script::Hangul, 0xD7CB..=0xD7FB => Script::Hangul, 0xFFA0..=0xFFBE => Script::Hangul, 0xFFC2..=0xFFC7 => Script::Hangul, 0xFFCA..=0xFFCF => Script::Hangul, 0xFFD2..=0xFFD7 => Script::Hangul, 0xFFDA..=0xFFDC => Script::Hangul, 0x1200..=0x1248 => Script::Ethiopic, 0x124A..=0x124D => Script::Ethiopic, 0x1250..=0x1256 => Script::Ethiopic, 0x1258 => Script::Ethiopic, 0x125A..=0x125D => Script::Ethiopic, 0x1260..=0x1288 => Script::Ethiopic, 0x128A..=0x128D => Script::Ethiopic, 0x1290..=0x12B0 => Script::Ethiopic, 0x12B2..=0x12B5 => Script::Ethiopic, 0x12B8..=0x12BE => Script::Ethiopic, 0x12C0 => Script::Ethiopic, 0x12C2..=0x12C5 => Script::Ethiopic, 0x12C8..=0x12D6 => Script::Ethiopic, 0x12D8..=0x1310 => Script::Ethiopic, 0x1312..=0x1315 => Script::Ethiopic, 0x1318..=0x135A => Script::Ethiopic, 0x135D..=0x135F => Script::Ethiopic, 0x1360..=0x1368 => Script::Ethiopic, 0x1369..=0x137C => Script::Ethiopic, 0x1380..=0x138F => Script::Ethiopic, 0x1390..=0x1399 => Script::Ethiopic, 0x2D80..=0x2D96 => Script::Ethiopic, 0x2DA0..=0x2DA6 => Script::Ethiopic, 0x2DA8..=0x2DAE => Script::Ethiopic, 0x2DB0..=0x2DB6 => Script::Ethiopic, 0x2DB8..=0x2DBE => Script::Ethiopic, 0x2DC0..=0x2DC6 => Script::Ethiopic, 0x2DC8..=0x2DCE => Script::Ethiopic, 0x2DD0..=0x2DD6 => Script::Ethiopic, 0x2DD8..=0x2DDE => Script::Ethiopic, 0xAB01..=0xAB06 => Script::Ethiopic, 0xAB09..=0xAB0E => Script::Ethiopic, 0xAB11..=0xAB16 => Script::Ethiopic, 0xAB20..=0xAB26 => Script::Ethiopic, 0xAB28..=0xAB2E => Script::Ethiopic, 0x13A0..=0x13F5 => Script::Cherokee, 0x13F8..=0x13FD => Script::Cherokee, 0xAB70..=0xABBF => Script::Cherokee, 0x1400 => Script::CanadianAboriginal, 0x1401..=0x166C => Script::CanadianAboriginal, 0x166D..=0x166E => Script::CanadianAboriginal, 0x166F..=0x167F => Script::CanadianAboriginal, 0x18B0..=0x18F5 => Script::CanadianAboriginal, 0x1680 => Script::Ogham, 0x1681..=0x169A => Script::Ogham, 0x169B => Script::Ogham, 0x169C => Script::Ogham, 0x16A0..=0x16EA => Script::Runic, 0x16EE..=0x16F0 => Script::Runic, 0x16F1..=0x16F8 => Script::Runic, 0x1780..=0x17B3 => Script::Khmer, 0x17B4..=0x17B5 => Script::Khmer, 0x17B6 => Script::Khmer, 0x17B7..=0x17BD => Script::Khmer, 0x17BE..=0x17C5 => Script::Khmer, 0x17C6 => Script::Khmer, 0x17C7..=0x17C8 => Script::Khmer, 0x17C9..=0x17D3 => Script::Khmer, 0x17D4..=0x17D6 => Script::Khmer, 0x17D7 => Script::Khmer, 0x17D8..=0x17DA => Script::Khmer, 0x17DB => Script::Khmer, 0x17DC => Script::Khmer, 0x17DD => Script::Khmer, 0x17E0..=0x17E9 => Script::Khmer, 0x17F0..=0x17F9 => Script::Khmer, 0x19E0..=0x19FF => Script::Khmer, 0x1800..=0x1801 => Script::Mongolian, 0x1804 => Script::Mongolian, 0x1806 => Script::Mongolian, 0x1807..=0x180A => Script::Mongolian, 0x180B..=0x180D => Script::Mongolian, 0x180E => Script::Mongolian, 0x1810..=0x1819 => Script::Mongolian, 0x1820..=0x1842 => Script::Mongolian, 0x1843 => Script::Mongolian, 0x1844..=0x1877 => Script::Mongolian, 0x1880..=0x1884 => Script::Mongolian, 0x1885..=0x1886 => Script::Mongolian, 0x1887..=0x18A8 => Script::Mongolian, 0x18A9 => Script::Mongolian, 0x18AA => Script::Mongolian, 0x11660..=0x1166C => Script::Mongolian, 0x3041..=0x3096 => Script::Hiragana, 0x309D..=0x309E => Script::Hiragana, 0x309F => Script::Hiragana, 0x1B001 => Script::Hiragana, 0x1F200 => Script::Hiragana, 0x30A1..=0x30FA => Script::Katakana, 0x30FD..=0x30FE => Script::Katakana, 0x30FF => Script::Katakana, 0x31F0..=0x31FF => Script::Katakana, 0x32D0..=0x32FE => Script::Katakana, 0x3300..=0x3357 => Script::Katakana, 0xFF66..=0xFF6F => Script::Katakana, 0xFF71..=0xFF9D => Script::Katakana, 0x1B000 => Script::Katakana, 0x02EA..=0x02EB => Script::Bopomofo, 0x3105..=0x312D => Script::Bopomofo, 0x31A0..=0x31BA => Script::Bopomofo, 0x2E80..=0x2E99 => Script::Han, 0x2E9B..=0x2EF3 => Script::Han, 0x2F00..=0x2FD5 => Script::Han, 0x3005 => Script::Han, 0x3007 => Script::Han, 0x3021..=0x3029 => Script::Han, 0x3038..=0x303A => Script::Han, 0x303B => Script::Han, 0x3400..=0x4DB5 => Script::Han, 0x4E00..=0x9FD5 => Script::Han, 0xF900..=0xFA6D => Script::Han, 0xFA70..=0xFAD9 => Script::Han, 0x20000..=0x2A6D6 => Script::Han, 0x2A700..=0x2B734 => Script::Han, 0x2B740..=0x2B81D => Script::Han, 0x2B820..=0x2CEA1 => Script::Han, 0x2F800..=0x2FA1D => Script::Han, 0xA000..=0xA014 => Script::Yi, 0xA015 => Script::Yi, 0xA016..=0xA48C => Script::Yi, 0xA490..=0xA4C6 => Script::Yi, 0x10300..=0x1031F => Script::OldItalic, 0x10320..=0x10323 => Script::OldItalic, 0x10330..=0x10340 => Script::Gothic, 0x10341 => Script::Gothic, 0x10342..=0x10349 => Script::Gothic, 0x1034A => Script::Gothic, 0x10400..=0x1044F => Script::Deseret, 0x0300..=0x036F => Script::Inherited, 0x0485..=0x0486 => Script::Inherited, 0x064B..=0x0655 => Script::Inherited, 0x0670 => Script::Inherited, 0x0951..=0x0952 => Script::Inherited, 0x1AB0..=0x1ABD => Script::Inherited, 0x1ABE => Script::Inherited, 0x1CD0..=0x1CD2 => Script::Inherited, 0x1CD4..=0x1CE0 => Script::Inherited, 0x1CE2..=0x1CE8 => Script::Inherited, 0x1CED => Script::Inherited, 0x1CF4 => Script::Inherited, 0x1CF8..=0x1CF9 => Script::Inherited, 0x1DC0..=0x1DF5 => Script::Inherited, 0x1DFB..=0x1DFF => Script::Inherited, 0x200C..=0x200D => Script::Inherited, 0x20D0..=0x20DC => Script::Inherited, 0x20DD..=0x20E0 => Script::Inherited, 0x20E1 => Script::Inherited, 0x20E2..=0x20E4 => Script::Inherited, 0x20E5..=0x20F0 => Script::Inherited, 0x302A..=0x302D => Script::Inherited, 0x3099..=0x309A => Script::Inherited, 0xFE00..=0xFE0F => Script::Inherited, 0xFE20..=0xFE2D => Script::Inherited, 0x101FD => Script::Inherited, 0x102E0 => Script::Inherited, 0x1D167..=0x1D169 => Script::Inherited, 0x1D17B..=0x1D182 => Script::Inherited, 0x1D185..=0x1D18B => Script::Inherited, 0x1D1AA..=0x1D1AD => Script::Inherited, 0xE0100..=0xE01EF => Script::Inherited, 0x1700..=0x170C => Script::Tagalog, 0x170E..=0x1711 => Script::Tagalog, 0x1712..=0x1714 => Script::Tagalog, 0x1720..=0x1731 => Script::Hanunoo, 0x1732..=0x1734 => Script::Hanunoo, 0x1740..=0x1751 => Script::Buhid, 0x1752..=0x1753 => Script::Buhid, 0x1760..=0x176C => Script::Tagbanwa, 0x176E..=0x1770 => Script::Tagbanwa, 0x1772..=0x1773 => Script::Tagbanwa, 0x1900..=0x191E => Script::Limbu, 0x1920..=0x1922 => Script::Limbu, 0x1923..=0x1926 => Script::Limbu, 0x1927..=0x1928 => Script::Limbu, 0x1929..=0x192B => Script::Limbu, 0x1930..=0x1931 => Script::Limbu, 0x1932 => Script::Limbu, 0x1933..=0x1938 => Script::Limbu, 0x1939..=0x193B => Script::Limbu, 0x1940 => Script::Limbu, 0x1944..=0x1945 => Script::Limbu, 0x1946..=0x194F => Script::Limbu, 0x1950..=0x196D => Script::TaiLe, 0x1970..=0x1974 => Script::TaiLe, 0x10000..=0x1000B => Script::LinearB, 0x1000D..=0x10026 => Script::LinearB, 0x10028..=0x1003A => Script::LinearB, 0x1003C..=0x1003D => Script::LinearB, 0x1003F..=0x1004D => Script::LinearB, 0x10050..=0x1005D => Script::LinearB, 0x10080..=0x100FA => Script::LinearB, 0x10380..=0x1039D => Script::Ugaritic, 0x1039F => Script::Ugaritic, 0x10450..=0x1047F => Script::Shavian, 0x10480..=0x1049D => Script::Osmanya, 0x104A0..=0x104A9 => Script::Osmanya, 0x10800..=0x10805 => Script::Cypriot, 0x10808 => Script::Cypriot, 0x1080A..=0x10835 => Script::Cypriot, 0x10837..=0x10838 => Script::Cypriot, 0x1083C => Script::Cypriot, 0x1083F => Script::Cypriot, 0x2800..=0x28FF => Script::Braille, 0x1A00..=0x1A16 => Script::Buginese, 0x1A17..=0x1A18 => Script::Buginese, 0x1A19..=0x1A1A => Script::Buginese, 0x1A1B => Script::Buginese, 0x1A1E..=0x1A1F => Script::Buginese, 0x03E2..=0x03EF => Script::Coptic, 0x2C80..=0x2CE4 => Script::Coptic, 0x2CE5..=0x2CEA => Script::Coptic, 0x2CEB..=0x2CEE => Script::Coptic, 0x2CEF..=0x2CF1 => Script::Coptic, 0x2CF2..=0x2CF3 => Script::Coptic, 0x2CF9..=0x2CFC => Script::Coptic, 0x2CFD => Script::Coptic, 0x2CFE..=0x2CFF => Script::Coptic, 0x1980..=0x19AB => Script::NewTaiLue, 0x19B0..=0x19C9 => Script::NewTaiLue, 0x19D0..=0x19D9 => Script::NewTaiLue, 0x19DA => Script::NewTaiLue, 0x19DE..=0x19DF => Script::NewTaiLue, 0x2C00..=0x2C2E => Script::Glagolitic, 0x2C30..=0x2C5E => Script::Glagolitic, 0x1E000..=0x1E006 => Script::Glagolitic, 0x1E008..=0x1E018 => Script::Glagolitic, 0x1E01B..=0x1E021 => Script::Glagolitic, 0x1E023..=0x1E024 => Script::Glagolitic, 0x1E026..=0x1E02A => Script::Glagolitic, 0x2D30..=0x2D67 => Script::Tifinagh, 0x2D6F => Script::Tifinagh, 0x2D70 => Script::Tifinagh, 0x2D7F => Script::Tifinagh, 0xA800..=0xA801 => Script::SylotiNagri, 0xA802 => Script::SylotiNagri, 0xA803..=0xA805 => Script::SylotiNagri, 0xA806 => Script::SylotiNagri, 0xA807..=0xA80A => Script::SylotiNagri, 0xA80B => Script::SylotiNagri, 0xA80C..=0xA822 => Script::SylotiNagri, 0xA823..=0xA824 => Script::SylotiNagri, 0xA825..=0xA826 => Script::SylotiNagri, 0xA827 => Script::SylotiNagri, 0xA828..=0xA82B => Script::SylotiNagri, 0x103A0..=0x103C3 => Script::OldPersian, 0x103C8..=0x103CF => Script::OldPersian, 0x103D0 => Script::OldPersian, 0x103D1..=0x103D5 => Script::OldPersian, 0x10A00 => Script::Kharoshthi, 0x10A01..=0x10A03 => Script::Kharoshthi, 0x10A05..=0x10A06 => Script::Kharoshthi, 0x10A0C..=0x10A0F => Script::Kharoshthi, 0x10A10..=0x10A13 => Script::Kharoshthi, 0x10A15..=0x10A17 => Script::Kharoshthi, 0x10A19..=0x10A33 => Script::Kharoshthi, 0x10A38..=0x10A3A => Script::Kharoshthi, 0x10A3F => Script::Kharoshthi, 0x10A40..=0x10A47 => Script::Kharoshthi, 0x10A50..=0x10A58 => Script::Kharoshthi, 0x1B00..=0x1B03 => Script::Balinese, 0x1B04 => Script::Balinese, 0x1B05..=0x1B33 => Script::Balinese, 0x1B34 => Script::Balinese, 0x1B35 => Script::Balinese, 0x1B36..=0x1B3A => Script::Balinese, 0x1B3B => Script::Balinese, 0x1B3C => Script::Balinese, 0x1B3D..=0x1B41 => Script::Balinese, 0x1B42 => Script::Balinese, 0x1B43..=0x1B44 => Script::Balinese, 0x1B45..=0x1B4B => Script::Balinese, 0x1B50..=0x1B59 => Script::Balinese, 0x1B5A..=0x1B60 => Script::Balinese, 0x1B61..=0x1B6A => Script::Balinese, 0x1B6B..=0x1B73 => Script::Balinese, 0x1B74..=0x1B7C => Script::Balinese, 0x12000..=0x12399 => Script::Cuneiform, 0x12400..=0x1246E => Script::Cuneiform, 0x12470..=0x12474 => Script::Cuneiform, 0x12480..=0x12543 => Script::Cuneiform, 0x10900..=0x10915 => Script::Phoenician, 0x10916..=0x1091B => Script::Phoenician, 0x1091F => Script::Phoenician, 0xA840..=0xA873 => Script::PhagsPa, 0xA874..=0xA877 => Script::PhagsPa, 0x07C0..=0x07C9 => Script::Nko, 0x07CA..=0x07EA => Script::Nko, 0x07EB..=0x07F3 => Script::Nko, 0x07F4..=0x07F5 => Script::Nko, 0x07F6 => Script::Nko, 0x07F7..=0x07F9 => Script::Nko, 0x07FA => Script::Nko, 0x1B80..=0x1B81 => Script::Sundanese, 0x1B82 => Script::Sundanese, 0x1B83..=0x1BA0 => Script::Sundanese, 0x1BA1 => Script::Sundanese, 0x1BA2..=0x1BA5 => Script::Sundanese, 0x1BA6..=0x1BA7 => Script::Sundanese, 0x1BA8..=0x1BA9 => Script::Sundanese, 0x1BAA => Script::Sundanese, 0x1BAB..=0x1BAD => Script::Sundanese, 0x1BAE..=0x1BAF => Script::Sundanese, 0x1BB0..=0x1BB9 => Script::Sundanese, 0x1BBA..=0x1BBF => Script::Sundanese, 0x1CC0..=0x1CC7 => Script::Sundanese, 0x1C00..=0x1C23 => Script::Lepcha, 0x1C24..=0x1C2B => Script::Lepcha, 0x1C2C..=0x1C33 => Script::Lepcha, 0x1C34..=0x1C35 => Script::Lepcha, 0x1C36..=0x1C37 => Script::Lepcha, 0x1C3B..=0x1C3F => Script::Lepcha, 0x1C40..=0x1C49 => Script::Lepcha, 0x1C4D..=0x1C4F => Script::Lepcha, 0x1C50..=0x1C59 => Script::OlChiki, 0x1C5A..=0x1C77 => Script::OlChiki, 0x1C78..=0x1C7D => Script::OlChiki, 0x1C7E..=0x1C7F => Script::OlChiki, 0xA500..=0xA60B => Script::Vai, 0xA60C => Script::Vai, 0xA60D..=0xA60F => Script::Vai, 0xA610..=0xA61F => Script::Vai, 0xA620..=0xA629 => Script::Vai, 0xA62A..=0xA62B => Script::Vai, 0xA880..=0xA881 => Script::Saurashtra, 0xA882..=0xA8B3 => Script::Saurashtra, 0xA8B4..=0xA8C3 => Script::Saurashtra, 0xA8C4..=0xA8C5 => Script::Saurashtra, 0xA8CE..=0xA8CF => Script::Saurashtra, 0xA8D0..=0xA8D9 => Script::Saurashtra, 0xA900..=0xA909 => Script::KayahLi, 0xA90A..=0xA925 => Script::KayahLi, 0xA926..=0xA92D => Script::KayahLi, 0xA92F => Script::KayahLi, 0xA930..=0xA946 => Script::Rejang, 0xA947..=0xA951 => Script::Rejang, 0xA952..=0xA953 => Script::Rejang, 0xA95F => Script::Rejang, 0x10280..=0x1029C => Script::Lycian, 0x102A0..=0x102D0 => Script::Carian, 0x10920..=0x10939 => Script::Lydian, 0x1093F => Script::Lydian, 0xAA00..=0xAA28 => Script::Cham, 0xAA29..=0xAA2E => Script::Cham, 0xAA2F..=0xAA30 => Script::Cham, 0xAA31..=0xAA32 => Script::Cham, 0xAA33..=0xAA34 => Script::Cham, 0xAA35..=0xAA36 => Script::Cham, 0xAA40..=0xAA42 => Script::Cham, 0xAA43 => Script::Cham, 0xAA44..=0xAA4B => Script::Cham, 0xAA4C => Script::Cham, 0xAA4D => Script::Cham, 0xAA50..=0xAA59 => Script::Cham, 0xAA5C..=0xAA5F => Script::Cham, 0x1A20..=0x1A54 => Script::TaiTham, 0x1A55 => Script::TaiTham, 0x1A56 => Script::TaiTham, 0x1A57 => Script::TaiTham, 0x1A58..=0x1A5E => Script::TaiTham, 0x1A60 => Script::TaiTham, 0x1A61 => Script::TaiTham, 0x1A62 => Script::TaiTham, 0x1A63..=0x1A64 => Script::TaiTham, 0x1A65..=0x1A6C => Script::TaiTham, 0x1A6D..=0x1A72 => Script::TaiTham, 0x1A73..=0x1A7C => Script::TaiTham, 0x1A7F => Script::TaiTham, 0x1A80..=0x1A89 => Script::TaiTham, 0x1A90..=0x1A99 => Script::TaiTham, 0x1AA0..=0x1AA6 => Script::TaiTham, 0x1AA7 => Script::TaiTham, 0x1AA8..=0x1AAD => Script::TaiTham, 0xAA80..=0xAAAF => Script::TaiViet, 0xAAB0 => Script::TaiViet, 0xAAB1 => Script::TaiViet, 0xAAB2..=0xAAB4 => Script::TaiViet, 0xAAB5..=0xAAB6 => Script::TaiViet, 0xAAB7..=0xAAB8 => Script::TaiViet, 0xAAB9..=0xAABD => Script::TaiViet, 0xAABE..=0xAABF => Script::TaiViet, 0xAAC0 => Script::TaiViet, 0xAAC1 => Script::TaiViet, 0xAAC2 => Script::TaiViet, 0xAADB..=0xAADC => Script::TaiViet, 0xAADD => Script::TaiViet, 0xAADE..=0xAADF => Script::TaiViet, 0x10B00..=0x10B35 => Script::Avestan, 0x10B39..=0x10B3F => Script::Avestan, 0x13000..=0x1342E => Script::EgyptianHieroglyphs, 0x0800..=0x0815 => Script::Samaritan, 0x0816..=0x0819 => Script::Samaritan, 0x081A => Script::Samaritan, 0x081B..=0x0823 => Script::Samaritan, 0x0824 => Script::Samaritan, 0x0825..=0x0827 => Script::Samaritan, 0x0828 => Script::Samaritan, 0x0829..=0x082D => Script::Samaritan, 0x0830..=0x083E => Script::Samaritan, 0xA4D0..=0xA4F7 => Script::Lisu, 0xA4F8..=0xA4FD => Script::Lisu, 0xA4FE..=0xA4FF => Script::Lisu, 0xA6A0..=0xA6E5 => Script::Bamum, 0xA6E6..=0xA6EF => Script::Bamum, 0xA6F0..=0xA6F1 => Script::Bamum, 0xA6F2..=0xA6F7 => Script::Bamum, 0x16800..=0x16A38 => Script::Bamum, 0xA980..=0xA982 => Script::Javanese, 0xA983 => Script::Javanese, 0xA984..=0xA9B2 => Script::Javanese, 0xA9B3 => Script::Javanese, 0xA9B4..=0xA9B5 => Script::Javanese, 0xA9B6..=0xA9B9 => Script::Javanese, 0xA9BA..=0xA9BB => Script::Javanese, 0xA9BC => Script::Javanese, 0xA9BD..=0xA9C0 => Script::Javanese, 0xA9C1..=0xA9CD => Script::Javanese, 0xA9D0..=0xA9D9 => Script::Javanese, 0xA9DE..=0xA9DF => Script::Javanese, 0xAAE0..=0xAAEA => Script::MeeteiMayek, 0xAAEB => Script::MeeteiMayek, 0xAAEC..=0xAAED => Script::MeeteiMayek, 0xAAEE..=0xAAEF => Script::MeeteiMayek, 0xAAF0..=0xAAF1 => Script::MeeteiMayek, 0xAAF2 => Script::MeeteiMayek, 0xAAF3..=0xAAF4 => Script::MeeteiMayek, 0xAAF5 => Script::MeeteiMayek, 0xAAF6 => Script::MeeteiMayek, 0xABC0..=0xABE2 => Script::MeeteiMayek, 0xABE3..=0xABE4 => Script::MeeteiMayek, 0xABE5 => Script::MeeteiMayek, 0xABE6..=0xABE7 => Script::MeeteiMayek, 0xABE8 => Script::MeeteiMayek, 0xABE9..=0xABEA => Script::MeeteiMayek, 0xABEB => Script::MeeteiMayek, 0xABEC => Script::MeeteiMayek, 0xABED => Script::MeeteiMayek, 0xABF0..=0xABF9 => Script::MeeteiMayek, 0x10840..=0x10855 => Script::ImperialAramaic, 0x10857 => Script::ImperialAramaic, 0x10858..=0x1085F => Script::ImperialAramaic, 0x10A60..=0x10A7C => Script::OldSouthArabian, 0x10A7D..=0x10A7E => Script::OldSouthArabian, 0x10A7F => Script::OldSouthArabian, 0x10B40..=0x10B55 => Script::InscriptionalParthian, 0x10B58..=0x10B5F => Script::InscriptionalParthian, 0x10B60..=0x10B72 => Script::InscriptionalPahlavi, 0x10B78..=0x10B7F => Script::InscriptionalPahlavi, 0x10C00..=0x10C48 => Script::OldTurkic, 0x11080..=0x11081 => Script::Kaithi, 0x11082 => Script::Kaithi, 0x11083..=0x110AF => Script::Kaithi, 0x110B0..=0x110B2 => Script::Kaithi, 0x110B3..=0x110B6 => Script::Kaithi, 0x110B7..=0x110B8 => Script::Kaithi, 0x110B9..=0x110BA => Script::Kaithi, 0x110BB..=0x110BC => Script::Kaithi, 0x110BD => Script::Kaithi, 0x110BE..=0x110C1 => Script::Kaithi, 0x1BC0..=0x1BE5 => Script::Batak, 0x1BE6 => Script::Batak, 0x1BE7 => Script::Batak, 0x1BE8..=0x1BE9 => Script::Batak, 0x1BEA..=0x1BEC => Script::Batak, 0x1BED => Script::Batak, 0x1BEE => Script::Batak, 0x1BEF..=0x1BF1 => Script::Batak, 0x1BF2..=0x1BF3 => Script::Batak, 0x1BFC..=0x1BFF => Script::Batak, 0x11000 => Script::Brahmi, 0x11001 => Script::Brahmi, 0x11002 => Script::Brahmi, 0x11003..=0x11037 => Script::Brahmi, 0x11038..=0x11046 => Script::Brahmi, 0x11047..=0x1104D => Script::Brahmi, 0x11052..=0x11065 => Script::Brahmi, 0x11066..=0x1106F => Script::Brahmi, 0x1107F => Script::Brahmi, 0x0840..=0x0858 => Script::Mandaic, 0x0859..=0x085B => Script::Mandaic, 0x085E => Script::Mandaic, 0x11100..=0x11102 => Script::Chakma, 0x11103..=0x11126 => Script::Chakma, 0x11127..=0x1112B => Script::Chakma, 0x1112C => Script::Chakma, 0x1112D..=0x11134 => Script::Chakma, 0x11136..=0x1113F => Script::Chakma, 0x11140..=0x11143 => Script::Chakma, 0x109A0..=0x109B7 => Script::MeroiticCursive, 0x109BC..=0x109BD => Script::MeroiticCursive, 0x109BE..=0x109BF => Script::MeroiticCursive, 0x109C0..=0x109CF => Script::MeroiticCursive, 0x109D2..=0x109FF => Script::MeroiticCursive, 0x10980..=0x1099F => Script::MeroiticHieroglyphs, 0x16F00..=0x16F44 => Script::Miao, 0x16F50 => Script::Miao, 0x16F51..=0x16F7E => Script::Miao, 0x16F8F..=0x16F92 => Script::Miao, 0x16F93..=0x16F9F => Script::Miao, 0x11180..=0x11181 => Script::Sharada, 0x11182 => Script::Sharada, 0x11183..=0x111B2 => Script::Sharada, 0x111B3..=0x111B5 => Script::Sharada, 0x111B6..=0x111BE => Script::Sharada, 0x111BF..=0x111C0 => Script::Sharada, 0x111C1..=0x111C4 => Script::Sharada, 0x111C5..=0x111C9 => Script::Sharada, 0x111CA..=0x111CC => Script::Sharada, 0x111CD => Script::Sharada, 0x111D0..=0x111D9 => Script::Sharada, 0x111DA => Script::Sharada, 0x111DB => Script::Sharada, 0x111DC => Script::Sharada, 0x111DD..=0x111DF => Script::Sharada, 0x110D0..=0x110E8 => Script::SoraSompeng, 0x110F0..=0x110F9 => Script::SoraSompeng, 0x11680..=0x116AA => Script::Takri, 0x116AB => Script::Takri, 0x116AC => Script::Takri, 0x116AD => Script::Takri, 0x116AE..=0x116AF => Script::Takri, 0x116B0..=0x116B5 => Script::Takri, 0x116B6 => Script::Takri, 0x116B7 => Script::Takri, 0x116C0..=0x116C9 => Script::Takri, 0x10530..=0x10563 => Script::CaucasianAlbanian, 0x1056F => Script::CaucasianAlbanian, 0x16AD0..=0x16AED => Script::BassaVah, 0x16AF0..=0x16AF4 => Script::BassaVah, 0x16AF5 => Script::BassaVah, 0x1BC00..=0x1BC6A => Script::Duployan, 0x1BC70..=0x1BC7C => Script::Duployan, 0x1BC80..=0x1BC88 => Script::Duployan, 0x1BC90..=0x1BC99 => Script::Duployan, 0x1BC9C => Script::Duployan, 0x1BC9D..=0x1BC9E => Script::Duployan, 0x1BC9F => Script::Duployan, 0x10500..=0x10527 => Script::Elbasan, 0x11300..=0x11301 => Script::Grantha, 0x11302..=0x11303 => Script::Grantha, 0x11305..=0x1130C => Script::Grantha, 0x1130F..=0x11310 => Script::Grantha, 0x11313..=0x11328 => Script::Grantha, 0x1132A..=0x11330 => Script::Grantha, 0x11332..=0x11333 => Script::Grantha, 0x11335..=0x11339 => Script::Grantha, 0x1133C => Script::Grantha, 0x1133D => Script::Grantha, 0x1133E..=0x1133F => Script::Grantha, 0x11340 => Script::Grantha, 0x11341..=0x11344 => Script::Grantha, 0x11347..=0x11348 => Script::Grantha, 0x1134B..=0x1134D => Script::Grantha, 0x11350 => Script::Grantha, 0x11357 => Script::Grantha, 0x1135D..=0x11361 => Script::Grantha, 0x11362..=0x11363 => Script::Grantha, 0x11366..=0x1136C => Script::Grantha, 0x11370..=0x11374 => Script::Grantha, 0x16B00..=0x16B2F => Script::PahawhHmong, 0x16B30..=0x16B36 => Script::PahawhHmong, 0x16B37..=0x16B3B => Script::PahawhHmong, 0x16B3C..=0x16B3F => Script::PahawhHmong, 0x16B40..=0x16B43 => Script::PahawhHmong, 0x16B44 => Script::PahawhHmong, 0x16B45 => Script::PahawhHmong, 0x16B50..=0x16B59 => Script::PahawhHmong, 0x16B5B..=0x16B61 => Script::PahawhHmong, 0x16B63..=0x16B77 => Script::PahawhHmong, 0x16B7D..=0x16B8F => Script::PahawhHmong, 0x11200..=0x11211 => Script::Khojki, 0x11213..=0x1122B => Script::Khojki, 0x1122C..=0x1122E => Script::Khojki, 0x1122F..=0x11231 => Script::Khojki, 0x11232..=0x11233 => Script::Khojki, 0x11234 => Script::Khojki, 0x11235 => Script::Khojki, 0x11236..=0x11237 => Script::Khojki, 0x11238..=0x1123D => Script::Khojki, 0x1123E => Script::Khojki, 0x10600..=0x10736 => Script::LinearA, 0x10740..=0x10755 => Script::LinearA, 0x10760..=0x10767 => Script::LinearA, 0x11150..=0x11172 => Script::Mahajani, 0x11173 => Script::Mahajani, 0x11174..=0x11175 => Script::Mahajani, 0x11176 => Script::Mahajani, 0x10AC0..=0x10AC7 => Script::Manichaean, 0x10AC8 => Script::Manichaean, 0x10AC9..=0x10AE4 => Script::Manichaean, 0x10AE5..=0x10AE6 => Script::Manichaean, 0x10AEB..=0x10AEF => Script::Manichaean, 0x10AF0..=0x10AF6 => Script::Manichaean, 0x1E800..=0x1E8C4 => Script::MendeKikakui, 0x1E8C7..=0x1E8CF => Script::MendeKikakui, 0x1E8D0..=0x1E8D6 => Script::MendeKikakui, 0x11600..=0x1162F => Script::Modi, 0x11630..=0x11632 => Script::Modi, 0x11633..=0x1163A => Script::Modi, 0x1163B..=0x1163C => Script::Modi, 0x1163D => Script::Modi, 0x1163E => Script::Modi, 0x1163F..=0x11640 => Script::Modi, 0x11641..=0x11643 => Script::Modi, 0x11644 => Script::Modi, 0x11650..=0x11659 => Script::Modi, 0x16A40..=0x16A5E => Script::Mro, 0x16A60..=0x16A69 => Script::Mro, 0x16A6E..=0x16A6F => Script::Mro, 0x10A80..=0x10A9C => Script::OldNorthArabian, 0x10A9D..=0x10A9F => Script::OldNorthArabian, 0x10880..=0x1089E => Script::Nabataean, 0x108A7..=0x108AF => Script::Nabataean, 0x10860..=0x10876 => Script::Palmyrene, 0x10877..=0x10878 => Script::Palmyrene, 0x10879..=0x1087F => Script::Palmyrene, 0x11AC0..=0x11AF8 => Script::PauCinHau, 0x10350..=0x10375 => Script::OldPermic, 0x10376..=0x1037A => Script::OldPermic, 0x10B80..=0x10B91 => Script::PsalterPahlavi, 0x10B99..=0x10B9C => Script::PsalterPahlavi, 0x10BA9..=0x10BAF => Script::PsalterPahlavi, 0x11580..=0x115AE => Script::Siddham, 0x115AF..=0x115B1 => Script::Siddham, 0x115B2..=0x115B5 => Script::Siddham, 0x115B8..=0x115BB => Script::Siddham, 0x115BC..=0x115BD => Script::Siddham, 0x115BE => Script::Siddham, 0x115BF..=0x115C0 => Script::Siddham, 0x115C1..=0x115D7 => Script::Siddham, 0x115D8..=0x115DB => Script::Siddham, 0x115DC..=0x115DD => Script::Siddham, 0x112B0..=0x112DE => Script::Khudawadi, 0x112DF => Script::Khudawadi, 0x112E0..=0x112E2 => Script::Khudawadi, 0x112E3..=0x112EA => Script::Khudawadi, 0x112F0..=0x112F9 => Script::Khudawadi, 0x11480..=0x114AF => Script::Tirhuta, 0x114B0..=0x114B2 => Script::Tirhuta, 0x114B3..=0x114B8 => Script::Tirhuta, 0x114B9 => Script::Tirhuta, 0x114BA => Script::Tirhuta, 0x114BB..=0x114BE => Script::Tirhuta, 0x114BF..=0x114C0 => Script::Tirhuta, 0x114C1 => Script::Tirhuta, 0x114C2..=0x114C3 => Script::Tirhuta, 0x114C4..=0x114C5 => Script::Tirhuta, 0x114C6 => Script::Tirhuta, 0x114C7 => Script::Tirhuta, 0x114D0..=0x114D9 => Script::Tirhuta, 0x118A0..=0x118DF => Script::WarangCiti, 0x118E0..=0x118E9 => Script::WarangCiti, 0x118EA..=0x118F2 => Script::WarangCiti, 0x118FF => Script::WarangCiti, 0x11700..=0x11719 => Script::Ahom, 0x1171D..=0x1171F => Script::Ahom, 0x11720..=0x11721 => Script::Ahom, 0x11722..=0x11725 => Script::Ahom, 0x11726 => Script::Ahom, 0x11727..=0x1172B => Script::Ahom, 0x11730..=0x11739 => Script::Ahom, 0x1173A..=0x1173B => Script::Ahom, 0x1173C..=0x1173E => Script::Ahom, 0x1173F => Script::Ahom, 0x14400..=0x14646 => Script::AnatolianHieroglyphs, 0x108E0..=0x108F2 => Script::Hatran, 0x108F4..=0x108F5 => Script::Hatran, 0x108FB..=0x108FF => Script::Hatran, 0x11280..=0x11286 => Script::Multani, 0x11288 => Script::Multani, 0x1128A..=0x1128D => Script::Multani, 0x1128F..=0x1129D => Script::Multani, 0x1129F..=0x112A8 => Script::Multani, 0x112A9 => Script::Multani, 0x10C80..=0x10CB2 => Script::OldHungarian, 0x10CC0..=0x10CF2 => Script::OldHungarian, 0x10CFA..=0x10CFF => Script::OldHungarian, 0x1D800..=0x1D9FF => Script::SignWriting, 0x1DA00..=0x1DA36 => Script::SignWriting, 0x1DA37..=0x1DA3A => Script::SignWriting, 0x1DA3B..=0x1DA6C => Script::SignWriting, 0x1DA6D..=0x1DA74 => Script::SignWriting, 0x1DA75 => Script::SignWriting, 0x1DA76..=0x1DA83 => Script::SignWriting, 0x1DA84 => Script::SignWriting, 0x1DA85..=0x1DA86 => Script::SignWriting, 0x1DA87..=0x1DA8B => Script::SignWriting, 0x1DA9B..=0x1DA9F => Script::SignWriting, 0x1DAA1..=0x1DAAF => Script::SignWriting, 0x1E900..=0x1E943 => Script::Adlam, 0x1E944..=0x1E94A => Script::Adlam, 0x1E950..=0x1E959 => Script::Adlam, 0x1E95E..=0x1E95F => Script::Adlam, 0x11C00..=0x11C08 => Script::Bhaiksuki, 0x11C0A..=0x11C2E => Script::Bhaiksuki, 0x11C2F => Script::Bhaiksuki, 0x11C30..=0x11C36 => Script::Bhaiksuki, 0x11C38..=0x11C3D => Script::Bhaiksuki, 0x11C3E => Script::Bhaiksuki, 0x11C3F => Script::Bhaiksuki, 0x11C40 => Script::Bhaiksuki, 0x11C41..=0x11C45 => Script::Bhaiksuki, 0x11C50..=0x11C59 => Script::Bhaiksuki, 0x11C5A..=0x11C6C => Script::Bhaiksuki, 0x11C70..=0x11C71 => Script::Marchen, 0x11C72..=0x11C8F => Script::Marchen, 0x11C92..=0x11CA7 => Script::Marchen, 0x11CA9 => Script::Marchen, 0x11CAA..=0x11CB0 => Script::Marchen, 0x11CB1 => Script::Marchen, 0x11CB2..=0x11CB3 => Script::Marchen, 0x11CB4 => Script::Marchen, 0x11CB5..=0x11CB6 => Script::Marchen, 0x11400..=0x11434 => Script::Newa, 0x11435..=0x11437 => Script::Newa, 0x11438..=0x1143F => Script::Newa, 0x11440..=0x11441 => Script::Newa, 0x11442..=0x11444 => Script::Newa, 0x11445 => Script::Newa, 0x11446 => Script::Newa, 0x11447..=0x1144A => Script::Newa, 0x1144B..=0x1144F => Script::Newa, 0x11450..=0x11459 => Script::Newa, 0x1145B => Script::Newa, 0x1145D => Script::Newa, 0x104B0..=0x104D3 => Script::Osage, 0x104D8..=0x104FB => Script::Osage, 0x16FE0 => Script::Tangut, 0x17000..=0x187EC => Script::Tangut, 0x18800..=0x18AF2 => Script::Tangut, _ => Script::Any, } } #[cfg(test)] mod tests { use super::*; #[test] fn test_unicode_script() { assert_eq!(Script::Han, get_script('京')); assert_eq!(Script::Han, get_script('太')); assert_eq!(Script::Hiragana, get_script('い')); assert_eq!(Script::Katakana, get_script('グ')); assert_eq!(Script::Common, get_script('ー')); assert_eq!(Script::Latin, get_script('a')); assert_eq!(Script::Latin, get_script('A')); assert_eq!(Script::Common, get_script('0')); assert_eq!(Script::Common, get_script('$')); assert_eq!(Script::Common, get_script('@')); assert_eq!(Script::Common, get_script('-')); assert_eq!(Script::Common, get_script(' ')); assert_eq!(Script::Common, get_script('�')); } }
tokenizers/tokenizers/src/pre_tokenizers/unicode_scripts/scripts.rs/0
{ "file_path": "tokenizers/tokenizers/src/pre_tokenizers/unicode_scripts/scripts.rs", "repo_id": "tokenizers", "token_count": 46440 }
221
use crate::Result; use hf_hub::{api::sync::ApiBuilder, Repo, RepoType}; use std::collections::HashMap; use std::path::PathBuf; /// Defines the aditional parameters available for the `from_pretrained` function #[derive(Debug, Clone)] pub struct FromPretrainedParameters { pub revision: String, pub user_agent: HashMap<String, String>, pub auth_token: Option<String>, } impl Default for FromPretrainedParameters { fn default() -> Self { Self { revision: "main".into(), user_agent: HashMap::new(), auth_token: None, } } } /// Downloads and cache the identified tokenizer if it exists on /// the Hugging Face Hub, and returns a local path to the file pub fn from_pretrained<S: AsRef<str>>( identifier: S, params: Option<FromPretrainedParameters>, ) -> Result<PathBuf> { let identifier: String = identifier.as_ref().to_string(); let valid_chars = ['-', '_', '.', '/']; let is_valid_char = |x: char| x.is_alphanumeric() || valid_chars.contains(&x); let valid = identifier.chars().all(is_valid_char); let valid_chars_stringified = valid_chars .iter() .fold(vec![], |mut buf, x| { buf.push(format!("'{}'", x)); buf }) .join(", "); // "'/', '-', '_', '.'" if !valid { return Err(format!( "Model \"{}\" contains invalid characters, expected only alphanumeric or {valid_chars_stringified}", identifier ) .into()); } let params = params.unwrap_or_default(); let revision = &params.revision; let valid_revision = revision.chars().all(is_valid_char); if !valid_revision { return Err(format!( "Revision \"{}\" contains invalid characters, expected only alphanumeric or {valid_chars_stringified}", revision ) .into()); } let mut builder = ApiBuilder::new(); if let Some(token) = params.auth_token { builder = builder.with_token(Some(token)); } let api = builder.build()?; let repo = Repo::with_revision(identifier, RepoType::Model, params.revision); let api = api.repo(repo); Ok(api.get("tokenizer.json")?) }
tokenizers/tokenizers/src/utils/from_pretrained.rs/0
{ "file_path": "tokenizers/tokenizers/src/utils/from_pretrained.rs", "repo_id": "tokenizers", "token_count": 913 }
222
# Troubleshooting This is a document explaining how to deal with various issues on Circle-CI. The entries may include actual solutions or pointers to Issues that cover those. ## Circle CI * pytest worker runs out of resident RAM and gets killed by `cgroups`: https://github.com/huggingface/transformers/issues/11408
transformers/.circleci/TROUBLESHOOT.md/0
{ "file_path": "transformers/.circleci/TROUBLESHOOT.md", "repo_id": "transformers", "token_count": 80 }
223
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04 LABEL maintainer="Hugging Face" ARG DEBIAN_FRONTEND=noninteractive RUN apt update RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg RUN python3 -m pip install --no-cache-dir --upgrade pip ARG REF=main RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF # If set to nothing, will install the latest version ARG PYTORCH='2.1.1' ARG TORCH_VISION='' ARG TORCH_AUDIO='' # Example: `cu102`, `cu113`, etc. ARG CUDA='cu121' RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video] RUN python3 -m pip uninstall -y tensorflow flax RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract RUN python3 -m pip install -U "itsdangerous<2.1.0" # When installing in editable mode, `transformers` is not recognized as a package. # this line must be added in order for python to be aware of transformers. RUN cd transformers && python3 setup.py develop
transformers/docker/transformers-pytorch-gpu/Dockerfile/0
{ "file_path": "transformers/docker/transformers-pytorch-gpu/Dockerfile", "repo_id": "transformers", "token_count": 611 }
224
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Distributed training with 🤗 Accelerate As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment. ## Setup Get started by installing 🤗 Accelerate: ```bash pip install accelerate ``` Then import and create an [`~accelerate.Accelerator`] object. The [`~accelerate.Accelerator`] will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device. ```py >>> from accelerate import Accelerator >>> accelerator = Accelerator() ``` ## Prepare to accelerate The next step is to pass all the relevant training objects to the [`~accelerate.Accelerator.prepare`] method. This includes your training and evaluation DataLoaders, a model and an optimizer: ```py >>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( ... train_dataloader, eval_dataloader, model, optimizer ... ) ``` ## Backward The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`]method: ```py >>> for epoch in range(num_epochs): ... for batch in train_dataloader: ... outputs = model(**batch) ... loss = outputs.loss ... accelerator.backward(loss) ... optimizer.step() ... lr_scheduler.step() ... optimizer.zero_grad() ... progress_bar.update(1) ``` As you can see in the following code, you only need to add four additional lines of code to your training loop to enable distributed training! ```diff + from accelerate import Accelerator from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + accelerator = Accelerator() model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) optimizer = AdamW(model.parameters(), lr=3e-5) - device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") - model.to(device) + train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( + train_dataloader, eval_dataloader, model, optimizer + ) num_epochs = 3 num_training_steps = num_epochs * len(train_dataloader) lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps ) progress_bar = tqdm(range(num_training_steps)) model.train() for epoch in range(num_epochs): for batch in train_dataloader: - batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss - loss.backward() + accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) ``` ## Train Once you've added the relevant lines of code, launch your training in a script or a notebook like Colaboratory. ### Train with a script If you are running your training from a script, run the following command to create and save a configuration file: ```bash accelerate config ``` Then launch your training with: ```bash accelerate launch train.py ``` ### Train with a notebook 🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to [`~accelerate.notebook_launcher`]: ```py >>> from accelerate import notebook_launcher >>> notebook_launcher(training_function) ``` For more information about 🤗 Accelerate and its rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).
transformers/docs/source/en/accelerate.md/0
{ "file_path": "transformers/docs/source/en/accelerate.md", "repo_id": "transformers", "token_count": 1516 }
225
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DeepSpeed [DeepSpeed](https://www.deepspeed.ai/) is a PyTorch optimization library that makes distributed training memory-efficient and fast. At it's core is the [Zero Redundancy Optimizer (ZeRO)](https://hf.co/papers/1910.02054) which enables training large models at scale. ZeRO works in several stages: * ZeRO-1, optimizer state partioning across GPUs * ZeRO-2, gradient partitioning across GPUs * ZeRO-3, parameteter partitioning across GPUs In GPU-limited environments, ZeRO also enables offloading optimizer memory and computation from the GPU to the CPU to fit and train really large models on a single GPU. DeepSpeed is integrated with the Transformers [`Trainer`] class for all ZeRO stages and offloading. All you need to do is provide a config file or you can use a provided template. For inference, Transformers support ZeRO-3 and offloading since it allows loading huge models. This guide will walk you through how to deploy DeepSpeed training, the features you can enable, how to setup the config files for different ZeRO stages, offloading, inference, and using DeepSpeed without the [`Trainer`]. ## Installation DeepSpeed is available to install from PyPI or Transformers (for more detailed installation options, take a look at the DeepSpeed [installation details](https://www.deepspeed.ai/tutorials/advanced-install/) or the GitHub [README](https://github.com/microsoft/deepspeed#installation)). <Tip> If you're having difficulties installing DeepSpeed, check the [DeepSpeed CUDA installation](../debugging#deepspeed-cuda-installation) guide. While DeepSpeed has a pip installable PyPI package, it is highly recommended to [install it from source](https://www.deepspeed.ai/tutorials/advanced-install/#install-deepspeed-from-source) to best match your hardware and to support certain features, like 1-bit Adam, which aren’t available in the PyPI distribution. </Tip> <hfoptions id="install"> <hfoption id="PyPI"> ```bash pip install deepspeed ``` </hfoption> <hfoption id="Transformers"> ```bash pip install transformers[deepspeed] ``` </hfoption> </hfoptions> ## Memory requirements Before you begin, it is a good idea to check whether you have enough GPU and CPU memory to fit your model. DeepSpeed provides a tool for estimating the required CPU/GPU memory. For example, to estimate the memory requirements for the [bigscience/T0_3B](bigscience/T0_3B) model on a single GPU: ```bash $ python -c 'from transformers import AutoModel; \ from deepspeed.runtime.zero.stage3 import estimate_zero3_model_states_mem_needs_all_live; \ model = AutoModel.from_pretrained("bigscience/T0_3B"); \ estimate_zero3_model_states_mem_needs_all_live(model, num_gpus_per_node=1, num_nodes=1)' [...] Estimated memory needed for params, optim states and gradients for a: HW: Setup with 1 node, 1 GPU per node. SW: Model with 2783M total params, 65M largest layer params. per CPU | per GPU | Options 70.00GB | 0.25GB | offload_param=cpu , offload_optimizer=cpu , zero_init=1 70.00GB | 0.25GB | offload_param=cpu , offload_optimizer=cpu , zero_init=0 62.23GB | 5.43GB | offload_param=none, offload_optimizer=cpu , zero_init=1 62.23GB | 5.43GB | offload_param=none, offload_optimizer=cpu , zero_init=0 0.37GB | 46.91GB | offload_param=none, offload_optimizer=none, zero_init=1 15.56GB | 46.91GB | offload_param=none, offload_optimizer=none, zero_init=0 ``` This means you either need a single 80GB GPU without CPU offload or a 8GB GPU and a ~60GB CPU to offload to (these are just the memory requirements for the parameters, optimizer states and gradients, and you'll need a bit more for the CUDA kernels and activations). You should also consider the tradeoff between cost and speed because it'll be cheaper to rent or buy a smaller GPU but it'll take longer to train your model. If you have enough GPU memory make sure you disable CPU/NVMe offload to make everything faster. ## Select a ZeRO stage After you've installed DeepSpeed and have a better idea of your memory requirements, the next step is selecting a ZeRO stage to use. In order of fastest and most memory-efficient: | Fastest | Memory efficient | |------------------|------------------| | ZeRO-1 | ZeRO-3 + offload | | ZeRO-2 | ZeRO-3 | | ZeRO-2 + offload | ZeRO-2 + offload | | ZeRO-3 | ZeRO-2 | | ZeRO-3 + offload | ZeRO-1 | To find what works best for you, start with the fastest approach and if you run out of memory, try the next stage which is slower but more memory efficient. Feel free to work in whichever direction you prefer (starting with the most memory efficient or fastest) to discover the appropriate balance between speed and memory usage. A general process you can use is (start with batch size of 1): 1. enable gradient checkpointing 2. try ZeRO-2 3. try ZeRO-2 and offload the optimizer 4. try ZeRO-3 5. try ZeRO-3 and offload parameters to the CPU 6. try ZeRO-3 and offload parameters and the optimizer to the CPU 7. try lowering various default values like a narrower search beam if you're using the [`~GenerationMixin.generate`] method 8. try mixed half-precision (fp16 on older GPU architectures and bf16 on Ampere) over full-precision weights 9. add more hardware if possible or enable Infinity to offload parameters and the optimizer to a NVMe 10. once you're not running out of memory, measure effective throughput and then try to increase the batch size as large as you can to maximize GPU efficiency 11. lastly, try to optimize your training setup by disabling some offload features or use a faster ZeRO stage and increasing/decreasing the batch size to find the best tradeoff between speed and memory usage ## DeepSpeed configuration file DeepSpeed works with the [`Trainer`] class by way of a config file containing all the parameters for configuring how you want setup your training run. When you execute your training script, DeepSpeed logs the configuration it received from [`Trainer`] to the console so you can see exactly what configuration was used. <Tip> Find a complete list of DeepSpeed configuration options on the [DeepSpeed Configuration JSON](https://www.deepspeed.ai/docs/config-json/) reference. You can also find more practical examples of various DeepSpeed configuration examples on the [DeepSpeedExamples](https://github.com/microsoft/DeepSpeedExamples) repository or the main [DeepSpeed](https://github.com/microsoft/DeepSpeed) repository. To quickly find specific examples, you can: ```bash git clone https://github.com/microsoft/DeepSpeedExamples cd DeepSpeedExamples find . -name '*json' # find examples with the Lamb optimizer grep -i Lamb $(find . -name '*json') ``` </Tip> The DeepSpeed configuration file is passed as a path to a JSON file if you're training from the command line interface or as a nested `dict` object if you're using the [`Trainer`] in a notebook setting. <hfoptions id="pass-config"> <hfoption id="path to file"> ```py TrainingArguments(..., deepspeed="path/to/deepspeed_config.json") ``` </hfoption> <hfoption id="nested dict"> ```py ds_config_dict = dict(scheduler=scheduler_params, optimizer=optimizer_params) args = TrainingArguments(..., deepspeed=ds_config_dict) trainer = Trainer(model, args, ...) ``` </hfoption> </hfoptions> ### DeepSpeed and Trainer parameters There are three types of configuration parameters: 1. Some of the configuration parameters are shared by [`Trainer`] and DeepSpeed, and it can be difficult to identify errors when there are conflicting definitions. To make it easier, these shared configuration parameters are configured from the [`Trainer`] command line arguments. 2. Some configuration parameters that are automatically derived from the model configuration so you don't need to manually adjust these values. The [`Trainer`] uses a configuration value `auto` to determine set the most correct or efficient value. You could set your own configuration parameters explicitly, but you must take care to ensure the [`Trainer`] arguments and DeepSpeed configuration parameters agree. Mismatches may cause the training to fail in very difficult to detect ways! 3. Some configuration parameters specific to DeepSpeed only which need to be manually set based on your training needs. You could also modify the DeepSpeed configuration and edit [`TrainingArguments`] from it: 1. Create or load a DeepSpeed configuration to used as the main configuration 2. Create a [`TrainingArguments`] object based on these DeepSpeed configuration values Some values, such as `scheduler.params.total_num_steps` are calculated by the [`Trainer`] during training. ### ZeRO configuration There are three configurations, each corresponding to a different ZeRO stage. Stage 1 is not as interesting for scalability, and this guide focuses on stages 2 and 3. The `zero_optimization` configuration contains all the options for what to enable and how to configure them. For a more detailed explanation of each parameter, take a look at the [DeepSpeed Configuration JSON](https://www.deepspeed.ai/docs/config-json/) reference. <Tip warning={true}> DeepSpeed doesn’t validate parameter names and any typos fallback on the parameter's default setting. You can watch the DeepSpeed engine startup log messages to see what values it is going to use. </Tip> The following configurations must be setup with DeepSpeed because the [`Trainer`] doesn't provide equivalent command line arguments. <hfoptions id="zero-config"> <hfoption id="ZeRO-1"> ZeRO-1 shards the optimizer states across GPUs, and you can expect a tiny speed up. The ZeRO-1 config can be setup like this: ```yml { "zero_optimization": { "stage": 1 } } ``` </hfoption> <hfoption id="ZeRO-2"> ZeRO-2 shards the optimizer and gradients across GPUs. This stage is primarily used for training since it's features are not relevant to inference. Some important parameters to configure for better performance include: * `offload_optimizer` should be enabled to reduce GPU memory usage. * `overlap_comm` when set to `true` trades off increased GPU memory usage to lower allreduce latency. This feature uses 4.5x the `allgather_bucket_size` and `reduce_bucket_size` values. In this example, they're set to `5e8` which means it requires 9GB of GPU memory. If your GPU memory is 8GB or less, you should reduce `overlap_comm` to lower the memory requirements and prevent an out-of-memory (OOM) error. * `allgather_bucket_size` and `reduce_bucket_size` trade off available GPU memory for communication speed. The smaller their values, the slower communication is and the more GPU memory is available. You can balance, for example, whether a bigger batch size is more important than a slightly slower training time. * `round_robin_gradients` is available in DeepSpeed 0.4.4 for CPU offloading. It parallelizes gradient copying to CPU memory among ranks by fine-grained gradient partitioning. Performance benefit grows with gradient accumulation steps (more copying between optimizer steps) or GPU count (increased parallelism). ```yml { "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "allgather_partitions": true, "allgather_bucket_size": 5e8, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 5e8, "contiguous_gradients": true "round_robin_gradients": true } } ``` </hfoption> <hfoption id="ZeRO-3"> ZeRO-3 shards the optimizer, gradient, and parameters across GPUs. Unlike ZeRO-2, ZeRO-3 can also be used for inference, in addition to training, because it allows large models to be loaded on multiple GPUs. Some important parameters to configure include: * `device: "cpu"` can help if you're running out of GPU memory and if you have free CPU memory available. This allows offloading model parameters to the CPU. * `pin_memory: true` can improve throughput, but less memory becomes available for other processes because the pinned memory is reserved for the specific process that requested it and it's typically accessed much faster than normal CPU memory. * `stage3_max_live_parameters` is the upper limit on how many full parameters you want to keep on the GPU at any given time. Reduce this value if you encounter an OOM error. * `stage3_max_reuse_distance` is a value for determining when a parameter is used again in the future, and it helps decide whether to throw the parameter away or to keep it. If the parameter is going to be reused (if the value is less than `stage3_max_reuse_distance`), then it is kept to reduce communication overhead. This is super helpful when activation checkpointing is enabled and you want to keep the parameter in the forward recompute until the backward pass. But reduce this value if you encounter an OOM error. * `stage3_gather_16bit_weights_on_model_save` consolidates fp16 weights when a model is saved. For large models and multiple GPUs, this is an expensive in terms of memory and speed. You should enable it if you're planning on resuming training. * `sub_group_size` controls which parameters are updated during the optimizer step. Parameters are grouped into buckets of `sub_group_size` and each bucket is updated one at a time. When used with NVMe offload, `sub_group_size` determines when model states are moved in and out of CPU memory from during the optimization step. This prevents running out of CPU memory for extremely large models. `sub_group_size` can be left to its default value if you aren't using NVMe offload, but you may want to change it if you: 1. Run into an OOM error during the optimizer step. In this case, reduce `sub_group_size` to reduce memory usage of the temporary buffers. 2. The optimizer step is taking a really long time. In this case, increase `sub_group_size` to improve bandwidth utilization as a result of increased data buffers. * `reduce_bucket_size`, `stage3_prefetch_bucket_size`, and `stage3_param_persistence_threshold` are dependent on a model's hidden size. It is recommended to set these values to `auto` and allow the [`Trainer`] to automatically assign the values. ```yml { "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true } } ``` You can use the [`deepspeed.zero.Init`](https://deepspeed.readthedocs.io/en/latest/zero3.html#deepspeed.zero.Init) context manager to initialize a model faster: ```py from transformers import T5ForConditionalGeneration, T5Config import deepspeed with deepspeed.zero.Init(): config = T5Config.from_pretrained("t5-small") model = T5ForConditionalGeneration(config) ``` For pretrained models, the DeepSped config file needs to have `is_deepspeed_zero3_enabled: true` setup in [`TrainingArguments`] and it needs a ZeRO configuration enabled. The [`TrainingArguments`] object must be created **before** calling the model [`~PreTrainedModel.from_pretrained`]. ```py from transformers import AutoModel, Trainer, TrainingArguments training_args = TrainingArguments(..., deepspeed=ds_config) model = AutoModel.from_pretrained("t5-small") trainer = Trainer(model=model, args=training_args, ...) ``` You'll need ZeRO-3 if the fp16 weights don't fit on a single GPU. If you're able to load fp16 weights, then make sure you specify `torch_dtype=torch.float16` in [`~PreTrainedModel.from_pretrained`]. Another consideration for ZeRO-3 is if you have multiple GPUs, no single GPU has all the parameters unless it's the parameters for the currently executing layer. To access all parameters from all the layers at once, such as loading pretrained model weights in [`~PreTrainedModel.from_pretrained`], one layer is loaded at a time and immediately partitioned to all GPUs. This is because for very large models, it isn't possible to load the weights on one GPU and then distribute them across the other GPUs due to memory limitations. If you encounter a model parameter weight that looks like the following, where `tensor([1.])` or the parameter size is 1 instead of a larger multi-dimensional shape, this means the parameter is partitioned and this is a ZeRO-3 placeholder. ```py tensor([1.0], device="cuda:0", dtype=torch.float16, requires_grad=True) ``` <Tip> For more information about initializing large models with ZeRO-3 and accessing the parameters, take a look at the [Constructing Massive Models](https://deepspeed.readthedocs.io/en/latest/zero3.html#constructing-massive-models) and [Gathering Parameters](https://deepspeed.readthedocs.io/en/latest/zero3.html#gathering-parameters) guides. </Tip> </hfoption> </hfoptions> ### NVMe configuration [ZeRO-Infinity](https://hf.co/papers/2104.07857) allows offloading model states to the CPU and/or NVMe to save even more memory. Smart partitioning and tiling algorithms allow each GPU to send and receive very small amounts of data during offloading such that a modern NVMe can fit an even larger total memory pool than is available to your training process. ZeRO-Infinity requires ZeRO-3. Depending on the CPU and/or NVMe memory available, you can offload both the [optimizer states](https://www.deepspeed.ai/docs/config-json/#optimizer-offloading) and [parameters](https://www.deepspeed.ai/docs/config-json/#parameter-offloading), just one of them, or none. You should also make sure the `nvme_path` is pointing to an NVMe device, because while it still works with a normal hard drive or solid state drive, it'll be significantly slower. With a modern NVMe, you can expect peak transfer speeds of ~3.5GB/s for read and ~3GB/s for write operations. Lastly, [run a benchmark](https://github.com/microsoft/DeepSpeed/issues/998) on your training setup to determine the optimal `aio` configuration. The example ZeRO-3/Infinity configuration file below sets most of the parameter values to `auto`, but you could also manually add these values. ```yml { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "nvme", "nvme_path": "/local_nvme", "pin_memory": true, "buffer_count": 4, "fast_init": false }, "offload_param": { "device": "nvme", "nvme_path": "/local_nvme", "pin_memory": true, "buffer_count": 5, "buffer_size": 1e8, "max_in_cpu": 1e9 }, "aio": { "block_size": 262144, "queue_depth": 32, "thread_count": 1, "single_submit": false, "overlap_events": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } ``` ## DeepSpeed features There are a number of important parameters to specify in the DeepSpeed configuration file which are briefly described in this section. ### Activation/gradient checkpointing Activation and gradient checkpointing trades speed for more GPU memory which allows you to overcome scenarios where your GPU is out of memory or to increase your batch size for better performance. To enable this feature: 1. For a Hugging Face model, set `model.gradient_checkpointing_enable()` or `--gradient_checkpointing` in the [`Trainer`]. 2. For a non-Hugging Face model, use the DeepSpeed [Activation Checkpointing API](https://deepspeed.readthedocs.io/en/latest/activation-checkpointing.html). You could also replace the Transformers modeling code and replace `torch.utils.checkpoint` with the DeepSpeed API. This approach is more flexible because you can offload the forward activations to the CPU memory instead of recalculating them. ### Optimizer and scheduler DeepSpeed and Transformers optimizer and scheduler can be mixed and matched as long as you don't enable `offload_optimizer`. When `offload_optimizer` is enabled, you could use a non-DeepSpeed optimizer (except for LAMB) as long as it has both a CPU and GPU implementation. <Tip warning={true}> The optimizer and scheduler parameters for the config file can be set from the command line to avoid hard to find errors. For example, if the learning rate is set to a different value in another place you can override it from the command line. Aside from the optimizer and scheduler parameters, you'll need to ensure your [`Trainer`] command line arguments match the DeepSpeed configuration. </Tip> <hfoptions id="opt-sched"> <hfoption id="optimizer"> DeepSpeed offers several [optimizers](https://www.deepspeed.ai/docs/config-json/#optimizer-parameters) (Adam, AdamW, OneBitAdam, and LAMB) but you can also import other optimizers from PyTorch. If you don't configure the optimizer in the config, the [`Trainer`] automatically selects AdamW and either uses the supplied values or the default values for the following parameters from the command line: `lr`, `adam_beta1`, `adam_beta2`, `adam_epsilon`, `weight_decay`. You can set the parameters to `"auto"` or manually input your own desired values. ```yaml { "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } } } ``` You can also use an unsupported optimizer by adding the following to the top level configuration. ```yaml { "zero_allow_untested_optimizer": true } ``` From DeepSpeed==0.8.3 on, if you want to use offload, you'll also need to the following to the top level configuration because offload works best with DeepSpeed's CPU Adam optimizer. ```yaml { "zero_force_ds_cpu_optimizer": false } ``` </hfoption> <hfoption id="scheduler"> DeepSpeed supports the LRRangeTest, OneCycle, WarmupLR and WarmupDecayLR learning rate [schedulers](https://www.deepspeed.ai/docs/config-json/#scheduler-parameters). Transformers and DeepSpeed provide two of the same schedulers: * WarmupLR is the same as `--lr_scheduler_type constant_with_warmup` in Transformers * WarmupDecayLR is the same as `--lr_scheduler_type linear` in Transformers (this is the default scheduler used in Transformers) If you don't configure the scheduler in the config, the [`Trainer`] automatically selects WarmupDecayLR and either uses the supplied values or the default values for the following parameters from the command line: `warmup_min_lr`, `warmup_max_lr`, `warmup_num_steps`, `total_num_steps` (automatically calculated during run time if `max_steps` is not provided). You can set the parameters to `"auto"` or manually input your own desired values. ```yaml { "scheduler": { "type": "WarmupDecayLR", "params": { "total_num_steps": "auto", "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } } } ``` </hfoption> </hfoptions> ### Precision Deepspeed supports fp32, fp16, and bf16 mixed precision. <hfoptions id="precision"> <hfoption id="fp32"> If your model doesn't work well with mixed precision, for example if it wasn't pretrained in mixed precision, you may encounter overflow or underflow issues which can cause NaN loss. For these cases, you should use full fp32 precision by explicitly disabling the default fp16 mode. ```yaml { "fp16": { "enabled": false } } ``` For Ampere GPUs and PyTorch > 1.7, it automatically switches to the more efficient [tf32](https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices) format for some operations but the results are still in fp32. You can control it from the [`Trainer`] by setting `--tf32` to enable it, and `--tf32 0` or `--no_tf32` to disable it. </hfoption> <hfoption id="fp16"> To configure PyTorch AMP-like fp16 mixed precision reduces memory usage and accelerates training speed. [`Trainer`] automatically enables or disables fp16 based on the value of `args.fp16_backend`, and the rest of the config can be set by you. fp16 is enabled from the command line when the following arguments are passed: `--fp16`, `--fp16_backend amp` or `--fp16_full_eval`. ```yaml { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 } } ``` For additional DeepSpeed fp16 training options, take a look at the [FP16 Training Options](https://www.deepspeed.ai/docs/config-json/#fp16-training-options) reference. To configure Apex-like fp16 mixed precision, setup the config as shown below with `"auto"` or your own values. [`Trainer`] automatically configure `amp` based on the values of `args.fp16_backend` and `args.fp16_opt_level`. It can also be enabled from the command line when the following arguments are passed: `--fp16`, `--fp16_backend apex` or `--fp16_opt_level 01`. ```yaml { "amp": { "enabled": "auto", "opt_level": "auto" } } ``` </hfoption> <hfoption id="bf16"> To use bf16, you'll need at least DeepSpeed==0.6.0. bf16 has the same dynamic range as fp32 and doesn’t require loss scaling. However, if you use [gradient accumulation](#gradient-accumulation) with bf16, gradients are accumulated in bf16 which may not be desired because this format's low precision can lead to lossy accumulation. bf16 can be setup in the config file or enabled from the command line when the following arguments are passed: `--bf16` or `--bf16_full_eval`. ```yaml { "bf16": { "enabled": "auto" } } ``` </hfoption> </hfoptions> ### Batch size The batch size can be auto-configured or explicitly set. If you choose to use the `"auto"` option, [`Trainer`] sets `train_micro_batch_size_per_gpu` to the value of args.`per_device_train_batch_size` and `train_batch_size` to `args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps`. ```yaml { "train_micro_batch_size_per_gpu": "auto", "train_batch_size": "auto" } ``` ### Gradient accumulation Gradient accumulation can be auto-configured or explicitly set. If you choose to use the `"auto"` option, [`Trainer`] sets it to the value of `args.gradient_accumulation_steps`. ```yaml { "gradient_accumulation_steps": "auto" } ``` ### Gradient clipping Gradient clipping can be auto-configured or explicitly set. If you choose to use the `"auto"` option, [`Trainer`] sets it to the value of `args.max_grad_norm`. ```yaml { "gradient_clipping": "auto" } ``` ### Communication data type For communication collectives like reduction, gathering and scattering operations, a separate data type is used. All gather and scatter operations are performed in the same data type the data is in. For example, if you're training with bf16, the data is also gathered in bf16 because gathering is a non-lossy operation. Reduce operations are lossy, for example when gradients are averaged across multiple GPUs. When the communication is done in fp16 or bf16, it is more likely to be lossy because adding multiple numbers in low precision isn't exact. This is especially the case with bf16 which has a lower precision than fp16. For this reason, fp16 is the default for reduction operations because the loss is minimal when averaging gradients. You can choose the communication data type by setting the `communication_data_type` parameter in the config file. For example, choosing fp32 adds a small amount of overhead but ensures the reduction operation is accumulated in fp32 and when it is ready, it is downcasted to whichever half-precision dtype you're training in. ```yaml { "communication_data_type": "fp32" } ``` ## Deployment DeepSpeed can be deployed by different launchers such as [torchrun](https://pytorch.org/docs/stable/elastic/run.html), the `deepspeed` launcher, or [Accelerate](https://huggingface.co/docs/accelerate/basic_tutorials/launch#using-accelerate-launch). To deploy, add `--deepspeed ds_config.json` to the [`Trainer`] command line. It’s recommended to use DeepSpeed’s [`add_config_arguments`](https://deepspeed.readthedocs.io/en/latest/initialize.html#argument-parsing) utility to add any necessary command line arguments to your code. This guide will show you how to deploy DeepSpeed with the `deepspeed` launcher for different training setups. You can check out this [post](https://github.com/huggingface/transformers/issues/8771#issuecomment-759248400) for more practical usage examples. <hfoptions id="deploy"> <hfoption id="multi-GPU"> To deploy DeepSpeed on multiple GPUs, add the `--num_gpus` parameter. If you want to use all available GPUs, you don't need to add `--num_gpus`. The example below uses 2 GPUs. ```bash deepspeed --num_gpus=2 examples/pytorch/translation/run_translation.py \ --deepspeed tests/deepspeed/ds_config_zero3.json \ --model_name_or_path t5-small --per_device_train_batch_size 1 \ --output_dir output_dir --overwrite_output_dir --fp16 \ --do_train --max_train_samples 500 --num_train_epochs 1 \ --dataset_name wmt16 --dataset_config "ro-en" \ --source_lang en --target_lang ro ``` </hfoption> <hfoption id="single-GPU"> To deploy DeepSpeed on a single GPU, add the `--num_gpus` parameter. It isn't necessary to explicitly set this value if you only have 1 GPU because DeepSpeed deploys all GPUs it can see on a given node. ```bash deepspeed --num_gpus=1 examples/pytorch/translation/run_translation.py \ --deepspeed tests/deepspeed/ds_config_zero2.json \ --model_name_or_path t5-small --per_device_train_batch_size 1 \ --output_dir output_dir --overwrite_output_dir --fp16 \ --do_train --max_train_samples 500 --num_train_epochs 1 \ --dataset_name wmt16 --dataset_config "ro-en" \ --source_lang en --target_lang ro ``` DeepSpeed is still useful with just 1 GPU because you can: 1. Offload some computations and memory to the CPU to make more GPU resources available to your model to use a larger batch size or fit a very large model that normally won't fit. 2. Minimize memory fragmentation with it's smart GPU memory management system which also allows you to fit bigger models and data batches. <Tip> Set the `allgather_bucket_size` and `reduce_bucket_size` values to 2e8 in the [ZeRO-2](#zero-configuration) configuration file to get better performance on a single GPU. </Tip> </hfoption> </hfoptions> ### Multi-node deployment A node is one or more GPUs for running a workload. A more powerful setup is a multi-node setup which can be launched with the `deepspeed` launcher. For this guide, let's assume there are two nodes with 8 GPUs each. The first node can be accessed `ssh hostname1` and the second node with `ssh hostname2`. Both nodes must be able to communicate with each other locally over ssh without a password. By default, DeepSpeed expects your multi-node environment to use a shared storage. If this is not the case and each node can only see the local filesystem, you need to adjust the config file to include a [`checkpoint`](https://www.deepspeed.ai/docs/config-json/#checkpoint-options) to allow loading without access to a shared filesystem: ```yaml { "checkpoint": { "use_node_local_storage": true } } ``` You could also use the [`Trainer`]'s `--save_on_each_node` argument to automatically add the above `checkpoint` to your config. <hfoptions id="multinode"> <hfoption id="torchrun"> For [torchrun](https://pytorch.org/docs/stable/elastic/run.html), you have to ssh to each node and run the following command on both of them. The launcher waits until both nodes are synchronized before launching the training. ```bash python -m torch.run --nproc_per_node=8 --nnode=2 --node_rank=0 --master_addr=hostname1 \ --master_port=9901 your_program.py <normal cl args> --deepspeed ds_config.json ``` </hfoption> <hfoption id="deepspeed"> For the `deepspeed` launcher, start by creating a `hostfile`. ```bash hostname1 slots=8 hostname2 slots=8 ``` Then you can launch the training with the following command. The `deepspeed` launcher automatically launches the command on both nodes at once. ```bash deepspeed --num_gpus 8 --num_nodes 2 --hostfile hostfile --master_addr hostname1 --master_port=9901 \ your_program.py <normal cl args> --deepspeed ds_config.json ``` Check out the [Resource Configuration (multi-node)](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node) guide for more details about configuring multi-node compute resources. </hfoption> </hfoptions> ### SLURM In a SLURM environment, you'll need to adapt your SLURM script to your specific SLURM environment. An example SLURM script may look like: ```bash #SBATCH --job-name=test-nodes # name #SBATCH --nodes=2 # nodes #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! #SBATCH --cpus-per-task=10 # number of cores per tasks #SBATCH --gres=gpu:8 # number of gpus #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS) #SBATCH --output=%x-%j.out # output file name export GPUS_PER_NODE=8 export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) export MASTER_PORT=9901 srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ your_program.py <normal cl args> --deepspeed ds_config.json' ``` Then you can schedule your multi-node deployment with the following command which launches training simultaneously on all nodes. ```bash sbatch launch.slurm ``` ### Notebook The `deepspeed` launcher doesn't support deployment from a notebook so you'll need to emulate the distributed environment. However, this only works for 1 GPU. If you want to use more than 1 GPU, you must use a multi-process environment for DeepSpeed to work. This means you have to use the `deepspeed` launcher which can't be emulated as shown here. ```py # DeepSpeed requires a distributed environment even when only one process is used. # This emulates a launcher in the notebook import os os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "9994" # modify if RuntimeError: Address already in use os.environ["RANK"] = "0" os.environ["LOCAL_RANK"] = "0" os.environ["WORLD_SIZE"] = "1" # Now proceed as normal, plus pass the DeepSpeed config file training_args = TrainingArguments(..., deepspeed="ds_config_zero3.json") trainer = Trainer(...) trainer.train() ``` If you want to create the config file on the fly in the notebook in the current directory, you could have a dedicated cell. ```py %%bash cat <<'EOT' > ds_config_zero3.json { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } EOT ``` If the training script is in a file and not in a notebook cell, you can launch `deepspeed` normally from the shell in a notebook cell. For example, to launch `run_translation.py`: ```py !git clone https://github.com/huggingface/transformers !cd transformers; deepspeed examples/pytorch/translation/run_translation.py ... ``` You could also use `%%bash` magic and write multi-line code to run the shell program, but you won't be able to view the logs until training is complete. With `%%bash` magic, you don't need to emulate a distributed environment. ```py %%bash git clone https://github.com/huggingface/transformers cd transformers deepspeed examples/pytorch/translation/run_translation.py ... ``` ## Save model weights DeepSpeed stores the main full precision fp32 weights in custom checkpoint optimizer files (the glob pattern looks like `global_step*/*optim_states.pt`) and are saved under the normal checkpoint. <hfoptions id="save"> <hfoption id="fp16"> A model trained with ZeRO-2 saves the pytorch_model.bin weights in fp16. To save the model weights in fp16 for a model trained with ZeRO-3, you need to set `"stage3_gather_16bit_weights_on_model_save": true` because the model weights are partitioned across multiple GPUs. Otherwise, the [`Trainer`] won't save the weights in fp16 and it won't create a pytorch_model.bin file. This is because DeepSpeed's state_dict contains a placeholder instead of the real weights and you won't be able to load them. ```yaml { "zero_optimization": { "stage3_gather_16bit_weights_on_model_save": true } } ``` </hfoption> <hfoption id="fp32"> The full precision weights shouldn't be saved during training because it can require a lot of memory. It is usually best to save the fp32 weights offline after training is complete. But if you have a lot of free CPU memory, it is possible to save the fp32 weights during training. This section covers both online and offline approaches. ### Online You must have saved at least one checkpoint to load the latest checkpoint as shown in the following: ```py from transformers.trainer_utils import get_last_checkpoint from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint checkpoint_dir = get_last_checkpoint(trainer.args.output_dir) fp32_model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) ``` If you've enabled the `--load_best_model_at_end` parameter to track the best checkpoint in [`TrainingArguments`], you can finish training first and save the final model explicitly. Then you can reload it as shown below: ```py from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint checkpoint_dir = os.path.join(trainer.args.output_dir, "checkpoint-final") trainer.deepspeed.save_checkpoint(checkpoint_dir) fp32_model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) ``` <Tip> Once `load_state_dict_from_zero_checkpoint` is run, the model is no longer usable in DeepSpeed in the context of the same application. You'll need to initialize the DeepSpeed engine again since `model.load_state_dict(state_dict)` removes all the DeepSpeed magic from it. Only use this at the very end of training. </Tip> You can also extract and load the state_dict of the fp32 weights: ```py from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu model = model.cpu() model.load_state_dict(state_dict) ``` ### Offline DeepSpeed provides a zero_to_fp32.py script at the top-level of the checkpoint folder for extracting weights at any point. This is a standalone script and you don't need a configuration file or [`Trainer`]. For example, if your checkpoint folder looked like this: ```bash $ ls -l output_dir/checkpoint-1/ -rw-rw-r-- 1 stas stas 1.4K Mar 27 20:42 config.json drwxrwxr-x 2 stas stas 4.0K Mar 25 19:52 global_step1/ -rw-rw-r-- 1 stas stas 12 Mar 27 13:16 latest -rw-rw-r-- 1 stas stas 827K Mar 27 20:42 optimizer.pt -rw-rw-r-- 1 stas stas 231M Mar 27 20:42 pytorch_model.bin -rw-rw-r-- 1 stas stas 623 Mar 27 20:42 scheduler.pt -rw-rw-r-- 1 stas stas 1.8K Mar 27 20:42 special_tokens_map.json -rw-rw-r-- 1 stas stas 774K Mar 27 20:42 spiece.model -rw-rw-r-- 1 stas stas 1.9K Mar 27 20:42 tokenizer_config.json -rw-rw-r-- 1 stas stas 339 Mar 27 20:42 trainer_state.json -rw-rw-r-- 1 stas stas 2.3K Mar 27 20:42 training_args.bin -rwxrw-r-- 1 stas stas 5.5K Mar 27 13:16 zero_to_fp32.py* ``` To reconstruct the fp32 weights from the DeepSpeed checkpoint (ZeRO-2 or ZeRO-3) subfolder `global_step1`, run the following command to create and consolidate the full fp32 weights from multiple GPUs into a single pytorch_model.bin file. The script automatically discovers the subfolder containing the checkpoint. ```py python zero_to_fp32.py . pytorch_model.bin ``` <Tip> Run `python zero_to_fp32.py -h` for more usage details. The script requires 2x the general RAM of the final fp32 weights. </Tip> </hfoption> </hfoptions> ## ZeRO Inference [ZeRO Inference](https://www.deepspeed.ai/2022/09/09/zero-inference.html) places the model weights in CPU or NVMe memory to avoid burdening the GPU which makes it possible to run inference with huge models on a GPU. Inference doesn't require any large additional amounts of memory for the optimizer states and gradients so you can fit much larger batches and/or sequence lengths on the same hardware. ZeRO Inference shares the same configuration file as [ZeRO-3](#zero-configuration), and ZeRO-2 and ZeRO-1 configs won't work because they don't provide any benefits for inference. To run ZeRO Inference, pass your usual training arguments to the [`TrainingArguments`] class and add the `--do_eval` argument. ```bash deepspeed --num_gpus=2 your_program.py <normal cl args> --do_eval --deepspeed ds_config.json ``` ## Non-Trainer DeepSpeed integration DeepSpeed also works with Transformers without the [`Trainer`] class. This is handled by the [`HfDeepSpeedConfig`] which only takes care of gathering ZeRO-3 parameters and splitting a model across multiple GPUs when you call [`~PreTrainedModel.from_pretrained`]. <Tip> If you want everything automatically taken care of for you, try using DeepSpeed with the [`Trainer`]! You'll need to follow the [DeepSpeed documentation](https://www.deepspeed.ai/), and manually configure the parameter values in the config file (you can't use the `"auto"` value). </Tip> To efficiently deploy ZeRO-3, you must instantiate the [`HfDeepSpeedConfig`] object before the model and keep that object alive: <hfoptions id="models"> <hfoption id="pretrained model"> ```py from transformers.integrations import HfDeepSpeedConfig from transformers import AutoModel import deepspeed ds_config = {...} # deepspeed config object or path to the file # must run before instantiating the model to detect zero 3 dschf = HfDeepSpeedConfig(ds_config) # keep this object alive model = AutoModel.from_pretrained("gpt2") engine = deepspeed.initialize(model=model, config_params=ds_config, ...) ``` </hfoption> <hfoption id="non-pretrained model"> [`HfDeepSpeedConfig`] is not required for ZeRO-1 or ZeRO-2. ```py from transformers.integrations import HfDeepSpeedConfig from transformers import AutoModel, AutoConfig import deepspeed ds_config = {...} # deepspeed config object or path to the file # must run before instantiating the model to detect zero 3 dschf = HfDeepSpeedConfig(ds_config) # keep this object alive config = AutoConfig.from_pretrained("gpt2") model = AutoModel.from_config(config) engine = deepspeed.initialize(model=model, config_params=ds_config, ...) ``` </hfoption> </hfoptions> ### Non-Trainer ZeRO Inference To run ZeRO Inference without the [`Trainer`] in cases where you can’t fit a model onto a single GPU, try using additional GPUs or/and offloading to CPU memory. The important nuance to understand here is that the way ZeRO is designed, you can process different inputs on different GPUs in parallel. Make sure to: * disable CPU offload if you have enough GPU memory (since it slows things down). * enable bf16 if you have an Ampere or newer GPU to make things faster. If you don’t have one of these GPUs, you may enable fp16 as long as you don’t use a model pretrained in bf16 (T5 models) because it may lead to an overflow error. Take a look at the following script to get a better idea of how to run ZeRO Inference without the [`Trainer`] on a model that won't fit on a single GPU. ```py #!/usr/bin/env python # This script demonstrates how to use Deepspeed ZeRO in an inference mode when one can't fit a model # into a single GPU # # 1. Use 1 GPU with CPU offload # 2. Or use multiple GPUs instead # # First you need to install deepspeed: pip install deepspeed # # Here we use a 3B "bigscience/T0_3B" model which needs about 15GB GPU RAM - so 1 largish or 2 # small GPUs can handle it. or 1 small GPU and a lot of CPU memory. # # To use a larger model like "bigscience/T0" which needs about 50GB, unless you have an 80GB GPU - # you will need 2-4 gpus. And then you can adapt the script to handle more gpus if you want to # process multiple inputs at once. # # The provided deepspeed config also activates CPU memory offloading, so chances are that if you # have a lot of available CPU memory and you don't mind a slowdown you should be able to load a # model that doesn't normally fit into a single GPU. If you have enough GPU memory the program will # run faster if you don't want offload to CPU - so disable that section then. # # To deploy on 1 gpu: # # deepspeed --num_gpus 1 t0.py # or: # python -m torch.distributed.run --nproc_per_node=1 t0.py # # To deploy on 2 gpus: # # deepspeed --num_gpus 2 t0.py # or: # python -m torch.distributed.run --nproc_per_node=2 t0.py from transformers import AutoTokenizer, AutoConfig, AutoModelForSeq2SeqLM from transformers.integrations import HfDeepSpeedConfig import deepspeed import os import torch os.environ["TOKENIZERS_PARALLELISM"] = "false" # To avoid warnings about parallelism in tokenizers # distributed setup local_rank = int(os.getenv("LOCAL_RANK", "0")) world_size = int(os.getenv("WORLD_SIZE", "1")) torch.cuda.set_device(local_rank) deepspeed.init_distributed() model_name = "bigscience/T0_3B" config = AutoConfig.from_pretrained(model_name) model_hidden_size = config.d_model # batch size has to be divisible by world_size, but can be bigger than world_size train_batch_size = 1 * world_size # ds_config notes # # - enable bf16 if you use Ampere or higher GPU - this will run in mixed precision and will be # faster. # # - for older GPUs you can enable fp16, but it'll only work for non-bf16 pretrained models - e.g. # all official t5 models are bf16-pretrained # # - set offload_param.device to "none" or completely remove the `offload_param` section if you don't # - want CPU offload # # - if using `offload_param` you can manually finetune stage3_param_persistence_threshold to control # - which params should remain on gpus - the larger the value the smaller the offload size # # For in-depth info on Deepspeed config see # https://huggingface.co/docs/transformers/main/main_classes/deepspeed # keeping the same format as json for consistency, except it uses lower case for true/false # fmt: off ds_config = { "fp16": { "enabled": False }, "bf16": { "enabled": False }, "zero_optimization": { "stage": 3, "offload_param": { "device": "cpu", "pin_memory": True }, "overlap_comm": True, "contiguous_gradients": True, "reduce_bucket_size": model_hidden_size * model_hidden_size, "stage3_prefetch_bucket_size": 0.9 * model_hidden_size * model_hidden_size, "stage3_param_persistence_threshold": 10 * model_hidden_size }, "steps_per_print": 2000, "train_batch_size": train_batch_size, "train_micro_batch_size_per_gpu": 1, "wall_clock_breakdown": False } # fmt: on # next line instructs transformers to partition the model directly over multiple gpus using # deepspeed.zero.Init when model's `from_pretrained` method is called. # # **it has to be run before loading the model AutoModelForSeq2SeqLM.from_pretrained(model_name)** # # otherwise the model will first be loaded normally and only partitioned at forward time which is # less efficient and when there is little CPU RAM may fail dschf = HfDeepSpeedConfig(ds_config) # keep this object alive # now a model can be loaded. model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # initialise Deepspeed ZeRO and store only the engine object ds_engine = deepspeed.initialize(model=model, config_params=ds_config)[0] ds_engine.module.eval() # inference # Deepspeed ZeRO can process unrelated inputs on each GPU. So for 2 gpus you process 2 inputs at once. # If you use more GPUs adjust for more. # And of course if you have just one input to process you then need to pass the same string to both gpus # If you use only one GPU, then you will have only rank 0. rank = torch.distributed.get_rank() if rank == 0: text_in = "Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy" elif rank == 1: text_in = "Is this review positive or negative? Review: this is the worst restaurant ever" tokenizer = AutoTokenizer.from_pretrained(model_name) inputs = tokenizer.encode(text_in, return_tensors="pt").to(device=local_rank) with torch.no_grad(): outputs = ds_engine.module.generate(inputs, synced_gpus=True) text_out = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"rank{rank}:\n in={text_in}\n out={text_out}") ``` Save the script as t0.py and launch it: ```bash $ deepspeed --num_gpus 2 t0.py rank0: in=Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy out=Positive rank1: in=Is this review positive or negative? Review: this is the worst restaurant ever out=negative ``` This is a very basic example and you'll want to adapt it to your use case. ### Generate Using multiple GPUs with ZeRO-3 for generation requires synchronizing the GPUs by setting `synced_gpus=True` in the [`~GenerationMixin.generate`] method. Otherwise, if one GPU is finished generating before another one, the whole system hangs because the remaining GPUs haven't received the weight shard from the GPU that finished first. For Transformers>=4.28, if `synced_gpus` is automatically set to `True` if multiple GPUs are detected during generation. ## Troubleshoot When you encounter an issue, you should consider whether DeepSpeed is the cause of the problem because often it isn't (unless it's super obviously and you can see DeepSpeed modules in the exception)! The first step should be to retry your setup without DeepSpeed, and if the problem persists, then you can report the issue. If the issue is a core DeepSpeed problem and unrelated to the Transformers integration, open an Issue on the [DeepSpeed repository](https://github.com/microsoft/DeepSpeed). For issues related to the Transformers integration, please provide the following information: * the full DeepSpeed config file * the command line arguments of the [`Trainer`], or [`TrainingArguments`] arguments if you're scripting the [`Trainer`] setup yourself (don't dump the [`TrainingArguments`] which has dozens of irrelevant entries) * the outputs of: ```bash python -c 'import torch; print(f"torch: {torch.__version__}")' python -c 'import transformers; print(f"transformers: {transformers.__version__}")' python -c 'import deepspeed; print(f"deepspeed: {deepspeed.__version__}")' ``` * a link to a Google Colab notebook to reproduce the issue * if impossible, a standard and non-custom dataset we can use and also try to use an existing example to reproduce the issue with The following sections provide a guide for resolving two of the most common issues. ### DeepSpeed process killed at startup When the DeepSpeed process is killed during launch without a traceback, that usually means the program tried to allocate more CPU memory than your system has or your process tried to allocate more CPU memory than allowed leading the OS kernel to terminate the process. In this case, check whether your configuration file has either `offload_optimizer`, `offload_param` or both configured to offload to the CPU. If you have NVMe and ZeRO-3 setup, experiment with offloading to the NVMe ([estimate](https://deepspeed.readthedocs.io/en/latest/memory.html) the memory requirements for your model). ### NaN loss NaN loss often occurs when a model is pretrained in bf16 and then you try to use it with fp16 (especially relevant for TPU trained models). To resolve this, use fp32 or bf16 if your hardware supports it (TPU, Ampere GPUs or newer). The other issue may be related to using fp16. For example, if this is your fp16 configuration: ```yaml { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 } } ``` You might see the following `OVERFLOW!` messages in the logs: ```bash 0%| | 0/189 [00:00<?, ?it/s] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 262144, reducing to 262144 1%|▌ | 1/189 [00:00<01:26, 2.17it/s] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 262144, reducing to 131072.0 1%|█▏ [...] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1 14%|████████████████▌ | 27/189 [00:14<01:13, 2.21it/s] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1 15%|█████████████████▏ | 28/189 [00:14<01:13, 2.18it/s] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1 15%|█████████████████▊ | 29/189 [00:15<01:13, 2.18it/s] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1 [...] ``` This means the DeepSpeed loss scaler is unable to find a scaling coefficient to overcome loss overflow. To fix it, try a higher `initial_scale_power` value (32 usually works). ## Resources DeepSpeed ZeRO is a powerful technology for training and loading very large models for inference with limited GPU resources, making it more accessible to everyone. To learn more about DeepSpeed, feel free to read the [blog posts](https://www.microsoft.com/en-us/research/search/?q=deepspeed), [documentation](https://www.deepspeed.ai/getting-started/), and [GitHub repository](https://github.com/microsoft/deepspeed). The following papers are also a great resource for learning more about ZeRO: * [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://hf.co/papers/1910.02054) * [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://hf.co/papers/2101.06840) * [ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning](https://hf.co/papers/2104.07857)
transformers/docs/source/en/deepspeed.md/0
{ "file_path": "transformers/docs/source/en/deepspeed.md", "repo_id": "transformers", "token_count": 18736 }
226
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Utilities for Tokenizers This page lists all the utility functions used by the tokenizers, mainly the class [`~tokenization_utils_base.PreTrainedTokenizerBase`] that implements the common methods between [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] and the mixin [`~tokenization_utils_base.SpecialTokensMixin`]. Most of those are only useful if you are studying the code of the tokenizers in the library. ## PreTrainedTokenizerBase [[autodoc]] tokenization_utils_base.PreTrainedTokenizerBase - __call__ - all ## SpecialTokensMixin [[autodoc]] tokenization_utils_base.SpecialTokensMixin ## Enums and namedtuples [[autodoc]] tokenization_utils_base.TruncationStrategy [[autodoc]] tokenization_utils_base.CharSpan [[autodoc]] tokenization_utils_base.TokenSpan
transformers/docs/source/en/internal/tokenization_utils.md/0
{ "file_path": "transformers/docs/source/en/internal/tokenization_utils.md", "repo_id": "transformers", "token_count": 428 }
227
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BARThez ## Overview The BARThez model was proposed in [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis on 23 Oct, 2020. The abstract of the paper: *Inductive transfer learning, enabled by self-supervised learning, have taken the entire Natural Language Processing (NLP) field by storm, with models such as BERT and BART setting new state of the art on countless natural language understanding tasks. While there are some notable exceptions, most of the available models and research have been conducted for the English language. In this work, we introduce BARThez, the first BART model for the French language (to the best of our knowledge). BARThez was pretrained on a very large monolingual French corpus from past research that we adapted to suit BART's perturbation schemes. Unlike already existing BERT-based French language models such as CamemBERT and FlauBERT, BARThez is particularly well-suited for generative tasks, since not only its encoder but also its decoder is pretrained. In addition to discriminative tasks from the FLUE benchmark, we evaluate BARThez on a novel summarization dataset, OrangeSum, that we release with this paper. We also continue the pretraining of an already pretrained multilingual BART on BARThez's corpus, and we show that the resulting model, which we call mBARTHez, provides a significant boost over vanilla BARThez, and is on par with or outperforms CamemBERT and FlauBERT.* This model was contributed by [moussakam](https://huggingface.co/moussakam). The Authors' code can be found [here](https://github.com/moussaKam/BARThez). <Tip> BARThez implementation is the same as BART, except for tokenization. Refer to [BART documentation](bart) for information on configuration classes and their parameters. BARThez-specific tokenizers are documented below. </Tip> ## Resources - BARThez can be fine-tuned on sequence-to-sequence tasks in a similar way as BART, check: [examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md). ## BarthezTokenizer [[autodoc]] BarthezTokenizer ## BarthezTokenizerFast [[autodoc]] BarthezTokenizerFast
transformers/docs/source/en/model_doc/barthez.md/0
{ "file_path": "transformers/docs/source/en/model_doc/barthez.md", "repo_id": "transformers", "token_count": 818 }
228
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BORT <Tip warning={true}> This model is in maintenance mode only, we do not accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0. You can do so by running the following command: `pip install -U transformers==4.30.0`. </Tip> ## Overview The BORT model was proposed in [Optimal Subarchitecture Extraction for BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. It is an optimal subset of architectural parameters for the BERT, which the authors refer to as "Bort". The abstract from the paper is the following: *We extract an optimal subset of architectural parameters for the BERT architecture from Devlin et al. (2018) by applying recent breakthroughs in algorithms for neural architecture search. This optimal subset, which we refer to as "Bort", is demonstrably smaller, having an effective (that is, not counting the embedding layer) size of 5.5% the original BERT-large architecture, and 16% of the net size. Bort is also able to be pretrained in 288 GPU hours, which is 1.2% of the time required to pretrain the highest-performing BERT parametric architectural variant, RoBERTa-large (Liu et al., 2019), and about 33% of that of the world-record, in GPU hours, required to train BERT-large on the same hardware. It is also 7.9x faster on a CPU, as well as being better performing than other compressed variants of the architecture, and some of the non-compressed variants: it obtains performance improvements of between 0.3% and 31%, absolute, with respect to BERT-large, on multiple public natural language understanding (NLU) benchmarks.* This model was contributed by [stefan-it](https://huggingface.co/stefan-it). The original code can be found [here](https://github.com/alexa/bort/). ## Usage tips - BORT's model architecture is based on BERT, refer to [BERT's documentation page](bert) for the model's API reference as well as usage examples. - BORT uses the RoBERTa tokenizer instead of the BERT tokenizer, refer to [RoBERTa's documentation page](roberta) for the tokenizer's API reference as well as usage examples. - BORT requires a specific fine-tuning algorithm, called [Agora](https://adewynter.github.io/notes/bort_algorithms_and_applications.html#fine-tuning-with-algebraic-topology) , that is sadly not open-sourced yet. It would be very useful for the community, if someone tries to implement the algorithm to make BORT fine-tuning work.
transformers/docs/source/en/model_doc/bort.md/0
{ "file_path": "transformers/docs/source/en/model_doc/bort.md", "repo_id": "transformers", "token_count": 867 }
229
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Dilated Neighborhood Attention Transformer ## Overview DiNAT was proposed in [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi. It extends [NAT](nat) by adding a Dilated Neighborhood Attention pattern to capture global context, and shows significant performance improvements over it. The abstract from the paper is the following: *Transformers are quickly becoming one of the most heavily applied deep learning architectures across modalities, domains, and tasks. In vision, on top of ongoing efforts into plain transformers, hierarchical transformers have also gained significant attention, thanks to their performance and easy integration into existing frameworks. These models typically employ localized attention mechanisms, such as the sliding-window Neighborhood Attention (NA) or Swin Transformer's Shifted Window Self Attention. While effective at reducing self attention's quadratic complexity, local attention weakens two of the most desirable properties of self attention: long range inter-dependency modeling, and global receptive field. In this paper, we introduce Dilated Neighborhood Attention (DiNA), a natural, flexible and efficient extension to NA that can capture more global context and expand receptive fields exponentially at no additional cost. NA's local attention and DiNA's sparse global attention complement each other, and therefore we introduce Dilated Neighborhood Attention Transformer (DiNAT), a new hierarchical vision transformer built upon both. DiNAT variants enjoy significant improvements over strong baselines such as NAT, Swin, and ConvNeXt. Our large model is faster and ahead of its Swin counterpart by 1.5% box AP in COCO object detection, 1.3% mask AP in COCO instance segmentation, and 1.1% mIoU in ADE20K semantic segmentation. Paired with new frameworks, our large variant is the new state of the art panoptic segmentation model on COCO (58.2 PQ) and ADE20K (48.5 PQ), and instance segmentation model on Cityscapes (44.5 AP) and ADE20K (35.4 AP) (no extra data). It also matches the state of the art specialized semantic segmentation models on ADE20K (58.2 mIoU), and ranks second on Cityscapes (84.5 mIoU) (no extra data). * <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg" alt="drawing" width="600"/> <small> Neighborhood Attention with different dilation values. Taken from the <a href="https://arxiv.org/abs/2209.15001">original paper</a>.</small> This model was contributed by [Ali Hassani](https://huggingface.co/alihassanijr). The original code can be found [here](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Usage tips DiNAT can be used as a *backbone*. When `output_hidden_states = True`, it will output both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, height, width, num_channels)`. Notes: - DiNAT depends on [NATTEN](https://github.com/SHI-Labs/NATTEN/)'s implementation of Neighborhood Attention and Dilated Neighborhood Attention. You can install it with pre-built wheels for Linux by referring to [shi-labs.com/natten](https://shi-labs.com/natten), or build on your system by running `pip install natten`. Note that the latter will likely take time to compile. NATTEN does not support Windows devices yet. - Patch size of 4 is only supported at the moment. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DiNAT. <PipelineTag pipeline="image-classification"/> - [`DinatForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## DinatConfig [[autodoc]] DinatConfig ## DinatModel [[autodoc]] DinatModel - forward ## DinatForImageClassification [[autodoc]] DinatForImageClassification - forward
transformers/docs/source/en/model_doc/dinat.md/0
{ "file_path": "transformers/docs/source/en/model_doc/dinat.md", "repo_id": "transformers", "token_count": 1371 }
230
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # GPT-NeoX ## Overview We introduce GPT-NeoX-20B, a 20 billion parameter autoregressive language model trained on the Pile, whose weights will be made freely and openly available to the public through a permissive license. It is, to the best of our knowledge, the largest dense autoregressive model that has publicly available weights at the time of submission. In this work, we describe GPT-NeoX-20B's architecture and training and evaluate its performance on a range of language-understanding, mathematics, and knowledge-based tasks. We find that GPT-NeoX-20B is a particularly powerful few-shot reasoner and gains far more in performance when evaluated five-shot than similarly sized GPT-3 and FairSeq models. We open-source the training and evaluation code, as well as the model weights, at [https://github.com/EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox). Development of the model was led by Sid Black, Stella Biderman and Eric Hallahan, and the model was trained with generous the support of [CoreWeave](https://www.coreweave.com/). GPT-NeoX-20B was trained with fp16, thus it is recommended to initialize the model as follows: ```python model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b").half().cuda() ``` GPT-NeoX-20B also has a different tokenizer from the one used in GPT-J-6B and GPT-Neo. The new tokenizer allocates additional tokens to whitespace characters, making the model more suitable for certain tasks like code generation. ## Usage example The `generate()` method can be used to generate text using GPT Neo model. ```python >>> from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast >>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b") >>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("EleutherAI/gpt-neox-20b") >>> prompt = "GPTNeoX20B is a 20B-parameter autoregressive Transformer model developed by EleutherAI." >>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids >>> gen_tokens = model.generate( ... input_ids, ... do_sample=True, ... temperature=0.9, ... max_length=100, ... ) >>> gen_text = tokenizer.batch_decode(gen_tokens)[0] ``` ## Using Flash Attention 2 Flash Attention 2 is an faster, optimized version of the model. ### Installation First, check whether your hardware is compatible with Flash Attention 2. The latest list of compatible hardware can be found in the [official documentation](https://github.com/Dao-AILab/flash-attention#installation-and-features). If your hardware is not compatible with Flash Attention 2, you can still benefit from attention kernel optimisations through Better Transformer support covered [above](https://huggingface.co/docs/transformers/main/en/model_doc/bark#using-better-transformer). Next, [install](https://github.com/Dao-AILab/flash-attention#installation-and-features) the latest version of Flash Attention 2: ```bash pip install -U flash-attn --no-build-isolation ``` ### Usage To load a model using Flash Attention 2, we can pass the argument `attn_implementation="flash_attention_2"` to [`.from_pretrained`](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.PreTrainedModel.from_pretrained). We'll also load the model in half-precision (e.g. `torch.float16`), since it results in almost no degradation to audio quality but significantly lower memory usage and faster inference: ```python >>> from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to(device) ... ``` ### Expected speedups Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `stockmark/gpt-neox-japanese-1.4b` checkpoint and the Flash Attention 2 version of the model using a sequence length of 2048. <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/gpt-neox-1.8b-speedup.jpg"> </div> ## Resources - [Causal language modeling task guide](../tasks/language_modeling) ## GPTNeoXConfig [[autodoc]] GPTNeoXConfig ## GPTNeoXTokenizerFast [[autodoc]] GPTNeoXTokenizerFast ## GPTNeoXModel [[autodoc]] GPTNeoXModel - forward ## GPTNeoXForCausalLM [[autodoc]] GPTNeoXForCausalLM - forward ## GPTNeoXForQuestionAnswering [[autodoc]] GPTNeoXForQuestionAnswering - forward ## GPTNeoXForSequenceClassification [[autodoc]] GPTNeoXForSequenceClassification - forward ## GPTNeoXForTokenClassification [[autodoc]] GPTNeoXForTokenClassification - forward
transformers/docs/source/en/model_doc/gpt_neox.md/0
{ "file_path": "transformers/docs/source/en/model_doc/gpt_neox.md", "repo_id": "transformers", "token_count": 1662 }
231
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LayoutLMV2 ## Overview The LayoutLMV2 model was proposed in [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. LayoutLMV2 improves [LayoutLM](layoutlm) to obtain state-of-the-art results across several document image understanding benchmarks: - information extraction from scanned documents: the [FUNSD](https://guillaumejaume.github.io/FUNSD/) dataset (a collection of 199 annotated forms comprising more than 30,000 words), the [CORD](https://github.com/clovaai/cord) dataset (a collection of 800 receipts for training, 100 for validation and 100 for testing), the [SROIE](https://rrc.cvc.uab.es/?ch=13) dataset (a collection of 626 receipts for training and 347 receipts for testing) and the [Kleister-NDA](https://github.com/applicaai/kleister-nda) dataset (a collection of non-disclosure agreements from the EDGAR database, including 254 documents for training, 83 documents for validation, and 203 documents for testing). - document image classification: the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset (a collection of 400,000 images belonging to one of 16 classes). - document visual question answering: the [DocVQA](https://arxiv.org/abs/2007.00398) dataset (a collection of 50,000 questions defined on 12,000+ document images). The abstract from the paper is the following: *Pre-training of text and layout has proved effective in a variety of visually-rich document understanding tasks due to its effective model architecture and the advantage of large-scale unlabeled scanned/digital-born documents. In this paper, we present LayoutLMv2 by pre-training text, layout and image in a multi-modal framework, where new model architectures and pre-training tasks are leveraged. Specifically, LayoutLMv2 not only uses the existing masked visual-language modeling task but also the new text-image alignment and text-image matching tasks in the pre-training stage, where cross-modality interaction is better learned. Meanwhile, it also integrates a spatial-aware self-attention mechanism into the Transformer architecture, so that the model can fully understand the relative positional relationship among different text blocks. Experiment results show that LayoutLMv2 outperforms strong baselines and achieves new state-of-the-art results on a wide variety of downstream visually-rich document understanding tasks, including FUNSD (0.7895 -> 0.8420), CORD (0.9493 -> 0.9601), SROIE (0.9524 -> 0.9781), Kleister-NDA (0.834 -> 0.852), RVL-CDIP (0.9443 -> 0.9564), and DocVQA (0.7295 -> 0.8672). The pre-trained LayoutLMv2 model is publicly available at this https URL.* LayoutLMv2 depends on `detectron2`, `torchvision` and `tesseract`. Run the following to install them: ``` python -m pip install 'git+https://github.com/facebookresearch/detectron2.git' python -m pip install torchvision tesseract ``` (If you are developing for LayoutLMv2, note that passing the doctests also requires the installation of these packages.) ## Usage tips - The main difference between LayoutLMv1 and LayoutLMv2 is that the latter incorporates visual embeddings during pre-training (while LayoutLMv1 only adds visual embeddings during fine-tuning). - LayoutLMv2 adds both a relative 1D attention bias as well as a spatial 2D attention bias to the attention scores in the self-attention layers. Details can be found on page 5 of the [paper](https://arxiv.org/abs/2012.14740). - Demo notebooks on how to use the LayoutLMv2 model on RVL-CDIP, FUNSD, DocVQA, CORD can be found [here](https://github.com/NielsRogge/Transformers-Tutorials). - LayoutLMv2 uses Facebook AI's [Detectron2](https://github.com/facebookresearch/detectron2/) package for its visual backbone. See [this link](https://detectron2.readthedocs.io/en/latest/tutorials/install.html) for installation instructions. - In addition to `input_ids`, [`~LayoutLMv2Model.forward`] expects 2 additional inputs, namely `image` and `bbox`. The `image` input corresponds to the original document image in which the text tokens occur. The model expects each document image to be of size 224x224. This means that if you have a batch of document images, `image` should be a tensor of shape (batch_size, 3, 224, 224). This can be either a `torch.Tensor` or a `Detectron2.structures.ImageList`. You don't need to normalize the channels, as this is done by the model. Important to note is that the visual backbone expects BGR channels instead of RGB, as all models in Detectron2 are pre-trained using the BGR format. The `bbox` input are the bounding boxes (i.e. 2D-positions) of the input text tokens. This is identical to [`LayoutLMModel`]. These can be obtained using an external OCR engine such as Google's [Tesseract](https://github.com/tesseract-ocr/tesseract) (there's a [Python wrapper](https://pypi.org/project/pytesseract/) available). Each bounding box should be in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. Note that one first needs to normalize the bounding boxes to be on a 0-1000 scale. To normalize, you can use the following function: ```python def normalize_bbox(bbox, width, height): return [ int(1000 * (bbox[0] / width)), int(1000 * (bbox[1] / height)), int(1000 * (bbox[2] / width)), int(1000 * (bbox[3] / height)), ] ``` Here, `width` and `height` correspond to the width and height of the original document in which the token occurs (before resizing the image). Those can be obtained using the Python Image Library (PIL) library for example, as follows: ```python from PIL import Image image = Image.open( "name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)." ) width, height = image.size ``` However, this model includes a brand new [`~transformers.LayoutLMv2Processor`] which can be used to directly prepare data for the model (including applying OCR under the hood). More information can be found in the "Usage" section below. - Internally, [`~transformers.LayoutLMv2Model`] will send the `image` input through its visual backbone to obtain a lower-resolution feature map, whose shape is equal to the `image_feature_pool_shape` attribute of [`~transformers.LayoutLMv2Config`]. This feature map is then flattened to obtain a sequence of image tokens. As the size of the feature map is 7x7 by default, one obtains 49 image tokens. These are then concatenated with the text tokens, and send through the Transformer encoder. This means that the last hidden states of the model will have a length of 512 + 49 = 561, if you pad the text tokens up to the max length. More generally, the last hidden states will have a shape of `seq_length` + `image_feature_pool_shape[0]` * `config.image_feature_pool_shape[1]`. - When calling [`~transformers.LayoutLMv2Model.from_pretrained`], a warning will be printed with a long list of parameter names that are not initialized. This is not a problem, as these parameters are batch normalization statistics, which are going to have values when fine-tuning on a custom dataset. - If you want to train the model in a distributed environment, make sure to call [`synchronize_batch_norm`] on the model in order to properly synchronize the batch normalization layers of the visual backbone. In addition, there's LayoutXLM, which is a multilingual version of LayoutLMv2. More information can be found on [LayoutXLM's documentation page](layoutxlm). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with LayoutLMv2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-classification"/> - A notebook on how to [finetune LayoutLMv2 for text-classification on RVL-CDIP dataset](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLMv2/RVL-CDIP/Fine_tuning_LayoutLMv2ForSequenceClassification_on_RVL_CDIP.ipynb). - See also: [Text classification task guide](../tasks/sequence_classification) <PipelineTag pipeline="question-answering"/> - A notebook on how to [finetune LayoutLMv2 for question-answering on DocVQA dataset](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLMv2/DocVQA/Fine_tuning_LayoutLMv2ForQuestionAnswering_on_DocVQA.ipynb). - See also: [Question answering task guide](../tasks/question_answering) - See also: [Document question answering task guide](../tasks/document_question_answering) <PipelineTag pipeline="token-classification"/> - A notebook on how to [finetune LayoutLMv2 for token-classification on CORD dataset](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLMv2/CORD/Fine_tuning_LayoutLMv2ForTokenClassification_on_CORD.ipynb). - A notebook on how to [finetune LayoutLMv2 for token-classification on FUNSD dataset](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLMv2/FUNSD/Fine_tuning_LayoutLMv2ForTokenClassification_on_FUNSD_using_HuggingFace_Trainer.ipynb). - See also: [Token classification task guide](../tasks/token_classification) ## Usage: LayoutLMv2Processor The easiest way to prepare data for the model is to use [`LayoutLMv2Processor`], which internally combines a image processor ([`LayoutLMv2ImageProcessor`]) and a tokenizer ([`LayoutLMv2Tokenizer`] or [`LayoutLMv2TokenizerFast`]). The image processor handles the image modality, while the tokenizer handles the text modality. A processor combines both, which is ideal for a multi-modal model like LayoutLMv2. Note that you can still use both separately, if you only want to handle one modality. ```python from transformers import LayoutLMv2ImageProcessor, LayoutLMv2TokenizerFast, LayoutLMv2Processor image_processor = LayoutLMv2ImageProcessor() # apply_ocr is set to True by default tokenizer = LayoutLMv2TokenizerFast.from_pretrained("microsoft/layoutlmv2-base-uncased") processor = LayoutLMv2Processor(image_processor, tokenizer) ``` In short, one can provide a document image (and possibly additional data) to [`LayoutLMv2Processor`], and it will create the inputs expected by the model. Internally, the processor first uses [`LayoutLMv2ImageProcessor`] to apply OCR on the image to get a list of words and normalized bounding boxes, as well to resize the image to a given size in order to get the `image` input. The words and normalized bounding boxes are then provided to [`LayoutLMv2Tokenizer`] or [`LayoutLMv2TokenizerFast`], which converts them to token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide word labels to the processor, which are turned into token-level `labels`. [`LayoutLMv2Processor`] uses [PyTesseract](https://pypi.org/project/pytesseract/), a Python wrapper around Google's Tesseract OCR engine, under the hood. Note that you can still use your own OCR engine of choice, and provide the words and normalized boxes yourself. This requires initializing [`LayoutLMv2ImageProcessor`] with `apply_ocr` set to `False`. In total, there are 5 use cases that are supported by the processor. Below, we list them all. Note that each of these use cases work for both batched and non-batched inputs (we illustrate them for non-batched inputs). **Use case 1: document image classification (training, inference) + token classification (inference), apply_ocr = True** This is the simplest case, in which the processor (actually the image processor) will perform OCR on the image to get the words and normalized bounding boxes. ```python from transformers import LayoutLMv2Processor from PIL import Image processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased") image = Image.open( "name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)." ).convert("RGB") encoding = processor( image, return_tensors="pt" ) # you can also add all tokenizer parameters here such as padding, truncation print(encoding.keys()) # dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image']) ``` **Use case 2: document image classification (training, inference) + token classification (inference), apply_ocr=False** In case one wants to do OCR themselves, one can initialize the image processor with `apply_ocr` set to `False`. In that case, one should provide the words and corresponding (normalized) bounding boxes themselves to the processor. ```python from transformers import LayoutLMv2Processor from PIL import Image processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr") image = Image.open( "name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)." ).convert("RGB") words = ["hello", "world"] boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] # make sure to normalize your bounding boxes encoding = processor(image, words, boxes=boxes, return_tensors="pt") print(encoding.keys()) # dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image']) ``` **Use case 3: token classification (training), apply_ocr=False** For token classification tasks (such as FUNSD, CORD, SROIE, Kleister-NDA), one can also provide the corresponding word labels in order to train a model. The processor will then convert these into token-level `labels`. By default, it will only label the first wordpiece of a word, and label the remaining wordpieces with -100, which is the `ignore_index` of PyTorch's CrossEntropyLoss. In case you want all wordpieces of a word to be labeled, you can initialize the tokenizer with `only_label_first_subword` set to `False`. ```python from transformers import LayoutLMv2Processor from PIL import Image processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr") image = Image.open( "name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)." ).convert("RGB") words = ["hello", "world"] boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] # make sure to normalize your bounding boxes word_labels = [1, 2] encoding = processor(image, words, boxes=boxes, word_labels=word_labels, return_tensors="pt") print(encoding.keys()) # dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'labels', 'image']) ``` **Use case 4: visual question answering (inference), apply_ocr=True** For visual question answering tasks (such as DocVQA), you can provide a question to the processor. By default, the processor will apply OCR on the image, and create [CLS] question tokens [SEP] word tokens [SEP]. ```python from transformers import LayoutLMv2Processor from PIL import Image processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased") image = Image.open( "name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)." ).convert("RGB") question = "What's his name?" encoding = processor(image, question, return_tensors="pt") print(encoding.keys()) # dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image']) ``` **Use case 5: visual question answering (inference), apply_ocr=False** For visual question answering tasks (such as DocVQA), you can provide a question to the processor. If you want to perform OCR yourself, you can provide your own words and (normalized) bounding boxes to the processor. ```python from transformers import LayoutLMv2Processor from PIL import Image processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr") image = Image.open( "name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)." ).convert("RGB") question = "What's his name?" words = ["hello", "world"] boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] # make sure to normalize your bounding boxes encoding = processor(image, question, words, boxes=boxes, return_tensors="pt") print(encoding.keys()) # dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image']) ``` ## LayoutLMv2Config [[autodoc]] LayoutLMv2Config ## LayoutLMv2FeatureExtractor [[autodoc]] LayoutLMv2FeatureExtractor - __call__ ## LayoutLMv2ImageProcessor [[autodoc]] LayoutLMv2ImageProcessor - preprocess ## LayoutLMv2Tokenizer [[autodoc]] LayoutLMv2Tokenizer - __call__ - save_vocabulary ## LayoutLMv2TokenizerFast [[autodoc]] LayoutLMv2TokenizerFast - __call__ ## LayoutLMv2Processor [[autodoc]] LayoutLMv2Processor - __call__ ## LayoutLMv2Model [[autodoc]] LayoutLMv2Model - forward ## LayoutLMv2ForSequenceClassification [[autodoc]] LayoutLMv2ForSequenceClassification ## LayoutLMv2ForTokenClassification [[autodoc]] LayoutLMv2ForTokenClassification ## LayoutLMv2ForQuestionAnswering [[autodoc]] LayoutLMv2ForQuestionAnswering
transformers/docs/source/en/model_doc/layoutlmv2.md/0
{ "file_path": "transformers/docs/source/en/model_doc/layoutlmv2.md", "repo_id": "transformers", "token_count": 5360 }
232
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MarkupLM ## Overview The MarkupLM model was proposed in [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei. MarkupLM is BERT, but applied to HTML pages instead of raw text documents. The model incorporates additional embedding layers to improve performance, similar to [LayoutLM](layoutlm). The model can be used for tasks like question answering on web pages or information extraction from web pages. It obtains state-of-the-art results on 2 important benchmarks: - [WebSRC](https://x-lance.github.io/WebSRC/), a dataset for Web-Based Structural Reading Comprehension (a bit like SQuAD but for web pages) - [SWDE](https://www.researchgate.net/publication/221299838_From_one_tree_to_a_forest_a_unified_solution_for_structured_web_data_extraction), a dataset for information extraction from web pages (basically named-entity recognition on web pages) The abstract from the paper is the following: *Multimodal pre-training with text, layout, and image has made significant progress for Visually-rich Document Understanding (VrDU), especially the fixed-layout documents such as scanned document images. While, there are still a large number of digital documents where the layout information is not fixed and needs to be interactively and dynamically rendered for visualization, making existing layout-based pre-training approaches not easy to apply. In this paper, we propose MarkupLM for document understanding tasks with markup languages as the backbone such as HTML/XML-based documents, where text and markup information is jointly pre-trained. Experiment results show that the pre-trained MarkupLM significantly outperforms the existing strong baseline models on several document understanding tasks. The pre-trained model and code will be publicly available.* This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/microsoft/unilm/tree/master/markuplm). ## Usage tips - In addition to `input_ids`, [`~MarkupLMModel.forward`] expects 2 additional inputs, namely `xpath_tags_seq` and `xpath_subs_seq`. These are the XPATH tags and subscripts respectively for each token in the input sequence. - One can use [`MarkupLMProcessor`] to prepare all data for the model. Refer to the [usage guide](#usage-markuplmprocessor) for more info. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/markuplm_architecture.jpg" alt="drawing" width="600"/> <small> MarkupLM architecture. Taken from the <a href="https://arxiv.org/abs/2110.08518">original paper.</a> </small> ## Usage: MarkupLMProcessor The easiest way to prepare data for the model is to use [`MarkupLMProcessor`], which internally combines a feature extractor ([`MarkupLMFeatureExtractor`]) and a tokenizer ([`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]). The feature extractor is used to extract all nodes and xpaths from the HTML strings, which are then provided to the tokenizer, which turns them into the token-level inputs of the model (`input_ids` etc.). Note that you can still use the feature extractor and tokenizer separately, if you only want to handle one of the two tasks. ```python from transformers import MarkupLMFeatureExtractor, MarkupLMTokenizerFast, MarkupLMProcessor feature_extractor = MarkupLMFeatureExtractor() tokenizer = MarkupLMTokenizerFast.from_pretrained("microsoft/markuplm-base") processor = MarkupLMProcessor(feature_extractor, tokenizer) ``` In short, one can provide HTML strings (and possibly additional data) to [`MarkupLMProcessor`], and it will create the inputs expected by the model. Internally, the processor first uses [`MarkupLMFeatureExtractor`] to get a list of nodes and corresponding xpaths. The nodes and xpaths are then provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which converts them to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_subs_seq`, `xpath_tags_seq`. Optionally, one can provide node labels to the processor, which are turned into token-level `labels`. [`MarkupLMFeatureExtractor`] uses [Beautiful Soup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/), a Python library for pulling data out of HTML and XML files, under the hood. Note that you can still use your own parsing solution of choice, and provide the nodes and xpaths yourself to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. In total, there are 5 use cases that are supported by the processor. Below, we list them all. Note that each of these use cases work for both batched and non-batched inputs (we illustrate them for non-batched inputs). **Use case 1: web page classification (training, inference) + token classification (inference), parse_html = True** This is the simplest case, in which the processor will use the feature extractor to get all nodes and xpaths from the HTML. ```python >>> from transformers import MarkupLMProcessor >>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base") >>> html_string = """ ... <!DOCTYPE html> ... <html> ... <head> ... <title>Hello world</title> ... </head> ... <body> ... <h1>Welcome</h1> ... <p>Here is my website.</p> ... </body> ... </html>""" >>> # note that you can also add provide all tokenizer parameters here such as padding, truncation >>> encoding = processor(html_string, return_tensors="pt") >>> print(encoding.keys()) dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq']) ``` **Use case 2: web page classification (training, inference) + token classification (inference), parse_html=False** In case one already has obtained all nodes and xpaths, one doesn't need the feature extractor. In that case, one should provide the nodes and corresponding xpaths themselves to the processor, and make sure to set `parse_html` to `False`. ```python >>> from transformers import MarkupLMProcessor >>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base") >>> processor.parse_html = False >>> nodes = ["hello", "world", "how", "are"] >>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"] >>> encoding = processor(nodes=nodes, xpaths=xpaths, return_tensors="pt") >>> print(encoding.keys()) dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq']) ``` **Use case 3: token classification (training), parse_html=False** For token classification tasks (such as [SWDE](https://paperswithcode.com/dataset/swde)), one can also provide the corresponding node labels in order to train a model. The processor will then convert these into token-level `labels`. By default, it will only label the first wordpiece of a word, and label the remaining wordpieces with -100, which is the `ignore_index` of PyTorch's CrossEntropyLoss. In case you want all wordpieces of a word to be labeled, you can initialize the tokenizer with `only_label_first_subword` set to `False`. ```python >>> from transformers import MarkupLMProcessor >>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base") >>> processor.parse_html = False >>> nodes = ["hello", "world", "how", "are"] >>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"] >>> node_labels = [1, 2, 2, 1] >>> encoding = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt") >>> print(encoding.keys()) dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq', 'labels']) ``` **Use case 4: web page question answering (inference), parse_html=True** For question answering tasks on web pages, you can provide a question to the processor. By default, the processor will use the feature extractor to get all nodes and xpaths, and create [CLS] question tokens [SEP] word tokens [SEP]. ```python >>> from transformers import MarkupLMProcessor >>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base") >>> html_string = """ ... <!DOCTYPE html> ... <html> ... <head> ... <title>Hello world</title> ... </head> ... <body> ... <h1>Welcome</h1> ... <p>My name is Niels.</p> ... </body> ... </html>""" >>> question = "What's his name?" >>> encoding = processor(html_string, questions=question, return_tensors="pt") >>> print(encoding.keys()) dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq']) ``` **Use case 5: web page question answering (inference), parse_html=False** For question answering tasks (such as WebSRC), you can provide a question to the processor. If you have extracted all nodes and xpaths yourself, you can provide them directly to the processor. Make sure to set `parse_html` to `False`. ```python >>> from transformers import MarkupLMProcessor >>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base") >>> processor.parse_html = False >>> nodes = ["hello", "world", "how", "are"] >>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"] >>> question = "What's his name?" >>> encoding = processor(nodes=nodes, xpaths=xpaths, questions=question, return_tensors="pt") >>> print(encoding.keys()) dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq']) ``` ## Resources - [Demo notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/MarkupLM) - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) ## MarkupLMConfig [[autodoc]] MarkupLMConfig - all ## MarkupLMFeatureExtractor [[autodoc]] MarkupLMFeatureExtractor - __call__ ## MarkupLMTokenizer [[autodoc]] MarkupLMTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## MarkupLMTokenizerFast [[autodoc]] MarkupLMTokenizerFast - all ## MarkupLMProcessor [[autodoc]] MarkupLMProcessor - __call__ ## MarkupLMModel [[autodoc]] MarkupLMModel - forward ## MarkupLMForSequenceClassification [[autodoc]] MarkupLMForSequenceClassification - forward ## MarkupLMForTokenClassification [[autodoc]] MarkupLMForTokenClassification - forward ## MarkupLMForQuestionAnswering [[autodoc]] MarkupLMForQuestionAnswering - forward
transformers/docs/source/en/model_doc/markuplm.md/0
{ "file_path": "transformers/docs/source/en/model_doc/markuplm.md", "repo_id": "transformers", "token_count": 3443 }
233
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MobileNet V2 ## Overview The MobileNet model was proposed in [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. The abstract from the paper is the following: *In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3.* *The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters.* This model was contributed by [matthijs](https://huggingface.co/Matthijs). The original code and weights can be found [here for the main model](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet) and [here for DeepLabV3+](https://github.com/tensorflow/models/tree/master/research/deeplab). ## Usage tips - The checkpoints are named **mobilenet\_v2\_*depth*\_*size***, for example **mobilenet\_v2\_1.0\_224**, where **1.0** is the depth multiplier (sometimes also referred to as "alpha" or the width multiplier) and **224** is the resolution of the input images the model was trained on. - Even though the checkpoint is trained on images of specific size, the model will work on images of any size. The smallest supported image size is 32x32. - One can use [`MobileNetV2ImageProcessor`] to prepare images for the model. - The available image classification checkpoints are pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes). However, the model predicts 1001 classes: the 1000 classes from ImageNet plus an extra “background” class (index 0). - The segmentation model uses a [DeepLabV3+](https://arxiv.org/abs/1802.02611) head. The available semantic segmentation checkpoints are pre-trained on [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/). - The original TensorFlow checkpoints use different padding rules than PyTorch, requiring the model to determine the padding amount at inference time, since this depends on the input image size. To use native PyTorch padding behavior, create a [`MobileNetV2Config`] with `tf_padding = False`. Unsupported features: - The [`MobileNetV2Model`] outputs a globally pooled version of the last hidden state. In the original model it is possible to use an average pooling layer with a fixed 7x7 window and stride 1 instead of global pooling. For inputs that are larger than the recommended image size, this gives a pooled output that is larger than 1x1. The Hugging Face implementation does not support this. - The original TensorFlow checkpoints include quantized models. We do not support these models as they include additional "FakeQuantization" operations to unquantize the weights. - It's common to extract the output from the expansion layers at indices 10 and 13, as well as the output from the final 1x1 convolution layer, for downstream purposes. Using `output_hidden_states=True` returns the output from all intermediate layers. There is currently no way to limit this to specific layers. - The DeepLabV3+ segmentation head does not use the final convolution layer from the backbone, but this layer gets computed anyway. There is currently no way to tell [`MobileNetV2Model`] up to which layer it should run. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with MobileNetV2. <PipelineTag pipeline="image-classification"/> - [`MobileNetV2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) **Semantic segmentation** - [Semantic segmentation task guide](../tasks/semantic_segmentation) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## MobileNetV2Config [[autodoc]] MobileNetV2Config ## MobileNetV2FeatureExtractor [[autodoc]] MobileNetV2FeatureExtractor - preprocess - post_process_semantic_segmentation ## MobileNetV2ImageProcessor [[autodoc]] MobileNetV2ImageProcessor - preprocess - post_process_semantic_segmentation ## MobileNetV2Model [[autodoc]] MobileNetV2Model - forward ## MobileNetV2ForImageClassification [[autodoc]] MobileNetV2ForImageClassification - forward ## MobileNetV2ForSemanticSegmentation [[autodoc]] MobileNetV2ForSemanticSegmentation - forward
transformers/docs/source/en/model_doc/mobilenet_v2.md/0
{ "file_path": "transformers/docs/source/en/model_doc/mobilenet_v2.md", "repo_id": "transformers", "token_count": 1747 }
234
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Open-Llama <Tip warning={true}> This model is in maintenance mode only, we don't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.31.0. You can do so by running the following command: `pip install -U transformers==4.31.0`. </Tip> <Tip warning={true}> This model differs from the [OpenLLaMA models](https://huggingface.co/models?search=openllama) on the Hugging Face Hub, which primarily use the [LLaMA](llama) architecture. </Tip> ## Overview The Open-Llama model was proposed in the open source Open-Llama project by community developer s-JoL. The model is mainly based on LLaMA with some modifications, incorporating memory-efficient attention from Xformers, stable embedding from Bloom, and shared input-output embedding from PaLM. And the model is pre-trained on both Chinese and English, which gives it better performance on Chinese language tasks. This model was contributed by [s-JoL](https://huggingface.co/s-JoL). The original code was released on GitHub by [s-JoL](https://github.com/s-JoL), but is now removed. ## OpenLlamaConfig [[autodoc]] OpenLlamaConfig ## OpenLlamaModel [[autodoc]] OpenLlamaModel - forward ## OpenLlamaForCausalLM [[autodoc]] OpenLlamaForCausalLM - forward ## OpenLlamaForSequenceClassification [[autodoc]] OpenLlamaForSequenceClassification - forward
transformers/docs/source/en/model_doc/open-llama.md/0
{ "file_path": "transformers/docs/source/en/model_doc/open-llama.md", "repo_id": "transformers", "token_count": 620 }
235
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Pop2Piano <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/spaces/sweetcocoa/pop2piano"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The Pop2Piano model was proposed in [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee. Piano covers of pop music are widely enjoyed, but generating them from music is not a trivial task. It requires great expertise with playing piano as well as knowing different characteristics and melodies of a song. With Pop2Piano you can directly generate a cover from a song's audio waveform. It is the first model to directly generate a piano cover from pop audio without melody and chord extraction modules. Pop2Piano is an encoder-decoder Transformer model based on [T5](https://arxiv.org/pdf/1910.10683.pdf). The input audio is transformed to its waveform and passed to the encoder, which transforms it to a latent representation. The decoder uses these latent representations to generate token ids in an autoregressive way. Each token id corresponds to one of four different token types: time, velocity, note and 'special'. The token ids are then decoded to their equivalent MIDI file. The abstract from the paper is the following: *Piano covers of pop music are enjoyed by many people. However, the task of automatically generating piano covers of pop music is still understudied. This is partly due to the lack of synchronized {Pop, Piano Cover} data pairs, which made it challenging to apply the latest data-intensive deep learning-based methods. To leverage the power of the data-driven approach, we make a large amount of paired and synchronized {Pop, Piano Cover} data using an automated pipeline. In this paper, we present Pop2Piano, a Transformer network that generates piano covers given waveforms of pop music. To the best of our knowledge, this is the first model to generate a piano cover directly from pop audio without using melody and chord extraction modules. We show that Pop2Piano, trained with our dataset, is capable of producing plausible piano covers.* This model was contributed by [Susnato Dhar](https://huggingface.co/susnato). The original code can be found [here](https://github.com/sweetcocoa/pop2piano). ## Usage tips * To use Pop2Piano, you will need to install the 🤗 Transformers library, as well as the following third party modules: ``` pip install pretty-midi==0.2.9 essentia==2.1b6.dev1034 librosa scipy ``` Please note that you may need to restart your runtime after installation. * Pop2Piano is an Encoder-Decoder based model like T5. * Pop2Piano can be used to generate midi-audio files for a given audio sequence. * Choosing different composers in `Pop2PianoForConditionalGeneration.generate()` can lead to variety of different results. * Setting the sampling rate to 44.1 kHz when loading the audio file can give good performance. * Though Pop2Piano was mainly trained on Korean Pop music, it also does pretty well on other Western Pop or Hip Hop songs. ## Examples - Example using HuggingFace Dataset: ```python >>> from datasets import load_dataset >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") >>> ds = load_dataset("sweetcocoa/pop2piano_ci", split="test") >>> inputs = processor( ... audio=ds["audio"][0]["array"], sampling_rate=ds["audio"][0]["sampling_rate"], return_tensors="pt" ... ) >>> model_output = model.generate(input_features=inputs["input_features"], composer="composer1") >>> tokenizer_output = processor.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"][0] >>> tokenizer_output.write("./Outputs/midi_output.mid") ``` - Example using your own audio file: ```python >>> import librosa >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor >>> audio, sr = librosa.load("<your_audio_file_here>", sr=44100) # feel free to change the sr to a suitable value. >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") >>> inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt") >>> model_output = model.generate(input_features=inputs["input_features"], composer="composer1") >>> tokenizer_output = processor.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"][0] >>> tokenizer_output.write("./Outputs/midi_output.mid") ``` - Example of processing multiple audio files in batch: ```python >>> import librosa >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor >>> # feel free to change the sr to a suitable value. >>> audio1, sr1 = librosa.load("<your_first_audio_file_here>", sr=44100) >>> audio2, sr2 = librosa.load("<your_second_audio_file_here>", sr=44100) >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") >>> inputs = processor(audio=[audio1, audio2], sampling_rate=[sr1, sr2], return_attention_mask=True, return_tensors="pt") >>> # Since we now generating in batch(2 audios) we must pass the attention_mask >>> model_output = model.generate( ... input_features=inputs["input_features"], ... attention_mask=inputs["attention_mask"], ... composer="composer1", ... ) >>> tokenizer_output = processor.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"] >>> # Since we now have 2 generated MIDI files >>> tokenizer_output[0].write("./Outputs/midi_output1.mid") >>> tokenizer_output[1].write("./Outputs/midi_output2.mid") ``` - Example of processing multiple audio files in batch (Using `Pop2PianoFeatureExtractor` and `Pop2PianoTokenizer`): ```python >>> import librosa >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoFeatureExtractor, Pop2PianoTokenizer >>> # feel free to change the sr to a suitable value. >>> audio1, sr1 = librosa.load("<your_first_audio_file_here>", sr=44100) >>> audio2, sr2 = librosa.load("<your_second_audio_file_here>", sr=44100) >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> feature_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano") >>> tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano") >>> inputs = feature_extractor( ... audio=[audio1, audio2], ... sampling_rate=[sr1, sr2], ... return_attention_mask=True, ... return_tensors="pt", ... ) >>> # Since we now generating in batch(2 audios) we must pass the attention_mask >>> model_output = model.generate( ... input_features=inputs["input_features"], ... attention_mask=inputs["attention_mask"], ... composer="composer1", ... ) >>> tokenizer_output = tokenizer.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"] >>> # Since we now have 2 generated MIDI files >>> tokenizer_output[0].write("./Outputs/midi_output1.mid") >>> tokenizer_output[1].write("./Outputs/midi_output2.mid") ``` ## Pop2PianoConfig [[autodoc]] Pop2PianoConfig ## Pop2PianoFeatureExtractor [[autodoc]] Pop2PianoFeatureExtractor - __call__ ## Pop2PianoForConditionalGeneration [[autodoc]] Pop2PianoForConditionalGeneration - forward - generate ## Pop2PianoTokenizer [[autodoc]] Pop2PianoTokenizer - __call__ ## Pop2PianoProcessor [[autodoc]] Pop2PianoProcessor - __call__
transformers/docs/source/en/model_doc/pop2piano.md/0
{ "file_path": "transformers/docs/source/en/model_doc/pop2piano.md", "repo_id": "transformers", "token_count": 2623 }
236
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # RWKV ## Overview The RWKV model was proposed in [this repo](https://github.com/BlinkDL/RWKV-LM) It suggests a tweak in the traditional Transformer attention to make it linear. This way, the model can be used as recurrent network: passing inputs for timestamp 0 and timestamp 1 together is the same as passing inputs at timestamp 0, then inputs at timestamp 1 along with the state of timestamp 0 (see example below). This can be more efficient than a regular Transformer and can deal with sentence of any length (even if the model uses a fixed context length for training). This model was contributed by [sgugger](https://huggingface.co/sgugger). The original code can be found [here](https://github.com/BlinkDL/RWKV-LM). ## Usage example ```py import torch from transformers import AutoTokenizer, RwkvConfig, RwkvModel model = RwkvModel.from_pretrained("sgugger/rwkv-430M-pile") tokenizer = AutoTokenizer.from_pretrained("sgugger/rwkv-430M-pile") inputs = tokenizer("This is an example.", return_tensors="pt") # Feed everything to the model outputs = model(inputs["input_ids"]) output_whole = outputs.last_hidden_state outputs = model(inputs["input_ids"][:, :2]) output_one = outputs.last_hidden_state # Using the state computed on the first inputs, we will get the same output outputs = model(inputs["input_ids"][:, 2:], state=outputs.state) output_two = outputs.last_hidden_state torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5) ``` If you want to make sure the model stops generating when `'\n\n'` is detected, we recommend using the following stopping criteria: ```python from transformers import StoppingCriteria class RwkvStoppingCriteria(StoppingCriteria): def __init__(self, eos_sequence = [187,187], eos_token_id = 537): self.eos_sequence = eos_sequence self.eos_token_id = eos_token_id def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: last_2_ids = input_ids[:,-2:].tolist() return self.eos_sequence in last_2_ids output = model.generate(inputs["input_ids"], max_new_tokens=64, stopping_criteria = [RwkvStoppingCriteria()]) ``` ## RwkvConfig [[autodoc]] RwkvConfig ## RwkvModel [[autodoc]] RwkvModel - forward ## RwkvLMHeadModel [[autodoc]] RwkvForCausalLM - forward ## Rwkv attention and the recurrent formulas In a traditional auto-regressive Transformer, attention is written as $$O = \hbox{softmax}(QK^{T} / \sqrt{d}) V$$ with \\(Q\\), \\(K\\) and \\(V\\) are matrices of shape `seq_len x hidden_size` named query, key and value (they are actually bigger matrices with a batch dimension and an attention head dimension but we're only interested in the last two, which is where the matrix product is taken, so for the sake of simplicity we only consider those two). The product \\(QK^{T}\\) then has shape `seq_len x seq_len` and we can take the matrix product with \\(V\\) to get the output \\(O\\) of the same shape as the others. Replacing the softmax by its value gives: $$O_{i} = \frac{\sum_{j=1}^{i} e^{Q_{i} K_{j}^{T} / \sqrt{d}} V_{j}}{\sum_{j=1}^{i} e^{Q_{i} K_{j}^{T} / \sqrt{d}}}$$ Note that the entries in \\(QK^{T}\\) corresponding to \\(j > i\\) are masked (the sum stops at j) because the attention is not allowed to look at future tokens (only past ones). In comparison, the RWKV attention is given by $$O_{i} = \sigma(R_{i}) \frac{\sum_{j=1}^{i} e^{W_{i-j} + K_{j}} V_{j}}{\sum_{j=1}^{i} e^{W_{i-j} + K_{j}}}$$ where \\(R\\) is a new matrix called receptance by the author, \\(K\\) and \\(V\\) are still the key and value (\\(\sigma\\) here is the sigmoid function). \\(W\\) is a new vector that represents the position of the token and is given by $$W_{0} = u \hbox{ and } W_{k} = (k-1)w \hbox{ for } k \geq 1$$ with \\(u\\) and \\(w\\) learnable parameters called in the code `time_first` and `time_decay` respectively. The numerator and denominator can both be expressed recursively. Naming them \\(N_{i}\\) and \\(D_{i}\\) we have: $$N_{i} = e^{u + K_{i}} V_{i} + \hat{N}_{i} \hbox{ where } \hat{N}_{i} = e^{K_{i-1}} V_{i-1} + e^{w + K_{i-2}} V_{i-2} \cdots + e^{(i-2)w + K_{1}} V_{1}$$ so \\(\hat{N}_{i}\\) (called `numerator_state` in the code) satisfies $$\hat{N}_{0} = 0 \hbox{ and } \hat{N}_{j+1} = e^{K_{j}} V_{j} + e^{w} \hat{N}_{j}$$ and $$D_{i} = e^{u + K_{i}} + \hat{D}_{i} \hbox{ where } \hat{D}_{i} = e^{K_{i-1}} + e^{w + K_{i-2}} \cdots + e^{(i-2)w + K_{1}}$$ so \\(\hat{D}_{i}\\) (called `denominator_state` in the code) satisfies $$\hat{D}_{0} = 0 \hbox{ and } \hat{D}_{j+1} = e^{K_{j}} + e^{w} \hat{D}_{j}$$ The actual recurrent formula used are a tiny bit more complex, as for numerical stability we don't want to compute exponentials of big numbers. Usually the softmax is not computed as is, but the exponential of the maximum term is divided of the numerator and denominator: $$\frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}} = \frac{e^{x_{i} - M}}{\sum_{j=1}^{n} e^{x_{j} - M}}$$ with \\(M\\) the maximum of all \\(x_{j}\\). So here on top of saving the numerator state (\\(\hat{N}\\)) and the denominator state (\\(\hat{D}\\)) we also keep track of the maximum of all terms encountered in the exponentials. So we actually use $$\tilde{N}_{i} = e^{-M_{i}} \hat{N}_{i} \hbox{ and } \tilde{D}_{i} = e^{-M_{i}} \hat{D}_{i}$$ defined by the following recurrent formulas: $$\tilde{N}_{0} = 0 \hbox{ and } \tilde{N}_{j+1} = e^{K_{j} - q} V_{j} + e^{w + M_{j} - q} \tilde{N}_{j} \hbox{ where } q = \max(K_{j}, w + M_{j})$$ and $$\tilde{D}_{0} = 0 \hbox{ and } \tilde{D}_{j+1} = e^{K_{j} - q} + e^{w + M_{j} - q} \tilde{D}_{j} \hbox{ where } q = \max(K_{j}, w + M_{j})$$ and \\(M_{j+1} = q\\). With those, we can then compute $$N_{i} = e^{u + K_{i} - q} V_{i} + e^{M_{i}} \tilde{N}_{i} \hbox{ where } q = \max(u + K_{i}, M_{i})$$ and $$D_{i} = e^{u + K_{i} - q} + e^{M_{i}} \tilde{D}_{i} \hbox{ where } q = \max(u + K_{i}, M_{i})$$ which finally gives us $$O_{i} = \sigma(R_{i}) \frac{N_{i}}{D_{i}}$$
transformers/docs/source/en/model_doc/rwkv.md/0
{ "file_path": "transformers/docs/source/en/model_doc/rwkv.md", "repo_id": "transformers", "token_count": 2548 }
237
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Swin2SR ## Overview The Swin2SR model was proposed in [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte. Swin2R improves the [SwinIR](https://github.com/JingyunLiang/SwinIR/) model by incorporating [Swin Transformer v2](swinv2) layers which mitigates issues such as training instability, resolution gaps between pre-training and fine-tuning, and hunger on data. The abstract from the paper is the following: *Compression plays an important role on the efficient transmission and storage of images and videos through band-limited systems such as streaming services, virtual reality or videogames. However, compression unavoidably leads to artifacts and the loss of the original information, which may severely degrade the visual quality. For these reasons, quality enhancement of compressed images has become a popular research topic. While most state-of-the-art image restoration methods are based on convolutional neural networks, other transformers-based methods such as SwinIR, show impressive performance on these tasks. In this paper, we explore the novel Swin Transformer V2, to improve SwinIR for image super-resolution, and in particular, the compressed input scenario. Using this method we can tackle the major issues in training transformer vision models, such as training instability, resolution gaps between pre-training and fine-tuning, and hunger on data. We conduct experiments on three representative tasks: JPEG compression artifacts removal, image super-resolution (classical and lightweight), and compressed image super-resolution. Experimental results demonstrate that our method, Swin2SR, can improve the training convergence and performance of SwinIR, and is a top-5 solution at the "AIM 2022 Challenge on Super-Resolution of Compressed Image and Video".* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/swin2sr_architecture.png" alt="drawing" width="600"/> <small> Swin2SR architecture. Taken from the <a href="https://arxiv.org/abs/2209.11345">original paper.</a> </small> This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/mv-lab/swin2sr). ## Resources Demo notebooks for Swin2SR can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Swin2SR). A demo Space for image super-resolution with SwinSR can be found [here](https://huggingface.co/spaces/jjourney1125/swin2sr). ## Swin2SRImageProcessor [[autodoc]] Swin2SRImageProcessor - preprocess ## Swin2SRConfig [[autodoc]] Swin2SRConfig ## Swin2SRModel [[autodoc]] Swin2SRModel - forward ## Swin2SRForImageSuperResolution [[autodoc]] Swin2SRForImageSuperResolution - forward
transformers/docs/source/en/model_doc/swin2sr.md/0
{ "file_path": "transformers/docs/source/en/model_doc/swin2sr.md", "repo_id": "transformers", "token_count": 979 }
238
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # ViTDet ## Overview The ViTDet model was proposed in [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. VitDet leverages the plain [Vision Transformer](vit) for the task of object detection. The abstract from the paper is the following: *We explore the plain, non-hierarchical Vision Transformer (ViT) as a backbone network for object detection. This design enables the original ViT architecture to be fine-tuned for object detection without needing to redesign a hierarchical backbone for pre-training. With minimal adaptations for fine-tuning, our plain-backbone detector can achieve competitive results. Surprisingly, we observe: (i) it is sufficient to build a simple feature pyramid from a single-scale feature map (without the common FPN design) and (ii) it is sufficient to use window attention (without shifting) aided with very few cross-window propagation blocks. With plain ViT backbones pre-trained as Masked Autoencoders (MAE), our detector, named ViTDet, can compete with the previous leading methods that were all based on hierarchical backbones, reaching up to 61.3 AP_box on the COCO dataset using only ImageNet-1K pre-training. We hope our study will draw attention to research on plain-backbone detectors.* This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/facebookresearch/detectron2/tree/main/projects/ViTDet). Tips: - At the moment, only the backbone is available. ## VitDetConfig [[autodoc]] VitDetConfig ## VitDetModel [[autodoc]] VitDetModel - forward
transformers/docs/source/en/model_doc/vitdet.md/0
{ "file_path": "transformers/docs/source/en/model_doc/vitdet.md", "repo_id": "transformers", "token_count": 579 }
239
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # XLM <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=xlm"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-xlm-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/xlm-mlm-en-2048"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The XLM model was proposed in [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample, Alexis Conneau. It's a transformer pretrained using one of the following objectives: - a causal language modeling (CLM) objective (next token prediction), - a masked language modeling (MLM) objective (BERT-like), or - a Translation Language Modeling (TLM) object (extension of BERT's MLM to multiple language inputs) The abstract from the paper is the following: *Recent studies have demonstrated the efficiency of generative pretraining for English natural language understanding. In this work, we extend this approach to multiple languages and show the effectiveness of cross-lingual pretraining. We propose two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual data, and one supervised that leverages parallel data with a new cross-lingual language model objective. We obtain state-of-the-art results on cross-lingual classification, unsupervised and supervised machine translation. On XNLI, our approach pushes the state of the art by an absolute gain of 4.9% accuracy. On unsupervised machine translation, we obtain 34.3 BLEU on WMT'16 German-English, improving the previous state of the art by more than 9 BLEU. On supervised machine translation, we obtain a new state of the art of 38.5 BLEU on WMT'16 Romanian-English, outperforming the previous best approach by more than 4 BLEU. Our code and pretrained models will be made publicly available.* This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/facebookresearch/XLM/). ## Usage tips - XLM has many different checkpoints, which were trained using different objectives: CLM, MLM or TLM. Make sure to select the correct objective for your task (e.g. MLM checkpoints are not suitable for generation). - XLM has multilingual checkpoints which leverage a specific `lang` parameter. Check out the [multi-lingual](../multilingual) page for more information. - A transformer model trained on several languages. There are three different type of training for this model and the library provides checkpoints for all of them: * Causal language modeling (CLM) which is the traditional autoregressive training (so this model could be in the previous section as well). One of the languages is selected for each training sample, and the model input is a sentence of 256 tokens, that may span over several documents in one of those languages. * Masked language modeling (MLM) which is like RoBERTa. One of the languages is selected for each training sample, and the model input is a sentence of 256 tokens, that may span over several documents in one of those languages, with dynamic masking of the tokens. * A combination of MLM and translation language modeling (TLM). This consists of concatenating a sentence in two different languages, with random masking. To predict one of the masked tokens, the model can use both, the surrounding context in language 1 and the context given by language 2. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## XLMConfig [[autodoc]] XLMConfig ## XLMTokenizer [[autodoc]] XLMTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## XLM specific outputs [[autodoc]] models.xlm.modeling_xlm.XLMForQuestionAnsweringOutput <frameworkcontent> <pt> ## XLMModel [[autodoc]] XLMModel - forward ## XLMWithLMHeadModel [[autodoc]] XLMWithLMHeadModel - forward ## XLMForSequenceClassification [[autodoc]] XLMForSequenceClassification - forward ## XLMForMultipleChoice [[autodoc]] XLMForMultipleChoice - forward ## XLMForTokenClassification [[autodoc]] XLMForTokenClassification - forward ## XLMForQuestionAnsweringSimple [[autodoc]] XLMForQuestionAnsweringSimple - forward ## XLMForQuestionAnswering [[autodoc]] XLMForQuestionAnswering - forward </pt> <tf> ## TFXLMModel [[autodoc]] TFXLMModel - call ## TFXLMWithLMHeadModel [[autodoc]] TFXLMWithLMHeadModel - call ## TFXLMForSequenceClassification [[autodoc]] TFXLMForSequenceClassification - call ## TFXLMForMultipleChoice [[autodoc]] TFXLMForMultipleChoice - call ## TFXLMForTokenClassification [[autodoc]] TFXLMForTokenClassification - call ## TFXLMForQuestionAnsweringSimple [[autodoc]] TFXLMForQuestionAnsweringSimple - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/xlm.md/0
{ "file_path": "transformers/docs/source/en/model_doc/xlm.md", "repo_id": "transformers", "token_count": 1744 }
240
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # GPU inference GPUs are the standard choice of hardware for machine learning, unlike CPUs, because they are optimized for memory bandwidth and parallelism. To keep up with the larger sizes of modern models or to run these large models on existing and older hardware, there are several optimizations you can use to speed up GPU inference. In this guide, you'll learn how to use FlashAttention-2 (a more memory-efficient attention mechanism), BetterTransformer (a PyTorch native fastpath execution), and bitsandbytes to quantize your model to a lower precision. Finally, learn how to use 🤗 Optimum to accelerate inference with ONNX Runtime on Nvidia and AMD GPUs. <Tip> The majority of the optimizations described here also apply to multi-GPU setups! </Tip> ## FlashAttention-2 <Tip> FlashAttention-2 is experimental and may change considerably in future versions. </Tip> [FlashAttention-2](https://huggingface.co/papers/2205.14135) is a faster and more efficient implementation of the standard attention mechanism that can significantly speedup inference by: 1. additionally parallelizing the attention computation over sequence length 2. partitioning the work between GPU threads to reduce communication and shared memory reads/writes between them FlashAttention-2 is currently supported for the following architectures: * [Bark](https://huggingface.co/docs/transformers/model_doc/bark#transformers.BarkModel) * [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel) * [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel) * [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel) * [GPTNeo](https://huggingface.co/docs/transformers/model_doc/gpt_neo#transformers.GPTNeoModel) * [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel) * [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel) * [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel) * [Llava](https://huggingface.co/docs/transformers/model_doc/llava) * [VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava) * [MBart](https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartModel) * [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel) * [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel) * [OPT](https://huggingface.co/docs/transformers/model_doc/opt#transformers.OPTModel) * [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel) * [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model) * [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel) You can request to add FlashAttention-2 support for another model by opening a GitHub Issue or Pull Request. Before you begin, make sure you have FlashAttention-2 installed. <hfoptions id="install"> <hfoption id="NVIDIA"> ```bash pip install flash-attn --no-build-isolation ``` We strongly suggest referring to the detailed [installation instructions](https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features) to learn more about supported hardware and data types! </hfoption> <hfoption id="AMD"> FlashAttention-2 is also supported on AMD GPUs and current support is limited to **Instinct MI210** and **Instinct MI250**. We strongly suggest using this [Dockerfile](https://github.com/huggingface/optimum-amd/tree/main/docker/transformers-pytorch-amd-gpu-flash/Dockerfile) to use FlashAttention-2 on AMD GPUs. </hfoption> </hfoptions> To enable FlashAttention-2, pass the argument `attn_implementation="flash_attention_2"` to [`~AutoModelForCausalLM.from_pretrained`]: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM model_id = "tiiuae/falcon-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", ) ``` <Tip> FlashAttention-2 can only be used when the model's dtype is `fp16` or `bf16`. Make sure to cast your model to the appropriate dtype and load them on a supported device before using FlashAttention-2. <br> You can also set `use_flash_attention_2=True` to enable FlashAttention-2 but it is deprecated in favor of `attn_implementation="flash_attention_2"`. </Tip> FlashAttention-2 can be combined with other optimization techniques like quantization to further speedup inference. For example, you can combine FlashAttention-2 with 8-bit or 4-bit quantization: ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM model_id = "tiiuae/falcon-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) # load in 8bit model = AutoModelForCausalLM.from_pretrained( model_id, load_in_8bit=True, attn_implementation="flash_attention_2", ) # load in 4bit model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True, attn_implementation="flash_attention_2", ) ``` ### Expected speedups You can benefit from considerable speedups for inference, especially for inputs with long sequences. However, since FlashAttention-2 does not support computing attention scores with padding tokens, you must manually pad/unpad the attention scores for batched inference when the sequence contains padding tokens. This leads to a significant slowdown for batched generations with padding tokens. To overcome this, you should use FlashAttention-2 without padding tokens in the sequence during training (by packing a dataset or [concatenating sequences](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py#L516) until reaching the maximum sequence length). For a single forward pass on [tiiuae/falcon-7b](https://hf.co/tiiuae/falcon-7b) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is: <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/falcon-7b-inference-large-seqlen.png"> </div> For a single forward pass on [meta-llama/Llama-7b-hf](https://hf.co/meta-llama/Llama-7b-hf) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is: <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-7b-inference-large-seqlen.png"> </div> For sequences with padding tokens (generating with padding tokens), you need to unpad/pad the input sequences to correctly compute the attention scores. With a relatively small sequence length, a single forward pass creates overhead leading to a small speedup (in the example below, 30% of the input is filled with padding tokens): <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-small-seqlen-padding.png"> </div> But for larger sequence lengths, you can expect even more speedup benefits: <Tip> FlashAttention is more memory efficient, meaning you can train on much larger sequence lengths without running into out-of-memory issues. You can potentially reduce memory usage up to 20x for larger sequence lengths. Take a look at the [flash-attention](https://github.com/Dao-AILab/flash-attention) repository for more details. </Tip> <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-large-seqlen-padding.png"> </div> ## PyTorch scaled dot product attention PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) (SDPA) can also call FlashAttention and memory-efficient attention kernels under the hood. SDPA support is currently being added natively in Transformers and is used by default for `torch>=2.1.1` when an implementation is available. For now, Transformers supports SDPA inference and training for the following architectures: * [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel) * [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel) * [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel) * [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel) * [Idefics](https://huggingface.co/docs/transformers/model_doc/idefics#transformers.IdeficsModel) * [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel) * [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel) * [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel) * [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model) <Tip> FlashAttention can only be used for models with the `fp16` or `bf16` torch type, so make sure to cast your model to the appropriate type first. </Tip> By default, SDPA selects the most performant kernel available but you can check whether a backend is available in a given setting (hardware, problem size) with [`torch.backends.cuda.sdp_kernel`](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel) as a context manager: ```diff import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16).to("cuda") # convert the model to BetterTransformer model.to_bettertransformer() input_text = "Hello my dog is cute and" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") + with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` If you see a bug with the traceback below, try using the nightly version of PyTorch which may have broader coverage for FlashAttention: ```bash RuntimeError: No available kernel. Aborting execution. # install PyTorch nightly pip3 install -U --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118 ``` ## BetterTransformer <Tip warning={true}> Some BetterTransformer features are being upstreamed to Transformers with default support for native `torch.nn.scaled_dot_product_attention`. BetterTransformer still has a wider coverage than the Transformers SDPA integration, but you can expect more and more architectures to natively support SDPA in Transformers. </Tip> <Tip> Check out our benchmarks with BetterTransformer and scaled dot product attention in the [Out of the box acceleration and memory savings of 🤗 decoder models with PyTorch 2.0](https://pytorch.org/blog/out-of-the-box-acceleration/) and learn more about the fastpath execution in the [BetterTransformer](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2) blog post. </Tip> BetterTransformer accelerates inference with its fastpath (native PyTorch specialized implementation of Transformer functions) execution. The two optimizations in the fastpath execution are: 1. fusion, which combines multiple sequential operations into a single "kernel" to reduce the number of computation steps 2. skipping the inherent sparsity of padding tokens to avoid unnecessary computation with nested tensors BetterTransformer also converts all attention operations to use the more memory-efficient [scaled dot product attention (SDPA)](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention), and it calls optimized kernels like [FlashAttention](https://huggingface.co/papers/2205.14135) under the hood. Before you start, make sure you have 🤗 Optimum [installed](https://huggingface.co/docs/optimum/installation). Then you can enable BetterTransformer with the [`PreTrainedModel.to_bettertransformer`] method: ```python model = model.to_bettertransformer() ``` You can return the original Transformers model with the [`~PreTrainedModel.reverse_bettertransformer`] method. You should use this before saving your model to use the canonical Transformers modeling: ```py model = model.reverse_bettertransformer() model.save_pretrained("saved_model") ``` ## bitsandbytes bitsandbytes is a quantization library that includes support for 4-bit and 8-bit quantization. Quantization reduces your model size compared to its native full precision version, making it easier to fit large models onto GPUs with limited memory. Make sure you have bitsandbytes and 🤗 Accelerate installed: ```bash # these versions support 8-bit and 4-bit pip install bitsandbytes>=0.39.0 accelerate>=0.20.0 # install Transformers pip install transformers ``` ### 4-bit To load a model in 4-bit for inference, use the `load_in_4bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 🤗 Accelerate to automatically and efficiently allocate the model given the available resources in the environment. ```py from transformers import AutoModelForCausalLM model_name = "bigscience/bloom-2b5" model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True) ``` To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 600MB of memory to the first GPU and 1GB of memory to the second GPU: ```py max_memory_mapping = {0: "600MB", 1: "1GB"} model_name = "bigscience/bloom-3b" model_4bit = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping ) ``` ### 8-bit <Tip> If you're curious and interested in learning more about the concepts underlying 8-bit quantization, read the [Gentle Introduction to 8-bit Matrix Multiplication for transformers at scale using Hugging Face Transformers, Accelerate and bitsandbytes](https://huggingface.co/blog/hf-bitsandbytes-integration) blog post. </Tip> To load a model in 8-bit for inference, use the `load_in_8bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 🤗 Accelerate to automatically and efficiently allocate the model given the available resources in the environment: ```py from transformers import AutoModelForCausalLM model_name = "bigscience/bloom-2b5" model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True) ``` If you're loading a model in 8-bit for text generation, you should use the [`~transformers.GenerationMixin.generate`] method instead of the [`Pipeline`] function which is not optimized for 8-bit models and will be slower. Some sampling strategies, like nucleus sampling, are also not supported by the [`Pipeline`] for 8-bit models. You should also place all inputs on the same device as the model: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "bigscience/bloom-2b5" tokenizer = AutoTokenizer.from_pretrained(model_name) model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True) prompt = "Hello, my llama is cute" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generated_ids = model.generate(**inputs) outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ``` To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 1GB of memory to the first GPU and 2GB of memory to the second GPU: ```py max_memory_mapping = {0: "1GB", 1: "2GB"} model_name = "bigscience/bloom-3b" model_8bit = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping ) ``` <Tip> Feel free to try running a 11 billion parameter [T5 model](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing) or the 3 billion parameter [BLOOM model](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing) for inference on Google Colab's free tier GPUs! </Tip> ## 🤗 Optimum <Tip> Learn more details about using ORT with 🤗 Optimum in the [Accelerated inference on NVIDIA GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#accelerated-inference-on-nvidia-gpus) and [Accelerated inference on AMD GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu#accelerated-inference-on-amd-gpus) guides. This section only provides a brief and simple example. </Tip> ONNX Runtime (ORT) is a model accelerator that supports accelerated inference on Nvidia GPUs, and AMD GPUs that use [ROCm](https://www.amd.com/en/products/software/rocm.html) stack. ORT uses optimization techniques like fusing common operations into a single node and constant folding to reduce the number of computations performed and speedup inference. ORT also places the most computationally intensive operations on the GPU and the rest on the CPU to intelligently distribute the workload between the two devices. ORT is supported by 🤗 Optimum which can be used in 🤗 Transformers. You'll need to use an [`~optimum.onnxruntime.ORTModel`] for the task you're solving, and specify the `provider` parameter which can be set to either [`CUDAExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#cudaexecutionprovider), [`ROCMExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu) or [`TensorrtExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#tensorrtexecutionprovider). If you want to load a model that was not yet exported to ONNX, you can set `export=True` to convert your model on-the-fly to the ONNX format: ```py from optimum.onnxruntime import ORTModelForSequenceClassification ort_model = ORTModelForSequenceClassification.from_pretrained( "distilbert-base-uncased-finetuned-sst-2-english", export=True, provider="CUDAExecutionProvider", ) ``` Now you're free to use the model for inference: ```py from optimum.pipelines import pipeline from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") pipeline = pipeline(task="text-classification", model=ort_model, tokenizer=tokenizer, device="cuda:0") result = pipeline("Both the music and visual were astounding, not to mention the actors performance.") ``` ## Combine optimizations It is often possible to combine several of the optimization techniques described above to get the best inference performance possible for your model. For example, you can load a model in 4-bit, and then enable BetterTransformer with FlashAttention: ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig # load model in 4-bit quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 ) tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", quantization_config=quantization_config) # enable BetterTransformer model = model.to_bettertransformer() input_text = "Hello my dog is cute and" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") # enable FlashAttention with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
transformers/docs/source/en/perf_infer_gpu_one.md/0
{ "file_path": "transformers/docs/source/en/perf_infer_gpu_one.md", "repo_id": "transformers", "token_count": 6311 }
241
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Quick tour [[open-in-colab]] Get up and running with 🤗 Transformers! Whether you're a developer or an everyday user, this quick tour will help you get started and show you how to use the [`pipeline`] for inference, load a pretrained model and preprocessor with an [AutoClass](./model_doc/auto), and quickly train a model with PyTorch or TensorFlow. If you're a beginner, we recommend checking out our tutorials or [course](https://huggingface.co/course/chapter1/1) next for more in-depth explanations of the concepts introduced here. Before you begin, make sure you have all the necessary libraries installed: ```bash !pip install transformers datasets ``` You'll also need to install your preferred machine learning framework: <frameworkcontent> <pt> ```bash pip install torch ``` </pt> <tf> ```bash pip install tensorflow ``` </tf> </frameworkcontent> ## Pipeline <Youtube id="tiZFewofSLM"/> The [`pipeline`] is the easiest and fastest way to use a pretrained model for inference. You can use the [`pipeline`] out-of-the-box for many tasks across different modalities, some of which are shown in the table below: <Tip> For a complete list of available tasks, check out the [pipeline API reference](./main_classes/pipelines). </Tip> | **Task** | **Description** | **Modality** | **Pipeline identifier** | |------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------| | Text classification | assign a label to a given sequence of text | NLP | pipeline(task=“sentiment-analysis”) | | Text generation | generate text given a prompt | NLP | pipeline(task=“text-generation”) | | Summarization | generate a summary of a sequence of text or document | NLP | pipeline(task=“summarization”) | | Image classification | assign a label to an image | Computer vision | pipeline(task=“image-classification”) | | Image segmentation | assign a label to each individual pixel of an image (supports semantic, panoptic, and instance segmentation) | Computer vision | pipeline(task=“image-segmentation”) | | Object detection | predict the bounding boxes and classes of objects in an image | Computer vision | pipeline(task=“object-detection”) | | Audio classification | assign a label to some audio data | Audio | pipeline(task=“audio-classification”) | | Automatic speech recognition | transcribe speech into text | Audio | pipeline(task=“automatic-speech-recognition”) | | Visual question answering | answer a question about the image, given an image and a question | Multimodal | pipeline(task=“vqa”) | | Document question answering | answer a question about the document, given a document and a question | Multimodal | pipeline(task="document-question-answering") | | Image captioning | generate a caption for a given image | Multimodal | pipeline(task="image-to-text") | Start by creating an instance of [`pipeline`] and specifying a task you want to use it for. In this guide, you'll use the [`pipeline`] for sentiment analysis as an example: ```py >>> from transformers import pipeline >>> classifier = pipeline("sentiment-analysis") ``` The [`pipeline`] downloads and caches a default [pretrained model](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) and tokenizer for sentiment analysis. Now you can use the `classifier` on your target text: ```py >>> classifier("We are very happy to show you the 🤗 Transformers library.") [{'label': 'POSITIVE', 'score': 0.9998}] ``` If you have more than one input, pass your inputs as a list to the [`pipeline`] to return a list of dictionaries: ```py >>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."]) >>> for result in results: ... print(f"label: {result['label']}, with score: {round(result['score'], 4)}") label: POSITIVE, with score: 0.9998 label: NEGATIVE, with score: 0.5309 ``` The [`pipeline`] can also iterate over an entire dataset for any task you like. For this example, let's choose automatic speech recognition as our task: ```py >>> import torch >>> from transformers import pipeline >>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") ``` Load an audio dataset (see the 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart#audio) for more details) you'd like to iterate over. For example, load the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset: ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT ``` You need to make sure the sampling rate of the dataset matches the sampling rate [`facebook/wav2vec2-base-960h`](https://huggingface.co/facebook/wav2vec2-base-960h) was trained on: ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate)) ``` The audio files are automatically loaded and resampled when calling the `"audio"` column. Extract the raw waveform arrays from the first 4 samples and pass it as a list to the pipeline: ```py >>> result = speech_recognizer(dataset[:4]["audio"]) >>> print([d["text"] for d in result]) ['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FONDERING HOW I'D SET UP A JOIN TO HELL T WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE APSO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AN I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I FURN A JOINA COUT'] ``` For larger datasets where the inputs are big (like in speech or vision), you'll want to pass a generator instead of a list to load all the inputs in memory. Take a look at the [pipeline API reference](./main_classes/pipelines) for more information. ### Use another model and tokenizer in the pipeline The [`pipeline`] can accommodate any model from the [Hub](https://huggingface.co/models), making it easy to adapt the [`pipeline`] for other use-cases. For example, if you'd like a model capable of handling French text, use the tags on the Hub to filter for an appropriate model. The top filtered result returns a multilingual [BERT model](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) finetuned for sentiment analysis you can use for French text: ```py >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" ``` <frameworkcontent> <pt> Use [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `AutoClass` in the next section): ```py >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </pt> <tf> Use [`TFAutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `TFAutoClass` in the next section): ```py >>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </tf> </frameworkcontent> Specify the model and tokenizer in the [`pipeline`], and now you can apply the `classifier` on French text: ```py >>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) >>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.") [{'label': '5 stars', 'score': 0.7273}] ``` If you can't find a model for your use-case, you'll need to finetune a pretrained model on your data. Take a look at our [finetuning tutorial](./training) to learn how. Finally, after you've finetuned your pretrained model, please consider [sharing](./model_sharing) the model with the community on the Hub to democratize machine learning for everyone! 🤗 ## AutoClass <Youtube id="AhChOFRegn4"/> Under the hood, the [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] classes work together to power the [`pipeline`] you used above. An [AutoClass](./model_doc/auto) is a shortcut that automatically retrieves the architecture of a pretrained model from its name or path. You only need to select the appropriate `AutoClass` for your task and it's associated preprocessing class. Let's return to the example from the previous section and see how you can use the `AutoClass` to replicate the results of the [`pipeline`]. ### AutoTokenizer A tokenizer is responsible for preprocessing text into an array of numbers as inputs to a model. There are multiple rules that govern the tokenization process, including how to split a word and at what level words should be split (learn more about tokenization in the [tokenizer summary](./tokenizer_summary)). The most important thing to remember is you need to instantiate a tokenizer with the same model name to ensure you're using the same tokenization rules a model was pretrained with. Load a tokenizer with [`AutoTokenizer`]: ```py >>> from transformers import AutoTokenizer >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` Pass your text to the tokenizer: ```py >>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.") >>> print(encoding) {'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` The tokenizer returns a dictionary containing: * [input_ids](./glossary#input-ids): numerical representations of your tokens. * [attention_mask](.glossary#attention-mask): indicates which tokens should be attended to. A tokenizer can also accept a list of inputs, and pad and truncate the text to return a batch with uniform length: <frameworkcontent> <pt> ```py >>> pt_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="pt", ... ) ``` </pt> <tf> ```py >>> tf_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="tf", ... ) ``` </tf> </frameworkcontent> <Tip> Check out the [preprocess](./preprocessing) tutorial for more details about tokenization, and how to use an [`AutoImageProcessor`], [`AutoFeatureExtractor`] and [`AutoProcessor`] to preprocess image, audio, and multimodal inputs. </Tip> ### AutoModel <frameworkcontent> <pt> 🤗 Transformers provides a simple and unified way to load pretrained instances. This means you can load an [`AutoModel`] like you would load an [`AutoTokenizer`]. The only difference is selecting the correct [`AutoModel`] for the task. For text (or sequence) classification, you should load [`AutoModelForSequenceClassification`]: ```py >>> from transformers import AutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> See the [task summary](./task_summary) for tasks supported by an [`AutoModel`] class. </Tip> Now pass your preprocessed batch of inputs directly to the model. You just have to unpack the dictionary by adding `**`: ```py >>> pt_outputs = pt_model(**pt_batch) ``` The model outputs the final activations in the `logits` attribute. Apply the softmax function to the `logits` to retrieve the probabilities: ```py >>> from torch import nn >>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1) >>> print(pt_predictions) tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725], [0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>) ``` </pt> <tf> 🤗 Transformers provides a simple and unified way to load pretrained instances. This means you can load an [`TFAutoModel`] like you would load an [`AutoTokenizer`]. The only difference is selecting the correct [`TFAutoModel`] for the task. For text (or sequence) classification, you should load [`TFAutoModelForSequenceClassification`]: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> See the [task summary](./task_summary) for tasks supported by an [`AutoModel`] class. </Tip> Now pass your preprocessed batch of inputs directly to the model. You can pass the tensors as-is: ```py >>> tf_outputs = tf_model(tf_batch) ``` The model outputs the final activations in the `logits` attribute. Apply the softmax function to the `logits` to retrieve the probabilities: ```py >>> import tensorflow as tf >>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1) >>> tf_predictions # doctest: +IGNORE_RESULT ``` </tf> </frameworkcontent> <Tip> All 🤗 Transformers models (PyTorch or TensorFlow) output the tensors *before* the final activation function (like softmax) because the final activation function is often fused with the loss. Model outputs are special dataclasses so their attributes are autocompleted in an IDE. The model outputs behave like a tuple or a dictionary (you can index with an integer, a slice or a string) in which case, attributes that are None are ignored. </Tip> ### Save a model <frameworkcontent> <pt> Once your model is fine-tuned, you can save it with its tokenizer using [`PreTrainedModel.save_pretrained`]: ```py >>> pt_save_directory = "./pt_save_pretrained" >>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT >>> pt_model.save_pretrained(pt_save_directory) ``` When you are ready to use the model again, reload it with [`PreTrainedModel.from_pretrained`]: ```py >>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained") ``` </pt> <tf> Once your model is fine-tuned, you can save it with its tokenizer using [`TFPreTrainedModel.save_pretrained`]: ```py >>> tf_save_directory = "./tf_save_pretrained" >>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT >>> tf_model.save_pretrained(tf_save_directory) ``` When you are ready to use the model again, reload it with [`TFPreTrainedModel.from_pretrained`]: ```py >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained") ``` </tf> </frameworkcontent> One particularly cool 🤗 Transformers feature is the ability to save a model and reload it as either a PyTorch or TensorFlow model. The `from_pt` or `from_tf` parameter can convert the model from one framework to the other: <frameworkcontent> <pt> ```py >>> from transformers import AutoModel >>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory) >>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True) ``` </pt> <tf> ```py >>> from transformers import TFAutoModel >>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory) >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True) ``` </tf> </frameworkcontent> ## Custom model builds You can modify the model's configuration class to change how a model is built. The configuration specifies a model's attributes, such as the number of hidden layers or attention heads. You start from scratch when you initialize a model from a custom configuration class. The model attributes are randomly initialized, and you'll need to train the model before you can use it to get meaningful results. Start by importing [`AutoConfig`], and then load the pretrained model you want to modify. Within [`AutoConfig.from_pretrained`], you can specify the attribute you want to change, such as the number of attention heads: ```py >>> from transformers import AutoConfig >>> my_config = AutoConfig.from_pretrained("distilbert-base-uncased", n_heads=12) ``` <frameworkcontent> <pt> Create a model from your custom configuration with [`AutoModel.from_config`]: ```py >>> from transformers import AutoModel >>> my_model = AutoModel.from_config(my_config) ``` </pt> <tf> Create a model from your custom configuration with [`TFAutoModel.from_config`]: ```py >>> from transformers import TFAutoModel >>> my_model = TFAutoModel.from_config(my_config) ``` </tf> </frameworkcontent> Take a look at the [Create a custom architecture](./create_a_model) guide for more information about building custom configurations. ## Trainer - a PyTorch optimized training loop All models are a standard [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) so you can use them in any typical training loop. While you can write your own training loop, 🤗 Transformers provides a [`Trainer`] class for PyTorch, which contains the basic training loop and adds additional functionality for features like distributed training, mixed precision, and more. Depending on your task, you'll typically pass the following parameters to [`Trainer`]: 1. You'll start with a [`PreTrainedModel`] or a [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module): ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased") ``` 2. [`TrainingArguments`] contains the model hyperparameters you can change like learning rate, batch size, and the number of epochs to train for. The default values are used if you don't specify any training arguments: ```py >>> from transformers import TrainingArguments >>> training_args = TrainingArguments( ... output_dir="path/to/save/folder/", ... learning_rate=2e-5, ... per_device_train_batch_size=8, ... per_device_eval_batch_size=8, ... num_train_epochs=2, ... ) ``` 3. Load a preprocessing class like a tokenizer, image processor, feature extractor, or processor: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") ``` 4. Load a dataset: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("rotten_tomatoes") # doctest: +IGNORE_RESULT ``` 5. Create a function to tokenize the dataset: ```py >>> def tokenize_dataset(dataset): ... return tokenizer(dataset["text"]) ``` Then apply it over the entire dataset with [`~datasets.Dataset.map`]: ```py >>> dataset = dataset.map(tokenize_dataset, batched=True) ``` 6. A [`DataCollatorWithPadding`] to create a batch of examples from your dataset: ```py >>> from transformers import DataCollatorWithPadding >>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer) ``` Now gather all these classes in [`Trainer`]: ```py >>> from transformers import Trainer >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=dataset["train"], ... eval_dataset=dataset["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... ) # doctest: +SKIP ``` When you're ready, call [`~Trainer.train`] to start training: ```py >>> trainer.train() # doctest: +SKIP ``` <Tip> For tasks - like translation or summarization - that use a sequence-to-sequence model, use the [`Seq2SeqTrainer`] and [`Seq2SeqTrainingArguments`] classes instead. </Tip> You can customize the training loop behavior by subclassing the methods inside [`Trainer`]. This allows you to customize features such as the loss function, optimizer, and scheduler. Take a look at the [`Trainer`] reference for which methods can be subclassed. The other way to customize the training loop is by using [Callbacks](./main_classes/callbacks). You can use callbacks to integrate with other libraries and inspect the training loop to report on progress or stop the training early. Callbacks do not modify anything in the training loop itself. To customize something like the loss function, you need to subclass the [`Trainer`] instead. ## Train with TensorFlow All models are a standard [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) so they can be trained in TensorFlow with the [Keras](https://keras.io/) API. 🤗 Transformers provides the [`~TFPreTrainedModel.prepare_tf_dataset`] method to easily load your dataset as a `tf.data.Dataset` so you can start training right away with Keras' [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) and [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) methods. 1. You'll start with a [`TFPreTrainedModel`] or a [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model): ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased") ``` 2. Load a preprocessing class like a tokenizer, image processor, feature extractor, or processor: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") ``` 3. Create a function to tokenize the dataset: ```py >>> def tokenize_dataset(dataset): ... return tokenizer(dataset["text"]) # doctest: +SKIP ``` 4. Apply the tokenizer over the entire dataset with [`~datasets.Dataset.map`] and then pass the dataset and tokenizer to [`~TFPreTrainedModel.prepare_tf_dataset`]. You can also change the batch size and shuffle the dataset here if you'd like: ```py >>> dataset = dataset.map(tokenize_dataset) # doctest: +SKIP >>> tf_dataset = model.prepare_tf_dataset( ... dataset["train"], batch_size=16, shuffle=True, tokenizer=tokenizer ... ) # doctest: +SKIP ``` 5. When you're ready, you can call `compile` and `fit` to start training. Note that Transformers models all have a default task-relevant loss function, so you don't need to specify one unless you want to: ```py >>> from tensorflow.keras.optimizers import Adam >>> model.compile(optimizer=Adam(3e-5)) # No loss argument! >>> model.fit(tf_dataset) # doctest: +SKIP ``` ## What's next? Now that you've completed the 🤗 Transformers quick tour, check out our guides and learn how to do more specific things like writing a custom model, fine-tuning a model for a task, and how to train a model with a script. If you're interested in learning more about 🤗 Transformers core concepts, grab a cup of coffee and take a look at our Conceptual Guides!
transformers/docs/source/en/quicktour.md/0
{ "file_path": "transformers/docs/source/en/quicktour.md", "repo_id": "transformers", "token_count": 8276 }
242
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # XLA Integration for TensorFlow Models [[open-in-colab]] Accelerated Linear Algebra, dubbed XLA, is a compiler for accelerating the runtime of TensorFlow Models. From the [official documentation](https://www.tensorflow.org/xla): XLA (Accelerated Linear Algebra) is a domain-specific compiler for linear algebra that can accelerate TensorFlow models with potentially no source code changes. Using XLA in TensorFlow is simple – it comes packaged inside the `tensorflow` library, and it can be triggered with the `jit_compile` argument in any graph-creating function such as [`tf.function`](https://www.tensorflow.org/guide/intro_to_graphs). When using Keras methods like `fit()` and `predict()`, you can enable XLA simply by passing the `jit_compile` argument to `model.compile()`. However, XLA is not limited to these methods - it can also be used to accelerate any arbitrary `tf.function`. Several TensorFlow methods in 🤗 Transformers have been rewritten to be XLA-compatible, including text generation for models such as [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2), [T5](https://huggingface.co/docs/transformers/model_doc/t5) and [OPT](https://huggingface.co/docs/transformers/model_doc/opt), as well as speech processing for models such as [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper). While the exact amount of speed-up is very much model-dependent, for TensorFlow text generation models inside 🤗 Transformers, we noticed a speed-up of ~100x. This document will explain how you can use XLA for these models to get the maximum amount of performance. We’ll also provide links to additional resources if you’re interested to learn more about the benchmarks and our design philosophy behind the XLA integration. ## Running TF functions with XLA Let us consider the following model in TensorFlow: ```py import tensorflow as tf model = tf.keras.Sequential( [tf.keras.layers.Dense(10, input_shape=(10,), activation="relu"), tf.keras.layers.Dense(5, activation="softmax")] ) ``` The above model accepts inputs having a dimension of `(10, )`. We can use the model for running a forward pass like so: ```py # Generate random inputs for the model. batch_size = 16 input_vector_dim = 10 random_inputs = tf.random.normal((batch_size, input_vector_dim)) # Run a forward pass. _ = model(random_inputs) ``` In order to run the forward pass with an XLA-compiled function, we’d need to do: ```py xla_fn = tf.function(model, jit_compile=True) _ = xla_fn(random_inputs) ``` The default `call()` function of the `model` is used for compiling the XLA graph. But if there’s any other model function you want to compile into XLA that’s also possible with: ```py my_xla_fn = tf.function(model.my_xla_fn, jit_compile=True) ``` ## Running a TF text generation model with XLA from 🤗 Transformers To enable XLA-accelerated generation within 🤗 Transformers, you need to have a recent version of `transformers` installed. You can install it by running: ```bash pip install transformers --upgrade ``` And then you can run the following code: ```py import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForCausalLM # Will error if the minimal version of Transformers is not installed. from transformers.utils import check_min_version check_min_version("4.21.0") tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left", pad_token="</s>") model = TFAutoModelForCausalLM.from_pretrained("gpt2") input_string = ["TensorFlow is"] # One line to create an XLA generation function xla_generate = tf.function(model.generate, jit_compile=True) tokenized_input = tokenizer(input_string, return_tensors="tf") generated_tokens = xla_generate(**tokenized_input, num_beams=2) decoded_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) print(f"Generated -- {decoded_text}") # Generated -- TensorFlow is an open-source, open-source, distributed-source application # framework for the ``` As you can notice, enabling XLA on `generate()` is just a single line of code. The rest of the code remains unchanged. However, there are a couple of gotchas in the above code snippet that are specific to XLA. You need to be aware of those to realize the speed-ups that XLA can bring in. We discuss these in the following section. ## Gotchas to be aware of When you are executing an XLA-enabled function (like `xla_generate()` above) for the first time, it will internally try to infer the computation graph, which is time-consuming. This process is known as [“tracing”](https://www.tensorflow.org/guide/intro_to_graphs#when_is_a_function_tracing). You might notice that the generation time is not fast. Successive calls of `xla_generate()` (or any other XLA-enabled function) won’t have to infer the computation graph, given the inputs to the function follow the same shape with which the computation graph was initially built. While this is not a problem for modalities with fixed input shapes (e.g., images), you must pay attention if you are working with variable input shape modalities (e.g., text). To ensure `xla_generate()` always operates with the same input shapes, you can specify the `padding` arguments when calling the tokenizer. ```py import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left", pad_token="</s>") model = TFAutoModelForCausalLM.from_pretrained("gpt2") input_string = ["TensorFlow is"] xla_generate = tf.function(model.generate, jit_compile=True) # Here, we call the tokenizer with padding options. tokenized_input = tokenizer(input_string, pad_to_multiple_of=8, padding=True, return_tensors="tf") generated_tokens = xla_generate(**tokenized_input, num_beams=2) decoded_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) print(f"Generated -- {decoded_text}") ``` This way, you can ensure that the inputs to `xla_generate()` will always receive inputs with the shape it was traced with and thus leading to speed-ups in the generation time. You can verify this with the code below: ```py import time import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left", pad_token="</s>") model = TFAutoModelForCausalLM.from_pretrained("gpt2") xla_generate = tf.function(model.generate, jit_compile=True) for input_string in ["TensorFlow is", "TensorFlow is a", "TFLite is a"]: tokenized_input = tokenizer(input_string, pad_to_multiple_of=8, padding=True, return_tensors="tf") start = time.time_ns() generated_tokens = xla_generate(**tokenized_input, num_beams=2) end = time.time_ns() print(f"Execution time -- {(end - start) / 1e6:.1f} ms\n") ``` On a Tesla T4 GPU, you can expect the outputs like so: ```bash Execution time -- 30819.6 ms Execution time -- 79.0 ms Execution time -- 78.9 ms ``` The first call to `xla_generate()` is time-consuming because of tracing, but the successive calls are orders of magnitude faster. Keep in mind that any change in the generation options at any point with trigger re-tracing and thus leading to slow-downs in the generation time. We didn’t cover all the text generation options 🤗 Transformers provides in this document. We encourage you to read the documentation for advanced use cases. ## Additional Resources Here, we leave you with some additional resources if you want to delve deeper into XLA in 🤗 Transformers and in general. * [This Colab Notebook](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/91_tf_xla_generate.ipynb) provides an interactive demonstration if you want to fiddle with the XLA-compatible encoder-decoder (like [T5](https://huggingface.co/docs/transformers/model_doc/t5)) and decoder-only (like [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2)) text generation models. * [This blog post](https://huggingface.co/blog/tf-xla-generate) provides an overview of the comparison benchmarks for XLA-compatible models along with a friendly introduction to XLA in TensorFlow. * [This blog post](https://blog.tensorflow.org/2022/11/how-hugging-face-improved-text-generation-performance-with-xla.html) discusses our design philosophy behind adding XLA support to the TensorFlow models in 🤗 Transformers. * Recommended posts for learning more about XLA and TensorFlow graphs in general: * [XLA: Optimizing Compiler for Machine Learning](https://www.tensorflow.org/xla) * [Introduction to graphs and tf.function](https://www.tensorflow.org/guide/intro_to_graphs) * [Better performance with tf.function](https://www.tensorflow.org/guide/function)
transformers/docs/source/en/tf_xla.md/0
{ "file_path": "transformers/docs/source/en/tf_xla.md", "repo_id": "transformers", "token_count": 2830 }
243
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Crea una arquitectura personalizada Una [`AutoClass`](model_doc/auto) infiere, automáticamente, la arquitectura del modelo y descarga la configuración y los pesos del modelo preentrenado. Normalmente, recomendamos usar una `AutoClass` para producir un código agnóstico a puntos de guardado o checkpoints. Sin embargo, los usuarios que quieran más control sobre los parámetros específicos de los modelos pueden crear su propio modelo 🤗 Transformers personalizado a partir de varias clases base. Esto puede ser particularmente útil para alguien que esté interesado en estudiar, entrenar o experimentar con modelos 🤗 Transformers. En esta guía vamos a profundizar en la creación de modelos personalizados sin usar `AutoClass`. Aprenderemos a: - Cargar y personalizar una configuración para un modelo. - Crear una arquitectura para un modelo. - Crear tokenizadores rápidos y lentos para textos. - Crear un extractor de propiedades para tareas de audio o imágenes. - Crear un procesador para tareas multimodales. ## Configuración Una [configuración](main_classes/configuration) es un conjunto de atributos específicos de un modelo. Cada configuración de modelo tiene atributos diferentes. Por ejemplo, todos los modelos de PLN tienen los atributos `hidden_size`, `num_attention_heads`, `num_hidden_layers` y `vocab_size` en común. Estos atributos especifican el número de cabezas de atención o de capas ocultas con las que se construyen los modelos. Puedes echarle un vistazo a [DistilBERT](model_doc/distilbert) y sus atributos accediendo a [`DistilBertConfig`]: ```py >>> from transformers import DistilBertConfig >>> config = DistilBertConfig() >>> print(config) DistilBertConfig { "activation": "gelu", "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` [`DistilBertConfig`] muestra todos los atributos por defecto que se han usado para construir un modelo [`DistilBertModel`] base. Todos ellos son personalizables, lo que deja espacio para poder experimentar. Por ejemplo, puedes personalizar un modelo predeterminado para: - Probar una función de activación diferente, usando el parámetro `activation`. - Usar un valor de abandono (también conocido como _dropout_) más alto para las probabilidades de las capas de atención, usando el parámetro `attention_dropout`. ```py >>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4) >>> print(my_config) DistilBertConfig { "activation": "relu", "attention_dropout": 0.4, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` Los atributos de los modelos preentrenados pueden ser modificados con la función [`~PretrainedConfig.from_pretrained`]: ```py >>> my_config = DistilBertConfig.from_pretrained("distilbert-base-uncased", activation="relu", attention_dropout=0.4) ``` Cuando estés satisfecho con la configuración de tu modelo, puedes guardarlo con la función [`~PretrainedConfig.save_pretrained`]. Tu configuración se guardará en un archivo JSON dentro del directorio que le especifiques como parámetro. ```py >>> my_config.save_pretrained(save_directory="./your_model_save_path") ``` Para volver a usar el archivo de configuración, puedes cargarlo usando [`~PretrainedConfig.from_pretrained`]: ```py >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json") ``` <Tip> También puedes guardar los archivos de configuración como un diccionario; o incluso guardar solo la diferencia entre tu archivo personalizado y la configuración por defecto. Consulta la [documentación sobre configuración](main_classes/configuration) para ver más detalles. </Tip> ## Modelo El siguiente paso será crear un [modelo](main_classes/models). El modelo, al que a veces también nos referimos como arquitectura, es el encargado de definir cada capa y qué operaciones se realizan. Los atributos como `num_hidden_layers` de la configuración se usan para definir la arquitectura. Todos los modelos comparten una clase base, [`PreTrainedModel`], y algunos métodos comunes que se pueden usar para redimensionar los _embeddings_ o para recortar cabezas de auto-atención (también llamadas _self-attention heads_). Además, todos los modelos son subclases de [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) o [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html), lo que significa que son compatibles con su respectivo framework. <frameworkcontent> <pt> Carga los atributos de tu configuración personalizada en el modelo de la siguiente forma: ```py >>> from transformers import DistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json") >>> model = DistilBertModel(my_config) ``` Esto crea un modelo con valores aleatorios, en lugar de crearlo con los pesos del preentrenamiento, por lo que no serás capaz de usar este modelo para nada útil hasta que no lo entrenes. El entrenamiento es un proceso costoso, tanto en cuestión de recursos como de tiempo, por lo que generalmente es mejor usar un modelo preentrenado para obtener mejores resultados más rápido, consumiendo una fracción de los recursos que un entrenamiento completo hubiera requerido. Puedes crear un modelo preentrenado con [`~PreTrainedModel.from_pretrained`]: ```py >>> model = DistilBertModel.from_pretrained("distilbert-base-uncased") ``` Cuando cargues tus pesos del preentrenamiento, el modelo por defecto se carga automáticamente si nos lo proporciona 🤗 Transformers. Sin embargo, siempre puedes reemplazar (todos o algunos de) los atributos del modelo por defecto por los tuyos: ```py >>> model = DistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config) ``` </pt> <tf> Carga los atributos de tu configuración personalizada en el modelo de la siguiente forma: ```py >>> from transformers import TFDistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json") >>> tf_model = TFDistilBertModel(my_config) ``` Esto crea un modelo con valores aleatorios, en lugar de crearlo con los pesos del preentrenamiento, por lo que no serás capaz de usar este modelo para nada útil hasta que no lo entrenes. El entrenamiento es un proceso costoso, tanto en cuestión de recursos como de tiempo, por lo que generalmente es mejor usar un modelo preentrenado para obtener mejores resultados más rápido, consumiendo solo una fracción de los recursos que un entrenamiento completo hubiera requerido. Puedes crear un modelo preentrenado con [`~TFPreTrainedModel.from_pretrained`]: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased") ``` Cuando cargues tus pesos del preentrenamiento, el modelo por defecto se carga automáticamente si este nos lo proporciona 🤗 Transformers. Sin embargo, siempre puedes reemplazar (todos o algunos de) los atributos del modelo por defecto por los tuyos: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config) ``` </tf> </frameworkcontent> ### Cabezas de modelo En este punto del tutorial, tenemos un modelo DistilBERT base que devuelve los *hidden states* o estados ocultos. Los *hidden states* se pasan como parámetros de entrada a la cabeza del modelo para producir la salida. 🤗 Transformers ofrece una cabeza de modelo diferente para cada tarea, siempre y cuando el modelo sea compatible para la tarea (por ejemplo, no puedes usar DistilBERT para una tarea secuencia a secuencia como la traducción). <frameworkcontent> <pt> Por ejemplo, [`DistilBertForSequenceClassification`] es un modelo DistilBERT base con una cabeza de clasificación de secuencias. La cabeza de clasificación de secuencias es una capa superior que precede a la recolección de las salidas. ```py >>> from transformers import DistilBertForSequenceClassification >>> model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") ``` Puedes reutilizar este punto de guardado o *checkpoint* para otra tarea fácilmente cambiando a una cabeza de un modelo diferente. Para una tarea de respuesta a preguntas, puedes usar la cabeza del modelo [`DistilBertForQuestionAnswering`]. La cabeza de respuesta a preguntas es similar a la de clasificación de secuencias, excepto porque consta de una capa lineal delante de la salida de los *hidden states*. ```py >>> from transformers import DistilBertForQuestionAnswering >>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased") ``` </pt> <tf> Por ejemplo, [`TFDistilBertForSequenceClassification`] es un modelo DistilBERT base con una cabeza de clasificación de secuencias. La cabeza de clasificación de secuencias es una capa superior que precede a la recolección de las salidas. ```py >>> from transformers import TFDistilBertForSequenceClassification >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") ``` Puedes reutilizar este punto de guardado o *checkpoint* para otra tarea fácilmente cambiando a una cabeza de un modelo diferente. Para una tarea de respuesta a preguntas, puedes usar la cabeza del modelo [`TFDistilBertForQuestionAnswering`]. La cabeza de respuesta a preguntas es similar a la de clasificación de secuencias, excepto porque consta de una capa lineal delante de la salida de los *hidden states*. ```py >>> from transformers import TFDistilBertForQuestionAnswering >>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased") ``` </tf> </frameworkcontent> ## Tokenizer La ultima clase base que debes conocer antes de usar un modelo con datos textuales es la clase [tokenizer](main_classes/tokenizer), que convierte el texto bruto en tensores. Hay dos tipos de *tokenizers* que puedes usar con 🤗 Transformers: - [`PreTrainedTokenizer`]: una implementación de un *tokenizer* hecha en Python. - [`PreTrainedTokenizerFast`]: un *tokenizer* de nuestra librería [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/), basada en Rust. Este tipo de *tokenizer* es bastante más rápido, especialmente durante la tokenización por lotes, gracias a estar implementado en Rust. Esta rápida tokenización también ofrece métodos adicionales como el *offset mapping*, que relaciona los tokens con sus palabras o caracteres originales. Ambos *tokenizers* son compatibles con los métodos comunes, como los de encodificación y decodificación, los métodos para añadir tokens y aquellos que manejan tokens especiales. <Tip warning={true}> No todos los modelos son compatibles con un *tokenizer* rápido. Échale un vistazo a esta [tabla](index#supported-frameworks) para comprobar si un modelo específico es compatible con un *tokenizer* rápido. </Tip> Si has entrenado tu propio *tokenizer*, puedes crear uno desde tu archivo de “vocabulario”: ```py >>> from transformers import DistilBertTokenizer >>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left") ``` Es importante recordar que los vocabularios que provienen de un *tokenizer* personalizado serán diferentes a los vocabularios generados por el *tokenizer* de un modelo preentrenado. Debes usar el vocabulario de un *tokenizer* preentrenado si vas a usar un modelo preentrenado, de lo contrario las entradas no tendrán sentido. Crea un *tokenizer* con el vocabulario de un modelo preentrenado usando la clase [`DistilBertTokenizer`]: ```py >>> from transformers import DistilBertTokenizer >>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") ``` Crea un *tokenizer* rápido con la clase [`DistilBertTokenizerFast`]: ```py >>> from transformers import DistilBertTokenizerFast >>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased") ``` <Tip> Por defecto, el [`AutoTokenizer`] intentará cargar un *tokenizer* rápido. Puedes desactivar este comportamiento cambiando el parámetro `use_fast=False` de `from_pretrained`. </Tip> ## Extractor de Características Un extractor de características procesa entradas de audio e imagen. Hereda de la clase base [`~feature_extraction_utils.FeatureExtractionMixin`] y también puede heredar de la clase [`ImageFeatureExtractionMixin`] para el procesamiento de características de las imágenes o de la clase [`SequenceFeatureExtractor`] para el procesamiento de entradas de audio. Dependiendo de si trabajas en una tarea de audio o de video, puedes crear un extractor de características asociado al modelo que estés usando. Por ejemplo, podrías crear un [`ViTFeatureExtractor`] por defecto si estás usando [ViT](model_doc/vit) para clasificación de imágenes: ```py >>> from transformers import ViTFeatureExtractor >>> vit_extractor = ViTFeatureExtractor() >>> print(vit_extractor) ViTFeatureExtractor { "do_normalize": true, "do_resize": true, "feature_extractor_type": "ViTFeatureExtractor", "image_mean": [ 0.5, 0.5, 0.5 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": 2, "size": 224 } ``` <Tip> Si no estás buscando ninguna personalización en específico, usa el método `from_pretrained` para cargar los parámetros del extractor de características por defecto del modelo. </Tip> Puedes modificar cualquier parámetro de [`ViTFeatureExtractor`] para crear tu extractor de características personalizado: ```py >>> from transformers import ViTFeatureExtractor >>> my_vit_extractor = ViTFeatureExtractor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3]) >>> print(my_vit_extractor) ViTFeatureExtractor { "do_normalize": false, "do_resize": true, "feature_extractor_type": "ViTFeatureExtractor", "image_mean": [ 0.3, 0.3, 0.3 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": "PIL.Image.BOX", "size": 224 } ``` Para las entradas de audio, puedes crear un [`Wav2Vec2FeatureExtractor`] y personalizar los parámetros de una forma similar: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor() >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": true, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 16000 } ``` ## Procesador Para modelos que son compatibles con tareas multimodales, 🤗 Transformers ofrece una clase *procesador* que agrupa un extractor de características y un *tokenizer* en el mismo objeto. Por ejemplo, probemos a usar el procesador [`Wav2Vec2Processor`] para una tarea de reconocimiento de voz (ASR). Un ASR transcribe el audio a texto, por lo que necesitaremos un extractor de características y un *tokenizer*. Crea un extractor de características para manejar la entrada de audio: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True) ``` Crea un *tokenizer* para manejar la entrada de texto: ```py >>> from transformers import Wav2Vec2CTCTokenizer >>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt") ``` Puedes combinar el extractor de características y el *tokenizer* en el [`Wav2Vec2Processor`]: ```py >>> from transformers import Wav2Vec2Processor >>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) ``` Con dos clases base (la configuración y el modelo) y una clase de preprocesamiento adicional (*tokenizer*, extractor de características o procesador), puedes crear cualquiera de los modelos compatibles con 🤗 Transformers. Cada una de estas clases son configurables, permitiéndote usar sus atributos específicos. Puedes crear un modelo para entrenarlo de una forma fácil, o modificar un modelo preentrenado disponible para especializarlo.
transformers/docs/source/es/create_a_model.md/0
{ "file_path": "transformers/docs/source/es/create_a_model.md", "repo_id": "transformers", "token_count": 6185 }
244
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Tour rápido [[open-in-colab]] ¡Entra en marcha con los 🤗 Transformers! Comienza usando [`pipeline`] para una inferencia veloz, carga un modelo preentrenado y un tokenizador con una [AutoClass](./model_doc/auto) para resolver tu tarea de texto, visión o audio. <Tip> Todos los ejemplos de código presentados en la documentación tienen un botón arriba a la derecha para elegir si quieres ocultar o mostrar el código en Pytorch o TensorFlow. Si no fuese así, se espera que el código funcione para ambos backends sin ningún cambio. </Tip> ## Pipeline [`pipeline`] es la forma más fácil de usar un modelo preentrenado para una tarea dada. <Youtube id="tiZFewofSLM"/> El [`pipeline`] soporta muchas tareas comunes listas para usar: **Texto**: * Análisis de Sentimiento (Sentiment Analysis, en inglés): clasifica la polaridad de un texto dado. * Generación de Texto (Text Generation, en inglés): genera texto a partir de un input dado. * Reconocimiento de Entidades (Name Entity Recognition o NER, en inglés): etiqueta cada palabra con la entidad que representa (persona, fecha, ubicación, etc.). * Responder Preguntas (Question answering, en inglés): extrae la respuesta del contexto dado un contexto y una pregunta. * Rellenar Máscara (Fill-mask, en inglés): rellena el espacio faltante dado un texto con palabras enmascaradas. * Resumir (Summarization, en inglés): genera un resumen de una secuencia larga de texto o un documento. * Traducción (Translation, en inglés): traduce un texto a otro idioma. * Extracción de Características (Feature Extraction, en inglés): crea una representación tensorial del texto. **Imagen**: * Clasificación de Imágenes (Image Classification, en inglés): clasifica una imagen. * Segmentación de Imágenes (Image Segmentation, en inglés): clasifica cada pixel de una imagen. * Detección de Objetos (Object Detection, en inglés): detecta objetos dentro de una imagen. **Audio**: * Clasificación de Audios (Audio Classification, en inglés): asigna una etiqueta a un segmento de audio. * Reconocimiento de Voz Automático (Automatic Speech Recognition o ASR, en inglés): transcribe datos de audio a un texto. <Tip> Para más detalles acerca del [`pipeline`] y tareas asociadas, consulta la documentación [aquí](./main_classes/pipelines). </Tip> ### Uso del Pipeline En el siguiente ejemplo, usarás el [`pipeline`] para análisis de sentimiento. Instala las siguientes dependencias si aún no lo has hecho: <frameworkcontent> <pt> ```bash pip install torch ``` </pt> <tf> ```bash pip install tensorflow ``` </tf> </frameworkcontent> Importa [`pipeline`] y especifica la tarea que deseas completar: ```py >>> from transformers import pipeline >>> clasificador = pipeline("sentiment-analysis", model="pysentimiento/robertuito-sentiment-analysis") ``` El pipeline descarga y almacena en caché el [modelo preentrenado](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis) y tokeniza para análisis de sentimiento. Si no hubieramos elegido un modelo el pipeline habría elegido uno por defecto. Ahora puedes usar `clasificador` en tu texto objetivo: ```py >>> clasificador("Estamos muy felices de mostrarte la biblioteca de 🤗 Transformers.") [{'label': 'POS', 'score': 0.9320}] ``` Para más de un enunciado, entrega una lista al [`pipeline`] que devolverá una lista de diccionarios: El [`pipeline`] también puede iterar sobre un dataset entero. Comienza instalando la biblioteca [🤗 Datasets](https://huggingface.co/docs/datasets/): ```bash pip install datasets ``` Crea un [`pipeline`] con la tarea que deseas resolver y el modelo que quieres usar. Coloca el parámetro `device` a `0` para poner los tensores en un dispositivo CUDA: ```py >>> import torch >>> from transformers import pipeline >>> reconocedor_de_voz = pipeline( ... "automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-spanish", device=0 ... ) ``` A continuación, carga el dataset (ve 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart.html) para más detalles) sobre el que quisieras iterar. Por ejemplo, vamos a cargar el dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14): ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="es-ES", split="train") # doctest: +IGNORE_RESULT ``` Debemos asegurarnos de que la frecuencia de muestreo del conjunto de datos coincide con la frecuencia de muestreo con la que se entrenó `jonatasgrosman/wav2vec2-large-xlsr-53-spanish`. ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=reconocedor_de_voz.feature_extractor.sampling_rate)) ``` Los archivos de audio se cargan y remuestrean automáticamente cuando llamamos a la columna `"audio"`. Extraigamos las matrices de onda cruda (raw waveform, en inglés) de las primeras 4 muestras y pasémosla como una lista al pipeline: ```py >>> resultado = reconocedor_de_voz(dataset[:4]["audio"]) >>> print([d["text"] for d in resultado]) ['ahora buenas eh a ver tengo un problema con vuestra aplicación resulta que que quiero hacer una transferencia bancaria a una cuenta conocida pero me da error la aplicación a ver que a ver que puede ser', 'la aplicación no cargue saldo de mi nueva cuenta', 'hola tengo un problema con la aplicación no carga y y tampoco veo que carga el saldo de mi cuenta nueva dice que la aplicación está siendo reparada y ahora no puedo acceder a mi cuenta no necesito inmediatamente', 'hora buena la aplicación no se carga la vida no carga el saldo de mi cuenta nueva dice que la villadenta siendo reparada y oro no puedo hacer a mi cuenta'] ``` Para un dataset más grande, donde los inputs son de mayor tamaño (como en habla/audio o visión), querrás pasar un generador en lugar de una lista que carga todos los inputs en memoria. Ve la [documentación del pipeline](./main_classes/pipelines) para más información. ### Usa otro modelo y otro tokenizador en el pipeline El [`pipeline`] puede acomodarse a cualquier modelo del [Model Hub](https://huggingface.co/models) haciendo más fácil adaptar el [`pipeline`] para otros casos de uso. Por ejemplo, si quisieras un modelo capaz de manejar texto en francés, usa los tags en el Model Hub para filtrar entre los modelos apropiados. El resultado mejor filtrado devuelve un [modelo BERT](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) multilingual fine-tuned para el análisis de sentimiento. Genial, ¡vamos a usar este modelo! ```py >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" ``` <frameworkcontent> <pt> Usa [`AutoModelForSequenceClassification`] y ['AutoTokenizer'] para cargar un modelo preentrenado y un tokenizador asociado (más en un `AutoClass` debajo): ```py >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </pt> <tf> Usa [`TFAutoModelForSequenceClassification`] y ['AutoTokenizer'] para cargar un modelo preentrenado y un tokenizador asociado (más en un `TFAutoClass` debajo): ```py >>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </tf> </frameworkcontent> Después puedes especificar el modelo y el tokenizador en el [`pipeline`], y aplicar el `classifier` en tu texto objetivo: ```py >>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) >>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.") [{'label': '5 stars', 'score': 0.7273}] ``` Si no pudieras encontrar el modelo para tu caso respectivo de uso necesitarás ajustar un modelo preentrenado a tus datos. Mira nuestro [tutorial de fine-tuning](./training) para aprender cómo. Finalmente, después de que has ajustado tu modelo preentrenado, ¡por favor considera compartirlo (ve el tutorial [aquí](./model_sharing)) con la comunidad en el Model Hub para democratizar el NLP! 🤗 ## AutoClass <Youtube id="AhChOFRegn4"/> Por debajo, las clases [`AutoModelForSequenceClassification`] y [`AutoTokenizer`] trabajan juntas para dar poder al [`pipeline`]. Una [AutoClass](./model_doc/auto) es un atajo que automáticamente recupera la arquitectura de un modelo preentrenado con su nombre o el path. Sólo necesitarás seleccionar el `AutoClass` apropiado para tu tarea y tu tokenizador asociado con [`AutoTokenizer`]. Regresemos a nuestro ejemplo y veamos cómo puedes usar el `AutoClass` para reproducir los resultados del [`pipeline`]. ### AutoTokenizer Un tokenizador es responsable de procesar el texto a un formato que sea entendible para el modelo. Primero, el tokenizador separará el texto en palabras llamadas *tokens*. Hay múltiples reglas que gobiernan el proceso de tokenización incluyendo el cómo separar una palabra y en qué nivel (aprende más sobre tokenización [aquí](./tokenizer_summary)). Lo más importante es recordar que necesitarás instanciar el tokenizador con el mismo nombre del modelo para asegurar que estás usando las mismas reglas de tokenización con las que el modelo fue preentrenado. Carga un tokenizador con [`AutoTokenizer`]: ```py >>> from transformers import AutoTokenizer >>> nombre_del_modelo = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tokenizer = AutoTokenizer.from_pretrained(nombre_del_modelo) ``` Después, el tokenizador convierte los tokens a números para construir un tensor que servirá como input para el modelo. Esto es conocido como el *vocabulario* del modelo. Pasa tu texto al tokenizador: ```py >>> encoding = tokenizer("Estamos muy felices de mostrarte la biblioteca de 🤗 Transformers.") >>> print(encoding) {'input_ids': [101, 10602, 14000, 13653, 43353, 10107, 10102, 47201, 10218, 10106, 18283, 10102, 100, 58263, 119, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` El tokenizador devolverá un diccionario conteniendo: * [input_ids](./glossary#input-ids): representaciones numéricas de los tokens. * [atttention_mask](.glossary#attention-mask): indica cuáles tokens deben ser atendidos. Como con el [`pipeline`], el tokenizador aceptará una lista de inputs. Además, el tokenizador también puede rellenar (pad, en inglés) y truncar el texto para devolver un lote (batch, en inglés) de longitud uniforme: <frameworkcontent> <pt> ```py >>> pt_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="pt", ... ) ``` </pt> <tf> ```py >>> tf_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="tf", ... ) ``` </tf> </frameworkcontent> Lee el tutorial de [preprocessing](./preprocessing) para más detalles acerca de la tokenización. ### AutoModel <frameworkcontent> <pt> 🤗 Transformers provee una forma simple y unificada de cargar tus instancias preentrenadas. Esto significa que puedes cargar un [`AutoModel`] como cargarías un [`AutoTokenizer`]. La única diferencia es seleccionar el [`AutoModel`] correcto para la tarea. Ya que estás clasificando texto, o secuencias, carga [`AutoModelForSequenceClassification`]: ```py >>> from transformers import AutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> Ve el [task summary](./task_summary) para revisar qué clase del [`AutoModel`] deberías usar para cada tarea. </Tip> Ahora puedes pasar tu lote (batch) preprocesado de inputs directamente al modelo. Solo tienes que desempacar el diccionario añadiendo `**`: ```py >>> pt_outputs = pt_model(**pt_batch) ``` El modelo producirá las activaciones finales en el atributo `logits`. Aplica la función softmax a `logits` para obtener las probabilidades: ```py >>> from torch import nn >>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1) >>> print(pt_predictions) tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725], [0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>) ``` </pt> <tf> 🤗 Transformers provee una forma simple y unificada de cargar tus instancias preentrenadas. Esto significa que puedes cargar un [`TFAutoModel`] como cargarías un [`AutoTokenizer`]. La única diferencia es seleccionar el [`TFAutoModel`] correcto para la tarea. Ya que estás clasificando texto, o secuencias, carga [`TFAutoModelForSequenceClassification`]: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> Ve el [task summary](./task_summary) para revisar qué clase del [`AutoModel`] deberías usar para cada tarea. </Tip> Ahora puedes pasar tu lote preprocesado de inputs directamente al modelo pasando las llaves del diccionario directamente a los tensores: ```py >>> tf_outputs = tf_model(tf_batch) ``` El modelo producirá las activaciones finales en el atributo `logits`. Aplica la función softmax a `logits` para obtener las probabilidades: ```py >>> import tensorflow as tf >>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1) >>> print(tf.math.round(tf_predictions * 10**4) / 10**4) tf.Tensor( [[0.0021 0.0018 0.0116 0.2121 0.7725] [0.2084 0.1826 0.1969 0.1755 0.2365]], shape=(2, 5), dtype=float32) ``` </tf> </frameworkcontent> <Tip> Todos los modelos de 🤗 Transformers (PyTorch o TensorFlow) producirán los tensores *antes* de la función de activación final (como softmax) porque la función de activación final es comúnmente fusionada con la pérdida. </Tip> Los modelos son [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) o [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) estándares así que podrás usarlos en tu training loop usual. Sin embargo, para facilitar las cosas, 🤗 Transformers provee una clase [`Trainer`] para PyTorch que añade funcionalidades para entrenamiento distribuido, precición mixta, y más. Para TensorFlow, puedes usar el método `fit` desde [Keras](https://keras.io/). Consulta el [tutorial de entrenamiento](./training) para más detalles. <Tip> Los outputs del modelo de 🤗 Transformers son dataclasses especiales por lo que sus atributos pueden ser completados en un IDE. Los outputs del modelo también se comportan como tuplas o diccionarios (e.g., puedes indexar con un entero, un slice o una cadena) en cuyo caso los atributos que son `None` son ignorados. </Tip> ### Guarda un modelo <frameworkcontent> <pt> Una vez que se haya hecho fine-tuning a tu modelo puedes guardarlo con tu tokenizador usando [`PreTrainedModel.save_pretrained`]: ```py >>> pt_save_directory = "./pt_save_pretrained" >>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT >>> pt_model.save_pretrained(pt_save_directory) ``` Cuando quieras usar el modelo otra vez cárgalo con [`PreTrainedModel.from_pretrained`]: ```py >>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained") ``` </pt> <tf> Una vez que se haya hecho fine-tuning a tu modelo puedes guardarlo con tu tokenizador usando [`TFPreTrainedModel.save_pretrained`]: ```py >>> tf_save_directory = "./tf_save_pretrained" >>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT >>> tf_model.save_pretrained(tf_save_directory) ``` Cuando quieras usar el modelo otra vez cárgalo con [`TFPreTrainedModel.from_pretrained`]: ```py >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained") ``` </tf> </frameworkcontent> Una característica particularmente interesante de 🤗 Transformers es la habilidad de guardar el modelo y cargarlo como un modelo de PyTorch o TensorFlow. El parámetro `from_pt` o `from_tf` puede convertir el modelo de un framework al otro: <frameworkcontent> <pt> ```py >>> from transformers import AutoModel >>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory) >>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True) ``` </pt> <tf> ```py >>> from transformers import TFAutoModel >>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory) >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True) ``` </tf> </frameworkcontent>
transformers/docs/source/es/quicktour.md/0
{ "file_path": "transformers/docs/source/es/quicktour.md", "repo_id": "transformers", "token_count": 6360 }
245
<!--- Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Installation Installez 🤗 Transformers pour n'importe quelle librairie d'apprentissage profond avec laquelle vous avez l'habitude de travaillez, configurez votre cache et configurez 🤗 Transformers pour un usage hors ligne (facultatif). 🤗 Transformers est testé avec Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+ et Flax. Consulter les instructions d'installation ci-dessous pour la librairie d'apprentissage profond que vous utilisez: * Instructions d'installation pour [PyTorch](https://pytorch.org/get-started/locally/). * Instructions d'installation pour [TensorFlow 2.0](https://www.tensorflow.org/install/pip). * Instructions d'installation pour [Flax](https://flax.readthedocs.io/en/latest/). ## Installation avec pip Vous devriez installer 🤗 Transformers dans un [environnement virtuel](https://docs.python.org/3/library/venv.html). Si vous n'êtes pas à l'aise avec les environnements virtuels, consultez ce [guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Utiliser un environnement virtuel permet de facilement gérer différents projets et d'éviter des erreurs de compatibilité entre les différentes dépendances. Commencez par créer un environnement virtuel dans l'espace de travail de votre projet : ```bash python -m venv .env ``` Activez l'environnement virtuel. Sur Linux ou MacOs : ```bash source .env/bin/activate ``` Activez l'environnement virtuel sur Windows : ```bash .env/Scripts/activate ``` Maintenant, 🤗 Transformers peut être installé avec la commande suivante : ```bash pip install transformers ``` Pour une utilisation avec CPU seulement, 🤗 Transformers et la librairie d'apprentissage profond de votre choix peuvent être installés en une seule ligne. Par exemple, installez 🤗 Transformers et PyTorch avec la commande suivante : ```bash pip install 'transformers[torch]' ``` 🤗 Transformers et TensorFlow 2.0 : ```bash pip install 'transformers[tf-cpu]' ``` <Tip warning={true}> Pour les architectures mac M1 / ARM Vous devez installer les outils suivants avant d'installer TensorFLow 2.0 ``` brew install cmake brew install pkg-config ``` </Tip> 🤗 Transformers et Flax : ```bash pip install 'transformers[flax]' ``` Vérifiez que 🤗 Transformers a bien été installé avec la commande suivante. La commande va télécharger un modèle pré-entraîné : ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))" ``` Le label et score sont ensuite affichés : ```bash [{'label': 'POSITIVE', 'score': 0.9998704791069031}] ``` ## Installation depuis le code source Installez 🤗 Transformers depuis le code source avec la commande suivante : ```bash pip install git+https://github.com/huggingface/transformers ``` Cette commande installe la version depuis la branche `main` au lieu de la dernière version stable. La version de la branche `main` est utile pour avoir les derniers développements. Par exemple, si un bug a été résolu depuis la dernière version stable mais n'a pas encore été publié officiellement. Cependant, cela veut aussi dire que la version de la branche `main` n'est pas toujours stable. Nous nous efforçons de maintenir la version de la branche `main` opérationnelle, et la plupart des problèmes sont généralement résolus en l'espace de quelques heures ou d'un jour. Si vous recontrez un problème, n'hésitez pas à créer une [Issue](https://github.com/huggingface/transformers/issues) pour que l'on puisse trouver une solution au plus vite ! Vérifiez que 🤗 Transformers a bien été installé avec la commande suivante : ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))" ``` ## Installation modifiable Vous aurez besoin d'une installation modifiable si vous le souhaitez : * Utiliser la version de la branche `main` du code source. * Contribuer à 🤗 Transformers et vouler tester vos modifications du code source. Clonez le projet et installez 🤗 Transformers avec les commandes suivantes : ```bash git clone https://github.com/huggingface/transformers.git cd transformers pip install -e . ``` Ces commandes créent des liens entre le dossier où le projet a été cloné et les chemins de vos librairies Python. Python regardera maintenant dans le dossier que vous avez cloné en plus des dossiers où sont installées vos autres librairies. Par exemple, si vos librairies Python sont installées dans `~/anaconda3/envs/main/lib/python3.7/site-packages/`, Python cherchera aussi dans le dossier où vous avez cloné : `~/transformers/`. <Tip warning={true}> Vous devez garder le dossier `transformers` si vous voulez continuer d'utiliser la librairie. </Tip> Maintenant, vous pouvez facilement mettre à jour votre clone avec la dernière version de 🤗 Transformers en utilisant la commande suivante : ```bash cd ~/transformers/ git pull ``` Votre environnement Python utilisera la version de la branche `main` lors de la prochaine exécution. ## Installation avec conda Installation via le canal `conda-forge` de conda : ```bash conda install conda-forge::transformers ``` ## Configuration du cache Les modèles pré-entraînés sont téléchargés et mis en cache localement dans le dossier suivant : `~/.cache/huggingface/hub`. C'est le dossier par défaut donné par la variable d'environnement `TRANSFORMERS_CACHE`. Sur Windows, le dossier par défaut est `C:\Users\nom_utilisateur\.cache\huggingface\hub`. Vous pouvez modifier les variables d'environnement indiquées ci-dessous - par ordre de priorité - pour spécifier un dossier de cache différent : 1. Variable d'environnement (par défaut) : `HUGGINGFACE_HUB_CACHE` ou `TRANSFORMERS_CACHE`. 2. Variable d'environnement : `HF_HOME`. 3. Variable d'environnement : `XDG_CACHE_HOME` + `/huggingface`. <Tip> 🤗 Transformers utilisera les variables d'environnement `PYTORCH_TRANSFORMERS_CACHE` ou `PYTORCH_PRETRAINED_BERT_CACHE` si vous utilisez une version précédente de cette librairie et avez défini ces variables d'environnement, sauf si vous spécifiez la variable d'environnement `TRANSFORMERS_CACHE`. </Tip> ## Mode hors ligne 🤗 Transformers peut fonctionner dans un environnement cloisonné ou hors ligne en n'utilisant que des fichiers locaux. Définissez la variable d'environnement `TRANSFORMERS_OFFLINE=1` pour activer ce mode. <Tip> Ajoutez [🤗 Datasets](https://huggingface.co/docs/datasets/) à votre processus d'entraînement hors ligne en définissant la variable d'environnement `HF_DATASETS_OFFLINE=1`. </Tip> ```bash HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \ python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ... ``` Le script devrait maintenant s'exécuter sans rester en attente ou attendre une expiration, car il n'essaiera pas de télécharger des modèle sur le Hub. Vous pouvez aussi éviter de télécharger un modèle à chaque appel de la fonction [~PreTrainedModel.from_pretrained] en utilisant le paramètre [local_files_only]. Seuls les fichiers locaux sont chargés lorsque ce paramètre est activé (c.-à-d. `local_files_only=True`) : ```py from transformers import T5Model model = T5Model.from_pretrained("./path/to/local/directory", local_files_only=True) ``` ### Récupérer des modèles et des tokenizers pour une utilisation hors ligne Une autre option pour utiliser 🤗 Transformers hors ligne est de télécharger les fichiers à l'avance, puis d'utiliser les chemins locaux lorsque vous en avez besoin en mode hors ligne. Il existe trois façons de faire cela : * Téléchargez un fichier via l'interface utilisateur sur le [Model Hub](https://huggingface.co/models) en cliquant sur l'icône ↓. ![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png) * Utilisez les fonctions [`PreTrainedModel.from_pretrained`] et [`PreTrainedModel.save_pretrained`] : 1. Téléchargez vos fichiers à l'avance avec [`PreTrainedModel.from_pretrained`]: ```py >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B") >>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B") ``` 2. Sauvegardez les fichiers dans un dossier de votre choix avec [`PreTrainedModel.save_pretrained`]: ```py >>> tokenizer.save_pretrained("./your/path/bigscience_t0") >>> model.save_pretrained("./your/path/bigscience_t0") ``` 3. Maintenant, lorsque vous êtes hors ligne, rechargez vos fichiers avec [`PreTrainedModel.from_pretrained`] depuis le dossier où vous les avez sauvegardés : ```py >>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0") >>> model = AutoModel.from_pretrained("./your/path/bigscience_t0") ``` * Téléchargez des fichiers de manière automatique avec la librairie [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) : 1. Installez la librairie `huggingface_hub` dans votre environnement virtuel : ```bash python -m pip install huggingface_hub ``` 2. Utilisez la fonction [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub) pour télécharger un fichier vers un chemin de votre choix. Par exemple, la commande suivante télécharge le fichier `config.json` du modèle [T0](https://huggingface.co/bigscience/T0_3B) vers le chemin de votre choix : ```py >>> from huggingface_hub import hf_hub_download >>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0") ``` Une fois que votre fichier est téléchargé et caché localement, spécifiez son chemin local pour le charger et l'utiliser : ```py >>> from transformers import AutoConfig >>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json") ``` <Tip> Consultez la section [How to download files from the Hub (Comment télécharger des fichiers depuis le Hub)](https://huggingface.co/docs/hub/how-to-downstream) pour plus de détails sur le téléchargement de fichiers stockés sur le Hub. </Tip>
transformers/docs/source/fr/installation.md/0
{ "file_path": "transformers/docs/source/fr/installation.md", "repo_id": "transformers", "token_count": 3841 }
246
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Preprocess [[open-in-colab]] Prima di poter usare i dati in un modello, bisogna processarli in un formato accettabile per quest'ultimo. Un modello non comprende il testo grezzo, le immagini o l'audio. Bisogna convertire questi input in numeri e assemblarli all'interno di tensori. In questa esercitazione, tu potrai: * Preprocessare dati testuali con un tokenizer. * Preprocessare immagini o dati audio con un estrattore di caratteristiche. * Preprocessare dati per attività multimodali mediante un processore. ## NLP <Youtube id="Yffk5aydLzg"/> Lo strumento principale per processare dati testuali è un [tokenizer](main_classes/tokenizer). Un tokenizer inizia separando il testo in *tokens* secondo una serie di regole. I tokens sono convertiti in numeri, questi vengono utilizzati per costruire i tensori di input del modello. Anche altri input addizionali se richiesti dal modello vengono aggiunti dal tokenizer. <Tip> Se stai pensando si utilizzare un modello preaddestrato, è importante utilizzare il tokenizer preaddestrato associato. Questo assicura che il testo sia separato allo stesso modo che nel corpus usato per l'addestramento, e venga usata la stessa mappatura tokens-to-index (solitamente indicato come il *vocabolario*) come nel preaddestramento. </Tip> Iniziamo subito caricando un tokenizer preaddestrato con la classe [`AutoTokenizer`]. Questo scarica il *vocabolario* usato quando il modello è stato preaddestrato. ### Tokenize Carica un tokenizer preaddestrato con [`AutoTokenizer.from_pretrained`]: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") ``` Poi inserisci le tue frasi nel tokenizer: ```py >>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.") >>> print(encoded_input) {'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` Il tokenizer restituisce un dizionario contenente tre oggetti importanti: * [input_ids](glossary#input-ids) sono gli indici che corrispondono ad ogni token nella frase. * [attention_mask](glossary#attention-mask) indicata se un token deve essere elaborato o no. * [token_type_ids](glossary#token-type-ids) identifica a quale sequenza appartiene un token se è presente più di una sequenza. Si possono decodificare gli `input_ids` per farsi restituire l'input originale: ```py >>> tokenizer.decode(encoded_input["input_ids"]) '[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]' ``` Come si può vedere, il tokenizer aggiunge due token speciali - `CLS` e `SEP` (classificatore e separatore) - alla frase. Non tutti i modelli hanno bisogno dei token speciali, ma se servono, il tokenizer li aggiungerà automaticamente. Se ci sono più frasi che vuoi processare, passale come una lista al tokenizer: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_inputs = tokenizer(batch_sentences) >>> print(encoded_inputs) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]} ``` ### Pad Questo è un argomento importante. Quando processi un insieme di frasi potrebbero non avere tutte la stessa lunghezza. Questo è un problema perchè i tensori, in input del modello, devono avere dimensioni uniformi. Il padding è una strategia per assicurarsi che i tensori siano rettangolari aggiungendo uno speciale *padding token* alle frasi più corte. Imposta il parametro `padding` a `True` per imbottire le frasi più corte nel gruppo in modo che combacino con la massima lunghezza presente: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` Nota che il tokenizer aggiunge alle sequenze degli `0` perchè sono troppo corte! ### Truncation L'altra faccia della medaglia è che avolte le sequenze possono essere troppo lunghe per essere gestite dal modello. In questo caso, avrai bisogno di troncare la sequenza per avere una lunghezza minore. Imposta il parametro `truncation` a `True` per troncare una sequenza alla massima lunghezza accettata dal modello: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` ### Costruire i tensori Infine, vuoi che il tokenizer restituisca i tensori prodotti dal modello. Imposta il parametro `return_tensors` su `pt` per PyTorch, o `tf` per TensorFlow: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch, padding=True, truncation=True, return_tensors="pt") >>> print(encoded_input) {'input_ids': tensor([[ 101, 153, 7719, 21490, 1122, 1114, 9582, 1623, 102], [ 101, 5226, 1122, 9649, 1199, 2610, 1236, 102, 0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0]])} ===PT-TF-SPLIT=== >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch, padding=True, truncation=True, return_tensors="tf") >>> print(encoded_input) {'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[ 101, 153, 7719, 21490, 1122, 1114, 9582, 1623, 102], [ 101, 5226, 1122, 9649, 1199, 2610, 1236, 102, 0]], dtype=int32)>, 'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0]], dtype=int32)>} ``` ## Audio Gli input audio sono processati in modo differente rispetto al testo, ma l'obiettivo rimane lo stesso: creare sequenze numeriche che il modello può capire. Un [estrattore di caratteristiche](main_classes/feature_extractor) è progettato con lo scopo preciso di estrarre caratteristiche da immagini o dati audio grezzi e convertirli in tensori. Prima di iniziare, installa 🤗 Datasets per caricare un dataset audio e sperimentare: ```bash pip install datasets ``` Carica il dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) (vedi il 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub) per avere maggiori dettagli su come caricare un dataset): ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") ``` Accedi al primo elemento della colonna `audio` per dare uno sguardo all'input. Richiamando la colonna `audio` sarà caricato automaticamente e ricampionato il file audio: ```py >>> dataset[0]["audio"] {'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, 0. , 0. ], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 8000} ``` Questo restituisce tre oggetti: * `array` è il segnale vocale caricato - e potenzialmente ricampionato - come vettore 1D. * `path` il percorso del file audio. * `sampling_rate` si riferisce al numero di campioni del segnale vocale misurati al secondo. ### Ricampionamento Per questo tutorial, puoi usare il modello [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base). Come puoi vedere dalla model card, il modello Wav2Vec2 è preaddestrato su un campionamento vocale a 16kHz.È importante che la frequenza di campionamento dei tuoi dati audio combaci con la frequenza di campionamento del dataset usato per preaddestrare il modello. Se la frequenza di campionamento dei tuoi dati non è uguale dovrai ricampionare i tuoi dati audio. Per esempio, il dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) ha una frequenza di campionamento di 8000kHz. Utilizzando il modello Wav2Vec2 su questo dataset, alzala a 16kHz: ```py >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") >>> dataset[0]["audio"] {'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, 0. , 0. ], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 8000} ``` 1. Usa il metodo di 🤗 Datasets' [`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.cast_column) per alzare la frequenza di campionamento a 16kHz: ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) ``` 2. Carica il file audio: ```py >>> dataset[0]["audio"] {'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ..., 3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 16000} ``` Come puoi notare, la `sampling_rate` adesso è 16kHz! ### Feature extractor Il prossimo passo è caricare un estrattore di caratteristiche per normalizzare e fare padding sull'input. Quando applichiamo il padding sui dati testuali, uno `0` è aggiunto alle sequenze più brevi. La stessa idea si applica ai dati audio, l'estrattore di caratteristiche per gli audio aggiungerà uno `0` - interpretato come silenzio - agli `array`. Carica l'estrattore delle caratteristiche con [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") ``` Inserisci l' `array` audio nell'estrattore delle caratteristiche. Noi raccomandiamo sempre di aggiungere il parametro `sampling_rate` nell'estrattore delle caratteristiche per correggere meglio qualche errore, dovuto ai silenzi, che potrebbe verificarsi. ```py >>> audio_input = [dataset[0]["audio"]["array"]] >>> feature_extractor(audio_input, sampling_rate=16000) {'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ..., 5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]} ``` ### Pad e truncate Come per il tokenizer, puoi applicare le operazioni padding o truncation per manipolare sequenze di variabili a lotti. Dai uno sguaro alla lunghezza delle sequenze di questi due campioni audio: ```py >>> dataset[0]["audio"]["array"].shape (173398,) >>> dataset[1]["audio"]["array"].shape (106496,) ``` Come puoi vedere, il primo campione ha una sequenza più lunga del secondo. Crea una funzione che preprocesserà il dataset. Specifica una lunghezza massima del campione, e l'estrattore di features si occuperà di riempire o troncare la sequenza per coincidervi: ```py >>> def preprocess_function(examples): ... audio_arrays = [x["array"] for x in examples["audio"]] ... inputs = feature_extractor( ... audio_arrays, ... sampling_rate=16000, ... padding=True, ... max_length=100000, ... truncation=True, ... ) ... return inputs ``` Applica la funzione ai primi esempi nel dataset: ```py >>> processed_dataset = preprocess_function(dataset[:5]) ``` Adesso guarda la lunghezza dei campioni elaborati: ```py >>> processed_dataset["input_values"][0].shape (100000,) >>> processed_dataset["input_values"][1].shape (100000,) ``` La lunghezza dei campioni adesso coincide con la massima lunghezza impostata nelle funzione. ## Vision Un estrattore di caratteristiche si può usare anche per processare immagini e per compiti di visione. Ancora una volta, l'obiettivo è convertire l'immagine grezza in un lotto di tensori come input. Carica il dataset [food101](https://huggingface.co/datasets/food101) per questa esercitazione. Usa il parametro `split` di 🤗 Datasets per caricare solo un piccolo campione dal dataset di addestramento poichè il set di dati è molto grande: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("food101", split="train[:100]") ``` Secondo passo, dai uno sguardo alle immagini usando la caratteristica [`Image`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=image#datasets.Image) di 🤗 Datasets: ```py >>> dataset[0]["image"] ``` ![vision-preprocess-tutorial.png](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png) ### Feature extractor Carica l'estrattore di caratteristiche [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224") ``` ### Data augmentation Per le attività di visione, è usuale aggiungere alcuni tipi di data augmentation alle immagini come parte del preprocessing. Puoi aggiungere augmentations con qualsiasi libreria che preferisci, ma in questa esercitazione, userai il modulo [`transforms`](https://pytorch.org/vision/stable/transforms.html) di torchvision. 1. Normalizza l'immagine e usa [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html) per concatenare alcune trasformazioni - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) e [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - insieme: ```py >>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor >>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) >>> _transforms = Compose( ... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize] ... ) ``` 2. Il modello accetta [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) come input. Questo valore è generato dall'estrattore di caratteristiche. Crea una funzione che genera `pixel_values` dai transforms: ```py >>> def transforms(examples): ... examples["pixel_values"] = [_transforms(image.convert("RGB")) for image in examples["image"]] ... return examples ``` 3. Poi utilizza 🤗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process#format-transform)per applicare al volo la trasformazione: ```py >>> dataset.set_transform(transforms) ``` 4. Adesso quando accedi all'immagine, puoi notare che l'estrattore di caratteristiche ha aggiunto `pixel_values` allo schema di input: ```py >>> dataset[0]["image"] {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F1A7B0630D0>, 'label': 6, 'pixel_values': tensor([[[ 0.0353, 0.0745, 0.1216, ..., -0.9922, -0.9922, -0.9922], [-0.0196, 0.0667, 0.1294, ..., -0.9765, -0.9843, -0.9922], [ 0.0196, 0.0824, 0.1137, ..., -0.9765, -0.9686, -0.8667], ..., [ 0.0275, 0.0745, 0.0510, ..., -0.1137, -0.1216, -0.0824], [ 0.0667, 0.0824, 0.0667, ..., -0.0588, -0.0745, -0.0980], [ 0.0353, 0.0353, 0.0431, ..., -0.0039, -0.0039, -0.0588]], [[ 0.2078, 0.2471, 0.2863, ..., -0.9451, -0.9373, -0.9451], [ 0.1608, 0.2471, 0.3098, ..., -0.9373, -0.9451, -0.9373], [ 0.2078, 0.2706, 0.3020, ..., -0.9608, -0.9373, -0.8275], ..., [-0.0353, 0.0118, -0.0039, ..., -0.2392, -0.2471, -0.2078], [ 0.0196, 0.0353, 0.0196, ..., -0.1843, -0.2000, -0.2235], [-0.0118, -0.0039, -0.0039, ..., -0.0980, -0.0980, -0.1529]], [[ 0.3961, 0.4431, 0.4980, ..., -0.9216, -0.9137, -0.9216], [ 0.3569, 0.4510, 0.5216, ..., -0.9059, -0.9137, -0.9137], [ 0.4118, 0.4745, 0.5216, ..., -0.9137, -0.8902, -0.7804], ..., [-0.2314, -0.1922, -0.2078, ..., -0.4196, -0.4275, -0.3882], [-0.1843, -0.1686, -0.2000, ..., -0.3647, -0.3804, -0.4039], [-0.1922, -0.1922, -0.1922, ..., -0.2941, -0.2863, -0.3412]]])} ``` Di seguito come si vede l'immagine dopo la fase di preprocessing. Come ci si aspetterebbe dalle trasformazioni applicate, l'immagine è stata ritagliata in modo casuale e le proprietà del colore sono diverse. ```py >>> import numpy as np >>> import matplotlib.pyplot as plt >>> img = dataset[0]["pixel_values"] >>> plt.imshow(img.permute(1, 2, 0)) ``` ![preprocessed_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png) ## Multimodal Per attività multimodali userai una combinazione di tutto quello che hai imparato poco fa e applicherai le tue competenze alla comprensione automatica del parlato (Automatic Speech Recognition - ASR). Questo significa che avrai bisogno di: * Un estrattore delle caratteristiche per processare i dati audio. * Il Tokenizer per processare i testi. Ritorna sul datasere [LJ Speech](https://huggingface.co/datasets/lj_speech): ```py >>> from datasets import load_dataset >>> lj_speech = load_dataset("lj_speech", split="train") ``` Visto che sei interessato solo alle colonne `audio` e `text`, elimina tutte le altre: ```py >>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"]) ``` Adesso guarda le colonne `audio` e `text`: ```py >>> lj_speech[0]["audio"] {'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ..., 7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav', 'sampling_rate': 22050} >>> lj_speech[0]["text"] 'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition' ``` Ricorda dalla sezione precedente sull'elaborazione dei dati audio, tu dovresti sempre [ricampionare](preprocessing#audio) la frequenza di campionamento dei tuoi dati audio per farla coincidere con quella del dataset usato dal modello preaddestrato: ```py >>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000)) ``` ### Processor Un processor combina un estrattore di caratteristiche e un tokenizer. Carica un processor con [`AutoProcessor.from_pretrained]: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") ``` 1. Crea una funzione che processi i dati audio in `input_values`, e tokenizza il testo in `labels`. Questi sono i tuoi input per il modello: ```py >>> def prepare_dataset(example): ... audio = example["audio"] ... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000)) ... return example ``` 2. Applica la funzione `prepare_dataset` ad un campione: ```py >>> prepare_dataset(lj_speech[0]) ``` Nota che il processor ha aggiunto `input_values` e `labels`. La frequenza di campionamento è stata corretta riducendola a 16kHz. Fantastico, ora dovresti essere in grado di preelaborare i dati per qualsiasi modalità e persino di combinare modalità diverse! Nella prossima esercitazione, impareremo a mettere a punto un modello sui dati appena pre-elaborati.
transformers/docs/source/it/preprocessing.md/0
{ "file_path": "transformers/docs/source/it/preprocessing.md", "repo_id": "transformers", "token_count": 9557 }
247
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Create a custom architecture [`AutoClass`](model_doc/auto)は、モデルのアーキテクチャを自動的に推論し、事前学習済みの設定と重みをダウンロードします。一般的には、チェックポイントに依存しないコードを生成するために`AutoClass`を使用することをお勧めします。ただし、特定のモデルパラメータに対する制御をより詳細に行いたいユーザーは、いくつかの基本クラスからカスタム🤗 Transformersモデルを作成できます。これは、🤗 Transformersモデルを研究、トレーニング、または実験する興味があるユーザーに特に役立つかもしれません。このガイドでは、`AutoClass`を使用しないカスタムモデルの作成について詳しく説明します。次の方法を学びます: - モデルの設定をロードおよびカスタマイズする。 - モデルアーキテクチャを作成する。 - テキスト用の遅いトークナイザと高速トークナイザを作成する。 - ビジョンタスク用の画像プロセッサを作成する。 - オーディオタスク用の特徴抽出器を作成する。 - マルチモーダルタスク用のプロセッサを作成する。 ## Configuration [設定](main_classes/configuration)は、モデルの特定の属性を指します。各モデルの設定には異なる属性があります。たとえば、すべてのNLPモデルには、`hidden_size`、`num_attention_heads`、`num_hidden_layers`、および`vocab_size`属性が共通してあります。これらの属性は、モデルを構築するための注意ヘッドの数や隠れ層の数を指定します。 [DistilBERT](model_doc/distilbert)をより詳しく調べるために、[`DistilBertConfig`]にアクセスしてその属性を調べてみましょう: ```py >>> from transformers import DistilBertConfig >>> config = DistilBertConfig() >>> print(config) DistilBertConfig { "activation": "gelu", "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` [`DistilBertConfig`]は、基本の[`DistilBertModel`]を構築するために使用されるすべてのデフォルト属性を表示します。 すべての属性はカスタマイズ可能で、実験のためのスペースを提供します。例えば、デフォルトのモデルをカスタマイズして以下のようなことができます: - `activation`パラメータで異なる活性化関数を試す。 - `attention_dropout`パラメータで注意確率の高いドロップアウト率を使用する。 ```py >>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4) >>> print(my_config) DistilBertConfig { "activation": "relu", "attention_dropout": 0.4, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` 事前学習済みモデルの属性は、[`~PretrainedConfig.from_pretrained`] 関数で変更できます: ```py >>> my_config = DistilBertConfig.from_pretrained("distilbert-base-uncased", activation="relu", attention_dropout=0.4) ``` Once you are satisfied with your model configuration, you can save it with [`PretrainedConfig.save_pretrained`]. Your configuration file is stored as a JSON file in the specified save directory. ```py >>> my_config.save_pretrained(save_directory="./your_model_save_path") ``` 設定ファイルを再利用するには、[`~PretrainedConfig.from_pretrained`]を使用してそれをロードします: ```py >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") ``` <Tip> カスタム構成ファイルを辞書として保存することも、カスタム構成属性とデフォルトの構成属性の違いだけを保存することもできます!詳細については[configuration](main_classes/configuration)のドキュメンテーションをご覧ください。 </Tip> ## Model 次のステップは、[モデル](main_classes/models)を作成することです。モデル(アーキテクチャとも緩く言われることがあります)は、各レイヤーが何をしているか、どの操作が行われているかを定義します。構成からの `num_hidden_layers` のような属性はアーキテクチャを定義するために使用されます。 すべてのモデルは [`PreTrainedModel`] をベースクラスとし、入力埋め込みのリサイズやセルフアテンションヘッドのプルーニングなど、共通のメソッドがいくつかあります。 さらに、すべてのモデルは [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html)、[`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)、または [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) のいずれかのサブクラスでもあります。つまり、モデルはそれぞれのフレームワークの使用法と互換性があります。 <frameworkcontent> <pt> モデルにカスタム構成属性をロードします: ```py >>> from transformers import DistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") >>> model = DistilBertModel(my_config) ``` これにより、事前トレーニング済みの重みではなくランダムな値を持つモデルが作成されます。 これは、トレーニングが行われるまで、まだ有用なものとして使用することはできません。 トレーニングはコストと時間がかかるプロセスです。 通常、トレーニングに必要なリソースの一部しか使用せず、より速くより良い結果を得るために事前学習済みモデルを使用することが良いでしょう。 [`~PreTrainedModel.from_pretrained`]を使用して事前学習済みモデルを作成します: ```py >>> model = DistilBertModel.from_pretrained("distilbert-base-uncased") ``` 事前学習済みの重みをロードする際、モデルが🤗 Transformersによって提供されている場合、デフォルトのモデル設定が自動的にロードされます。ただし、必要に応じてデフォルトのモデル設定属性の一部またはすべてを独自のもので置き換えることができます。 ```py >>> model = DistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config) ``` </pt> <tf> モデルにカスタム設定属性をロードしてください: ```py >>> from transformers import TFDistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json") >>> tf_model = TFDistilBertModel(my_config) ``` これにより、事前学習済みの重みではなくランダムな値を持つモデルが作成されます。 このモデルを有用な目的にはまだ使用することはできません。トレーニングはコストがかかり、時間がかかるプロセスです。 一般的には、トレーニングに必要なリソースの一部しか使用せずに、より速く優れた結果を得るために事前学習済みモデルを使用することが良いでしょう。 [`~TFPreTrainedModel.from_pretrained`]を使用して事前学習済みモデルを作成します: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased") ``` 事前学習済みの重みをロードする際、モデルが🤗 Transformersによって提供されている場合、デフォルトのモデル構成が自動的にロードされます。ただし、必要であればデフォルトのモデル構成属性の一部またはすべてを独自のもので置き換えることもできます: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config) ``` </tf> </frameworkcontent> ### Model heads この時点で、ベースのDistilBERTモデルがあり、これは隠れた状態を出力します。隠れた状態はモデルのヘッドへの入力として渡され、最終的な出力を生成します。🤗 Transformersは、モデルがそのタスクをサポートしている限り、各タスクに対応する異なるモデルヘッドを提供します(つまり、DistilBERTを翻訳のようなシーケンス対シーケンスタスクに使用することはできません)。 <frameworkcontent> <pt> たとえば、[`DistilBertForSequenceClassification`]は、シーケンス分類ヘッドを持つベースのDistilBERTモデルです。シーケンス分類ヘッドは、プールされた出力の上にある線形層です。 ```py >>> from transformers import DistilBertForSequenceClassification >>> model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") ``` 新しいタスクにこのチェックポイントを簡単に再利用するには、異なるモデルヘッドに切り替えます。 質問応答タスクの場合、[`DistilBertForQuestionAnswering`] モデルヘッドを使用します。 質問応答ヘッドはシーケンス分類ヘッドと類似していますが、隠れ状態の出力の上に線形層があります。 ```py >>> from transformers import DistilBertForQuestionAnswering >>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased") ``` </pt> <tf> 例えば、[`TFDistilBertForSequenceClassification`]は、シーケンス分類ヘッドを持つベースのDistilBERTモデルです。シーケンス分類ヘッドは、プールされた出力の上にある線形層です。 ```py >>> from transformers import TFDistilBertForSequenceClassification >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") ``` 別のタスクにこのチェックポイントを簡単に再利用することができ、異なるモデルヘッドに切り替えるだけです。 質問応答タスクの場合、[`TFDistilBertForQuestionAnswering`]モデルヘッドを使用します。 質問応答ヘッドはシーケンス分類ヘッドと似ていますが、隠れ状態の出力の上に線形層があるだけです。 ```py >>> from transformers import TFDistilBertForQuestionAnswering >>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased") ``` </tf> </frameworkcontent> ## Tokenizer テキストデータをモデルで使用する前に必要な最後のベースクラスは、生のテキストをテンソルに変換するための[トークナイザ](main_classes/tokenizer)です。 🤗 Transformersで使用できる2つのタイプのトークナイザがあります: - [`PreTrainedTokenizer`]: トークナイザのPython実装です。 - [`PreTrainedTokenizerFast`]: Rustベースの[🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/)ライブラリからのトークナイザです。 このトークナイザのタイプは、そのRust実装により、特にバッチトークナイゼーション中に高速です。 高速なトークナイザは、トークンを元の単語または文字にマッピングする*オフセットマッピング*などの追加メソッドも提供します。 両方のトークナイザは、エンコードとデコード、新しいトークンの追加、特別なトークンの管理など、共通のメソッドをサポートしています。 <Tip warning={true}> すべてのモデルが高速なトークナイザをサポートしているわけではありません。 モデルが高速なトークナイザをサポートしているかどうかを確認するには、この[表](index#supported-frameworks)をご覧ください。 </Tip> 独自のトークナイザをトレーニングした場合、*ボキャブラリー*ファイルからトークナイザを作成できます。 ```py >>> from transformers import DistilBertTokenizer >>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left") ``` カスタムトークナイザーから生成される語彙は、事前学習済みモデルのトークナイザーが生成する語彙とは異なることを覚えておくことは重要です。 事前学習済みモデルを使用する場合は、事前学習済みモデルの語彙を使用する必要があります。そうしないと、入力が意味をなさなくなります。 [`DistilBertTokenizer`]クラスを使用して、事前学習済みモデルの語彙を持つトークナイザーを作成します: ```py >>> from transformers import DistilBertTokenizer >>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") ``` [`DistilBertTokenizerFast`]クラスを使用して高速なトークナイザを作成します: ```py >>> from transformers import DistilBertTokenizerFast >>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased") ``` <Tip> デフォルトでは、[`AutoTokenizer`]は高速なトークナイザを読み込もうとします。`from_pretrained`内で`use_fast=False`を設定することで、この動作を無効にすることができます。 </Tip> ## Image Processor 画像プロセッサはビジョン入力を処理します。これは基本クラス [`~image_processing_utils.ImageProcessingMixin`] を継承しています。 使用するには、使用しているモデルに関連付けられた画像プロセッサを作成します。 たとえば、画像分類に[ViT](model_doc/vit)を使用する場合、デフォルトの [`ViTImageProcessor`] を作成します。 ```py >>> from transformers import ViTImageProcessor >>> vit_extractor = ViTImageProcessor() >>> print(vit_extractor) ViTImageProcessor { "do_normalize": true, "do_resize": true, "image_processor_type": "ViTImageProcessor", "image_mean": [ 0.5, 0.5, 0.5 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": 2, "size": 224 } ``` <Tip> カスタマイズを必要としない場合、モデルのデフォルトの画像プロセッサパラメータをロードするには、単純に`from_pretrained`メソッドを使用してください。 </Tip> [`ViTImageProcessor`]のパラメータを変更して、カスタムの画像プロセッサを作成できます: ```py >>> from transformers import ViTImageProcessor >>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3]) >>> print(my_vit_extractor) ViTImageProcessor { "do_normalize": false, "do_resize": true, "image_processor_type": "ViTImageProcessor", "image_mean": [ 0.3, 0.3, 0.3 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": "PIL.Image.BOX", "size": 224 } ``` ## Feature Extractor フィーチャー抽出器は音声入力を処理します。これは基本的な [`~feature_extraction_utils.FeatureExtractionMixin`] クラスから継承され、音声入力を処理するための [`SequenceFeatureExtractor`] クラスからも継承されることがあります。 使用するには、モデルに関連付けられたフィーチャー抽出器を作成します。たとえば、音声分類に [Wav2Vec2](model_doc/wav2vec2) を使用する場合、デフォルトの [`Wav2Vec2FeatureExtractor`] を作成します。 ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor() >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": true, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 16000 } ``` <Tip> カスタマイズを行わない場合、モデルのデフォルトの特徴抽出器パラメーターをロードするには、単に `from_pretrained` メソッドを使用してください。 </Tip> [`Wav2Vec2FeatureExtractor`] のパラメーターを変更して、カスタム特徴抽出器を作成できます: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False) >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": false, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 8000 } ``` ## Processor マルチモーダルタスクをサポートするモデルに対して、🤗 Transformersは便利なプロセッサクラスを提供しています。 このプロセッサクラスは、特徴量抽出器やトークナイザなどの処理クラスを便利にラップし、単一のオブジェクトに結合します。 たとえば、自動音声認識タスク(ASR)用に[`Wav2Vec2Processor`]を使用してみましょう。 ASRは音声をテキストに転写するタスクであり、音声入力を処理するために特徴量抽出器とトークナイザが必要です。 音声入力を処理する特徴量抽出器を作成します: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True) ``` テキスト入力を処理するトークナイザを作成します: ```py >>> from transformers import Wav2Vec2CTCTokenizer >>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt") ``` [`Wav2Vec2Processor`]で特徴量抽出器とトークナイザを組み合わせます: ```py >>> from transformers import Wav2Vec2Processor >>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) ``` 二つの基本クラス - 設定とモデル - および追加の前処理クラス(トークナイザ、画像プロセッサ、特徴抽出器、またはプロセッサ)を使用することで、🤗 Transformers がサポートするモデルのいずれかを作成できます。これらの基本クラスは設定可能で、必要な特性を使用できます。モデルをトレーニング用に簡単にセットアップしたり、既存の事前学習済みモデルを微調整することができます。
transformers/docs/source/ja/create_a_model.md/0
{ "file_path": "transformers/docs/source/ja/create_a_model.md", "repo_id": "transformers", "token_count": 8192 }
248
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Pipelines パイプラインは、推論にモデルを使うための簡単で優れた方法である。パイプラインは、複雑なコードのほとんどを抽象化したオブジェクトです。 パイプラインは、ライブラリから複雑なコードのほとんどを抽象化したオブジェクトで、名前付き固有表現認識、マスク言語モデリング、感情分析、特徴抽出、質問応答などのタスクに特化したシンプルなAPIを提供します。 Recognition、Masked Language Modeling、Sentiment Analysis、Feature Extraction、Question Answeringなどのタスクに特化したシンプルなAPIを提供します。以下を参照のこと。 [タスク概要](../task_summary)を参照してください。 パイプラインの抽象化には2つのカテゴリーがある: - [`pipeline`] は、他のすべてのパイプラインをカプセル化する最も強力なオブジェクトです。 - タスク固有のパイプラインは、[オーディオ](#audio)、[コンピューター ビジョン](#computer-vision)、[自然言語処理](#natural-language-processing)、および [マルチモーダル](#multimodal) タスクで使用できます。 ## The pipeline abstraction *パイプライン* 抽象化は、他のすべての利用可能なパイプラインのラッパーです。他のものと同様にインスタンス化されます パイプラインですが、さらなる生活の質を提供できます。 1 つの項目に対する単純な呼び出し: ```python >>> pipe = pipeline("text-classification") >>> pipe("This restaurant is awesome") [{'label': 'POSITIVE', 'score': 0.9998743534088135}] ``` [ハブ](https://huggingface.co) の特定のモデルを使用したい場合は、モデルがオンになっている場合はタスクを無視できます。 ハブはすでにそれを定義しています。 ```python >>> pipe = pipeline(model="roberta-large-mnli") >>> pipe("This restaurant is awesome") [{'label': 'NEUTRAL', 'score': 0.7313136458396912}] ``` 多くの項目に対してパイプラインを呼び出すには、*list* を使用してパイプラインを呼び出すことができます。 ```python >>> pipe = pipeline("text-classification") >>> pipe(["This restaurant is awesome", "This restaurant is awful"]) [{'label': 'POSITIVE', 'score': 0.9998743534088135}, {'label': 'NEGATIVE', 'score': 0.9996669292449951}] ``` 完全なデータセットを反復するには、`Dataset`を直接使用することをお勧めします。これは、割り当てる必要がないことを意味します データセット全体を一度に処理することも、自分でバッチ処理を行う必要もありません。これはカスタムループと同じくらい速く動作するはずです。 GPU。それが問題でない場合は、ためらわずに問題を作成してください。 ```python import datasets from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset from tqdm.auto import tqdm pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0) dataset = datasets.load_dataset("superb", name="asr", split="test") # KeyDataset (only *pt*) will simply return the item in the dict returned by the dataset item # as we're not interested in the *target* part of the dataset. For sentence pair use KeyPairDataset for out in tqdm(pipe(KeyDataset(dataset, "file"))): print(out) # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"} # {"text": ....} # .... ``` 使いやすくするために、ジェネレーターを使用することもできます。 ```python from transformers import pipeline pipe = pipeline("text-classification") def data(): while True: # This could come from a dataset, a database, a queue or HTTP request # in a server # Caveat: because this is iterative, you cannot use `num_workers > 1` variable # to use multiple threads to preprocess data. You can still have 1 thread that # does the preprocessing while the main runs the big inference yield "This is a test" for out in pipe(data()): print(out) # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"} # {"text": ....} # .... ``` [[autodoc]] pipeline ## Pipeline batching すべてのパイプラインでバッチ処理を使用できます。これはうまくいきます パイプラインがストリーミング機能を使用するときは常に (つまり、リスト、`dataset`、または `generator`を渡すとき)。 ```python from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset import datasets dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised") pipe = pipeline("text-classification", device=0) for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"): print(out) # [{'label': 'POSITIVE', 'score': 0.9998743534088135}] # Exactly the same output as before, but the content are passed # as batches to the model ``` <Tip warning={true}> ただし、これによってパフォーマンスが自動的に向上するわけではありません。状況に応じて、10 倍の高速化または 5 倍の低速化のいずれかになります。 ハードウェア、データ、使用されている実際のモデルについて。 主に高速化である例: </Tip> ```python from transformers import pipeline from torch.utils.data import Dataset from tqdm.auto import tqdm pipe = pipeline("text-classification", device=0) class MyDataset(Dataset): def __len__(self): return 5000 def __getitem__(self, i): return "This is a test" dataset = MyDataset() for batch_size in [1, 8, 64, 256]: print("-" * 30) print(f"Streaming batch_size={batch_size}") for out in tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)): pass ``` ``` # On GTX 970 ------------------------------ Streaming no batching 100%|██████████████████████████████████████████████████████████████████████| 5000/5000 [00:26<00:00, 187.52it/s] ------------------------------ Streaming batch_size=8 100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:04<00:00, 1205.95it/s] ------------------------------ Streaming batch_size=64 100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:02<00:00, 2478.24it/s] ------------------------------ Streaming batch_size=256 100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:01<00:00, 2554.43it/s] (diminishing returns, saturated the GPU) ``` 最も速度が低下する例: ```python class MyDataset(Dataset): def __len__(self): return 5000 def __getitem__(self, i): if i % 64 == 0: n = 100 else: n = 1 return "This is a test" * n ``` これは、他の文に比べて非常に長い文が時折あります。その場合、**全体**のバッチは 400 である必要があります。 トークンが長いため、バッチ全体が [64, 4] ではなく [64, 400] になり、速度が大幅に低下します。さらに悪いことに、 バッチが大きくなると、プログラムは単純にクラッシュします。 ``` ------------------------------ Streaming no batching 100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:05<00:00, 183.69it/s] ------------------------------ Streaming batch_size=8 100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:03<00:00, 265.74it/s] ------------------------------ Streaming batch_size=64 100%|██████████████████████████████████████████████████████████████████████| 1000/1000 [00:26<00:00, 37.80it/s] ------------------------------ Streaming batch_size=256 0%| | 0/1000 [00:00<?, ?it/s] Traceback (most recent call last): File "/home/nicolas/src/transformers/test.py", line 42, in <module> for out in tqdm(pipe(dataset, batch_size=256), total=len(dataset)): .... q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head) RuntimeError: CUDA out of memory. Tried to allocate 376.00 MiB (GPU 0; 3.95 GiB total capacity; 1.72 GiB already allocated; 354.88 MiB free; 2.46 GiB reserved in total by PyTorch) ``` この問題に対する適切な (一般的な) 解決策はなく、使用できる距離はユースケースによって異なる場合があります。のルール 親指: ユーザーにとっての経験則は次のとおりです。 - **ハードウェアを使用して、負荷に対するパフォーマンスを測定します。測って、測って、測り続ける。実数というのは、 進むべき唯一の方法。** - レイテンシに制約がある場合 (実際の製品が推論を実行している場合)、バッチ処理を行わないでください。 - CPU を使用している場合は、バッチ処理を行わないでください。 - GPU でスループットを使用している場合 (大量の静的データでモデルを実行したい場合)、次のようにします。 - sequence_length (「自然な」データ) のサイズについてまったくわからない場合は、デフォルトではバッチ処理や測定を行わず、 暫定的に追加してみます。失敗した場合に回復するために OOM チェックを追加します (失敗した場合は、ある時点で回復します)。 sequence_length を制御します。) - sequence_length が非常に規則的である場合、バッチ処理は非常に興味深いものとなる可能性が高く、測定してプッシュしてください。 OOM が発生するまで続けます。 - GPU が大きいほど、バッチ処理がより興味深いものになる可能性が高くなります。 - バッチ処理を有効にしたらすぐに、OOM を適切に処理できることを確認してください。 ## Pipeline chunk batching `zero-shot-classification` と `question-answering` は、単一の入力で結果が得られる可能性があるという意味で、少し特殊です。 モデルの複数の前方パス。通常の状況では、これにより `batch_size` 引数に関する問題が発生します。 この問題を回避するために、これらのパイプラインはどちらも少し特殊になっており、代わりに `ChunkPipeline` になっています。 通常の `Pipeline`。要するに: ```python preprocessed = pipe.preprocess(inputs) model_outputs = pipe.forward(preprocessed) outputs = pipe.postprocess(model_outputs) ``` 今は次のようになります: ```python all_model_outputs = [] for preprocessed in pipe.preprocess(inputs): model_outputs = pipe.forward(preprocessed) all_model_outputs.append(model_outputs) outputs = pipe.postprocess(all_model_outputs) ``` パイプラインは以下で使用されるため、これはコードに対して非常に透過的である必要があります。 同じ方法。 パイプラインはバッチを自動的に処理できるため、これは簡略化されたビューです。気にする必要はないという意味です 入力が実際にトリガーする前方パスの数については、`batch_size` を最適化できます。 入力とは独立して。前のセクションの注意事項が引き続き適用されます。 ## Pipeline custom code 特定のパイプラインをオーバーライドする場合。 目の前のタスクに関する問題を作成することを躊躇しないでください。パイプラインの目標は、使いやすく、ほとんどのユーザーをサポートすることです。 したがって、`transformers`があなたのユースケースをサポートする可能性があります。 単純に試してみたい場合は、次のことができます。 - 選択したパイプラインをサブクラス化します ```python class MyPipeline(TextClassificationPipeline): def postprocess(): # Your code goes here scores = scores * 100 # And here my_pipeline = MyPipeline(model=model, tokenizer=tokenizer, ...) # or if you use *pipeline* function, then: my_pipeline = pipeline(model="xxxx", pipeline_class=MyPipeline) ``` これにより、必要なカスタム コードをすべて実行できるようになります。 ## Implementing a pipeline [Implementing a new pipeline](../add_new_pipeline) ## Audio オーディオ タスクに使用できるパイプラインには次のものがあります。 ### AudioClassificationPipeline [[autodoc]] AudioClassificationPipeline - __call__ - all ### AutomaticSpeechRecognitionPipeline [[autodoc]] AutomaticSpeechRecognitionPipeline - __call__ - all ### TextToAudioPipeline [[autodoc]] TextToAudioPipeline - __call__ - all ### ZeroShotAudioClassificationPipeline [[autodoc]] ZeroShotAudioClassificationPipeline - __call__ - all ## Computer vision コンピューター ビジョン タスクに使用できるパイプラインには次のものがあります。 ### DepthEstimationPipeline [[autodoc]] DepthEstimationPipeline - __call__ - all ### ImageClassificationPipeline [[autodoc]] ImageClassificationPipeline - __call__ - all ### ImageSegmentationPipeline [[autodoc]] ImageSegmentationPipeline - __call__ - all ### ImageToImagePipeline [[autodoc]] ImageToImagePipeline - __call__ - all ### ObjectDetectionPipeline [[autodoc]] ObjectDetectionPipeline - __call__ - all ### VideoClassificationPipeline [[autodoc]] VideoClassificationPipeline - __call__ - all ### ZeroShotImageClassificationPipeline [[autodoc]] ZeroShotImageClassificationPipeline - __call__ - all ### ZeroShotObjectDetectionPipeline [[autodoc]] ZeroShotObjectDetectionPipeline - __call__ - all ## Natural Language Processing 自然言語処理タスクに使用できるパイプラインには次のものがあります。 ### ConversationalPipeline [[autodoc]] Conversation [[autodoc]] ConversationalPipeline - __call__ - all ### FillMaskPipeline [[autodoc]] FillMaskPipeline - __call__ - all ### NerPipeline [[autodoc]] NerPipeline 詳細については、[`TokenClassificationPipeline`] を参照してください。 ### QuestionAnsweringPipeline [[autodoc]] QuestionAnsweringPipeline - __call__ - all ### SummarizationPipeline [[autodoc]] SummarizationPipeline - __call__ - all ### TableQuestionAnsweringPipeline [[autodoc]] TableQuestionAnsweringPipeline - __call__ ### TextClassificationPipeline [[autodoc]] TextClassificationPipeline - __call__ - all ### TextGenerationPipeline [[autodoc]] TextGenerationPipeline - __call__ - all ### Text2TextGenerationPipeline [[autodoc]] Text2TextGenerationPipeline - __call__ - all ### TokenClassificationPipeline [[autodoc]] TokenClassificationPipeline - __call__ - all ### TranslationPipeline [[autodoc]] TranslationPipeline - __call__ - all ### ZeroShotClassificationPipeline [[autodoc]] ZeroShotClassificationPipeline - __call__ - all ## Multimodal マルチモーダル タスクに使用できるパイプラインには次のものがあります。 ### DocumentQuestionAnsweringPipeline [[autodoc]] DocumentQuestionAnsweringPipeline - __call__ - all ### FeatureExtractionPipeline [[autodoc]] FeatureExtractionPipeline - __call__ - all ### ImageToTextPipeline [[autodoc]] ImageToTextPipeline - __call__ - all ### VisualQuestionAnsweringPipeline [[autodoc]] VisualQuestionAnsweringPipeline - __call__ - all ## Parent class: `Pipeline` [[autodoc]] Pipeline
transformers/docs/source/ja/main_classes/pipelines.md/0
{ "file_path": "transformers/docs/source/ja/main_classes/pipelines.md", "repo_id": "transformers", "token_count": 6649 }
249
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BEiT ## Overview BEiT モデルは、[BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) で提案されました。 ハンボ・バオ、リー・ドン、フル・ウェイ。 BERT に触発された BEiT は、自己教師ありの事前トレーニングを作成した最初の論文です。 ビジョン トランスフォーマー (ViT) は、教師付き事前トレーニングよりも優れたパフォーマンスを発揮します。クラスを予測するためにモデルを事前トレーニングするのではなく ([オリジナルの ViT 論文](https://arxiv.org/abs/2010.11929) で行われたように) 画像の BEiT モデルは、次のように事前トレーニングされています。 マスクされた OpenAI の [DALL-E モデル](https://arxiv.org/abs/2102.12092) のコードブックからビジュアル トークンを予測します パッチ。 論文の要約は次のとおりです。 *自己教師あり視覚表現モデル BEiT (Bidirectional Encoderpresentation) を導入します。 イメージトランスフォーマーより。自然言語処理分野で開発されたBERTに倣い、マスク画像を提案します。 ビジョントランスフォーマーを事前にトレーニングするためのモデリングタスク。具体的には、事前トレーニングでは各画像に 2 つのビューがあります。 パッチ (16x16 ピクセルなど)、およびビジュアル トークン (つまり、個別のトークン)。まず、元の画像を「トークン化」して、 ビジュアルトークン。次に、いくつかの画像パッチをランダムにマスクし、それらをバックボーンの Transformer に供給します。事前トレーニング 目的は、破損したイメージ パッチに基づいて元のビジュアル トークンを回復することです。 BEiTの事前トレーニング後、 事前トレーニングされたエンコーダーにタスク レイヤーを追加することで、ダウンストリーム タスクのモデル パラメーターを直接微調整します。 画像分類とセマンティックセグメンテーションに関する実験結果は、私たちのモデルが競争力のある結果を達成することを示しています 以前の事前トレーニング方法を使用して。たとえば、基本サイズの BEiT は、ImageNet-1K で 83.2% のトップ 1 精度を達成します。 同じ設定でゼロからの DeiT トレーニング (81.8%) を大幅に上回りました。また、大型BEiTは 86.3% は ImageNet-1K のみを使用しており、ImageNet-22K での教師付き事前トレーニングを使用した ViT-L (85.2%) を上回っています。* ## Usage tips - BEiT モデルは通常のビジョン トランスフォーマーですが、教師ありではなく自己教師ありの方法で事前トレーニングされています。彼らは ImageNet-1K および CIFAR-100 で微調整すると、[オリジナル モデル (ViT)](vit) と [データ効率の高いイメージ トランスフォーマー (DeiT)](deit) の両方を上回るパフォーマンスを発揮します。推論に関するデモノートブックもチェックできます。 カスタム データの微調整は [こちら](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer) (置き換えるだけで済みます) [`BeitImageProcessor`] による [`ViTFeatureExtractor`] と [`ViTForImageClassification`] by [`BeitForImageClassification`])。 - DALL-E の画像トークナイザーと BEiT を組み合わせる方法を紹介するデモ ノートブックも利用可能です。 マスクされた画像モデリングを実行します。 [ここ](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/BEiT) で見つけることができます。 - BEiT モデルは各画像が同じサイズ (解像度) であることを期待しているため、次のように使用できます。 [`BeitImageProcessor`] を使用して、モデルの画像のサイズを変更 (または再スケール) し、正規化します。 - 事前トレーニングまたは微調整中に使用されるパッチ解像度と画像解像度の両方が名前に反映されます。 各チェックポイント。たとえば、`microsoft/beit-base-patch16-224`は、パッチ付きの基本サイズのアーキテクチャを指します。 解像度は 16x16、微調整解像度は 224x224 です。すべてのチェックポイントは [ハブ](https://huggingface.co/models?search=microsoft/beit) で見つけることができます。 - 利用可能なチェックポイントは、(1) [ImageNet-22k](http://www.image-net.org/) で事前トレーニングされています ( 1,400 万の画像と 22,000 のクラス) のみ、(2) ImageNet-22k でも微調整、または (3) [ImageNet-1k](http://www.image-net.org/challenges/LSVRC)でも微調整/2012/) (ILSVRC 2012 とも呼ばれ、130 万件のコレクション) 画像と 1,000 クラス)。 - BEiT は、T5 モデルからインスピレーションを得た相対位置埋め込みを使用します。事前トレーニング中に、著者は次のことを共有しました。 いくつかの自己注意層間の相対的な位置の偏り。微調整中、各レイヤーの相対位置 バイアスは、事前トレーニング後に取得された共有相対位置バイアスで初期化されます。ご希望の場合は、 モデルを最初から事前トレーニングするには、`use_relative_position_bias` または 追加するには、[`BeitConfig`] の `use_relative_position_bias` 属性を `True` に設定します。 位置の埋め込み。 <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/beit_architecture.jpg" alt="drawing" width="600"/> <small> BEiT の事前トレーニング。 <a href="https://arxiv.org/abs/2106.08254">元の論文から抜粋。</a> </small> このモデルは、[nielsr](https://huggingface.co/nielsr) によって提供されました。このモデルの JAX/FLAX バージョンは、 [kamalkraj](https://huggingface.co/kamalkraj) による投稿。元のコードは [ここ](https://github.com/microsoft/unilm/tree/master/beit) にあります。 ## Resources BEiT の使用を開始するのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示されている) リソースのリスト。 <PipelineTag pipeline="image-classification"/> - [`BeitForImageClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)。 - 参照: [画像分類タスク ガイド](../tasks/image_classification) **セマンティック セグメンテーション** - [セマンティック セグメンテーション タスク ガイド](../tasks/semantic_segmentation) ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。 ## BEiT specific outputs [[autodoc]] models.beit.modeling_beit.BeitModelOutputWithPooling [[autodoc]] models.beit.modeling_flax_beit.FlaxBeitModelOutputWithPooling ## BeitConfig [[autodoc]] BeitConfig ## BeitFeatureExtractor [[autodoc]] BeitFeatureExtractor - __call__ - post_process_semantic_segmentation ## BeitImageProcessor [[autodoc]] BeitImageProcessor - preprocess - post_process_semantic_segmentation ## BeitModel [[autodoc]] BeitModel - forward ## BeitForMaskedImageModeling [[autodoc]] BeitForMaskedImageModeling - forward ## BeitForImageClassification [[autodoc]] BeitForImageClassification - forward ## BeitForSemanticSegmentation [[autodoc]] BeitForSemanticSegmentation - forward ## FlaxBeitModel [[autodoc]] FlaxBeitModel - __call__ ## FlaxBeitForMaskedImageModeling [[autodoc]] FlaxBeitForMaskedImageModeling - __call__ ## FlaxBeitForImageClassification [[autodoc]] FlaxBeitForImageClassification - __call__
transformers/docs/source/ja/model_doc/beit.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/beit.md", "repo_id": "transformers", "token_count": 3840 }
250
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # BROS ## Overview BROS モデルは、Teakgyu Hon、Donghyun Kim、Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park によって [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) で提案されました。 BROS は *BERT Relying On Spatality* の略です。これは、一連のトークンとその境界ボックスを入力として受け取り、一連の隠れ状態を出力するエンコーダー専用の Transformer モデルです。 BROS は、絶対的な空間情報を使用する代わりに、相対的な空間情報をエンコードします。 BERT で使用されるトークンマスク言語モデリング目標 (TMLM) と新しいエリアマスク言語モデリング目標 (AMLM) の 2 つの目標で事前トレーニングされています。 TMLM では、トークンはランダムにマスクされ、モデルは空間情報と他のマスクされていないトークンを使用してマスクされたトークンを予測します。 AMLM は TMLM の 2D バージョンです。テキスト トークンをランダムにマスクし、TMLM と同じ情報で予測しますが、テキスト ブロック (領域) をマスクします。 `BrosForTokenClassification`には、BrosModel の上に単純な線形層があります。各トークンのラベルを予測します。 `BrosSpadeEEForTokenClassification`には、BrosModel の上に`initial_token_classifier`と`subsequent_token_classifier`があります。 `initial_token_classifier` は各エンティティの最初のトークンを予測するために使用され、`subsequent_token_classifier` はエンティティ内の次のトークンを予測するために使用されます。 `BrosSpadeELForTokenClassification`には BrosModel の上に`entity_linker`があります。 `entity_linker` は 2 つのエンティティ間の関係を予測するために使用されます。 `BrosForTokenClassification`と`BrosSpadeEEForTokenClassification`は基本的に同じジョブを実行します。ただし、`BrosForTokenClassification`は入力トークンが完全にシリアル化されていることを前提としています (トークンは 2D 空間に存在するため、これは非常に困難な作業です)。一方、`BrosSpadeEEForTokenClassification`は 1 つのトークンから次の接続トークンを予測するため、シリアル化エラーの処理をより柔軟に行うことができます。 `BrosSpadeELForTokenClassification` はエンティティ内のリンク タスクを実行します。これら 2 つのエンティティが何らかの関係を共有する場合、(あるエンティティの) 1 つのトークンから (別のエンティティの) 別のトークンへの関係を予測します。 BROS は、明示的な視覚機能に依存せずに、FUNSD、SROIE、CORD、SciTSR などの Key Information Extraction (KIE) ベンチマークで同等以上の結果を達成します。 論文の要約は次のとおりです。 *文書画像からの重要情報抽出 (KIE) には、2 次元 (2D) 空間におけるテキストの文脈的および空間的意味論を理解する必要があります。最近の研究の多くは、文書画像の視覚的特徴とテキストおよびそのレイアウトを組み合わせることに重点を置いた事前トレーニング済み言語モデルを開発することで、この課題を解決しようとしています。一方、このペーパーでは、テキストとレイアウトの効果的な組み合わせという基本に立ち返ってこの問題に取り組みます。具体的には、BROS (BERT Relying On Spatality) という名前の事前トレーニング済み言語モデルを提案します。この言語モデルは、2D 空間内のテキストの相対位置をエンコードし、エリア マスキング戦略を使用してラベルのないドキュメントから学習します。 2D 空間内のテキストを理解するためのこの最適化されたトレーニング スキームにより、BROS は、視覚的な特徴に依存することなく、4 つの KIE ベンチマーク (FUNSD、SROIE*、CORD、および SciTSR) で以前の方法と比較して同等以上のパフォーマンスを示しました。また、この論文では、KIE タスクにおける 2 つの現実世界の課題 ((1) 間違ったテキスト順序によるエラーの最小化、および (2) 少数の下流例からの効率的な学習) を明らかにし、以前の方法に対する BROS の優位性を実証します。* このモデルは [jinho8345](https://huggingface.co/jinho8345) によって寄稿されました。元のコードは [ここ](https://github.com/clovaai/bros) にあります。 ## Usage tips and examples - [`~transformers.BrosModel.forward`] には、`input_ids` と `bbox` (バウンディング ボックス) が必要です。各境界ボックスは、(x0、y0、x1、y1) 形式 (左上隅、右下隅) である必要があります。境界ボックスの取得は外部 OCR システムに依存します。 「x」座標はドキュメント画像の幅で正規化する必要があり、「y」座標はドキュメント画像の高さで正規化する必要があります。 ```python def expand_and_normalize_bbox(bboxes, doc_width, doc_height): # here, bboxes are numpy array # Normalize bbox -> 0 ~ 1 bboxes[:, [0, 2]] = bboxes[:, [0, 2]] / width bboxes[:, [1, 3]] = bboxes[:, [1, 3]] / height ``` - [`~transformers.BrosForTokenClassification.forward`、`~transformers.BrosSpadeEEForTokenClassification.forward`、`~transformers.BrosSpadeEEForTokenClassification.forward`] では、損失計算に `input_ids` と `bbox` だけでなく `box_first_token_mask` も必要です。これは、各ボックスの先頭以外のトークンを除外するためのマスクです。このマスクは、単語から `input_ids` を作成するときに境界ボックスの開始トークン インデックスを保存することで取得できます。次のコードで`box_first_token_mask`を作成できます。 ```python def make_box_first_token_mask(bboxes, words, tokenizer, max_seq_length=512): box_first_token_mask = np.zeros(max_seq_length, dtype=np.bool_) # encode(tokenize) each word from words (List[str]) input_ids_list: List[List[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words] # get the length of each box tokens_length_list: List[int] = [len(l) for l in input_ids_list] box_end_token_indices = np.array(list(itertools.accumulate(tokens_length_list))) box_start_token_indices = box_end_token_indices - np.array(tokens_length_list) # filter out the indices that are out of max_seq_length box_end_token_indices = box_end_token_indices[box_end_token_indices < max_seq_length - 1] if len(box_start_token_indices) > len(box_end_token_indices): box_start_token_indices = box_start_token_indices[: len(box_end_token_indices)] # set box_start_token_indices to True box_first_token_mask[box_start_token_indices] = True return box_first_token_mask ``` ## Resources - デモ スクリプトは [こちら](https://github.com/clovaai/bros) にあります。 ## BrosConfig [[autodoc]] BrosConfig ## BrosProcessor [[autodoc]] BrosProcessor - __call__ ## BrosModel [[autodoc]] BrosModel - forward ## BrosForTokenClassification [[autodoc]] BrosForTokenClassification - forward ## BrosSpadeEEForTokenClassification [[autodoc]] BrosSpadeEEForTokenClassification - forward ## BrosSpadeELForTokenClassification [[autodoc]] BrosSpadeELForTokenClassification - forward
transformers/docs/source/ja/model_doc/bros.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/bros.md", "repo_id": "transformers", "token_count": 3458 }
251
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # The Transformer model family 2017年に導入されて以来、[元のTransformer](https://arxiv.org/abs/1706.03762)モデルは、自然言語処理(NLP)のタスクを超える多くの新しいエキサイティングなモデルをインスパイアしました。[タンパク質の折りたたまれた構造を予測](https://huggingface.co/blog/deep-learning-with-proteins)するモデル、[チーターを走らせるためのトレーニング](https://huggingface.co/blog/train-decision-transformers)するモデル、そして[時系列予測](https://huggingface.co/blog/time-series-transformers)のためのモデルなどがあります。Transformerのさまざまなバリアントが利用可能ですが、大局を見落とすことがあります。これらのすべてのモデルに共通するのは、元のTransformerアーキテクチャに基づいていることです。一部のモデルはエンコーダまたはデコーダのみを使用し、他のモデルは両方を使用します。これは、Transformerファミリー内のモデルの高レベルの違いをカテゴライズし、調査するための有用な分類法を提供し、以前に出会ったことのないTransformerを理解するのに役立ちます。 元のTransformerモデルに慣れていないか、リフレッシュが必要な場合は、Hugging Faceコースの[Transformerの動作原理](https://huggingface.co/course/chapter1/4?fw=pt)章をチェックしてください。 <div align="center"> <iframe width="560" height="315" src="https://www.youtube.com/embed/H39Z_720T5s" title="YouTubeビデオプレーヤー" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </div> ## Computer vision <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FacQBpeFBVvrDUlzFlkejoz%2FModelscape-timeline%3Fnode-id%3D0%253A1%26t%3Dm0zJ7m2BQ9oe0WtO-1" allowfullscreen></iframe> ### Convolutional network 長い間、畳み込みネットワーク(CNN)はコンピュータビジョンのタスクにおいて支配的なパラダイムでしたが、[ビジョンTransformer](https://arxiv.org/abs/2010.11929)はそのスケーラビリティと効率性を示しました。それでも、一部のCNNの最高の特性、特に特定のタスクにとっては非常に強力な翻訳不変性など、一部のTransformerはアーキテクチャに畳み込みを組み込んでいます。[ConvNeXt](model_doc/convnext)は、畳み込みを現代化するためにTransformerから設計の選択肢を取り入れ、例えば、ConvNeXtは画像をパッチに分割するために重なり合わないスライディングウィンドウと、グローバル受容野を増加させるための大きなカーネルを使用します。ConvNeXtは、メモリ効率を向上させ、パフォーマンスを向上させるためにいくつかのレイヤーデザインの選択肢も提供し、Transformerと競合的になります! ### Encoder[[cv-encoder]] [ビジョン トランスフォーマー(ViT)](model_doc/vit) は、畳み込みを使用しないコンピュータビジョンタスクの扉を開けました。ViT は標準のトランスフォーマーエンコーダーを使用しますが、画像を扱う方法が主要なブレークスルーでした。画像を固定サイズのパッチに分割し、それらをトークンのように使用して埋め込みを作成します。ViT は、当時のCNNと競争力のある結果を示すためにトランスフォーマーの効率的なアーキテクチャを活用しましたが、トレーニングに必要なリソースが少なくて済みました。ViT に続いて、セグメンテーションや検出などの密なビジョンタスクを処理できる他のビジョンモデルも登場しました。 これらのモデルの1つが[Swin](model_doc/swin) トランスフォーマーです。Swin トランスフォーマーは、より小さなサイズのパッチから階層的な特徴マップ(CNNのようで ViT とは異なります)を構築し、深層のパッチと隣接するパッチとマージします。注意はローカルウィンドウ内でのみ計算され、ウィンドウは注意のレイヤー間でシフトされ、モデルがより良く学習するのをサポートする接続を作成します。Swin トランスフォーマーは階層的な特徴マップを生成できるため、セグメンテーションや検出などの密な予測タスクに適しています。[SegFormer](model_doc/segformer) も階層的な特徴マップを構築するためにトランスフォーマーエンコーダーを使用しますが、すべての特徴マップを組み合わせて予測するためにシンプルなマルチレイヤーパーセプトロン(MLP)デコーダーを追加します。 BeIT および ViTMAE などの他のビジョンモデルは、BERTの事前トレーニング目標からインスピレーションを得ました。[BeIT](model_doc/beit) は *masked image modeling (MIM)* によって事前トレーニングされています。画像パッチはランダムにマスクされ、画像も視覚トークンにトークン化されます。BeIT はマスクされたパッチに対応する視覚トークンを予測するようにトレーニングされます。[ViTMAE](model_doc/vitmae) も似たような事前トレーニング目標を持っており、視覚トークンの代わりにピクセルを予測する必要があります。異例なのは画像パッチの75%がマスクされていることです!デコーダーはマスクされたトークンとエンコードされたパッチからピクセルを再構築します。事前トレーニングの後、デコーダーは捨てられ、エンコーダーはダウンストリームのタスクで使用できる状態です。 ### Decoder[[cv-decoder]] デコーダーのみのビジョンモデルは珍しいです。なぜなら、ほとんどのビジョンモデルは画像表現を学ぶためにエンコーダーを使用するからです。しかし、画像生成などのユースケースでは、デコーダーは自然な適応です。これは、GPT-2などのテキスト生成モデルから見てきたように、[ImageGPT](model_doc/imagegpt) でも同様のアーキテクチャを使用しますが、シーケンス内の次のトークンを予測する代わりに、画像内の次のピクセルを予測します。画像生成に加えて、ImageGPT は画像分類のためにもファインチューニングできます。 ### Encoder-decoder[[cv-encoder-decoder]] ビジョンモデルは一般的にエンコーダー(バックボーンとも呼ばれます)を使用して重要な画像特徴を抽出し、それをトランスフォーマーデコーダーに渡すために使用します。[DETR](model_doc/detr) は事前トレーニング済みのバックボーンを持っていますが、オブジェクト検出のために完全なトランスフォーマーエンコーダーデコーダーアーキテクチャも使用しています。エンコーダーは画像表現を学び、デコーダー内のオブジェクトクエリ(各オブジェクトクエリは画像内の領域またはオブジェクトに焦点を当てた学習された埋め込みです)と組み合わせます。DETR は各オブジェクトクエリに対する境界ボックスの座標とクラスラベルを予測します。 ## Natural lanaguage processing <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FUhbQAZDlpYW5XEpdFy6GoG%2Fnlp-model-timeline%3Fnode-id%3D0%253A1%26t%3D4mZMr4r1vDEYGJ50-1" allowfullscreen></iframe> ### Encoder[[nlp-encoder]] [BERT](model_doc/bert) はエンコーダー専用のTransformerで、入力の一部のトークンをランダムにマスクして他のトークンを見ないようにしています。これにより、トークンをマスクした文脈に基づいてマスクされたトークンを予測することが事前トレーニングの目標です。これにより、BERTは入力のより深いかつ豊かな表現を学習するのに左右の文脈を完全に活用できます。しかし、BERTの事前トレーニング戦略にはまだ改善の余地がありました。[RoBERTa](model_doc/roberta) は、トレーニングを長時間行い、より大きなバッチでトレーニングし、事前処理中に一度だけでなく各エポックでトークンをランダムにマスクし、次文予測の目標を削除する新しい事前トレーニングレシピを導入することでこれを改善しました。 性能を向上させる主要な戦略はモデルのサイズを増やすことですが、大規模なモデルのトレーニングは計算コストがかかります。計算コストを削減する方法の1つは、[DistilBERT](model_doc/distilbert) のような小さなモデルを使用することです。DistilBERTは[知識蒸留](https://arxiv.org/abs/1503.02531) - 圧縮技術 - を使用して、BERTのほぼすべての言語理解機能を保持しながら、より小さなバージョンを作成します。 しかし、ほとんどのTransformerモデルは引き続きより多くのパラメータに焦点を当て、トレーニング効率を向上させる新しいモデルが登場しています。[ALBERT](model_doc/albert) は、2つの方法でパラメータの数を減らすことによってメモリ消費量を削減します。大きな語彙埋め込みを2つの小さな行列に分割し、レイヤーがパラメータを共有できるようにします。[DeBERTa](model_doc/deberta) は、単語とその位置を2つのベクトルで別々にエンコードする解かれた注意機構を追加しました。注意はこれらの別々のベクトルから計算されます。単語と位置の埋め込みが含まれる単一のベクトルではなく、[Longformer](model_doc/longformer) は、特に長いシーケンス長のドキュメントを処理するために注意をより効率的にすることに焦点を当てました。固定されたウィンドウサイズの周りの各トークンから計算されるローカルウィンドウ付き注意(特定のタスクトークン(分類のための `[CLS]` など)のみのためのグローバルな注意を含む)の組み合わせを使用して、完全な注意行列ではなく疎な注意行列を作成します。 ### Decoder[[nlp-decoder]] [GPT-2](model_doc/gpt2)は、シーケンス内の次の単語を予測するデコーダー専用のTransformerです。モデルは先を見ることができないようにトークンを右にマスクし、"のぞき見"を防ぎます。大量のテキストを事前トレーニングしたことにより、GPT-2はテキスト生成が非常に得意で、テキストが正確であることがあるにしても、時折正確ではないことがあります。しかし、GPT-2にはBERTの事前トレーニングからの双方向コンテキストが不足しており、特定のタスクには適していませんでした。[XLNET](model_doc/xlnet)は、双方向に学習できる順列言語モデリング目標(PLM)を使用することで、BERTとGPT-2の事前トレーニング目標のベストを組み合わせています。 GPT-2の後、言語モデルはさらに大きく成長し、今では*大規模言語モデル(LLM)*として知られています。大規模なデータセットで事前トレーニングされれば、LLMはほぼゼロショット学習を示すことがあります。[GPT-J](model_doc/gptj)は、6Bのパラメータを持つLLMで、400Bのトークンでトレーニングされています。GPT-Jには[OPT](model_doc/opt)が続き、そのうち最大のモデルは175Bで、180Bのトークンでトレーニングされています。同じ時期に[BLOOM](model_doc/bloom)がリリースされ、このファミリーの最大のモデルは176Bのパラメータを持ち、46の言語と13のプログラミング言語で366Bのトークンでトレーニングされています。 ### Encoder-decoder[[nlp-encoder-decoder]] [BART](model_doc/bart)は、元のTransformerアーキテクチャを保持していますが、事前トレーニング目標を*テキスト補完*の破損に変更しています。一部のテキストスパンは単一の`mask`トークンで置換されます。デコーダーは破損していないトークンを予測し(未来のトークンはマスクされます)、エンコーダーの隠れた状態を使用して予測を補助します。[Pegasus](model_doc/pegasus)はBARTに似ていますが、Pegasusはテキストスパンの代わりに文全体をマスクします。マスクされた言語モデリングに加えて、Pegasusはギャップ文生成(GSG)によって事前トレーニングされています。GSGの目標は、文書に重要な文をマスクし、それらを`mask`トークンで置換することです。デコーダーは残りの文から出力を生成しなければなりません。[T5](model_doc/t5)は、すべてのNLPタスクを特定のプレフィックスを使用してテキスト対テキストの問題に変換するよりユニークなモデルです。たとえば、プレフィックス`Summarize:`は要約タスクを示します。T5は教師ありトレーニング(GLUEとSuperGLUE)と自己教師ありトレーニング(トークンの15%をランダムにサンプルしドロップアウト)によって事前トレーニングされています。 ## Audio <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2Fvrchl8jDV9YwNVPWu2W0kK%2Fspeech-and-audio-model-timeline%3Fnode-id%3D0%253A1%26t%3DmM4H8pPMuK23rClL-1" allowfullscreen></iframe> ### Encoder[[audio-encoder]] [Wav2Vec2](model_doc/wav2vec2) は、生のオーディオ波形から直接音声表現を学習するためのTransformerエンコーダーを使用します。これは、対照的なタスクで事前学習され、一連の偽の表現から真の音声表現を特定します。 [HuBERT](model_doc/hubert) はWav2Vec2に似ていますが、異なるトレーニングプロセスを持っています。ターゲットラベルは、類似したオーディオセグメントがクラスタに割り当てられ、これが隠れユニットになるクラスタリングステップによって作成されます。隠れユニットは埋め込みにマップされ、予測を行います。 ### Encoder-decoder[[audio-encoder-decoder]] [Speech2Text](model_doc/speech_to_text) は、自動音声認識(ASR)および音声翻訳のために設計された音声モデルです。このモデルは、オーディオ波形から抽出されたログメルフィルターバンクフィーチャーを受け入れ、事前トレーニングされた自己回帰的にトランスクリプトまたは翻訳を生成します。 [Whisper](model_doc/whisper) もASRモデルですが、他の多くの音声モデルとは異なり、✨ ラベル付き ✨ オーディオトランスクリプションデータを大量に事前に学習して、ゼロショットパフォーマンスを実現します。データセットの大部分には非英語の言語も含まれており、Whisperは低リソース言語にも使用できます。構造的には、WhisperはSpeech2Textに似ています。オーディオ信号はエンコーダーによってエンコードされたログメルスペクトログラムに変換されます。デコーダーはエンコーダーの隠れ状態と前のトークンからトランスクリプトを自己回帰的に生成します。 ## Multimodal <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FcX125FQHXJS2gxeICiY93p%2Fmultimodal%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe> ### Encoder[[mm-encoder]] [VisualBERT](model_doc/visual_bert) は、BERTの後にリリースされたビジョン言語タスク向けのマルチモーダルモデルです。これはBERTと事前トレーニングされた物体検出システムを組み合わせ、画像特徴をビジュアル埋め込みに抽出し、テキスト埋め込みと一緒にBERTに渡します。VisualBERTは非マスクテキストを基にしたマスクテキストを予測し、テキストが画像と整合しているかどうかも予測する必要があります。ViTがリリースされた際、[ViLT](model_doc/vilt) は画像埋め込みを取得するためにこの方法を採用しました。画像埋め込みはテキスト埋め込みと共に共同で処理されます。それから、ViLTは画像テキストマッチング、マスク言語モデリング、および全単語マスキングによる事前トレーニングが行われます。 [CLIP](model_doc/clip) は異なるアプローチを取り、(`画像`、`テキスト`) のペア予測を行います。画像エンコーダー(ViT)とテキストエンコーダー(Transformer)は、(`画像`、`テキスト`) ペアデータセット上で共同トレーニングされ、(`画像`、`テキスト`) ペアの画像とテキストの埋め込みの類似性を最大化します。事前トレーニング後、CLIPを使用して画像からテキストを予測したり、その逆を行うことができます。[OWL-ViT](model_doc/owlvit) は、ゼロショット物体検出のバックボーンとしてCLIPを使用しています。事前トレーニング後、物体検出ヘッドが追加され、(`クラス`、`バウンディングボックス`) ペアに対するセット予測が行われます。 ### Encoder-decoder[[mm-encoder-decoder]] 光学文字認識(OCR)は、通常、画像を理解しテキストを生成するために複数のコンポーネントが関与するテキスト認識タスクです。 [TrOCR](model_doc/trocr) は、エンドツーエンドのTransformerを使用してこのプロセスを簡略化します。エンコーダーは画像を固定サイズのパッチとして処理するためのViTスタイルのモデルであり、デコーダーはエンコーダーの隠れ状態を受け入れ、テキストを自己回帰的に生成します。[Donut](model_doc/donut) はOCRベースのアプローチに依存しないより一般的なビジュアルドキュメント理解モデルで、エンコーダーとしてSwin Transformer、デコーダーとして多言語BARTを使用します。 Donutは画像とテキストの注釈に基づいて次の単語を予測することにより、テキストを読むために事前トレーニングされます。デコーダーはプロンプトを与えられたトークンシーケンスを生成します。プロンプトは各ダウンストリームタスクごとに特別なトークンを使用して表現されます。例えば、ドキュメントの解析には`解析`トークンがあり、エンコーダーの隠れ状態と組み合わされてドキュメントを構造化された出力フォーマット(JSON)に解析します。 ## Reinforcement learning <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FiB3Y6RvWYki7ZuKO6tNgZq%2Freinforcement-learning%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe> ### Decoder[[rl-decoder]] 意思決定と軌跡トランスフォーマーは、状態、アクション、報酬をシーケンスモデリングの問題として捉えます。 [Decision Transformer](model_doc/decision_transformer) は、リターン・トゥ・ゴー、過去の状態、およびアクションに基づいて将来の希望リターンにつながるアクションの系列を生成します。最後の *K* タイムステップでは、3つのモダリティそれぞれがトークン埋め込みに変換され、将来のアクショントークンを予測するためにGPTのようなモデルによって処理されます。[Trajectory Transformer](model_doc/trajectory_transformer) も状態、アクション、報酬をトークン化し、GPTアーキテクチャで処理します。報酬調整に焦点を当てたDecision Transformerとは異なり、Trajectory Transformerはビームサーチを使用して将来のアクションを生成します。
transformers/docs/source/ja/model_summary.md/0
{ "file_path": "transformers/docs/source/ja/model_summary.md", "repo_id": "transformers", "token_count": 9488 }
252
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Training on TPU with TensorFlow <Tip> 詳細な説明が不要で、単にTPUのコードサンプルを入手してトレーニングを開始したい場合は、[私たちのTPUの例のノートブックをチェックしてください!](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) </Tip> ### What is a TPU? TPUは**Tensor Processing Unit(テンソル処理ユニット)**の略です。これらはGoogleが設計したハードウェアで、ニューラルネットワーク内のテンソル計算を大幅に高速化するために使用されます。これはGPUのようなものです。ネットワークのトレーニングと推論の両方に使用できます。一般的にはGoogleのクラウドサービスを介してアクセスされますが、Google ColabとKaggle Kernelsを通じても無料で小規模のTPUに直接アクセスできます。 [🤗 TransformersのすべてのTensorFlowモデルはKerasモデルです](https://huggingface.co/blog/tensorflow-philosophy)ので、この文書のほとんどの方法は一般的にKerasモデル用のTPUトレーニングに適用できます!ただし、TransformersとDatasetsのHuggingFaceエコシステム(hug-o-system?)に固有のポイントもいくつかあり、それについては適用するときにそれを示します。 ### What kinds of TPU are available? 新しいユーザーは、さまざまなTPUとそのアクセス方法に関する幅広い情報によく混乱します。理解するための最初の重要な違いは、**TPUノード**と**TPU VM**の違いです。 **TPUノード**を使用すると、事実上リモートのTPUに間接的にアクセスします。別個のVMが必要で、ネットワークとデータパイプラインを初期化し、それらをリモートノードに転送します。Google ColabでTPUを使用すると、**TPUノード**スタイルでアクセスしています。 TPUノードを使用すると、それに慣れていない人々にはかなり予期しない動作が発生することがあります!特に、TPUはPythonコードを実行しているマシンと物理的に異なるシステムに配置されているため、データはローカルマシンにローカルで格納されているデータパイプラインが完全に失敗します。代わりに、データはGoogle Cloud Storageに格納する必要があります。ここでデータパイプラインはリモートのTPUノードで実行されている場合でも、データにアクセスできます。 <Tip> すべてのデータを`np.ndarray`または`tf.Tensor`としてメモリに収めることができる場合、ColabまたはTPUノードを使用している場合でも、データをGoogle Cloud Storageにアップロードせずに`fit()`でトレーニングできます。 </Tip> <Tip> **🤗 Hugging Face固有のヒント🤗:** TFコードの例でよく見るであろう`Dataset.to_tf_dataset()`とその高レベルのラッパーである`model.prepare_tf_dataset()`は、TPUノードで失敗します。これは、`tf.data.Dataset`を作成しているにもかかわらず、それが「純粋な」`tf.data`パイプラインではなく、`tf.numpy_function`または`Dataset.from_generator()`を使用して基盤となるHuggingFace `Dataset`からデータをストリームで読み込むことからです。このHuggingFace `Dataset`はローカルディスク上のデータをバックアップしており、リモートTPUノードが読み取ることができないためです。 </Tip> TPUにアクセスする第二の方法は、**TPU VM**を介してです。TPU VMを使用する場合、TPUが接続されているマシンに直接接続します。これはGPU VMでトレーニングを行うのと同様です。TPU VMは一般的にデータパイプラインに関しては特に作業がしやすく、上記のすべての警告はTPU VMには適用されません! これは主観的な文書ですので、こちらの意見です:**可能な限りTPUノードの使用を避けてください。** TPU VMよりも混乱しやすく、デバッグが難しいです。将来的にはサポートされなくなる可能性もあります - Googleの最新のTPUであるTPUv4は、TPU VMとしてのみアクセスできるため、TPUノードは将来的には「レガシー」のアクセス方法になる可能性が高いです。ただし、無料でTPUにアクセスできるのはColabとKaggle Kernelsの場合があります。その場合、どうしても使用しなければならない場合の取り扱い方法を説明しようとします!詳細は[TPUの例のノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)で詳細な説明を確認してください。 ### What sizes of TPU are available? 単一のTPU(v2-8/v3-8/v4-8)は8つのレプリカを実行します。TPUは数百から数千のレプリカを同時に実行できる**ポッド**に存在します。単一のTPUよりも多くのTPUを使用するが、ポッド全体ではない場合(たとえばv3-32)、TPUフリートは**ポッドスライス**として参照されます。 Colabを介して無料のTPUにアクセスする場合、通常は単一のv2-8 TPUが提供されます。 ### I keep hearing about this XLA thing. What’s XLA, and how does it relate to TPUs? XLAは、TensorFlowとJAXの両方で使用される最適化コンパイラです。JAXでは唯一のコンパイラであり、TensorFlowではオプションですが(しかしTPUでは必須です!)、Kerasモデルをトレーニングする際に`model.compile()`に引数`jit_compile=True`を渡すことで最も簡単に有効にできます。エラーが発生せず、パフォーマンスが良好であれば、それはTPUに移行する準備が整った良い兆候です! TPU上でのデバッグは一般的にCPU/GPUよりも少し難しいため、TPUで試す前にまずCPU/GPUでXLAを使用してコードを実行することをお勧めします。もちろん、長時間トレーニングする必要はありません。モデルとデータパイプラインが期待通りに動作するかを確認するための数ステップだけです。 <Tip> XLAコンパイルされたコードは通常高速です。したがって、TPUで実行する予定がない場合でも、`jit_compile=True`を追加することでパフォーマンスを向上させることができます。ただし、以下のXLA互換性に関する注意事項に注意してください! </Tip> <Tip warning={true}> **苦い経験から生まれたヒント:** `jit_compile=True`を使用することは、CPU/GPUコードがXLA互換であることを確認し、速度を向上させる良い方法ですが、実際にTPUでコードを実行する際には多くの問題を引き起こす可能性があります。 XLAコンパイルはTPU上で暗黙的に行われるため、実際にコードをTPUで実行する前にその行を削除することを忘れないでください! </Tip> ### How do I make my model XLA compatible? 多くの場合、コードはすでにXLA互換かもしれません!ただし、XLAでは動作する通常のTensorFlowでも動作しないいくつかの要素があります。以下に、3つの主要なルールにまとめています: <Tip> **🤗 HuggingFace固有のヒント🤗:** TensorFlowモデルと損失関数をXLA互換に書き直すために多くの努力を払っています。通常、モデルと損失関数はデフォルトでルール#1と#2に従っているため、`transformers`モデルを使用している場合はこれらをスキップできます。ただし、独自のモデルと損失関数を記述する場合は、これらのルールを忘れないでください! </Tip> #### XLA Rule #1: Your code cannot have “data-dependent conditionals” これは、任意の`if`ステートメントが`tf.Tensor`内の値に依存していない必要があることを意味します。例えば、次のコードブロックはXLAでコンパイルできません! ```python if tf.reduce_sum(tensor) > 10: tensor = tensor / 2.0 ``` これは最初は非常に制限的に思えるかもしれませんが、ほとんどのニューラルネットコードはこれを行う必要はありません。通常、この制約を回避するために`tf.cond`を使用するか(ドキュメントはこちらを参照)、条件を削除して代わりに指示変数を使用したりすることができます。次のように: ```python sum_over_10 = tf.cast(tf.reduce_sum(tensor) > 10, tf.float32) tensor = tensor / (1.0 + sum_over_10) ``` このコードは、上記のコードとまったく同じ効果を持っていますが、条件を回避することで、XLAで問題なくコンパイルできることを確認します! #### XLA Rule #2: Your code cannot have “data-dependent shapes” これは、コード内のすべての `tf.Tensor` オブジェクトの形状が、その値に依存しないことを意味します。たとえば、`tf.unique` 関数はXLAでコンパイルできないので、このルールに違反します。なぜなら、これは入力 `Tensor` の一意の値の各インスタンスを含む `tensor` を返すためです。この出力の形状は、入力 `Tensor` の重複具合によって異なるため、XLAはそれを処理しないことになります! 一般的に、ほとんどのニューラルネットワークコードはデフォルトでルール#2に従います。ただし、いくつかの一般的なケースでは問題が発生することがあります。非常に一般的なケースの1つは、**ラベルマスキング**を使用する場合です。ラベルを無視して損失を計算する場所を示すために、ラベルを負の値に設定する方法です。NumPyまたはPyTorchのラベルマスキングをサポートする損失関数を見ると、次のような[ブールインデックス](https://numpy.org/doc/stable/user/basics.indexing.html#boolean-array-indexing)を使用したコードがよく見られます: ```python label_mask = labels >= 0 masked_outputs = outputs[label_mask] masked_labels = labels[label_mask] loss = compute_loss(masked_outputs, masked_labels) mean_loss = torch.mean(loss) ``` このコードはNumPyやPyTorchでは完全に機能しますが、XLAでは動作しません!なぜなら、`masked_outputs`と`masked_labels`の形状はマスクされた位置の数に依存するため、これは**データ依存の形状**になります。ただし、ルール#1と同様に、このコードを書き直して、データ依存の形状なしでまったく同じ出力を生成できることがあります。 ```python label_mask = tf.cast(labels >= 0, tf.float32) loss = compute_loss(outputs, labels) loss = loss * label_mask # Set negative label positions to 0 mean_loss = tf.reduce_sum(loss) / tf.reduce_sum(label_mask) ``` ここでは、データ依存の形状を避けるために、各位置で損失を計算してから、平均を計算する際に分子と分母の両方でマスクされた位置をゼロ化する方法を紹介します。これにより、最初のアプローチとまったく同じ結果が得られますが、XLA互換性を維持します。注意点として、ルール#1と同じトリックを使用します - `tf.bool`を`tf.float32`に変換して指標変数として使用します。これは非常に便利なトリックですので、自分のコードをXLAに変換する必要がある場合には覚えておいてください! #### XLA Rule #3: XLA will need to recompile your model for every different input shape it sees これは重要なルールです。これはつまり、入力形状が非常に変動的な場合、XLA はモデルを何度も再コンパイルする必要があるため、大きなパフォーマンスの問題が発生する可能性があるということです。これは NLP モデルで一般的に発生し、トークナイズ後の入力テキストの長さが異なる場合があります。他のモダリティでは、静的な形状が一般的であり、このルールはほとんど問題になりません。 ルール#3を回避する方法は何でしょうか?鍵は「パディング」です - すべての入力を同じ長さにパディングし、次に「attention_mask」を使用することで、可変形状と同じ結果を得ることができますが、XLA の問題は発生しません。ただし、過度のパディングも深刻な遅延を引き起こす可能性があります - データセット全体で最大の長さにすべてのサンプルをパディングすると、多くの計算とメモリを無駄にする可能性があります! この問題には完璧な解決策はありませんが、いくつかのトリックを試すことができます。非常に便利なトリックの1つは、**バッチのサンプルを32または64トークンの倍数までパディングする**ことです。これにより、トークン数がわずかに増加するだけで、すべての入力形状が32または64の倍数である必要があるため、一意の入力形状の数が大幅に減少します。一意の入力形状が少ないと、XLA の再コンパイルが少なくなります! <Tip> **🤗 HuggingFace に関する具体的なヒント🤗:** 弊社のトークナイザーとデータコレクターには、ここで役立つメソッドがあります。トークナイザーを呼び出す際に `padding="max_length"` または `padding="longest"` を使用して、パディングされたデータを出力するように設定できます。トークナイザーとデータコレクターには、一意の入力形状の数を減らすのに役立つ `pad_to_multiple_of` 引数もあります! </Tip> ### How do I actually train my model on TPU? 一度トレーニングが XLA 互換性があることを確認し、(TPU Node/Colab を使用する場合は)データセットが適切に準備されている場合、TPU 上で実行することは驚くほど簡単です!コードを変更する必要があるのは、いくつかの行を追加して TPU を初期化し、モデルとデータセットが `TPUStrategy` スコープ内で作成されるようにすることだけです。これを実際に見るには、[TPU のサンプルノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)をご覧ください! ### Summary ここでは多くの情報が提供されましたので、TPU でモデルをトレーニングする際に以下のチェックリストを使用できます: - コードが XLA の三つのルールに従っていることを確認します。 - CPU/GPU で `jit_compile=True` を使用してモデルをコンパイルし、XLA でトレーニングできることを確認します。 - データセットをメモリに読み込むか、TPU 互換のデータセット読み込みアプローチを使用します([ノートブックを参照](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb))。 - コードを Colab(アクセラレータを「TPU」に設定)または Google Cloud の TPU VM に移行します。 - TPU 初期化コードを追加します([ノートブックを参照](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb))。 - `TPUStrategy` を作成し、データセットの読み込みとモデルの作成が `strategy.scope()` 内で行われることを確認します([ノートブックを参照](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb))。 - TPU に移行する際に `jit_compile=True` を外すのを忘れないでください! - 🙏🙏🙏🥺🥺🥺 - `model.fit()` を呼び出します。 - おめでとうございます!
transformers/docs/source/ja/perf_train_tpu_tf.md/0
{ "file_path": "transformers/docs/source/ja/perf_train_tpu_tf.md", "repo_id": "transformers", "token_count": 7360 }
253
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Image captioning [[open-in-colab]] 画像のキャプション付けは、特定の画像のキャプションを予測するタスクです。一般的な現実世界のアプリケーションには次のものがあります。 視覚障害者がさまざまな状況を乗り越えられるよう支援します。したがって、画像のキャプション 画像を説明することで人々のコンテンツへのアクセシビリティを向上させるのに役立ちます。 このガイドでは、次の方法を説明します。 * 画像キャプション モデルを微調整します。 * 微調整されたモデルを推論に使用します。 始める前に、必要なライブラリがすべてインストールされていることを確認してください。 ```bash pip install transformers datasets evaluate -q pip install jiwer -q ``` モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。 ```python from huggingface_hub import notebook_login notebook_login() ``` ## Load the Pokémon BLIP captions dataset 🤗 データセット ライブラリを使用して、{image-caption} ペアで構成されるデータセットを読み込みます。独自の画像キャプション データセットを作成するには PyTorch では、[このノートブック](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/GIT/Fine_tune_GIT_on_an_image_captioning_dataset.ipynb) を参照できます。 ```py ds = load_dataset("lambdalabs/pokemon-blip-captions") ds ``` ```bash DatasetDict({ train: Dataset({ features: ['image', 'text'], num_rows: 833 }) }) ``` データセットには `image`と`text`の 2 つの機能があります。 <Tip> 多くの画像キャプション データセットには、画像ごとに複数のキャプションが含まれています。このような場合、一般的な戦略は、トレーニング中に利用可能なキャプションの中からランダムにキャプションをサンプリングすることです。 </Tip> [~datasets.Dataset.train_test_split] メソッドを使用して、データセットのトレイン スプリットをトレイン セットとテスト セットに分割します。 ```python ds = ds["train"].train_test_split(test_size=0.1) train_ds = ds["train"] test_ds = ds["test"] ``` トレーニング セットからのいくつかのサンプルを視覚化してみましょう。 ```python from textwrap import wrap import matplotlib.pyplot as plt import numpy as np def plot_images(images, captions): plt.figure(figsize=(20, 20)) for i in range(len(images)): ax = plt.subplot(1, len(images), i + 1) caption = captions[i] caption = "\n".join(wrap(caption, 12)) plt.title(caption) plt.imshow(images[i]) plt.axis("off") sample_images_to_visualize = [np.array(train_ds[i]["image"]) for i in range(5)] sample_captions = [train_ds[i]["text"] for i in range(5)] plot_images(sample_images_to_visualize, sample_captions) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/sample_training_images_image_cap.png" alt="Sample training images"/> </div> ## Preprocess the dataset データセットには 2 つのモダリティ (画像とテキスト) があるため、前処理パイプラインは画像とキャプションを前処理します。 これを行うには、微調整しようとしているモデルに関連付けられたプロセッサ クラスをロードします。 ```python from transformers import AutoProcessor checkpoint = "microsoft/git-base" processor = AutoProcessor.from_pretrained(checkpoint) ``` プロセッサは内部で画像を前処理し (サイズ変更やピクセル スケーリングを含む)、キャプションをトークン化します。 ```python def transforms(example_batch): images = [x for x in example_batch["image"]] captions = [x for x in example_batch["text"]] inputs = processor(images=images, text=captions, padding="max_length") inputs.update({"labels": inputs["input_ids"]}) return inputs train_ds.set_transform(transforms) test_ds.set_transform(transforms) ``` データセットの準備ができたら、微調整用にモデルをセットアップできます。 ## Load a base model ["microsoft/git-base"](https://huggingface.co/microsoft/git-base) を [`AutoModelForCausalLM`](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM) オブジェクト。 ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(checkpoint) ``` ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(checkpoint) ``` ## Evaluate 画像キャプション モデルは通常、[Rouge Score](https://huggingface.co/spaces/evaluate-metric/rouge) または [Word Error Rate](https://huggingface.co/spaces/evaluate-metric/) で評価されます。そうだった)。このガイドでは、Word Error Rate (WER) を使用します。 これを行うには 🤗 Evaluate ライブラリを使用します。 WER の潜在的な制限やその他の問題点については、[このガイド](https://huggingface.co/spaces/evaluate-metric/wer) を参照してください。 ```python from evaluate import load import torch wer = load("wer") def compute_metrics(eval_pred): logits, labels = eval_pred predicted = logits.argmax(-1) decoded_labels = processor.batch_decode(labels, skip_special_tokens=True) decoded_predictions = processor.batch_decode(predicted, skip_special_tokens=True) wer_score = wer.compute(predictions=decoded_predictions, references=decoded_labels) return {"wer_score": wer_score} ``` ## Train! これで、モデルの微調整を開始する準備が整いました。これには 🤗 [`Trainer`] を使用します。 まず、[`TrainingArguments`] を使用してトレーニング引数を定義します。 ```python from transformers import TrainingArguments, Trainer model_name = checkpoint.split("/")[1] training_args = TrainingArguments( output_dir=f"{model_name}-pokemon", learning_rate=5e-5, num_train_epochs=50, fp16=True, per_device_train_batch_size=32, per_device_eval_batch_size=32, gradient_accumulation_steps=2, save_total_limit=3, evaluation_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=50, logging_steps=50, remove_unused_columns=False, push_to_hub=True, label_names=["labels"], load_best_model_at_end=True, ) ``` Trainer 次に、次に、データセットとモデルと一緒に 🤗 に渡します。 ```python trainer = Trainer( model=model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, compute_metrics=compute_metrics, ) ``` トレーニングを開始するには、[`Trainer`] オブジェクトの [`~Trainer.train`] を呼び出すだけです。 ```python trainer.train() ``` トレーニングが進むにつれて、トレーニングの損失がスムーズに減少することがわかります。 トレーニングが完了したら、 [`~Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。 ```python trainer.push_to_hub() ``` ## Inference `test_ds` からサンプル画像を取得してモデルをテストします。 ```python from PIL import Image import requests url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png" image = Image.open(requests.get(url, stream=True).raw) image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/test_image_image_cap.png" alt="Test image"/> </div> モデル用の画像を準備します。 ```python device = "cuda" if torch.cuda.is_available() else "cpu" inputs = processor(images=image, return_tensors="pt").to(device) pixel_values = inputs.pixel_values ``` [`generate`] を呼び出して予測をデコードします。 ```python generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_caption) ``` ```bash a drawing of a pink and blue pokemon ``` 微調整されたモデルにより、非常に優れたキャプションが生成されたようです。
transformers/docs/source/ja/tasks/image_captioning.md/0
{ "file_path": "transformers/docs/source/ja/tasks/image_captioning.md", "repo_id": "transformers", "token_count": 3777 }
254
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Translation [[open-in-colab]] <Youtube id="1JvfrvZgi6c"/> 翻訳では、一連のテキストをある言語から別の言語に変換します。これは、シーケンス間問題として定式化できるいくつかのタスクの 1 つであり、翻訳や要約など、入力から何らかの出力を返すための強力なフレームワークです。翻訳システムは通常、異なる言語のテキスト間の翻訳に使用されますが、音声、またはテキストから音声への変換や音声からテキストへの変換など、音声間の組み合わせにも使用できます。 このガイドでは、次の方法を説明します。 1. [OPUS Books](https://huggingface.co/datasets/opus_books) データセットの英語-フランス語サブセットの [T5](https://huggingface.co/t5-small) を微調整して、英語のテキストを次の形式に翻訳します。フランス語。 2. 微調整されたモデルを推論に使用します。 <Tip> このチュートリアルで説明するタスクは、次のモデル アーキテクチャでサポートされています。 <!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> [BART](../model_doc/bart), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [Blenderbot](../model_doc/blenderbot), [BlenderbotSmall](../model_doc/blenderbot-small), [Encoder decoder](../model_doc/encoder-decoder), [FairSeq Machine-Translation](../model_doc/fsmt), [GPTSAN-japanese](../model_doc/gptsan-japanese), [LED](../model_doc/led), [LongT5](../model_doc/longt5), [M2M100](../model_doc/m2m_100), [Marian](../model_doc/marian), [mBART](../model_doc/mbart), [MT5](../model_doc/mt5), [MVP](../model_doc/mvp), [NLLB](../model_doc/nllb), [NLLB-MOE](../model_doc/nllb-moe), [Pegasus](../model_doc/pegasus), [PEGASUS-X](../model_doc/pegasus_x), [PLBart](../model_doc/plbart), [ProphetNet](../model_doc/prophetnet), [SwitchTransformers](../model_doc/switch_transformers), [T5](../model_doc/t5), [UMT5](../model_doc/umt5), [XLM-ProphetNet](../model_doc/xlm-prophetnet) <!--End of the generated tip--> </Tip> 始める前に、必要なライブラリがすべてインストールされていることを確認してください。 ```bash pip install transformers datasets evaluate sacrebleu ``` モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。 ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load OPUS Books dataset まず、🤗 データセット ライブラリから [OPUS Books](https://huggingface.co/datasets/opus_books) データセットの英語とフランス語のサブセットを読み込みます。 ```py >>> from datasets import load_dataset >>> books = load_dataset("opus_books", "en-fr") ``` [`~datasets.Dataset.train_test_split`] メソッドを使用して、データセットをトレイン セットとテスト セットに分割します。 ```py >>> books = books["train"].train_test_split(test_size=0.2) ``` 次に、例を見てみましょう。 ```py >>> books["train"][0] {'id': '90560', 'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.', 'fr': 'Mais ce plateau élevé ne mesurait que quelques toises, et bientôt nous fûmes rentrés dans notre élément.'}} ``` `translation`: テキストの英語とフランス語の翻訳。 ## Preprocess <Youtube id="XAR8jnZZuUs"/> 次のステップでは、T5 トークナイザーをロードして英語とフランス語の言語ペアを処理します。 ```py >>> from transformers import AutoTokenizer >>> checkpoint = "t5-small" >>> tokenizer = AutoTokenizer.from_pretrained(checkpoint) ``` 作成する前処理関数は次のことを行う必要があります。 1. T5 がこれが翻訳タスクであることを認識できるように、入力の前にプロンプ​​トを付けます。複数の NLP タスクが可能な一部のモデルでは、特定のタスクのプロンプトが必要です。 2. 英語の語彙で事前トレーニングされたトークナイザーを使用してフランス語のテキストをトークン化することはできないため、入力 (英語) とターゲット (フランス語) を別々にトークン化します。 3. `max_length`パラメータで設定された最大長を超えないようにシーケンスを切り詰めます。 ```py >>> source_lang = "en" >>> target_lang = "fr" >>> prefix = "translate English to French: " >>> def preprocess_function(examples): ... inputs = [prefix + example[source_lang] for example in examples["translation"]] ... targets = [example[target_lang] for example in examples["translation"]] ... model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True) ... return model_inputs ``` データセット全体に前処理関数を適用するには、🤗 Datasets [`~datasets.Dataset.map`] メソッドを使用します。 `batched=True` を設定してデータセットの複数の要素を一度に処理することで、`map` 関数を高速化できます。 ```py >>> tokenized_books = books.map(preprocess_function, batched=True) ``` 次に、[`DataCollat​​orForSeq2Seq`] を使用してサンプルのバッチを作成します。データセット全体を最大長までパディングするのではなく、照合中にバッチ内の最長の長さまで文を *動的にパディング* する方が効率的です。 <frameworkcontent> <pt> ```py >>> from transformers import DataCollatorForSeq2Seq >>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint) ``` </pt> <tf> ```py >>> from transformers import DataCollatorForSeq2Seq >>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf") ``` </tf> </frameworkcontent> ## Evaluate トレーニング中にメトリクスを含めると、多くの場合、モデルのパフォーマンスを評価するのに役立ちます。 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) ライブラリを使用して、評価メソッドをすばやくロードできます。このタスクでは、[SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu) メトリクスをロードします (🤗 Evaluate [クイック ツアー](https://huggingface.co/docs/evaluate/a_quick_tour) を参照してください) ) メトリクスの読み込みと計算方法の詳細については、次を参照してください)。 ```py >>> import evaluate >>> metric = evaluate.load("sacrebleu") ``` 次に、予測とラベルを [`~evaluate.EvaluationModule.compute`] に渡して SacreBLEU スコアを計算する関数を作成します。 ```py >>> import numpy as np >>> def postprocess_text(preds, labels): ... preds = [pred.strip() for pred in preds] ... labels = [[label.strip()] for label in labels] ... return preds, labels >>> def compute_metrics(eval_preds): ... preds, labels = eval_preds ... if isinstance(preds, tuple): ... preds = preds[0] ... decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) ... labels = np.where(labels != -100, labels, tokenizer.pad_token_id) ... decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) ... decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) ... result = metric.compute(predictions=decoded_preds, references=decoded_labels) ... result = {"bleu": result["score"]} ... prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] ... result["gen_len"] = np.mean(prediction_lens) ... result = {k: round(v, 4) for k, v in result.items()} ... return result ``` これで`compute_metrics`関数の準備が整いました。トレーニングをセットアップするときにこの関数に戻ります。 ## Train <frameworkcontent> <pt> <Tip> [`Trainer`] を使用したモデルの微調整に慣れていない場合は、[ここ](../training#train-with-pytorch-trainer) の基本的なチュートリアルをご覧ください。 </Tip> これでモデルのトレーニングを開始する準備が整いました。 [`AutoModelForSeq2SeqLM`] を使用して T5 をロードします。 ```py >>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer >>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) ``` この時点で残っているステップは 3 つだけです。 1. [`Seq2SeqTrainingArguments`] でトレーニング ハイパーパラメータを定義します。唯一の必須パラメータは、モデルの保存場所を指定する `output_dir` です。 `push_to_hub=True`を設定して、このモデルをハブにプッシュします (モデルをアップロードするには、Hugging Face にサインインする必要があります)。各エポックの終了時に、[`Trainer`] は SacreBLEU メトリクスを評価し、トレーニング チェックポイントを保存します。 2. トレーニング引数をモデル、データセット、トークナイザー、データ照合器、および `compute_metrics` 関数とともに [`Seq2SeqTrainer`] に渡します。 3. [`~Trainer.train`] を呼び出してモデルを微調整します。 ```py >>> training_args = Seq2SeqTrainingArguments( ... output_dir="my_awesome_opus_books_model", ... evaluation_strategy="epoch", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... weight_decay=0.01, ... save_total_limit=3, ... num_train_epochs=2, ... predict_with_generate=True, ... fp16=True, ... push_to_hub=True, ... ) >>> trainer = Seq2SeqTrainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_books["train"], ... eval_dataset=tokenized_books["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` トレーニングが完了したら、 [`~transformers.Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。 ```py >>> trainer.push_to_hub() ``` </pt> <tf> <Tip> Keras を使用したモデルの微調整に慣れていない場合は、[こちら](../training#train-a-tensorflow-model-with-keras) の基本的なチュートリアルをご覧ください。 </Tip> TensorFlow でモデルを微調整するには、オプティマイザー関数、学習率スケジュール、およびいくつかのトレーニング ハイパーパラメーターをセットアップすることから始めます。 ```py >>> from transformers import AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` 次に、[`TFAutoModelForSeq2SeqLM`] を使用して T5 をロードできます。 ```py >>> from transformers import TFAutoModelForSeq2SeqLM >>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint) ``` [`~transformers.TFPreTrainedModel.prepare_tf_dataset`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。 ```py >>> tf_train_set = model.prepare_tf_dataset( ... tokenized_books["train"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = model.prepare_tf_dataset( ... tokenized_books["test"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) を使用してトレーニング用のモデルを設定します。 Transformers モデルにはすべてデフォルトのタスク関連の損失関数があるため、次の場合を除き、損失関数を指定する必要はないことに注意してください。 ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) # No loss argument! ``` トレーニングを開始する前にセットアップする最後の 2 つのことは、予測から SacreBLEU メトリクスを計算し、モデルをハブにプッシュする方法を提供することです。どちらも [Keras コールバック](../main_classes/keras_callbacks) を使用して行われます。 `compute_metrics` 関数を [`~transformers.KerasMetricCallback`] に渡します。 ```py >>> from transformers.keras_callbacks import KerasMetricCallback >>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set) ``` [`~transformers.PushToHubCallback`] でモデルとトークナイザーをプッシュする場所を指定します。 ```py >>> from transformers.keras_callbacks import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="my_awesome_opus_books_model", ... tokenizer=tokenizer, ... ) ``` 次に、コールバックをまとめてバンドルします。 ```py >>> callbacks = [metric_callback, push_to_hub_callback] ``` ついに、モデルのトレーニングを開始する準備が整いました。トレーニングおよび検証データセット、エポック数、コールバックを指定して [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) を呼び出し、モデルを微調整します。 ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks) ``` トレーニングが完了すると、モデルは自動的にハブにアップロードされ、誰でも使用できるようになります。 </tf> </frameworkcontent> <Tip> 翻訳用にモデルを微調整する方法の詳細な例については、対応するドキュメントを参照してください。 [PyTorch ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb) または [TensorFlow ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)。 </Tip> ## Inference モデルを微調整したので、それを推論に使用できるようになりました。 別の言語に翻訳したいテキストを考え出します。 T5 の場合、作業中のタスクに応じて入力に接頭辞を付ける必要があります。英語からフランス語に翻訳する場合は、以下に示すように入力に接頭辞を付ける必要があります。 ```py >>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria." ``` 推論用に微調整されたモデルを試す最も簡単な方法は、それを [`pipeline`] で使用することです。モデルを使用して翻訳用の`pipeline`をインスタンス化し、テキストをそれに渡します。 ```py >>> from transformers import pipeline >>> translator = pipeline("translation", model="my_awesome_opus_books_model") >>> translator(text) [{'translation_text': 'Legumes partagent des ressources avec des bactéries azotantes.'}] ``` 必要に応じて、`pipeline`の結果を手動で複製することもできます。 <frameworkcontent> <pt> テキストをトークン化し、`input_ids` を PyTorch テンソルとして返します。 ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model") >>> inputs = tokenizer(text, return_tensors="pt").input_ids ``` [`~transformers.generation_utils.GenerationMixin.generate`] メソッドを使用して翻訳を作成します。さまざまなテキスト生成戦略と生成を制御するためのパラメーターの詳細については、[Text Generation](../main_classes/text_generation) API を確認してください。 ```py >>> from transformers import AutoModelForSeq2SeqLM >>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model") >>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) ``` 生成されたトークン ID をデコードしてテキストに戻します。 ```py >>> tokenizer.decode(outputs[0], skip_special_tokens=True) 'Les lignées partagent des ressources avec des bactéries enfixant l'azote.' ``` </pt> <tf> `input_ids`を TensorFlow テンソルとして返します。 tensors: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model") >>> inputs = tokenizer(text, return_tensors="tf").input_ids ``` [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] メソッドを使用して翻訳を作成します。さまざまなテキスト生成戦略と生成を制御するためのパラメーターの詳細については、[Text Generation](../main_classes/text_generation) API を確認してください。 ```py >>> from transformers import TFAutoModelForSeq2SeqLM >>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model") >>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) ``` 生成されたトークン ID をデコードしてテキストに戻します。 ```py >>> tokenizer.decode(outputs[0], skip_special_tokens=True) 'Les lugumes partagent les ressources avec des bactéries fixatrices d'azote.' ``` </tf> </frameworkcontent>
transformers/docs/source/ja/tasks/translation.md/0
{ "file_path": "transformers/docs/source/ja/tasks/translation.md", "repo_id": "transformers", "token_count": 7453 }
255
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 🤗 Accelerate를 활용한 분산 학습[[distributed-training-with-accelerate]] 모델이 커지면서 병렬 처리는 제한된 하드웨어에서 더 큰 모델을 훈련하고 훈련 속도를 몇 배로 가속화하기 위한 전략으로 등장했습니다. Hugging Face에서는 사용자가 하나의 머신에 여러 개의 GPU를 사용하든 여러 머신에 여러 개의 GPU를 사용하든 모든 유형의 분산 설정에서 🤗 Transformers 모델을 쉽게 훈련할 수 있도록 돕기 위해 [🤗 Accelerate](https://huggingface.co/docs/accelerate) 라이브러리를 만들었습니다. 이 튜토리얼에서는 분산 환경에서 훈련할 수 있도록 기본 PyTorch 훈련 루프를 커스터마이즈하는 방법을 알아봅시다. ## 설정[[setup]] 🤗 Accelerate 설치 시작하기: ```bash pip install accelerate ``` 그 다음, [`~accelerate.Accelerator`] 객체를 불러오고 생성합니다. [`~accelerate.Accelerator`]는 자동으로 분산 설정 유형을 감지하고 훈련에 필요한 모든 구성 요소를 초기화합니다. 장치에 모델을 명시적으로 배치할 필요는 없습니다. ```py >>> from accelerate import Accelerator >>> accelerator = Accelerator() ``` ## 가속화를 위한 준비[[prepare-to-accelerate]] 다음 단계는 관련된 모든 훈련 객체를 [`~accelerate.Accelerator.prepare`] 메소드에 전달하는 것입니다. 여기에는 훈련 및 평가 데이터로더, 모델 및 옵티마이저가 포함됩니다: ```py >>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( ... train_dataloader, eval_dataloader, model, optimizer ... ) ``` ## 백워드(Backward)[[backward]] 마지막으로 훈련 루프의 일반적인 `loss.backward()`를 🤗 Accelerate의 [`~accelerate.Accelerator.backward`] 메소드로 대체하기만 하면 됩니다: ```py >>> for epoch in range(num_epochs): ... for batch in train_dataloader: ... outputs = model(**batch) ... loss = outputs.loss ... accelerator.backward(loss) ... optimizer.step() ... lr_scheduler.step() ... optimizer.zero_grad() ... progress_bar.update(1) ``` 다음 코드에서 볼 수 있듯이, 훈련 루프에 코드 네 줄만 추가하면 분산 학습을 활성화할 수 있습니다! ```diff + from accelerate import Accelerator from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + accelerator = Accelerator() model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) optimizer = AdamW(model.parameters(), lr=3e-5) - device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") - model.to(device) + train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( + train_dataloader, eval_dataloader, model, optimizer + ) num_epochs = 3 num_training_steps = num_epochs * len(train_dataloader) lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps ) progress_bar = tqdm(range(num_training_steps)) model.train() for epoch in range(num_epochs): for batch in train_dataloader: - batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss - loss.backward() + accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) ``` ## 학습[[train]] 관련 코드를 추가한 후에는 스크립트나 Colaboratory와 같은 노트북에서 훈련을 시작하세요. ### 스크립트로 학습하기[[train-with-a-script]] 스크립트에서 훈련을 실행하는 경우, 다음 명령을 실행하여 구성 파일을 생성하고 저장합니다: ```bash accelerate config ``` Then launch your training with: ```bash accelerate launch train.py ``` ### 노트북으로 학습하기[[train-with-a-notebook]] Collaboratory의 TPU를 사용하려는 경우, 노트북에서도 🤗 Accelerate를 실행할 수 있습니다. 훈련을 담당하는 모든 코드를 함수로 감싸서 [`~accelerate.notebook_launcher`]에 전달하세요: ```py >>> from accelerate import notebook_launcher >>> notebook_launcher(training_function) ``` 🤗 Accelerate 및 다양한 기능에 대한 자세한 내용은 [documentation](https://huggingface.co/docs/accelerate)를 참조하세요.
transformers/docs/source/ko/accelerate.md/0
{ "file_path": "transformers/docs/source/ko/accelerate.md", "repo_id": "transformers", "token_count": 2885 }
256
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 단일 GPU에서 효율적인 추론 [[efficient-inference-on-a-single-gpu]] 이 가이드 외에도, [단일 GPU에서의 훈련 가이드](perf_train_gpu_one)와 [CPU에서의 추론 가이드](perf_infer_cpu)에서도 관련 정보를 찾을 수 있습니다. ## Better Transformer: PyTorch 네이티브 Transformer 패스트패스 [[better-transformer-pytorchnative-transformer-fastpath]] PyTorch 네이티브 [`nn.MultiHeadAttention`](https://pytorch.org/blog/a-better-transformer-for-fast-transformer-encoder-inference/) 어텐션 패스트패스인 BetterTransformer는 [🤗 Optimum 라이브러리](https://huggingface.co/docs/optimum/bettertransformer/overview)의 통합을 통해 Transformers와 함께 사용할 수 있습니다. PyTorch의 어텐션 패스트패스는 커널 퓨전과 [중첩된 텐서](https://pytorch.org/docs/stable/nested.html)의 사용을 통해 추론 속도를 높일 수 있습니다. 자세한 벤치마크는 [이 블로그 글](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2)에서 확인할 수 있습니다. [`optimum`](https://github.com/huggingface/optimum) 패키지를 설치한 후에는 추론 중 Better Transformer를 사용할 수 있도록 [`~PreTrainedModel.to_bettertransformer`]를 호출하여 관련 내부 모듈을 대체합니다: ```python model = model.to_bettertransformer() ``` [`~PreTrainedModel.reverse_bettertransformer`] 메소드는 정규화된 transformers 모델링을 사용하기 위해 모델을 저장하기 전 원래의 모델링으로 돌아갈 수 있도록 해줍니다: ```python model = model.reverse_bettertransformer() model.save_pretrained("saved_model") ``` PyTorch 2.0부터는 어텐션 패스트패스가 인코더와 디코더 모두에서 지원됩니다. 지원되는 아키텍처 목록은 [여기](https://huggingface.co/docs/optimum/bettertransformer/overview#supported-models)에서 확인할 수 있습니다. ## FP4 혼합 정밀도 추론을 위한 `bitsandbytes` 통합 [[bitsandbytes-integration-for-fp4-mixedprecision-inference]] `bitsandbytes`를 설치하면 GPU에서 손쉽게 모델을 압축할 수 있습니다. FP4 양자화를 사용하면 원래의 전체 정밀도 버전과 비교하여 모델 크기를 최대 8배 줄일 수 있습니다. 아래에서 시작하는 방법을 확인하세요. <Tip> 이 기능은 다중 GPU 설정에서도 사용할 수 있습니다. </Tip> ### 요구 사항 [[requirements-for-fp4-mixedprecision-inference]] - 최신 `bitsandbytes` 라이브러리 `pip install bitsandbytes>=0.39.0` - 최신 `accelerate`를 소스에서 설치 `pip install git+https://github.com/huggingface/accelerate.git` - 최신 `transformers`를 소스에서 설치 `pip install git+https://github.com/huggingface/transformers.git` ### FP4 모델 실행 - 단일 GPU 설정 - 빠른 시작 [[running-fp4-models-single-gpu-setup-quickstart]] 다음 코드를 실행하여 단일 GPU에서 빠르게 FP4 모델을 실행할 수 있습니다. ```py from transformers import AutoModelForCausalLM model_name = "bigscience/bloom-2b5" model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True) ``` `device_map`은 선택 사항입니다. 그러나 `device_map = 'auto'`로 설정하는 것이 사용 가능한 리소스를 효율적으로 디스패치하기 때문에 추론에 있어 권장됩니다. ### FP4 모델 실행 - 다중 GPU 설정 [[running-fp4-models-multi-gpu-setup]] 다중 GPU에서 혼합 4비트 모델을 가져오는 방법은 단일 GPU 설정과 동일합니다(동일한 명령어 사용): ```py model_name = "bigscience/bloom-2b5" model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True) ``` 하지만 `accelerate`를 사용하여 각 GPU에 할당할 GPU RAM을 제어할 수 있습니다. 다음과 같이 `max_memory` 인수를 사용하세요: ```py max_memory_mapping = {0: "600MB", 1: "1GB"} model_name = "bigscience/bloom-3b" model_4bit = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping ) ``` 이 예에서는 첫 번째 GPU가 600MB의 메모리를 사용하고 두 번째 GPU가 1GB를 사용합니다. ### 고급 사용법 [[advanced-usage]] 이 방법의 더 고급 사용법에 대해서는 [양자화](main_classes/quantization) 문서 페이지를 참조하세요. ## Int8 혼합 정밀도 행렬 분해를 위한 `bitsandbytes` 통합 [[bitsandbytes-integration-for-int8-mixedprecision-matrix-decomposition]] <Tip> 이 기능은 다중 GPU 설정에서도 사용할 수 있습니다. </Tip> [`LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale`](https://arxiv.org/abs/2208.07339) 논문에서 우리는 몇 줄의 코드로 Hub의 모든 모델에 대한 Hugging Face 통합을 지원합니다. 이 방법은 `float16` 및 `bfloat16` 가중치에 대해 `nn.Linear` 크기를 2배로 줄이고, `float32` 가중치에 대해 4배로 줄입니다. 이는 절반 정밀도에서 이상치를 처리함으로써 품질에 거의 영향을 미치지 않습니다. ![HFxbitsandbytes.png](https://cdn-uploads.huggingface.co/production/uploads/1659861207959-62441d1d9fdefb55a0b7d12c.png) Int8 혼합 정밀도 행렬 분해는 행렬 곱셈을 두 개의 스트림으로 분리합니다: (1) fp16로 곱해지는 체계적인 특이값 이상치 스트림 행렬(0.01%) 및 (2) int8 행렬 곱셈의 일반적인 스트림(99.9%). 이 방법을 사용하면 매우 큰 모델에 대해 예측 저하 없이 int8 추론이 가능합니다. 이 방법에 대한 자세한 내용은 [논문](https://arxiv.org/abs/2208.07339)이나 [통합에 관한 블로그 글](https://huggingface.co/blog/hf-bitsandbytes-integration)에서 확인할 수 있습니다. ![MixedInt8.gif](https://cdn-uploads.huggingface.co/production/uploads/1660567469965-62441d1d9fdefb55a0b7d12c.gif) 커널은 GPU 전용으로 컴파일되어 있기 때문에 혼합 8비트 모델을 실행하려면 GPU가 필요합니다. 이 기능을 사용하기 전에 모델의 1/4(또는 모델 가중치가 절반 정밀도인 경우 절반)을 저장할 충분한 GPU 메모리가 있는지 확인하세요. 이 모듈을 사용하는 데 도움이 되는 몇 가지 참고 사항이 아래에 나와 있습니다. 또는 [Google colab](#colab-demos)에서 데모를 따라할 수도 있습니다. ### 요구 사항 [[requirements-for-int8-mixedprecision-matrix-decomposition]] - `bitsandbytes<0.37.0`을 사용하는 경우, 8비트 텐서 코어(Turing, Ampere 또는 이후 아키텍처 - 예: T4, RTX20s RTX30s, A40-A100)를 지원하는 NVIDIA GPU에서 실행하는지 확인하세요. `bitsandbytes>=0.37.0`을 사용하는 경우, 모든 GPU가 지원됩니다. - 올바른 버전의 `bitsandbytes`를 다음 명령으로 설치하세요: `pip install bitsandbytes>=0.31.5` - `accelerate`를 설치하세요 `pip install accelerate>=0.12.0` ### 혼합 Int8 모델 실행 - 단일 GPU 설정 [[running-mixedint8-models-single-gpu-setup]] 필요한 라이브러리를 설치한 후 혼합 8비트 모델을 가져오는 방법은 다음과 같습니다: ```py from transformers import AutoModelForCausalLM model_name = "bigscience/bloom-2b5" model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True) ``` 텍스트 생성의 경우: * `pipeline()` 함수 대신 모델의 `generate()` 메소드를 사용하는 것을 권장합니다. `pipeline()` 함수로는 추론이 가능하지만, 혼합 8비트 모델에 최적화되지 않았기 때문에 `generate()` 메소드를 사용하는 것보다 느릴 수 있습니다. 또한, nucleus 샘플링과 같은 일부 샘플링 전략은 혼합 8비트 모델에 대해 `pipeline()` 함수에서 지원되지 않습니다. * 입력을 모델과 동일한 GPU에 배치하는 것이 좋습니다. 다음은 간단한 예입니다: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "bigscience/bloom-2b5" tokenizer = AutoTokenizer.from_pretrained(model_name) model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True) prompt = "Hello, my llama is cute" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generated_ids = model.generate(**inputs) outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ``` ### 혼합 Int8 모델 실행 - 다중 GPU 설정 [[running-mixedint8-models-multi-gpu-setup]] 다중 GPU에서 혼합 8비트 모델을 로드하는 방법은 단일 GPU 설정과 동일합니다(동일한 명령어 사용): ```py model_name = "bigscience/bloom-2b5" model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True) ``` 하지만 `accelerate`를 사용하여 각 GPU에 할당할 GPU RAM을 제어할 수 있습니다. 다음과 같이 `max_memory` 인수를 사용하세요: ```py max_memory_mapping = {0: "1GB", 1: "2GB"} model_name = "bigscience/bloom-3b" model_8bit = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping ) ``` 이 예시에서는 첫 번째 GPU가 1GB의 메모리를 사용하고 두 번째 GPU가 2GB를 사용합니다. ### Colab 데모 [[colab-demos]] 이 방법을 사용하면 이전에 Google Colab에서 추론할 수 없었던 모델에 대해 추론할 수 있습니다. Google Colab에서 8비트 양자화를 사용하여 T5-11b(42GB in fp32)를 실행하는 데모를 확인하세요: [![Open In Colab: T5-11b demo](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing) 또는 BLOOM-3B에 대한 데모를 확인하세요: [![Open In Colab: BLOOM-3b demo](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing)
transformers/docs/source/ko/perf_infer_gpu_one.md/0
{ "file_path": "transformers/docs/source/ko/perf_infer_gpu_one.md", "repo_id": "transformers", "token_count": 6492 }
257
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 🤗 Transformers로 할 수 있는 것[[what__transformers_can_do]] 🤗 Transformers는 자연어처리(NLP), 컴퓨터 비전, 오디오 및 음성 처리 작업에 대한 사전훈련된 최첨단 모델 라이브러리입니다. 이 라이브러리는 트랜스포머 모델뿐만 아니라 컴퓨터 비전 작업을 위한 현대적인 합성곱 신경망과 같은 트랜스포머가 아닌 모델도 포함하고 있습니다. 스마트폰, 앱, 텔레비전과 같은 오늘날 가장 인기 있는 소비자 제품을 살펴보면, 딥러닝 기술이 그 뒤에 사용되고 있을 확률이 높습니다. 스마트폰으로 촬영한 사진에서 배경 객체를 제거하고 싶다면 어떻게 할까요? 이는 파놉틱 세그멘테이션 작업의 예입니다(아직 이게 무엇인지 모른다면, 다음 섹션에서 설명하겠습니다!). 이 페이지는 다양한 음성 및 오디오, 컴퓨터 비전, NLP 작업을 🤗 Transformers 라이브러리를 활용하여 다루는 간단한 예제를 3줄의 코드로 제공합니다. ## 오디오[[audio]] 음성 및 오디오 처리 작업은 다른 모달리티와 약간 다릅니다. 이는 주로 오디오가 연속적인 신호로 입력되기 때문입니다. 텍스트와 달리 원본 오디오 파형(waveform)은 문장이 단어로 나눠지는 것처럼 깔끔하게 이산적인 묶음으로 나눌 수 없습니다. 이를 극복하기 위해 원본 오디오 신호는 일정한 간격으로 샘플링됩니다. 해당 간격 내에서 더 많은 샘플을 취할 경우 샘플링률이 높아지며, 오디오는 원본 오디오 소스에 더 가까워집니다. 과거의 접근 방식은 오디오에서 유용한 특징을 추출하기 위해 오디오를 전처리하는 것이었습니다. 하지만 현재는 원본 오디오 파형을 특성 인코더에 직접 넣어서 오디오 표현(representation)을 추출하는 것이 더 일반적입니다. 이렇게 하면 전처리 단계가 단순해지고 모델이 가장 중요한 특징을 학습할 수 있습니다. ### 오디오 분류[[audio_classification]] 오디오 분류는 오디오 데이터에 미리 정의된 클래스 집합의 레이블을 지정하는 작업입니다. 이는 많은 구체적인 응용 프로그램을 포함한 넓은 범주입니다. 일부 예시는 다음과 같습니다: * 음향 장면 분류: 오디오에 장면 레이블("사무실", "해변", "경기장")을 지정합니다. * 음향 이벤트 감지: 오디오에 소리 이벤트 레이블("차 경적", "고래 울음소리", "유리 파손")을 지정합니다. * 태깅: 여러 가지 소리(새 지저귐, 회의에서의 화자 식별)가 포함된 오디오에 레이블을 지정합니다. * 음악 분류: 음악에 장르 레이블("메탈", "힙합", "컨트리")을 지정합니다. ```py >>> from transformers import pipeline >>> classifier = pipeline(task="audio-classification", model="superb/hubert-base-superb-er") >>> preds = classifier("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac") >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> preds [{'score': 0.4532, 'label': 'hap'}, {'score': 0.3622, 'label': 'sad'}, {'score': 0.0943, 'label': 'neu'}, {'score': 0.0903, 'label': 'ang'}] ``` ### 자동 음성 인식[[automatic_speech_recognition]] 자동 음성 인식(ASR)은 음성을 텍스트로 변환하는 작업입니다. 음성은 인간의 자연스러운 의사소통 형태이기 때문에 ASR은 가장 일반적인 오디오 작업 중 하나입니다. 오늘날 ASR 시스템은 스피커, 전화 및 자동차와 같은 "스마트" 기술 제품에 내장되어 있습니다. 우리는 가상 비서에게 음악 재생, 알림 설정 및 날씨 정보를 요청할 수 있습니다. 하지만 트랜스포머 아키텍처가 해결하는 데 도움을 준 핵심 도전 과제 중 하나는 양이 데이터 양이 적은 언어(low-resource language)에 대한 것입니다. 대량의 음성 데이터로 사전 훈련한 후 데이터 양이 적은 언어에서 레이블이 지정된 음성 데이터 1시간만으로 모델을 미세 조정하면 이전의 100배 많은 레이블이 지정된 데이터로 훈련된 ASR 시스템보다 훨씬 더 높은 품질의 결과를 얻을 수 있습니다. ```py >>> from transformers import pipeline >>> transcriber = pipeline(task="automatic-speech-recognition", model="openai/whisper-small") >>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac") {'text': ' I have a dream that one day this nation will rise up and live out the true meaning of its creed.'} ``` ## 컴퓨터 비전[[computer_vision]] 컴퓨터 비전 작업 중 가장 초기의 성공적인 작업 중 하나는 [합성곱 신경망(CNN)](glossary#convolution)을 사용하여 우편번호 숫자 이미지를 인식하는 것이었습니다. 이미지는 픽셀로 구성되어 있으며 각 픽셀은 숫자 값으로 표현됩니다. 이로써 이미지를 픽셀 값의 행렬로 나타내는 것이 쉬워집니다. 특정한 픽셀 값의 조합은 이미지의 색상을 의미합니다. 컴퓨터 비전 작업은 일반적으로 다음 두 가지 방법으로 접근 가능합니다: 1. 합성곱을 사용하여 이미지의 낮은 수준 특징에서 높은 수준의 추상적인 요소까지 계층적으로 학습합니다. 2. 이미지를 패치로 나누고 트랜스포머를 사용하여 점진적으로 각 이미지 패치가 서로 어떠한 방식으로 연관되어 이미지를 형성하는지 학습합니다. `CNN`에서 선호하는 상향식 접근법과는 달리, 이 방식은 흐릿한 이미지로 초안을 그리고 점진적으로 선명한 이미지로 만들어가는 것과 유사합니다. ### 이미지 분류[[image_classification]] 이미지 분류는 한 개의 전체 이미지에 미리 정의된 클래스 집합의 레이블을 지정하는 작업입니다. 대부분의 분류 작업과 마찬가지로, 이미지 분류에는 다양한 실용적인 용도가 있으며, 일부 예시는 다음과 같습니다: * 의료: 질병을 감지하거나 환자 건강을 모니터링하기 위해 의료 이미지에 레이블을 지정합니다. * 환경: 위성 이미지를 분류하여 산림 벌채를 감시하고 야생 지역 관리를 위한 정보를 제공하거나 산불을 감지합니다. * 농업: 작물 이미지를 분류하여 식물 건강을 확인하거나 위성 이미지를 분류하여 토지 이용 관찰에 사용합니다. * 생태학: 동물이나 식물 종 이미지를 분류하여 야생 동물 개체군을 조사하거나 멸종 위기에 처한 종을 추적합니다. ```py >>> from transformers import pipeline >>> classifier = pipeline(task="image-classification") >>> preds = classifier( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> print(*preds, sep="\n") {'score': 0.4335, 'label': 'lynx, catamount'} {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'} {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'} {'score': 0.0239, 'label': 'Egyptian cat'} {'score': 0.0229, 'label': 'tiger cat'} ``` ### 객체 탐지[[object_detection]] 이미지 분류와 달리 객체 탐지는 이미지 내에서 여러 객체를 식별하고 바운딩 박스로 정의된 객체의 위치를 파악합니다. 객체 탐지의 몇 가지 응용 예시는 다음과 같습니다: * 자율 주행 차량: 다른 차량, 보행자 및 신호등과 같은 일상적인 교통 객체를 감지합니다. * 원격 감지: 재난 모니터링, 도시 계획 및 기상 예측 등을 수행합니다. * 결함 탐지: 건물의 균열이나 구조적 손상, 제조 결함 등을 탐지합니다. ```py >>> from transformers import pipeline >>> detector = pipeline(task="object-detection") >>> preds = detector( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"], "box": pred["box"]} for pred in preds] >>> preds [{'score': 0.9865, 'label': 'cat', 'box': {'xmin': 178, 'ymin': 154, 'xmax': 882, 'ymax': 598}}] ``` ### 이미지 분할[[image_segmentation]] 이미지 분할은 픽셀 차원의 작업으로, 이미지 내의 모든 픽셀을 클래스에 할당합니다. 이는 객체 탐지와 다릅니다. 객체 탐지는 바운딩 박스를 사용하여 이미지 내의 객체를 레이블링하고 예측하는 반면, 분할은 더 세분화된 작업입니다. 분할은 픽셀 수준에서 객체를 감지할 수 있습니다. 이미지 분할에는 여러 유형이 있습니다: * 인스턴스 분할: 개체의 클래스를 레이블링하는 것 외에도, 개체의 각 구분된 인스턴스에도 레이블을 지정합니다 ("개-1", "개-2" 등). * 파놉틱 분할: 의미적 분할과 인스턴스 분할의 조합입니다. 각 픽셀을 의미적 클래스로 레이블링하는 **동시에** 개체의 각각 구분된 인스턴스로도 레이블을 지정합니다. 분할 작업은 자율 주행 차량에서 유용하며, 주변 환경의 픽셀 수준 지도를 생성하여 보행자와 다른 차량 주변에서 안전하게 탐색할 수 있습니다. 또한 의료 영상에서도 유용합니다. 분할 작업이 픽셀 수준에서 객체를 감지할 수 있기 때문에 비정상적인 세포나 장기의 특징을 식별하는 데 도움이 될 수 있습니다. 이미지 분할은 의류 가상 시착이나 카메라를 통해 실제 세계에 가상 개체를 덧씌워 증강 현실 경험을 만드는 등 전자 상거래 분야에서도 사용될 수 있습니다. ```py >>> from transformers import pipeline >>> segmenter = pipeline(task="image-segmentation") >>> preds = segmenter( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> print(*preds, sep="\n") {'score': 0.9879, 'label': 'LABEL_184'} {'score': 0.9973, 'label': 'snow'} {'score': 0.9972, 'label': 'cat'} ``` ### 깊이 추정[[depth_estimation]] 깊이 추정은 카메라로부터 이미지 내부의 각 픽셀의 거리를 예측합니다. 이 컴퓨터 비전 작업은 특히 장면 이해와 재구성에 중요합니다. 예를 들어, 자율 주행 차량은 보행자, 교통 표지판 및 다른 차량과 같은 객체와의 거리를 이해하여 장애물과 충돌을 피해야 합니다. 깊이 정보는 또한 2D 이미지에서 3D 표현을 구성하는 데 도움이 되며 생물학적 구조나 건물의 고품질 3D 표현을 생성하는 데 사용될 수 있습니다. 깊이 추정에는 두 가지 접근 방식이 있습니다: * 스테레오: 약간 다른 각도에서 촬영된 동일한 이미지 두 장을 비교하여 깊이를 추정합니다. * 단안: 단일 이미지에서 깊이를 추정합니다. ```py >>> from transformers import pipeline >>> depth_estimator = pipeline(task="depth-estimation") >>> preds = depth_estimator( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) ``` ## 자연어처리[[natural_language_processing]] 텍스트는 인간이 의사 소통하는 자연스러운 방식 중 하나이기 때문에 자연어처리 역시 가장 일반적인 작업 유형 중 하나입니다. 모델이 인식하는 형식으로 텍스트를 변환하려면 토큰화해야 합니다. 이는 텍스트 시퀀스를 개별 단어 또는 하위 단어(토큰)로 분할한 다음 이러한 토큰을 숫자로 변환하는 것을 의미합니다. 결과적으로 텍스트 시퀀스를 숫자 시퀀스로 표현할 수 있으며, 숫자 시퀀스를 다양한 자연어처리 작업을 해결하기 위한 모델에 입력할 수 있습니다! ### 텍스트 분류[[text_classification]] 다른 모달리티에서의 분류 작업과 마찬가지로 텍스트 분류는 미리 정의된 클래스 집합에서 텍스트 시퀀스(문장 수준, 단락 또는 문서 등)에 레이블을 지정합니다. 텍스트 분류에는 다양한 실용적인 응용 사례가 있으며, 일부 예시는 다음과 같습니다: * 감성 분석: 텍스트를 `긍정` 또는 `부정`과 같은 어떤 극성에 따라 레이블링하여 정치, 금융, 마케팅과 같은 분야에서 의사 결정에 정보를 제공하고 지원할 수 있습니다. * 콘텐츠 분류: 텍스트를 주제에 따라 레이블링(날씨, 스포츠, 금융 등)하여 뉴스 및 소셜 미디어 피드에서 정보를 구성하고 필터링하는 데 도움이 될 수 있습니다. ```py >>> from transformers import pipeline >>> classifier = pipeline(task="sentiment-analysis") >>> preds = classifier("Hugging Face is the best thing since sliced bread!") >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> preds [{'score': 0.9991, 'label': 'POSITIVE'}] ``` ### 토큰 분류[[token_classification]] 모든 자연어처리 작업에서는 텍스트가 개별 단어나 하위 단어로 분리되어 전처리됩니다. 분리된 단어를 [토큰](/glossary#token)이라고 합니다. 토큰 분류는 각 토큰에 미리 정의된 클래스 집합의 레이블을 할당합니다. 토큰 분류의 두 가지 일반적인 유형은 다음과 같습니다: * 개체명 인식 (NER): 토큰을 조직, 인물, 위치 또는 날짜와 같은 개체 범주에 따라 레이블링합니다. NER은 특히 유전체학적인 환경에서 유전자, 단백질 및 약물 이름에 레이블을 지정하는 데 널리 사용됩니다. * 품사 태깅 (POS): 명사, 동사, 형용사와 같은 품사에 따라 토큰에 레이블을 할당합니다. POS는 번역 시스템이 동일한 단어가 문법적으로 어떻게 다른지 이해하는 데 도움이 됩니다 (명사로 사용되는 "bank(은행)"과 동사로 사용되는 "bank(예금을 예치하다)"과 같은 경우). ```py >>> from transformers import pipeline >>> classifier = pipeline(task="ner") >>> preds = classifier("Hugging Face is a French company based in New York City.") >>> preds = [ ... { ... "entity": pred["entity"], ... "score": round(pred["score"], 4), ... "index": pred["index"], ... "word": pred["word"], ... "start": pred["start"], ... "end": pred["end"], ... } ... for pred in preds ... ] >>> print(*preds, sep="\n") {'entity': 'I-ORG', 'score': 0.9968, 'index': 1, 'word': 'Hu', 'start': 0, 'end': 2} {'entity': 'I-ORG', 'score': 0.9293, 'index': 2, 'word': '##gging', 'start': 2, 'end': 7} {'entity': 'I-ORG', 'score': 0.9763, 'index': 3, 'word': 'Face', 'start': 8, 'end': 12} {'entity': 'I-MISC', 'score': 0.9983, 'index': 6, 'word': 'French', 'start': 18, 'end': 24} {'entity': 'I-LOC', 'score': 0.999, 'index': 10, 'word': 'New', 'start': 42, 'end': 45} {'entity': 'I-LOC', 'score': 0.9987, 'index': 11, 'word': 'York', 'start': 46, 'end': 50} {'entity': 'I-LOC', 'score': 0.9992, 'index': 12, 'word': 'City', 'start': 51, 'end': 55} ``` ### 질의응답[[question_answering]] 질의응답은 또 하나의 토큰 차원의 작업으로, 문맥이 있을 때(개방형 도메인)와 문맥이 없을 때(폐쇄형 도메인) 질문에 대한 답변을 반환합니다. 이 작업은 가상 비서에게 식당이 영업 중인지와 같은 질문을 할 때마다 발생할 수 있습니다. 고객 지원 또는 기술 지원을 제공하거나 검색 엔진이 요청한 정보를 검색하는 데 도움을 줄 수 있습니다. 질문 답변에는 일반적으로 두 가지 유형이 있습니다: * 추출형: 질문과 문맥이 주어졌을 때, 모델이 주어진 문맥의 일부에서 가져온 텍스트의 범위를 답변으로 합니다. * 생성형: 질문과 문맥이 주어졌을 때, 주어진 문맥을 통해 답변을 생성합니다. 이 접근 방식은 [`QuestionAnsweringPipeline`] 대신 [`Text2TextGenerationPipeline`]을 통해 처리됩니다. ```py >>> from transformers import pipeline >>> question_answerer = pipeline(task="question-answering") >>> preds = question_answerer( ... question="What is the name of the repository?", ... context="The name of the repository is huggingface/transformers", ... ) >>> print( ... f"score: {round(preds['score'], 4)}, start: {preds['start']}, end: {preds['end']}, answer: {preds['answer']}" ... ) score: 0.9327, start: 30, end: 54, answer: huggingface/transformers ``` ### 요약[[summarization]] 요약은 원본 문서의 의미를 최대한 보존하면서 긴 문서를 짧은 문서로 만드는 작업입니다. 요약은 `sequence-to-sequence` 작업입니다. 입력보다 짧은 텍스트 시퀀스를 출력합니다. 요약 작업은 독자가 장문 문서들의 주요 포인트를 빠르게 이해하는 데 도움을 줄 수 있습니다. 입법안, 법률 및 금융 문서, 특허 및 과학 논문은 요약 작업이 독자의 시간을 절약하고 독서 보조 도구로 사용될 수 있는 몇 가지 예시입니다. 질문 답변과 마찬가지로 요약에는 두 가지 유형이 있습니다: * 추출형: 원본 텍스트에서 가장 중요한 문장을 식별하고 추출합니다. * 생성형: 원본 텍스트에서 목표 요약을 생성합니다. 입력 문서에 없는 새로운 단어를 포함할 수도 있습니다. [`SummarizationPipeline`]은 생성형 접근 방식을 사용합니다. ```py >>> from transformers import pipeline >>> summarizer = pipeline(task="summarization") >>> summarizer( ... "In this work, we presented the Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention. For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, we achieve a new state of the art. In the former task our best model outperforms even all previously reported ensembles." ... ) [{'summary_text': ' The Transformer is the first sequence transduction model based entirely on attention . It replaces the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention . For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers .'}] ``` ### 번역[[translation]] 번역은 한 언어로 된 텍스트 시퀀스를 다른 언어로 변환하는 작업입니다. 이는 서로 다른 배경을 가진 사람들이 서로 소통하는 데 도움을 주는 중요한 역할을 합니다. 더 넓은 대중에게 콘텐츠를 번역하여 전달하거나, 새로운 언어를 배우는 데 도움이 되는 학습 도구가 될 수도 있습니다. 요약과 마찬가지로, 번역은 `sequence-to-sequence` 작업입니다. 즉, 모델은 입력 시퀀스를 받아서 출력이 되는 목표 시퀀스를 반환합니다. 초기의 번역 모델은 대부분 단일 언어로 이루어져 있었지만, 최근에는 많은 언어 쌍 간에 번역을 수행할 수 있는 다중 언어 모델에 대한 관심이 높아지고 있습니다. ```py >>> from transformers import pipeline >>> text = "translate English to French: Hugging Face is a community-based open-source platform for machine learning." >>> translator = pipeline(task="translation", model="t5-small") >>> translator(text) [{'translation_text': "Hugging Face est une tribune communautaire de l'apprentissage des machines."}] ``` ### 언어 모델링[[language_modeling]] 언어 모델링은 텍스트 시퀀스에서 단어를 예측하는 작업입니다. 사전 훈련된 언어 모델은 많은 다른 하위 작업에 따라 미세 조정될 수 있기 때문에 매우 인기 있는 자연어처리 작업이 되었습니다. 최근에는 제로 샷(zero-shot) 또는 퓨 샷(few-shot) 학습이 가능한 대규모 언어 모델(Large Language Models, LLM)에 대한 많은 관심이 발생하고 있습니다. 이는 모델이 명시적으로 훈련되지 않은 작업도 해결할 수 있다는 것을 의미합니다! 언어 모델은 유창하고 설득력 있는 텍스트를 생성하는 데 사용될 수 있지만, 텍스트가 항상 정확하지는 않을 수 있으므로 주의가 필요합니다. 언어 모델링에는 두 가지 유형이 있습니다: * 인과적 언어 모델링: 이 모델의 목적은 시퀀스에서 다음 토큰을 예측하는 것이며, 미래 토큰이 마스킹 됩니다. ```py >>> from transformers import pipeline >>> prompt = "Hugging Face is a community-based open-source platform for machine learning." >>> generator = pipeline(task="text-generation") >>> generator(prompt) # doctest: +SKIP ``` * 마스킹된 언어 모델링: 이 모델의 목적은 시퀀스 내의 마스킹된 토큰을 예측하는 것이며, 시퀀스 내의 모든 토큰에 대한 접근이 제공됩니다. ```py >>> text = "Hugging Face is a community-based open-source <mask> for machine learning." >>> fill_mask = pipeline(task="fill-mask") >>> preds = fill_mask(text, top_k=1) >>> preds = [ ... { ... "score": round(pred["score"], 4), ... "token": pred["token"], ... "token_str": pred["token_str"], ... "sequence": pred["sequence"], ... } ... for pred in preds ... ] >>> preds [{'score': 0.2236, 'token': 1761, 'token_str': ' platform', 'sequence': 'Hugging Face is a community-based open-source platform for machine learning.'}] ``` 이 페이지를 통해 각 모달리티의 다양한 작업 유형과 각 작업의 실용적 중요성에 대해 추가적인 배경 정보를 얻으셨기를 바랍니다. 다음 [섹션](tasks_explained)에서는 🤗 Transformer가 이러한 작업을 해결하는 **방법**에 대해 알아보실 수 있습니다.
transformers/docs/source/ko/task_summary.md/0
{ "file_path": "transformers/docs/source/ko/task_summary.md", "repo_id": "transformers", "token_count": 15727 }
258
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 번역[[translation]] [[open-in-colab]] <Youtube id="1JvfrvZgi6c"/> 번역은 한 언어로 된 시퀀스를 다른 언어로 변환합니다. 번역이나 요약은 입력을 받아 일련의 출력을 반환하는 강력한 프레임워크인 시퀀스-투-시퀀스 문제로 구성할 수 있는 대표적인 태스크입니다. 번역 시스템은 일반적으로 다른 언어로 된 텍스트 간의 번역에 사용되지만, 음성 간의 통역이나 텍스트-음성 또는 음성-텍스트와 같은 조합에도 사용될 수 있습니다. 이 가이드에서 학습할 내용은: 1. 영어 텍스트를 프랑스어로 번역하기 위해 [T5](https://huggingface.co/t5-small) 모델을 OPUS Books 데이터세트의 영어-프랑스어 하위 집합으로 파인튜닝하는 방법과 2. 파인튜닝된 모델을 추론에 사용하는 방법입니다. <Tip> 이 태스크 가이드는 아래 모델 아키텍처에도 응용할 수 있습니다. <!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> [BART](../model_doc/bart), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [Blenderbot](../model_doc/blenderbot), [BlenderbotSmall](../model_doc/blenderbot-small), [Encoder decoder](../model_doc/encoder-decoder), [FairSeq Machine-Translation](../model_doc/fsmt), [GPTSAN-japanese](../model_doc/gptsan-japanese), [LED](../model_doc/led), [LongT5](../model_doc/longt5), [M2M100](../model_doc/m2m_100), [Marian](../model_doc/marian), [mBART](../model_doc/mbart), [MT5](../model_doc/mt5), [MVP](../model_doc/mvp), [NLLB](../model_doc/nllb), [NLLB-MOE](../model_doc/nllb-moe), [Pegasus](../model_doc/pegasus), [PEGASUS-X](../model_doc/pegasus_x), [PLBart](../model_doc/plbart), [ProphetNet](../model_doc/prophetnet), [SwitchTransformers](../model_doc/switch_transformers), [T5](../model_doc/t5), [XLM-ProphetNet](../model_doc/xlm-prophetnet) <!--End of the generated tip--> </Tip> 시작하기 전에 필요한 라이브러리가 모두 설치되어 있는지 확인하세요: ```bash pip install transformers datasets evaluate sacrebleu ``` 모델을 업로드하고 커뮤니티와 공유할 수 있도록 Hugging Face 계정에 로그인하는 것이 좋습니다. 새로운 창이 표시되면 토큰을 입력하여 로그인하세요. ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## OPUS Books 데이터세트 가져오기[[load-opus-books-dataset]] 먼저 🤗 Datasets 라이브러리에서 [OPUS Books](https://huggingface.co/datasets/opus_books) 데이터세트의 영어-프랑스어 하위 집합을 가져오세요. ```py >>> from datasets import load_dataset >>> books = load_dataset("opus_books", "en-fr") ``` 데이터세트를 [`~datasets.Dataset.train_test_split`] 메서드를 사용하여 훈련 및 테스트 데이터로 분할하세요. ```py >>> books = books["train"].train_test_split(test_size=0.2) ``` 훈련 데이터에서 예시를 살펴볼까요? ```py >>> books["train"][0] {'id': '90560', 'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.', 'fr': 'Mais ce plateau élevé ne mesurait que quelques toises, et bientôt nous fûmes rentrés dans notre élément.'}} ``` 반환된 딕셔너리의 `translation` 키가 텍스트의 영어, 프랑스어 버전을 포함하고 있는 것을 볼 수 있습니다. ## 전처리[[preprocess]] <Youtube id="XAR8jnZZuUs"/> 다음 단계로 영어-프랑스어 쌍을 처리하기 위해 T5 토크나이저를 가져오세요. ```py >>> from transformers import AutoTokenizer >>> checkpoint = "t5-small" >>> tokenizer = AutoTokenizer.from_pretrained(checkpoint) ``` 만들 전처리 함수는 아래 요구사항을 충족해야 합니다: 1. T5가 번역 태스크임을 인지할 수 있도록 입력 앞에 프롬프트를 추가하세요. 여러 NLP 태스크를 할 수 있는 모델 중 일부는 이렇게 태스크 프롬프트를 미리 줘야합니다. 2. 원어(영어)과 번역어(프랑스어)를 별도로 토큰화하세요. 영어 어휘로 사전 학습된 토크나이저로 프랑스어 텍스트를 토큰화할 수는 없기 때문입니다. 3. `max_length` 매개변수로 설정한 최대 길이보다 길지 않도록 시퀀스를 truncate하세요. ```py >>> source_lang = "en" >>> target_lang = "fr" >>> prefix = "translate English to French: " >>> def preprocess_function(examples): ... inputs = [prefix + example[source_lang] for example in examples["translation"]] ... targets = [example[target_lang] for example in examples["translation"]] ... model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True) ... return model_inputs ``` 전체 데이터세트에 전처리 함수를 적용하려면 🤗 Datasets의 [`~datasets.Dataset.map`] 메서드를 사용하세요. `map` 함수의 속도를 높이려면 `batched=True`를 설정하여 데이터세트의 여러 요소를 한 번에 처리하는 방법이 있습니다. ```py >>> tokenized_books = books.map(preprocess_function, batched=True) ``` 이제 [`DataCollatorForSeq2Seq`]를 사용하여 예제 배치를 생성합니다. 데이터세트의 최대 길이로 전부를 padding하는 대신, 데이터 정렬 중 각 배치의 최대 길이로 문장을 *동적으로 padding*하는 것이 더 효율적입니다. <frameworkcontent> <pt> ```py >>> from transformers import DataCollatorForSeq2Seq >>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint) ``` </pt> <tf> ```py >>> from transformers import DataCollatorForSeq2Seq >>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf") ``` </tf> </frameworkcontent> ## 평가[[evalulate]] 훈련 중에 메트릭을 포함하면 모델의 성능을 평가하는 데 도움이 됩니다. 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) 라이브러리로 평가 방법(evaluation method)을 빠르게 가져올 수 있습니다. 현재 태스크에 적합한 SacreBLEU 메트릭을 가져오세요. (메트릭을 가져오고 계산하는 방법에 대해 자세히 알아보려면 🤗 Evaluate [둘러보기](https://huggingface.co/docs/evaluate/a_quick_tour)를 참조하세요): ```py >>> import evaluate >>> metric = evaluate.load("sacrebleu") ``` 그런 다음 [`~evaluate.EvaluationModule.compute`]에 예측값과 레이블을 전달하여 SacreBLEU 점수를 계산하는 함수를 생성하세요: ```py >>> import numpy as np >>> def postprocess_text(preds, labels): ... preds = [pred.strip() for pred in preds] ... labels = [[label.strip()] for label in labels] ... return preds, labels >>> def compute_metrics(eval_preds): ... preds, labels = eval_preds ... if isinstance(preds, tuple): ... preds = preds[0] ... decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) ... labels = np.where(labels != -100, labels, tokenizer.pad_token_id) ... decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) ... decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) ... result = metric.compute(predictions=decoded_preds, references=decoded_labels) ... result = {"bleu": result["score"]} ... prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] ... result["gen_len"] = np.mean(prediction_lens) ... result = {k: round(v, 4) for k, v in result.items()} ... return result ``` 이제 `compute_metrics` 함수는 준비되었고, 훈련 과정을 설정할 때 다시 살펴볼 예정입니다. ## 훈련[[train]] <frameworkcontent> <pt> <Tip> [`Trainer`]로 모델을 파인튜닝하는 방법에 익숙하지 않다면 [여기](../training#train-with-pytorch-trainer)에서 기본 튜토리얼을 살펴보시기 바랍니다! </Tip> 모델을 훈련시킬 준비가 되었군요! [`AutoModelForSeq2SeqLM`]으로 T5를 로드하세요: ```py >>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer >>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) ``` 이제 세 단계만 거치면 끝입니다: 1. [`Seq2SeqTrainingArguments`]에서 훈련 하이퍼파라미터를 정의하세요. 유일한 필수 매개변수는 모델을 저장할 위치인 `output_dir`입니다. 모델을 Hub에 푸시하기 위해 `push_to_hub=True`로 설정하세요. (모델을 업로드하려면 Hugging Face에 로그인해야 합니다.) [`Trainer`]는 에폭이 끝날때마다 SacreBLEU 메트릭을 평가하고 훈련 체크포인트를 저장합니다. 2. [`Seq2SeqTrainer`]에 훈련 인수를 전달하세요. 모델, 데이터 세트, 토크나이저, data collator 및 `compute_metrics` 함수도 덩달아 전달해야 합니다. 3. [`~Trainer.train`]을 호출하여 모델을 파인튜닝하세요. ```py >>> training_args = Seq2SeqTrainingArguments( ... output_dir="my_awesome_opus_books_model", ... evaluation_strategy="epoch", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... weight_decay=0.01, ... save_total_limit=3, ... num_train_epochs=2, ... predict_with_generate=True, ... fp16=True, ... push_to_hub=True, ... ) >>> trainer = Seq2SeqTrainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_books["train"], ... eval_dataset=tokenized_books["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ```` 학습이 완료되면 [`~transformers.Trainer.push_to_hub`] 메서드로 모델을 Hub에 공유하세요. 이러면 누구나 모델을 사용할 수 있게 됩니다: ```py >>> trainer.push_to_hub() ``` </pt> <tf> <Tip> Keras로 모델을 파인튜닝하는 방법이 익숙하지 않다면, [여기](../training#train-a-tensorflow-model-with-keras)에서 기본 튜토리얼을 살펴보시기 바랍니다! </Tip> TensorFlow에서 모델을 파인튜닝하려면 우선 optimizer 함수, 학습률 스케줄 등의 훈련 하이퍼파라미터를 설정하세요: ```py >>> from transformers import AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` 이제 [`TFAutoModelForSeq2SeqLM`]로 T5를 가져오세요: ```py >>> from transformers import TFAutoModelForSeq2SeqLM >>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint) ``` [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]로 데이터 세트를 `tf.data.Dataset` 형식으로 변환하세요: ```py >>> tf_train_set = model.prepare_tf_dataset( ... tokenized_books["train"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = model.prepare_tf_dataset( ... tokenized_books["test"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` 훈련하기 위해 [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) 메서드로 모델을 구성하세요: ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` 훈련을 시작하기 전에 예측값으로부터 SacreBLEU 메트릭을 계산하는 방법과 모델을 Hub에 업로드하는 방법 두 가지를 미리 설정해둬야 합니다. 둘 다 [Keras callbacks](../main_classes/keras_callbacks)로 구현하세요. [`~transformers.KerasMetricCallback`]에 `compute_metrics` 함수를 전달하세요. ```py >>> from transformers.keras_callbacks import KerasMetricCallback >>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set) ``` 모델과 토크나이저를 업로드할 위치를 [`~transformers.PushToHubCallback`]에서 지정하세요: ```py >>> from transformers.keras_callbacks import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="my_awesome_opus_books_model", ... tokenizer=tokenizer, ... ) ``` 이제 콜백들을 한데로 묶어주세요: ```py >>> callbacks = [metric_callback, push_to_hub_callback] ``` 드디어 모델을 훈련시킬 모든 준비를 마쳤군요! 이제 훈련 및 검증 데이터 세트에 [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) 메서드를 에폭 수와 만들어둔 콜백과 함께 호출하여 모델을 파인튜닝하세요: ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks) ``` 학습이 완료되면 모델이 자동으로 Hub에 업로드되고, 누구나 사용할 수 있게 됩니다! </tf> </frameworkcontent> <Tip> 번역을 위해 모델을 파인튜닝하는 방법에 대한 보다 자세한 예제는 해당 [PyTorch 노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb) 또는 [TensorFlow 노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)을 참조하세요. </Tip> ## 추론[[inference]] 좋아요, 이제 모델을 파인튜닝했으니 추론에 사용할 수 있습니다! 다른 언어로 번역하고 싶은 텍스트를 써보세요. T5의 경우 원하는 태스크를 입력의 접두사로 추가해야 합니다. 예를 들어 영어에서 프랑스어로 번역하는 경우, 아래와 같은 접두사가 추가됩니다: ```py >>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria." ``` 파인튜닝된 모델로 추론하기에 제일 간단한 방법은 [`pipeline`]을 사용하는 것입니다. 해당 모델로 번역 `pipeline`을 만든 뒤, 텍스트를 전달하세요: ```py >>> from transformers import pipeline >>> translator = pipeline("translation", model="my_awesome_opus_books_model") >>> translator(text) [{'translation_text': 'Legumes partagent des ressources avec des bactéries azotantes.'}] ``` 원한다면 `pipeline`의 결과를 직접 복제할 수도 있습니다: <frameworkcontent> <pt> 텍스트를 토큰화하고 `input_ids`를 PyTorch 텐서로 반환하세요: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model") >>> inputs = tokenizer(text, return_tensors="pt").input_ids ``` [`~transformers.generation_utils.GenerationMixin.generate`] 메서드로 번역을 생성하세요. 다양한 텍스트 생성 전략 및 생성을 제어하기 위한 매개변수에 대한 자세한 내용은 [Text Generation](../main_classes/text_generation) API를 살펴보시기 바랍니다. ```py >>> from transformers import AutoModelForSeq2SeqLM >>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model") >>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) ``` 생성된 토큰 ID들을 다시 텍스트로 디코딩하세요: ```py >>> tokenizer.decode(outputs[0], skip_special_tokens=True) 'Les lignées partagent des ressources avec des bactéries enfixant l'azote.' ``` </pt> <tf> 텍스트를 토큰화하고 `input_ids`를 TensorFlow 텐서로 반환하세요: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model") >>> inputs = tokenizer(text, return_tensors="tf").input_ids ``` [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] 메서드로 번역을 생성하세요. 다양한 텍스트 생성 전략 및 생성을 제어하기 위한 매개변수에 대한 자세한 내용은 [Text Generation](../main_classes/text_generation) API를 살펴보시기 바랍니다. ```py >>> from transformers import TFAutoModelForSeq2SeqLM >>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model") >>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) ``` 생성된 토큰 ID들을 다시 텍스트로 디코딩하세요: ```py >>> tokenizer.decode(outputs[0], skip_special_tokens=True) 'Les lugumes partagent les ressources avec des bactéries fixatrices d'azote.' ``` </tf> </frameworkcontent>
transformers/docs/source/ko/tasks/translation.md/0
{ "file_path": "transformers/docs/source/ko/tasks/translation.md", "repo_id": "transformers", "token_count": 9726 }
259
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DeepSpeed集成 [DeepSpeed](https://github.com/microsoft/DeepSpeed)实现了[ZeRO论文](https://arxiv.org/abs/1910.02054)中描述的所有内容。目前,它提供对以下功能的全面支持: 1. 优化器状态分区(ZeRO stage 1) 2. 梯度分区(ZeRO stage 2) 3. 参数分区(ZeRO stage 3) 4. 自定义混合精度训练处理 5. 一系列基于CUDA扩展的快速优化器 6. ZeRO-Offload 到 CPU 和 NVMe ZeRO-Offload有其自己的专门论文:[ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840)。而NVMe支持在论文[ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857)中进行了描述。 DeepSpeed ZeRO-2主要用于训练,因为它的特性对推理没有用处。 DeepSpeed ZeRO-3也可以用于推理,因为它允许将单个GPU无法加载的大模型加载到多个GPU上。 🤗 Transformers通过以下两种方式集成了[DeepSpeed](https://github.com/microsoft/DeepSpeed): 1. 通过[`Trainer`]集成核心的DeepSpeed功能。这是一种“为您完成一切”式的集成 - 您只需提供自定义配置文件或使用我们的模板配置文件。本文档的大部分内容都集中在这个功能上。 2. 如果您不使用[`Trainer`]并希望在自己的Trainer中集成DeepSpeed,那么像`from_pretrained`和`from_config`这样的核心功能函数将包括ZeRO stage 3及以上的DeepSpeed的基础部分,如`zero.Init`。要利用此功能,请阅读有关[非Trainer DeepSpeed集成](#nontrainer-deepspeed-integration)的文档。 集成的内容: 训练: 1. DeepSpeed ZeRO训练支持完整的ZeRO stages 1、2和3,以及ZeRO-Infinity(CPU和NVMe offload)。 推理: 1. DeepSpeed ZeRO推理支持ZeRO stage 3和ZeRO-Infinity。它使用与训练相同的ZeRO协议,但不使用优化器和学习率调度器,只有stage 3与推理相关。更多详细信息请参阅:[zero-inference](#zero-inference)。 此外还有DeepSpeed推理 - 这是一种完全不同的技术,它使用张量并行而不是ZeRO(即将推出)。 <a id='deepspeed-trainer-integration'></a> ## Trainer DeepSpeed 集成 <a id='deepspeed-installation'></a> ### 安装 通过pypi安装库: ```bash pip install deepspeed ``` 或通过 `transformers` 的 `extras`安装: ```bash pip install transformers[deepspeed] ``` 或在 [DeepSpeed 的 GitHub 页面](https://github.com/microsoft/deepspeed#installation) 和 [高级安装](https://www.deepspeed.ai/tutorials/advanced-install/) 中查找更多详细信息。 如果构建过程中仍然遇到问题,请首先确保阅读 [CUDA 扩展安装注意事项](trainer#cuda-extension-installation-notes)。 如果您没有预先构建扩展而是在运行时构建它们,而且您尝试了以上所有解决方案都无效,下一步可以尝试在安装之前预先构建扩展。 进行 DeepSpeed 的本地构建: ```bash git clone https://github.com/microsoft/DeepSpeed/ cd DeepSpeed rm -rf build TORCH_CUDA_ARCH_LIST="8.6" DS_BUILD_CPU_ADAM=1 DS_BUILD_UTILS=1 pip install . \ --global-option="build_ext" --global-option="-j8" --no-cache -v \ --disable-pip-version-check 2>&1 | tee build.log ``` 如果您打算使用 NVMe offload,您还需要在上述说明中添加 `DS_BUILD_AIO=1`(并且还需要在系统范围内安装 *libaio-dev*)。 编辑 `TORCH_CUDA_ARCH_LIST` 以插入您打算使用的 GPU 卡的架构代码。假设您的所有卡都是相同的,您可以通过以下方式获取架构: ```bash CUDA_VISIBLE_DEVICES=0 python -c "import torch; print(torch.cuda.get_device_capability())" ``` 因此,如果您得到 `8, 6`,则使用 `TORCH_CUDA_ARCH_LIST="8.6"`。如果您有多个不同的卡,您可以像这样列出所有卡 `TORCH_CUDA_ARCH_LIST="6.1;8.6"`。 如果您需要在多台机器上使用相同的设置,请创建一个二进制 wheel: ```bash git clone https://github.com/microsoft/DeepSpeed/ cd DeepSpeed rm -rf build TORCH_CUDA_ARCH_LIST="8.6" DS_BUILD_CPU_ADAM=1 DS_BUILD_UTILS=1 \ python setup.py build_ext -j8 bdist_wheel ``` 它将生成类似于 `dist/deepspeed-0.3.13+8cd046f-cp38-cp38-linux_x86_64.whl` 的文件,现在您可以在本地或任何其他机器上安装它,如 `pip install deepspeed-0.3.13+8cd046f-cp38-cp38-linux_x86_64.whl`。 再次提醒确保调整 `TORCH_CUDA_ARCH_LIST` 以匹配目标架构。 您可以在[这里](https://developer.nvidia.com/cuda-gpus)找到完整的 NVIDIA GPU 列表及其对应的 **计算能力**(与此上下文中的架构相同)。 您可以使用以下命令检查 PyTorch 构建时使用的架构: ```bash python -c "import torch; print(torch.cuda.get_arch_list())" ``` 以下是如何查找已安装 GPU 中的一张卡的架构。例如,对于 GPU 0: ```bash CUDA_VISIBLE_DEVICES=0 python -c "import torch; \ print(torch.cuda.get_device_properties(torch.device('cuda')))" ``` 如果输出结果如下: ```bash _CudaDeviceProperties(name='GeForce RTX 3090', major=8, minor=6, total_memory=24268MB, multi_processor_count=82) ``` 然后您就知道这张卡的架构是 `8.6`。 您也可以完全省略 `TORCH_CUDA_ARCH_LIST`,然后构建程序将自动查询构建所在的 GPU 的架构。这可能与目标机器上的 GPU 不匹配,因此最好明确指定所需的架构。 如果尝试了所有建议的方法仍然遇到构建问题,请继续在 [Deepspeed](https://github.com/microsoft/DeepSpeed/issues)的 GitHub Issue 上提交问题。 <a id='deepspeed-multi-gpu'></a> ### 多GPU启用 为了启用DeepSpeed 集成,调整 [`Trainer`] 的命令行参数,添加一个新的参数 `--deepspeed ds_config.json`,其中 `ds_config.json` 是 DeepSpeed 配置文件,如文档 [这里](https://www.deepspeed.ai/docs/config-json/) 所述。文件命名由您决定。 建议使用 DeepSpeed 的 `add_config_arguments` 程序将必要的命令行参数添加到您的代码中。 有关更多信息,请参阅 [DeepSpeed 的参数解析](https://deepspeed.readthedocs.io/en/latest/initialize.html#argument-parsing) 文档。 在这里,您可以使用您喜欢的启动器。您可以继续使用 PyTorch 启动器: ```bash torch.distributed.run --nproc_per_node=2 your_program.py <normal cl args> --deepspeed ds_config.json ``` 或使用由 `deepspeed` 提供的启动器: ```bash deepspeed --num_gpus=2 your_program.py <normal cl args> --deepspeed ds_config.json ``` 正如您所见,这两个启动器的参数不同,但对于大多数需求,任何一个都可以满足工作需求。有关如何配置各个节点和 GPU 的完整详细信息,请查看 [此处](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node)。 当您使用 `deepspeed` 启动器并且希望使用所有可用的 GPU 时,您可以简单地省略 `--num_gpus` 标志。 以下是在 DeepSpeed 中启用使用所有可用 GPU情况下, 运行 `run_translation.py` 的示例: ```bash deepspeed examples/pytorch/translation/run_translation.py \ --deepspeed tests/deepspeed/ds_config_zero3.json \ --model_name_or_path t5-small --per_device_train_batch_size 1 \ --output_dir output_dir --overwrite_output_dir --fp16 \ --do_train --max_train_samples 500 --num_train_epochs 1 \ --dataset_name wmt16 --dataset_config "ro-en" \ --source_lang en --target_lang ro ``` 请注意,在 DeepSpeed 文档中,您可能会看到 `--deepspeed --deepspeed_config ds_config.json` - 即两个与 DeepSpeed 相关的参数,但为简单起见,并且因为已经有很多参数要处理,我们将两者合并为一个单一参数。 有关一些实际使用示例,请参阅 [此帖](https://github.com/huggingface/transformers/issues/8771#issuecomment-759248400)。 <a id='deepspeed-one-gpu'></a> ### 单GPU启用 要使用一张 GPU 启用 DeepSpeed,调整 [`Trainer`] 的命令行参数如下: ```bash deepspeed --num_gpus=1 examples/pytorch/translation/run_translation.py \ --deepspeed tests/deepspeed/ds_config_zero2.json \ --model_name_or_path t5-small --per_device_train_batch_size 1 \ --output_dir output_dir --overwrite_output_dir --fp16 \ --do_train --max_train_samples 500 --num_train_epochs 1 \ --dataset_name wmt16 --dataset_config "ro-en" \ --source_lang en --target_lang ro ``` 这与多 GPU 的情况几乎相同,但在这里我们通过 `--num_gpus=1` 明确告诉 DeepSpeed 仅使用一张 GPU。默认情况下,DeepSpeed 启用给定节点上可以看到的所有 GPU。如果您一开始只有一张 GPU,那么您不需要这个参数。以下 [文档](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node) 讨论了启动器的选项。 为什么要在仅使用一张 GPU 的情况下使用 DeepSpeed 呢? 1. 它具有 ZeRO-offload 功能,可以将一些计算和内存委托给主机的 CPU 和 内存,从而为模型的需求保留更多 GPU 资源 - 例如更大的批处理大小,或启用正常情况下无法容纳的非常大模型。 2. 它提供了智能的 GPU 内存管理系统,最小化内存碎片,这再次允许您容纳更大的模型和数据批次。 虽然接下来我们将详细讨论配置,但在单个 GPU 上通过 DeepSpeed 实现巨大性能提升的关键是在配置文件中至少有以下配置: ```json { "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "allgather_partitions": true, "allgather_bucket_size": 2e8, "reduce_scatter": true, "reduce_bucket_size": 2e8, "overlap_comm": true, "contiguous_gradients": true } } ``` 这会启用`optimizer offload `和一些其他重要功能。您可以尝试不同的buffer大小,有关详细信息,请参见下面的讨论。 关于这种启用类型的实际使用示例,请参阅 [此帖](https://github.com/huggingface/transformers/issues/8771#issuecomment-759176685)。 您还可以尝试使用本文后面进一步解释的支持`CPU 和 NVMe offload`功能的ZeRO-3 。 <!--- TODO: Benchmark whether we can get better performance out of ZeRO-3 vs. ZeRO-2 on a single GPU, and then recommend ZeRO-3 config as starting one. --> 注意: - 如果您需要在特定的 GPU 上运行,而不是 GPU 0,则无法使用 `CUDA_VISIBLE_DEVICES` 来限制可用 GPU 的可见范围。相反,您必须使用以下语法: ```bash deepspeed --include localhost:1 examples/pytorch/translation/run_translation.py ... ``` 在这个例子中,我们告诉 DeepSpeed 使用 GPU 1(第二个 GPU)。 <a id='deepspeed-multi-node'></a> ### 多节点启用 这一部分的信息不仅适用于 DeepSpeed 集成,也适用于任何多节点程序。但 DeepSpeed 提供了一个比其他启动器更易于使用的 `deepspeed` 启动器,除非您在 SLURM 环境中。 在本节,让我们假设您有两个节点,每个节点有 8 张 GPU。您可以通过 `ssh hostname1` 访问第一个节点,通过 `ssh hostname2` 访问第二个节点,两者必须能够在本地通过 ssh 无密码方式相互访问。当然,您需要将这些主机(节点)名称重命名为您实际使用的主机名称。 #### torch.distributed.run启动器 例如,要使用 `torch.distributed.run`,您可以执行以下操作: ```bash python -m torch.distributed.run --nproc_per_node=8 --nnode=2 --node_rank=0 --master_addr=hostname1 \ --master_port=9901 your_program.py <normal cl args> --deepspeed ds_config.json ``` 您必须 ssh 到每个节点,并在每个节点上运行相同的命令!不用担心,启动器会等待两个节点同步完成。 有关更多信息,请参阅 [torchrun](https://pytorch.org/docs/stable/elastic/run.html)。顺便说一下,这也是替代了几个 PyTorch 版本前的 `torch.distributed.launch` 的启动器。 #### deepspeed启动器 要改用 `deepspeed` 启动器,首先需要创建一个 `hostfile` 文件: ``` hostname1 slots=8 hostname2 slots=8 ``` 然后,您可以这样启动: ```bash deepspeed --num_gpus 8 --num_nodes 2 --hostfile hostfile --master_addr hostname1 --master_port=9901 \ your_program.py <normal cl args> --deepspeed ds_config.json ``` 与 `torch.distributed.run` 启动器不同,`deepspeed` 将自动在两个节点上启动此命令! 更多信息,请参阅[资源配置(多节点)](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node)。 #### 在 SLURM 环境中启动 在 SLURM 环境中,可以采用以下方法。以下是一个 SLURM 脚本 `launch.slurm`,您需要根据您的具体 SLURM 环境进行调整。 ```bash #SBATCH --job-name=test-nodes # name #SBATCH --nodes=2 # nodes #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! #SBATCH --cpus-per-task=10 # number of cores per tasks #SBATCH --gres=gpu:8 # number of gpus #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS) #SBATCH --output=%x-%j.out # output file name export GPUS_PER_NODE=8 export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) export MASTER_PORT=9901 srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ your_program.py <normal cl args> --deepspeed ds_config.json' ``` 剩下的就是运行它: ```bash sbatch launch.slurm ``` `srun` 将负责在所有节点上同时启动程序。 #### 使用非共享文件系统 默认情况下,DeepSpeed 假定多节点环境使用共享存储。如果不是这种情况,每个节点只能看到本地文件系统,你需要调整配置文件,包含一个 [`checkpoint` 部分](https://www.deepspeed.ai/docs/config-json/#checkpoint-options)并设置如下选项: ```json { "checkpoint": { "use_node_local_storage": true } } ``` 或者,你还可以使用 [`Trainer`] 的 `--save_on_each_node` 参数,上述配置将自动添加。 <a id='deepspeed-notebook'></a> ### 在Notebooks启用 在将`notebook cells`作为脚本运行的情况下,问题在于没有正常的 `deepspeed` 启动器可依赖,因此在某些设置下,我们必须仿真运行它。 如果您只使用一个 GPU,以下是如何调整notebook中的训练代码以使用 DeepSpeed。 ```python # DeepSpeed requires a distributed environment even when only one process is used. # This emulates a launcher in the notebook import os os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "9994" # modify if RuntimeError: Address already in use os.environ["RANK"] = "0" os.environ["LOCAL_RANK"] = "0" os.environ["WORLD_SIZE"] = "1" # Now proceed as normal, plus pass the deepspeed config file training_args = TrainingArguments(..., deepspeed="ds_config_zero3.json") trainer = Trainer(...) trainer.train() ``` 注意:`...` 代表您传递给函数的正常参数。 如果要使用多于一个 GPU,您必须在 DeepSpeed 中使用多进程环境。也就是说,您必须使用专门的启动器来实现这一目的,而不能通过仿真本节开头呈现的分布式环境来完成。 如果想要在notebook中动态创建配置文件并保存在当前目录,您可以在一个专用的cell中使用: ```python no-style %%bash cat <<'EOT' > ds_config_zero3.json { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } EOT ``` 如果训练脚本在一个普通文件中而不是在notebook cells中,您可以通过笔记本中的 shell 正常启动 `deepspeed`。例如,要使用 `run_translation.py`,您可以这样启动: ```python no-style !git clone https://github.com/huggingface/transformers !cd transformers; deepspeed examples/pytorch/translation/run_translation.py ... ``` 或者使用 `%%bash` 魔术命令,您可以编写多行代码,用于运行 shell 程序: ```python no-style %%bash git clone https://github.com/huggingface/transformers cd transformers deepspeed examples/pytorch/translation/run_translation.py ... ``` 在这种情况下,您不需要本节开头呈现的任何代码。 注意:虽然 `%%bash` 魔术命令很方便,但目前它会缓冲输出,因此在进程完成之前您看不到日志。 <a id='deepspeed-config'></a> ### 配置 有关可以在 DeepSpeed 配置文件中使用的完整配置选项的详细指南,请参阅[以下文档](https://www.deepspeed.ai/docs/config-json/)。 您可以在 [DeepSpeedExamples 仓库](https://github.com/microsoft/DeepSpeedExamples)中找到解决各种实际需求的数十个 DeepSpeed 配置示例。 ```bash git clone https://github.com/microsoft/DeepSpeedExamples cd DeepSpeedExamples find . -name '*json' ``` 延续上面的代码,假设您要配置 Lamb 优化器。那么您可以通过以下方式在示例的 `.json` 文件中进行搜索: ```bash grep -i Lamb $(find . -name '*json') ``` 还可以在[主仓](https://github.com/microsoft/DeepSpeed)中找到更多示例。 在使用 DeepSpeed 时,您总是需要提供一个 DeepSpeed 配置文件,但是一些配置参数必须通过命令行进行配置。您将在本指南的剩余章节找到这些细微差别。 为了了解 DeepSpeed 配置文件,这里有一个激活 ZeRO stage 2 功能的示例,包括优化器状态的 CPU offload,使用 `AdamW` 优化器和 `WarmupLR` 调度器,并且如果传递了 `--fp16` 参数将启用混合精度训练: ```json { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "allgather_partitions": true, "allgather_bucket_size": 2e8, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 2e8, "contiguous_gradients": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", } ``` 当您执行程序时,DeepSpeed 将把它从 [`Trainer`] 收到的配置日志输出到console,因此您可以看到传递给它的最终配置。 <a id='deepspeed-config-passing'></a> ### 传递配置 正如本文档讨论的那样,通常将 DeepSpeed 配置作为指向 JSON 文件的路径传递,但如果您没有使用命令行界面配置训练,而是通过 [`TrainingArguments`] 实例化 [`Trainer`],那么对于 `deepspeed` 参数,你可以传递一个嵌套的 `dict`。这使您能够即时创建配置,而无需在将其传递给 [`TrainingArguments`] 之前将其写入文件系统。 总结起来,您可以这样做: ```python TrainingArguments(..., deepspeed="/path/to/ds_config.json") ``` 或者: ```python ds_config_dict = dict(scheduler=scheduler_params, optimizer=optimizer_params) TrainingArguments(..., deepspeed=ds_config_dict) ``` <a id='deepspeed-config-shared'></a> ### 共享配置 <Tip warning={true}> 这一部分是必读的。 </Tip> 一些配置值对于 [`Trainer`] 和 DeepSpeed 正常运行都是必需的,因此,为了防止定义冲突及导致的难以检测的错误,我们选择通过 [`Trainer`] 命令行参数配置这些值。 此外,一些配置值是基于模型的配置自动派生的,因此,与其记住手动调整多个值,最好让 [`Trainer`] 为您做大部分配置。 因此,在本指南的其余部分,您将找到一个特殊的配置值:`auto`,当设置时将自动将参数替换为正确或最有效的值。请随意选择忽略此建议或显式设置该值,在这种情况下,请务必确保 [`Trainer`] 参数和 DeepSpeed 配置保持一致。例如,您是否使用相同的学习率、批量大小或梯度累积设置?如果这些不匹配,训练可能以非常难以检测的方式失败。请重视该警告。 还有一些参数是仅适用于 DeepSpeed 的,并且这些参数必须手动设置以适应您的需求。 在您自己的程序中,如果您想要作为主动修改 DeepSpeed 配置并以此配置 [`TrainingArguments`],您还可以使用以下方法。步骤如下: 1. 创建或加载要用作主配置的 DeepSpeed 配置 2. 根据这些参数值创建 [`TrainingArguments`] 对象 请注意,一些值,比如 `scheduler.params.total_num_steps`,是在 [`Trainer`] 的 `train` 过程中计算的,但当然您也可以自己计算这些值。 <a id='deepspeed-zero'></a> ### ZeRO [Zero Redundancy Optimizer (ZeRO)](https://www.deepspeed.ai/tutorials/zero/) 是 DeepSpeed 的工作核心。它支持3个不同级别(stages)的优化。Stage 1 对于扩展性来说不是很有趣,因此本文档重点关注Stage 2和Stage 3。Stage 3通过最新的 ZeRO-Infinity 进一步改进。你可以在 DeepSpeed 文档中找到更详细的信息。 配置文件的 `zero_optimization` 部分是最重要的部分([文档](https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training)),因为在这里您定义了要启用哪些 ZeRO stages 以及如何配置它们。您可以在 DeepSpeed 文档中找到每个参数的解释。 这一部分必须通过 DeepSpeed 配置文件单独配置 - [`Trainer`] 不提供相应的命令行参数。 注意:目前 DeepSpeed 不验证参数名称,因此如果您拼错了任何参数,它将使用拼写错误的参数的默认设置。您可以观察 DeepSpeed 引擎启动日志消息,看看它将使用哪些值。 <a id='deepspeed-zero2-config'></a> #### ZeRO-2 配置 以下是 ZeRO stage 2 的配置示例: ```json { "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "allgather_partitions": true, "allgather_bucket_size": 5e8, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 5e8, "contiguous_gradients": true } } ``` **性能调优:** - 启用 `offload_optimizer` 应该减少 GPU 内存使用(需要 `"stage": 2`)。 - `"overlap_comm": true` 通过增加 GPU 内存使用来降低all-reduce 的延迟。 `overlap_comm` 使用了 `allgather_bucket_size` 和 `reduce_bucket_size` 值的4.5倍。因此,如果它们设置为 `5e8`,这将需要一个9GB的内存占用(`5e8 x 2Bytes x 2 x 4.5`)。因此,如果您的 GPU 内存为8GB或更小,为了避免出现OOM错误,您需要将这些参数减小到约 `2e8`,这将需要3.6GB。如果您的 GPU 容量更大,当您开始遇到OOM时,你可能也需要这样做。 - 当减小这些buffers时,您以更慢的通信速度来换取更多的 GPU 内存。buffers大小越小,通信速度越慢,GPU 可用于其他任务的内存就越多。因此,如果更大的批处理大小很重要,那么稍微减慢训练时间可能是一个很好的权衡。 此外,`deepspeed==0.4.4` 添加了一个新选项 `round_robin_gradients`,您可以通过以下方式启用: ```json { "zero_optimization": { "round_robin_gradients": true } } ``` 这是一个用于 CPU offloading 的stage 2优化,通过细粒度梯度分区在 ranks 之间并行复制到 CPU 内存,从而实现了性能的提升。性能优势随着梯度累积步骤(在优化器步骤之间进行更多复制)或 GPU 数量(增加并行性)增加而增加。 <a id='deepspeed-zero3-config'></a> #### ZeRO-3 配置 以下是 ZeRO stage 3的配置示例: ```json { "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true } } ``` 如果您因为你的模型或激活值超过 GPU 内存而遇到OOM问题,并且您有未使用的 CPU 内存,可以通股票使用 `"device": "cpu"` 将优化器状态和参数卸载到 CPU 内存中,来解决这个限制。如果您不想卸载到 CPU 内存,可以在 `device` 条目中使用 `none` 代替 `cpu`。将优化器状态卸载到 NVMe 上会在后面进一步讨论。 通过将 `pin_memory` 设置为 `true` 启用固定内存。此功能会以减少可用于其他进程的内存为代价来提高吞吐量。固定内存被分配给特定请求它的进程,通常比普通 CPU 内存访问速度更快。 **性能调优:** - `stage3_max_live_parameters`: `1e9` - `stage3_max_reuse_distance`: `1e9` 如果遇到OOM问题,请减小 `stage3_max_live_parameters` 和 `stage3_max_reuse_distance`。它们对性能的影响应该很小,除非您正在进行激活值checkpointing。`1e9` 大约会消耗 ~2GB。内存由 `stage3_max_live_parameters` 和 `stage3_max_reuse_distance` 共享,所以它不是叠加的,而是总共2GB。 `stage3_max_live_parameters` 是在任何给定时间要在 GPU 上保留多少个完整参数的上限。"reuse distance" 是我们用来确定参数在将来何时会再次使用的度量标准,我们使用 `stage3_max_reuse_distance` 来决定是丢弃参数还是保留参数。如果一个参数在不久的将来(小于 `stage3_max_reuse_distance`)将被再次使用,那么我们将其保留以减少通信开销。这在启用激活值checkpoing时非常有用,其中我们以单层粒度进行前向重计算和反向传播,并希望在反向传播期间保留前向重计算中的参数。 以下配置值取决于模型的隐藏大小: - `reduce_bucket_size`: `hidden_size*hidden_size` - `stage3_prefetch_bucket_size`: `0.9 * hidden_size * hidden_size` - `stage3_param_persistence_threshold`: `10 * hidden_size` 因此,将这些值设置为 `auto`,[`Trainer`] 将自动分配推荐的参数值。当然,如果您愿意,也可以显式设置这些值。 `stage3_gather_16bit_weights_on_model_save` 在模型保存时启用模型的 fp16 权重整合。对于大模型和多个 GPU,无论是在内存还是速度方面,这都是一项昂贵的操作。目前如果计划恢复训练,这是必需的。请注意未来的更新可能会删除此限制并让使用更加灵活。 如果您从 ZeRO-2 配置迁移,请注意 `allgather_partitions`、`allgather_bucket_size` 和 `reduce_scatter` 配置参数在 ZeRO-3 中不被使用。如果保留这些配置文件,它们将被忽略。 - `sub_group_size`: `1e9` `sub_group_size` 控制在优化器步骤期间更新参数的粒度。参数被分组到大小为 `sub_group_size` 的桶中,每个桶逐个更新。在 ZeRO-Infinity 中与 NVMe offload一起使用时,`sub_group_size` 控制了在优化器步骤期间在 NVMe 和 CPU 内存之间移动模型状态的粒度。这可以防止非常大的模型耗尽 CPU 内存。 当不使用 NVMe offload时,可以将 `sub_group_size` 保留为其默认值 *1e9*。在以下情况下,您可能需要更改其默认值: 1. 在优化器步骤中遇到OOM:减小 `sub_group_size` 以减少临时buffers的内存利用 2. 优化器步骤花费很长时间:增加 `sub_group_size` 以提高由于增加的数据buffers而导致的带宽利用率。 #### ZeRO-0 配置 请注意,我们将 Stage 0 和 1 放在最后,因为它们很少使用。 Stage 0 禁用了所有类型的分片,只是将 DeepSpeed 作为 DDP 使用。您可以通过以下方式启用: ```json { "zero_optimization": { "stage": 0 } } ``` 这将实质上禁用 ZeRO,而无需更改其他任何内容。 #### ZeRO-1 配置 Stage 1 等同于 Stage 2 减去梯度分片。您可以尝试使用以下配置,仅对优化器状态进行分片,以稍微加速: ```json { "zero_optimization": { "stage": 1 } } ``` <a id='deepspeed-nvme'></a> ### NVMe 支持 ZeRO-Infinity 通过使用 NVMe 内存扩展 GPU 和 CPU 内存,从而允许训练非常大的模型。由于智能分区和平铺算法,在offload期间每个 GPU 需要发送和接收非常小量的数据,因此 NVMe 被证明适用于训练过程中提供更大的总内存池。ZeRO-Infinity 需要启用 ZeRO-3。 以下配置示例启用 NVMe 来offload优化器状态和参数: ```json { "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "nvme", "nvme_path": "/local_nvme", "pin_memory": true, "buffer_count": 4, "fast_init": false }, "offload_param": { "device": "nvme", "nvme_path": "/local_nvme", "pin_memory": true, "buffer_count": 5, "buffer_size": 1e8, "max_in_cpu": 1e9 }, "aio": { "block_size": 262144, "queue_depth": 32, "thread_count": 1, "single_submit": false, "overlap_events": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, } ``` 您可以选择将优化器状态和参数都卸载到 NVMe,也可以只选择其中一个,或者都不选择。例如,如果您有大量的 CPU 内存可用,只卸载到 CPU 内存训练速度会更快(提示:"device": "cpu")。 这是有关卸载 [优化器状态](https://www.deepspeed.ai/docs/config-json/#optimizer-offloading) 和 [参数](https://www.deepspeed.ai/docs/config-json/#parameter-offloading) 的完整文档。 确保您的 `nvme_path` 实际上是一个 NVMe,因为它与普通硬盘或 SSD 一起工作,但速度会慢得多。快速可扩展的训练是根据现代 NVMe 传输速度设计的(截至本文撰写时,可以达到 ~3.5GB/s 读取,~3GB/s 写入的峰值速度)。 为了找出最佳的 `aio` 配置块,您必须在目标设置上运行一个基准测试,具体操作请参见[说明](https://github.com/microsoft/DeepSpeed/issues/998)。 <a id='deepspeed-zero2-zero3-performance'></a> #### ZeRO-2 和 ZeRO-3 性能对比 如果其他一切都配置相同,ZeRO-3 可能比 ZeRO-2 慢,因为前者除了 ZeRO-2 的操作外,还必须收集模型权重。如果 ZeRO-2 满足您的需求,而且您不需要扩展到几个 GPU 以上,那么您可以选择继续使用它。重要的是要理解,ZeRO-3 以速度为代价实现了更高的可扩展性。 可以调整 ZeRO-3 配置使其性能接近 ZeRO-2: - 将 `stage3_param_persistence_threshold` 设置为一个非常大的数字 - 大于最大的参数,例如 `6 * hidden_size * hidden_size`。这将保留参数在 GPU 上。 - 关闭 `offload_params`,因为 ZeRO-2 没有这个选项。 即使不更改 `stage3_param_persistence_threshold`,仅将 `offload_params` 关闭,性能可能会显著提高。当然,这些更改将影响您可以训练的模型的大小。因此,这些更改可根据需求帮助您在可扩展性和速度之间进行权衡。 <a id='deepspeed-zero2-example'></a> #### ZeRO-2 示例 这是一个完整的 ZeRO-2 自动配置文件 `ds_config_zero2.json`: ```json { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "allgather_partitions": true, "allgather_bucket_size": 2e8, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 2e8, "contiguous_gradients": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } ``` 这是一个完整的手动设置的启用所有功能的 ZeRO-2 配置文件。主要是为了让您看到典型的参数值是什么样的,但我们强烈建议使用其中包含多个 `auto` 设置的配置文件。 ```json { "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": 3e-5, "betas": [0.8, 0.999], "eps": 1e-8, "weight_decay": 3e-7 } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 3e-5, "warmup_num_steps": 500 } }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "allgather_partitions": true, "allgather_bucket_size": 2e8, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 2e8, "contiguous_gradients": true }, "steps_per_print": 2000, "wall_clock_breakdown": false } ``` <a id='deepspeed-zero3-example'></a> #### ZeRO-3 示例 这是一个完整的 ZeRO-3 自动配置文件 `ds_config_zero3.json`: ```json { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } ``` 这是一个完整的 手动设置的启用所有功能的ZeRO-3 配置文件。主要是为了让您看到典型的参数值是什么样的,但我们强烈建议使用其中包含多个 `auto` 设置的配置文件。 ```json { "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": 3e-5, "betas": [0.8, 0.999], "eps": 1e-8, "weight_decay": 3e-7 } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 3e-5, "warmup_num_steps": 500 } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": 1e6, "stage3_prefetch_bucket_size": 0.94e6, "stage3_param_persistence_threshold": 1e4, "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, "steps_per_print": 2000, "wall_clock_breakdown": false } ``` #### 如何选择最佳性能的ZeRO Stage和 offloads 了解了这些不同stages后,现在您需要决定使用哪个stage。本节将尝试回答这个问题。 通常,以下规则适用: - 速度方面(左边比右边快) stage 0(DDP) > stage 1 > stage 2 > stage 2 + offload > stage 3 > stage3 + offload - GPU内存使用方面(右边比左边更节省GPU内存) stage 0(DDP) < stage 1 < stage 2 < stage 2 + offload < stage 3 < stage 3 + offload 所以,当您希望在尽量使用较少数量的GPU的同时获得最快的执行速度时,可以按照以下步骤进行。我们从最快的方法开始,如果遇到GPU内存溢出,然后切换到下一个速度较慢但使用的GPU内存更少的方法。以此类推。 首先,将批量大小设置为1(您始终可以使用梯度累积来获得任何所需的有效批量大小)。 1. 启用 `--gradient_checkpointing 1`(HF Trainer)或直接 `model.gradient_checkpointing_enable()` - 如果发生OOM(Out of Memory),则执行以下步骤。 2. 首先尝试 ZeRO stage 2。如果发生OOM,则执行以下步骤。 3. 尝试 ZeRO stage 2 + `offload_optimizer` - 如果发生OOM,则执行以下步骤。 4. 切换到 ZeRO stage 3 - 如果发生OOM,则执行以下步骤。 5. 启用 `offload_param` 到 `cpu` - 如果发生OOM,则执行以下步骤。 6. 启用 `offload_optimizer` 到 `cpu` - 如果发生OOM,则执行以下步骤。 7. 如果仍然无法适应批量大小为1,请首先检查各种默认值并尽可能降低它们。例如,如果使用 `generate` 并且不使用宽搜索束,将其缩小,因为它会占用大量内存。 8. 绝对要使用混合半精度而非fp32 - 在Ampere及更高的GPU上使用bf16,在旧的GPU体系结构上使用fp16。 9. 如果仍然发生OOM,可以添加更多硬件或启用ZeRO-Infinity - 即切换 `offload_param` 和 `offload_optimizer` 到 `nvme`。您需要确保它是非常快的NVMe。作为趣闻,我曾经能够在一个小型GPU上使用BLOOM-176B进行推理,使用了ZeRO-Infinity,尽管速度非常慢。但它奏效了! 当然,您也可以按相反的顺序进行这些步骤,从最节省GPU内存的配置开始,然后逐步反向进行,或者尝试进行二分法。 一旦您的批量大小为1不会导致OOM,就测量您的有效吞吐量。 接下来尝试将批量大小增加到尽可能大,因为批量大小越大,GPU的效率越高,特别是在它们乘法运算的矩阵很大时。 现在性能优化游戏开始了。您可以关闭一些offload特性,或者降低ZeRO stage,并增加/减少批量大小,再次测量有效吞吐量。反复尝试,直到满意为止。 不要花费太多时间,但如果您即将开始一个为期3个月的训练 - 请花几天时间找到吞吐量方面最有效的设置。这样您的训练成本将最低,而且您会更快地完成训练。在当前快节奏的机器学习世界中,如果您花费一个额外的月份来训练某样东西,你很可能会错过一个黄金机会。当然,这只是我分享的一种观察,我并不是在催促你。在开始训练BLOOM-176B之前,我花了2天时间进行这个过程,成功将吞吐量从90 TFLOPs提高到150 TFLOPs!这一努力为我们节省了一个多月的训练时间。 这些注释主要是为训练模式编写的,但它们在推理中也应该大部分适用。例如,在推理中,Gradient Checkpointing 是无用的,因为它只在训练过程中有用。此外,我们发现,如果你正在进行多GPU推理并且不使用 [DeepSpeed-Inference](https://www.deepspeed.ai/tutorials/inference-tutorial/),[Accelerate](https://huggingface.co/blog/bloom-inference-pytorch-scripts) 应该提供更优越的性能。 其他与性能相关的快速注释: - 如果您从头开始训练某个模型,请尽量确保张量的形状可以被16整除(例如隐藏层大小)。对于批量大小,至少尝试可被2整除。如果您想从GPU中挤取更高性能,还有一些硬件特定的[wave和tile量化](https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/)的可整除性。 ### Activation Checkpointing 或 Gradient Checkpointing Activation Checkpointing和Gradient Checkpointing是指相同方法的两个不同术语。这确实让人感到困惑,但事实就是这样。 Gradient Checkpointing允许通过牺牲速度来换取GPU内存,这要么使您能够克服GPU内存溢出,要么增加批量大小来获得更好的性能。 HF Transformers 模型对DeepSpeed的Activation Checkpointing一无所知,因此如果尝试在DeepSpeed配置文件中启用该功能,什么都不会发生。 因此,您有两种方法可以利用这个非常有益的功能: 1. 如果您想使用 HF Transformers 模型,你可以使用 `model.gradient_checkpointing_enable()` 或在 HF Trainer 中使用 `--gradient_checkpointing`,它会自动为您启用这个功能。在这里使用了 `torch.utils.checkpoint`。 2. 如果您编写自己的模型并希望使用DeepSpeed的Activation Checkpointing,可以使用[规定的API](https://deepspeed.readthedocs.io/en/latest/activation-checkpointing.html)。您还可以使用 HF Transformers 的模型代码,将 `torch.utils.checkpoint` 替换为 DeepSpeed 的API。后者更灵活,因为它允许您将前向激活值卸载到CPU内存,而不是重新计算它们。 ### Optimizer 和 Scheduler 只要你不启用 `offload_optimizer`,您可以混合使用DeepSpeed和HuggingFace的调度器和优化器,但有一个例外,即不要使用HuggingFace调度器和DeepSpeed优化器的组合: | Combos | HF Scheduler | DS Scheduler | |:-------------|:-------------|:-------------| | HF Optimizer | Yes | Yes | | DS Optimizer | No | Yes | 在启用 `offload_optimizer` 的情况下,可以使用非DeepSpeed优化器,只要该优化器具有CPU和GPU的实现(除了LAMB)。 <a id='deepspeed-optimizer'></a> #### Optimizer DeepSpeed的主要优化器包括Adam、AdamW、OneBitAdam和Lamb。这些优化器已经与ZeRO进行了彻底的测试,因此建议使用它们。然而,也可以导入`torch`中的其他优化器。完整的文档在[这里](https://www.deepspeed.ai/docs/config-json/#optimizer-parameters)。 如果在配置文件中不配置`optimizer`条目,[`Trainer`] 将自动将其设置为 `AdamW`,并使用提供的值或以下命令行参数的默认值:`--learning_rate`、`--adam_beta1`、`--adam_beta2`、`--adam_epsilon` 和 `--weight_decay`。 以下是`AdamW` 的自动配置示例: ```json { "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } } } ``` 请注意,命令行参数将设置配置文件中的值。这是为了有一个明确的值来源,并避免在不同地方设置学习率等值时难以找到的错误。命令行参数配置高于其他。被覆盖的值包括: - `lr` 的值为 `--learning_rate` - `betas` 的值为 `--adam_beta1 --adam_beta2` - `eps` 的值为 `--adam_epsilon` - `weight_decay` 的值为 `--weight_decay` 因此,请记住在命令行上调整共享的超参数。 您也可以显式地设置这些值: ```json { "optimizer": { "type": "AdamW", "params": { "lr": 0.001, "betas": [0.8, 0.999], "eps": 1e-8, "weight_decay": 3e-7 } } } ``` 但在这种情况下,您需要自己同步[`Trainer`]命令行参数和DeepSpeed配置。 如果您想使用上面未列出的其他优化器,您将不得不将其添加到顶层配置中。 ```json { "zero_allow_untested_optimizer": true } ``` 类似于 `AdamW`,您可以配置其他官方支持的优化器。只是记住这些可能有不同的配置值。例如,对于Adam,您可能需要将 `weight_decay` 设置在 `0.01` 左右。 此外,当与DeepSpeed的CPU Adam优化器一起使用时,offload的效果最好。如果您想在offload时使用不同的优化器,自 `deepspeed==0.8.3` 起,您还需要添加: ```json { "zero_force_ds_cpu_optimizer": false } ``` 到顶层配置中。 <a id='deepspeed-scheduler'></a> #### Scheduler DeepSpeed支持`LRRangeTest`、`OneCycle`、`WarmupLR`和`WarmupDecayLR`学习率调度器。完整文档在[这里](https://www.deepspeed.ai/docs/config-json/#scheduler-parameters)。 以下是🤗 Transformers 和 DeepSpeed 之间的调度器重叠部分: - 通过 `--lr_scheduler_type constant_with_warmup` 实现 `WarmupLR` - 通过 `--lr_scheduler_type linear` 实现 `WarmupDecayLR`。这也是 `--lr_scheduler_type` 的默认值,因此,如果不配置调度器,这将是默认配置的调度器。 如果在配置文件中不配置 `scheduler` 条目,[`Trainer`] 将使用 `--lr_scheduler_type`、`--learning_rate` 和 `--warmup_steps` 或 `--warmup_ratio` 的值来配置其🤗 Transformers 版本。 以下是 `WarmupLR` 的自动配置示例: ```json { "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } } } ``` 由于使用了 *"auto"*,[`Trainer`] 的参数将在配置文件中设置正确的值。这是为了有一个明确的值来源,并避免在不同地方设置学习率等值时难以找到的错误。命令行配置高于其他。被设置的值包括: - `warmup_min_lr` 的值为 `0`。 - `warmup_max_lr` 的值为 `--learning_rate`。 - `warmup_num_steps` 的值为 `--warmup_steps`(如果提供)。否则,将使用 `--warmup_ratio` 乘以训练步骤的数量,并四舍五入。 - `total_num_steps` 的值为 `--max_steps` 或者如果没有提供,将在运行时根据环境、数据集的大小和其他命令行参数(对于 `WarmupDecayLR` 来说需要)自动推导。 当然,您可以接管任何或所有的配置值,并自行设置这些值: ```json { "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 0.001, "warmup_num_steps": 1000 } } } ``` 但在这种情况下,您需要自己同步[`Trainer`]命令行参数和DeepSpeed配置。 例如,对于 `WarmupDecayLR`,您可以使用以下条目: ```json { "scheduler": { "type": "WarmupDecayLR", "params": { "last_batch_iteration": -1, "total_num_steps": "auto", "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } } } ``` 然后,`total_num_steps`、`warmup_max_lr`、`warmup_num_steps` 和 `total_num_steps` 将在加载时设置。 <a id='deepspeed-fp32'></a> ### fp32精度 DeepSpeed支持完整的fp32和fp16混合精度。 由于fp16混合精度具有更小的内存需求和更快的速度,唯一不使用它的时候是当您使用的模型在这种训练模式下表现不佳时。通常,当模型没有在fp16混合精度下进行预训练时(例如,bf16预训练模型经常出现这种情况),会出现这种情况。这样的模型可能会发生溢出或下溢,导致 `NaN` 损失。如果是这种情况,那么您将希望使用完整的fp32模式,通过显式禁用默认启用的fp16混合精度模式: ```json { "fp16": { "enabled": false, } } ``` 如果您使用基于Ampere架构的GPU,PyTorch版本1.7及更高版本将自动切换到使用更高效的tf32格式进行一些操作,但结果仍将以fp32格式呈现。有关详细信息和基准测试,请参见[TensorFloat-32(TF32) on Ampere devices](https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)。如果出于某种原因您不希望使用它,该文档包括有关如何禁用此自动转换的说明。 在🤗 Trainer中,你可以使用 `--tf32` 来启用它,或使用 `--tf32 0` 或 `--no_tf32` 来禁用它。默认情况下,使用PyTorch的默认设置。 <a id='deepspeed-amp'></a> ### 自动混合精度 您可以使用自动混合精度,可以选择使用类似 PyTorch AMP 的方式,也可以选择使用类似 Apex 的方式: ### fp16 要配置PyTorch AMP-like 的 fp16(float16) 模式,请设置: ```json { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 } } ``` 并且,[`Trainer`]将根据`args.fp16_backend`的值自动启用或禁用它。其余的配置值由您决定。 当传递`--fp16 --fp16_backend amp`或`--fp16_full_eval`命令行参数时,此模式将被启用。 您也可以显式地启用/禁用此模式: ```json { "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 } } ``` 但是之后您需要自己同步[`Trainer`]命令行参数和DeepSpeed配置。 以下是[相关文档](https://www.deepspeed.ai/docs/config-json/#fp16-training-options) ### bf16 如果需要使用bfloat16而不是fp16,那么可以使用以下配置部分: ```json { "bf16": { "enabled": "auto" } } ``` bf16具有与fp32相同的动态范围,因此不需要损失缩放。 当传递`--bf16`或`--bf16_full_eval`命令行参数时,启用此模式。 您还可以显式地启用/禁用此模式: ```json { "bf16": { "enabled": true } } ``` <Tip> 在`deepspeed==0.6.0`版本中,bf16支持是新的实验性功能。 如果您启用了bf16来进行[梯度累积](#gradient-accumulation),您需要意识到它会以bf16累积梯度,这可能不是您想要的,因为这种格式的低精度可能会导致lossy accumulation。 修复这个问题的工作正在努力进行,同时提供了使用更高精度的`dtype`(fp16或fp32)的选项。 </Tip> ### NCCL集合 在训练过程中,有两种数据类型:`dtype`和用于通信收集操作的`dtype`,如各种归约和收集/分散操作。 所有的gather/scatter操作都是在数据相同的`dtype`中执行的,所以如果您正在使用bf16的训练模式,那么它将在bf16中进行gather操作 - gather操作是非损失性的。 各种reduce操作可能会是非常损失性的,例如当梯度在多个gpu上平均时,如果通信是在fp16或bf16中进行的,那么结果可能是有损失性的 - 因为当在一个低精度中添加多个数字时,结果可能不是精确的。更糟糕的是,bf16比fp16具有更低的精度。通常,当平均梯度时,损失最小,这些梯度通常非常小。因此,对于半精度训练,默认情况下,fp16被用作reduction操作的默认值。但是,您可以完全控制这个功能,如果你选择的话,您可以添加一个小的开销,并确保reductions将使用fp32作为累积数据类型,只有当结果准备好时,它才会降级到您在训练中使用的半精度`dtype`。 要覆盖默认设置,您只需添加一个新的配置条目: ```json { "communication_data_type": "fp32" } ``` 根据这个信息,有效的值包括"fp16"、"bfp16"和"fp32"。 注意:在stage zero 3中,bf16通信数据类型存在一个bug,该问题已在`deepspeed==0.8.1`版本中得到修复。 ### apex 配置apex AMP-like模式: ```json "amp": { "enabled": "auto", "opt_level": "auto" } ``` 并且,[`Trainer`]将根据`args.fp16_backend`和`args.fp16_opt_level`的值自动配置它。 当传递`--fp16 --fp16_backend apex --fp16_opt_level 01`命令行参数时,此模式将被启用。 您还可以显式配置此模式: ```json { "amp": { "enabled": true, "opt_level": "O1" } } ``` 但是,您需要自己同步[`Trainer`]命令行参数和DeepSpeed配置。 这里是[文档](https://www.deepspeed.ai/docs/config-json/#automatic-mixed-precision-amp-training-options) <a id='deepspeed-bs'></a> ### Batch Size 配置batch size可以使用如下参数: ```json { "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto" } ``` 并且,[`Trainer`]将自动将`train_micro_batch_size_per_gpu`设置为`args.per_device_train_batch_size`的值,并将`train_batch_size`设置为`args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps`。 您也可以显式设置这些值: ```json { "train_batch_size": 12, "train_micro_batch_size_per_gpu": 4 } ``` 但是,您需要自己同步[`Trainer`]命令行参数和DeepSpeed配置。 <a id='deepspeed-grad-acc'></a> ### Gradient Accumulation 配置gradient accumulation设置如下: ```json { "gradient_accumulation_steps": "auto" } ``` 并且,[`Trainer`]将自动将其设置为`args.gradient_accumulation_steps`的值。 您也可以显式设置这个值: ```json { "gradient_accumulation_steps": 3 } ``` 但是,您需要自己同步[`Trainer`]命令行参数和DeepSpeed配置。 <a id='deepspeed-grad-clip'></a> ### Gradient Clipping 配置gradient clipping如下: ```json { "gradient_clipping": "auto" } ``` 并且,[`Trainer`]将自动将其设置为`args.max_grad_norm`的值。 您也可以显式设置这个值: ```json { "gradient_clipping": 1.0 } ``` 但是,您需要自己同步[`Trainer`]命令行参数和DeepSpeed配置。 <a id='deepspeed-weight-extraction'></a> ### 获取模型权重 只要您继续使用DeepSpeed进行训练和恢复,您就不需要担心任何事情。DeepSpeed在其自定义检查点优化器文件中存储fp32主权重,这些文件是`global_step*/*optim_states.pt`(这是glob模式),并保存在正常的checkpoint下。 **FP16权重:** 当模型保存在ZeRO-2下时,您最终会得到一个包含模型权重的普通`pytorch_model.bin`文件,但它们只是权重的fp16版本。 在ZeRO-3下,事情要复杂得多,因为模型权重分布在多个GPU上,因此需要`"stage3_gather_16bit_weights_on_model_save": true`才能让`Trainer`保存fp16版本的权重。如果这个设置是`False`,`pytorch_model.bin`将不会被创建。这是因为默认情况下,DeepSpeed的`state_dict`包含一个占位符而不是实际的权重。如果我们保存这个`state_dict`,就无法再加载它了。 ```json { "zero_optimization": { "stage3_gather_16bit_weights_on_model_save": true } } ``` **FP32权重:** 虽然fp16权重适合恢复训练,但如果您完成了模型的微调并希望将其上传到[models hub](https://huggingface.co/models)或传递给其他人,您很可能想要获取fp32权重。这最好不要在训练期间完成,因为这需要大量内存,因此最好在训练完成后离线进行。但是,如果需要并且有充足的空闲CPU内存,可以在相同的训练脚本中完成。以下部分将讨论这两种方法。 **实时FP32权重恢复:** 如果您的模型很大,并且在训练结束时几乎没有剩余的空闲CPU内存,这种方法可能不起作用。 如果您至少保存了一个检查点,并且想要使用最新的一个,可以按照以下步骤操作: ```python from transformers.trainer_utils import get_last_checkpoint from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint checkpoint_dir = get_last_checkpoint(trainer.args.output_dir) fp32_model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) ``` 如果您在使用`--load_best_model_at_end`类:*~transformers.TrainingArguments*参数(用于跟踪最佳 检查点),那么你可以首先显式地保存最终模型,然后再执行相同的操作: ```python from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint checkpoint_dir = os.path.join(trainer.args.output_dir, "checkpoint-final") trainer.deepspeed.save_checkpoint(checkpoint_dir) fp32_model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) ``` <Tip> 注意,一旦运行了`load_state_dict_from_zero_checkpoint`,该模型将不再可以在相同的应用程序的DeepSpeed上下文中使用。也就是说,您需要重新初始化deepspeed引擎,因为`model.load_state_dict(state_dict)`会从其中移除所有的DeepSpeed相关点。所以您只能训练结束时这样做。 </Tip> 当然,您不必使用类:*~transformers.Trainer*,您可以根据你的需求调整上面的示例。 如果您出于某种原因想要更多的优化,您也可以提取权重的fp32 `state_dict`并按照以下示例进行操作: ```python from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu model = model.cpu() model.load_state_dict(state_dict) ``` **离线FP32权重恢复:** DeepSpeed会创建一个特殊的转换脚本`zero_to_fp32.py`,并将其放置在checkpoint文件夹的顶层。使用此脚本,您可以在任何时候提取权重。该脚本是独立的,您不再需要配置文件或`Trainer`来执行提取操作。 假设您的checkpoint文件夹如下所示: ```bash $ ls -l output_dir/checkpoint-1/ -rw-rw-r-- 1 stas stas 1.4K Mar 27 20:42 config.json drwxrwxr-x 2 stas stas 4.0K Mar 25 19:52 global_step1/ -rw-rw-r-- 1 stas stas 12 Mar 27 13:16 latest -rw-rw-r-- 1 stas stas 827K Mar 27 20:42 optimizer.pt -rw-rw-r-- 1 stas stas 231M Mar 27 20:42 pytorch_model.bin -rw-rw-r-- 1 stas stas 623 Mar 27 20:42 scheduler.pt -rw-rw-r-- 1 stas stas 1.8K Mar 27 20:42 special_tokens_map.json -rw-rw-r-- 1 stas stas 774K Mar 27 20:42 spiece.model -rw-rw-r-- 1 stas stas 1.9K Mar 27 20:42 tokenizer_config.json -rw-rw-r-- 1 stas stas 339 Mar 27 20:42 trainer_state.json -rw-rw-r-- 1 stas stas 2.3K Mar 27 20:42 training_args.bin -rwxrw-r-- 1 stas stas 5.5K Mar 27 13:16 zero_to_fp32.py* ``` 在这个例子中,只有一个DeepSpeed检查点子文件夹*global_step1*。因此,要重构fp32权重,只需运行: ```bash python zero_to_fp32.py . pytorch_model.bin ``` 这就是它。`pytorch_model.bin`现在将包含从多个GPUs合并的完整的fp32模型权重。 该脚本将自动能够处理ZeRO-2或ZeRO-3 checkpoint。 `python zero_to_fp32.py -h`将为您提供使用细节。 该脚本将通过文件`latest`的内容自动发现deepspeed子文件夹,在当前示例中,它将包含`global_step1`。 注意:目前该脚本需要2倍于最终fp32模型权重的通用内存。 ### ZeRO-3 和 Infinity Nuances ZeRO-3与ZeRO-2有很大的不同,主要是因为它的参数分片功能。 ZeRO-Infinity进一步扩展了ZeRO-3,以支持NVMe内存和其他速度和可扩展性改进。 尽管所有努力都是为了在不需要对模型进行任何特殊更改的情况下就能正常运行,但在某些情况下,您可能需要以下信息。 #### 构建大模型 DeepSpeed/ZeRO-3可以处理参数量达到数万亿的模型,这些模型可能无法适应现有的内存。在这种情况下,如果您还是希望初始化更快地发生,可以使用*deepspeed.zero.Init()*上下文管理器(也是一个函数装饰器)来初始化模型,如下所示: ```python from transformers import T5ForConditionalGeneration, T5Config import deepspeed with deepspeed.zero.Init(): config = T5Config.from_pretrained("t5-small") model = T5ForConditionalGeneration(config) ``` 如您所见,这会为您随机初始化一个模型。 如果您想使用预训练模型,`model_class.from_pretrained`将在`is_deepspeed_zero3_enabled()`返回`True`的情况下激活此功能,目前这是通过传递的DeepSpeed配置文件中的ZeRO-3配置部分设置的。因此,在调用`from_pretrained`之前,您必须创建**TrainingArguments**对象。以下是可能的顺序示例: ```python from transformers import AutoModel, Trainer, TrainingArguments training_args = TrainingArguments(..., deepspeed=ds_config) model = AutoModel.from_pretrained("t5-small") trainer = Trainer(model=model, args=training_args, ...) ``` 如果您使用的是官方示例脚本,并且命令行参数中包含`--deepspeed ds_config.json`且启用了ZeRO-3配置,那么一切都已经为您准备好了,因为这是示例脚本的编写方式。 注意:如果模型的fp16权重无法适应单个GPU的内存,则必须使用此功能。 有关此方法和其他相关功能的完整详细信息,请参阅[构建大模型](https://deepspeed.readthedocs.io/en/latest/zero3.html#constructing-massive-models)。 此外,在加载fp16预训练模型时,您希望`from_pretrained`使用`torch_dtype=torch.float16`。详情请参见[from_pretrained-torch-dtype](#from_pretrained-torch-dtype)。 #### 参数收集 在多个GPU上使用ZeRO-3时,没有一个GPU拥有所有参数,除非它是当前执行层的参数。因此,如果您需要一次访问所有层的所有参数,有一个特定的方法可以实现。 您可能不需要它,但如果您需要,请参考[参数收集](https://deepspeed.readthedocs.io/en/latest/zero3.html#manual-parameter-coordination)。 然而,我们在多个地方确实使用了它,其中一个例子是在`from_pretrained`中加载预训练模型权重。我们一次加载一层,然后立即将其分区到所有参与的GPU上,因为对于非常大的模型,无法在一个GPU上一次性加载并将其分布到多个GPU上,因为内存限制。 此外,在ZeRO-3下,如果您编写自己的代码并遇到看起来像这样的模型参数权重: ```python tensor([1.0], device="cuda:0", dtype=torch.float16, requires_grad=True) ``` 强调`tensor([1.])`,或者如果您遇到一个错误,它说参数的大小是`1`,而不是某个更大的多维形状,这意味着参数被划分了,你看到的是一个ZeRO-3占位符。 <a id='deepspeed-zero-inference'></a> ### ZeRO 推理 "ZeRO 推断" 使用与 "ZeRO-3 训练" 相同的配置。您只需要去掉优化器和调度器部分。实际上,如果您希望与训练共享相同的配置文件,您可以将它们保留在配置文件中,它们只会被忽略。 您只需要传递通常的[`TrainingArguments`]参数。例如: ```bash deepspeed --num_gpus=2 your_program.py <normal cl args> --do_eval --deepspeed ds_config.json ``` 唯一的重要事情是您需要使用ZeRO-3配置,因为ZeRO-2对于推理没有任何优势,因为只有ZeRO-3才对参数进行分片,而ZeRO-1则对梯度和优化器状态进行分片。 以下是在DeepSpeed下运行`run_translation.py`启用所有可用GPU的示例: ```bash deepspeed examples/pytorch/translation/run_translation.py \ --deepspeed tests/deepspeed/ds_config_zero3.json \ --model_name_or_path t5-small --output_dir output_dir \ --do_eval --max_eval_samples 50 --warmup_steps 50 \ --max_source_length 128 --val_max_target_length 128 \ --overwrite_output_dir --per_device_eval_batch_size 4 \ --predict_with_generate --dataset_config "ro-en" --fp16 \ --source_lang en --target_lang ro --dataset_name wmt16 \ --source_prefix "translate English to Romanian: " ``` 由于在推理阶段,优化器状态和梯度不需要额外的大量内存,您应该能够将更大的批次和/或序列长度放到相同的硬件上。 此外,DeepSpeed目前正在开发一个名为Deepspeed-Inference的相关产品,它与ZeRO技术无关,而是使用张量并行来扩展无法适应单个GPU的模型。这是一个正在进行的工作,一旦该产品完成,我们将提供集成。 ### 内存要求 由于 DeepSpeed ZeRO 可以将内存卸载到 CPU(和 NVMe),该框架提供了一些工具,允许根据使用的 GPU 数量告知将需要多少 CPU 和 GPU 内存。 让我们估计在单个GPU上微调"bigscience/T0_3B"所需的内存: ```bash $ python -c 'from transformers import AutoModel; \ from deepspeed.runtime.zero.stage3 import estimate_zero3_model_states_mem_needs_all_live; \ model = AutoModel.from_pretrained("bigscience/T0_3B"); \ estimate_zero3_model_states_mem_needs_all_live(model, num_gpus_per_node=1, num_nodes=1)' [...] Estimated memory needed for params, optim states and gradients for a: HW: Setup with 1 node, 1 GPU per node. SW: Model with 2783M total params, 65M largest layer params. per CPU | per GPU | Options 70.00GB | 0.25GB | offload_param=cpu , offload_optimizer=cpu , zero_init=1 70.00GB | 0.25GB | offload_param=cpu , offload_optimizer=cpu , zero_init=0 62.23GB | 5.43GB | offload_param=none, offload_optimizer=cpu , zero_init=1 62.23GB | 5.43GB | offload_param=none, offload_optimizer=cpu , zero_init=0 0.37GB | 46.91GB | offload_param=none, offload_optimizer=none, zero_init=1 15.56GB | 46.91GB | offload_param=none, offload_optimizer=none, zero_init=0 ``` 因此,您可以将模型拟合在单个80GB的GPU上,不进行CPU offload,或者使用微小的8GB GPU,但需要约60GB的CPU内存。(请注意,这仅是参数、优化器状态和梯度所需的内存 - 您还需要为CUDA内核、激活值和临时变量分配更多的内存。) 然后,这是成本与速度的权衡。购买/租用较小的 GPU(或较少的 GPU,因为您可以使用多个 GPU 进行 Deepspeed ZeRO)。但这样会更慢,因此即使您不关心完成某项任务的速度,减速也直接影响 GPU 使用的持续时间,从而导致更大的成本。因此,请进行实验并比较哪种方法效果最好。 如果您有足够的GPU内存,请确保禁用CPU/NVMe卸载,因为这会使所有操作更快。 例如,让我们重复相同的操作,使用2个GPU: ```bash $ python -c 'from transformers import AutoModel; \ from deepspeed.runtime.zero.stage3 import estimate_zero3_model_states_mem_needs_all_live; \ model = AutoModel.from_pretrained("bigscience/T0_3B"); \ estimate_zero3_model_states_mem_needs_all_live(model, num_gpus_per_node=2, num_nodes=1)' [...] Estimated memory needed for params, optim states and gradients for a: HW: Setup with 1 node, 2 GPUs per node. SW: Model with 2783M total params, 65M largest layer params. per CPU | per GPU | Options 70.00GB | 0.25GB | offload_param=cpu , offload_optimizer=cpu , zero_init=1 70.00GB | 0.25GB | offload_param=cpu , offload_optimizer=cpu , zero_init=0 62.23GB | 2.84GB | offload_param=none, offload_optimizer=cpu , zero_init=1 62.23GB | 2.84GB | offload_param=none, offload_optimizer=cpu , zero_init=0 0.74GB | 23.58GB | offload_param=none, offload_optimizer=none, zero_init=1 31.11GB | 23.58GB | offload_param=none, offload_optimizer=none, zero_init=0 ``` 所以,您需要2个32GB或更高的GPU,且不进行CPU卸载。 如需了解更多信息,请参阅[内存估算器](https://deepspeed.readthedocs.io/en/latest/memory.html)。 ### 归档Issues 请按照以下步骤提交问题,以便我们能够迅速找到问题并帮助您解除工作阻塞。 在您的报告中,请始终包括以下内容: 1. 完整的Deepspeed配置文件 2. 如果使用了[`Trainer`],则包括命令行参数;如果自己编写了Trainer设置,则包括[`TrainingArguments`]参数。请不要导出[`TrainingArguments`],因为它有几十个与问题无关的条目。 3. 输出: ```bash python -c 'import torch; print(f"torch: {torch.__version__}")' python -c 'import transformers; print(f"transformers: {transformers.__version__}")' python -c 'import deepspeed; print(f"deepspeed: {deepspeed.__version__}")' ``` 4. 如果可能,请包含一个Google Colab notebook链接,我们可以使用它来重现问题。您可以使用这个[notebook](https://github.com/stas00/porting/blob/master/transformers/deepspeed/DeepSpeed_on_colab_CLI.ipynb)作为起点。 5. 除非不可能,否则请始终使用标准数据集,而不是自定义数据集。 6. 如果可能,尝试使用现有[示例](https://github.com/huggingface/transformers/tree/main/examples/pytorch)之一来重现问题。 需要考虑的因素: - Deepspeed通常不是问题的原因。 一些已提交的问题被证明与Deepspeed无关。也就是说,一旦将Deepspeed从设置中移除,问题仍然存在。 因此,如果问题明显与DeepSpeed相关,例如您可以看到有一个异常并且可以看到DeepSpeed模块涉及其中,请先重新测试没有DeepSpeed的设置。只有当问题仍然存在时,才向Deepspeed提供所有必需的细节。 - 如果您明确问题是在Deepspeed核心中而不是集成部分,请直接向[Deepspeed](https://github.com/microsoft/DeepSpeed/)提交问题。如果您不确定,请不要担心,无论使用哪个issue跟踪问题都可以,一旦您发布问题,我们会弄清楚并将其重定向到另一个issue跟踪(如果需要的话)。 ### Troubleshooting #### 启动时`deepspeed`进程被终止,没有回溯 如果启动时`deepspeed`进程被终止,没有回溯,这通常意味着程序尝试分配的CPU内存超过了系统的限制或进程被允许分配的内存,操作系统内核杀死了该进程。这是因为您的配置文件很可能将`offload_optimizer`或`offload_param`或两者都配置为卸载到`cpu`。如果您有NVMe,可以尝试在ZeRO-3下卸载到NVMe。这里是如何[估计特定模型所需的内存](https://deepspeed.readthedocs.io/en/latest/memory.html)。 #### 训练和/或评估/预测loss为`NaN` 这种情况通常发生在使用bf16混合精度模式预训练的模型试图在fp16(带或不带混合精度)下使用时。大多数在TPU上训练的模型以及由谷歌发布的模型都属于这个类别(例如,几乎所有基于t5的模型)。在这种情况下,解决方案是要么使用fp32,要么在支持的情况下使用bf16(如TPU、Ampere GPU或更新的版本)。 另一个问题可能与使用fp16有关。当您配置此部分时: ```json { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 } } ``` 并且您在日志中看到Deepspeed报告`OVERFLOW`如下 ``` 0%| | 0/189 [00:00<?, ?it/s] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 262144, reducing to 262144 1%|▌ | 1/189 [00:00<01:26, 2.17it/s] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 262144, reducing to 131072.0 1%|█▏ [...] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1 14%|████████████████▌ | 27/189 [00:14<01:13, 2.21it/s] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1 15%|█████████████████▏ | 28/189 [00:14<01:13, 2.18it/s] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1 15%|█████████████████▊ | 29/189 [00:15<01:13, 2.18it/s] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1 [...] ``` 这意味着Deepspeed损失缩放器无法找到一个克服损失溢出的缩放系数。 在这种情况下,通常需要提高`initial_scale_power`的值。将其设置为`"initial_scale_power": 32`通常会解决问题。 ### 注意事项 - 尽管 DeepSpeed 有一个可安装的 PyPI 包,但强烈建议从源代码安装它,以最好地匹配您的硬件,如果您需要启用某些功能,如 1-bit Adam,这些功能在 pypi 发行版中不可用。 - 您不必使用🤗 Transformers的 [`Trainer`] 来使用 DeepSpeed - 您可以使用任何模型与自己的训练器,您还需要根据 [DeepSpeed 集成说明](https://www.deepspeed.ai/getting-started/#writing-deepspeed-models) 调整后者。 ## Non-Trainer Deepspeed集成 当`Trainer`没有被使用时,`~integrations.HfDeepSpeedConfig`被用来将Deepspeed集成到huggingface的Transformers核心功能中。它唯一做的事情就是在`from_pretrained`调用期间处理Deepspeed ZeRO-3参数收集和将模型自动分割到多个GPU上。除此之外,您需要自己完成其他所有工作。 当使用`Trainer`时,所有事情都自动得到了处理。 当不使用`Trainer`时,为了高效地部署Deepspeed ZeRO-3,您必须在实例化模型之前实例化`~integrations.HfDeepSpeedConfig`对象并保持该对象活跃。 如果您正在使用Deepspeed ZeRO-1或ZeRO-2,您根本不需要使用`HfDeepSpeedConfig`。 以预训练模型为例: ```python from transformers.integrations import HfDeepSpeedConfig from transformers import AutoModel import deepspeed ds_config = {...} # deepspeed config object or path to the file # must run before instantiating the model to detect zero 3 dschf = HfDeepSpeedConfig(ds_config) # keep this object alive model = AutoModel.from_pretrained("gpt2") engine = deepspeed.initialize(model=model, config_params=ds_config, ...) ``` 或者以非预训练模型为例: ```python from transformers.integrations import HfDeepSpeedConfig from transformers import AutoModel, AutoConfig import deepspeed ds_config = {...} # deepspeed config object or path to the file # must run before instantiating the model to detect zero 3 dschf = HfDeepSpeedConfig(ds_config) # keep this object alive config = AutoConfig.from_pretrained("gpt2") model = AutoModel.from_config(config) engine = deepspeed.initialize(model=model, config_params=ds_config, ...) ``` 请注意,如果您没有使用[`Trainer`]集成,您完全需要自己动手。基本上遵循[Deepspeed](https://www.deepspeed.ai/)网站上的文档。同时,您必须显式配置配置文件 - 不能使用`"auto"`值,而必须放入实际值。 ## HfDeepSpeedConfig [[autodoc]] integrations.HfDeepSpeedConfig - all ### 自定义DeepSpeed ZeRO推理 以下是一个示例,演示了在无法将模型放入单个 GPU 时如果不使用[Trainer]进行 DeepSpeed ZeRO 推理 。该解决方案包括使用额外的 GPU 或/和将 GPU 内存卸载到 CPU 内存。 这里要理解的重要细微差别是,ZeRO的设计方式可以让您在不同的GPU上并行处理不同的输入。 这个例子有很多注释,并且是自文档化的。 请确保: 1. 如果您有足够的GPU内存(因为这会减慢速度),禁用CPU offload。 2. 如果您拥有Ampere架构或更新的GPU,启用bf16以加快速度。如果您没有这种硬件,只要不使用任何在bf16混合精度下预训练的模型(如大多数t5模型),就可以启用fp16。否则这些模型通常在fp16中溢出,您会看到输出无效结果。 ```python #!/usr/bin/env python # This script demonstrates how to use Deepspeed ZeRO in an inference mode when one can't fit a model # into a single GPU # # 1. Use 1 GPU with CPU offload # 2. Or use multiple GPUs instead # # First you need to install deepspeed: pip install deepspeed # # Here we use a 3B "bigscience/T0_3B" model which needs about 15GB GPU RAM - so 1 largish or 2 # small GPUs can handle it. or 1 small GPU and a lot of CPU memory. # # To use a larger model like "bigscience/T0" which needs about 50GB, unless you have an 80GB GPU - # you will need 2-4 gpus. And then you can adapt the script to handle more gpus if you want to # process multiple inputs at once. # # The provided deepspeed config also activates CPU memory offloading, so chances are that if you # have a lot of available CPU memory and you don't mind a slowdown you should be able to load a # model that doesn't normally fit into a single GPU. If you have enough GPU memory the program will # run faster if you don't want offload to CPU - so disable that section then. # # To deploy on 1 gpu: # # deepspeed --num_gpus 1 t0.py # or: # python -m torch.distributed.run --nproc_per_node=1 t0.py # # To deploy on 2 gpus: # # deepspeed --num_gpus 2 t0.py # or: # python -m torch.distributed.run --nproc_per_node=2 t0.py from transformers import AutoTokenizer, AutoConfig, AutoModelForSeq2SeqLM from transformers.integrations import HfDeepSpeedConfig import deepspeed import os import torch os.environ["TOKENIZERS_PARALLELISM"] = "false" # To avoid warnings about parallelism in tokenizers # distributed setup local_rank = int(os.getenv("LOCAL_RANK", "0")) world_size = int(os.getenv("WORLD_SIZE", "1")) torch.cuda.set_device(local_rank) deepspeed.init_distributed() model_name = "bigscience/T0_3B" config = AutoConfig.from_pretrained(model_name) model_hidden_size = config.d_model # batch size has to be divisible by world_size, but can be bigger than world_size train_batch_size = 1 * world_size # ds_config notes # # - enable bf16 if you use Ampere or higher GPU - this will run in mixed precision and will be # faster. # # - for older GPUs you can enable fp16, but it'll only work for non-bf16 pretrained models - e.g. # all official t5 models are bf16-pretrained # # - set offload_param.device to "none" or completely remove the `offload_param` section if you don't # - want CPU offload # # - if using `offload_param` you can manually finetune stage3_param_persistence_threshold to control # - which params should remain on gpus - the larger the value the smaller the offload size # # For in-depth info on Deepspeed config see # https://huggingface.co/docs/transformers/main/main_classes/deepspeed # keeping the same format as json for consistency, except it uses lower case for true/false # fmt: off ds_config = { "fp16": { "enabled": False }, "bf16": { "enabled": False }, "zero_optimization": { "stage": 3, "offload_param": { "device": "cpu", "pin_memory": True }, "overlap_comm": True, "contiguous_gradients": True, "reduce_bucket_size": model_hidden_size * model_hidden_size, "stage3_prefetch_bucket_size": 0.9 * model_hidden_size * model_hidden_size, "stage3_param_persistence_threshold": 10 * model_hidden_size }, "steps_per_print": 2000, "train_batch_size": train_batch_size, "train_micro_batch_size_per_gpu": 1, "wall_clock_breakdown": False } # fmt: on # next line instructs transformers to partition the model directly over multiple gpus using # deepspeed.zero.Init when model's `from_pretrained` method is called. # # **it has to be run before loading the model AutoModelForSeq2SeqLM.from_pretrained(model_name)** # # otherwise the model will first be loaded normally and only partitioned at forward time which is # less efficient and when there is little CPU RAM may fail dschf = HfDeepSpeedConfig(ds_config) # keep this object alive # now a model can be loaded. model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # initialise Deepspeed ZeRO and store only the engine object ds_engine = deepspeed.initialize(model=model, config_params=ds_config)[0] ds_engine.module.eval() # inference # Deepspeed ZeRO can process unrelated inputs on each GPU. So for 2 gpus you process 2 inputs at once. # If you use more GPUs adjust for more. # And of course if you have just one input to process you then need to pass the same string to both gpus # If you use only one GPU, then you will have only rank 0. rank = torch.distributed.get_rank() if rank == 0: text_in = "Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy" elif rank == 1: text_in = "Is this review positive or negative? Review: this is the worst restaurant ever" tokenizer = AutoTokenizer.from_pretrained(model_name) inputs = tokenizer.encode(text_in, return_tensors="pt").to(device=local_rank) with torch.no_grad(): outputs = ds_engine.module.generate(inputs, synced_gpus=True) text_out = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"rank{rank}:\n in={text_in}\n out={text_out}") ``` 让我们保存它为 `t0.py`并运行: ``` $ deepspeed --num_gpus 2 t0.py rank0: in=Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy out=Positive rank1: in=Is this review positive or negative? Review: this is the worst restaurant ever out=negative ``` 这是一个非常基本的例子,您需要根据自己的需求进行修改。 ### `generate` 的差异 在使用ZeRO stage 3的多GPU时,需要通过调用`generate(..., synced_gpus=True)`来同步GPU。如果一个GPU在其它GPU之前完成生成,整个系统将挂起,因为其他GPU无法从停止生成的GPU接收权重分片。 从`transformers>=4.28`开始,如果没有明确指定`synced_gpus`,检测到这些条件后它将自动设置为`True`。但如果您需要覆盖`synced_gpus`的值,仍然可以这样做。 ## 测试 DeepSpeed 集成 如果您提交了一个涉及DeepSpeed集成的PR,请注意我们的CircleCI PR CI设置没有GPU,因此我们只在另一个CI夜间运行需要GPU的测试。因此,如果您在PR中获得绿色的CI报告,并不意味着DeepSpeed测试通过。 要运行DeepSpeed测试,请至少运行以下命令: ``` RUN_SLOW=1 pytest tests/deepspeed/test_deepspeed.py ``` 如果你更改了任何模型或PyTorch示例代码,请同时运行多模型测试。以下将运行所有DeepSpeed测试: ``` RUN_SLOW=1 pytest tests/deepspeed ``` ## 主要的DeepSpeed资源 - [项目GitHub](https://github.com/microsoft/deepspeed) - [使用文档](https://www.deepspeed.ai/getting-started/) - [API文档](https://deepspeed.readthedocs.io/en/latest/index.html) - [博客文章](https://www.microsoft.com/en-us/research/search/?q=deepspeed) 论文: - [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054) - [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840) - [ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857) 最后,请记住,HuggingFace [`Trainer`]仅集成了DeepSpeed,因此如果您在使用DeepSpeed时遇到任何问题或疑问,请在[DeepSpeed GitHub](https://github.com/microsoft/DeepSpeed/issues)上提交一个issue。
transformers/docs/source/zh/main_classes/deepspeed.md/0
{ "file_path": "transformers/docs/source/zh/main_classes/deepspeed.md", "repo_id": "transformers", "token_count": 49096 }
260
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 用于推理的多语言模型 [[open-in-colab]] 🤗 Transformers 中有多种多语言模型,它们的推理用法与单语言模型不同。但是,并非*所有*的多语言模型用法都不同。一些模型,例如 [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) 就可以像单语言模型一样使用。本指南将向您展示如何使用不同用途的多语言模型进行推理。 ## XLM XLM 有十个不同的检查点,其中只有一个是单语言的。剩下的九个检查点可以归为两类:使用语言嵌入的检查点和不使用语言嵌入的检查点。 ### 带有语言嵌入的 XLM 以下 XLM 模型使用语言嵌入来指定推理中使用的语言: - `xlm-mlm-ende-1024` (掩码语言建模,英语-德语) - `xlm-mlm-enfr-1024` (掩码语言建模,英语-法语) - `xlm-mlm-enro-1024` (掩码语言建模,英语-罗马尼亚语) - `xlm-mlm-xnli15-1024` (掩码语言建模,XNLI 数据集语言) - `xlm-mlm-tlm-xnli15-1024` (掩码语言建模+翻译,XNLI 数据集语言) - `xlm-clm-enfr-1024` (因果语言建模,英语-法语) - `xlm-clm-ende-1024` (因果语言建模,英语-德语) 语言嵌入被表示一个张量,其形状与传递给模型的 `input_ids` 相同。这些张量中的值取决于所使用的语言,并由分词器的 `lang2id` 和 `id2lang` 属性识别。 在此示例中,加载 `xlm-clm-enfr-1024` 检查点(因果语言建模,英语-法语): ```py >>> import torch >>> from transformers import XLMTokenizer, XLMWithLMHeadModel >>> tokenizer = XLMTokenizer.from_pretrained("xlm-clm-enfr-1024") >>> model = XLMWithLMHeadModel.from_pretrained("xlm-clm-enfr-1024") ``` 分词器的 `lang2id` 属性显示了该模型的语言及其对应的id: ```py >>> print(tokenizer.lang2id) {'en': 0, 'fr': 1} ``` 接下来,创建一个示例输入: ```py >>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size 为 1 ``` 将语言 id 设置为 `"en"` 并用其定义语言嵌入。语言嵌入是一个用 `0` 填充的张量,这个张量应该与 `input_ids` 大小相同。 ```py >>> language_id = tokenizer.lang2id["en"] # 0 >>> langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0]) >>> # 我们将其 reshape 为 (batch_size, sequence_length) 大小 >>> langs = langs.view(1, -1) # 现在的形状是 [1, sequence_length] (我们的 batch size 为 1) ``` 现在,你可以将 `input_ids` 和语言嵌入传递给模型: ```py >>> outputs = model(input_ids, langs=langs) ``` [run_generation.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation/run_generation.py) 脚本可以使用 `xlm-clm` 检查点生成带有语言嵌入的文本。 ### 不带语言嵌入的 XLM 以下 XLM 模型在推理时不需要语言嵌入: - `xlm-mlm-17-1280` (掩码语言建模,支持 17 种语言) - `xlm-mlm-100-1280` (掩码语言建模,支持 100 种语言) 与之前的 XLM 检查点不同,这些模型用于通用句子表示。 ## BERT 以下 BERT 模型可用于多语言任务: - `bert-base-multilingual-uncased` (掩码语言建模 + 下一句预测,支持 102 种语言) - `bert-base-multilingual-cased` (掩码语言建模 + 下一句预测,支持 104 种语言) 这些模型在推理时不需要语言嵌入。它们应该能够从上下文中识别语言并进行相应的推理。 ## XLM-RoBERTa 以下 XLM-RoBERTa 模型可用于多语言任务: - `xlm-roberta-base` (掩码语言建模,支持 100 种语言) - `xlm-roberta-large` (掩码语言建模,支持 100 种语言) XLM-RoBERTa 使用 100 种语言的 2.5TB 新创建和清理的 CommonCrawl 数据进行了训练。与之前发布的 mBERT 或 XLM 等多语言模型相比,它在分类、序列标记和问答等下游任务上提供了更强大的优势。 ## M2M100 以下 M2M100 模型可用于多语言翻译: - `facebook/m2m100_418M` (翻译) - `facebook/m2m100_1.2B` (翻译) 在此示例中,加载 `facebook/m2m100_418M` 检查点以将中文翻译为英文。你可以在分词器中设置源语言: ```py >>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer >>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger." >>> chinese_text = "不要插手巫師的事務, 因為他們是微妙的, 很快就會發怒." >>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh") >>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") ``` 对文本进行分词: ```py >>> encoded_zh = tokenizer(chinese_text, return_tensors="pt") ``` M2M100 强制将目标语言 id 作为第一个生成的标记,以进行到目标语言的翻译。在 `generate` 方法中将 `forced_bos_token_id` 设置为 `en` 以翻译成英语: ```py >>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en")) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) 'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.' ``` ## MBart 以下 MBart 模型可用于多语言翻译: - `facebook/mbart-large-50-one-to-many-mmt` (一对多多语言机器翻译,支持 50 种语言) - `facebook/mbart-large-50-many-to-many-mmt` (多对多多语言机器翻译,支持 50 种语言) - `facebook/mbart-large-50-many-to-one-mmt` (多对一多语言机器翻译,支持 50 种语言) - `facebook/mbart-large-50` (多语言翻译,支持 50 种语言) - `facebook/mbart-large-cc25` 在此示例中,加载 `facebook/mbart-large-50-many-to-many-mmt` 检查点以将芬兰语翻译为英语。 你可以在分词器中设置源语言: ```py >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger." >>> fi_text = "Älä sekaannu velhojen asioihin, sillä ne ovat hienovaraisia ja nopeasti vihaisia." >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI") >>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") ``` 对文本进行分词: ```py >>> encoded_en = tokenizer(en_text, return_tensors="pt") ``` MBart 强制将目标语言 id 作为第一个生成的标记,以进行到目标语言的翻译。在 `generate` 方法中将 `forced_bos_token_id` 设置为 `en` 以翻译成英语: ```py >>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) "Don't interfere with the wizard's affairs, because they are subtle, will soon get angry." ``` 如果你使用的是 `facebook/mbart-large-50-many-to-one-mmt` 检查点,则无需强制目标语言 id 作为第一个生成的令牌,否则用法是相同的。
transformers/docs/source/zh/multilingual.md/0
{ "file_path": "transformers/docs/source/zh/multilingual.md", "repo_id": "transformers", "token_count": 4319 }
261
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Examples We host a wide range of example scripts for multiple learning frameworks. Simply choose your favorite: [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow), [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch) or [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax). We also have some [research projects](https://github.com/huggingface/transformers/tree/main/examples/research_projects), as well as some [legacy examples](https://github.com/huggingface/transformers/tree/main/examples/legacy). Note that unlike the main examples these are not actively maintained, and may require specific older versions of dependencies in order to run. While we strive to present as many use cases as possible, the example scripts are just that - examples. It is expected that they won't work out-of-the-box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs. To help you with that, most of the examples fully expose the preprocessing of the data, allowing you to tweak and edit them as required. Please discuss on the [forum](https://discuss.huggingface.co/) or in an [issue](https://github.com/huggingface/transformers/issues) a feature you would like to implement in an example before submitting a PR; we welcome bug fixes, but since we want to keep the examples as simple as possible it's unlikely that we will merge a pull request adding more functionality at the cost of readability. ## Important note **Important** To make sure you can successfully run the latest versions of the example scripts, you have to **install the library from source** and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/transformers cd transformers pip install . ``` Then cd in the example folder of your choice and run ```bash pip install -r requirements.txt ``` To browse the examples corresponding to released versions of 🤗 Transformers, click on the line below and then on your desired version of the library: <details> <summary>Examples for older versions of 🤗 Transformers</summary> <ul> <li><a href="https://github.com/huggingface/transformers/tree/v4.21.0/examples">v4.21.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.20.1/examples">v4.20.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.19.4/examples">v4.19.4</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.18.0/examples">v4.18.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.17.0/examples">v4.17.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.16.2/examples">v4.16.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.15.0/examples">v4.15.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.14.1/examples">v4.14.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.13.0/examples">v4.13.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.12.5/examples">v4.12.5</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.11.3/examples">v4.11.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.10.3/examples">v4.10.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.9.2/examples">v4.9.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.8.2/examples">v4.8.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.7.0/examples">v4.7.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.6.1/examples">v4.6.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li> </ul> </details> Alternatively, you can switch your cloned 🤗 Transformers to a specific version (for instance with v3.5.1) with ```bash git checkout tags/v3.5.1 ``` and run the example command as usual afterward. ## Running the Examples on Remote Hardware with Auto-Setup [run_on_remote.py](./run_on_remote.py) is a script that launches any example on remote self-hosted hardware, with automatic hardware and environment setup. It uses [Runhouse](https://github.com/run-house/runhouse) to launch on self-hosted hardware (e.g. in your own cloud account or on-premise cluster) but there are other options for running remotely as well. You can easily customize the example used, command line arguments, dependencies, and type of compute hardware, and then run the script to automatically launch the example. You can refer to [hardware setup](https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup) for more information about hardware and dependency setup with Runhouse, or this [Colab tutorial](https://colab.research.google.com/drive/1sh_aNQzJX5BKAdNeXthTNGxKz7sM9VPc) for a more in-depth walkthrough. You can run the script with the following commands: ```bash # First install runhouse: pip install runhouse # For an on-demand V100 with whichever cloud provider you have configured: python run_on_remote.py \ --example pytorch/text-generation/run_generation.py \ --model_type=gpt2 \ --model_name_or_path=gpt2 \ --prompt "I am a language model and" # For byo (bring your own) cluster: python run_on_remote.py --host <cluster_ip> --user <ssh_user> --key_path <ssh_key_path> \ --example <example> <args> # For on-demand instances python run_on_remote.py --instance <instance> --provider <provider> \ --example <example> <args> ``` You can also adapt the script to your own needs.
transformers/examples/README.md/0
{ "file_path": "transformers/examples/README.md", "repo_id": "transformers", "token_count": 3292 }
262
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for question answering. """ # You can also adapt this script on your own question answering task. Pointers for this are left as comments. import json import logging import math import os import random import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from pathlib import Path from typing import Any, Callable, Dict, Optional, Tuple import datasets import evaluate import jax import jax.numpy as jnp import numpy as np import optax from datasets import load_dataset from flax import struct, traverse_util from flax.jax_utils import pad_shard_unpad, replicate, unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard from huggingface_hub import Repository, create_repo from tqdm import tqdm from utils_qa import postprocess_qa_predictions import transformers from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, FlaxAutoModelForQuestionAnswering, HfArgumentParser, PreTrainedTokenizerFast, is_tensorboard_available, ) from transformers.utils import check_min_version, send_example_telemetry logger = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.38.0.dev0") Array = Any Dataset = datasets.arrow_dataset.Dataset PRNGKey = Any # region Arguments @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: int = field( default=384, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) version_2_with_negative: bool = field( default=False, metadata={"help": "If true, some of the examples do not have an answer."} ) null_score_diff_threshold: float = field( default=0.0, metadata={ "help": ( "The threshold used to select the null answer: if the best answer has a score that is less than " "the score of the null answer minus this threshold, the null answer is selected for this example. " "Only useful when `version_2_with_negative=True`." ) }, ) doc_stride: int = field( default=128, metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, ) n_best_size: int = field( default=20, metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, ) max_answer_length: int = field( default=30, metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) }, ) def __post_init__(self): if ( self.dataset_name is None and self.train_file is None and self.validation_file is None and self.test_file is None ): raise ValueError("Need either a dataset name or a training/validation file/test_file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if self.test_file is not None: extension = self.test_file.split(".")[-1] assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." # endregion # region Create a train state def create_train_state( model: FlaxAutoModelForQuestionAnswering, learning_rate_fn: Callable[[int], float], num_labels: int, training_args: TrainingArguments, ) -> train_state.TrainState: """Create initial training state.""" class TrainState(train_state.TrainState): """Train state with an Optax optimizer. The two functions below differ depending on whether the task is classification or regression. Args: logits_fn: Applied to last layer to obtain the logits. loss_fn: Function to compute the loss. """ logits_fn: Callable = struct.field(pytree_node=False) loss_fn: Callable = struct.field(pytree_node=False) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) tx = optax.adamw( learning_rate=learning_rate_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) def cross_entropy_loss(logits, labels): start_loss = optax.softmax_cross_entropy(logits[0], onehot(labels[0], num_classes=num_labels)) end_loss = optax.softmax_cross_entropy(logits[1], onehot(labels[1], num_classes=num_labels)) xentropy = (start_loss + end_loss) / 2.0 return jnp.mean(xentropy) return TrainState.create( apply_fn=model.__call__, params=model.params, tx=tx, logits_fn=lambda logits: logits, loss_fn=cross_entropy_loss, ) # endregion # region Create learning rate function def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.ndarray]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn # endregion # region train data iterator def train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int): """Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices.""" steps_per_epoch = len(dataset) // batch_size perms = jax.random.permutation(rng, len(dataset)) perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch. perms = perms.reshape((steps_per_epoch, batch_size)) for perm in perms: batch = dataset[perm] batch = {k: np.array(v) for k, v in batch.items()} batch = shard(batch) yield batch # endregion # region eval data iterator def eval_data_collator(dataset: Dataset, batch_size: int): """Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop.""" batch_idx = np.arange(len(dataset)) steps_per_epoch = math.ceil(len(dataset) / batch_size) batch_idx = np.array_split(batch_idx, steps_per_epoch) for idx in batch_idx: batch = dataset[idx] batch = {k: np.array(v) for k, v in batch.items()} yield batch # endregion def main(): # region Argument parsing # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_qa", model_args, data_args, framework="flax") # endregion # region Logging # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # endregion # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # region Load Data # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) else: # Loading the dataset from local csv or json file. data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] raw_datasets = load_dataset( extension, data_files=data_files, field="data", cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # endregion # region Load pretrained model and tokenizer # # Load pretrained model and tokenizer config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=True, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # endregion # region Tokenizer check: this script requires a fast tokenizer. if not isinstance(tokenizer, PreTrainedTokenizerFast): raise ValueError( "This example script only works for models that have a fast tokenizer. Checkout the big table of models at" " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet" " this requirement" ) # endregion # region Preprocessing the datasets # Preprocessing is slightly different for training and evaluation. if training_args.do_train: column_names = raw_datasets["train"].column_names elif training_args.do_eval: column_names = raw_datasets["validation"].column_names else: column_names = raw_datasets["test"].column_names question_column_name = "question" if "question" in column_names else column_names[0] context_column_name = "context" if "context" in column_names else column_names[1] answer_column_name = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). pad_on_right = tokenizer.padding_side == "right" if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the " f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Training preprocessing def prepare_train_features(examples): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The offset mappings will give us a map from token to character position in the original context. This will # help us compute the start_positions and end_positions. offset_mapping = tokenized_examples.pop("offset_mapping") # Let's label those examples! tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] for i, offsets in enumerate(offset_mapping): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] answers = examples[answer_column_name][sample_index] # If no answers are given, set the cls_index as answer. if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Start/end character index of the answer in the text. start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != (1 if pad_on_right else 0): token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != (1 if pad_on_right else 0): token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Otherwise move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: token_start_index += 1 tokenized_examples["start_positions"].append(token_start_index - 1) while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append(token_end_index + 1) return tokenized_examples processed_raw_datasets = {} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: # We will select sample from whole data if argument is specified max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) # Create train feature from dataset train_dataset = train_dataset.map( prepare_train_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.max_train_samples is not None: # Number of samples might increase during Feature Creation, We select only specified max samples max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) processed_raw_datasets["train"] = train_dataset # Validation preprocessing def prepare_validation_features(examples): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. tokenized_examples["example_id"] = [] for i in range(len(tokenized_examples["input_ids"])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) context_index = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. tokenized_examples["offset_mapping"][i] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_examples = raw_datasets["validation"] if data_args.max_eval_samples is not None: # We will select sample from whole data max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) eval_examples = eval_examples.select(range(max_eval_samples)) # Validation Feature Creation eval_dataset = eval_examples.map( prepare_validation_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.max_eval_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) processed_raw_datasets["validation"] = eval_dataset if training_args.do_predict: if "test" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_examples = raw_datasets["test"] if data_args.max_predict_samples is not None: # We will select sample from whole data predict_examples = predict_examples.select(range(data_args.max_predict_samples)) # Predict Feature Creation predict_dataset = predict_examples.map( prepare_validation_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.max_predict_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) processed_raw_datasets["test"] = predict_dataset # endregion # region Metrics and Post-processing: def post_processing_function(examples, features, predictions, stage="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. predictions = postprocess_qa_predictions( examples=examples, features=features, predictions=predictions, version_2_with_negative=data_args.version_2_with_negative, n_best_size=data_args.n_best_size, max_answer_length=data_args.max_answer_length, null_score_diff_threshold=data_args.null_score_diff_threshold, output_dir=training_args.output_dir, prefix=stage, ) # Format the result to the format the metric expects. if data_args.version_2_with_negative: formatted_predictions = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=formatted_predictions, label_ids=references) metric = evaluate.load( "squad_v2" if data_args.version_2_with_negative else "squad", cache_dir=model_args.cache_dir ) def compute_metrics(p: EvalPrediction): return metric.compute(predictions=p.predictions, references=p.label_ids) # Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor def create_and_fill_np_array(start_or_end_logits, dataset, max_len): """ Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor Args: start_or_end_logits(:obj:`tensor`): This is the output predictions of the model. We can only enter either start or end logits. eval_dataset: Evaluation dataset max_len(:obj:`int`): The maximum length of the output tensor. ( See the model.eval() part for more details ) """ step = 0 # create a numpy array and fill it with -100. logits_concat = np.full((len(dataset), max_len), -100, dtype=np.float64) # Now since we have create an array now we will populate it with the outputs of the model. for i, output_logit in enumerate(start_or_end_logits): # populate columns # We have to fill it such that we have to take the whole tensor and replace it on the newly created array # And after every iteration we have to change the step batch_size = output_logit.shape[0] cols = output_logit.shape[1] if step + batch_size < len(dataset): logits_concat[step : step + batch_size, :cols] = output_logit else: logits_concat[step:, :cols] = output_logit[: len(dataset) - step] step += batch_size return logits_concat # endregion # region Training steps and logging init train_dataset = processed_raw_datasets["train"] eval_dataset = processed_raw_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Define a summary writer has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(training_args.output_dir) summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)}) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) num_epochs = int(training_args.num_train_epochs) rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) train_batch_size = int(training_args.per_device_train_batch_size) * jax.local_device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.local_device_count() # endregion # region Load model model = FlaxAutoModelForQuestionAnswering.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), ) learning_rate_fn = create_learning_rate_fn( len(train_dataset), train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) state = create_train_state(model, learning_rate_fn, num_labels=max_seq_length, training_args=training_args) # endregion # region Define train step functions def train_step( state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey ) -> Tuple[train_state.TrainState, float]: """Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`.""" dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) start_positions = batch.pop("start_positions") end_positions = batch.pop("end_positions") targets = (start_positions, end_positions) def loss_fn(params): logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True) loss = state.loss_fn(logits, targets) return loss grad_fn = jax.value_and_grad(loss_fn) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch") return new_state, metrics, new_dropout_rng p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) # endregion # region Define eval step functions def eval_step(state, batch): logits = state.apply_fn(**batch, params=state.params, train=False) return state.logits_fn(logits) p_eval_step = jax.pmap(eval_step, axis_name="batch") # endregion # region Define train and eval loop logger.info(f"===== Starting training ({num_epochs} epochs) =====") train_time = 0 # make sure weights are replicated on each device state = replicate(state) train_time = 0 step_per_epoch = len(train_dataset) // train_batch_size total_steps = step_per_epoch * num_epochs epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) for epoch in epochs: train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # train for step, batch in enumerate( tqdm( train_data_collator(input_rng, train_dataset, train_batch_size), total=step_per_epoch, desc="Training...", position=1, ), 1, ): state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs) train_metrics.append(train_metric) cur_step = epoch * step_per_epoch + step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) train_metrics = [] if ( training_args.do_eval and (cur_step % training_args.eval_steps == 0 or cur_step % step_per_epoch == 0) and cur_step > 0 ): eval_metrics = {} all_start_logits = [] all_end_logits = [] # evaluate for batch in tqdm( eval_data_collator(eval_dataset, eval_batch_size), total=math.ceil(len(eval_dataset) / eval_batch_size), desc="Evaluating ...", position=2, ): _ = batch.pop("example_id") _ = batch.pop("offset_mapping") predictions = pad_shard_unpad(p_eval_step)( state, batch, min_device_batch=per_device_eval_batch_size ) start_logits = np.array(predictions[0]) end_logits = np.array(predictions[1]) all_start_logits.append(start_logits) all_end_logits.append(end_logits) max_len = max([x.shape[1] for x in all_start_logits]) # Get the max_length of the tensor # concatenate the numpy array start_logits_concat = create_and_fill_np_array(all_start_logits, eval_dataset, max_len) end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset, max_len) # delete the list of numpy arrays del all_start_logits del all_end_logits outputs_numpy = (start_logits_concat, end_logits_concat) prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy) eval_metrics = compute_metrics(prediction) logger.info(f"Step... ({cur_step}/{total_steps} | Evaluation metrics: {eval_metrics})") if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps): # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(unreplicate(state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}" # endregion # Eval after training if training_args.do_eval: eval_metrics = {} all_start_logits = [] all_end_logits = [] eval_loader = eval_data_collator(eval_dataset, eval_batch_size) for batch in tqdm( eval_loader, total=math.ceil(len(eval_dataset) / eval_batch_size), desc="Evaluating ...", position=2 ): _ = batch.pop("example_id") _ = batch.pop("offset_mapping") predictions = pad_shard_unpad(p_eval_step)(state, batch, min_device_batch=per_device_eval_batch_size) start_logits = np.array(predictions[0]) end_logits = np.array(predictions[1]) all_start_logits.append(start_logits) all_end_logits.append(end_logits) max_len = max([x.shape[1] for x in all_start_logits]) # Get the max_length of the tensor # concatenate the numpy array start_logits_concat = create_and_fill_np_array(all_start_logits, eval_dataset, max_len) end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset, max_len) # delete the list of numpy arrays del all_start_logits del all_end_logits outputs_numpy = (start_logits_concat, end_logits_concat) prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy) eval_metrics = compute_metrics(prediction) if jax.process_index() == 0: eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers/examples/flax/question-answering/run_qa.py/0
{ "file_path": "transformers/examples/flax/question-answering/run_qa.py", "repo_id": "transformers", "token_count": 20092 }
263
#### Fine-tuning BERT on SQuAD1.0 with relative position embeddings The following examples show how to fine-tune BERT models with different relative position embeddings. The BERT model `bert-base-uncased` was pretrained with default absolute position embeddings. We provide the following pretrained models which were pre-trained on the same training data (BooksCorpus and English Wikipedia) as in the BERT model training, but with different relative position embeddings. * `zhiheng-huang/bert-base-uncased-embedding-relative-key`, trained from scratch with relative embedding proposed by Shaw et al., [Self-Attention with Relative Position Representations](https://arxiv.org/abs/1803.02155) * `zhiheng-huang/bert-base-uncased-embedding-relative-key-query`, trained from scratch with relative embedding method 4 in Huang et al. [Improve Transformer Models with Better Relative Position Embeddings](https://arxiv.org/abs/2009.13658) * `zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query`, fine-tuned from model `bert-large-uncased-whole-word-masking` with 3 additional epochs with relative embedding method 4 in Huang et al. [Improve Transformer Models with Better Relative Position Embeddings](https://arxiv.org/abs/2009.13658) ##### Base models fine-tuning ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 ./examples/question-answering/run_squad.py \ --model_name_or_path zhiheng-huang/bert-base-uncased-embedding-relative-key-query \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 512 \ --doc_stride 128 \ --output_dir relative_squad \ --per_device_eval_batch_size=60 \ --per_device_train_batch_size=6 ``` Training with the above command leads to the following results. It boosts the BERT default from f1 score of 88.52 to 90.54. ```bash 'exact': 83.6802270577105, 'f1': 90.54772098174814 ``` The change of `max_seq_length` from 512 to 384 in the above command leads to the f1 score of 90.34. Replacing the above model `zhiheng-huang/bert-base-uncased-embedding-relative-key-query` with `zhiheng-huang/bert-base-uncased-embedding-relative-key` leads to the f1 score of 89.51. The changing of 8 gpus to one gpu training leads to the f1 score of 90.71. ##### Large models fine-tuning ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 ./examples/question-answering/run_squad.py \ --model_name_or_path zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 512 \ --doc_stride 128 \ --output_dir relative_squad \ --per_gpu_eval_batch_size=6 \ --per_gpu_train_batch_size=2 \ --gradient_accumulation_steps 3 ``` Training with the above command leads to the f1 score of 93.52, which is slightly better than the f1 score of 93.15 for `bert-large-uncased-whole-word-masking`. #### Distributed training Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD1.1: ```bash torchrun --nproc_per_node=8 ./examples/question-answering/run_squad.py \ --model_name_or_path bert-large-uncased-whole-word-masking \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./examples/models/wwm_uncased_finetuned_squad/ \ --per_device_eval_batch_size=3 \ --per_device_train_batch_size=3 \ ``` Training with the previously defined hyper-parameters yields the following results: ```bash f1 = 93.15 exact_match = 86.91 ``` This fine-tuned model is available as a checkpoint under the reference [`bert-large-uncased-whole-word-masking-finetuned-squad`](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad). ## Results Larger batch size may improve the performance while costing more memory. ##### Results for SQuAD1.0 with the previously defined hyper-parameters: ```python { "exact": 85.45884578997162, "f1": 92.5974600601065, "total": 10570, "HasAns_exact": 85.45884578997162, "HasAns_f1": 92.59746006010651, "HasAns_total": 10570 } ``` ##### Results for SQuAD2.0 with the previously defined hyper-parameters: ```python { "exact": 80.4177545691906, "f1": 84.07154997729623, "total": 11873, "HasAns_exact": 76.73751686909581, "HasAns_f1": 84.05558584352873, "HasAns_total": 5928, "NoAns_exact": 84.0874684608915, "NoAns_f1": 84.0874684608915, "NoAns_total": 5945 } ```
transformers/examples/legacy/question-answering/README.md/0
{ "file_path": "transformers/examples/legacy/question-answering/README.md", "repo_id": "transformers", "token_count": 1745 }
264
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from filelock import FileLock try: import nltk NLTK_AVAILABLE = True except (ImportError, ModuleNotFoundError): NLTK_AVAILABLE = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def add_newline_to_end_of_each_sentence(x: str) -> str: """This was added to get rougeLsum scores matching published rougeL scores for BART and PEGASUS.""" re.sub("<n>", "", x) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(x))
transformers/examples/legacy/seq2seq/sentence_splitter.py/0
{ "file_path": "transformers/examples/legacy/seq2seq/sentence_splitter.py", "repo_id": "transformers", "token_count": 403 }
265
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. python finetune_trainer.py \ --model_name_or_path=facebook/mbart-large-cc25 \ --data_dir $ENRO_DIR \ --output_dir mbart_cc25_enro --overwrite_output_dir \ --learning_rate=3e-5 \ --warmup_steps 500 \ --fp16 \ --label_smoothing 0.1 \ --adam_eps 1e-06 \ --src_lang en_XX --tgt_lang ro_RO \ --freeze_embeds \ --per_device_train_batch_size=4 --per_device_eval_batch_size=4 \ --max_source_length 128 --max_target_length 128 --val_max_target_length 128 --test_max_target_length 128\ --sortish_sampler \ --num_train_epochs 6 \ --save_steps 25000 --eval_steps 25000 --logging_steps 1000 \ --do_train --do_eval --do_predict \ --evaluation_strategy steps \ --predict_with_generate --logging_first_step \ --task translation \ "$@"
transformers/examples/legacy/seq2seq/train_mbart_cc25_enro.sh/0
{ "file_path": "transformers/examples/legacy/seq2seq/train_mbart_cc25_enro.sh", "repo_id": "transformers", "token_count": 501 }
266
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library's seq2seq models for question answering using the 🤗 Seq2SeqTrainer. """ # You can also adapt this script on your own question answering task. Pointers for this are left as comments. import logging import os import sys import warnings from dataclasses import dataclass, field from typing import List, Optional, Tuple import datasets import evaluate import numpy as np from datasets import load_dataset from trainer_seq2seq_qa import QuestionAnsweringSeq2SeqTrainer import transformers from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, DataCollatorForSeq2Seq, HfArgumentParser, Seq2SeqTrainingArguments, set_seed, ) from transformers.trainer_utils import EvalLoopOutput, EvalPrediction, get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.38.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt") logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) context_column: Optional[str] = field( default="context", metadata={"help": "The name of the column in the datasets containing the contexts (for question answering)."}, ) question_column: Optional[str] = field( default="question", metadata={"help": "The name of the column in the datasets containing the questions (for question answering)."}, ) answer_column: Optional[str] = field( default="answers", metadata={"help": "The name of the column in the datasets containing the answers (for question answering)."}, ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: int = field( default=384, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_answer_length: int = field( default=30, metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) }, ) val_max_answer_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. Will default to `max_answer_length`. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) pad_to_max_length: bool = field( default=True, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) version_2_with_negative: bool = field( default=False, metadata={"help": "If true, some of the examples do not have an answer."} ) null_score_diff_threshold: float = field( default=0.0, metadata={ "help": ( "The threshold used to select the null answer: if the best answer has a score that is less than " "the score of the null answer minus this threshold, the null answer is selected for this example. " "Only useful when `version_2_with_negative=True`." ) }, ) doc_stride: int = field( default=128, metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, ) n_best_size: int = field( default=20, metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, ) num_beams: Optional[int] = field( default=None, metadata={ "help": ( "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " "which is used during ``evaluate`` and ``predict``." ) }, ) ignore_pad_token_for_loss: bool = field( default=True, metadata={ "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." }, ) def __post_init__(self): if ( self.dataset_name is None and self.train_file is None and self.validation_file is None and self.test_file is None ): raise ValueError("Need either a dataset name or a training/validation file/test_file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if self.test_file is not None: extension = self.test_file.split(".")[-1] assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." if self.val_max_answer_length is None: self.val_max_answer_length = self.max_answer_length question_answering_column_name_mapping = { "squad_v2": ("question", "context", "answer"), } def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_seq2seq_qa", model_args, data_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] raw_datasets = load_dataset( extension, data_files=data_files, field="data", cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") # Preprocessing the datasets. # We need to generate and tokenize inputs and targets. if training_args.do_train: column_names = raw_datasets["train"].column_names elif training_args.do_eval: column_names = raw_datasets["validation"].column_names elif training_args.do_predict: column_names = raw_datasets["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return # Get the column names for input/target. dataset_columns = question_answering_column_name_mapping.get(data_args.dataset_name, None) if data_args.question_column is None: question_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: question_column = data_args.question_column if question_column not in column_names: raise ValueError( f"--question_column' value '{data_args.question_column}' needs to be one of: {', '.join(column_names)}" ) if data_args.context_column is None: context_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: context_column = data_args.context_column if context_column not in column_names: raise ValueError( f"--context_column' value '{data_args.context_column}' needs to be one of: {', '.join(column_names)}" ) if data_args.answer_column is None: answer_column = dataset_columns[2] if dataset_columns is not None else column_names[2] else: answer_column = data_args.answer_column if answer_column not in column_names: raise ValueError( f"--answer_column' value '{data_args.answer_column}' needs to be one of: {', '.join(column_names)}" ) # Temporarily set max_answer_length for training. max_answer_length = data_args.max_answer_length padding = "max_length" if data_args.pad_to_max_length else False if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): logger.warning( "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for " f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" ) if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the " f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_squad_batch( examples, question_column: str, context_column: str, answer_column: str, ) -> Tuple[List[str], List[str]]: questions = examples[question_column] contexts = examples[context_column] answers = examples[answer_column] def generate_input(_question, _context): return " ".join(["question:", _question.lstrip(), "context:", _context.lstrip()]) inputs = [generate_input(question, context) for question, context in zip(questions, contexts)] targets = [answer["text"][0] if len(answer["text"]) > 0 else "" for answer in answers] return inputs, targets def preprocess_function(examples): inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column) model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True) # Tokenize targets with text_target=... labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and data_args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs # Validation preprocessing def preprocess_validation_function(examples): inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column) model_inputs = tokenizer( inputs, max_length=max_seq_length, padding=padding, truncation=True, return_overflowing_tokens=True, return_offsets_mapping=True, ) # Tokenize targets with the `text_target` keyword argument labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and data_args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = model_inputs.pop("overflow_to_sample_mapping") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. model_inputs["example_id"] = [] # Augment the overflowing tokens to the labels labels_out = [] for i in range(len(model_inputs["input_ids"])): # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] model_inputs["example_id"].append(examples["id"][sample_index]) labels_out.append(labels["input_ids"][sample_index]) model_inputs["labels"] = labels_out return model_inputs if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: # We will select sample from whole data if argument is specified max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) # Create train feature from dataset with training_args.main_process_first(desc="train dataset map pre-processing"): train_dataset = train_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on train dataset", ) if data_args.max_train_samples is not None: # Number of samples might increase during Feature Creation, We select only specified max samples max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_examples = raw_datasets["validation"] if data_args.max_eval_samples is not None: # We will select sample from whole data max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) eval_examples = eval_examples.select(range(max_eval_samples)) # Validation Feature Creation with training_args.main_process_first(desc="validation dataset map pre-processing"): eval_dataset = eval_examples.map( preprocess_validation_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on validation dataset", ) if data_args.max_eval_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) if training_args.do_predict: if "test" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_examples = raw_datasets["test"] if data_args.max_predict_samples is not None: # We will select sample from whole data predict_examples = predict_examples.select(range(data_args.max_predict_samples)) # Predict Feature Creation with training_args.main_process_first(desc="prediction dataset map pre-processing"): predict_dataset = predict_examples.map( preprocess_validation_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on prediction dataset", ) if data_args.max_predict_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) # Data collator label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if training_args.fp16 else None, ) metric = evaluate.load( "squad_v2" if data_args.version_2_with_negative else "squad", cache_dir=model_args.cache_dir ) def compute_metrics(p: EvalPrediction): return metric.compute(predictions=p.predictions, references=p.label_ids) # Post-processing: def post_processing_function( examples: datasets.Dataset, features: datasets.Dataset, outputs: EvalLoopOutput, stage="eval" ): # Decode the predicted tokens. preds = outputs.predictions if isinstance(preds, tuple): preds = preds[0] # Replace -100s used for padding as we can't decode them preds = np.where(preds != -100, preds, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) # Build a map example to its corresponding features. example_id_to_index = {k: i for i, k in enumerate(examples["id"])} feature_per_example = {example_id_to_index[feature["example_id"]]: i for i, feature in enumerate(features)} predictions = {} # Let's loop over all the examples! for example_index, example in enumerate(examples): # This is the index of the feature associated to the current example. feature_index = feature_per_example[example_index] predictions[example["id"]] = decoded_preds[feature_index] # Format the result to the format the metric expects. if data_args.version_2_with_negative: formatted_predictions = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] references = [{"id": ex["id"], "answers": ex[answer_column]} for ex in examples] return EvalPrediction(predictions=formatted_predictions, label_ids=references) # Initialize our Trainer trainer = QuestionAnsweringSeq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, eval_examples=eval_examples if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics if training_args.predict_with_generate else None, post_process_function=post_processing_function, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} max_length = ( training_args.generation_max_length if training_args.generation_max_length is not None else data_args.val_max_answer_length ) num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval") max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Prediction if training_args.do_predict: logger.info("*** Predict ***") results = trainer.predict(predict_dataset, predict_examples) metrics = results.metrics max_predict_samples = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) ) metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) trainer.log_metrics("predict", metrics) trainer.save_metrics("predict", metrics) if training_args.push_to_hub: kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name trainer.push_to_hub(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/pytorch/question-answering/run_seq2seq_qa.py/0
{ "file_path": "transformers/examples/pytorch/question-answering/run_seq2seq_qa.py", "repo_id": "transformers", "token_count": 13528 }
267
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> ## Summarization This directory contains examples for finetuning and evaluating transformers on summarization tasks. Please tag @patil-suraj with any issues/unexpected behaviors, or send a PR! For deprecated `bertabs` instructions, see [`bertabs/README.md`](https://github.com/huggingface/transformers/blob/main/examples/research_projects/bertabs/README.md). For the old `finetune_trainer.py` and related utils, see [`examples/legacy/seq2seq`](https://github.com/huggingface/transformers/blob/main/examples/legacy/seq2seq). ### Supported Architectures - `BartForConditionalGeneration` - `FSMTForConditionalGeneration` (translation only) - `MBartForConditionalGeneration` - `MarianMTModel` - `PegasusForConditionalGeneration` - `T5ForConditionalGeneration` - `MT5ForConditionalGeneration` `run_summarization.py` is a lightweight example of how to download and preprocess a dataset from the [🤗 Datasets](https://github.com/huggingface/datasets) library or use your own files (jsonlines or csv), then fine-tune one of the architectures above on it. For custom datasets in `jsonlines` format please see: https://huggingface.co/docs/datasets/loading_datasets#json-files and you also will find examples of these below. ## With Trainer Here is an example on a summarization task: ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` Only T5 models `t5-small`, `t5-base`, `t5-large`, `t5-3b` and `t5-11b` must use an additional argument: `--source_prefix "summarize: "`. We used CNN/DailyMail dataset in this example as `t5-small` was trained on it and one can get good scores even when pre-training with a very small sample. Extreme Summarization (XSum) Dataset is another commonly used dataset for the task of summarization. To use it replace `--dataset_name cnn_dailymail --dataset_config "3.0.0"` with `--dataset_name xsum`. And here is how you would use it on your own files, after adjusting the values for the arguments `--train_file`, `--validation_file`, `--text_column` and `--summary_column` to match your setup: ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path t5-small \ --do_train \ --do_eval \ --train_file path_to_csv_or_jsonlines_file \ --validation_file path_to_csv_or_jsonlines_file \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --overwrite_output_dir \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --predict_with_generate ``` The task of summarization supports custom CSV and JSONLINES formats. #### Custom CSV Files If it's a csv file the training and validation files should have a column for the inputs texts and a column for the summaries. If the csv file has just two columns as in the following example: ```csv text,summary "I'm sitting here in a boring room. It's just another rainy Sunday afternoon. I'm wasting my time I got nothing to do. I'm hanging around I'm waiting for you. But nothing ever happens. And I wonder","I'm sitting in a room where I'm waiting for something to happen" "I see trees so green, red roses too. I see them bloom for me and you. And I think to myself what a wonderful world. I see skies so blue and clouds so white. The bright blessed day, the dark sacred night. And I think to myself what a wonderful world.","I'm a gardener and I'm a big fan of flowers." "Christmas time is here. Happiness and cheer. Fun for all that children call. Their favorite time of the year. Snowflakes in the air. Carols everywhere. Olden times and ancient rhymes. Of love and dreams to share","It's that time of year again." ``` The first column is assumed to be for `text` and the second is for summary. If the csv file has multiple columns, you can then specify the names of the columns to use: ```bash --text_column text_column_name \ --summary_column summary_column_name \ ``` For example if the columns were: ```csv id,date,text,summary ``` and you wanted to select only `text` and `summary`, then you'd pass these additional arguments: ```bash --text_column text \ --summary_column summary \ ``` #### Custom JSONLINES Files The second supported format is jsonlines. Here is an example of a jsonlines custom data file. ```json {"text": "I'm sitting here in a boring room. It's just another rainy Sunday afternoon. I'm wasting my time I got nothing to do. I'm hanging around I'm waiting for you. But nothing ever happens. And I wonder", "summary": "I'm sitting in a room where I'm waiting for something to happen"} {"text": "I see trees so green, red roses too. I see them bloom for me and you. And I think to myself what a wonderful world. I see skies so blue and clouds so white. The bright blessed day, the dark sacred night. And I think to myself what a wonderful world.", "summary": "I'm a gardener and I'm a big fan of flowers."} {"text": "Christmas time is here. Happiness and cheer. Fun for all that children call. Their favorite time of the year. Snowflakes in the air. Carols everywhere. Olden times and ancient rhymes. Of love and dreams to share", "summary": "It's that time of year again."} ``` Same as with the CSV files, by default the first value will be used as the text record and the second as the summary record. Therefore you can use any key names for the entries, in this example `text` and `summary` were used. And as with the CSV files, you can specify which values to select from the file, by explicitly specifying the corresponding key names. In our example this again would be: ```bash --text_column text \ --summary_column summary \ ``` ## With Accelerate Based on the script [`run_summarization_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/run_summarization_no_trainer.py). Like `run_summarization.py`, this script allows you to fine-tune any of the models supported on a summarization task, the main difference is that this script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like. It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer or the dataloaders directly in the script) but still run in a distributed setup, on TPU and supports mixed precision by the mean of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` then ```bash python run_summarization_no_trainer.py \ --model_name_or_path t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir ~/tmp/tst-summarization ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash accelerate launch run_summarization_no_trainer.py \ --model_name_or_path t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir ~/tmp/tst-summarization ``` This command is the same and will work for: - a CPU-only setup - a setup with one GPU - a distributed training with several GPUs (single or multi node) - a training on TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.
transformers/examples/pytorch/summarization/README.md/0
{ "file_path": "transformers/examples/pytorch/summarization/README.md", "repo_id": "transformers", "token_count": 2586 }
268
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Token classification ## PyTorch version Fine-tuning the library models for token classification task such as Named Entity Recognition (NER), Parts-of-speech tagging (POS) or phrase extraction (CHUNKS). The main scrip `run_ner.py` leverages the 🤗 Datasets library and the Trainer API. You can easily customize it to your needs if you need extra processing on your datasets. It will either run on a datasets hosted on our [hub](https://huggingface.co/datasets) or with your own text files for training and validation, you might just need to add some tweaks in the data preprocessing. The following example fine-tunes BERT on CoNLL-2003: ```bash python run_ner.py \ --model_name_or_path bert-base-uncased \ --dataset_name conll2003 \ --output_dir /tmp/test-ner \ --do_train \ --do_eval ``` or just can just run the bash script `run.sh`. To run on your own training and validation files, use the following command: ```bash python run_ner.py \ --model_name_or_path bert-base-uncased \ --train_file path_to_train_file \ --validation_file path_to_validation_file \ --output_dir /tmp/test-ner \ --do_train \ --do_eval ``` **Note:** This script only works with models that have a fast tokenizer (backed by the 🤗 Tokenizers library) as it uses special features of those tokenizers. You can check if your favorite model has a fast tokenizer in [this table](https://huggingface.co/transformers/index.html#supported-frameworks), if it doesn't you can still use the old version of the script. > If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it. ## Old version of the script You can find the old version of the PyTorch script [here](https://github.com/huggingface/transformers/blob/main/examples/legacy/token-classification/run_ner.py). ## Pytorch version, no Trainer Based on the script [run_ner_no_trainer.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/token-classification/run_ner_no_trainer.py). Like `run_ner.py`, this script allows you to fine-tune any of the models on the [hub](https://huggingface.co/models) on a token classification task, either NER, POS or CHUNKS tasks or your own data in a csv or a JSON file. The main difference is that this script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like. It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer or the dataloaders directly in the script) but still run in a distributed setup, on TPU and supports mixed precision by the mean of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` then ```bash export TASK_NAME=ner python run_ner_no_trainer.py \ --model_name_or_path bert-base-cased \ --dataset_name conll2003 \ --task_name $TASK_NAME \ --max_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash export TASK_NAME=ner accelerate launch run_ner_no_trainer.py \ --model_name_or_path bert-base-cased \ --dataset_name conll2003 \ --task_name $TASK_NAME \ --max_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` This command is the same and will work for: - a CPU-only setup - a setup with one GPU - a distributed training with several GPUs (single or multi node) - a training on TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.
transformers/examples/pytorch/token-classification/README.md/0
{ "file_path": "transformers/examples/pytorch/token-classification/README.md", "repo_id": "transformers", "token_count": 1430 }
269
# Patience-based Early Exit Patience-based Early Exit (PABEE) is a plug-and-play inference method for pretrained language models. We have already implemented it on BERT and ALBERT. Basically, you can make your LM faster and more robust with PABEE. It can even improve the performance of ALBERT on GLUE. The only sacrifice is that the batch size can only be 1. Learn more in the paper ["BERT Loses Patience: Fast and Robust Inference with Early Exit"](https://arxiv.org/abs/2006.04152) and the official [GitHub repo](https://github.com/JetRunner/PABEE). ![PABEE](https://github.com/JetRunner/PABEE/raw/master/bert-loses-patience.png) ## Training You can fine-tune a pretrained language model (you can choose from BERT and ALBERT) and train the internal classifiers by: ```bash export GLUE_DIR=/path/to/glue_data export TASK_NAME=MRPC python ./run_glue_with_pabee.py \ --model_type albert \ --model_name_or_path bert-base-uncased/albert-base-v2 \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --do_lower_case \ --data_dir "$GLUE_DIR/$TASK_NAME" \ --max_seq_length 128 \ --per_gpu_train_batch_size 32 \ --per_gpu_eval_batch_size 32 \ --learning_rate 2e-5 \ --save_steps 50 \ --logging_steps 50 \ --num_train_epochs 5 \ --output_dir /path/to/save/ \ --evaluate_during_training ``` ## Inference You can inference with different patience settings by: ```bash export GLUE_DIR=/path/to/glue_data export TASK_NAME=MRPC python ./run_glue_with_pabee.py \ --model_type albert \ --model_name_or_path /path/to/save/ \ --task_name $TASK_NAME \ --do_eval \ --do_lower_case \ --data_dir "$GLUE_DIR/$TASK_NAME" \ --max_seq_length 128 \ --per_gpu_eval_batch_size 1 \ --learning_rate 2e-5 \ --logging_steps 50 \ --num_train_epochs 15 \ --output_dir /path/to/save/ \ --eval_all_checkpoints \ --patience 3,4,5,6,7,8 ``` where `patience` can be a list of patience settings, separated by a comma. It will help determine which patience works best. When evaluating on a regression task (STS-B), you may add `--regression_threshold 0.1` to define the regression threshold. ## Results On the GLUE dev set: | Model | \#Param | Speed | CoLA | MNLI | MRPC | QNLI | QQP | RTE | SST\-2 | STS\-B | |--------------|---------|--------|-------|-------|-------|-------|-------|-------|--------|--------| | ALBERT\-base | 12M | | 58\.9 | 84\.6 | 89\.5 | 91\.7 | 89\.6 | 78\.6 | 92\.8 | 89\.5 | | \+PABEE | 12M | 1\.57x | 61\.2 | 85\.1 | 90\.0 | 91\.8 | 89\.6 | 80\.1 | 93\.0 | 90\.1 | | Model | \#Param | Speed\-up | MNLI | SST\-2 | STS\-B | |---------------|---------|-----------|-------|--------|--------| | BERT\-base | 108M | | 84\.5 | 92\.1 | 88\.9 | | \+PABEE | 108M | 1\.62x | 83\.6 | 92\.0 | 88\.7 | | ALBERT\-large | 18M | | 86\.4 | 94\.9 | 90\.4 | | \+PABEE | 18M | 2\.42x | 86\.8 | 95\.2 | 90\.6 | ## Citation If you find this resource useful, please consider citing the following paper: ```bibtex @misc{zhou2020bert, title={BERT Loses Patience: Fast and Robust Inference with Early Exit}, author={Wangchunshu Zhou and Canwen Xu and Tao Ge and Julian McAuley and Ke Xu and Furu Wei}, year={2020}, eprint={2006.04152}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
transformers/examples/research_projects/bert-loses-patience/README.md/0
{ "file_path": "transformers/examples/research_projects/bert-loses-patience/README.md", "repo_id": "transformers", "token_count": 1323 }
270
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The distiller to distil the student. Adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) """ import math import os import time import psutil import torch from grouped_batch_sampler import GroupedBatchSampler, create_lengths_groups from lm_seqs_dataset import LmSeqsDataset from torch import nn from torch.optim import AdamW from torch.utils.data import BatchSampler, DataLoader, RandomSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm from transformers import get_linear_schedule_with_warmup from utils import logger try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter class Distiller: def __init__( self, params: dict, dataset: LmSeqsDataset, token_probs: torch.tensor, student: nn.Module, teacher: nn.Module ): logger.info("Initializing Distiller") self.params = params self.dump_path = params.dump_path self.multi_gpu = params.multi_gpu self.fp16 = params.fp16 self.student = student self.teacher = teacher self.student_config = student.config self.vocab_size = student.config.vocab_size if params.n_gpu <= 1: sampler = RandomSampler(dataset) else: sampler = DistributedSampler(dataset) if params.group_by_size: groups = create_lengths_groups(lengths=dataset.lengths, k=params.max_model_input_size) sampler = GroupedBatchSampler(sampler=sampler, group_ids=groups, batch_size=params.batch_size) else: sampler = BatchSampler(sampler=sampler, batch_size=params.batch_size, drop_last=False) self.dataloader = DataLoader(dataset=dataset, batch_sampler=sampler, collate_fn=dataset.batch_sequences) self.temperature = params.temperature assert self.temperature > 0.0 self.alpha_ce = params.alpha_ce self.alpha_mlm = params.alpha_mlm self.alpha_clm = params.alpha_clm self.alpha_mse = params.alpha_mse self.alpha_cos = params.alpha_cos self.mlm = params.mlm if self.mlm: logger.info("Using MLM loss for LM step.") self.mlm_mask_prop = params.mlm_mask_prop assert 0.0 <= self.mlm_mask_prop <= 1.0 assert params.word_mask + params.word_keep + params.word_rand == 1.0 self.pred_probs = torch.FloatTensor([params.word_mask, params.word_keep, params.word_rand]) self.pred_probs = self.pred_probs.to(f"cuda:{params.local_rank}") if params.n_gpu > 0 else self.pred_probs self.token_probs = token_probs.to(f"cuda:{params.local_rank}") if params.n_gpu > 0 else token_probs if self.fp16: self.pred_probs = self.pred_probs.half() self.token_probs = self.token_probs.half() else: logger.info("Using CLM loss for LM step.") self.epoch = 0 self.n_iter = 0 self.n_total_iter = 0 self.n_sequences_epoch = 0 self.total_loss_epoch = 0 self.last_loss = 0 self.last_loss_ce = 0 self.last_loss_mlm = 0 self.last_loss_clm = 0 if self.alpha_mse > 0.0: self.last_loss_mse = 0 if self.alpha_cos > 0.0: self.last_loss_cos = 0 self.last_log = 0 self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean") self.lm_loss_fct = nn.CrossEntropyLoss(ignore_index=-100) if self.alpha_mse > 0.0: self.mse_loss_fct = nn.MSELoss(reduction="sum") if self.alpha_cos > 0.0: self.cosine_loss_fct = nn.CosineEmbeddingLoss(reduction="mean") logger.info("--- Initializing model optimizer") assert params.gradient_accumulation_steps >= 1 self.num_steps_epoch = len(self.dataloader) num_train_optimization_steps = ( int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1 ) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in student.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad ], "weight_decay": params.weight_decay, }, { "params": [ p for n, p in student.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad ], "weight_decay": 0.0, }, ] logger.info( "------ Number of trainable parameters (student): %i" % sum([p.numel() for p in self.student.parameters() if p.requires_grad]) ) logger.info("------ Number of parameters (student): %i" % sum([p.numel() for p in self.student.parameters()])) self.optimizer = AdamW( optimizer_grouped_parameters, lr=params.learning_rate, eps=params.adam_epsilon, betas=(0.9, 0.98) ) warmup_steps = math.ceil(num_train_optimization_steps * params.warmup_prop) self.scheduler = get_linear_schedule_with_warmup( self.optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_train_optimization_steps ) if self.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") logger.info(f"Using fp16 training: {self.params.fp16_opt_level} level") self.student, self.optimizer = amp.initialize( self.student, self.optimizer, opt_level=self.params.fp16_opt_level ) self.teacher = self.teacher.half() if self.multi_gpu: if self.fp16: from apex.parallel import DistributedDataParallel logger.info("Using apex.parallel.DistributedDataParallel for distributed training.") self.student = DistributedDataParallel(self.student) else: from torch.nn.parallel import DistributedDataParallel logger.info("Using nn.parallel.DistributedDataParallel for distributed training.") self.student = DistributedDataParallel( self.student, device_ids=[params.local_rank], output_device=params.local_rank, find_unused_parameters=True, ) self.is_master = params.is_master if self.is_master: logger.info("--- Initializing Tensorboard") self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, "log", "train")) self.tensorboard.add_text(tag="config/training", text_string=str(self.params), global_step=0) self.tensorboard.add_text(tag="config/student", text_string=str(self.student_config), global_step=0) def prepare_batch_mlm(self, batch): """ Prepare the batch: from the token_ids and the lengths, compute the attention mask and the masked label for MLM. Input: ------ batch: `Tuple` token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded. lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch. Output: ------- token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM. attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention. mlm_labels: `torch.tensor(bs, seq_length)` - The masked language modeling labels. There is a -100 where there is nothing to predict. """ token_ids, lengths = batch token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths) assert token_ids.size(0) == lengths.size(0) attn_mask = torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None] bs, max_seq_len = token_ids.size() mlm_labels = token_ids.new(token_ids.size()).copy_(token_ids) x_prob = self.token_probs[token_ids.flatten()] n_tgt = math.ceil(self.mlm_mask_prop * lengths.sum().item()) tgt_ids = torch.multinomial(x_prob / x_prob.sum(), n_tgt, replacement=False) pred_mask = torch.zeros( bs * max_seq_len, dtype=torch.bool, device=token_ids.device ) # previously `dtype=torch.uint8`, cf pytorch 1.2.0 compatibility pred_mask[tgt_ids] = 1 pred_mask = pred_mask.view(bs, max_seq_len) pred_mask[token_ids == self.params.special_tok_ids["pad_token"]] = 0 # mask a number of words == 0 [8] (faster with fp16) if self.fp16: n1 = pred_mask.sum().item() if n1 > 8: pred_mask = pred_mask.view(-1) n2 = max(n1 % 8, 8 * (n1 // 8)) if n2 != n1: pred_mask[torch.nonzero(pred_mask).view(-1)[: n1 - n2]] = 0 pred_mask = pred_mask.view(bs, max_seq_len) assert pred_mask.sum().item() % 8 == 0, pred_mask.sum().item() _token_ids_real = token_ids[pred_mask] _token_ids_rand = _token_ids_real.clone().random_(self.vocab_size) _token_ids_mask = _token_ids_real.clone().fill_(self.params.special_tok_ids["mask_token"]) probs = torch.multinomial(self.pred_probs, len(_token_ids_real), replacement=True) _token_ids = ( _token_ids_mask * (probs == 0).long() + _token_ids_real * (probs == 1).long() + _token_ids_rand * (probs == 2).long() ) token_ids = token_ids.masked_scatter(pred_mask, _token_ids) mlm_labels[~pred_mask] = -100 # previously `mlm_labels[1-pred_mask] = -1`, cf pytorch 1.2.0 compatibility # sanity checks assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size return token_ids, attn_mask, mlm_labels def prepare_batch_clm(self, batch): """ Prepare the batch: from the token_ids and the lengths, compute the attention mask and the labels for CLM. Input: ------ batch: `Tuple` token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded. lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch. Output: ------- token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM. attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention. clm_labels: `torch.tensor(bs, seq_length)` - The causal language modeling labels. There is a -100 where there is nothing to predict. """ token_ids, lengths = batch token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths) assert token_ids.size(0) == lengths.size(0) attn_mask = torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None] clm_labels = token_ids.new(token_ids.size()).copy_(token_ids) clm_labels[~attn_mask] = -100 # previously `clm_labels[1-attn_mask] = -1`, cf pytorch 1.2.0 compatibility # sanity checks assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size return token_ids, attn_mask, clm_labels def round_batch(self, x: torch.tensor, lengths: torch.tensor): """ For float16 only. Sub-sample sentences in a batch, and add padding, so that each dimension is a multiple of 8. Input: ------ x: `torch.tensor(bs, seq_length)` - The token ids. lengths: `torch.tensor(bs, seq_length)` - The lengths of each of the sequence in the batch. Output: ------- x: `torch.tensor(new_bs, new_seq_length)` - The updated token ids. lengths: `torch.tensor(new_bs, new_seq_length)` - The updated lengths. """ if not self.fp16 or len(lengths) < 8: return x, lengths # number of sentences == 0 [8] bs1 = len(lengths) bs2 = 8 * (bs1 // 8) assert bs2 > 0 and bs2 % 8 == 0 if bs1 != bs2: idx = torch.randperm(bs1)[:bs2] lengths = lengths[idx] slen = lengths.max().item() x = x[idx, :slen] else: idx = None # sequence length == 0 [8] ml1 = x.size(1) if ml1 % 8 != 0: pad = 8 - (ml1 % 8) ml2 = ml1 + pad if self.mlm: pad_id = self.params.special_tok_ids["pad_token"] else: pad_id = self.params.special_tok_ids["unk_token"] padding_tensor = torch.zeros(bs2, pad, dtype=torch.long, device=x.device).fill_(pad_id) x = torch.cat([x, padding_tensor], 1) assert x.size() == (bs2, ml2) assert x.size(0) % 8 == 0 assert x.size(1) % 8 == 0 return x, lengths def train(self): """ The real training loop. """ if self.is_master: logger.info("Starting training") self.last_log = time.time() self.student.train() self.teacher.eval() for _ in range(self.params.n_epoch): if self.is_master: logger.info(f"--- Starting epoch {self.epoch}/{self.params.n_epoch-1}") if self.multi_gpu: torch.distributed.barrier() iter_bar = tqdm(self.dataloader, desc="-Iter", disable=self.params.local_rank not in [-1, 0]) for batch in iter_bar: if self.params.n_gpu > 0: batch = tuple(t.to(f"cuda:{self.params.local_rank}") for t in batch) if self.mlm: token_ids, attn_mask, lm_labels = self.prepare_batch_mlm(batch=batch) else: token_ids, attn_mask, lm_labels = self.prepare_batch_clm(batch=batch) self.step(input_ids=token_ids, attention_mask=attn_mask, lm_labels=lm_labels) iter_bar.update() iter_bar.set_postfix( {"Last_loss": f"{self.last_loss:.2f}", "Avg_cum_loss": f"{self.total_loss_epoch/self.n_iter:.2f}"} ) iter_bar.close() if self.is_master: logger.info(f"--- Ending epoch {self.epoch}/{self.params.n_epoch-1}") self.end_epoch() if self.is_master: logger.info("Save very last checkpoint as `pytorch_model.bin`.") self.save_checkpoint(checkpoint_name="pytorch_model.bin") logger.info("Training is finished") def step(self, input_ids: torch.tensor, attention_mask: torch.tensor, lm_labels: torch.tensor): """ One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation), and possibly a parameter update (depending on the gradient accumulation). Input: ------ input_ids: `torch.tensor(bs, seq_length)` - The token ids. attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention. lm_labels: `torch.tensor(bs, seq_length)` - The language modeling labels (mlm labels for MLM and clm labels for CLM). """ if self.mlm: student_outputs = self.student( input_ids=input_ids, attention_mask=attention_mask ) # (bs, seq_length, voc_size) with torch.no_grad(): teacher_outputs = self.teacher( input_ids=input_ids, attention_mask=attention_mask ) # (bs, seq_length, voc_size) else: student_outputs = self.student(input_ids=input_ids, attention_mask=None) # (bs, seq_length, voc_size) with torch.no_grad(): teacher_outputs = self.teacher(input_ids=input_ids, attention_mask=None) # (bs, seq_length, voc_size) s_logits, s_hidden_states = student_outputs["logits"], student_outputs["hidden_states"] t_logits, t_hidden_states = teacher_outputs["logits"], teacher_outputs["hidden_states"] assert s_logits.size() == t_logits.size() # https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100 # https://github.com/peterliht/knowledge-distillation-pytorch/issues/2 if self.params.restrict_ce_to_mask: mask = (lm_labels > -1).unsqueeze(-1).expand_as(s_logits) # (bs, seq_length, voc_size) else: mask = attention_mask.unsqueeze(-1).expand_as(s_logits) # (bs, seq_length, voc_size) s_logits_slct = torch.masked_select(s_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask t_logits_slct = torch.masked_select(t_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask assert t_logits_slct.size() == s_logits_slct.size() loss_ce = ( self.ce_loss_fct( nn.functional.log_softmax(s_logits_slct / self.temperature, dim=-1), nn.functional.softmax(t_logits_slct / self.temperature, dim=-1), ) * (self.temperature) ** 2 ) loss = self.alpha_ce * loss_ce if self.alpha_mlm > 0.0: loss_mlm = self.lm_loss_fct(s_logits.view(-1, s_logits.size(-1)), lm_labels.view(-1)) loss += self.alpha_mlm * loss_mlm if self.alpha_clm > 0.0: shift_logits = s_logits[..., :-1, :].contiguous() shift_labels = lm_labels[..., 1:].contiguous() loss_clm = self.lm_loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) loss += self.alpha_clm * loss_clm if self.alpha_mse > 0.0: loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct) / s_logits_slct.size( 0 ) # Reproducing batchmean reduction loss += self.alpha_mse * loss_mse if self.alpha_cos > 0.0: s_hidden_states = s_hidden_states[-1] # (bs, seq_length, dim) t_hidden_states = t_hidden_states[-1] # (bs, seq_length, dim) mask = attention_mask.unsqueeze(-1).expand_as(s_hidden_states) # (bs, seq_length, dim) assert s_hidden_states.size() == t_hidden_states.size() dim = s_hidden_states.size(-1) s_hidden_states_slct = torch.masked_select(s_hidden_states, mask) # (bs * seq_length * dim) s_hidden_states_slct = s_hidden_states_slct.view(-1, dim) # (bs * seq_length, dim) t_hidden_states_slct = torch.masked_select(t_hidden_states, mask) # (bs * seq_length * dim) t_hidden_states_slct = t_hidden_states_slct.view(-1, dim) # (bs * seq_length, dim) target = s_hidden_states_slct.new(s_hidden_states_slct.size(0)).fill_(1) # (bs * seq_length,) loss_cos = self.cosine_loss_fct(s_hidden_states_slct, t_hidden_states_slct, target) loss += self.alpha_cos * loss_cos self.total_loss_epoch += loss.item() self.last_loss = loss.item() self.last_loss_ce = loss_ce.item() if self.alpha_mlm > 0.0: self.last_loss_mlm = loss_mlm.item() if self.alpha_clm > 0.0: self.last_loss_clm = loss_clm.item() if self.alpha_mse > 0.0: self.last_loss_mse = loss_mse.item() if self.alpha_cos > 0.0: self.last_loss_cos = loss_cos.item() self.optimize(loss) self.n_sequences_epoch += input_ids.size(0) def optimize(self, loss): """ Normalization on the loss (gradient accumulation or distributed training), followed by backward pass on the loss, possibly followed by a parameter update (depending on the gradient accumulation). Also update the metrics for tensorboard. """ # Check for NaN if (loss != loss).data.any(): logger.error("NaN detected") exit() if self.multi_gpu: loss = loss.mean() if self.params.gradient_accumulation_steps > 1: loss = loss / self.params.gradient_accumulation_steps if self.fp16: from apex import amp with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() self.iter() if self.n_iter % self.params.gradient_accumulation_steps == 0: if self.fp16: nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.params.max_grad_norm) else: nn.utils.clip_grad_norm_(self.student.parameters(), self.params.max_grad_norm) self.optimizer.step() self.optimizer.zero_grad() self.scheduler.step() def iter(self): """ Update global counts, write to tensorboard and save checkpoint. """ self.n_iter += 1 self.n_total_iter += 1 if self.n_total_iter % self.params.log_interval == 0: self.log_tensorboard() self.last_log = time.time() if self.n_total_iter % self.params.checkpoint_interval == 0: self.save_checkpoint() def log_tensorboard(self): """ Log into tensorboard. Only by the master process. """ if not self.is_master: return for param_name, param in self.student.named_parameters(): self.tensorboard.add_scalar( tag="parameter_mean/" + param_name, scalar_value=param.data.mean(), global_step=self.n_total_iter ) self.tensorboard.add_scalar( tag="parameter_std/" + param_name, scalar_value=param.data.std(), global_step=self.n_total_iter ) if param.grad is None: continue self.tensorboard.add_scalar( tag="grad_mean/" + param_name, scalar_value=param.grad.data.mean(), global_step=self.n_total_iter ) self.tensorboard.add_scalar( tag="grad_std/" + param_name, scalar_value=param.grad.data.std(), global_step=self.n_total_iter ) self.tensorboard.add_scalar( tag="losses/cum_avg_loss_epoch", scalar_value=self.total_loss_epoch / self.n_iter, global_step=self.n_total_iter, ) self.tensorboard.add_scalar(tag="losses/loss", scalar_value=self.last_loss, global_step=self.n_total_iter) self.tensorboard.add_scalar( tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter ) if self.alpha_mlm > 0.0: self.tensorboard.add_scalar( tag="losses/loss_mlm", scalar_value=self.last_loss_mlm, global_step=self.n_total_iter ) if self.alpha_clm > 0.0: self.tensorboard.add_scalar( tag="losses/loss_clm", scalar_value=self.last_loss_clm, global_step=self.n_total_iter ) if self.alpha_mse > 0.0: self.tensorboard.add_scalar( tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter ) if self.alpha_cos > 0.0: self.tensorboard.add_scalar( tag="losses/loss_cos", scalar_value=self.last_loss_cos, global_step=self.n_total_iter ) self.tensorboard.add_scalar( tag="learning_rate/lr", scalar_value=self.scheduler.get_lr()[0], global_step=self.n_total_iter ) self.tensorboard.add_scalar( tag="global/memory_usage", scalar_value=psutil.virtual_memory()._asdict()["used"] / 1_000_000, global_step=self.n_total_iter, ) self.tensorboard.add_scalar( tag="global/speed", scalar_value=time.time() - self.last_log, global_step=self.n_total_iter ) def end_epoch(self): """ Finally arrived at the end of epoch (full pass on dataset). Do some tensorboard logging and checkpoint saving. """ logger.info(f"{self.n_sequences_epoch} sequences have been trained during this epoch.") if self.is_master: self.save_checkpoint(checkpoint_name=f"model_epoch_{self.epoch}.pth") self.tensorboard.add_scalar( tag="epoch/loss", scalar_value=self.total_loss_epoch / self.n_iter, global_step=self.epoch ) self.epoch += 1 self.n_sequences_epoch = 0 self.n_iter = 0 self.total_loss_epoch = 0 def save_checkpoint(self, checkpoint_name: str = "checkpoint.pth"): """ Save the current state. Only by the master process. """ if not self.is_master: return mdl_to_save = self.student.module if hasattr(self.student, "module") else self.student mdl_to_save.config.save_pretrained(self.dump_path) state_dict = mdl_to_save.state_dict() torch.save(state_dict, os.path.join(self.dump_path, checkpoint_name))
transformers/examples/research_projects/distillation/distiller.py/0
{ "file_path": "transformers/examples/research_projects/distillation/distiller.py", "repo_id": "transformers", "token_count": 12494 }
271
<p align="center"> <img src="http://sayef.tech:8082/uploads/FSNER-LOGO-2.png" alt="FSNER LOGO"> </p> <p align="center"> Implemented by <a href="https://huggingface.co/sayef"> sayef </a>. </p> ## Overview The FSNER model was proposed in [Example-Based Named Entity Recognition](https://arxiv.org/abs/2008.10570) by Morteza Ziyadi, Yuting Sun, Abhishek Goswami, Jade Huang, Weizhu Chen. To identify entity spans in a new domain, it uses a train-free few-shot learning approach inspired by question-answering. ## Abstract ---- > We present a novel approach to named entity recognition (NER) in the presence of scarce data that we call example-based NER. Our train-free few-shot learning approach takes inspiration from question-answering to identify entity spans in a new and unseen domain. In comparison with the current state-of-the-art, the proposed method performs significantly better, especially when using a low number of support examples. ## Model Training Details ----- | identifier | epochs | datasets | | ---------- |:----------:| :-----:| | [sayef/fsner-bert-base-uncased](https://huggingface.co/sayef/fsner-bert-base-uncased) | 10 | ontonotes5, conll2003, wnut2017, and fin (Alvarado et al.). | ## Installation and Example Usage ------ You can use the FSNER model in 3 ways: 1. Install directly from PyPI: `pip install fsner` and import the model as shown in the code example below or 2. Install from source: `python setup.py install` and import the model as shown in the code example below or 3. Clone repo and change directory to `src` and import the model as shown in the code example below ```python from fsner import FSNERModel, FSNERTokenizerUtils model = FSNERModel("sayef/fsner-bert-base-uncased") tokenizer = FSNERTokenizerUtils("sayef/fsner-bert-base-uncased") # size of query and supports must be the same. If you want to find all the entitites in one particular query, just repeat the same query n times where n is equal to the number of supports (or entities). query = [ 'KWE 4000 can reach with a maximum speed from up to 450 P/min an accuracy from 50 mg', 'I would like to order a computer from eBay.', ] # each list in supports are the examples of one entity type # wrap entities around with [E] and [/E] in the examples supports = [ [ 'Horizontal flow wrapper [E] Pack 403 [/E] features the new retrofit-kit „paper-ON-form“', '[E] Paloma Pick-and-Place-Roboter [/E] arranges the bakery products for the downstream tray-forming equipment', 'Finally, the new [E] Kliklok ACE [/E] carton former forms cartons and trays without the use of glue', 'We set up our pilot plant with the right [E] FibreForm® [/E] configuration to make prototypes for your marketing tests and package validation', 'The [E] CAR-T5 [/E] is a reliable, purely mechanically driven cartoning machine for versatile application fields' ], [ "[E] Walmart [/E] is a leading e-commerce company", "I recently ordered a book from [E] Amazon [/E]", "I ordered this from [E] ShopClues [/E]", "[E] Flipkart [/E] started it's journey from zero" ] ] device = 'cpu' W_query = tokenizer.tokenize(query).to(device) W_supports = tokenizer.tokenize(supports).to(device) start_prob, end_prob = model(W_query, W_supports) output = tokenizer.extract_entity_from_scores(query, W_query, start_prob, end_prob, thresh=0.50) print(output) ```
transformers/examples/research_projects/fsner/README.md/0
{ "file_path": "transformers/examples/research_projects/fsner/README.md", "repo_id": "transformers", "token_count": 1174 }
272
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class FlaxBigBirdForNaturalQuestionsModule(FlaxBigBirdForQuestionAnsweringModule): """ BigBirdForQuestionAnswering with CLS Head over the top for predicting category This way we can load its weights with FlaxBigBirdForQuestionAnswering """ config: BigBirdConfig dtype: jnp.dtype = jnp.float32 add_pooling_layer: bool = True def setup(self): super().setup() self.cls = nn.Dense(5, dtype=self.dtype) def __call__(self, *args, **kwargs): outputs = super().__call__(*args, **kwargs) cls_out = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class FlaxBigBirdForNaturalQuestions(FlaxBigBirdForQuestionAnswering): module_class = FlaxBigBirdForNaturalQuestionsModule def calculate_loss_for_nq(start_logits, start_labels, end_logits, end_labels, pooled_logits, pooler_labels): def cross_entropy(logits, labels, reduction=None): """ Args: logits: bsz, seqlen, vocab_size labels: bsz, seqlen """ vocab_size = logits.shape[-1] labels = (labels[..., None] == jnp.arange(vocab_size)[None]).astype("f4") logits = jax.nn.log_softmax(logits, axis=-1) loss = -jnp.sum(labels * logits, axis=-1) if reduction is not None: loss = reduction(loss) return loss cross_entropy = partial(cross_entropy, reduction=jnp.mean) start_loss = cross_entropy(start_logits, start_labels) end_loss = cross_entropy(end_logits, end_labels) pooled_loss = cross_entropy(pooled_logits, pooler_labels) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class Args: model_id: str = "google/bigbird-roberta-base" logging_steps: int = 3000 save_steps: int = 10500 block_size: int = 128 num_random_blocks: int = 3 batch_size_per_device: int = 1 max_epochs: int = 5 # tx_args lr: float = 3e-5 init_lr: float = 0.0 warmup_steps: int = 20000 weight_decay: float = 0.0095 save_dir: str = "bigbird-roberta-natural-questions" base_dir: str = "training-expt" tr_data_path: str = "data/nq-training.jsonl" val_data_path: str = "data/nq-validation.jsonl" def __post_init__(self): os.makedirs(self.base_dir, exist_ok=True) self.save_dir = os.path.join(self.base_dir, self.save_dir) self.batch_size = self.batch_size_per_device * jax.device_count() @dataclass class DataCollator: pad_id: int max_length: int = 4096 # no dynamic padding on TPUs def __call__(self, batch): batch = self.collate_fn(batch) batch = jax.tree_util.tree_map(shard, batch) return batch def collate_fn(self, features): input_ids, attention_mask = self.fetch_inputs(features["input_ids"]) batch = { "input_ids": jnp.array(input_ids, dtype=jnp.int32), "attention_mask": jnp.array(attention_mask, dtype=jnp.int32), "start_labels": jnp.array(features["start_token"], dtype=jnp.int32), "end_labels": jnp.array(features["end_token"], dtype=jnp.int32), "pooled_labels": jnp.array(features["category"], dtype=jnp.int32), } return batch def fetch_inputs(self, input_ids: list): inputs = [self._fetch_inputs(ids) for ids in input_ids] return zip(*inputs) def _fetch_inputs(self, input_ids: list): attention_mask = [1 for _ in range(len(input_ids))] while len(input_ids) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def get_batched_dataset(dataset, batch_size, seed=None): if seed is not None: dataset = dataset.shuffle(seed=seed) for i in range(len(dataset) // batch_size): batch = dataset[i * batch_size : (i + 1) * batch_size] yield dict(batch) @partial(jax.pmap, axis_name="batch") def train_step(state, drp_rng, **model_inputs): def loss_fn(params): start_labels = model_inputs.pop("start_labels") end_labels = model_inputs.pop("end_labels") pooled_labels = model_inputs.pop("pooled_labels") outputs = state.apply_fn(**model_inputs, params=params, dropout_rng=drp_rng, train=True) start_logits, end_logits, pooled_logits = outputs return state.loss_fn( start_logits, start_labels, end_logits, end_labels, pooled_logits, pooled_labels, ) drp_rng, new_drp_rng = jax.random.split(drp_rng) grad_fn = jax.value_and_grad(loss_fn) loss, grads = grad_fn(state.params) metrics = jax.lax.pmean({"loss": loss}, axis_name="batch") grads = jax.lax.pmean(grads, "batch") state = state.apply_gradients(grads=grads) return state, metrics, new_drp_rng @partial(jax.pmap, axis_name="batch") def val_step(state, **model_inputs): start_labels = model_inputs.pop("start_labels") end_labels = model_inputs.pop("end_labels") pooled_labels = model_inputs.pop("pooled_labels") outputs = state.apply_fn(**model_inputs, params=state.params, train=False) start_logits, end_logits, pooled_logits = outputs loss = state.loss_fn(start_logits, start_labels, end_logits, end_labels, pooled_logits, pooled_labels) metrics = jax.lax.pmean({"loss": loss}, axis_name="batch") return metrics class TrainState(train_state.TrainState): loss_fn: Callable = struct.field(pytree_node=False) @dataclass class Trainer: args: Args data_collator: Callable train_step_fn: Callable val_step_fn: Callable model_save_fn: Callable logger: wandb scheduler_fn: Callable = None def create_state(self, model, tx, num_train_steps, ckpt_dir=None): params = model.params state = TrainState.create( apply_fn=model.__call__, params=params, tx=tx, loss_fn=calculate_loss_for_nq, ) if ckpt_dir is not None: params, opt_state, step, args, data_collator = restore_checkpoint(ckpt_dir, state) tx_args = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } tx, lr = build_tx(**tx_args) state = train_state.TrainState( step=step, apply_fn=model.__call__, params=params, tx=tx, opt_state=opt_state, ) self.args = args self.data_collator = data_collator self.scheduler_fn = lr model.params = params state = jax_utils.replicate(state) return state def train(self, state, tr_dataset, val_dataset): args = self.args total = len(tr_dataset) // args.batch_size rng = jax.random.PRNGKey(0) drp_rng = jax.random.split(rng, jax.device_count()) for epoch in range(args.max_epochs): running_loss = jnp.array(0, dtype=jnp.float32) tr_dataloader = get_batched_dataset(tr_dataset, args.batch_size, seed=epoch) i = 0 for batch in tqdm(tr_dataloader, total=total, desc=f"Running EPOCH-{epoch}"): batch = self.data_collator(batch) state, metrics, drp_rng = self.train_step_fn(state, drp_rng, **batch) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 if i % args.logging_steps == 0: state_step = jax_utils.unreplicate(state.step) tr_loss = running_loss.item() / i lr = self.scheduler_fn(state_step - 1) eval_loss = self.evaluate(state, val_dataset) logging_dict = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(logging_dict)) self.logger.log(logging_dict, commit=True) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}", state=state) def evaluate(self, state, dataset): dataloader = get_batched_dataset(dataset, self.args.batch_size) total = len(dataset) // self.args.batch_size running_loss = jnp.array(0, dtype=jnp.float32) i = 0 for batch in tqdm(dataloader, total=total, desc="Evaluating ... "): batch = self.data_collator(batch) metrics = self.val_step_fn(state, **batch) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 return running_loss / i def save_checkpoint(self, save_dir, state): state = jax_utils.unreplicate(state) print(f"SAVING CHECKPOINT IN {save_dir}", end=" ... ") self.model_save_fn(save_dir, params=state.params) with open(os.path.join(save_dir, "opt_state.msgpack"), "wb") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args, os.path.join(save_dir, "args.joblib")) joblib.dump(self.data_collator, os.path.join(save_dir, "data_collator.joblib")) with open(os.path.join(save_dir, "training_state.json"), "w") as f: json.dump({"step": state.step.item()}, f) print("DONE") def restore_checkpoint(save_dir, state): print(f"RESTORING CHECKPOINT FROM {save_dir}", end=" ... ") with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f: params = from_bytes(state.params, f.read()) with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f: opt_state = from_bytes(state.opt_state, f.read()) args = joblib.load(os.path.join(save_dir, "args.joblib")) data_collator = joblib.load(os.path.join(save_dir, "data_collator.joblib")) with open(os.path.join(save_dir, "training_state.json"), "r") as f: training_state = json.load(f) step = training_state["step"] print("DONE") return params, opt_state, step, args, data_collator def scheduler_fn(lr, init_lr, warmup_steps, num_train_steps): decay_steps = num_train_steps - warmup_steps warmup_fn = optax.linear_schedule(init_value=init_lr, end_value=lr, transition_steps=warmup_steps) decay_fn = optax.linear_schedule(init_value=lr, end_value=1e-7, transition_steps=decay_steps) lr = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[warmup_steps]) return lr def build_tx(lr, init_lr, warmup_steps, num_train_steps, weight_decay): def weight_decay_mask(params): params = traverse_util.flatten_dict(params) mask = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(mask) lr = scheduler_fn(lr, init_lr, warmup_steps, num_train_steps) tx = optax.adamw(learning_rate=lr, weight_decay=weight_decay, mask=weight_decay_mask) return tx, lr
transformers/examples/research_projects/jax-projects/big_bird/bigbird_flax.py/0
{ "file_path": "transformers/examples/research_projects/jax-projects/big_bird/bigbird_flax.py", "repo_id": "transformers", "token_count": 5480 }
273
# Wav2Vec2 Contrastive Loss PreTraining examples The following example showcases how to pretrain a wav2vec2 model using the JAX/Flax backend. Pretraining Wav2Vec2 is rather complex, so it is highly recommended to read the [official paper](https://arxiv.org/abs/2006.11477). JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. Models written in JAX/Flax are **immutable** and updated in a purely functional way which enables simple and efficient model parallelism. `run_wav2vec2_pretrain_flax.py` is a lightweight example of how to download and preprocess a dataset from the 🤗 Datasets library or use your own files (jsonlines or csv), then pretrain the wav2vec2 architectures above on it. For custom datasets in `jsonlines` format please see: [the Datasets documentation](https://huggingface.co/docs/datasets/loading_datasets#json-files) and you also will find examples of these below. Let's start by creating a model repository to save the trained model and logs. Here we call the model `"wav2vec2-base-robust"`, but you can change the model name as you like. You can do this either directly on [huggingface.co](https://huggingface.co/new) (assuming that you are logged in) or via the command line: ``` huggingface-cli repo create wav2vec2-base-robust ``` Next we clone the model repository to add the tokenizer and model files. ``` git clone https://huggingface.co/<your-username>/wav2vec2-base-robust ``` To ensure that all tensorboard traces will be uploaded correctly, we need to track them. You can run the following command inside your model repo to do so. ``` cd wav2vec2-base-robust git lfs track "*tfevents*" ``` Great, we have set up our model repository. During training, we will automatically push the training logs and model weights to the repo. Next, let's add a symbolic link to the `run_wav2vec2_pretrain_flax`. ```bash export MODEL_DIR="./wav2vec2-base-robust" ln -s ~/transformers/examples/research_projects/jax-projects/wav2vec2/run_wav2vec2_pretrain_flax.py ./ ``` ### Create the model configuration Let's first create the model configuration and store it in the model repository. Note that many training parameters can be set in the model configuration including the configuration about the masking distribution (`mask_time_length`, `mask_time_prob`), dropout (`attention_dropout`, ...), the trade-off between the contrastive loss and the diversity loss, etc... Mostly likely you will need to change these parameters depending on your use case. Again, we highly recommend to read the [official paper](https://arxiv.org/abs/2006.11477) to better understand which parameters can be set for pretraining. For this example, we will be using a `"base"`-sized model of Wav2Vec2 with robust layer norm and keep most of the default settings. ```python model_dir="./wav2vec2-base-robust" from transformers import Wav2Vec2Config config = Wav2Vec2Config.from_pretrained( "facebook/wav2vec2-base", mask_time_length=10, mask_time_prob=0.05, diversity_loss_weight=0.1, num_negatives=100, do_stable_layer_norm=True, feat_extract_norm="layer", ) config.save_pretrained(model_dir) ``` ### Create a feature extractor configuration Before we can start the training, we need to define a feature extractor that takes care of normalization, etc... Here we can also re-use the feature extractor of [wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base) while making sure that padding is allowed. ```python model_dir="./wav2vec2-base-robust" from transformers import Wav2Vec2FeatureExtractor config = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base", return_attention_mask=True) config.save_pretrained(model_dir) ``` ### Train the model Finally, we can run the example script to train the model: ```bash ./run_wav2vec2_pretrain_flax.py \ --output_dir=${MODEL_DIR} \ --num_train_epochs="5" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --learning_rate="5e-4" \ --weight_decay="0.01" \ --warmup_steps="2000" \ --model_name_or_path=${MODEL_DIR} \ --dataset_name="librispeech_asr" \ --dataset_config_name="clean" \ --train_split_name="train.100" \ --preprocessing_num_workers="4" \ --max_duration_in_seconds="10.0" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --pad_to_multiple_of="16384" \ --push_to_hub ``` Note that this script is not fully tested yet, so we cannot ensure that the above script leads to satisfying results.
transformers/examples/research_projects/jax-projects/wav2vec2/README.md/0
{ "file_path": "transformers/examples/research_projects/jax-projects/wav2vec2/README.md", "repo_id": "transformers", "token_count": 1504 }
274
""" coding=utf-8 Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal Adapted From Facebook Inc, Detectron2 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.import copy """ import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class ResizeShortestEdge: def __init__(self, short_edge_length, max_size=sys.maxsize): """ Args: short_edge_length (list[min, max]) max_size (int): maximum allowed longest edge length. """ self.interp_method = "bilinear" self.max_size = max_size self.short_edge_length = short_edge_length def __call__(self, imgs): img_augs = [] for img in imgs: h, w = img.shape[:2] # later: provide list and randomly choose index for resize size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1) if size == 0: return img scale = size * 1.0 / min(h, w) if h < w: newh, neww = size, scale * w else: newh, neww = scale * h, size if max(newh, neww) > self.max_size: scale = self.max_size * 1.0 / max(newh, neww) newh = newh * scale neww = neww * scale neww = int(neww + 0.5) newh = int(newh + 0.5) if img.dtype == np.uint8: pil_image = Image.fromarray(img) pil_image = pil_image.resize((neww, newh), PILImageResampling.BILINEAR) img = np.asarray(pil_image) else: img = img.permute(2, 0, 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw img = nn.functional.interpolate( img, (newh, neww), mode=self.interp_method, align_corners=False ).squeeze(0) img_augs.append(img) return img_augs class Preprocess: def __init__(self, cfg): self.aug = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST) self.input_format = cfg.INPUT.FORMAT self.size_divisibility = cfg.SIZE_DIVISIBILITY self.pad_value = cfg.PAD_VALUE self.max_image_size = cfg.INPUT.MAX_SIZE_TEST self.device = cfg.MODEL.DEVICE self.pixel_std = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD), 1, 1) self.pixel_mean = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD), 1, 1) self.normalizer = lambda x: (x - self.pixel_mean) / self.pixel_std def pad(self, images): max_size = tuple(max(s) for s in zip(*[img.shape for img in images])) image_sizes = [im.shape[-2:] for im in images] images = [ nn.functional.pad( im, [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]], value=self.pad_value, ) for size, im in zip(image_sizes, images) ] return torch.stack(images), torch.tensor(image_sizes) def __call__(self, images, single_image=False): with torch.no_grad(): if not isinstance(images, list): images = [images] if single_image: assert len(images) == 1 for i in range(len(images)): if isinstance(images[i], torch.Tensor): images.insert(i, images.pop(i).to(self.device).float()) elif not isinstance(images[i], torch.Tensor): images.insert( i, torch.as_tensor(img_tensorize(images.pop(i), input_format=self.input_format)) .to(self.device) .float(), ) # resize smallest edge raw_sizes = torch.tensor([im.shape[:2] for im in images]) images = self.aug(images) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic images = [self.normalizer(x) for x in images] # now pad them to do the following operations images, sizes = self.pad(images) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad scales_yx = torch.true_divide(raw_sizes, sizes) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _scale_box(boxes, scale_yx): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _clip_box(tensor, box_size: Tuple[int, int]): assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!" h, w = box_size tensor[:, 0].clamp_(min=0, max=w) tensor[:, 1].clamp_(min=0, max=h) tensor[:, 2].clamp_(min=0, max=w) tensor[:, 3].clamp_(min=0, max=h)
transformers/examples/research_projects/lxmert/processing_image.py/0
{ "file_path": "transformers/examples/research_projects/lxmert/processing_image.py", "repo_id": "transformers", "token_count": 2793 }
275
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Masked BERT model configuration. It replicates the class `~transformers.BertConfig` and adapts it to the specificities of MaskedBert (`pruning_method`, `mask_init` and `mask_scale`.""" import logging from transformers.configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) class MaskedBertConfig(PretrainedConfig): """ A class replicating the `~transformers.BertConfig` with additional parameters for pruning/masking configuration. """ model_type = "masked_bert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, pruning_method="topK", mask_init="constant", mask_scale=0.0, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.pruning_method = pruning_method self.mask_init = mask_init self.mask_scale = mask_scale
transformers/examples/research_projects/movement-pruning/emmental/configuration_bert_masked.py/0
{ "file_path": "transformers/examples/research_projects/movement-pruning/emmental/configuration_bert_masked.py", "repo_id": "transformers", "token_count": 995 }
276
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ IMPORTANT: This code was copied from https://github.com/google-research/google-research/blob/master/performer/fast_self_attention/fast_self_attention.py on 6/11/2020. This is very new code, so it might be prone to change soon -> make sure to check the original code and update accordingly Core Fast Attention Module for Flax. Implementation of the approximate fast softmax and generalized attention mechanism leveraging structured random feature maps [RFM] techniques and low rank decomposition of the attention matrix. """ # pylint: disable=invalid-name, missing-function-docstring, line-too-long import abc import functools from collections.abc import Iterable # pylint: disable=g-importing-member import jax import jax.numpy as jnp import numpy as onp from absl import logging from jax import lax, random def nonnegative_softmax_kernel_feature_creator( data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True, eps=0.0001 ): """ Constructs nonnegative kernel features for fast softmax attention Args: data: input for which features are computes projection_matrix: random matrix used to compute features attention_dims_t: tuple of attention dimensions batch_dims_t: tuple of batch dimensions precision: precision parameter is_query: predicate indicating whether input data corresponds to queries or keys normalize_data: predicate indicating whether data should be normalized, eps: numerical stabilizer Returns: Random features for fast softmax attention. """ del attention_dims_t if normalize_data: # We have e^{qk^T/sqrt{d}} = e^{q_norm k_norm^T}, where # w_norm = w * data_normalizer for w in {q,k}. data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1]))) else: data_normalizer = 1.0 ratio = 1.0 / jnp.sqrt(projection_matrix.shape[0]) data_mod_shape = data.shape[0 : len(batch_dims_t)] + projection_matrix.shape data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix data_dash = lax.dot_general( data_normalizer * data, data_thick_random_matrix, (((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)), precision=precision, ) diag_data = jnp.square(data) diag_data = jnp.sum(diag_data, axis=data.ndim - 1) diag_data = (diag_data / 2.0) * data_normalizer * data_normalizer diag_data = jnp.expand_dims(diag_data, axis=data.ndim - 1) if is_query: last_dims_t = (len(data_dash.shape) - 1,) data_dash = ratio * ( jnp.exp(data_dash - diag_data - jnp.max(data_dash, axis=last_dims_t, keepdims=True)) + eps ) else: data_dash = ratio * (jnp.exp(data_dash - diag_data - jnp.max(data_dash)) + eps) return data_dash def sincos_softmax_kernel_feature_creator( data, projection_matrix, attention_dims_t, batch_dims_t, precision, normalize_data=True ): """ Constructs kernel sin-cos features for fast softmax attention Args: data: input for which features are computes projection_matrix: random matrix used to compute features attention_dims_t: tuple of attention dimensions batch_dims_t: tuple of batch dimensions precision: precision parameter normalize_data: predicate indicating whether data should be normalized Returns: Random features for fast softmax attention. """ if normalize_data: # We have: exp(qk^T/sqrt{d}) = exp(|q|^2/2sqrt{d}) * exp(|k|^2/2sqrt{d}) * # exp(-(|q*c-k*c|^2)/2), where c = 1.0 / sqrt{sqrt{d}}. data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1]))) else: data_normalizer = 1.0 ratio = 1.0 / jnp.sqrt(projection_matrix.shape[0]) data_mod_shape = data.shape[0 : len(batch_dims_t)] + projection_matrix.shape data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix data_dash = lax.dot_general( data_normalizer * data, data_thick_random_matrix, (((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)), precision=precision, ) data_dash_cos = ratio * jnp.cos(data_dash) data_dash_sin = ratio * jnp.sin(data_dash) data_dash = jnp.concatenate((data_dash_cos, data_dash_sin), axis=-1) # Constructing D_data and data^{'} diag_data = jnp.square(data) diag_data = jnp.sum(diag_data, axis=data.ndim - 1) diag_data = (diag_data / 2.0) * data_normalizer * data_normalizer diag_data = jnp.expand_dims(diag_data, axis=data.ndim - 1) # Additional renormalization for numerical stability data_renormalizer = jnp.max(diag_data, attention_dims_t, keepdims=True) diag_data -= data_renormalizer diag_data = jnp.exp(diag_data) data_prime = data_dash * diag_data return data_prime def generalized_kernel_feature_creator( data, projection_matrix, batch_dims_t, precision, kernel_fn, kernel_epsilon, normalize_data ): """ Constructs kernel features for fast generalized attention Args: data: input for which features are computes projection_matrix: matrix used to compute features batch_dims_t: tuple of batch dimensions precision: precision parameter kernel_fn: kernel function used kernel_epsilon: additive positive term added to every feature for numerical stability normalize_data: predicate indicating whether data should be normalized Returns: Random features for fast generalized attention. """ if normalize_data: data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1]))) else: data_normalizer = 1.0 if projection_matrix is None: return kernel_fn(data_normalizer * data) + kernel_epsilon else: data_mod_shape = data.shape[0 : len(batch_dims_t)] + projection_matrix.shape data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix data_dash = lax.dot_general( data_normalizer * data, data_thick_random_matrix, (((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)), precision=precision, ) data_prime = kernel_fn(data_dash) + kernel_epsilon return data_prime def make_fast_softmax_attention( qkv_dim, renormalize_attention=True, numerical_stabilizer=0.000001, nb_features=256, ortho_features=True, ortho_scaling=0.0, redraw_features=True, unidirectional=False, nonnegative_features=True, lax_scan_unroll=1, ): """Construct a fast softmax attention method.""" logging.info( "Fast softmax attention: %s features and orthogonal=%s, renormalize=%s", nb_features, ortho_features, renormalize_attention, ) if ortho_features: matrix_creator = functools.partial(GaussianOrthogonalRandomMatrix, nb_features, qkv_dim, scaling=ortho_scaling) else: matrix_creator = functools.partial(GaussianUnstructuredRandomMatrix, nb_features, qkv_dim) if nonnegative_features: def kernel_feature_creator( data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True ): return nonnegative_softmax_kernel_feature_creator( data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data, numerical_stabilizer, ) else: def kernel_feature_creator( data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True ): del is_query return sincos_softmax_kernel_feature_creator( data, projection_matrix, attention_dims_t, batch_dims_t, precision, normalize_data ) attention_fn = FastAttentionviaLowRankDecomposition( matrix_creator, kernel_feature_creator, renormalize_attention=renormalize_attention, numerical_stabilizer=numerical_stabilizer, redraw_features=redraw_features, unidirectional=unidirectional, lax_scan_unroll=lax_scan_unroll, ).dot_product_attention return attention_fn def make_fast_generalized_attention( qkv_dim, renormalize_attention=True, numerical_stabilizer=0.0, nb_features=256, features_type="deterministic", kernel_fn=jax.nn.relu, kernel_epsilon=0.001, redraw_features=False, unidirectional=False, lax_scan_unroll=1, ): """Construct a fast generalized attention menthod.""" logging.info("Fast generalized attention.: %s features and renormalize=%s", nb_features, renormalize_attention) if features_type == "ortho": matrix_creator = functools.partial(GaussianOrthogonalRandomMatrix, nb_features, qkv_dim, scaling=False) elif features_type == "iid": matrix_creator = functools.partial(GaussianUnstructuredRandomMatrix, nb_features, qkv_dim) elif features_type == "deterministic": matrix_creator = None else: raise ValueError("Unknown feature value type") def kernel_feature_creator( data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=False ): del attention_dims_t del is_query return generalized_kernel_feature_creator( data, projection_matrix, batch_dims_t, precision, kernel_fn, kernel_epsilon, normalize_data ) attention_fn = FastAttentionviaLowRankDecomposition( matrix_creator, kernel_feature_creator, renormalize_attention=renormalize_attention, numerical_stabilizer=numerical_stabilizer, redraw_features=redraw_features, unidirectional=unidirectional, lax_scan_unroll=lax_scan_unroll, ).dot_product_attention return attention_fn class RandomMatrix(object): r""" Abstract class providing a method for constructing 2D random arrays. Class is responsible for constructing 2D random arrays. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def get_2d_array(self): raise NotImplementedError("Abstract method") class GaussianUnstructuredRandomMatrix(RandomMatrix): def __init__(self, nb_rows, nb_columns, key): self.nb_rows = nb_rows self.nb_columns = nb_columns self.key = key def get_2d_array(self): return random.normal(self.key, (self.nb_rows, self.nb_columns)) class GaussianOrthogonalRandomMatrix(RandomMatrix): r""" Class providing a method to create Gaussian orthogonal matrix. Class is responsible for constructing 2D Gaussian orthogonal arrays. """ def __init__(self, nb_rows, nb_columns, key, scaling=0): self.nb_rows = nb_rows self.nb_columns = nb_columns self.key = key self.scaling = scaling def get_2d_array(self): nb_full_blocks = int(self.nb_rows / self.nb_columns) block_list = [] rng = self.key for _ in range(nb_full_blocks): rng, rng_input = jax.random.split(rng) unstructured_block = random.normal(rng_input, (self.nb_columns, self.nb_columns)) q, _ = jnp.linalg.qr(unstructured_block) q = jnp.transpose(q) block_list.append(q) remaining_rows = self.nb_rows - nb_full_blocks * self.nb_columns if remaining_rows > 0: rng, rng_input = jax.random.split(rng) unstructured_block = random.normal(rng_input, (self.nb_columns, self.nb_columns)) q, _ = jnp.linalg.qr(unstructured_block) q = jnp.transpose(q) block_list.append(q[0:remaining_rows]) final_matrix = jnp.vstack(block_list) if self.scaling == 0: multiplier = jnp.linalg.norm(random.normal(self.key, (self.nb_rows, self.nb_columns)), axis=1) elif self.scaling == 1: multiplier = jnp.sqrt(float(self.nb_columns)) * jnp.ones((self.nb_rows)) else: raise ValueError("Scaling must be one of {0, 1}. Was %s" % self._scaling) return jnp.matmul(jnp.diag(multiplier), final_matrix) class FastAttention(object): r""" Abstract class providing a method for fast attention. Class is responsible for providing a method <dot_product_attention> for fast approximate attention. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def dot_product_attention( self, query, key, value, dtype=jnp.float32, bias=None, axis=None, broadcast_dropout=True, dropout_rng=None, dropout_rate=0.0, deterministic=False, precision=None, ): """ Computes dot-product attention given query, key, and value. This is the core function for applying fast approximate dot-product attention. It calculates the attention weights given query and key and combines the values using the attention weights. This function supports multi-dimensional inputs Args: query: queries for calculating attention with shape of [batch_size, dim1, dim2, ..., dimN, num_heads, mem_channels]. key: keys for calculating attention with shape of [batch_size, dim1, dim2, ..., dimN, num_heads, mem_channels]. value: values to be used in attention with shape of [batch_size, dim1, dim2,..., dimN, num_heads, value_channels]. dtype: the dtype of the computation (default: float32) bias: bias for the attention weights. This can be used for incorporating autoregressive mask, padding mask, proximity bias. axis: axises over which the attention is applied. broadcast_dropout: bool: use a broadcasted dropout along batch dims. dropout_rng: JAX PRNGKey: to be used for dropout. dropout_rate: dropout rate. deterministic: bool, deterministic or not (to apply dropout). precision: numerical precision of the computation see `jax.lax.Precision` for details Returns: Output of shape [bs, dim1, dim2, ..., dimN,, num_heads, value_channels]. """ raise NotImplementedError("Abstract method") def _numerator(z_slice_shape, precision, unroll=1): def fwd(qs, ks, vs): def body(p, qkv): (q, k, v) = qkv p += jnp.einsum("...m,...d->...md", k, v, precision=precision) X_slice = jnp.einsum("...m,...md->...d", q, p, precision=precision) return p, X_slice init_value = jnp.zeros(z_slice_shape) p, W = lax.scan(body, init_value, (qs, ks, vs), unroll=unroll) return W, (p, qs, ks, vs) def bwd(pqkv, W_ct): def body(carry, qkv_xct): p, p_ct = carry q, k, v, x_ct = qkv_xct q_ct = jnp.einsum("...d,...md->...m", x_ct, p, precision=precision) p_ct += jnp.einsum("...d,...m->...md", x_ct, q, precision=precision) k_ct = jnp.einsum("...md,...d->...m", p_ct, v, precision=precision) v_ct = jnp.einsum("...md,...m->...d", p_ct, k, precision=precision) p -= jnp.einsum("...m,...d->...md", k, v, precision=precision) return (p, p_ct), (q_ct, k_ct, v_ct) p, qs, ks, vs = pqkv _, (qs_ct, ks_ct, vs_ct) = lax.scan( body, (p, jnp.zeros_like(p)), (qs, ks, vs, W_ct), reverse=True, unroll=unroll ) return qs_ct, ks_ct, vs_ct @jax.custom_vjp def _numerator_impl(qs, ks, vs): W, _ = fwd(qs, ks, vs) return W _numerator_impl.defvjp(fwd, bwd) return _numerator_impl def _denominator(t_slice_shape, precision, unroll=1): def fwd(qs, ks): def body(p, qk): q, k = qk p += k x = jnp.einsum("...m,...m->...", q, p, precision=precision) return p, x p = jnp.zeros(t_slice_shape) p, R = lax.scan(body, p, (qs, ks), unroll=unroll) return R, (qs, ks, p) def bwd(qkp, R_ct): def body(carry, qkx): p, p_ct = carry q, k, x_ct = qkx q_ct = jnp.einsum("...,...m->...m", x_ct, p, precision=precision) p_ct += jnp.einsum("...,...m->...m", x_ct, q, precision=precision) k_ct = p_ct p -= k return (p, p_ct), (q_ct, k_ct) qs, ks, p = qkp _, (qs_ct, ks_ct) = lax.scan(body, (p, jnp.zeros_like(p)), (qs, ks, R_ct), reverse=True, unroll=unroll) return (qs_ct, ks_ct) @jax.custom_vjp def _denominator_impl(qs, ks): R, _ = fwd(qs, ks) return R _denominator_impl.defvjp(fwd, bwd) return _denominator_impl class FastAttentionviaLowRankDecomposition(FastAttention): r""" Class providing a method for fast attention via low rank decomposition. Class is responsible for providing a method <dot_product_attention> for fast dot-product attention with the use of low rank decomposition (e.g. with random feature maps). """ def __init__( self, matrix_creator, kernel_feature_creator, renormalize_attention, numerical_stabilizer, redraw_features, unidirectional, lax_scan_unroll=1, ): # For optimal GPU performance, set to 16. rng = random.PRNGKey(0) self.matrix_creator = matrix_creator self.projection_matrix = self.draw_weights(rng) self.kernel_feature_creator = kernel_feature_creator self.renormalize_attention = renormalize_attention self.numerical_stabilizer = numerical_stabilizer self.redraw_features = redraw_features self.unidirectional = unidirectional self.lax_scan_unroll = lax_scan_unroll def draw_weights(self, key): if self.matrix_creator is None: return None matrixrng, _ = random.split(key) projection_matrix = self.matrix_creator(key=matrixrng).get_2d_array() return projection_matrix def dot_product_attention( self, query, key, value, dtype=jnp.float32, bias=None, axis=None, broadcast_dropout=True, dropout_rng=None, dropout_rate=0.0, deterministic=False, precision=None, ): assert key.shape[:-1] == value.shape[:-1] assert query.shape[0:1] == key.shape[0:1] and query.shape[-1] == key.shape[-1] if axis is None: axis = tuple(range(1, key.ndim - 2)) if not isinstance(axis, Iterable): axis = (axis,) assert key.ndim == query.ndim assert key.ndim == value.ndim for ax in axis: if not (query.ndim >= 3 and 1 <= ax < query.ndim - 2): raise ValueError("Attention axis must be between the batch axis and the last-two axes.") n = key.ndim # Constructing projection tensor. if self.redraw_features: # TODO(kchoro): Get rid of the constant below. query_seed = lax.convert_element_type(jnp.ceil(jnp.sum(query) * 10000000.0), jnp.int32) rng = random.PRNGKey(query_seed) self.projection_matrix = self.draw_weights(rng) # batch_dims is <bs, <non-attention dims>, num_heads> batch_dims = tuple(onp.delete(range(n), axis + (n - 1,))) # q & k -> (bs, <non-attention dims>, num_heads, <attention dims>, channels) qk_perm = batch_dims + axis + (n - 1,) k_extra_perm = axis + batch_dims + (n - 1,) key_extra = key.transpose(k_extra_perm) key = key.transpose(qk_perm) query = query.transpose(qk_perm) # v -> (bs, <non-attention dims>, num_heads, <attention dims>, channels) v_perm = batch_dims + axis + (n - 1,) value = value.transpose(v_perm) batch_dims_t = tuple(range(len(batch_dims))) attention_dims_t = tuple(range(len(batch_dims), len(batch_dims) + len(axis))) # Constructing tensors Q^{'} and K^{'}. query_prime = self.kernel_feature_creator( query, self.projection_matrix, attention_dims_t, batch_dims_t, precision, True ) key_prime = self.kernel_feature_creator( key, self.projection_matrix, attention_dims_t, batch_dims_t, precision, False ) if self.unidirectional: index = attention_dims_t[0] z_slice_shape = key_prime.shape[0 : len(batch_dims_t)] + (key_prime.shape[-1],) + (value.shape[-1],) numerator_fn = _numerator(z_slice_shape, precision, self.lax_scan_unroll) W = numerator_fn( jnp.moveaxis(query_prime, index, 0), jnp.moveaxis(key_prime, index, 0), jnp.moveaxis(value, index, 0) ) # Constructing W = (Q^{'}(K^{'})^{T})_{masked}V W = jnp.moveaxis(W, 0, index) if not self.renormalize_attention: # Unidirectional, not-normalized attention. perm_inv = _invert_perm(qk_perm) result = W.transpose(perm_inv) return result else: # Unidirectional, normalized attention. thick_all_ones = jnp.zeros(key.shape[0:-1]) + jnp.ones(key_extra.shape[0 : len(axis)]) index = attention_dims_t[0] t_slice_shape = key_prime.shape[0 : len(batch_dims_t)] + (key_prime.shape[-1],) denominator_fn = _denominator(t_slice_shape, precision, self.lax_scan_unroll) R = denominator_fn(jnp.moveaxis(query_prime, index, 0), jnp.moveaxis(key_prime, index, 0)) R = jnp.moveaxis(R, 0, index) else: contract_query = tuple(range(len(batch_dims) + len(axis), len(batch_dims) + len(axis) + 1)) contract_z = tuple(range(len(batch_dims), len(batch_dims) + 1)) # Constructing Z = (K^{'})^{T}V # Z (bs, <non-attention dims>, num_heads, channels_m, channels_v) Z = lax.dot_general( key_prime, value, ((attention_dims_t, attention_dims_t), (batch_dims_t, batch_dims_t)), precision=precision, ) # Constructing W = Q^{'}Z = Q^{'}(K^{'})^{T}V # q (bs, <non-attention dims>, num_heads, <attention dims>, channels_m) # Z (bs, <non-attention dims>, num_heads, channels_m, channels_v) # W (bs, <non-attention dims>, num_heads, <attention dims>, channels_v) W = lax.dot_general( query_prime, Z, ((contract_query, contract_z), (batch_dims_t, batch_dims_t)), precision=precision ) if not self.renormalize_attention: # Bidirectional, not-normalized attention. perm_inv = _invert_perm(qk_perm) result = W.transpose(perm_inv) return result else: # Bidirectional, normalized attention. thick_all_ones = jnp.zeros(key.shape[0:-1]) + jnp.ones(key_extra.shape[0 : len(axis)]) contract_key = tuple(range(len(batch_dims), len(batch_dims) + len(axis))) contract_thick_all_ones = tuple(range(thick_all_ones.ndim - len(axis), thick_all_ones.ndim)) # Construct T = (K^{'})^{T} 1_L # k (bs, <non-attention dims>, num_heads, <attention dims>, channels) T = lax.dot_general( key_prime, thick_all_ones, ((contract_key, contract_thick_all_ones), (batch_dims_t, batch_dims_t)), precision=precision, ) # Construct partition function: R = Q^{'} T = Q^{'}(K^{'})^{T} 1_L # q_p (bs, <non-attention dims>, num_heads, <attention dims>, channs_m) # T (bs, <non-attention dims>, num_heads, channels_m) R = lax.dot_general( query_prime, T, (((query_prime.ndim - 1,), (T.ndim - 1,)), (batch_dims_t, range(0, len(T.shape) - 1))), precision=precision, ) R = R + 2 * self.numerical_stabilizer * (jnp.abs(R) <= self.numerical_stabilizer) R = jnp.reciprocal(R) R = jnp.expand_dims(R, len(R.shape)) # W (bs, <non-attention dims>, num_heads, <attention dims>, channels_v) # R (bs, <non-attention dims>, num_heads, <attention dims>, extra_channel) result = W * R # back to (bs, dim1, dim2, ..., dimN, num_heads, channels) perm_inv = _invert_perm(qk_perm) result = result.transpose(perm_inv) return result def _invert_perm(perm): perm_inv = [0] * len(perm) for i, j in enumerate(perm): perm_inv[j] = i return tuple(perm_inv)
transformers/examples/research_projects/performer/modeling_flax_performer_utils.py/0
{ "file_path": "transformers/examples/research_projects/performer/modeling_flax_performer_utils.py", "repo_id": "transformers", "token_count": 11671 }
277
# coding=utf-8 # Copyright 2020 The HuggingFace Team All rights reserved. # Copyright 2021 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A subclass of `Trainer` specific to Question-Answering tasks """ import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput logger = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class QuestionAnsweringTrainer(Trainer): def __init__(self, *args, eval_examples=None, post_process_function=None, quant_trainer_args=None, **kwargs): super().__init__(*args, **kwargs) self.eval_examples = eval_examples self.post_process_function = post_process_function self.quant_trainer_args = quant_trainer_args self.calib_num = 128 # default number of calibration samples def get_calib_dataloader(self, calib_dataset=None): """ Returns the calibration dataloader :class:`~torch.utils.data.DataLoader`. Args: calib_dataset (:obj:`torch.utils.data.Dataset`, `optional`) """ if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset.") calib_dataset = calib_dataset if calib_dataset is not None else self.calib_dataset calib_dataset = self._remove_unused_columns(calib_dataset, description="Calibration") return DataLoader( calib_dataset, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, shuffle=True, ) def calibrate(self, calib_dataset=None): calib_dataset = self.train_dataset if calib_dataset is None else calib_dataset calib_dataloader = self.get_calib_dataloader(calib_dataset) model = self.model quant_trainer.configure_model(model, self.quant_trainer_args, calib=True) model.eval() quant_trainer.enable_calibration(model) logger.info("***** Running calibration *****") logger.info(f" Num examples = {self.calib_num}") logger.info(f" Batch size = {calib_dataloader.batch_size}") for step, inputs in enumerate(calib_dataloader): # Prediction step loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only=True) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(model, self.quant_trainer_args) self.model = model def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"): eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset eval_dataloader = self.get_eval_dataloader(eval_dataset) eval_examples = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. compute_metrics = self.compute_metrics self.compute_metrics = None eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: output = eval_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if compute_metrics is None else None, ignore_keys=ignore_keys, ) finally: self.compute_metrics = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions) metrics = self.compute_metrics(eval_preds) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) self.log(metrics) else: metrics = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics) return metrics def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"): predict_dataloader = self.get_test_dataloader(predict_dataset) # Temporarily disable metric computation, we will do it in the loop here. compute_metrics = self.compute_metrics self.compute_metrics = None eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: output = eval_loop( predict_dataloader, description="Prediction", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if compute_metrics is None else None, ignore_keys=ignore_keys, ) finally: self.compute_metrics = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict") metrics = self.compute_metrics(predictions) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics) def save_onnx(self, output_dir="./"): eval_dataset = self.eval_dataset eval_dataloader = self.get_eval_dataloader(eval_dataset) batch = next(iter(eval_dataloader)) # saving device - to make it consistent device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # convert to tuple input_tuple = tuple(v.to(device) for k, v in batch.items()) logger.info("Converting model to be onnx compatible") from pytorch_quantization.nn import TensorQuantizer TensorQuantizer.use_fb_fake_quant = True model = self.model.to(device) model.eval() model.float() model_to_save = model.module if hasattr(model, "module") else model quant_trainer.configure_model(model_to_save, self.quant_trainer_args) output_model_file = os.path.join(output_dir, "model.onnx") logger.info(f"exporting model to {output_model_file}") axes = {0: "batch_size", 1: "seq_len"} torch.onnx.export( model_to_save, input_tuple, output_model_file, export_params=True, opset_version=13, do_constant_folding=True, input_names=["input_ids", "attention_mask", "token_type_ids"], output_names=["output_start_logits", "output_end_logits"], dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, }, verbose=True, ) logger.info("onnx export finished")
transformers/examples/research_projects/quantization-qdqbert/trainer_quant_qa.py/0
{ "file_path": "transformers/examples/research_projects/quantization-qdqbert/trainer_quant_qa.py", "repo_id": "transformers", "token_count": 3717 }
278
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Self-training for sequence classification.""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy logger = logging.getLogger(__name__) MODEL_BIN_FILE = "pytorch_model.bin" @dataclasses.dataclass class STModelArguments: """Arguments pertaining to which config/tokenizer/model we are going to fine-tune from.""" model_name_or_path: str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) cache_dir: Optional[str] = dataclasses.field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."}, ) @dataclasses.dataclass class STDataArguments: """Arguments pertaining to what data we are going to input our model for training and evaluation.""" train_file: str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."}) infer_file: str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."}) eval_file: Optional[str] = dataclasses.field( default=None, metadata={"help": "A csv or a json file containing the validation data."} ) task_name: Optional[str] = dataclasses.field( default=None, metadata={"help": "The name of the task to train on."}, ) label_list: Optional[List[str]] = dataclasses.field( default=None, metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class STTrainingArguments: """Training arguments pertaining to the training loop itself.""" output_dir: str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) eval_metric: Optional[str] = dataclasses.field( default="accuracy", metadata={"help": "The evaluation metric used for the task."} ) evaluation_strategy: Optional[str] = dataclasses.field( default="no", metadata={ "help": 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' }, ) early_stopping_patience: Optional[int] = dataclasses.field( default=10, metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."}, ) early_stopping_threshold: Optional[float] = dataclasses.field( default=0.0, metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." }, ) do_filter_by_confidence: Optional[bool] = dataclasses.field( default=False, metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."}, ) do_filter_by_val_performance: Optional[bool] = dataclasses.field( default=False, metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."}, ) finetune_on_labeled_data: Optional[bool] = dataclasses.field( default=False, metadata={"help": "Whether to fine-tune on labeled data after pseudo training."}, ) confidence_threshold: Optional[float] = dataclasses.field( default=0.0, metadata={"help": "Confidence threshold for pseudo-labeled data filtering."}, ) max_selftrain_iterations: Optional[int] = dataclasses.field( default=100, metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."}, ) seed: Optional[int] = dataclasses.field( default=None, metadata={"help": "Random seed for initialization."}, ) def create_pseudo_labeled_data(args, infer_input, infer_output, eval_result, id2label, next_data_dir): """Create pseudeo labeled data for the next self-training iteration.""" dataset = datasets.concatenate_datasets([infer_input, infer_output], axis=1) if args.do_filter_by_confidence: dataset = dataset.filter(lambda example: example["probability"] > args.confidence_threshold) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 num_selected_rows = int(eval_result * len(dataset)) print(num_selected_rows) dataset = dataset.sort("probability", reverse=True) dataset = dataset.select(range(num_selected_rows)) dataset = dataset.remove_columns(["label", "probability"]) dataset = dataset.rename_column("prediction", "label") dataset = dataset.map(lambda example: {"label": id2label[example["label"]]}) dataset = dataset.shuffle(seed=args.seed) pseudo_labeled_data_file = os.path.join(next_data_dir, f"train_pseudo.{args.data_file_extension}") if args.data_file_extension == "csv": dataset.to_csv(pseudo_labeled_data_file, index=False) else: dataset.to_json(pseudo_labeled_data_file) def selftrain(model_name_or_path, train_file, infer_file, output_dir, **kwargs): """Self-training a pre-trained model on a downstream task. Args: model_name_or_path: Path to pretrained model or model identifier from huggingface.co/models. train_file: A csv or a json file containing the training data. infer_file: A csv or a json file containing the data to predict on. output_dir: The output directory where the model predictions and checkpoints will be written. **kwargs: Dictionary of key/value pairs with which to update the configuration object after loading. The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. """ # Initialize the accelerator. We will let the accelerator handle device # placement for us. accelerator = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() model_args = STModelArguments(model_name_or_path=model_name_or_path) data_args = STDataArguments(train_file=train_file, infer_file=infer_file) training_args = STTrainingArguments(output_dir=output_dir) args = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(arg_class).items(): setattr(args, key, value) for key, value in kwargs.items(): if hasattr(args, key): setattr(args, key, value) # Sanity checks data_files = {} args.data_file_extension = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None data_files["train"] = args.train_file data_files["infer"] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None data_files["eval"] = args.eval_file for key in data_files: extension = data_files[key].split(".")[-1] assert extension in ["csv", "json"], f"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: args.data_file_extension = extension else: assert extension == args.data_file_extension, f"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), f"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) logger.info("Creating the initial data directory for self-training...") data_dir_format = f"{args.output_dir}/self-train_iter-{{}}".format initial_data_dir = data_dir_format(0) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) os.makedirs(initial_data_dir, exist_ok=True) accelerator.wait_for_everyone() best_iteration = None best_eval_result = None early_stopping_patience_counter = 0 should_training_stop = False # Show the progress bar progress_bar = tqdm(range(args.max_selftrain_iterations), disable=not accelerator.is_local_main_process) # Self-train for iteration in range(0, int(args.max_selftrain_iterations)): current_data_dir = data_dir_format(iteration) assert os.path.exists(current_data_dir) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 current_output_dir = os.path.join(current_data_dir, "stage-1") arguments_dict = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(training_args, key): arguments_dict.update({key: value}) model_bin_file_path = os.path.join(current_output_dir, "best-checkpoint", MODEL_BIN_FILE) if os.path.exists(model_bin_file_path): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.", model_bin_file_path, iteration, ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****", iteration) finetune(**arguments_dict) accelerator.wait_for_everyone() assert os.path.exists(model_bin_file_path) logger.info("Self-training job completed: iteration: %d, stage: 1.", iteration) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data model_path = os.path.join(current_output_dir, "best-checkpoint") current_output_dir = os.path.join(current_data_dir, "stage-2") # Update arguments_dict arguments_dict["model_name_or_path"] = model_path arguments_dict["train_file"] = data_files["train"] arguments_dict["output_dir"] = current_output_dir model_bin_file_path = os.path.join(current_output_dir, "best-checkpoint", MODEL_BIN_FILE) if os.path.exists(model_bin_file_path): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.", model_bin_file_path, iteration, ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****", iteration) finetune(**arguments_dict) accelerator.wait_for_everyone() assert os.path.exists(model_bin_file_path) logger.info("Self-training job completed: iteration: %d, stage: 2.", iteration) new_iteration = iteration next_data_dir = data_dir_format(iteration + 1) config = AutoConfig.from_pretrained(os.path.join(current_output_dir, "best-checkpoint")) id2label = config.id2label eval_results_file = os.path.join(current_output_dir, "eval_results_best-checkpoint.json") test_results_file = os.path.join(current_output_dir, "test_results_best-checkpoint.json") assert os.path.exists(eval_results_file) with open(eval_results_file, "r") as f: eval_result = float(json.load(f)[args.eval_metric]) infer_output_file = os.path.join(current_output_dir, "infer_output_best-checkpoint.csv") assert os.path.exists(infer_output_file) # Loading the dataset from local csv or json files. infer_input = load_dataset(args.data_file_extension, data_files={"data": data_files["infer"]})["data"] infer_output = load_dataset("csv", data_files={"data": infer_output_file})["data"] if accelerator.is_main_process: os.makedirs(next_data_dir, exist_ok=True) shutil.copy(eval_results_file, os.path.join(output_dir, f"eval_results_iter-{iteration}.json")) if os.path.exists(test_results_file): shutil.copy(eval_results_file, os.path.join(output_dir, f"test_results_iter-{iteration}.json")) create_pseudo_labeled_data(args, infer_input, infer_output, eval_result, id2label, next_data_dir) accelerator.wait_for_everyone() data_files["train_pseudo"] = os.path.join(next_data_dir, f"train_pseudo.{args.data_file_extension}") if args.evaluation_strategy != IntervalStrategy.NO.value: new_eval_result = eval_result if best_iteration is None: best_iteration = new_iteration best_eval_result = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: best_iteration = new_iteration best_eval_result = new_eval_result early_stopping_patience_counter = 0 else: if new_eval_result == best_eval_result: best_iteration = new_iteration best_eval_result = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: should_training_stop = True progress_bar.update(1) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d", best_iteration) logger.info("Best evaluation result: %s = %f", args.eval_metric, best_eval_result) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(output_dir, f"eval_results_iter-{iteration}.json"), os.path.join(output_dir, "eval_results_best-iteration.json"), ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d", args.max_selftrain_iterations - 1) logger.info("Best evaluation result: %s = %f", args.eval_metric, eval_result) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(output_dir, f"eval_results_iter-{args.max_selftrain_iterations - 1}.json"), os.path.join(output_dir, "eval_results_best-iteration.json"), )
transformers/examples/research_projects/self-training-text-classification/selftraining.py/0
{ "file_path": "transformers/examples/research_projects/self-training-text-classification/selftraining.py", "repo_id": "transformers", "token_count": 6792 }
279
# Add parent directory to python path to access lightning_base.py export PYTHONPATH="../":"${PYTHONPATH}" python finetune.py \ --data_dir=$CNN_DIR \ --learning_rate=3e-5 \ --train_batch_size=$BS \ --eval_batch_size=$BS \ --output_dir=$OUTPUT_DIR \ --max_source_length=512 \ --max_target_length=56 \ --val_check_interval=0.1 --n_val=200 \ --do_train --do_predict \ "$@"
transformers/examples/research_projects/seq2seq-distillation/finetune_t5.sh/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/finetune_t5.sh", "repo_id": "transformers", "token_count": 148 }
280
# coding=utf-8 # Copyright 2022 The Microsoft, The Google and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import enum import functools import math import re # The following script is adapted from the script of TaPas. # Original: https://github.com/google-research/tapas/master/wikisql_utils.py from typing import Any, List, Text EMPTY_ANSWER = "none" EMPTY_ANSWER_AGG = "none" def _split_thousands(delimiter, value): split = value.split(delimiter) return len(split) > 1 and any((len(x) == 3 for x in split)) def convert_to_float(value): """Converts value to a float using a series of increasingly complex heuristics. Args: value: object that needs to be converted. Allowed types include float/int/strings. Returns: A float interpretation of value. Raises: ValueError if the float conversion of value fails. """ if isinstance(value, float): return value if isinstance(value, int): return float(value) if not isinstance(value, str): raise ValueError("Argument value is not a string. Can't parse it as float") sanitized = value try: # Example: 1,000.7 if "." in sanitized and "," in sanitized: return float(sanitized.replace(",", "")) # 1,000 if "," in sanitized and _split_thousands(",", sanitized): return float(sanitized.replace(",", "")) # 5,5556 if "," in sanitized and sanitized.count(",") == 1 and not _split_thousands(",", sanitized): return float(sanitized.replace(",", ".")) # 0.0.0.1 if sanitized.count(".") > 1: return float(sanitized.replace(".", "")) # 0,0,0,1 if sanitized.count(",") > 1: return float(sanitized.replace(",", "")) return float(sanitized) except ValueError: # Avoid adding the sanitized value in the error message. raise ValueError("Unable to convert value to float") def _normalize_float(answer): if answer is None: return None try: value = convert_to_float(answer) if isinstance(value, float) and math.isnan(value): return None return value except ValueError: return answer.lower() _TYPE_CONVERTER = { "text": lambda x: x, "real": convert_to_float, } class _Aggregation(enum.Enum): """Aggregations as defined by WikiSQL. Indexes match the data.""" NONE = 0 MAX = 1 MIN = 2 COUNT = 3 SUM = 4 AVERAGE = 5 class _Operator(enum.Enum): """The boolean operators used by WikiSQL. Indexes match the data.""" EQUALS = 0 GREATER = 1 LESSER = 2 @dataclasses.dataclass class _Condition: """Represents an SQL where clauses (e.g A = "a" or B > 5).""" column: Text operator: _Operator cmp_value: Any _TOKENIZER = re.compile(r"\w+|[^\w\s]+", re.UNICODE | re.MULTILINE | re.DOTALL) def _normalize_for_match(x): return list(_TOKENIZER.findall(x.lower())) def _compare(operator, src, tgt): if operator == _Operator.EQUALS: return src == tgt elif operator == _Operator.GREATER: return src > tgt elif operator == _Operator.LESSER: return src < tgt raise ValueError(f"Unknown operator: {operator}") def _parse_value(table, column, cell_value): """Convert numeric values to floats and keeps everything else as string.""" types = table["types"] return _TYPE_CONVERTER[types[column]](cell_value) def _is_string(x): return isinstance(x, str) def _respect_conditions(table, row, conditions): """True if 'row' satisfies all 'conditions'.""" for cond in conditions: table_value = row[cond.column] cmp_value = _parse_value(table, cond.column, cond.cmp_value) if _is_string(table_value) and _is_string(cmp_value): table_value = _normalize_for_match(table_value) cmp_value = _normalize_for_match(cmp_value) if not isinstance(table_value, type(cmp_value)): raise ValueError("Type difference {} != {}".format(type(table_value), type(cmp_value))) if not _compare(cond.operator, table_value, cmp_value): return False return True def _get_float_answer(table, answer_coordinates, aggregation_op): """Applies operation to produce reference float answer.""" if not answer_coordinates: if aggregation_op == _Aggregation.COUNT: return 0.0 else: return EMPTY_ANSWER_AGG # Count can support non numeric answers. if aggregation_op == _Aggregation.COUNT: return float(len(answer_coordinates)) # If we have just one answer, if float returns it or try a conversion. values = [table["rows"][i][j] for (i, j) in answer_coordinates] if len(answer_coordinates) == 1: try: return convert_to_float(values[0]) except ValueError as e: if aggregation_op != _Aggregation.NONE: raise e if aggregation_op == _Aggregation.NONE: return None # Other aggregation only support numeric values. Bail out if we have strings. if not all((isinstance(v, (int, float)) for v in values)): return None if aggregation_op == _Aggregation.SUM: return float(sum(values)) elif aggregation_op == _Aggregation.AVERAGE: return sum(values) / len(answer_coordinates) else: raise ValueError(f"Unknown aggregation: {aggregation_op}") def _get_answer_coordinates(table, sql_query): """Retrieves references coordinates by executing SQL.""" # MAX and MIN are automatically supported by the model. aggregation_op_index = sql_query["agg"] if aggregation_op_index >= 3: aggregation_op = _Aggregation(aggregation_op_index) else: aggregation_op = _Aggregation.NONE target_column = sql_query["sel"] conditions = [ _Condition(column, _Operator(operator), cmp_value) for column, operator, cmp_value in zip( sql_query["conds"]["column_index"], sql_query["conds"]["operator_index"], sql_query["conds"]["condition"] ) ] indices = [] for row in range(len(table["rows"])): if _respect_conditions(table, table["rows"][row], conditions): indices.append((row, target_column)) if not indices: return [], aggregation_op if len(indices) == 1: return indices, aggregation_op # Parsing of MIN/MAX. if aggregation_op_index in (1, 2): operators = {2: min, 1: max} values = [(table["rows"][i][j], index) for index, (i, j) in enumerate(indices)] reduced = functools.reduce(operators[sql_query["agg"]], values) ret = [indices[reduced[1]]] return ret, _Aggregation.NONE return indices, aggregation_op def _get_answer_text(table, answer_coordinates, float_answer): if float_answer is not None: return [str(float_answer)] return [str(table["real_rows"][r][c]) for r, c in answer_coordinates] def retrieve_wikisql_query_answer_tapas(table, example) -> List: answer_coordinates, aggregation_op = _get_answer_coordinates(table, example) float_answer = _get_float_answer(table, answer_coordinates, aggregation_op) answer_text = _get_answer_text(table, answer_coordinates, float_answer) # keep the original data the same with TaPas if len(answer_text) == 0: answer_text = [EMPTY_ANSWER] return answer_text
transformers/examples/research_projects/tapex/wikisql_utils.py/0
{ "file_path": "transformers/examples/research_projects/tapex/wikisql_utils.py", "repo_id": "transformers", "token_count": 3100 }
281
**NOTE**: This example is outdated and is not longer actively maintained. Please follow the new instructions of fine-tuning Wav2Vec2 [here](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/README.md) ## Fine-tuning Wav2Vec2 The `run_asr.py` script allows one to fine-tune pretrained Wav2Vec2 models that can be found [here](https://huggingface.co/models?search=facebook/wav2vec2). This finetuning script can also be run as a google colab [TODO: here]( ). ### Fine-Tuning with TIMIT Let's take a look at the [script](./finetune_base_timit_asr.sh) used to fine-tune [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) with the [TIMIT dataset](https://huggingface.co/datasets/timit_asr): ```bash #!/usr/bin/env bash python run_asr.py \ --output_dir="./wav2vec2-base-timit-asr" \ --num_train_epochs="30" \ --per_device_train_batch_size="20" \ --per_device_eval_batch_size="20" \ --evaluation_strategy="steps" \ --save_steps="500" \ --eval_steps="100" \ --logging_steps="50" \ --learning_rate="5e-4" \ --warmup_steps="3000" \ --model_name_or_path="facebook/wav2vec2-base" \ --fp16 \ --dataset_name="timit_asr" \ --train_split_name="train" \ --validation_split_name="test" \ --orthography="timit" \ --preprocessing_num_workers="$(nproc)" \ --group_by_length \ --freeze_feature_extractor \ --verbose_logging \ ``` The resulting model and inference examples can be found [here](https://huggingface.co/elgeish/wav2vec2-base-timit-asr). Some of the arguments above may look unfamiliar, let's break down what's going on: `--orthography="timit"` applies certain text preprocessing rules, for tokenization and normalization, to clean up the dataset. In this case, we use the following instance of `Orthography`: ```python Orthography( do_lower_case=True, # break compounds like "quarter-century-old" and replace pauses "--" translation_table=str.maketrans({"-": " "}), ) ``` The instance above is used as follows: * creates a tokenizer with `do_lower_case=True` (ignores casing for input and lowercases output when decoding) * replaces `"-"` with `" "` to break compounds like `"quarter-century-old"` and to clean up suspended hyphens * cleans up consecutive whitespaces (replaces them with a single space: `" "`) * removes characters not in vocabulary (lacking respective sound units) `--verbose_logging` logs text preprocessing updates and when evaluating, using the validation split every `eval_steps`, logs references and predictions. ### Fine-Tuning with Arabic Speech Corpus Other datasets, like the [Arabic Speech Corpus dataset](https://huggingface.co/datasets/arabic_speech_corpus), require more work! Let's take a look at the [script](./finetune_large_xlsr_53_arabic_speech_corpus.sh) used to fine-tune [wav2vec2-large-xlsr-53](https://huggingface.co/elgeish/wav2vec2-large-xlsr-53-arabic): ```bash #!/usr/bin/env bash python run_asr.py \ --output_dir="./wav2vec2-large-xlsr-53-arabic-speech-corpus" \ --num_train_epochs="50" \ --per_device_train_batch_size="1" \ --per_device_eval_batch_size="1" \ --gradient_accumulation_steps="8" \ --evaluation_strategy="steps" \ --save_steps="500" \ --eval_steps="100" \ --logging_steps="50" \ --learning_rate="5e-4" \ --warmup_steps="3000" \ --model_name_or_path="elgeish/wav2vec2-large-xlsr-53-arabic" \ --fp16 \ --dataset_name="arabic_speech_corpus" \ --train_split_name="train" \ --validation_split_name="test" \ --max_duration_in_seconds="15" \ --orthography="buckwalter" \ --preprocessing_num_workers="$(nproc)" \ --group_by_length \ --freeze_feature_extractor \ --target_feature_extractor_sampling_rate \ --verbose_logging \ ``` First, let's understand how this dataset represents Arabic text; it uses a format called [Buckwalter transliteration](https://en.wikipedia.org/wiki/Buckwalter_transliteration). We use the [lang-trans](https://github.com/kariminf/lang-trans) package to convert back to Arabic when logging. The Buckwalter format only includes ASCII characters, some of which are non-alpha (e.g., `">"` maps to `"أ"`). `--orthography="buckwalter"` applies certain text preprocessing rules, for tokenization and normalization, to clean up the dataset. In this case, we use the following instance of `Orthography`: ```python Orthography( vocab_file=pathlib.Path(__file__).parent.joinpath("vocab/buckwalter.json"), word_delimiter_token="/", # "|" is Arabic letter alef with madda above words_to_remove={"sil"}, # fixing "sil" in arabic_speech_corpus dataset untransliterator=arabic.buckwalter.untransliterate, translation_table=str.maketrans(translation_table = { "-": " ", # sometimes used to represent pauses "^": "v", # fixing "tha" in arabic_speech_corpus dataset }), ) ``` The instance above is used as follows: * creates a tokenizer with Buckwalter vocabulary and `word_delimiter_token="/"` * replaces `"-"` with `" "` to clean up hyphens and fixes the orthography for `"ث"` * removes words used as indicators (in this case, `"sil"` is used for silence) * cleans up consecutive whitespaces (replaces them with a single space: `" "`) * removes characters not in vocabulary (lacking respective sound units) `--verbose_logging` logs text preprocessing updates and when evaluating, using the validation split every `eval_steps`, logs references and predictions. Using the Buckwalter format, text is also logged in Arabic abjad. `--target_feature_extractor_sampling_rate` resamples audio to target feature extractor's sampling rate (16kHz). `--max_duration_in_seconds="15"` filters out examples whose audio is longer than the specified limit, which helps with capping GPU memory usage. ### DeepSpeed Integration To learn how to deploy Deepspeed Integration please refer to [this guide](https://huggingface.co/transformers/main/main_classes/deepspeed.html#deepspeed-trainer-integration). But to get started quickly all you need is to install: ``` pip install deepspeed ``` and then use the default configuration files in this directory: * `ds_config_wav2vec2_zero2.json` * `ds_config_wav2vec2_zero3.json` Here are examples of how you can use DeepSpeed: (edit the value for `--num_gpus` to match the number of GPUs you have) ZeRO-2: ``` PYTHONPATH=../../../src deepspeed --num_gpus 2 \ run_asr.py \ --output_dir=output_dir --num_train_epochs=2 --per_device_train_batch_size=2 \ --per_device_eval_batch_size=2 --evaluation_strategy=steps --save_steps=500 --eval_steps=100 \ --logging_steps=5 --learning_rate=5e-4 --warmup_steps=3000 \ --model_name_or_path=patrickvonplaten/wav2vec2_tiny_random_robust \ --dataset_name=hf-internal-testing/librispeech_asr_dummy --dataset_config_name=clean \ --train_split_name=validation --validation_split_name=validation --orthography=timit \ --preprocessing_num_workers=1 --group_by_length --freeze_feature_extractor --verbose_logging \ --deepspeed ds_config_wav2vec2_zero2.json ``` For ZeRO-2 with more than 1 gpu you need to use (which is already in the example configuration file): ``` "zero_optimization": { ... "find_unused_parameters": true, ... } ``` ZeRO-3: ``` PYTHONPATH=../../../src deepspeed --num_gpus 2 \ run_asr.py \ --output_dir=output_dir --num_train_epochs=2 --per_device_train_batch_size=2 \ --per_device_eval_batch_size=2 --evaluation_strategy=steps --save_steps=500 --eval_steps=100 \ --logging_steps=5 --learning_rate=5e-4 --warmup_steps=3000 \ --model_name_or_path=patrickvonplaten/wav2vec2_tiny_random_robust \ --dataset_name=hf-internal-testing/librispeech_asr_dummy --dataset_config_name=clean \ --train_split_name=validation --validation_split_name=validation --orthography=timit \ --preprocessing_num_workers=1 --group_by_length --freeze_feature_extractor --verbose_logging \ --deepspeed ds_config_wav2vec2_zero3.json ``` ### Pretraining Wav2Vec2 The `run_pretrain.py` script allows one to pretrain a Wav2Vec2 model from scratch using Wav2Vec2's contrastive loss objective (see official [paper](https://arxiv.org/abs/2006.11477) for more information). It is recommended to pre-train Wav2Vec2 with Trainer + Deepspeed (please refer to [this guide](https://huggingface.co/transformers/main/main_classes/deepspeed.html#deepspeed-trainer-integration) for more information). Here is an example of how you can use DeepSpeed ZeRO-2 to pretrain a small Wav2Vec2 model: ``` PYTHONPATH=../../../src deepspeed --num_gpus 4 run_pretrain.py \ --output_dir="./wav2vec2-base-libri-100h" \ --num_train_epochs="3" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --gradient_accumulation_steps="2" \ --save_total_limit="3" \ --save_steps="500" \ --logging_steps="10" \ --learning_rate="5e-4" \ --weight_decay="0.01" \ --warmup_steps="3000" \ --model_name_or_path="patrickvonplaten/wav2vec2-base-libri-100h" \ --dataset_name="librispeech_asr" \ --dataset_config_name="clean" \ --train_split_name="train.100" \ --preprocessing_num_workers="4" \ --max_duration_in_seconds="10.0" \ --group_by_length \ --verbose_logging \ --fp16 \ --deepspeed ds_config_wav2vec2_zero2.json \ ``` ### Forced Alignment Character level forced alignment for audio and text pairs with wav2vec2 models finetuned on ASR task for a specific language. Inspired by [this](https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html) Pytorch tutorial. #### Input Formats Input format in script.txt Input format in wavs directroy 0000 sentence1 0000.wav 0001 sentence2 0001.wav #### Output Format Output directory will contain 0000.txt and 0001.txt. Each file will have format like below char score start_ms end_ms h 0.25 1440 1520 #### Run command ``` python alignment.py \ --model_name="arijitx/wav2vec2-xls-r-300m-bengali" \ --wav_dir="./wavs" --text_file="script.txt" \ --input_wavs_sr=48000 \ --output_dir="./out_alignment" \ --cuda ```
transformers/examples/research_projects/wav2vec2/README.md/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/README.md", "repo_id": "transformers", "token_count": 3568 }
282
<!--- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Image classification examples This directory contains 2 scripts that showcase how to fine-tune any model supported by the [`TFAutoModelForImageClassification` API](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.TFAutoModelForImageClassification) (such as [ViT](https://huggingface.co/docs/transformers/main/en/model_doc/vit), [ConvNeXT](https://huggingface.co/docs/transformers/main/en/model_doc/convnext), [ResNet](https://huggingface.co/docs/transformers/main/en/model_doc/resnet), [Swin Transformer](https://huggingface.co/docs/transformers/main/en/model_doc/swin)...) using TensorFlow. They can be used to fine-tune models on both [datasets from the hub](#using-datasets-from-hub) as well as on [your own custom data](#using-your-own-data). <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/image_classification_inference_widget.png" height="400" /> Try out the inference widget here: https://huggingface.co/google/vit-base-patch16-224 ## TensorFlow Based on the script [`run_image_classification.py`](https://github.com/huggingface/transformers/blob/main/examples/tensorflow/image-classification/run_image_classification.py). ### Using datasets from Hub Here we show how to fine-tune a Vision Transformer (`ViT`) on the [beans](https://huggingface.co/datasets/beans) dataset, to classify the disease type of bean leaves. The following will train a model and push it to the `amyeroberts/vit-base-beans` repo. ```bash python run_image_classification.py \ --dataset_name beans \ --output_dir ./beans_outputs/ \ --remove_unused_columns False \ --do_train \ --do_eval \ --push_to_hub \ --hub_model_id amyeroberts/vit-base-beans \ --learning_rate 2e-5 \ --num_train_epochs 5 \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --logging_strategy steps \ --logging_steps 10 \ --evaluation_strategy epoch \ --save_strategy epoch \ --load_best_model_at_end True \ --save_total_limit 3 \ --seed 1337 ``` 👀 See the results here: [amyeroberts/vit-base-beans](https://huggingface.co/amyeroberts/vit-base-beans). Note that you can replace the model and dataset by simply setting the `model_name_or_path` and `dataset_name` arguments respectively, with any model or dataset from the [hub](https://huggingface.co/). For an overview of all possible arguments, we refer to the [docs](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) of the `TrainingArguments`, which can be passed as flags. > If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it. ### Using your own data To use your own dataset, there are 2 ways: - you can either provide your own folders as `--train_dir` and/or `--validation_dir` arguments - you can upload your dataset to the hub (possibly as a private repo, if you prefer so), and simply pass the `--dataset_name` argument. Below, we explain both in more detail. #### Provide them as folders If you provide your own folders with images, the script expects the following directory structure: ```bash root/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png ``` In other words, you need to organize your images in subfolders, based on their class. You can then run the script like this: ```bash python run_image_classification.py \ --train_dir <path-to-train-root> \ --output_dir ./outputs/ \ --remove_unused_columns False \ --do_train \ --do_eval ``` Internally, the script will use the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature which will automatically turn the folders into 🤗 Dataset objects. ##### 💡 The above will split the train dir into training and evaluation sets - To control the split amount, use the `--train_val_split` flag. - To provide your own validation split in its own directory, you can pass the `--validation_dir <path-to-val-root>` flag. #### Upload your data to the hub, as a (possibly private) repo To upload your image dataset to the hub you can use the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature available in 🤗 Datasets. Simply do the following: ```python from datasets import load_dataset # example 1: local folder dataset = load_dataset("imagefolder", data_dir="path_to_your_folder") # example 2: local files (supported formats are tar, gzip, zip, xz, rar, zstd) dataset = load_dataset("imagefolder", data_files="path_to_zip_file") # example 3: remote files (supported formats are tar, gzip, zip, xz, rar, zstd) dataset = load_dataset("imagefolder", data_files="https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip") # example 4: providing several splits dataset = load_dataset("imagefolder", data_files={"train": ["path/to/file1", "path/to/file2"], "test": ["path/to/file3", "path/to/file4"]}) ``` `ImageFolder` will create a `label` column, and the label name is based on the directory name. Next, push it to the hub! ```python # assuming you have ran the huggingface-cli login command in a terminal dataset.push_to_hub("name_of_your_dataset") # if you want to push to a private repo, simply pass private=True: dataset.push_to_hub("name_of_your_dataset", private=True) ``` and that's it! You can now train your model by simply setting the `--dataset_name` argument to the name of your dataset on the hub (as explained in [Using datasets from the 🤗 hub](#using-datasets-from-hub)). More on this can also be found in [this blog post](https://huggingface.co/blog/image-search-datasets). ### Sharing your model on 🤗 Hub 0. If you haven't already, [sign up](https://huggingface.co/join) for a 🤗 account 1. Make sure you have `git-lfs` installed and git set up. ```bash $ apt install git-lfs $ git config --global user.email "[email protected]" $ git config --global user.name "Your Name" ``` 2. Log in with your HuggingFace account credentials using `huggingface-cli`: ```bash $ huggingface-cli login # ...follow the prompts ``` 3. When running the script, pass the following arguments: ```bash python run_image_classification.py \ --push_to_hub \ --push_to_hub_model_id <name-your-model> \ ... ```
transformers/examples/tensorflow/image-classification/README.md/0
{ "file_path": "transformers/examples/tensorflow/image-classification/README.md", "repo_id": "transformers", "token_count": 2317 }
283
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for translation. """ # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. import json import logging import os import sys import warnings from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np import tensorflow as tf from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForSeq2Seq, HfArgumentParser, KerasMetricCallback, M2M100Tokenizer, MBart50Tokenizer, MBart50TokenizerFast, MBartTokenizer, MBartTokenizerFast, PushToHubCallback, TFAutoModelForSeq2SeqLM, TFTrainingArguments, create_optimizer, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # region Dependencies and constants # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.38.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt") logger = logging.getLogger(__name__) MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer] # endregion # region Arguments @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ source_lang: str = field(default=None, metadata={"help": "Source language id for translation."}) target_lang: str = field(default=None, metadata={"help": "Target language id for translation."}) dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."} ) validation_file: Optional[str] = field( default=None, metadata={ "help": ( "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." ) }, ) test_file: Optional[str] = field( default=None, metadata={ "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_source_length: Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) val_max_target_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to model maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) num_beams: Optional[int] = field( default=1, metadata={ "help": ( "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " "which is used during ``evaluate`` and ``predict``." ) }, ) ignore_pad_token_for_loss: bool = field( default=True, metadata={ "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." }, ) source_prefix: Optional[str] = field( default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} ) forced_bos_token: Optional[str] = field( default=None, metadata={ "help": ( "The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for" " multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to" " be the target language token.(Usually it is the target language token)" ) }, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if self.val_max_target_length is None: self.val_max_target_length = self.max_target_length # endregion def main(): # region Argument parsing # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_translation", model_args, data_args, framework="tensorflow") # endregion # region Logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO) datasets.utils.logging.set_verbosity(logging.INFO) transformers.utils.logging.set_verbosity(logging.INFO) # Log on each process the small summary: logger.info(f"Training/evaluation parameters {training_args}") # endregion # region Detecting last checkpoint last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # endregion # Set seed before initializing model. set_seed(training_args.seed) # region Load datasets # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files this script will use the first column for the full texts and the second column for the # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] raw_datasets = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading # endregion # region Load model config and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) prefix = data_args.source_prefix if data_args.source_prefix is not None else "" # endregion # region Dataset preprocessing # We need to tokenize inputs and targets. if training_args.do_train: column_names = raw_datasets["train"].column_names elif training_args.do_eval: column_names = raw_datasets["validation"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, and/or `do_eval`.") return column_names = raw_datasets["train"].column_names # For translation we set the codes of our source and target languages (only useful for mBART, the others will # ignore those attributes). if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)): assert data_args.target_lang is not None and data_args.source_lang is not None, ( f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and " "--target_lang arguments." ) tokenizer.src_lang = data_args.source_lang tokenizer.tgt_lang = data_args.target_lang forced_bos_token_id = ( tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None ) # Get the language codes for input/target. source_lang = data_args.source_lang.split("_")[0] target_lang = data_args.target_lang.split("_")[0] padding = "max_length" if data_args.pad_to_max_length else False # Temporarily set max_target_length for training. max_target_length = data_args.max_target_length padding = "max_length" if data_args.pad_to_max_length else False def preprocess_function(examples): inputs = [ex[source_lang] for ex in examples["translation"]] targets = [ex[target_lang] for ex in examples["translation"]] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True) # Tokenize targets with the `text_target` keyword argument labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and data_args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) train_dataset = train_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on train dataset", ) else: train_dataset = None if training_args.do_eval: max_target_length = data_args.val_max_target_length if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = raw_datasets["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) eval_dataset = eval_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on validation dataset", ) else: eval_dataset = None # endregion with training_args.strategy.scope(): # region Prepare model model = TFAutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embeddings = model.get_input_embeddings() # Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings. # As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and # the weights will always be in embeddings.embeddings. if hasattr(embeddings, "embeddings"): embedding_size = embeddings.embeddings.shape[0] else: embedding_size = embeddings.weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)): model.config.forced_bos_token_id = forced_bos_token_id # endregion # region Set decoder_start_token_id if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): assert ( data_args.target_lang is not None and data_args.source_lang is not None ), "mBart requires --target_lang and --source_lang" if isinstance(tokenizer, MBartTokenizer): model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang] else: model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") # endregion # region Prepare TF Dataset objects label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=64, # Reduce the number of unique shapes for XLA, especially for generation return_tensors="np", ) num_replicas = training_args.strategy.num_replicas_in_sync total_train_batch_size = training_args.per_device_train_batch_size * num_replicas total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas dataset_options = tf.data.Options() dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names # yourself if you use this method, whereas they are automatically inferred from the model input names when # using model.prepare_tf_dataset() # For more info see the docs: # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset tf_train_dataset = model.prepare_tf_dataset( train_dataset, collate_fn=data_collator, batch_size=total_train_batch_size, shuffle=True, ).with_options(dataset_options) tf_eval_dataset = model.prepare_tf_dataset( eval_dataset, collate_fn=data_collator, batch_size=total_eval_batch_size, shuffle=False ).with_options(dataset_options) # endregion # region Optimizer and LR scheduling num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs) if training_args.warmup_steps > 0: num_warmup_steps = training_args.warmup_steps elif training_args.warmup_ratio > 0: num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) else: num_warmup_steps = 0 if training_args.do_train: optimizer, lr_schedule = create_optimizer( init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, adam_beta1=training_args.adam_beta1, adam_beta2=training_args.adam_beta2, adam_epsilon=training_args.adam_epsilon, weight_decay_rate=training_args.weight_decay, adam_global_clipnorm=training_args.max_grad_norm, ) else: optimizer = None # endregion # region Metric and postprocessing if training_args.do_eval: metric = evaluate.load("sacrebleu", cache_dir=model_args.cache_dir) if data_args.val_max_target_length is None: data_args.val_max_target_length = data_args.max_target_length gen_kwargs = { "max_length": data_args.val_max_target_length, "num_beams": data_args.num_beams, "no_repeat_ngram_size": 0, # Not supported under XLA right now, and some models set it by default } def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [[label.strip()] for label in labels] return preds, labels def compute_metrics(preds): predictions, labels = preds if isinstance(predictions, tuple): predictions = predictions[0] decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True) labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) metrics = metric.compute(predictions=decoded_preds, references=decoded_labels) return {"bleu": metrics["score"]} # The KerasMetricCallback allows metrics that are too complex to write as standard Keras metrics # to be computed each epoch. Any Python code can be included in the metric_fn. This is especially # useful for metrics like BLEU and ROUGE that perform string comparisons on decoded model outputs. # For more information, see the docs at # https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.KerasMetricCallback metric_callback = KerasMetricCallback( metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, predict_with_generate=True, use_xla_generation=True, generate_kwargs=gen_kwargs, ) callbacks = [metric_callback] else: callbacks = [] # endregion # region Preparing push_to_hub and model card push_to_hub_model_id = training_args.push_to_hub_model_id model_name = model_args.model_name_or_path.split("/")[-1] if not push_to_hub_model_id: push_to_hub_model_id = f"{model_name}-finetuned-{data_args.source_lang}-{data_args.target_lang}" model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"} if data_args.dataset_name is not None: model_card_kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: model_card_kwargs["dataset_args"] = data_args.dataset_config_name model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: model_card_kwargs["dataset"] = data_args.dataset_name languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None] if len(languages) > 0: model_card_kwargs["language"] = languages if training_args.push_to_hub: # Because this training can be quite long, we save once per epoch. callbacks.append( PushToHubCallback( output_dir=training_args.output_dir, hub_model_id=push_to_hub_model_id, hub_token=training_args.push_to_hub_token, tokenizer=tokenizer, **model_card_kwargs, ) ) # endregion # region Training eval_metrics = None # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=optimizer, jit_compile=training_args.xla) if training_args.do_train: logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {training_args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size = {total_train_batch_size}") logger.info(f" Total optimization steps = {num_train_steps}") if training_args.xla and not data_args.pad_to_max_length: logger.warning( "XLA training may be slow at first when --pad_to_max_length is not set " "until all possible shapes have been compiled." ) history = model.fit(tf_train_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks) eval_metrics = {key: val[-1] for key, val in history.history.items()} # endregion # region Validation if training_args.do_eval and not training_args.do_train: # Compiling generation with XLA yields enormous speedups, see https://huggingface.co/blog/tf-xla-generate @tf.function(jit_compile=True) def generate(**kwargs): return model.generate(**kwargs) if training_args.do_eval: logger.info("Evaluation...") for batch, labels in tf_eval_dataset: batch.update(gen_kwargs) generated_tokens = generate(**batch) if isinstance(generated_tokens, tuple): generated_tokens = generated_tokens[0] decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) metric.add_batch(predictions=decoded_preds, references=decoded_labels) eval_metrics = metric.compute() logger.info({"bleu": eval_metrics["score"]}) # endregion if training_args.output_dir is not None and eval_metrics is not None: output_eval_file = os.path.join(training_args.output_dir, "all_results.json") with open(output_eval_file, "w") as writer: writer.write(json.dumps(eval_metrics)) if training_args.output_dir is not None and not training_args.push_to_hub: # If we're not pushing to hub, at least save a local copy when we're done model.save_pretrained(training_args.output_dir) if __name__ == "__main__": main()
transformers/examples/tensorflow/translation/run_translation.py/0
{ "file_path": "transformers/examples/tensorflow/translation/run_translation.py", "repo_id": "transformers", "token_count": 13554 }
284
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def write_model_card(model_card_dir, src_lang, tgt_lang, model_name): texts = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] scores = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } pair = f"{src_lang}-{tgt_lang}" readme = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=True, exist_ok=True) path = os.path.join(model_card_dir, "README.md") print(f"Generating {path}") with open(path, "w", encoding="utf-8") as f: f.write(readme) # make sure we are under the root of the project repo_dir = Path(__file__).resolve().parent.parent.parent model_cards_dir = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: model_card_dir = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
transformers/scripts/fsmt/gen-card-allenai-wmt16.py/0
{ "file_path": "transformers/scripts/fsmt/gen-card-allenai-wmt16.py", "repo_id": "transformers", "token_count": 1885 }
285
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm logger = logging.get_logger(__name__) @dataclass class PyTorchBenchmarkArguments(BenchmarkArguments): deprecated_args = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__(self, **kwargs): """ This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be deleted """ for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: positive_arg = deprecated_arg[3:] setattr(self, positive_arg, not kwargs.pop(deprecated_arg)) logger.warning( f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) self.torchscript = kwargs.pop("torchscript", self.torchscript) self.torch_xla_tpu_print_metrics = kwargs.pop("torch_xla_tpu_print_metrics", self.torch_xla_tpu_print_metrics) self.fp16_opt_level = kwargs.pop("fp16_opt_level", self.fp16_opt_level) super().__init__(**kwargs) torchscript: bool = field(default=False, metadata={"help": "Trace the models using torchscript"}) torch_xla_tpu_print_metrics: bool = field(default=False, metadata={"help": "Print Xla/PyTorch tpu metrics"}) fp16_opt_level: str = field( default="O1", metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) }, ) @cached_property def _setup_devices(self) -> Tuple["torch.device", int]: requires_backends(self, ["torch"]) logger.info("PyTorch: setting up devices") if not self.cuda: device = torch.device("cpu") n_gpu = 0 elif is_torch_tpu_available(): device = xm.xla_device() n_gpu = 0 else: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() return device, n_gpu @property def is_tpu(self): return is_torch_tpu_available() and self.tpu @property def device_idx(self) -> int: requires_backends(self, ["torch"]) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def device(self) -> "torch.device": requires_backends(self, ["torch"]) return self._setup_devices[0] @property def n_gpu(self): requires_backends(self, ["torch"]) return self._setup_devices[1] @property def is_gpu(self): return self.n_gpu > 0
transformers/src/transformers/benchmark/benchmark_args.py/0
{ "file_path": "transformers/src/transformers/benchmark/benchmark_args.py", "repo_id": "transformers", "token_count": 1660 }
286
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters USE_XLA = False USE_AMP = False def train_command_factory(args: Namespace): """ Factory function used to instantiate training command from provided command line arguments. Returns: TrainCommand """ return TrainCommand(args) class TrainCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli Args: parser: Root parser to register command-specific arguments """ train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.") train_parser.add_argument( "--train_data", type=str, required=True, help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.", ) train_parser.add_argument( "--column_label", type=int, default=0, help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text", type=int, default=1, help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id", type=int, default=2, help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.") train_parser.add_argument( "--validation_split", type=float, default=0.1, help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.", ) train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.") train_parser.add_argument( "--task", type=str, default="text_classification", help="Task to train the model on." ) train_parser.add_argument( "--model", type=str, default="bert-base-uncased", help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.") train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.") train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.") train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.") train_parser.set_defaults(func=train_command_factory) def __init__(self, args: Namespace): self.logger = logging.get_logger("transformers-cli/training") self.framework = "tf" if is_tf_available() else "torch" os.makedirs(args.output, exist_ok=True) self.output = args.output self.column_label = args.column_label self.column_text = args.column_text self.column_id = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": self.pipeline = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") self.train_dataset = Processor.create_from_csv( args.train_data, column_label=args.column_label, column_text=args.column_text, column_id=args.column_id, skip_first_row=args.skip_first_row, ) self.valid_dataset = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") self.valid_dataset = Processor.create_from_csv( args.validation_data, column_label=args.column_label, column_text=args.column_text, column_id=args.column_id, skip_first_row=args.skip_first_row, ) self.validation_split = args.validation_split self.train_batch_size = args.train_batch_size self.valid_batch_size = args.valid_batch_size self.learning_rate = args.learning_rate self.adam_epsilon = args.adam_epsilon def run(self): if self.framework == "tf": return self.run_tf() return self.run_torch() def run_torch(self): raise NotImplementedError def run_tf(self): self.pipeline.fit( self.train_dataset, validation_data=self.valid_dataset, validation_split=self.validation_split, learning_rate=self.learning_rate, adam_epsilon=self.adam_epsilon, train_batch_size=self.train_batch_size, valid_batch_size=self.valid_batch_size, ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
transformers/src/transformers/commands/train.py/0
{ "file_path": "transformers/src/transformers/commands/train.py", "repo_id": "transformers", "token_count": 2535 }
287
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Very heavily inspired by the official evaluation script for SQuAD version 2.0 which was modified by XLNet authors to update `find_best_threshold` scripts for SQuAD V2.0 In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted probability that a question is unanswerable. """ import collections import json import math import re import string from ...models.bert import BasicTokenizer from ...utils import logging logger = logging.get_logger(__name__) def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) return re.sub(regex, " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def get_tokens(s): if not s: return [] return normalize_answer(s).split() def compute_exact(a_gold, a_pred): return int(normalize_answer(a_gold) == normalize_answer(a_pred)) def compute_f1(a_gold, a_pred): gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def get_raw_scores(examples, preds): """ Computes the exact and f1 scores from the examples and the model predictions """ exact_scores = {} f1_scores = {} for example in examples: qas_id = example.qas_id gold_answers = [answer["text"] for answer in example.answers if normalize_answer(answer["text"])] if not gold_answers: # For unanswerable questions, only correct answer is empty string gold_answers = [""] if qas_id not in preds: print(f"Missing prediction for {qas_id}") continue prediction = preds[qas_id] exact_scores[qas_id] = max(compute_exact(a, prediction) for a in gold_answers) f1_scores[qas_id] = max(compute_f1(a, prediction) for a in gold_answers) return exact_scores, f1_scores def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): new_scores = {} for qid, s in scores.items(): pred_na = na_probs[qid] > na_prob_thresh if pred_na: new_scores[qid] = float(not qid_to_has_ans[qid]) else: new_scores[qid] = s return new_scores def make_eval_dict(exact_scores, f1_scores, qid_list=None): if not qid_list: total = len(exact_scores) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(f1_scores.values()) / total), ("total", total), ] ) else: total = len(qid_list) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total), ("total", total), ] ) def merge_eval(main_eval, new_eval, prefix): for k in new_eval: main_eval[f"{prefix}_{k}"] = new_eval[k] def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for i, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] has_ans_score, has_ans_cnt = 0, 0 for qid in qid_list: if not qid_to_has_ans[qid]: continue has_ans_cnt += 1 if qid not in scores: continue has_ans_score += scores[qid] return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans) main_eval["best_exact"] = best_exact main_eval["best_exact_thresh"] = exact_thresh main_eval["best_f1"] = best_f1 main_eval["best_f1_thresh"] = f1_thresh main_eval["has_ans_exact"] = has_ans_exact main_eval["has_ans_f1"] = has_ans_f1 def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for _, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] return 100.0 * best_score / len(scores), best_thresh def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans) main_eval["best_exact"] = best_exact main_eval["best_exact_thresh"] = exact_thresh main_eval["best_f1"] = best_f1 main_eval["best_f1_thresh"] = f1_thresh def squad_evaluate(examples, preds, no_answer_probs=None, no_answer_probability_threshold=1.0): qas_id_to_has_answer = {example.qas_id: bool(example.answers) for example in examples} has_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if has_answer] no_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if not has_answer] if no_answer_probs is None: no_answer_probs = {k: 0.0 for k in preds} exact, f1 = get_raw_scores(examples, preds) exact_threshold = apply_no_ans_threshold( exact, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold ) f1_threshold = apply_no_ans_threshold(f1, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold) evaluation = make_eval_dict(exact_threshold, f1_threshold) if has_answer_qids: has_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=has_answer_qids) merge_eval(evaluation, has_ans_eval, "HasAns") if no_answer_qids: no_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=no_answer_qids) merge_eval(evaluation, no_ans_eval, "NoAns") if no_answer_probs: find_all_best_thresh(evaluation, preds, exact, f1, no_answer_probs, qas_id_to_has_answer) return evaluation def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heuristic between # `pred_text` and `orig_text` to get a character-to-character alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for i, c in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: logger.info(f"Unable to find text: '{pred_text}' in '{orig_text}'") return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logger.info(f"Length not equal after stripping spaces: '{orig_ns_text}' vs '{tok_ns_text}'") return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for i, tok_index in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: logger.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: logger.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position : (orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def compute_predictions_logits( all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, verbose_logging, version_2_with_negative, null_score_diff_threshold, tokenizer, ): """Write final predictions to the json file and log-odds of null if needed.""" if output_prediction_file: logger.info(f"Writing predictions to: {output_prediction_file}") if output_nbest_file: logger.info(f"Writing nbest to: {output_nbest_file}") if output_null_log_odds_file and version_2_with_negative: logger.info(f"Writing null_log_odds to: {output_null_log_odds_file}") example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"] ) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for example_index, example in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min null score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for feature_index, feature in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index], ) ) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit, ) ) prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"] ) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] tok_text = tokenizer.convert_tokens_to_string(tok_tokens) # tok_text = " ".join(tok_tokens) # # # De-tokenize WordPieces that have been split off. # tok_text = tok_text.replace(" ##", "") # tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append(_NbestPrediction(text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could only have single null prediction. # So we just create a nonce prediction in this case to avoid failure. if len(nbest) == 1: nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) if len(nbest) < 1: raise ValueError("No valid predictions") total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for i, entry in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) if len(nbest_json) < 1: raise ValueError("No valid predictions") if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json if output_prediction_file: with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") if output_nbest_file: with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if output_null_log_odds_file and version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions def compute_predictions_log_probs( all_examples, all_features, all_results, n_best_size, max_answer_length, output_prediction_file, output_nbest_file, output_null_log_odds_file, start_n_top, end_n_top, version_2_with_negative, tokenizer, verbose_logging, ): """ XLNet write prediction logic (more complex than Bert's). Write final predictions to the json file and log-odds of null if needed. Requires utils_squad_evaluate.py """ _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_log_prob", "end_log_prob"] ) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_log_prob", "end_log_prob"] ) logger.info(f"Writing predictions to: {output_prediction_file}") example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for example_index, example in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive for feature_index, feature in enumerate(features): result = unique_id_to_result[feature.unique_id] cur_null_score = result.cls_logits # if we could have irrelevant answers, get the min score of irrelevant score_null = min(score_null, cur_null_score) for i in range(start_n_top): for j in range(end_n_top): start_log_prob = result.start_logits[i] start_index = result.start_top_index[i] j_index = i * end_n_top + j end_log_prob = result.end_logits[j_index] end_index = result.end_top_index[j_index] # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= feature.paragraph_len - 1: continue if end_index >= feature.paragraph_len - 1: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_log_prob=start_log_prob, end_log_prob=end_log_prob, ) ) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_log_prob + x.end_log_prob), reverse=True ) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] # XLNet un-tokenizer # Let's keep it simple for now and see if we need all this later. # # tok_start_to_orig_index = feature.tok_start_to_orig_index # tok_end_to_orig_index = feature.tok_end_to_orig_index # start_orig_pos = tok_start_to_orig_index[pred.start_index] # end_orig_pos = tok_end_to_orig_index[pred.end_index] # paragraph_text = example.paragraph_text # final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip() # Previously used Bert untokenizer tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] tok_text = tokenizer.convert_tokens_to_string(tok_tokens) # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) if hasattr(tokenizer, "do_lower_case"): do_lower_case = tokenizer.do_lower_case else: do_lower_case = tokenizer.do_lowercase_and_remove_accent final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction(text=final_text, start_log_prob=pred.start_log_prob, end_log_prob=pred.end_log_prob) ) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append(_NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6)) total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_log_prob + entry.end_log_prob) if not best_non_null_entry: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for i, entry in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_log_prob"] = entry.start_log_prob output["end_log_prob"] = entry.end_log_prob nbest_json.append(output) if len(nbest_json) < 1: raise ValueError("No valid predictions") if best_non_null_entry is None: raise ValueError("No valid predictions") score_diff = score_null scores_diff_json[example.qas_id] = score_diff # note(zhiliny): always predict best_non_null_entry # and the evaluation script will search for the best threshold all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions
transformers/src/transformers/data/metrics/squad_metrics.py/0
{ "file_path": "transformers/src/transformers/data/metrics/squad_metrics.py", "repo_id": "transformers", "token_count": 13819 }
288
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from collections import UserDict from typing import Dict, List, Optional, Tuple, Union import numpy as np import torch from ..utils import add_start_docstrings from .beam_constraints import Constraint, ConstraintListState PROCESS_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) next_scores (`torch.FloatTensor` of shape `(batch_size, 2 * num_beams)`): Current scores of the top `2 * num_beams` non-finished beam hypotheses. next_tokens (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`): `input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses. next_indices (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`): Beam indices indicating to which beam hypothesis the `next_tokens` correspond. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. beam_indices (`torch.LongTensor`, *optional*): Beam indices indicating to which beam hypothesis each token correspond. group_index (`int`, *optional*): The index of the group of beams. Used with [`~PreTrainedModel.group_beam_search`]. Return: `UserDict`: A dictionary composed of the fields as defined above: - **next_beam_scores** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Updated scores of all non-finished beams. - **next_beam_tokens** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Next tokens to be added to the non-finished beam_hypotheses. - **next_beam_indices** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Beam indices indicating to which beam the next tokens shall be added. """ FINALIZE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) final_beam_scores (`torch.FloatTensor` of shape `(batch_size * num_beams)`): The final scores of all non-finished beams. final_beam_tokens (`torch.FloatTensor` of shape `(batch_size * num_beams)`): The last tokens to be added to the non-finished beam_hypotheses. final_beam_indices (`torch.FloatTensor` of shape `(batch_size * num_beams)`): The beam indices indicating to which beam the `final_beam_tokens` shall be added. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. Return: `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ class BeamScorer(ABC): """ Abstract base class for all beam scorers that are used for [`~PreTrainedModel.beam_search`] and [`~PreTrainedModel.beam_sample`]. """ @abstractmethod @add_start_docstrings(PROCESS_INPUTS_DOCSTRING) def process( self, input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, **kwargs, ) -> Tuple[torch.Tensor]: raise NotImplementedError("This is an abstract method.") @abstractmethod @add_start_docstrings(FINALIZE_INPUTS_DOCSTRING) def finalize( self, input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, max_length: int, **kwargs, ) -> torch.LongTensor: raise NotImplementedError("This is an abstract method.") class BeamSearchScorer(BeamScorer): r""" [`BeamScorer`] implementing standard beam search decoding. Adapted in part from [Facebook's XLM beam search code](https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529). Reference for the diverse beam search algorithm and implementation [Ashwin Kalyan's DBS implementation](https://github.com/ashwinkalyan/dbs/blob/master/dbs/beam_utils.lua) Args: batch_size (`int`): Batch Size of `input_ids` for which standard beam search decoding is run in parallel. num_beams (`int`): Number of beams for beam search. device (`torch.device`): Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be allocated. length_penalty (`float`, *optional*, defaults to 1.0): Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while `length_penalty` < 0.0 encourages shorter sequences. do_early_stopping (`bool` or `str`, *optional*, defaults to `False`): Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values: `True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an heuristic is applied and the generation stops when is it very unlikely to find better candidates; `"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical beam search algorithm). num_beam_hyps_to_keep (`int`, *optional*, defaults to 1): The number of beam hypotheses that shall be returned upon calling [`~transformers.BeamSearchScorer.finalize`]. num_beam_groups (`int`, *optional*, defaults to 1): Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams. See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details. max_length (`int`, *optional*): The maximum length of the sequence to be generated. """ def __init__( self, batch_size: int, num_beams: int, device: torch.device, length_penalty: Optional[float] = 1.0, do_early_stopping: Optional[Union[bool, str]] = False, num_beam_hyps_to_keep: Optional[int] = 1, num_beam_groups: Optional[int] = 1, max_length: Optional[int] = None, ): self.num_beams = num_beams self.device = device self.length_penalty = length_penalty self.do_early_stopping = do_early_stopping self.num_beam_hyps_to_keep = num_beam_hyps_to_keep self.num_beam_groups = num_beam_groups self.group_size = self.num_beams // self.num_beam_groups self._is_init = False # self._beam_hyps[i*self.num_beam_groups+j] is the beam_hyps of the j-th group in the i-th mini-batch. # If group_beam_search is not used, the list consists of `batch_size` beam_hyps. self._beam_hyps = [ BeamHypotheses( num_beams=self.group_size, length_penalty=self.length_penalty, early_stopping=self.do_early_stopping, max_length=max_length, ) for _ in range(batch_size * self.num_beam_groups) ] # self._done[i*self.num_beam_groups+j] indicates whether the generation of the beam_hyps of the j-th group # in the i-th mini-batch is complete. self._done = torch.tensor( [False for _ in range(batch_size * self.num_beam_groups)], dtype=torch.bool, device=self.device ) if not isinstance(num_beams, int) or num_beams <= 1: raise ValueError( f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1," " one should make use of `greedy_search` instead." ) if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0): raise ValueError( "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be" f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}." ) @property def is_done(self) -> bool: return self._done.all() def process( self, input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, pad_token_id: Optional[int] = None, eos_token_id: Optional[Union[int, List[int]]] = None, beam_indices: Optional[torch.LongTensor] = None, group_index: Optional[int] = 0, decoder_prompt_len: Optional[int] = 0, ) -> Dict[str, torch.Tensor]: # add up to the length which the next_scores is calculated on (including decoder prompt) cur_len = input_ids.shape[-1] + 1 batch_size = len(self._beam_hyps) // self.num_beam_groups if not (batch_size == (input_ids.shape[0] // self.group_size)): if self.num_beam_groups > 1: raise ValueError( f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam " f"size of {self.group_size} is expected by the beam scorer." ) else: raise ValueError( f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of " f"{self.group_size} is expected by the beam scorer." ) device = input_ids.device next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device) next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device) next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device) if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] for batch_idx in range(batch_size): batch_group_idx = batch_idx * self.num_beam_groups + group_index if self._done[batch_group_idx]: if self.num_beams < len(self._beam_hyps[batch_group_idx]): raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated") if eos_token_id is None or pad_token_id is None: raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined") # pad the batch next_beam_scores[batch_idx, :] = 0 next_beam_tokens[batch_idx, :] = pad_token_id next_beam_indices[batch_idx, :] = 0 continue # next tokens for this sentence beam_idx = 0 for beam_token_rank, (next_token, next_score, next_index) in enumerate( zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx]) ): batch_beam_idx = batch_idx * self.group_size + next_index # add to generated hypotheses if end of sentence if (eos_token_id is not None) and (next_token.item() in eos_token_id): # if beam_token does not belong to top num_beams tokens, it should not be added is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size if is_beam_token_worse_than_top_num_beams: continue if beam_indices is not None: beam_index = beam_indices[batch_beam_idx] beam_index = beam_index + (batch_beam_idx,) else: beam_index = None self._beam_hyps[batch_group_idx].add( input_ids[batch_beam_idx].clone(), next_score.item(), beam_indices=beam_index, generated_len=cur_len - decoder_prompt_len, ) else: # add next predicted token since it is not eos_token next_beam_scores[batch_idx, beam_idx] = next_score next_beam_tokens[batch_idx, beam_idx] = next_token next_beam_indices[batch_idx, beam_idx] = batch_beam_idx beam_idx += 1 # once the beam for next step is full, don't add more tokens to it. if beam_idx == self.group_size: break if beam_idx < self.group_size: raise ValueError( f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:" f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected." ) # Check if we are done so that we can save a pad step if all(done) self._done[batch_group_idx] = self._done[batch_group_idx] or self._beam_hyps[batch_group_idx].is_done( next_scores[batch_idx].max().item(), cur_len, decoder_prompt_len ) return UserDict( { "next_beam_scores": next_beam_scores.view(-1), "next_beam_tokens": next_beam_tokens.view(-1), "next_beam_indices": next_beam_indices.view(-1), } ) def finalize( self, input_ids: torch.LongTensor, final_beam_scores: torch.FloatTensor, final_beam_tokens: torch.LongTensor, final_beam_indices: torch.LongTensor, max_length: int, pad_token_id: Optional[int] = None, eos_token_id: Optional[Union[int, List[int]]] = None, beam_indices: Optional[torch.LongTensor] = None, decoder_prompt_len: Optional[int] = 0, ) -> Tuple[torch.LongTensor]: batch_size = len(self._beam_hyps) // self.num_beam_groups if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] # finalize all open beam hypotheses and add to generated hypotheses for batch_group_idx, beam_hyp in enumerate(self._beam_hyps): if self._done[batch_group_idx]: continue # all open beam hypotheses are added to the beam hypothesis # beam hypothesis class automatically keeps the best beams for index_per_group in range(self.group_size): batch_beam_idx = batch_group_idx * self.group_size + index_per_group final_score = final_beam_scores[batch_beam_idx].item() final_tokens = input_ids[batch_beam_idx] beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None generated_len = final_tokens.shape[-1] - decoder_prompt_len beam_hyp.add(final_tokens, final_score, beam_indices=beam_index, generated_len=generated_len) # select the best hypotheses sent_lengths = input_ids.new(batch_size * self.num_beam_hyps_to_keep) best = [] best_indices = [] best_scores = torch.zeros(batch_size * self.num_beam_hyps_to_keep, device=self.device, dtype=torch.float32) # retrieve best hypotheses for i in range(batch_size): beam_hyps_in_batch = self._beam_hyps[i * self.num_beam_groups : (i + 1) * self.num_beam_groups] candidate_beams = [beam for beam_hyp in beam_hyps_in_batch for beam in beam_hyp.beams] sorted_hyps = sorted(candidate_beams, key=lambda x: x[0]) for j in range(self.num_beam_hyps_to_keep): best_hyp_tuple = sorted_hyps.pop() best_score = best_hyp_tuple[0] best_hyp = best_hyp_tuple[1] best_index = best_hyp_tuple[2] sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp) # append hyp to lists best.append(best_hyp) # append indices to list best_indices.append(best_index) best_scores[i * self.num_beam_hyps_to_keep + j] = best_score # prepare for adding eos sent_lengths_max = sent_lengths.max().item() + 1 sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max decoded: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len) if len(best_indices) > 0 and best_indices[0] is not None: indices: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len) else: indices = None # shorter batches are padded if needed if sent_lengths.min().item() != sent_lengths.max().item(): if pad_token_id is None: raise ValueError("`pad_token_id` has to be defined") decoded.fill_(pad_token_id) if indices is not None: indices.fill_(-1) # fill with hypotheses and eos_token_id if the latter fits in for i, (hypo, best_idx) in enumerate(zip(best, best_indices)): decoded[i, : sent_lengths[i]] = hypo if indices is not None: indices[i, : len(best_idx)] = torch.tensor(best_idx) if sent_lengths[i] < sent_max_len: # inserting only the first eos_token_id decoded[i, sent_lengths[i]] = eos_token_id[0] return UserDict( { "sequences": decoded, "sequence_scores": best_scores, "beam_indices": indices, } ) class ConstrainedBeamSearchScorer(BeamScorer): r""" [`BeamScorer`] implementing constrained beam search decoding. Args: batch_size (`int`): Batch Size of `input_ids` for which standard beam search decoding is run in parallel. num_beams (`int`): Number of beams for beam search. constraints (`List[Constraint]`): A list of positive constraints represented as `Constraint` objects that must be fulfilled in the generation output. For more information, the documentation of [`Constraint`] should be read. device (`torch.device`): Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be allocated. length_penalty (`float`, *optional*, defaults to 1.0): Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while `length_penalty` < 0.0 encourages shorter sequences. do_early_stopping (`bool` or `str`, *optional*, defaults to `False`): Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values: `True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an heuristic is applied and the generation stops when is it very unlikely to find better candidates; `"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical beam search algorithm). num_beam_hyps_to_keep (`int`, *optional*, defaults to 1): The number of beam hypotheses that shall be returned upon calling [`~transformers.BeamSearchScorer.finalize`]. num_beam_groups (`int`, *optional*, defaults to 1): Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams. See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details. max_length (`int`, *optional*): The maximum length of the sequence to be generated. """ def __init__( self, batch_size: int, num_beams: int, constraints: List[Constraint], device: torch.device, length_penalty: Optional[float] = 1.0, do_early_stopping: Optional[Union[bool, str]] = False, num_beam_hyps_to_keep: Optional[int] = 1, num_beam_groups: Optional[int] = 1, max_length: Optional[int] = None, ): self.num_beams = num_beams self.device = device self.length_penalty = length_penalty self.do_early_stopping = do_early_stopping self.num_beam_hyps_to_keep = num_beam_hyps_to_keep self.num_beam_groups = num_beam_groups self.group_size = self.num_beams // self.num_beam_groups self.constraints = constraints self._is_init = False self._beam_hyps = [ BeamHypotheses( num_beams=self.num_beams, length_penalty=self.length_penalty, early_stopping=self.do_early_stopping, max_length=max_length, ) for _ in range(batch_size) ] self._done = torch.tensor([False for _ in range(batch_size)], dtype=torch.bool, device=self.device) if not isinstance(num_beams, int) or num_beams <= 1: raise ValueError( f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1," " one should make use of `greedy_search` instead." ) if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0): raise ValueError( "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be" f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}." ) @property def is_done(self) -> bool: return self._done.all() def make_constraint_states(self, n): return [ConstraintListState([constraint.copy() for constraint in self.constraints]) for _ in range(n)] def check_completes_constraints(self, sequence): new_state = self.make_constraint_states(1)[0] new_state.reset(sequence) return new_state.completed def process( self, input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, scores_for_all_vocab: torch.FloatTensor, pad_token_id: Optional[int] = None, eos_token_id: Optional[Union[int, List[int]]] = None, beam_indices: Optional[torch.LongTensor] = None, decoder_prompt_len: Optional[int] = 0, ) -> Tuple[torch.Tensor]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) next_scores (`torch.FloatTensor` of shape `(batch_size, 2 * num_beams)`): Current scores of the top `2 * num_beams` non-finished beam hypotheses. next_tokens (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`): `input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses. next_indices (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`): Beam indices indicating to which beam hypothesis the `next_tokens` correspond. scores_for_all_vocab (`torch.FloatTensor` of shape `(batch_size * num_beams, sequence_length)`): The scores of all tokens in the vocabulary for each of the beam hypotheses. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. beam_indices (`torch.LongTensor`, *optional*): Beam indices indicating to which beam hypothesis each token correspond. decoder_prompt_len (`int`, *optional*): The length of prompt that is included in the input to decoder. Return: `UserDict`: A dictionary composed of the fields as defined above: - **next_beam_scores** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Updated scores of all non-finished beams. - **next_beam_tokens** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Next tokens to be added to the non-finished beam_hypotheses. - **next_beam_indices** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Beam indices indicating to which beam the next tokens shall be added. """ # add up to the length which the next_scores is calculated on (including decoder prompt) cur_len = input_ids.shape[-1] + 1 batch_size = len(self._beam_hyps) if not (batch_size == (input_ids.shape[0] // self.group_size)): if self.num_beam_groups > 1: raise ValueError( f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam " f"size of {self.group_size} is expected by the beam scorer." ) else: raise ValueError( f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of " f"{self.group_size} is expected by the beam scorer." ) device = input_ids.device next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device) next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device) next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device) if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] for batch_idx, beam_hyp in enumerate(self._beam_hyps): if self._done[batch_idx]: if self.num_beams < len(beam_hyp): raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated") if eos_token_id is None or pad_token_id is None: raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined") # pad the batch next_beam_scores[batch_idx, :] = 0 next_beam_tokens[batch_idx, :] = pad_token_id next_beam_indices[batch_idx, :] = 0 continue # next tokens for this sentence. beam_idx = 0 for beam_token_rank, (next_token, next_score, next_index) in enumerate( zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx]) ): batch_beam_idx = batch_idx * self.group_size + next_index # add to generated hypotheses if end of sentence if (eos_token_id is not None) and (next_token.item() in eos_token_id): # if beam_token does not belong to top num_beams tokens, it should not be added is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size if is_beam_token_worse_than_top_num_beams: continue completes_constraint = self.check_completes_constraints(input_ids[batch_beam_idx].cpu().tolist()) if completes_constraint: if beam_indices is not None: beam_index = beam_indices[batch_beam_idx] beam_index = beam_index + (batch_beam_idx,) else: beam_index = None beam_hyp.add( input_ids[batch_beam_idx].clone(), next_score.item(), beam_indices=beam_index, generated_len=cur_len - decoder_prompt_len, ) else: # add next predicted token since it is not eos_token next_beam_scores[batch_idx, beam_idx] = next_score next_beam_tokens[batch_idx, beam_idx] = next_token next_beam_indices[batch_idx, beam_idx] = batch_beam_idx beam_idx += 1 # once the beam for next step is full, don't add more tokens to it. if beam_idx == self.group_size: break new_scores, new_tokens, new_indices = self.step_sentence_constraint( batch_idx, input_ids, scores_for_all_vocab, next_beam_scores[batch_idx], next_beam_tokens[batch_idx], next_beam_indices[batch_idx], ) next_beam_scores[batch_idx] = new_scores next_beam_tokens[batch_idx] = new_tokens next_beam_indices[batch_idx] = new_indices if beam_idx < self.group_size: raise ValueError( f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:" f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected." ) # Check if we are done so that we can save a pad step if all(done) self._done[batch_idx] = self._done[batch_idx] or beam_hyp.is_done( next_scores[batch_idx].max().item(), cur_len, decoder_prompt_len ) return UserDict( { "next_beam_scores": next_beam_scores.view(-1), "next_beam_tokens": next_beam_tokens.view(-1), "next_beam_indices": next_beam_indices.view(-1), } ) def step_sentence_constraint( self, batch_idx: int, input_ids: torch.LongTensor, vocab_scores: torch.FloatTensor, sent_beam_scores: torch.FloatTensor, sent_beam_tokens: torch.LongTensor, sent_beam_indices: torch.LongTensor, push_progress: bool = False, ): # sent_beam_tokens are the next {num_beams} number of tokens that are under consideration for this beam # (candidate next tokens) # 1. Adding "advance_tokens" # using ConstraintStateList.advance(), we propose new tokens to be added into this "candidate list" that will # advance us in fulfilling the constraints. # 2. Selecting best candidates such that we end up with highest probable candidates # that fulfill our constraints. orig_len = sent_beam_indices.size(0) device = sent_beam_indices.device # initialize states topk_contraint_states = self.make_constraint_states(orig_len) advance_constraint_states = self.make_constraint_states(orig_len) sidx, eidx = batch_idx * orig_len, (batch_idx + 1) * orig_len this_batch_input_ids = input_ids[sidx:eidx] this_batch_token_scores = vocab_scores[sidx:eidx] full_hypotheses = torch.cat((input_ids[sent_beam_indices], sent_beam_tokens.unsqueeze(-1)), dim=-1) # need to make new hypothesis that advance the constraints track_new = { "new_seqs": full_hypotheses.tolist(), "new_states": [], "new_indices": [], "new_tokens": [], "new_scores": [], } for seq_idx, pre_seq in enumerate(this_batch_input_ids): # pre_seq = ith sequence generated before this step. # input_ids -> (topk) generic beam search best model next tokens # -> (advance) constraints forcing the next token # either way, we need to sort them into "banks" later, so store a "ConstraintListState" for all types of # hypotheses. topk_state = topk_contraint_states[seq_idx] topk_state.reset(full_hypotheses[seq_idx].cpu().tolist()) advance_state = advance_constraint_states[seq_idx] advance_state.reset(pre_seq.cpu().tolist()) if not advance_state.completed: advance_tokens = torch.LongTensor(advance_state.advance()).to(device) for advance_token in advance_tokens: # since adding each `advance_token` leads to a different hypothesis, create new state instance. new_state = advance_state.copy(stateful=True) new_state.add(advance_token.cpu().tolist()) advance_seq = torch.cat((pre_seq, advance_token.unsqueeze(0)), -1).cpu().tolist() if advance_seq not in track_new["new_seqs"]: # prevent duplicates, which are basically bound to happen in this process. track_new["new_seqs"].append(advance_seq) track_new["new_indices"].append(sidx + seq_idx) # idx -> global idx across all the batches track_new["new_tokens"].append(advance_token) track_new["new_scores"].append(this_batch_token_scores[seq_idx].take(advance_token)) track_new["new_states"].append(new_state) elif push_progress: # Basically, `sent_beam_indices` often chooses very little among `input_ids` the generated sequences that # actually fulfill our constraints. For example, let constraints == ["loves pies"] and # pre_seq_1 = "The child loves pies and" pre_seq_2 = "The child plays in the playground and" # Without this step, if `sent_beam_indices` is something like [1,1], then # 1. `pre_seq_1` won't be added to the list of (topk) hypothesis since it's not in the indices and # 2. it won't be added to the list of (advance) hypothesis since it's completed already. (this is # the else part of `if constraints_completed[seq_idx]`) # 3. it ends up simply getting removed from consideration. # #3 might be fine and actually desired, since it's likely that it's a low-probability output anyways, # especially if it's not in the list of `sent_beam_indices`. But this often leads to lengthened beam # search times, since completed sequences keep getting removed after all this effort for constrained # generation. # Here, we basically take `pre_seq_1` and to "push" it into the considered list of hypotheses, by simply # appending the next likely token in the vocabulary and adding it to the list of hypotheses. new_score, new_token = torch.max(this_batch_token_scores[seq_idx], 0) # some next probable token advance_seq = torch.cat((pre_seq, new_token.unsqueeze(0)), -1) advance_state = advance_constraint_states[seq_idx] advance_seq = advance_seq.cpu().tolist() advance_state.reset(advance_seq) if advance_seq not in track_new["new_seqs"]: # but still don't want to have duplicates track_new["new_seqs"].append(advance_seq) track_new["new_indices"].append(seq_idx) track_new["new_tokens"].append(new_token) track_new["new_scores"].append(new_score) track_new["new_states"].append(advance_state) if len(track_new["new_indices"]) > 0: new_indices = torch.tensor(track_new["new_indices"]).to(device) new_tokens = torch.stack(track_new["new_tokens"]).to(device) new_scores = torch.stack(track_new["new_scores"]).to(device) all_states = topk_contraint_states + track_new["new_states"] all_tokens = torch.cat((sent_beam_tokens, new_tokens), -1) all_scores = torch.cat((sent_beam_scores, new_scores), -1) all_banks = torch.tensor([one.get_bank() for one in all_states]).to(device) zipped = all_banks * 100 + all_scores indices = zipped.sort(descending=True).indices sorted_banks = all_banks[indices] # Then we end up with {sorted among bank C}, {sorted among bank C-1}, ..., {sorted among bank 0} counter = -1 cur_bank = sorted_banks[0] increments = [] for bank in sorted_banks: if bank == cur_bank: counter += 1 else: counter = 0 cur_bank = bank increments.append(counter) rearrangers = torch.tensor(np.argsort(increments, kind="mergesort")) indices = indices[rearrangers][:orig_len] sent_beam_scores = all_scores[indices] sent_beam_tokens = all_tokens[indices] sent_beam_indices = torch.cat((sent_beam_indices, new_indices))[indices] return sent_beam_scores, sent_beam_tokens, sent_beam_indices def finalize( self, input_ids: torch.LongTensor, final_beam_scores: torch.FloatTensor, final_beam_tokens: torch.LongTensor, final_beam_indices: torch.LongTensor, max_length: int, pad_token_id: Optional[int] = None, eos_token_id: Optional[Union[int, List[int]]] = None, beam_indices: Optional[torch.LongTensor] = None, decoder_prompt_len: Optional[int] = 0, ) -> Tuple[torch.LongTensor]: batch_size = len(self._beam_hyps) if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] # finalize all open beam hypotheses and add to generated hypotheses for batch_idx, beam_hyp in enumerate(self._beam_hyps): if self._done[batch_idx]: continue # all open beam hypotheses are added to the beam hypothesis # beam hypothesis class automatically keeps the best beams ids_collect = [] for beam_id in range(self.num_beams): batch_beam_idx = batch_idx * self.num_beams + beam_id final_score = final_beam_scores[batch_beam_idx].item() final_tokens = input_ids[batch_beam_idx] completes_constraint = self.check_completes_constraints(final_tokens.cpu().tolist()) if completes_constraint: beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None generated_len = final_tokens.shape[-1] - decoder_prompt_len beam_hyp.add(final_tokens, final_score, beam_indices=beam_index, generated_len=generated_len) ids_collect.append(beam_id) # due to overly complex constraints or other factors, sometimes we can't gaurantee a successful # generation. In these cases we simply return the highest scoring outputs. if len(ids_collect) < self.num_beam_hyps_to_keep: for beam_id in range(self.num_beams): if beam_id not in ids_collect: batch_beam_idx = batch_idx * self.num_beams + beam_id final_score = final_beam_scores[batch_beam_idx].item() final_tokens = input_ids[batch_beam_idx] generated_len = final_tokens.shape[-1] - decoder_prompt_len beam_hyp.add(final_tokens, final_score, generated_len=generated_len) if len(ids_collect) >= self.num_beam_hyps_to_keep: break # select the best hypotheses sent_lengths = input_ids.new(batch_size * self.num_beam_hyps_to_keep) best = [] best_indices = [] best_scores = torch.zeros(batch_size * self.num_beam_hyps_to_keep, device=self.device, dtype=torch.float32) # retrieve best hypotheses for i, beam_hyp in enumerate(self._beam_hyps): sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0]) for j in range(self.num_beam_hyps_to_keep): best_hyp_tuple = sorted_hyps.pop() best_score = best_hyp_tuple[0] best_hyp = best_hyp_tuple[1] best_index = best_hyp_tuple[2] sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp) # append to lists best.append(best_hyp) # append indices to list best_indices.append(best_index) best_scores[i * self.num_beam_hyps_to_keep + j] = best_score # prepare for adding eos sent_lengths_max = sent_lengths.max().item() + 1 sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max decoded: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len) if len(best_indices) > 0 and best_indices[0] is not None: indices: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len) else: indices = None # shorter batches are padded if needed if sent_lengths.min().item() != sent_lengths.max().item(): if pad_token_id is None: raise ValueError("`pad_token_id` has to be defined") decoded.fill_(pad_token_id) if indices is not None: indices.fill_(-1) # fill with hypotheses and eos_token_id if the latter fits in for i, (hypo, best_idx) in enumerate(zip(best, best_indices)): decoded[i, : sent_lengths[i]] = hypo if indices is not None: indices[i, : len(best_idx)] = torch.tensor(best_idx) if sent_lengths[i] < sent_max_len: # inserting only the first eos_token_id decoded[i, sent_lengths[i]] = eos_token_id[0] return UserDict( { "sequences": decoded, "sequence_scores": best_scores, "beam_indices": indices, } ) class BeamHypotheses: def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None): """ Initialize n-best list of hypotheses. """ self.length_penalty = length_penalty self.early_stopping = early_stopping self.max_length = max_length self.num_beams = num_beams self.beams = [] self.worst_score = 1e9 if not isinstance(self.early_stopping, bool) and self.max_length is None: raise ValueError( "When `do_early_stopping` is set to a string, `max_length` must be defined. Ensure it is passed to the" " BeamScorer class instance at initialization time." ) def __len__(self): """ Number of hypotheses in the list. """ return len(self.beams) def add( self, hyp: torch.LongTensor, sum_logprobs: float, beam_indices: Optional[torch.LongTensor] = None, generated_len: Optional[int] = None, ): """ Add a new hypothesis to the list. """ if generated_len is not None: score = sum_logprobs / (generated_len**self.length_penalty) # This 'else' case exists for retrocompatibility else: score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty) if len(self) < self.num_beams or score > self.worst_score: self.beams.append((score, hyp, beam_indices)) if len(self) > self.num_beams: sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)]) del self.beams[sorted_next_scores[0][1]] self.worst_score = sorted_next_scores[1][0] else: self.worst_score = min(score, self.worst_score) def is_done(self, best_sum_logprobs: float, cur_len: int, decoder_prompt_len: Optional[int] = 0) -> bool: """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if len(self) < self.num_beams: return False # `True`: stop as soon as at least `num_beams` hypotheses are finished if self.early_stopping is True: return True # `False`: heuristic -- compute best possible score from `cur_len`, even though it is not entirely accurate # when `length_penalty` is positive. See the discussion below for more details. # https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565 elif self.early_stopping is False: highest_attainable_score = best_sum_logprobs / (cur_len - decoder_prompt_len) ** self.length_penalty ret = self.worst_score >= highest_attainable_score return ret # `"never"`: compute the best possible score, depending on the signal of `length_penalty` else: # `length_penalty` > 0.0 -> max denominator is obtaned from `max_length`, not from `cur_len` -> min # abs(`highest_attainable_score`) is obtained -> `highest_attainable_score` is negative, hence we obtain # its max this way if self.length_penalty > 0.0: if self.max_length <= decoder_prompt_len: raise ValueError("max_length is not larger than decoder prompt length") highest_attainable_score = ( best_sum_logprobs / (self.max_length - decoder_prompt_len) ** self.length_penalty ) # the opposite logic applies here (max `highest_attainable_score` from `cur_len`) else: highest_attainable_score = best_sum_logprobs / (cur_len - decoder_prompt_len) ** self.length_penalty ret = self.worst_score >= highest_attainable_score return ret
transformers/src/transformers/generation/beam_search.py/0
{ "file_path": "transformers/src/transformers/generation/beam_search.py", "repo_id": "transformers", "token_count": 22653 }
289
/*! ************************************************************************************************** * Deformable DETR * Copyright (c) 2020 SenseTime. All Rights Reserved. * Licensed under the Apache License, Version 2.0 [see LICENSE for details] ************************************************************************************************** * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 ************************************************************************************************** */ #pragma once #include "cpu/ms_deform_attn_cpu.h" #ifdef WITH_CUDA #include "cuda/ms_deform_attn_cuda.h" #endif at::Tensor ms_deform_attn_forward( const at::Tensor &value, const at::Tensor &spatial_shapes, const at::Tensor &level_start_index, const at::Tensor &sampling_loc, const at::Tensor &attn_weight, const int im2col_step) { if (value.type().is_cuda()) { #ifdef WITH_CUDA return ms_deform_attn_cuda_forward( value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step); #else AT_ERROR("Not compiled with GPU support"); #endif } AT_ERROR("Not implemented on the CPU"); } std::vector<at::Tensor> ms_deform_attn_backward( const at::Tensor &value, const at::Tensor &spatial_shapes, const at::Tensor &level_start_index, const at::Tensor &sampling_loc, const at::Tensor &attn_weight, const at::Tensor &grad_output, const int im2col_step) { if (value.type().is_cuda()) { #ifdef WITH_CUDA return ms_deform_attn_cuda_backward( value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step); #else AT_ERROR("Not compiled with GPU support"); #endif } AT_ERROR("Not implemented on the CPU"); }
transformers/src/transformers/kernels/deformable_detr/ms_deform_attn.h/0
{ "file_path": "transformers/src/transformers/kernels/deformable_detr/ms_deform_attn.h", "repo_id": "transformers", "token_count": 667 }
290
__global__ void fast_hash_ver1_cuda_kernel( int *mask, // [batch_size, num_vector] float *vector, // [batch_size, num_vector, vector_dim] int *Dmat, // [3, num_part, vector_dim] int *hash_code, // [batch_size, num_vector, num_hash_f] int batch_size, int num_vector, int vector_dim, int num_part, int num_hash_f, int hash_code_len ); __global__ void lsh_cumulation_ver1_step1_cuda_kernel( int *key_mask, // [batch_size, num_key] int *key_hash_code, // [batch_size, num_key, num_hash_f] float *value, // [batch_size, num_key, value_dim] float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, value_dim] int batch_size, int num_hash_f, int hashtable_capacity, int num_key, int value_dim, int offset_warp ); __global__ void lsh_cumulation_ver1_step2_cuda_kernel( int *query_mask, // [batch_size, num_query] int *query_hash_code, // [batch_size, num_query, num_hash_f] float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, value_dim] float *cumulation_value, // [batch_size, num_query, value_dim] int batch_size, int num_hash_f, int hashtable_capacity, int num_query, int value_dim, int offset_warp ); __global__ void lsh_weighted_cumulation_ver1_step1_cuda_kernel( int *key_mask, // [batch_size, num_key] int *key_hash_code, // [batch_size, num_key, num_hash_f] float *key_weight, // [batch_size, num_key, weight_dim] float *value, // [batch_size, num_key, value_dim] float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] int batch_size, int num_hash_f, int hashtable_capacity, int num_key, int value_dim, int weight_dim, int offset_warp, int weight_idx ); __global__ void lsh_weighted_cumulation_ver1_step2_cuda_kernel( int *query_mask, // [batch_size, num_query] int *query_hash_code, // [batch_size, num_query, num_hash_f] float *query_weight, // [batch_size, num_query, weight_dim] float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] float *cumulation_value, // [batch_size, num_query, value_dim] int batch_size, int num_hash_f, int hashtable_capacity, int num_query, int value_dim, int weight_dim, int offset_warp, int weight_idx ); __global__ void count_sort_step1_cuda_kernel( int *key_mask, // [batch_size, num_key] int *key_hash_code, // [batch_size, num_key, num_hash_f] int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] int batch_size, int num_hash_f, int hashtable_capacity, int num_key ); __global__ void count_sort_step2_cuda_kernel( int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] int batch_size, int num_hash_f, int hashtable_capacity ); __global__ void count_sort_step3_cuda_kernel( int *key_mask, // [batch_size, num_key] int *key_hash_code, // [batch_size, num_key, num_hash_f] int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] int *key_sorted_idxes, // [batch_size, num_hash_f, num_key] int batch_size, int num_hash_f, int hashtable_capacity, int num_key ); __global__ void extract_query_info_cuda_kernel( int *query_mask, // [batch_size, num_query] int *query_hash_code, // [batch_size, num_query, num_hash_f] int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] int *query_info, // [batch_size, num_query, 2, num_hash_f] int batch_size, int num_hash_f, int hashtable_capacity, int num_query ); __global__ void lsh_weighted_cumulation_ver2_step2_cuda_kernel( int *query_mask, // [batch_size, num_query] int *query_info, // [batch_size, num_query, 2, num_hash_f] int *key_sorted_idxes, // [batch_size, num_hash_f, num_key] float *query_weight, // [batch_size, num_query, weight_dim] float *key_weight, // [batch_size, num_key, weight_dim] float *value, // [batch_size, num_key, value_dim] float *cumulation_value, // [batch_size, num_query, value_dim] int batch_size, int num_hash_f, int num_query, int num_key, int value_dim, int weight_dim ); __global__ void lsh_weighted_cumulation_ver3_step2_cuda_kernel( int *query_sorted_idxes, // [batch_size, num_hash_f, num_query] int *key_mask, // [batch_size, num_key] int *key_info, // [batch_size, num_key, 2, num_hash_f] float *query_weight, // [batch_size, num_query, weight_dim] float *key_weight, // [batch_size, num_key, weight_dim] float *value, // [batch_size, num_key, value_dim] float *cumulation_value, // [batch_size, num_query, value_dim] int batch_size, int num_hash_f, int num_query, int num_key, int value_dim, int weight_dim ); __global__ void lsh_weighted_cumulation_ver4_step2_cuda_kernel( int *query_sorted_idxes, // [batch_size, num_hash_f, num_query] int *key_mask, // [batch_size, num_key] int *key_info, // [batch_size, num_key, 2, num_hash_f] float *query_weight, // [batch_size, num_query, weight_dim] float *key_weight, // [batch_size, num_key, weight_dim] float *value, // [batch_size, num_key, value_dim] float *cumulation_value, // [batch_size, num_query, value_dim] int batch_size, int num_hash_f, int num_query, int num_key, int value_dim, int weight_dim );
transformers/src/transformers/kernels/yoso/fast_lsh_cumulation_cuda.h/0
{ "file_path": "transformers/src/transformers/kernels/yoso/fast_lsh_cumulation_cuda.h", "repo_id": "transformers", "token_count": 2369 }
291
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ALBERT model.""" import math import os from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_albert import AlbertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "albert-base-v2" _CONFIG_FOR_DOC = "AlbertConfig" ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "albert-base-v1", "albert-large-v1", "albert-xlarge-v1", "albert-xxlarge-v1", "albert-base-v2", "albert-large-v2", "albert-xlarge-v2", "albert-xxlarge-v2", # See all ALBERT models at https://huggingface.co/models?filter=albert ] def load_tf_weights_in_albert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): print(name) for name, array in zip(names, arrays): original_name = name # If saved from the TF HUB module name = name.replace("module/", "") # Renaming and simplifying name = name.replace("ffn_1", "ffn") name = name.replace("bert/", "albert/") name = name.replace("attention_1", "attention") name = name.replace("transform/", "") name = name.replace("LayerNorm_1", "full_layer_layer_norm") name = name.replace("LayerNorm", "attention/LayerNorm") name = name.replace("transformer/", "") # The feed forward layer had an 'intermediate' step which has been abstracted away name = name.replace("intermediate/dense/", "") name = name.replace("ffn/intermediate/output/dense/", "ffn_output/") # ALBERT attention was split between self and output which have been abstracted away name = name.replace("/output/", "/") name = name.replace("/self/", "/") # The pooler is a linear layer name = name.replace("pooler/dense", "pooler") # The classifier was simplified to predictions from cls/predictions name = name.replace("cls/predictions", "predictions") name = name.replace("predictions/attention", "predictions") # Naming was changed to be more explicit name = name.replace("embeddings/attention", "embeddings") name = name.replace("inner_group_", "albert_layers/") name = name.replace("group_", "albert_layer_groups/") # Classifier if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name): name = "classifier/" + name # No ALBERT model currently handles the next sentence prediction task if "seq_relationship" in name: name = name.replace("seq_relationship/output_", "sop_classifier/classifier/") name = name.replace("weights", "weight") name = name.split("/") # Ignore the gradients applied by the LAMB/ADAM optimizers. if ( "adam_m" in name or "adam_v" in name or "AdamWeightDecayOptimizer" in name or "AdamWeightDecayOptimizer_1" in name or "global_step" in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except ValueError as e: e.args += (pointer.shape, array.shape) raise print(f"Initialize PyTorch weight {name} from {original_name}") pointer.data = torch.from_numpy(array) return model class AlbertEmbeddings(nn.Module): """ Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config: AlbertConfig): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class AlbertAttention(nn.Module): def __init__(self, config: AlbertConfig): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads}" ) self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.attention_head_size = config.hidden_size // config.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob) self.output_dropout = nn.Dropout(config.hidden_dropout_prob) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pruned_heads = set() self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) # Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def prune_heads(self, heads: List[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads ) # Prune linear layers self.query = prune_linear_layer(self.query, index) self.key = prune_linear_layer(self.key, index) self.value = prune_linear_layer(self.value, index) self.dense = prune_linear_layer(self.dense, index, dim=1) # Update hyper params and store pruned heads self.num_attention_heads = self.num_attention_heads - len(heads) self.all_head_size = self.attention_head_size * self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.attention_dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.transpose(2, 1).flatten(2) projected_context_layer = self.dense(context_layer) projected_context_layer_dropout = self.output_dropout(projected_context_layer) layernormed_context_layer = self.LayerNorm(hidden_states + projected_context_layer_dropout) return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,) class AlbertLayer(nn.Module): def __init__(self, config: AlbertConfig): super().__init__() self.config = config self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attention = AlbertAttention(config) self.ffn = nn.Linear(config.hidden_size, config.intermediate_size) self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size) self.activation = ACT2FN[config.hidden_act] self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: attention_output = self.attention(hidden_states, attention_mask, head_mask, output_attentions) ffn_output = apply_chunking_to_forward( self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output[0], ) hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0]) return (hidden_states,) + attention_output[1:] # add attentions if we output them def ff_chunk(self, attention_output: torch.Tensor) -> torch.Tensor: ffn_output = self.ffn(attention_output) ffn_output = self.activation(ffn_output) ffn_output = self.ffn_output(ffn_output) return ffn_output class AlbertLayerGroup(nn.Module): def __init__(self, config: AlbertConfig): super().__init__() self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: layer_hidden_states = () layer_attentions = () for layer_index, albert_layer in enumerate(self.albert_layers): layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index], output_attentions) hidden_states = layer_output[0] if output_attentions: layer_attentions = layer_attentions + (layer_output[1],) if output_hidden_states: layer_hidden_states = layer_hidden_states + (hidden_states,) outputs = (hidden_states,) if output_hidden_states: outputs = outputs + (layer_hidden_states,) if output_attentions: outputs = outputs + (layer_attentions,) return outputs # last-layer hidden state, (layer hidden states), (layer attentions) class AlbertTransformer(nn.Module): def __init__(self, config: AlbertConfig): super().__init__() self.config = config self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size) self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[BaseModelOutput, Tuple]: hidden_states = self.embedding_hidden_mapping_in(hidden_states) all_hidden_states = (hidden_states,) if output_hidden_states else None all_attentions = () if output_attentions else None head_mask = [None] * self.config.num_hidden_layers if head_mask is None else head_mask for i in range(self.config.num_hidden_layers): # Number of layers in a hidden group layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) # Index of the hidden group group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) layer_group_output = self.albert_layer_groups[group_idx]( hidden_states, attention_mask, head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group], output_attentions, output_hidden_states, ) hidden_states = layer_group_output[0] if output_attentions: all_attentions = all_attentions + layer_group_output[-1] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class AlbertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = AlbertConfig load_tf_weights = load_tf_weights_in_albert base_model_prefix = "albert" def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class AlbertForPreTrainingOutput(ModelOutput): """ Output type of [`AlbertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). sop_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None sop_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ALBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Args: config ([`AlbertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ALBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.", ALBERT_START_DOCSTRING, ) class AlbertModel(AlbertPreTrainedModel): config_class = AlbertConfig base_model_prefix = "albert" def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True): super().__init__(config) self.config = config self.embeddings = AlbertEmbeddings(config) self.encoder = AlbertTransformer(config) if add_pooling_layer: self.pooler = nn.Linear(config.hidden_size, config.hidden_size) self.pooler_activation = nn.Tanh() else: self.pooler = None self.pooler_activation = None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.embeddings.word_embeddings def set_input_embeddings(self, value: nn.Embedding) -> None: self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers. These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer, while [2,3] correspond to the two inner groups of the second hidden layer. Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more information about head pruning """ for layer, heads in heads_to_prune.items(): group_idx = int(layer / self.config.inner_group_num) inner_group_idx = int(layer - group_idx * self.config.inner_group_num) self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BaseModelOutputWithPooling, Tuple]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `sentence order prediction (classification)` head. """, ALBERT_START_DOCSTRING, ) class AlbertForPreTraining(AlbertPreTrainedModel): _tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"] def __init__(self, config: AlbertConfig): super().__init__(config) self.albert = AlbertModel(config) self.predictions = AlbertMLMHead(config) self.sop_classifier = AlbertSOPHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self) -> nn.Linear: return self.predictions.decoder def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: self.predictions.decoder = new_embeddings def get_input_embeddings(self) -> nn.Embedding: return self.albert.embeddings.word_embeddings @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=AlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, sentence_order_label: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[AlbertForPreTrainingOutput, Tuple]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` sentence_order_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`. `0` indicates original order (sequence A, then sequence B), `1` indicates switched order (sequence B, then sequence A). Returns: Example: ```python >>> from transformers import AutoTokenizer, AlbertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") >>> model = AlbertForPreTraining.from_pretrained("albert-base-v2") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) >>> # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outputs.prediction_logits >>> sop_logits = outputs.sop_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.predictions(sequence_output) sop_scores = self.sop_classifier(pooled_output) total_loss = None if labels is not None and sentence_order_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1)) total_loss = masked_lm_loss + sentence_order_loss if not return_dict: output = (prediction_scores, sop_scores) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return AlbertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, sop_logits=sop_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class AlbertMLMHead(nn.Module): def __init__(self, config: AlbertConfig): super().__init__() self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.dense = nn.Linear(config.hidden_size, config.embedding_size) self.decoder = nn.Linear(config.embedding_size, config.vocab_size) self.activation = ACT2FN[config.hidden_act] self.decoder.bias = self.bias def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.LayerNorm(hidden_states) hidden_states = self.decoder(hidden_states) prediction_scores = hidden_states return prediction_scores def _tie_weights(self) -> None: # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias class AlbertSOPHead(nn.Module): def __init__(self, config: AlbertConfig): super().__init__() self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: dropout_pooled_output = self.dropout(pooled_output) logits = self.classifier(dropout_pooled_output) return logits @add_start_docstrings( "Albert Model with a `language modeling` head on top.", ALBERT_START_DOCSTRING, ) class AlbertForMaskedLM(AlbertPreTrainedModel): _tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"] def __init__(self, config): super().__init__(config) self.albert = AlbertModel(config, add_pooling_layer=False) self.predictions = AlbertMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self) -> nn.Linear: return self.predictions.decoder def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: self.predictions.decoder = new_embeddings def get_input_embeddings(self) -> nn.Embedding: return self.albert.embeddings.word_embeddings @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[MaskedLMOutput, Tuple]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, AlbertForMaskedLM >>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") >>> model = AlbertForMaskedLM.from_pretrained("albert-base-v2") >>> # add mask_token >>> inputs = tokenizer("The capital of [MASK] is Paris.", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> tokenizer.decode(predicted_token_id) 'france' ``` ```python >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(outputs.loss.item(), 2) 0.81 ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_outputs = outputs[0] prediction_scores = self.predictions(sequence_outputs) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForSequenceClassification(AlbertPreTrainedModel): def __init__(self, config: AlbertConfig): super().__init__(config) self.num_labels = config.num_labels self.config = config self.albert = AlbertModel(config) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="textattack/albert-base-v2-imdb", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="'LABEL_1'", expected_loss=0.12, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[SequenceClassifierOutput, Tuple]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForTokenClassification(AlbertPreTrainedModel): def __init__(self, config: AlbertConfig): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModel(config, add_pooling_layer=False) classifier_dropout_prob = ( config.classifier_dropout_prob if config.classifier_dropout_prob is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[TokenClassifierOutput, Tuple]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ALBERT_START_DOCSTRING, ) class AlbertForQuestionAnswering(AlbertPreTrainedModel): def __init__(self, config: AlbertConfig): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="twmkn9/albert-base-v2-squad2", output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=12, qa_target_end_index=13, expected_output="'a nice puppet'", expected_loss=7.36, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[AlbertForPreTrainingOutput, Tuple]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits: torch.Tensor = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForMultipleChoice(AlbertPreTrainedModel): def __init__(self, config: AlbertConfig): super().__init__(config) self.albert = AlbertModel(config) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[AlbertForPreTrainingOutput, Tuple]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.albert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits: torch.Tensor = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/albert/modeling_albert.py/0
{ "file_path": "transformers/src/transformers/models/albert/modeling_albert.py", "repo_id": "transformers", "token_count": 25504 }
292
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Audio Spectrogram Transformer checkpoints from the original repository. URL: https://github.com/YuanGongND/ast""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_audio_spectrogram_transformer_config(model_name): config = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: config.max_length = 128 elif "12-12" in model_name: config.time_stride = 12 config.frequency_stride = 12 elif "14-14" in model_name: config.time_stride = 14 config.frequency_stride = 14 elif "16-16" in model_name: config.time_stride = 16 config.frequency_stride = 16 else: raise ValueError("Model not supported") repo_id = "huggingface/label-files" if "speech-commands" in model_name: config.num_labels = 35 filename = "speech-commands-v2-id2label.json" else: config.num_labels = 527 filename = "audioset-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config def rename_key(name): if "module.v" in name: name = name.replace("module.v", "audio_spectrogram_transformer") if "cls_token" in name: name = name.replace("cls_token", "embeddings.cls_token") if "dist_token" in name: name = name.replace("dist_token", "embeddings.distillation_token") if "pos_embed" in name: name = name.replace("pos_embed", "embeddings.position_embeddings") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") # transformer blocks if "blocks" in name: name = name.replace("blocks", "encoder.layer") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name: name = name.replace("attn", "attention.self") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") # final layernorm if "audio_spectrogram_transformer.norm" in name: name = name.replace("audio_spectrogram_transformer.norm", "audio_spectrogram_transformer.layernorm") # classifier head if "module.mlp_head.0" in name: name = name.replace("module.mlp_head.0", "classifier.layernorm") if "module.mlp_head.1" in name: name = name.replace("module.mlp_head.1", "classifier.dense") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "qkv" in key: key_split = key.split(".") layer_num = int(key_split[3]) dim = config.hidden_size if "weight" in key: orig_state_dict[ f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.query.weight" ] = val[:dim, :] orig_state_dict[ f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.key.weight" ] = val[dim : dim * 2, :] orig_state_dict[ f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.value.weight" ] = val[-dim:, :] else: orig_state_dict[ f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.query.bias" ] = val[:dim] orig_state_dict[ f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.key.bias" ] = val[dim : dim * 2] orig_state_dict[ f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.value.bias" ] = val[-dim:] else: orig_state_dict[rename_key(key)] = val return orig_state_dict def remove_keys(state_dict): ignore_keys = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(k, None) @torch.no_grad() def convert_audio_spectrogram_transformer_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False): """ Copy/paste/tweak model's weights to our Audio Spectrogram Transformer structure. """ config = get_audio_spectrogram_transformer_config(model_name) model_name_to_url = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict checkpoint_url = model_name_to_url[model_name] state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") # remove some keys remove_keys(state_dict) # rename some keys new_state_dict = convert_state_dict(state_dict, config) # load 🤗 model model = ASTForAudioClassification(config) model.eval() model.load_state_dict(new_state_dict) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 mean = -4.2677393 if "speech-commands" not in model_name else -6.845978 std = 4.5689974 if "speech-commands" not in model_name else 5.5654526 max_length = 1024 if "speech-commands" not in model_name else 128 feature_extractor = ASTFeatureExtractor(mean=mean, std=std, max_length=max_length) if "speech-commands" in model_name: dataset = load_dataset("speech_commands", "v0.02", split="validation") waveform = dataset[0]["audio"]["array"] else: filepath = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint", filename="sample_audio.flac", repo_type="dataset", ) waveform, _ = torchaudio.load(filepath) waveform = waveform.squeeze().numpy() inputs = feature_extractor(waveform, sampling_rate=16000, return_tensors="pt") # forward pass outputs = model(**inputs) logits = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": expected_slice = torch.tensor([-0.8760, -7.0042, -8.6602]) elif model_name == "ast-finetuned-audioset-10-10-0.450": expected_slice = torch.tensor([-1.1986, -7.0903, -8.2718]) elif model_name == "ast-finetuned-audioset-10-10-0.448": expected_slice = torch.tensor([-2.6128, -8.0080, -9.4344]) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": expected_slice = torch.tensor([-1.5080, -7.4534, -8.8917]) elif model_name == "ast-finetuned-audioset-12-12-0.447": expected_slice = torch.tensor([-0.5050, -6.5833, -8.0843]) elif model_name == "ast-finetuned-audioset-14-14-0.443": expected_slice = torch.tensor([-0.3826, -7.0336, -8.2413]) elif model_name == "ast-finetuned-audioset-16-16-0.442": expected_slice = torch.tensor([-1.2113, -6.9101, -8.3470]) elif model_name == "ast-finetuned-speech-commands-v2": expected_slice = torch.tensor([6.1589, -8.0566, -8.7984]) else: raise ValueError("Unknown model name") if not torch.allclose(logits[0, :3], expected_slice, atol=1e-4): raise ValueError("Logits don't match") print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving feature extractor to {pytorch_dump_folder_path}") feature_extractor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing model and feature extractor to the hub...") model.push_to_hub(f"MIT/{model_name}") feature_extractor.push_to_hub(f"MIT/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/audio_spectrogram_transformer/convert_audio_spectrogram_transformer_original_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/audio_spectrogram_transformer/convert_audio_spectrogram_transformer_original_to_pytorch.py", "repo_id": "transformers", "token_count": 4992 }
293
# coding=utf-8 # Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for the BARThez model.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: BarthezTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } SPIECE_UNDERLINE = "▁" class BarthezTokenizerFast(PreTrainedTokenizerFast): """ Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a "fast" BARThez tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = BarthezTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BARThez sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers/src/transformers/models/barthez/tokenization_barthez_fast.py/0
{ "file_path": "transformers/src/transformers/models/barthez/tokenization_barthez_fast.py", "repo_id": "transformers", "token_count": 3745 }
294
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" import math import os import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_bert import BertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bert-base-uncased" _CONFIG_FOR_DOC = "BertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english" _TOKEN_CLASS_EXPECTED_OUTPUT = ( "['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] " ) _TOKEN_CLASS_EXPECTED_LOSS = 0.01 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 7.41 _QA_TARGET_START_INDEX = 14 _QA_TARGET_END_INDEX = 15 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity" _SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'" _SEQ_CLASS_EXPECTED_LOSS = 0.01 BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "bert-base-uncased", "bert-large-uncased", "bert-base-cased", "bert-large-cased", "bert-base-multilingual-uncased", "bert-base-multilingual-cased", "bert-base-chinese", "bert-base-german-cased", "bert-large-uncased-whole-word-masking", "bert-large-cased-whole-word-masking", "bert-large-uncased-whole-word-masking-finetuned-squad", "bert-large-cased-whole-word-masking-finetuned-squad", "bert-base-cased-finetuned-mrpc", "bert-base-german-dbmdz-cased", "bert-base-german-dbmdz-uncased", "cl-tohoku/bert-base-japanese", "cl-tohoku/bert-base-japanese-whole-word-masking", "cl-tohoku/bert-base-japanese-char", "cl-tohoku/bert-base-japanese-char-whole-word-masking", "TurkuNLP/bert-base-finnish-cased-v1", "TurkuNLP/bert-base-finnish-uncased-v1", "wietsedv/bert-base-dutch-cased", # See all BERT models at https://huggingface.co/models?filter=bert ] def load_tf_weights_in_bert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except ValueError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = BertAttention(config, position_embedding_type="absolute") self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class BertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class BertForPreTrainingOutput(ModelOutput): """ Output type of [`BertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None BERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class BertModel(BertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, ) class BertForPreTraining(BertPreTrainedModel): _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, next_sentence_label: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, BertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = BertForPreTraining.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING ) class BertLMHeadModel(BertPreTrainedModel): _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`") self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs ): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] return { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": use_cache, } def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING) class BertForMaskedLM(BertPreTrainedModel): _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.88, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """Bert Model with a `next sentence prediction (classification)` head on top.""", BERT_START_DOCSTRING, ) class BertForNextSentencePrediction(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, BertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ``` """ if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, ) class BertForSequenceClassification(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = BertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING, ) class BertForMultipleChoice(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, ) class BertForTokenClassification(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, ) class BertForQuestionAnswering(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/bert/modeling_bert.py/0
{ "file_path": "transformers/src/transformers/models/bert/modeling_bert.py", "repo_id": "transformers", "token_count": 35865 }
295
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BigBird checkpoint.""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, big_bird_config_file, pytorch_dump_path, is_trivia_qa): # Initialise PyTorch model config = BigBirdConfig.from_json_file(big_bird_config_file) print(f"Building PyTorch model from configuration: {config}") if is_trivia_qa: model = BigBirdForQuestionAnswering(config) else: model = BigBirdForPreTraining(config) # Load weights from tf checkpoint load_tf_weights_in_big_bird(model, tf_checkpoint_path, is_trivia_qa=is_trivia_qa) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
transformers/src/transformers/models/big_bird/convert_bigbird_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/big_bird/convert_bigbird_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 901 }
296
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BiT checkpoints from the timm library.""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_config(model_name): repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} label2id = {v: k for k, v in id2label.items()} conv_layer = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" config = BitConfig( conv_layer=conv_layer, num_labels=1000, id2label=id2label, label2id=label2id, ) return config def rename_key(name): if "stem.conv" in name: name = name.replace("stem.conv", "bit.embedder.convolution") if "blocks" in name: name = name.replace("blocks", "layers") if "head.fc" in name: name = name.replace("head.fc", "classifier.1") if name.startswith("norm"): name = "bit." + name if "bit" not in name and "classifier" not in name: name = "bit.encoder." + name return name # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_bit_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False): """ Copy/paste/tweak model's weights to our BiT structure. """ # define default BiT configuration config = get_config(model_name) # load original model from timm timm_model = create_model(model_name, pretrained=True) timm_model.eval() # load state_dict of original model state_dict = timm_model.state_dict() for key in state_dict.copy().keys(): val = state_dict.pop(key) state_dict[rename_key(key)] = val.squeeze() if "head" in key else val # load HuggingFace model model = BitForImageClassification(config) model.eval() model.load_state_dict(state_dict) # create image processor transform = create_transform(**resolve_data_config({}, model=timm_model)) timm_transforms = transform.transforms pillow_resamplings = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } processor = BitImageProcessor( do_resize=True, size={"shortest_edge": timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=True, crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]}, do_normalize=True, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) image = prepare_img() timm_pixel_values = transform(image).unsqueeze(0) pixel_values = processor(image, return_tensors="pt").pixel_values # verify pixel values assert torch.allclose(timm_pixel_values, pixel_values) # verify logits with torch.no_grad(): outputs = model(pixel_values) logits = outputs.logits print("Logits:", logits[0, :3]) print("Predicted class:", model.config.id2label[logits.argmax(-1).item()]) timm_logits = timm_model(pixel_values) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print(f"Pushing model {model_name} and processor to the hub") model.push_to_hub(f"ybelkada/{model_name}") processor.push_to_hub(f"ybelkada/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) args = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/bit/convert_bit_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/bit/convert_bit_to_pytorch.py", "repo_id": "transformers", "token_count": 2309 }
297
# coding=utf-8 # Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for BlenderbotSmall.""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/blenderbot_small-90M": 512} def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = set(pairs) return pairs class BlenderbotSmallTokenizer(PreTrainedTokenizer): """ Constructs a Blenderbot-90M tokenizer based on BPE (Byte-Pair-Encoding) This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (`str`): File containing the vocabulary. merges_file (`str`): Path to the merges file. bos_token (`str`, *optional*, defaults to `"__start__"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"__end__"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"__unk__"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"__null__"`): The token used for padding, for example when batching sequences of different lengths. kwargs (*optional*): Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, bos_token="__start__", eos_token="__end__", unk_token="__unk__", pad_token="__null__", **kwargs, ): with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[1:-1] merges = [tuple(merge.split()) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__(unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs) @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self) -> Dict: return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token: str) -> str: if token in self.cache: return self.cache[token] token = re.sub("([.,!?()])", r" \1", token) token = re.sub("(')", r" \1 ", token) token = re.sub(r"\s{2,}", " ", token) if "\n" in token: token = token.replace("\n", " __newln__") tokens = token.split(" ") words = [] for token in tokens: if not len(token): continue token = token.lower() word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: words.append(token) continue while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word words.append(word) return " ".join(words) def _tokenize(self, text: str) -> List[str]: """Split a string into tokens using BPE.""" split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token: str) -> int: """Converts a token to an id using the vocab.""" token = token.lower() return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens: List[str]) -> str: """Converts a sequence of tokens in a single string.""" out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file @property # Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template def default_chat_template(self): """ A very simple chat template that just adds whitespace between messages. """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using the default template " f"for the {self.__class__.__name__} class. If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) return ( "{% for message in messages %}" "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}" "{{ message['content'] }}" "{% if not loop.last %}{{ ' ' }}{% endif %}" "{% endfor %}" "{{ eos_token }}" )
transformers/src/transformers/models/blenderbot_small/tokenization_blenderbot_small.py/0
{ "file_path": "transformers/src/transformers/models/blenderbot_small/tokenization_blenderbot_small.py", "repo_id": "transformers", "token_count": 4456 }
298
# coding=utf-8 # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from transformers import ChineseCLIPConfig, ChineseCLIPModel def copy_attn_layer(hf_attn_layer, pt_weights, prefix): q_proj, k_proj, v_proj = pt_weights[f"{prefix}.in_proj_weight"].chunk(3, dim=0) q_proj_bias, k_proj_bias, v_proj_bias = pt_weights[f"{prefix}.in_proj_bias"].chunk(3, dim=0) out_proj_weights = pt_weights[f"{prefix}.out_proj.weight"] out_proj_bias = pt_weights[f"{prefix}.out_proj.bias"] hf_attn_layer.q_proj.weight.data = q_proj hf_attn_layer.q_proj.bias.data = q_proj_bias hf_attn_layer.k_proj.weight.data = k_proj hf_attn_layer.k_proj.bias.data = k_proj_bias hf_attn_layer.v_proj.weight.data = v_proj hf_attn_layer.v_proj.bias.data = v_proj_bias hf_attn_layer.out_proj.weight.data = out_proj_weights hf_attn_layer.out_proj.bias.data = out_proj_bias def copy_mlp(hf_mlp, pt_weights, prefix): copy_linear(hf_mlp.fc1, pt_weights, f"{prefix}.c_fc") copy_linear(hf_mlp.fc2, pt_weights, f"{prefix}.c_proj") def copy_linear(hf_linear, pt_weights, prefix): hf_linear.weight.data = pt_weights[f"{prefix}.weight"].data hf_linear.bias.data = pt_weights[f"{prefix}.bias"].data def copy_layer(hf_layer, pt_weights, prefix): # copy layer norms copy_linear(hf_layer.layer_norm1, pt_weights, f"{prefix}.ln_1") copy_linear(hf_layer.layer_norm2, pt_weights, f"{prefix}.ln_2") # copy MLP copy_mlp(hf_layer.mlp, pt_weights, f"{prefix}.mlp") # copy attn copy_attn_layer(hf_layer.self_attn, pt_weights, f"{prefix}.attn") def copy_layers(hf_layers, pt_weights, prefix): for layer_id, hf_layer in enumerate(hf_layers): copy_layer(hf_layer, pt_weights, f"{prefix}.{layer_id}") def copy_text_model_and_projection(hf_model, pt_weights): # copy projection hf_model.text_projection.weight.data = pt_weights["text_projection"].data.T # copy text encoder for name, param in hf_model.text_model.named_parameters(): param.data = pt_weights[f"bert.{name}"].data def copy_vision_model_and_projection(hf_model, pt_weights): # copy projection hf_model.visual_projection.weight.data = pt_weights["visual.proj"].data.T # copy layer norms copy_linear(hf_model.vision_model.pre_layrnorm, pt_weights, "visual.ln_pre") copy_linear(hf_model.vision_model.post_layernorm, pt_weights, "visual.ln_post") # copy embeddings hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_weights["visual.conv1.weight"].data hf_model.vision_model.embeddings.class_embedding.data = pt_weights["visual.class_embedding"].data hf_model.vision_model.embeddings.position_embedding.weight.data = pt_weights["visual.positional_embedding"].data # copy encoder copy_layers(hf_model.vision_model.encoder.layers, pt_weights, "visual.transformer.resblocks") @torch.no_grad() def convert_chinese_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None): """ Copy/paste/tweak model's weights to transformers design. """ assert config_path is not None, "Please specify the ChineseCLIP model config of the corresponding model size." config = ChineseCLIPConfig.from_pretrained(config_path) hf_model = ChineseCLIPModel(config).eval() pt_weights = torch.load(checkpoint_path, map_location="cpu")["state_dict"] pt_weights = {(name[7:] if name.startswith("module.") else name): value for name, value in pt_weights.items()} copy_text_model_and_projection(hf_model, pt_weights) copy_vision_model_and_projection(hf_model, pt_weights) hf_model.logit_scale.data = pt_weights["logit_scale"].data hf_model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output folder storing converted hf PyTorch model.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to original github format ChineseCLIP checkpoint." ) parser.add_argument( "--config_path", default=None, required=True, type=str, help="Path to hf config.json of model to convert." ) args = parser.parse_args() convert_chinese_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path) print("The conversion is finished!")
transformers/src/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py", "repo_id": "transformers", "token_count": 1990 }
299
# coding=utf-8 # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CLIP model.""" from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32" CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openai/clip-vit-base-patch32", # See all CLIP models at https://huggingface.co/models?filter=clip ] # contrastive loss function, adapted from # https://sachinruk.github.io/blog/2021-03-07-clip.html def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) def clip_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass class CLIPVisionModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class CLIPTextModelOutput(ModelOutput): """ Base class for text model's outputs that also contains a pooling of the last hidden states. Args: text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The text embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ text_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class CLIPOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`]. image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`]. text_model_output(`BaseModelOutputWithPooling`): The output of the [`CLIPTextModel`]. vision_model_output(`BaseModelOutputWithPooling`): The output of the [`CLIPVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class CLIPVisionEmbeddings(nn.Module): def __init__(self, config: CLIPVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class CLIPTextEmbeddings(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings class CLIPAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped class CLIPMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class CLIPEncoderLayer(nn.Module): def __init__(self, config: CLIPConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = CLIPAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = CLIPMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class CLIPPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CLIPConfig base_model_prefix = "clip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, CLIPTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, CLIPVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, CLIPAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, CLIPMLP): factor = self.config.initializer_factor in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, CLIPModel): nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * self.config.initializer_factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, ) elif isinstance(module, CLIPVisionModelWithProjection): nn.init.normal_( module.visual_projection.weight, std=self.config.hidden_size**-0.5 * self.config.initializer_factor, ) elif isinstance(module, CLIPTextModelWithProjection): nn.init.normal_( module.text_projection.weight, std=self.config.hidden_size**-0.5 * self.config.initializer_factor, ) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() CLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CLIPConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class CLIPEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`CLIPEncoderLayer`]. Args: config: CLIPConfig """ def __init__(self, config: CLIPConfig): super().__init__() self.config = config self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class CLIPTextTransformer(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPTextEmbeddings(config) self.encoder = CLIPEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) # For `pooled_output` computation self.eos_token_id = config.eos_token_id @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = _create_4d_causal_attention_mask( input_shape, hidden_states.dtype, device=hidden_states.device ) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), ] else: # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id) .int() .argmax(dim=-1), ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """The text model from CLIP without any head or projection on top.""", CLIP_START_DOCSTRING, ) class CLIPTextModel(CLIPPreTrainedModel): config_class = CLIPTextConfig _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"] def __init__(self, config: CLIPTextConfig): super().__init__(config) self.text_model = CLIPTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, CLIPTextModel >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class CLIPVisionTransformer(nn.Module): def __init__(self, config: CLIPVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPVisionEmbeddings(config) self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = CLIPEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """The vision model from CLIP without any head or projection on top.""", CLIP_START_DOCSTRING, ) class CLIPVisionModel(CLIPPreTrainedModel): config_class = CLIPVisionConfig main_input_name = "pixel_values" _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPVisionConfig): super().__init__(config) self.vision_model = CLIPVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPVisionModel >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @add_start_docstrings(CLIP_START_DOCSTRING) class CLIPModel(CLIPPreTrainedModel): config_class = CLIPConfig _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"] def __init__(self, config: CLIPConfig): super().__init__(config) if not isinstance(config.text_config, CLIPTextConfig): raise ValueError( "config.text_config is expected to be of type CLIPTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, CLIPVisionConfig): raise ValueError( "config.vision_config is expected to be of type CLIPVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = CLIPTextTransformer(text_config) self.vision_model = CLIPVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPOutput, config_class=CLIPConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = clip_loss(logits_per_text) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return CLIPOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) @add_start_docstrings( """ CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output). """, CLIP_START_DOCSTRING, ) class CLIPTextModelWithProjection(CLIPPreTrainedModel): config_class = CLIPTextConfig _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"] def __init__(self, config: CLIPTextConfig): super().__init__(config) self.text_model = CLIPTextTransformer(config) self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPTextModelOutput, config_class=CLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPTextModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, CLIPTextModelWithProjection >>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> text_embeds = outputs.text_embeds ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] text_embeds = self.text_projection(pooled_output) if not return_dict: outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] return tuple(output for output in outputs if output is not None) return CLIPTextModelOutput( text_embeds=text_embeds, last_hidden_state=text_outputs.last_hidden_state, hidden_states=text_outputs.hidden_states, attentions=text_outputs.attentions, ) @add_start_docstrings( """ CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output). """, CLIP_START_DOCSTRING, ) class CLIPVisionModelWithProjection(CLIPPreTrainedModel): config_class = CLIPVisionConfig main_input_name = "pixel_values" def __init__(self, config: CLIPVisionConfig): super().__init__(config) self.vision_model = CLIPVisionTransformer(config) self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPVisionModelOutput, config_class=CLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPVisionModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPVisionModelWithProjection >>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> image_embeds = outputs.image_embeds ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_embeds = self.visual_projection(pooled_output) if not return_dict: outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:] return tuple(output for output in outputs if output is not None) return CLIPVisionModelOutput( image_embeds=image_embeds, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, )
transformers/src/transformers/models/clip/modeling_clip.py/0
{ "file_path": "transformers/src/transformers/models/clip/modeling_clip.py", "repo_id": "transformers", "token_count": 23741 }
300
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """English Normalizer class for CLVP.""" import re class EnglishNormalizer: def __init__(self): # List of (regular expression, replacement) pairs for abbreviations: self._abbreviations = [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("mrs", "misess"), ("mr", "mister"), ("dr", "doctor"), ("st", "saint"), ("co", "company"), ("jr", "junior"), ("maj", "major"), ("gen", "general"), ("drs", "doctors"), ("rev", "reverend"), ("lt", "lieutenant"), ("hon", "honorable"), ("sgt", "sergeant"), ("capt", "captain"), ("esq", "esquire"), ("ltd", "limited"), ("col", "colonel"), ("ft", "fort"), ] ] self.ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] self.teens = [ "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", ] self.tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"] def number_to_words(self, num: int) -> str: """ Converts numbers(`int`) to words(`str`). Please note that it only supports upto - "'nine hundred ninety-nine quadrillion, nine hundred ninety-nine trillion, nine hundred ninety-nine billion, nine hundred ninety-nine million, nine hundred ninety-nine thousand, nine hundred ninety-nine'" or `number_to_words(999_999_999_999_999_999)`. """ if num == 0: return "zero" elif num < 0: return "minus " + self.number_to_words(abs(num)) elif num < 10: return self.ones[num] elif num < 20: return self.teens[num - 10] elif num < 100: return self.tens[num // 10] + ("-" + self.number_to_words(num % 10) if num % 10 != 0 else "") elif num < 1000: return ( self.ones[num // 100] + " hundred" + (" " + self.number_to_words(num % 100) if num % 100 != 0 else "") ) elif num < 1_000_000: return ( self.number_to_words(num // 1000) + " thousand" + (", " + self.number_to_words(num % 1000) if num % 1000 != 0 else "") ) elif num < 1_000_000_000: return ( self.number_to_words(num // 1_000_000) + " million" + (", " + self.number_to_words(num % 1_000_000) if num % 1_000_000 != 0 else "") ) elif num < 1_000_000_000_000: return ( self.number_to_words(num // 1_000_000_000) + " billion" + (", " + self.number_to_words(num % 1_000_000_000) if num % 1_000_000_000 != 0 else "") ) elif num < 1_000_000_000_000_000: return ( self.number_to_words(num // 1_000_000_000_000) + " trillion" + (", " + self.number_to_words(num % 1_000_000_000_000) if num % 1_000_000_000_000 != 0 else "") ) elif num < 1_000_000_000_000_000_000: return ( self.number_to_words(num // 1_000_000_000_000_000) + " quadrillion" + ( ", " + self.number_to_words(num % 1_000_000_000_000_000) if num % 1_000_000_000_000_000 != 0 else "" ) ) else: return "number out of range" def convert_to_ascii(self, text: str) -> str: """ Converts unicode to ascii """ return text.encode("ascii", "ignore").decode("utf-8") def _expand_dollars(self, m: str) -> str: """ This method is used to expand numerical dollar values into spoken words. """ match = m.group(1) parts = match.split(".") if len(parts) > 2: return match + " dollars" # Unexpected format dollars = int(parts[0]) if parts[0] else 0 cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 if dollars and cents: dollar_unit = "dollar" if dollars == 1 else "dollars" cent_unit = "cent" if cents == 1 else "cents" return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit) elif dollars: dollar_unit = "dollar" if dollars == 1 else "dollars" return "%s %s" % (dollars, dollar_unit) elif cents: cent_unit = "cent" if cents == 1 else "cents" return "%s %s" % (cents, cent_unit) else: return "zero dollars" def _remove_commas(self, m: str) -> str: """ This method is used to remove commas from sentences. """ return m.group(1).replace(",", "") def _expand_decimal_point(self, m: str) -> str: """ This method is used to expand '.' into spoken word ' point '. """ return m.group(1).replace(".", " point ") def _expand_ordinal(self, num: str) -> str: """ This method is used to expand ordinals such as '1st', '2nd' into spoken words. """ ordinal_suffixes = {1: "st", 2: "nd", 3: "rd"} num = int(num.group(0)[:-2]) if 10 <= num % 100 and num % 100 <= 20: suffix = "th" else: suffix = ordinal_suffixes.get(num % 10, "th") return self.number_to_words(num) + suffix def _expand_number(self, m: str) -> str: """ This method acts as a preprocessing step for numbers between 1000 and 3000 (same as the original repository, link : https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/utils/tokenizer.py#L86) """ num = int(m.group(0)) if num > 1000 and num < 3000: if num == 2000: return "two thousand" elif num > 2000 and num < 2010: return "two thousand " + self.number_to_words(num % 100) elif num % 100 == 0: return self.number_to_words(num // 100) + " hundred" else: return self.number_to_words(num) else: return self.number_to_words(num) def normalize_numbers(self, text: str) -> str: """ This method is used to normalize numbers within a text such as converting the numbers to words, removing commas, etc. """ text = re.sub(re.compile(r"([0-9][0-9\,]+[0-9])"), self._remove_commas, text) text = re.sub(re.compile(r"£([0-9\,]*[0-9]+)"), r"\1 pounds", text) text = re.sub(re.compile(r"\$([0-9\.\,]*[0-9]+)"), self._expand_dollars, text) text = re.sub(re.compile(r"([0-9]+\.[0-9]+)"), self._expand_decimal_point, text) text = re.sub(re.compile(r"[0-9]+(st|nd|rd|th)"), self._expand_ordinal, text) text = re.sub(re.compile(r"[0-9]+"), self._expand_number, text) return text def expand_abbreviations(self, text: str) -> str: """ Expands the abbreviate words. """ for regex, replacement in self._abbreviations: text = re.sub(regex, replacement, text) return text def collapse_whitespace(self, text: str) -> str: """ Removes multiple whitespaces """ return re.sub(re.compile(r"\s+"), " ", text) def __call__(self, text): """ Converts text to ascii, numbers / number-like quantities to their spelt-out counterparts and expands abbreviations """ text = self.convert_to_ascii(text) text = text.lower() text = self.normalize_numbers(text) text = self.expand_abbreviations(text) text = self.collapse_whitespace(text) text = text.replace('"', "") return text
transformers/src/transformers/models/clvp/number_normalizer.py/0
{ "file_path": "transformers/src/transformers/models/clvp/number_normalizer.py", "repo_id": "transformers", "token_count": 4412 }
301
# coding=utf-8 # Copyright 2022 Microsoft Research Asia and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Conditional DETR model.""" import math from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import torch from torch import Tensor, nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions, Seq2SeqModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_scipy_available, is_timm_available, is_vision_available, logging, replace_return_docstrings, requires_backends, ) from ...utils.backbone_utils import load_backbone from .configuration_conditional_detr import ConditionalDetrConfig if is_scipy_available(): from scipy.optimize import linear_sum_assignment if is_timm_available(): from timm import create_model if is_vision_available(): from ...image_transforms import center_to_corners_format logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ConditionalDetrConfig" _CHECKPOINT_FOR_DOC = "microsoft/conditional-detr-resnet-50" CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/conditional-detr-resnet-50", # See all Conditional DETR models at https://huggingface.co/models?filter=conditional_detr ] @dataclass class ConditionalDetrDecoderOutput(BaseModelOutputWithCrossAttentions): """ Base class for outputs of the Conditional DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding losses. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. """ intermediate_hidden_states: Optional[torch.FloatTensor] = None reference_points: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ConditionalDetrModelOutput(Seq2SeqModelOutput): """ Base class for outputs of the Conditional DETR encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding losses. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. """ intermediate_hidden_states: Optional[torch.FloatTensor] = None reference_points: Optional[Tuple[torch.FloatTensor]] = None @dataclass # Copied from transformers.models.detr.modeling_detr.DetrObjectDetectionOutput with Detr->ConditionalDetr class ConditionalDetrObjectDetectionOutput(ModelOutput): """ Output type of [`ConditionalDetrForObjectDetection`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~ConditionalDetrImageProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the decoder of the model. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: torch.FloatTensor = None pred_boxes: torch.FloatTensor = None auxiliary_outputs: Optional[List[Dict]] = None last_hidden_state: Optional[torch.FloatTensor] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass # Copied from transformers.models.detr.modeling_detr.DetrSegmentationOutput with Detr->ConditionalDetr class ConditionalDetrSegmentationOutput(ModelOutput): """ Output type of [`ConditionalDetrForSegmentation`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~ConditionalDetrImageProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. pred_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height/4, width/4)`): Segmentation masks logits for all queries. See also [`~ConditionalDetrImageProcessor.post_process_semantic_segmentation`] or [`~ConditionalDetrImageProcessor.post_process_instance_segmentation`] [`~ConditionalDetrImageProcessor.post_process_panoptic_segmentation`] to evaluate semantic, instance and panoptic segmentation masks respectively. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the decoder of the model. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: torch.FloatTensor = None pred_boxes: torch.FloatTensor = None pred_masks: torch.FloatTensor = None auxiliary_outputs: Optional[List[Dict]] = None last_hidden_state: Optional[torch.FloatTensor] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->ConditionalDetr class ConditionalDetrFrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super().__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): # move reshapes to the beginning # to make it user-friendly weight = self.weight.reshape(1, -1, 1, 1) bias = self.bias.reshape(1, -1, 1, 1) running_var = self.running_var.reshape(1, -1, 1, 1) running_mean = self.running_mean.reshape(1, -1, 1, 1) epsilon = 1e-5 scale = weight * (running_var + epsilon).rsqrt() bias = bias - running_mean * scale return x * scale + bias # Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->ConditionalDetr def replace_batch_norm(model): r""" Recursively replace all `torch.nn.BatchNorm2d` with `ConditionalDetrFrozenBatchNorm2d`. Args: model (torch.nn.Module): input model """ for name, module in model.named_children(): if isinstance(module, nn.BatchNorm2d): new_module = ConditionalDetrFrozenBatchNorm2d(module.num_features) if not module.weight.device == torch.device("meta"): new_module.weight.data.copy_(module.weight) new_module.bias.data.copy_(module.bias) new_module.running_mean.data.copy_(module.running_mean) new_module.running_var.data.copy_(module.running_var) model._modules[name] = new_module if len(list(module.children())) > 0: replace_batch_norm(module) # Copied from transformers.models.detr.modeling_detr.DetrConvEncoder class ConditionalDetrConvEncoder(nn.Module): """ Convolutional backbone, using either the AutoBackbone API or one from the timm library. nn.BatchNorm2d layers are replaced by DetrFrozenBatchNorm2d as defined above. """ def __init__(self, config): super().__init__() self.config = config if config.use_timm_backbone: requires_backends(self, ["timm"]) kwargs = {} if config.dilation: kwargs["output_stride"] = 16 backbone = create_model( config.backbone, pretrained=config.use_pretrained_backbone, features_only=True, out_indices=(1, 2, 3, 4), in_chans=config.num_channels, **kwargs, ) else: backbone = load_backbone(config) # replace batch norm by frozen batch norm with torch.no_grad(): replace_batch_norm(backbone) self.model = backbone self.intermediate_channel_sizes = ( self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels ) backbone_model_type = config.backbone if config.use_timm_backbone else config.backbone_config.model_type if "resnet" in backbone_model_type: for name, parameter in self.model.named_parameters(): if config.use_timm_backbone: if "layer2" not in name and "layer3" not in name and "layer4" not in name: parameter.requires_grad_(False) else: if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name: parameter.requires_grad_(False) def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor): # send pixel_values through the model to get list of feature maps features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps out = [] for feature_map in features: # downsample pixel_mask to match shape of corresponding feature_map mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0] out.append((feature_map, mask)) return out # Copied from transformers.models.detr.modeling_detr.DetrConvModel with Detr->ConditionalDetr class ConditionalDetrConvModel(nn.Module): """ This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder. """ def __init__(self, conv_encoder, position_embedding): super().__init__() self.conv_encoder = conv_encoder self.position_embedding = position_embedding def forward(self, pixel_values, pixel_mask): # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples out = self.conv_encoder(pixel_values, pixel_mask) pos = [] for feature_map, mask in out: # position encoding pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype)) return out, pos class ConditionalDetrSinePositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None): super().__init__() self.embedding_dim = embedding_dim self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, pixel_values, pixel_mask): if pixel_mask is None: raise ValueError("No pixel mask provided") y_embed = pixel_mask.cumsum(1, dtype=torch.float32) x_embed = pixel_mask.cumsum(2, dtype=torch.float32) if self.normalize: y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float() dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos # Copied from transformers.models.detr.modeling_detr.DetrLearnedPositionEmbedding with Detr->ConditionalDetr class ConditionalDetrLearnedPositionEmbedding(nn.Module): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, embedding_dim=256): super().__init__() self.row_embeddings = nn.Embedding(50, embedding_dim) self.column_embeddings = nn.Embedding(50, embedding_dim) def forward(self, pixel_values, pixel_mask=None): height, width = pixel_values.shape[-2:] width_values = torch.arange(width, device=pixel_values.device) height_values = torch.arange(height, device=pixel_values.device) x_emb = self.column_embeddings(width_values) y_emb = self.row_embeddings(height_values) pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) pos = pos.permute(2, 0, 1) pos = pos.unsqueeze(0) pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) return pos # Copied from transformers.models.detr.modeling_detr.build_position_encoding with Detr->ConditionalDetr def build_position_encoding(config): n_steps = config.d_model // 2 if config.position_embedding_type == "sine": # TODO find a better way of exposing other arguments position_embedding = ConditionalDetrSinePositionEmbedding(n_steps, normalize=True) elif config.position_embedding_type == "learned": position_embedding = ConditionalDetrLearnedPositionEmbedding(n_steps) else: raise ValueError(f"Not supported {config.position_embedding_type}") return position_embedding # function to generate sine positional embedding for 2d coordinates def gen_sine_position_embeddings(pos_tensor, d_model): scale = 2 * math.pi dim = d_model // 2 dim_t = torch.arange(dim, dtype=torch.float32, device=pos_tensor.device) dim_t = 10000 ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / dim) x_embed = pos_tensor[:, :, 0] * scale y_embed = pos_tensor[:, :, 1] * scale pos_x = x_embed[:, :, None] / dim_t pos_y = y_embed[:, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) pos = torch.cat((pos_y, pos_x), dim=2) return pos def inverse_sigmoid(x, eps=1e-5): x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) # Copied from transformers.models.detr.modeling_detr.DetrAttention class DetrAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the DETR paper). """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs): position_embeddings = kwargs.pop("position_embeddings", None) if kwargs: raise ValueError(f"Unexpected arguments {kwargs.keys()}") if position_embeddings is not None and object_queries is not None: raise ValueError( "Cannot specify both position_embeddings and object_queries. Please use just object_queries" ) if position_embeddings is not None: logger.warning_once( "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" ) object_queries = position_embeddings return tensor if object_queries is None else tensor + object_queries def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, key_value_states: Optional[torch.Tensor] = None, spatial_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" position_embeddings = kwargs.pop("position_ebmeddings", None) key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None) if kwargs: raise ValueError(f"Unexpected arguments {kwargs.keys()}") if position_embeddings is not None and object_queries is not None: raise ValueError( "Cannot specify both position_embeddings and object_queries. Please use just object_queries" ) if key_value_position_embeddings is not None and spatial_position_embeddings is not None: raise ValueError( "Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings" ) if position_embeddings is not None: logger.warning_once( "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" ) object_queries = position_embeddings if key_value_position_embeddings is not None: logger.warning_once( "key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead" ) spatial_position_embeddings = key_value_position_embeddings # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size, target_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if object_queries is not None: hidden_states_original = hidden_states hidden_states = self.with_pos_embed(hidden_states, object_queries) # add key-value position embeddings to the key value states if spatial_position_embeddings is not None: key_value_states_original = key_value_states key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, target_len, source_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped class ConditionalDetrAttention(nn.Module): """ Cross-Attention used in Conditional DETR 'Conditional DETR for Fast Training Convergence' paper. The key q_proj, k_proj, v_proj are defined outside the attention. This attention allows the dim of q, k to be different to v. """ def __init__( self, embed_dim: int, out_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.out_dim = out_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) # head dimension of values self.v_head_dim = out_dim // num_heads if self.v_head_dim * num_heads != self.out_dim: raise ValueError( f"out_dim must be divisible by num_heads (got `out_dim`: {self.out_dim} and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.out_proj = nn.Linear(out_dim, out_dim, bias=bias) def _qk_shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def _v_shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.v_head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, key_states: Optional[torch.Tensor] = None, value_states: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" batch_size, target_len, _ = hidden_states.size() # get query proj query_states = hidden_states * self.scaling # get key, value proj key_states = self._qk_shape(key_states, -1, batch_size) value_states = self._v_shape(value_states, -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) v_proj_shape = (batch_size * self.num_heads, -1, self.v_head_dim) query_states = self._qk_shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*v_proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, target_len, source_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.v_head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.v_head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.v_head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, self.out_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.detr.modeling_detr.DetrEncoderLayer with DetrEncoderLayer->ConditionalDetrEncoderLayer,DetrConfig->ConditionalDetrConfig class ConditionalDetrEncoderLayer(nn.Module): def __init__(self, config: ConditionalDetrConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = DetrAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, object_queries: torch.Tensor = None, output_attentions: bool = False, **kwargs, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. object_queries (`torch.FloatTensor`, *optional*): Object queries (also called content embeddings), to be added to the hidden states. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ position_embeddings = kwargs.pop("position_embeddings", None) if kwargs: raise ValueError(f"Unexpected arguments {kwargs.keys()}") if position_embeddings is not None and object_queries is not None: raise ValueError( "Cannot specify both position_embeddings and object_queries. Please use just object_queries" ) if position_embeddings is not None: logger.warning_once( "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" ) object_queries = position_embeddings residual = hidden_states hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, object_queries=object_queries, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if self.training: if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class ConditionalDetrDecoderLayer(nn.Module): def __init__(self, config: ConditionalDetrConfig): super().__init__() self.embed_dim = config.d_model d_model = config.d_model # Decoder Self-Attention projections self.sa_qcontent_proj = nn.Linear(d_model, d_model) self.sa_qpos_proj = nn.Linear(d_model, d_model) self.sa_kcontent_proj = nn.Linear(d_model, d_model) self.sa_kpos_proj = nn.Linear(d_model, d_model) self.sa_v_proj = nn.Linear(d_model, d_model) self.self_attn = ConditionalDetrAttention( embed_dim=self.embed_dim, out_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) # Decoder Cross-Attention projections self.ca_qcontent_proj = nn.Linear(d_model, d_model) self.ca_qpos_proj = nn.Linear(d_model, d_model) self.ca_kcontent_proj = nn.Linear(d_model, d_model) self.ca_kpos_proj = nn.Linear(d_model, d_model) self.ca_v_proj = nn.Linear(d_model, d_model) self.ca_qpos_sine_proj = nn.Linear(d_model, d_model) self.encoder_attn = ConditionalDetrAttention( self.embed_dim * 2, self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) self.nhead = config.decoder_attention_heads def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, query_sine_embed: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, is_first: Optional[bool] = False, **kwargs, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. object_queries (`torch.FloatTensor`, *optional*): object_queries that are added to the queries and keys in the cross-attention layer. query_position_embeddings (`torch.FloatTensor`, *optional*): object_queries that are added to the queries and keys in the self-attention layer. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ position_embeddings = kwargs.pop("position_embeddings", None) if kwargs: raise ValueError(f"Unexpected arguments {kwargs.keys()}") if position_embeddings is not None and object_queries is not None: raise ValueError( "Cannot specify both position_embeddings and object_queries. Please use just object_queries" ) if position_embeddings is not None: logger.warning_once( "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" ) object_queries = position_embeddings residual = hidden_states # ========== Begin of Self-Attention ============= # Apply projections here # shape: num_queries x batch_size x 256 q_content = self.sa_qcontent_proj( hidden_states ) # target is the input of the first decoder layer. zero by default. q_pos = self.sa_qpos_proj(query_position_embeddings) k_content = self.sa_kcontent_proj(hidden_states) k_pos = self.sa_kpos_proj(query_position_embeddings) v = self.sa_v_proj(hidden_states) _, num_queries, n_model = q_content.shape q = q_content + q_pos k = k_content + k_pos hidden_states, self_attn_weights = self.self_attn( hidden_states=q, attention_mask=attention_mask, key_states=k, value_states=v, output_attentions=output_attentions, ) # ============ End of Self-Attention ============= hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # ========== Begin of Cross-Attention ============= # Apply projections here # shape: num_queries x batch_size x 256 q_content = self.ca_qcontent_proj(hidden_states) k_content = self.ca_kcontent_proj(encoder_hidden_states) v = self.ca_v_proj(encoder_hidden_states) batch_size, num_queries, n_model = q_content.shape _, source_len, _ = k_content.shape k_pos = self.ca_kpos_proj(object_queries) # For the first decoder layer, we concatenate the positional embedding predicted from # the object query (the positional embedding) into the original query (key) in DETR. if is_first: q_pos = self.ca_qpos_proj(query_position_embeddings) q = q_content + q_pos k = k_content + k_pos else: q = q_content k = k_content q = q.view(batch_size, num_queries, self.nhead, n_model // self.nhead) query_sine_embed = self.ca_qpos_sine_proj(query_sine_embed) query_sine_embed = query_sine_embed.view(batch_size, num_queries, self.nhead, n_model // self.nhead) q = torch.cat([q, query_sine_embed], dim=3).view(batch_size, num_queries, n_model * 2) k = k.view(batch_size, source_len, self.nhead, n_model // self.nhead) k_pos = k_pos.view(batch_size, source_len, self.nhead, n_model // self.nhead) k = torch.cat([k, k_pos], dim=3).view(batch_size, source_len, n_model * 2) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=q, attention_mask=encoder_attention_mask, key_states=k, value_states=v, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # ============ End of Cross-Attention ============= # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.detr.modeling_detr.DetrClassificationHead with Detr->ConditionalDetr class ConditionalDetrClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, hidden_states: torch.Tensor): hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states # Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with DetrMLPPredictionHead->MLP class MLP(nn.Module): """ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, height and width of a bounding box w.r.t. an image. Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x # Copied from transformers.models.detr.modeling_detr.DetrPreTrainedModel with Detr->ConditionalDetr class ConditionalDetrPreTrainedModel(PreTrainedModel): config_class = ConditionalDetrConfig base_model_prefix = "model" main_input_name = "pixel_values" _no_split_modules = [r"ConditionalDetrConvEncoder", r"ConditionalDetrEncoderLayer", r"ConditionalDetrDecoderLayer"] def _init_weights(self, module): std = self.config.init_std xavier_std = self.config.init_xavier_std if isinstance(module, ConditionalDetrMHAttentionMap): nn.init.zeros_(module.k_linear.bias) nn.init.zeros_(module.q_linear.bias) nn.init.xavier_uniform_(module.k_linear.weight, gain=xavier_std) nn.init.xavier_uniform_(module.q_linear.weight, gain=xavier_std) elif isinstance(module, ConditionalDetrLearnedPositionEmbedding): nn.init.uniform_(module.row_embeddings.weight) nn.init.uniform_(module.column_embeddings.weight) if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() CONDITIONAL_DETR_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ConditionalDetrConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CONDITIONAL_DETR_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConditionalDetrImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*): Not used by default. Can be used to mask object queries. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you can choose to directly pass a flattened representation of an image. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an embedded representation. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.detr.modeling_detr.DetrEncoder with Detr->ConditionalDetr,DETR->ConditionalDETR class ConditionalDetrEncoder(ConditionalDetrPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`ConditionalDetrEncoderLayer`]. The encoder updates the flattened feature map through multiple self-attention layers. Small tweak for ConditionalDETR: - object_queries are added to the forward pass. Args: config: ConditionalDetrConfig """ def __init__(self, config: ConditionalDetrConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop self.layers = nn.ModuleList([ConditionalDetrEncoderLayer(config) for _ in range(config.encoder_layers)]) # in the original ConditionalDETR, no layernorm is used at the end of the encoder, as "normalize_before" is set to False by default # Initialize weights and apply final processing self.post_init() def forward( self, inputs_embeds=None, attention_mask=None, object_queries=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: - 1 for pixel features that are real (i.e. **not masked**), - 0 for pixel features that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Object queries that are added to the queries in each self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ position_embeddings = kwargs.pop("position_embeddings", None) if kwargs: raise ValueError(f"Unexpected arguments {kwargs.keys()}") if position_embeddings is not None and object_queries is not None: raise ValueError( "Cannot specify both position_embeddings and object_queries. Please use just object_queries" ) if position_embeddings is not None: logger.warning_once( "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" ) object_queries = position_embeddings output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = inputs_embeds hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: # we add object_queries as extra input to the encoder_layer layer_outputs = encoder_layer( hidden_states, attention_mask, object_queries=object_queries, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class ConditionalDetrDecoder(ConditionalDetrPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`ConditionalDetrDecoderLayer`]. The decoder updates the query embeddings through multiple self-attention and cross-attention layers. Some small tweaks for Conditional DETR: - object_queries and query_position_embeddings are added to the forward pass. - if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers. Args: config: ConditionalDetrConfig """ def __init__(self, config: ConditionalDetrConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.layers = nn.ModuleList([ConditionalDetrDecoderLayer(config) for _ in range(config.decoder_layers)]) # in Conditional DETR, the decoder uses layernorm after the last decoder layer output self.layernorm = nn.LayerNorm(config.d_model) d_model = config.d_model self.gradient_checkpointing = False # query_scale is the FFN applied on f to generate transformation T self.query_scale = MLP(d_model, d_model, d_model, 2) self.ref_point_head = MLP(d_model, d_model, 2, 2) for layer_id in range(config.decoder_layers - 1): self.layers[layer_id + 1].ca_qpos_proj = None # Initialize weights and apply final processing self.post_init() def forward( self, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, object_queries=None, query_position_embeddings=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The query embeddings that are passed into the decoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`: - 1 for queries that are **not masked**, - 0 for queries that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Position embeddings that are added to the queries and keys in each cross-attention layer. query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): , *optional*): Position embeddings that are added to the queries and keys in each self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ position_embeddings = kwargs.pop("position_embeddings", None) if kwargs: raise ValueError(f"Unexpected arguments {kwargs.keys()}") if position_embeddings is not None and object_queries is not None: raise ValueError( "Cannot specify both position_embeddings and object_queries. Please use just object_queries" ) if position_embeddings is not None: logger.warning_once( "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" ) object_queries = position_embeddings output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is not None: hidden_states = inputs_embeds input_shape = inputs_embeds.size()[:-1] # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # optional intermediate hidden states intermediate = () if self.config.auxiliary_loss else None # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None reference_points_before_sigmoid = self.ref_point_head( query_position_embeddings ) # [num_queries, batch_size, 2] reference_points = reference_points_before_sigmoid.sigmoid().transpose(0, 1) obj_center = reference_points[..., :2].transpose(0, 1) # get sine embedding for the query vector query_sine_embed_before_transformation = gen_sine_position_embeddings(obj_center, self.config.d_model) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue if idx == 0: pos_transformation = 1 else: pos_transformation = self.query_scale(hidden_states) # apply transformation query_sine_embed = query_sine_embed_before_transformation * pos_transformation if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, None, object_queries, query_position_embeddings, query_sine_embed, encoder_hidden_states, encoder_attention_mask, None, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=None, object_queries=object_queries, query_position_embeddings=query_position_embeddings, query_sine_embed=query_sine_embed, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, is_first=(idx == 0), ) hidden_states = layer_outputs[0] if self.config.auxiliary_loss: hidden_states = self.layernorm(hidden_states) intermediate += (hidden_states,) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # finally, apply layernorm hidden_states = self.layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) # stack intermediate decoder activations if self.config.auxiliary_loss: intermediate = torch.stack(intermediate) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate, reference_points, ] if v is not None ) return ConditionalDetrDecoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, intermediate_hidden_states=intermediate, reference_points=reference_points, ) @add_start_docstrings( """ The bare Conditional DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw hidden-states without any specific head on top. """, CONDITIONAL_DETR_START_DOCSTRING, ) class ConditionalDetrModel(ConditionalDetrPreTrainedModel): def __init__(self, config: ConditionalDetrConfig): super().__init__(config) # Create backbone + positional encoding backbone = ConditionalDetrConvEncoder(config) object_queries = build_position_encoding(config) self.backbone = ConditionalDetrConvModel(backbone, object_queries) # Create projection layer self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1) self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model) self.encoder = ConditionalDetrEncoder(config) self.decoder = ConditionalDetrDecoder(config) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def freeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(False) def unfreeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(True) @add_start_docstrings_to_model_forward(CONDITIONAL_DETR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ConditionalDetrModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], ConditionalDetrModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50") >>> model = AutoModel.from_pretrained("microsoft/conditional-detr-resnet-50") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> # the last hidden states are the final query embeddings of the Transformer decoder >>> # these are of shape (batch_size, num_queries, hidden_size) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 300, 256] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_channels, height, width = pixel_values.shape device = pixel_values.device if pixel_mask is None: pixel_mask = torch.ones(((batch_size, height, width)), device=device) # First, sent pixel_values + pixel_mask through Backbone to obtain the features # pixel_values should be of shape (batch_size, num_channels, height, width) # pixel_mask should be of shape (batch_size, height, width) features, object_queries_list = self.backbone(pixel_values, pixel_mask) # get final feature map and downsampled mask feature_map, mask = features[-1] if mask is None: raise ValueError("Backbone does not return downsampled pixel mask") # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) projected_feature_map = self.input_projection(feature_map) # Third, flatten the feature map + object_queries of shape NxCxHxW to NxCxHW, and permute it to NxHWxC # In other words, turn their shape into (batch_size, sequence_length, hidden_size) flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1) flattened_mask = mask.flatten(1) # Fourth, sent flattened_features + flattened_mask + object_queries through encoder # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size) # flattened_mask is a Tensor of shape (batch_size, heigth*width) if encoder_outputs is None: encoder_outputs = self.encoder( inputs_embeds=flattened_features, attention_mask=flattened_mask, object_queries=object_queries, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output) query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1) queries = torch.zeros_like(query_position_embeddings) # decoder outputs consists of (dec_features, dec_hidden, dec_attn) decoder_outputs = self.decoder( inputs_embeds=queries, attention_mask=None, object_queries=object_queries, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=flattened_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return ConditionalDetrModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, intermediate_hidden_states=decoder_outputs.intermediate_hidden_states, reference_points=decoder_outputs.reference_points, ) @add_start_docstrings( """ CONDITIONAL_DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top, for tasks such as COCO detection. """, CONDITIONAL_DETR_START_DOCSTRING, ) class ConditionalDetrForObjectDetection(ConditionalDetrPreTrainedModel): def __init__(self, config: ConditionalDetrConfig): super().__init__(config) # CONDITIONAL DETR encoder-decoder model self.model = ConditionalDetrModel(config) # Object detection heads self.class_labels_classifier = nn.Linear( config.d_model, config.num_labels ) # We add one for the "no object" class self.bbox_predictor = ConditionalDetrMLPPredictionHead( input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3 ) # Initialize weights and apply final processing self.post_init() # taken from https://github.com/Atten4Vis/conditionalDETR/blob/master/models/conditional_detr.py @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] @add_start_docstrings_to_model_forward(CONDITIONAL_DETR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ConditionalDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[List[dict]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], ConditionalDetrObjectDetectionOutput]: r""" labels (`List[Dict]` of len `(batch_size,)`, *optional*): Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoModelForObjectDetection >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50") >>> model = AutoModelForObjectDetection.from_pretrained("microsoft/conditional-detr-resnet-50") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) >>> target_sizes = torch.tensor([image.size[::-1]]) >>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[ ... 0 ... ] >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... print( ... f"Detected {model.config.id2label[label.item()]} with confidence " ... f"{round(score.item(), 3)} at location {box}" ... ) Detected remote with confidence 0.833 at location [38.31, 72.1, 177.63, 118.45] Detected cat with confidence 0.831 at location [9.2, 51.38, 321.13, 469.0] Detected cat with confidence 0.804 at location [340.3, 16.85, 642.93, 370.95] Detected remote with confidence 0.683 at location [334.48, 73.49, 366.37, 190.01] Detected couch with confidence 0.535 at location [0.52, 1.19, 640.35, 475.1] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # First, sent images through CONDITIONAL_DETR base model to obtain encoder + decoder outputs outputs = self.model( pixel_values, pixel_mask=pixel_mask, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # class logits + predicted bounding boxes logits = self.class_labels_classifier(sequence_output) reference = outputs.reference_points if return_dict else outputs[-1] reference_before_sigmoid = inverse_sigmoid(reference).transpose(0, 1) outputs_coords = [] hs = sequence_output tmp = self.bbox_predictor(hs) tmp[..., :2] += reference_before_sigmoid pred_boxes = tmp.sigmoid() # pred_boxes = self.bbox_predictor(sequence_output).sigmoid() loss, loss_dict, auxiliary_outputs = None, None, None if labels is not None: # First: create the matcher matcher = ConditionalDetrHungarianMatcher( class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost ) # Second: create the criterion losses = ["labels", "boxes", "cardinality"] criterion = ConditionalDetrLoss( matcher=matcher, num_classes=self.config.num_labels, focal_alpha=self.config.focal_alpha, losses=losses, ) criterion.to(self.device) # Third: compute the losses, based on outputs and labels outputs_loss = {} outputs_loss["logits"] = logits outputs_loss["pred_boxes"] = pred_boxes if self.config.auxiliary_loss: intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] outputs_class = self.class_labels_classifier(intermediate) for lvl in range(intermediate.shape[0]): tmp = self.bbox_predictor(intermediate[lvl]) tmp[..., :2] += reference_before_sigmoid outputs_coord = tmp.sigmoid() outputs_coords.append(outputs_coord) outputs_coord = torch.stack(outputs_coords) auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord) outputs_loss["auxiliary_outputs"] = auxiliary_outputs loss_dict = criterion(outputs_loss, labels) # Fourth: compute total loss, as a weighted sum of the various losses weight_dict = {"loss_ce": self.config.cls_loss_coefficient, "loss_bbox": self.config.bbox_loss_coefficient} weight_dict["loss_giou"] = self.config.giou_loss_coefficient if self.config.auxiliary_loss: aux_weight_dict = {} for i in range(self.config.decoder_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) if not return_dict: if auxiliary_outputs is not None: output = (logits, pred_boxes) + auxiliary_outputs + outputs else: output = (logits, pred_boxes) + outputs return ((loss, loss_dict) + output) if loss is not None else output return ConditionalDetrObjectDetectionOutput( loss=loss, loss_dict=loss_dict, logits=logits, pred_boxes=pred_boxes, auxiliary_outputs=auxiliary_outputs, last_hidden_state=outputs.last_hidden_state, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( """ CONDITIONAL_DETR Model (consisting of a backbone and encoder-decoder Transformer) with a segmentation head on top, for tasks such as COCO panoptic. """, CONDITIONAL_DETR_START_DOCSTRING, ) class ConditionalDetrForSegmentation(ConditionalDetrPreTrainedModel): def __init__(self, config: ConditionalDetrConfig): super().__init__(config) # object detection model self.conditional_detr = ConditionalDetrForObjectDetection(config) # segmentation head hidden_size, number_of_heads = config.d_model, config.encoder_attention_heads intermediate_channel_sizes = self.conditional_detr.model.backbone.conv_encoder.intermediate_channel_sizes self.mask_head = ConditionalDetrMaskHeadSmallConv( hidden_size + number_of_heads, intermediate_channel_sizes[::-1][-3:], hidden_size ) self.bbox_attention = ConditionalDetrMHAttentionMap( hidden_size, hidden_size, number_of_heads, dropout=0.0, std=config.init_xavier_std ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CONDITIONAL_DETR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ConditionalDetrSegmentationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[List[dict]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], ConditionalDetrSegmentationOutput]: r""" labels (`List[Dict]` of len `(batch_size,)`, *optional*): Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each dictionary containing at least the following 3 keys: 'class_labels', 'boxes' and 'masks' (the class labels, bounding boxes and segmentation masks of an image in the batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)`, the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)` and the masks a `torch.FloatTensor` of shape `(number of bounding boxes in the image, height, width)`. Returns: Examples: ```python >>> import io >>> import requests >>> from PIL import Image >>> import torch >>> import numpy >>> from transformers import ( ... AutoImageProcessor, ... ConditionalDetrConfig, ... ConditionalDetrForSegmentation, ... ) >>> from transformers.image_transforms import rgb_to_id >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50") >>> # randomly initialize all weights of the model >>> config = ConditionalDetrConfig() >>> model = ConditionalDetrForSegmentation(config) >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> # Use the `post_process_panoptic_segmentation` method of the `image_processor` to retrieve post-processed panoptic segmentation maps >>> # Segmentation results are returned as a list of dictionaries >>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[(300, 500)]) >>> # A tensor of shape (height, width) where each value denotes a segment id, filled with -1 if no segment is found >>> panoptic_seg = result[0]["segmentation"] >>> # Get prediction score and segment_id to class_id mapping of each segment >>> panoptic_segments_info = result[0]["segments_info"] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_channels, height, width = pixel_values.shape device = pixel_values.device if pixel_mask is None: pixel_mask = torch.ones((batch_size, height, width), device=device) # First, get list of feature maps and object_queries features, object_queries_list = self.conditional_detr.model.backbone(pixel_values, pixel_mask=pixel_mask) # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) feature_map, mask = features[-1] batch_size, num_channels, height, width = feature_map.shape projected_feature_map = self.conditional_detr.model.input_projection(feature_map) # Third, flatten the feature map + object_queries of shape NxCxHxW to NxCxHW, and permute it to NxHWxC # In other words, turn their shape into (batch_size, sequence_length, hidden_size) flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1) flattened_mask = mask.flatten(1) # Fourth, sent flattened_features + flattened_mask + object_queries through encoder # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size) # flattened_mask is a Tensor of shape (batch_size, heigth*width) if encoder_outputs is None: encoder_outputs = self.conditional_detr.model.encoder( inputs_embeds=flattened_features, attention_mask=flattened_mask, object_queries=object_queries, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output) query_position_embeddings = self.conditional_detr.model.query_position_embeddings.weight.unsqueeze(0).repeat( batch_size, 1, 1 ) queries = torch.zeros_like(query_position_embeddings) # decoder outputs consists of (dec_features, dec_hidden, dec_attn) decoder_outputs = self.conditional_detr.model.decoder( inputs_embeds=queries, attention_mask=None, object_queries=object_queries, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=flattened_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = decoder_outputs[0] # Sixth, compute logits, pred_boxes and pred_masks logits = self.conditional_detr.class_labels_classifier(sequence_output) pred_boxes = self.conditional_detr.bbox_predictor(sequence_output).sigmoid() memory = encoder_outputs[0].permute(0, 2, 1).view(batch_size, self.config.d_model, height, width) mask = flattened_mask.view(batch_size, height, width) # FIXME h_boxes takes the last one computed, keep this in mind # important: we need to reverse the mask, since in the original implementation the mask works reversed # bbox_mask is of shape (batch_size, num_queries, number_of_attention_heads in bbox_attention, height/32, width/32) bbox_mask = self.bbox_attention(sequence_output, memory, mask=~mask) seg_masks = self.mask_head(projected_feature_map, bbox_mask, [features[2][0], features[1][0], features[0][0]]) pred_masks = seg_masks.view( batch_size, self.conditional_detr.config.num_queries, seg_masks.shape[-2], seg_masks.shape[-1] ) loss, loss_dict, auxiliary_outputs = None, None, None if labels is not None: # First: create the matcher matcher = ConditionalDetrHungarianMatcher( class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost ) # Second: create the criterion losses = ["labels", "boxes", "cardinality", "masks"] criterion = ConditionalDetrLoss( matcher=matcher, num_classes=self.config.num_labels, focal_alpha=self.config.focal_alpha, losses=losses, ) criterion.to(self.device) # Third: compute the losses, based on outputs and labels outputs_loss = {} outputs_loss["logits"] = logits outputs_loss["pred_boxes"] = pred_boxes outputs_loss["pred_masks"] = pred_masks if self.config.auxiliary_loss: intermediate = decoder_outputs.intermediate_hidden_states if return_dict else decoder_outputs[-1] outputs_class = self.conditional_detr.class_labels_classifier(intermediate) outputs_coord = self.conditional_detr.bbox_predictor(intermediate).sigmoid() auxiliary_outputs = self.conditional_detr._set_aux_loss(outputs_class, outputs_coord) outputs_loss["auxiliary_outputs"] = auxiliary_outputs loss_dict = criterion(outputs_loss, labels) # Fourth: compute total loss, as a weighted sum of the various losses weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient} weight_dict["loss_giou"] = self.config.giou_loss_coefficient weight_dict["loss_mask"] = self.config.mask_loss_coefficient weight_dict["loss_dice"] = self.config.dice_loss_coefficient if self.config.auxiliary_loss: aux_weight_dict = {} for i in range(self.config.decoder_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) if not return_dict: if auxiliary_outputs is not None: output = (logits, pred_boxes, pred_masks) + auxiliary_outputs + decoder_outputs + encoder_outputs else: output = (logits, pred_boxes, pred_masks) + decoder_outputs + encoder_outputs return ((loss, loss_dict) + output) if loss is not None else output return ConditionalDetrSegmentationOutput( loss=loss, loss_dict=loss_dict, logits=logits, pred_boxes=pred_boxes, pred_masks=pred_masks, auxiliary_outputs=auxiliary_outputs, last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def _expand(tensor, length: int): return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1) # Copied from transformers.models.detr.modeling_detr.DetrMaskHeadSmallConv with Detr->ConditionalDetr class ConditionalDetrMaskHeadSmallConv(nn.Module): """ Simple convolutional head, using group norm. Upsampling is done using a FPN approach """ def __init__(self, dim, fpn_dims, context_dim): super().__init__() if dim % 8 != 0: raise ValueError( "The hidden_size + number of attention heads must be divisible by 8 as the number of groups in" " GroupNorm is set to 8" ) inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64] self.lay1 = nn.Conv2d(dim, dim, 3, padding=1) self.gn1 = nn.GroupNorm(8, dim) self.lay2 = nn.Conv2d(dim, inter_dims[1], 3, padding=1) self.gn2 = nn.GroupNorm(min(8, inter_dims[1]), inter_dims[1]) self.lay3 = nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1) self.gn3 = nn.GroupNorm(min(8, inter_dims[2]), inter_dims[2]) self.lay4 = nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1) self.gn4 = nn.GroupNorm(min(8, inter_dims[3]), inter_dims[3]) self.lay5 = nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1) self.gn5 = nn.GroupNorm(min(8, inter_dims[4]), inter_dims[4]) self.out_lay = nn.Conv2d(inter_dims[4], 1, 3, padding=1) self.dim = dim self.adapter1 = nn.Conv2d(fpn_dims[0], inter_dims[1], 1) self.adapter2 = nn.Conv2d(fpn_dims[1], inter_dims[2], 1) self.adapter3 = nn.Conv2d(fpn_dims[2], inter_dims[3], 1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_uniform_(m.weight, a=1) nn.init.constant_(m.bias, 0) def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]): # here we concatenate x, the projected feature map, of shape (batch_size, d_model, heigth/32, width/32) with # the bbox_mask = the attention maps of shape (batch_size, n_queries, n_heads, height/32, width/32). # We expand the projected feature map to match the number of heads. x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1) x = self.lay1(x) x = self.gn1(x) x = nn.functional.relu(x) x = self.lay2(x) x = self.gn2(x) x = nn.functional.relu(x) cur_fpn = self.adapter1(fpns[0]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay3(x) x = self.gn3(x) x = nn.functional.relu(x) cur_fpn = self.adapter2(fpns[1]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay4(x) x = self.gn4(x) x = nn.functional.relu(x) cur_fpn = self.adapter3(fpns[2]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay5(x) x = self.gn5(x) x = nn.functional.relu(x) x = self.out_lay(x) return x # Copied from transformers.models.detr.modeling_detr.DetrMHAttentionMap with Detr->ConditionalDetr class ConditionalDetrMHAttentionMap(nn.Module): """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)""" def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True, std=None): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.dropout = nn.Dropout(dropout) self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias) self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias) self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5 def forward(self, q, k, mask: Optional[Tensor] = None): q = self.q_linear(q) k = nn.functional.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias) queries_per_head = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads) keys_per_head = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1]) weights = torch.einsum("bqnc,bnchw->bqnhw", queries_per_head * self.normalize_fact, keys_per_head) if mask is not None: weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), torch.finfo(weights.dtype).min) weights = nn.functional.softmax(weights.flatten(2), dim=-1).view(weights.size()) weights = self.dropout(weights) return weights # Copied from transformers.models.detr.modeling_detr.dice_loss def dice_loss(inputs, targets, num_boxes): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_boxes # Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs (`torch.FloatTensor` of arbitrary shape): The predictions for each example. targets (`torch.FloatTensor` with the same shape as `inputs`) A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class and 1 for the positive class). alpha (`float`, *optional*, defaults to `0.25`): Optional weighting factor in the range (0,1) to balance positive vs. negative examples. gamma (`int`, *optional*, defaults to `2`): Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none") # add modulating factor p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes class ConditionalDetrLoss(nn.Module): """ This class computes the losses for ConditionalDetrForObjectDetection/ConditionalDetrForSegmentation. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box). Args: matcher (`ConditionalDetrHungarianMatcher`): Module able to compute a matching between targets and proposals. num_classes (`int`): Number of object categories, omitting the special no-object category. focal_alpha (`float`): Alpha parameter in focal loss. losses (`List[str]`): List of all the losses to be applied. See `get_loss` for a list of all available losses. """ # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.__init__ def __init__(self, matcher, num_classes, focal_alpha, losses): super().__init__() self.matcher = matcher self.num_classes = num_classes self.focal_alpha = focal_alpha self.losses = losses # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.loss_labels def loss_labels(self, outputs, targets, indices, num_boxes): """ Classification loss (Binary focal loss) targets dicts must contain the key "class_labels" containing a tensor of dim [nb_target_boxes] """ if "logits" not in outputs: raise KeyError("No logits were found in the outputs") source_logits = outputs["logits"] idx = self._get_source_permutation_idx(indices) target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device ) target_classes[idx] = target_classes_o target_classes_onehot = torch.zeros( [source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1], dtype=source_logits.dtype, layout=source_logits.layout, device=source_logits.device, ) target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) target_classes_onehot = target_classes_onehot[:, :, :-1] loss_ce = ( sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * source_logits.shape[1] ) losses = {"loss_ce": loss_ce} return losses @torch.no_grad() # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.loss_cardinality def loss_cardinality(self, outputs, targets, indices, num_boxes): """ Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. """ logits = outputs["logits"] device = logits.device target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) losses = {"cardinality_error": card_err} return losses # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.loss_boxes def loss_boxes(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ if "pred_boxes" not in outputs: raise KeyError("No predicted boxes found in outputs") idx = self._get_source_permutation_idx(indices) source_boxes = outputs["pred_boxes"][idx] target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") losses = {} losses["loss_bbox"] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag( generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)) ) losses["loss_giou"] = loss_giou.sum() / num_boxes return losses # Copied from transformers.models.detr.modeling_detr.DetrLoss.loss_masks def loss_masks(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the masks: the focal loss and the dice loss. Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]. """ if "pred_masks" not in outputs: raise KeyError("No predicted masks found in outputs") source_idx = self._get_source_permutation_idx(indices) target_idx = self._get_target_permutation_idx(indices) source_masks = outputs["pred_masks"] source_masks = source_masks[source_idx] masks = [t["masks"] for t in targets] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(source_masks) target_masks = target_masks[target_idx] # upsample predictions to the target size source_masks = nn.functional.interpolate( source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False ) source_masks = source_masks[:, 0].flatten(1) target_masks = target_masks.flatten(1) target_masks = target_masks.view(source_masks.shape) losses = { "loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes), "loss_dice": dice_loss(source_masks, target_masks, num_boxes), } return losses # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss._get_source_permutation_idx def _get_source_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) source_idx = torch.cat([source for (source, _) in indices]) return batch_idx, source_idx # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss._get_target_permutation_idx def _get_target_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) target_idx = torch.cat([target for (_, target) in indices]) return batch_idx, target_idx # Copied from transformers.models.detr.modeling_detr.DetrLoss.get_loss def get_loss(self, loss, outputs, targets, indices, num_boxes): loss_map = { "labels": self.loss_labels, "cardinality": self.loss_cardinality, "boxes": self.loss_boxes, "masks": self.loss_masks, } if loss not in loss_map: raise ValueError(f"Loss {loss} not supported") return loss_map[loss](outputs, targets, indices, num_boxes) # Copied from transformers.models.detr.modeling_detr.DetrLoss.forward def forward(self, outputs, targets): """ This performs the loss computation. Args: outputs (`dict`, *optional*): Dictionary of tensors, see the output specification of the model for the format. targets (`List[dict]`, *optional*): List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the losses applied, see each loss' doc. """ outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes across all nodes, for normalization purposes num_boxes = sum(len(t["class_labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) # (Niels): comment out function below, distributed training to be added # if is_dist_avail_and_initialized(): # torch.distributed.all_reduce(num_boxes) # (Niels) in original implementation, num_boxes is divided by get_world_size() num_boxes = torch.clamp(num_boxes, min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "auxiliary_outputs" in outputs: for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): indices = self.matcher(auxiliary_outputs, targets) for loss in self.losses: if loss == "masks": # Intermediate masks losses are too costly to compute, we ignore them. continue l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) l_dict = {k + f"_{i}": v for k, v in l_dict.items()} losses.update(l_dict) return losses # Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with Detr->ConditionalDetr class ConditionalDetrMLPPredictionHead(nn.Module): """ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, height and width of a bounding box w.r.t. an image. Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrHungarianMatcher with DeformableDetr->ConditionalDetr class ConditionalDetrHungarianMatcher(nn.Module): """ This class computes an assignment between the targets and the predictions of the network. For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). Args: class_cost: The relative weight of the classification error in the matching cost. bbox_cost: The relative weight of the L1 error of the bounding box coordinates in the matching cost. giou_cost: The relative weight of the giou loss of the bounding box in the matching cost. """ def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1): super().__init__() requires_backends(self, ["scipy"]) self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost if class_cost == 0 and bbox_cost == 0 and giou_cost == 0: raise ValueError("All costs of the Matcher can't be 0") @torch.no_grad() def forward(self, outputs, targets): """ Args: outputs (`dict`): A dictionary that contains at least these entries: * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates. targets (`List[dict]`): A list of targets (len(targets) = batch_size), where each target is a dict containing: * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates. Returns: `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ batch_size, num_queries = outputs["logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes target_ids = torch.cat([v["class_labels"] for v in targets]) target_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. alpha = 0.25 gamma = 2.0 neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) class_cost = pos_cost_class[:, target_ids] - neg_cost_class[:, target_ids] # Compute the L1 cost between boxes bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) # Compute the giou cost between boxes giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) # Final cost matrix cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] # Copied from transformers.models.detr.modeling_detr._upcast def _upcast(t: Tensor) -> Tensor: # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.is_floating_point(): return t if t.dtype in (torch.float32, torch.float64) else t.float() else: return t if t.dtype in (torch.int32, torch.int64) else t.int() # Copied from transformers.models.detr.modeling_detr.box_area def box_area(boxes: Tensor) -> Tensor: """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. Args: boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 < x2` and `0 <= y1 < y2`. Returns: `torch.FloatTensor`: a tensor containing the area for each box. """ boxes = _upcast(boxes) return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # Copied from transformers.models.detr.modeling_detr.box_iou def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union # Copied from transformers.models.detr.modeling_detr.generalized_box_iou def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. Returns: `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") iou, union = box_iou(boxes1, boxes2) top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] area = width_height[:, :, 0] * width_height[:, :, 1] return iou - (area - union) / area # Copied from transformers.models.detr.modeling_detr._max_by_axis def _max_by_axis(the_list): # type: (List[List[int]]) -> List[int] maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes # Copied from transformers.models.detr.modeling_detr.NestedTensor class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device): cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) # Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): if tensor_list[0].ndim == 3: max_size = _max_by_axis([list(img.shape) for img in tensor_list]) batch_shape = [len(tensor_list)] + max_size batch_size, num_channels, height, width = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False else: raise ValueError("Only 3-dimensional tensors are supported") return NestedTensor(tensor, mask)
transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py/0
{ "file_path": "transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py", "repo_id": "transformers", "token_count": 55521 }
302
# coding=utf-8 # Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ConvNeXTV2 model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2 [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_size (`int`, optional, defaults to 4): Patch size to use in the patch embedding layer. num_stages (`int`, optional, defaults to 4): The number of stages in the model. hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`): Depth (number of blocks) for each stage. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. drop_path_rate (`float`, *optional*, defaults to 0.0): The drop rate for stochastic depth. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import ConvNeXTV2Config, ConvNextV2Model >>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration >>> configuration = ConvNeXTV2Config() >>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration >>> model = ConvNextV2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "convnextv2" def __init__( self, num_channels=3, patch_size=4, num_stages=4, hidden_sizes=None, depths=None, hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-12, drop_path_rate=0.0, image_size=224, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.patch_size = patch_size self.num_stages = num_stages self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes self.depths = [3, 3, 9, 3] if depths is None else depths self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.drop_path_rate = drop_path_rate self.image_size = image_size self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
transformers/src/transformers/models/convnextv2/configuration_convnextv2.py/0
{ "file_path": "transformers/src/transformers/models/convnextv2/configuration_convnextv2.py", "repo_id": "transformers", "token_count": 2096 }
303
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_deberta_fast"] = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_deberta"] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_deberta"] = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/deberta/__init__.py/0
{ "file_path": "transformers/src/transformers/models/deberta/__init__.py", "repo_id": "transformers", "token_count": 1512 }
304
# coding=utf-8 # Copyright 2022 SenseTime and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Deformable DETR model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class DeformableDetrConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DeformableDetrModel`]. It is used to instantiate a Deformable DETR model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Deformable DETR [SenseTime/deformable-detr](https://huggingface.co/SenseTime/deformable-detr) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_timm_backbone (`bool`, *optional*, defaults to `True`): Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`] API. backbone_config (`PretrainedConfig` or `dict`, *optional*): The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which case it will default to `ResNetConfig()`. num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_queries (`int`, *optional*, defaults to 300): Number of object queries, i.e. detection slots. This is the maximal number of objects [`DeformableDetrModel`] can detect in a single image. In case `two_stage` is set to `True`, we use `two_stage_num_proposals` instead. d_model (`int`, *optional*, defaults to 256): Dimension of the layers. encoder_layers (`int`, *optional*, defaults to 6): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 6): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 1024): Dimension of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 1024): Dimension of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. init_xavier_std (`float`, *optional*, defaults to 1): The scaling factor used for the Xavier initialization gain in the HM Attention map module. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. auxiliary_loss (`bool`, *optional*, defaults to `False`): Whether auxiliary decoding losses (loss at each decoder layer) are to be used. position_embedding_type (`str`, *optional*, defaults to `"sine"`): Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`. backbone (`str`, *optional*, defaults to `"resnet50"`): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, defaults to `True`): Whether to use pretrained weights for the backbone. dilation (`bool`, *optional*, defaults to `False`): Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when `use_timm_backbone` = `True`. class_cost (`float`, *optional*, defaults to 1): Relative weight of the classification error in the Hungarian matching cost. bbox_cost (`float`, *optional*, defaults to 5): Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost. giou_cost (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost. mask_loss_coefficient (`float`, *optional*, defaults to 1): Relative weight of the Focal loss in the panoptic segmentation loss. dice_loss_coefficient (`float`, *optional*, defaults to 1): Relative weight of the DICE/F-1 loss in the panoptic segmentation loss. bbox_loss_coefficient (`float`, *optional*, defaults to 5): Relative weight of the L1 bounding box loss in the object detection loss. giou_loss_coefficient (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss in the object detection loss. eos_coefficient (`float`, *optional*, defaults to 0.1): Relative classification weight of the 'no-object' class in the object detection loss. num_feature_levels (`int`, *optional*, defaults to 4): The number of input feature levels. encoder_n_points (`int`, *optional*, defaults to 4): The number of sampled keys in each feature level for each attention head in the encoder. decoder_n_points (`int`, *optional*, defaults to 4): The number of sampled keys in each feature level for each attention head in the decoder. two_stage (`bool`, *optional*, defaults to `False`): Whether to apply a two-stage deformable DETR, where the region proposals are also generated by a variant of Deformable DETR, which are further fed into the decoder for iterative bounding box refinement. two_stage_num_proposals (`int`, *optional*, defaults to 300): The number of region proposals to be generated, in case `two_stage` is set to `True`. with_box_refine (`bool`, *optional*, defaults to `False`): Whether to apply iterative bounding box refinement, where each decoder layer refines the bounding boxes based on the predictions from the previous layer. focal_alpha (`float`, *optional*, defaults to 0.25): Alpha parameter in the focal loss. disable_custom_kernels (`bool`, *optional*, defaults to `False`): Disable the use of custom CUDA and CPU kernels. This option is necessary for the ONNX export, as custom kernels are not supported by PyTorch ONNX export. Examples: ```python >>> from transformers import DeformableDetrConfig, DeformableDetrModel >>> # Initializing a Deformable DETR SenseTime/deformable-detr style configuration >>> configuration = DeformableDetrConfig() >>> # Initializing a model (with random weights) from the SenseTime/deformable-detr style configuration >>> model = DeformableDetrModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "deformable_detr" attribute_map = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, use_timm_backbone=True, backbone_config=None, num_channels=3, num_queries=300, max_position_embeddings=1024, encoder_layers=6, encoder_ffn_dim=1024, encoder_attention_heads=8, decoder_layers=6, decoder_ffn_dim=1024, decoder_attention_heads=8, encoder_layerdrop=0.0, is_encoder_decoder=True, activation_function="relu", d_model=256, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, init_xavier_std=1.0, return_intermediate=True, auxiliary_loss=False, position_embedding_type="sine", backbone="resnet50", use_pretrained_backbone=True, dilation=False, num_feature_levels=4, encoder_n_points=4, decoder_n_points=4, two_stage=False, two_stage_num_proposals=300, with_box_refine=False, class_cost=1, bbox_cost=5, giou_cost=2, mask_loss_coefficient=1, dice_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.1, focal_alpha=0.25, disable_custom_kernels=False, **kwargs, ): if not use_timm_backbone and use_pretrained_backbone: raise ValueError( "Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`" ) if backbone_config is not None and backbone is not None: raise ValueError("You can't specify both `backbone` and `backbone_config`.") if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.") if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.get("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) self.use_timm_backbone = use_timm_backbone self.backbone_config = backbone_config self.num_channels = num_channels self.num_queries = num_queries self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.init_xavier_std = init_xavier_std self.encoder_layerdrop = encoder_layerdrop self.auxiliary_loss = auxiliary_loss self.position_embedding_type = position_embedding_type self.backbone = backbone self.use_pretrained_backbone = use_pretrained_backbone self.dilation = dilation # deformable attributes self.num_feature_levels = num_feature_levels self.encoder_n_points = encoder_n_points self.decoder_n_points = decoder_n_points self.two_stage = two_stage self.two_stage_num_proposals = two_stage_num_proposals self.with_box_refine = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost # Loss coefficients self.mask_loss_coefficient = mask_loss_coefficient self.dice_loss_coefficient = dice_loss_coefficient self.bbox_loss_coefficient = bbox_loss_coefficient self.giou_loss_coefficient = giou_loss_coefficient self.eos_coefficient = eos_coefficient self.focal_alpha = focal_alpha self.disable_custom_kernels = disable_custom_kernels super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) @property def num_attention_heads(self) -> int: return self.encoder_attention_heads @property def hidden_size(self) -> int: return self.d_model
transformers/src/transformers/models/deformable_detr/configuration_deformable_detr.py/0
{ "file_path": "transformers/src/transformers/models/deformable_detr/configuration_deformable_detr.py", "repo_id": "transformers", "token_count": 5465 }
305
# coding=utf-8 # Copyright 2022 BNRist (Tsinghua University), TKLNDST (Nankai University) and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert VAN checkpoints from the original repository. URL: https://github.com/Visual-Attention-Network/VAN-Classification""" import argparse import json import sys from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import torch import torch.nn as nn from huggingface_hub import cached_download, hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, VanConfig, VanForImageClassification from transformers.models.deprecated.van.modeling_van import VanLayerScaling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) @dataclass class Tracker: module: nn.Module traced: List[nn.Module] = field(default_factory=list) handles: list = field(default_factory=list) def _forward_hook(self, m, inputs: Tensor, outputs: Tensor): has_not_submodules = len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d) if has_not_submodules: if not isinstance(m, VanLayerScaling): self.traced.append(m) def __call__(self, x: Tensor): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(x) [x.remove() for x in self.handles] return self @property def parametrized(self): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda x: len(list(x.state_dict().keys())) > 0, self.traced)) @dataclass class ModuleTransfer: src: nn.Module dest: nn.Module verbose: int = 0 src_skip: List = field(default_factory=list) dest_skip: List = field(default_factory=list) def __call__(self, x: Tensor): """ Transfer the weights of `self.src` to `self.dest` by performing a forward pass using `x` as input. Under the hood we tracked all the operations in both modules. """ dest_traced = Tracker(self.dest)(x).parametrized src_traced = Tracker(self.src)(x).parametrized src_traced = list(filter(lambda x: type(x) not in self.src_skip, src_traced)) dest_traced = list(filter(lambda x: type(x) not in self.dest_skip, dest_traced)) if len(dest_traced) != len(src_traced): raise Exception( f"Numbers of operations are different. Source module has {len(src_traced)} operations while" f" destination module has {len(dest_traced)}." ) for dest_m, src_m in zip(dest_traced, src_traced): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") def copy_parameters(from_model: nn.Module, our_model: nn.Module) -> nn.Module: # nn.Parameter cannot be tracked by the Tracker, thus we need to manually convert them from_state_dict = from_model.state_dict() our_state_dict = our_model.state_dict() config = our_model.config all_keys = [] for stage_idx in range(len(config.hidden_sizes)): for block_id in range(config.depths[stage_idx]): from_key = f"block{stage_idx + 1}.{block_id}.layer_scale_1" to_key = f"van.encoder.stages.{stage_idx}.layers.{block_id}.attention_scaling.weight" all_keys.append((from_key, to_key)) from_key = f"block{stage_idx + 1}.{block_id}.layer_scale_2" to_key = f"van.encoder.stages.{stage_idx}.layers.{block_id}.mlp_scaling.weight" all_keys.append((from_key, to_key)) for from_key, to_key in all_keys: our_state_dict[to_key] = from_state_dict.pop(from_key) our_model.load_state_dict(our_state_dict) return our_model def convert_weight_and_push( name: str, config: VanConfig, checkpoint: str, from_model: nn.Module, save_directory: Path, push_to_hub: bool = True, ): print(f"Downloading weights for {name}...") checkpoint_path = cached_download(checkpoint) print(f"Converting {name}...") from_state_dict = torch.load(checkpoint_path)["state_dict"] from_model.load_state_dict(from_state_dict) from_model.eval() with torch.no_grad(): our_model = VanForImageClassification(config).eval() module_transfer = ModuleTransfer(src=from_model, dest=our_model) x = torch.randn((1, 3, 224, 224)) module_transfer(x) our_model = copy_parameters(from_model, our_model) if not torch.allclose(from_model(x), our_model(x).logits): raise ValueError("The model logits don't match the original one.") checkpoint_name = name print(checkpoint_name) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message="Add model", use_temp_dir=True, ) # we can use the convnext one image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k") image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message="Add image processor", use_temp_dir=True, ) print(f"Pushed {checkpoint_name}") def convert_weights_and_push(save_directory: Path, model_name: str = None, push_to_hub: bool = True): filename = "imagenet-1k-id2label.json" num_labels = 1000 repo_id = "huggingface/label-files" num_labels = num_labels id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} id2label = id2label label2id = {v: k for k, v in id2label.items()} ImageNetPreTrainedConfig = partial(VanConfig, num_labels=num_labels, id2label=id2label, label2id=label2id) names_to_config = { "van-tiny": ImageNetPreTrainedConfig( hidden_sizes=[32, 64, 160, 256], depths=[3, 3, 5, 2], mlp_ratios=[8, 8, 4, 4], ), "van-small": ImageNetPreTrainedConfig( hidden_sizes=[64, 128, 320, 512], depths=[2, 2, 4, 2], mlp_ratios=[8, 8, 4, 4], ), "van-base": ImageNetPreTrainedConfig( hidden_sizes=[64, 128, 320, 512], depths=[3, 3, 12, 3], mlp_ratios=[8, 8, 4, 4], ), "van-large": ImageNetPreTrainedConfig( hidden_sizes=[64, 128, 320, 512], depths=[3, 5, 27, 3], mlp_ratios=[8, 8, 4, 4], ), } names_to_original_models = { "van-tiny": van_tiny, "van-small": van_small, "van-base": van_base, "van-large": van_large, } names_to_original_checkpoints = { "van-tiny": ( "https://huggingface.co/Visual-Attention-Network/VAN-Tiny-original/resolve/main/van_tiny_754.pth.tar" ), "van-small": ( "https://huggingface.co/Visual-Attention-Network/VAN-Small-original/resolve/main/van_small_811.pth.tar" ), "van-base": ( "https://huggingface.co/Visual-Attention-Network/VAN-Base-original/resolve/main/van_base_828.pth.tar" ), "van-large": ( "https://huggingface.co/Visual-Attention-Network/VAN-Large-original/resolve/main/van_large_839.pth.tar" ), } if model_name: convert_weight_and_push( model_name, names_to_config[model_name], checkpoint=names_to_original_checkpoints[model_name], from_model=names_to_original_models[model_name](), save_directory=save_directory, push_to_hub=push_to_hub, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( model_name, config, checkpoint=names_to_original_checkpoints[model_name], from_model=names_to_original_models[model_name](), save_directory=save_directory, push_to_hub=push_to_hub, ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model-name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: van-tiny/small/base/large. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--van_dir", required=True, type=Path, help=( "A path to VAN's original implementation directory. You can download from here:" " https://github.com/Visual-Attention-Network/VAN-Classification" ), ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) args = parser.parse_args() pytorch_dump_folder_path: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) van_dir = args.van_dir # append the path to the parents to maskformer dir sys.path.append(str(van_dir.parent)) from van.models.van import van_base, van_large, van_small, van_tiny convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
transformers/src/transformers/models/deprecated/van/convert_van_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/van/convert_van_to_pytorch.py", "repo_id": "transformers", "token_count": 4514 }
306
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 DistilBERT model """ from __future__ import annotations import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_distilbert import DistilBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "distilbert-base-uncased" _CONFIG_FOR_DOC = "DistilBertConfig" TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "distilbert-base-uncased", "distilbert-base-uncased-distilled-squad", "distilbert-base-cased", "distilbert-base-cased-distilled-squad", "distilbert-base-multilingual-cased", "distilbert-base-uncased-finetuned-sst-2-english", # See all DistilBERT models at https://huggingface.co/models?filter=distilbert ] class TFEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.dim = config.dim self.initializer_range = config.initializer_range self.max_position_embeddings = config.max_position_embeddings self.LayerNorm = keras.layers.LayerNormalization(epsilon=1e-12, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.dropout) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.dim], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.dim], initializer=get_initializer(initializer_range=self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.dim]) def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) final_embeddings = inputs_embeds + position_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFMultiHeadSelfAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.n_heads = config.n_heads self.dim = config.dim self.dropout = keras.layers.Dropout(config.attention_dropout) self.output_attentions = config.output_attentions assert self.dim % self.n_heads == 0, f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}" self.q_lin = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="q_lin" ) self.k_lin = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="k_lin" ) self.v_lin = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="v_lin" ) self.out_lin = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="out_lin" ) self.pruned_heads = set() self.config = config def prune_heads(self, heads): raise NotImplementedError def call(self, query, key, value, mask, head_mask, output_attentions, training=False): """ Parameters: query: tf.Tensor(bs, seq_length, dim) key: tf.Tensor(bs, seq_length, dim) value: tf.Tensor(bs, seq_length, dim) mask: tf.Tensor(bs, seq_length) Returns: weights: tf.Tensor(bs, n_heads, seq_length, seq_length) Attention weights context: tf.Tensor(bs, seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True` """ bs, q_length, dim = shape_list(query) k_length = shape_list(key)[1] # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' # assert key.size() == value.size() dim_per_head = int(self.dim / self.n_heads) dim_per_head = tf.cast(dim_per_head, dtype=tf.int32) mask_reshape = [bs, 1, 1, k_length] def shape(x): """separate heads""" return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3)) def unshape(x): """group heads""" return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head)) q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head) k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head) v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head) q = tf.cast(q, dtype=tf.float32) q = tf.multiply(q, tf.math.rsqrt(tf.cast(dim_per_head, dtype=tf.float32))) k = tf.cast(k, dtype=q.dtype) scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, q_length, k_length) mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen) # scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, q_length, k_length) mask = tf.cast(mask, dtype=scores.dtype) scores = scores - 1e30 * (1.0 - mask) weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen) weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen) # Mask heads if we want to if head_mask is not None: weights = weights * head_mask context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) context = unshape(context) # (bs, q_length, dim) context = self.out_lin(context) # (bs, q_length, dim) if output_attentions: return (context, weights) else: return (context,) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "q_lin", None) is not None: with tf.name_scope(self.q_lin.name): self.q_lin.build([None, None, self.config.dim]) if getattr(self, "k_lin", None) is not None: with tf.name_scope(self.k_lin.name): self.k_lin.build([None, None, self.config.dim]) if getattr(self, "v_lin", None) is not None: with tf.name_scope(self.v_lin.name): self.v_lin.build([None, None, self.config.dim]) if getattr(self, "out_lin", None) is not None: with tf.name_scope(self.out_lin.name): self.out_lin.build([None, None, self.config.dim]) class TFFFN(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dropout = keras.layers.Dropout(config.dropout) self.lin1 = keras.layers.Dense( config.hidden_dim, kernel_initializer=get_initializer(config.initializer_range), name="lin1" ) self.lin2 = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="lin2" ) self.activation = get_tf_activation(config.activation) self.config = config def call(self, input, training=False): x = self.lin1(input) x = self.activation(x) x = self.lin2(x) x = self.dropout(x, training=training) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "lin1", None) is not None: with tf.name_scope(self.lin1.name): self.lin1.build([None, None, self.config.dim]) if getattr(self, "lin2", None) is not None: with tf.name_scope(self.lin2.name): self.lin2.build([None, None, self.config.hidden_dim]) class TFTransformerBlock(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.n_heads = config.n_heads self.dim = config.dim self.hidden_dim = config.hidden_dim self.dropout = keras.layers.Dropout(config.dropout) self.activation = config.activation self.output_attentions = config.output_attentions assert ( config.dim % config.n_heads == 0 ), f"Hidden size {config.dim} not dividable by number of heads {config.n_heads}" self.attention = TFMultiHeadSelfAttention(config, name="attention") self.sa_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="sa_layer_norm") self.ffn = TFFFN(config, name="ffn") self.output_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="output_layer_norm") self.config = config def call(self, x, attn_mask, head_mask, output_attentions, training=False): # removed: src_enc=None, src_len=None """ Parameters: x: tf.Tensor(bs, seq_length, dim) attn_mask: tf.Tensor(bs, seq_length) Outputs: sa_weights: tf.Tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output: tf.Tensor(bs, seq_length, dim) The output of the transformer block contextualization. """ # Self-Attention sa_output = self.attention(x, x, x, attn_mask, head_mask, output_attentions, training=training) if output_attentions: sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length) else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples # assert type(sa_output) == tuple sa_output = sa_output[0] sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim) # Feed Forward Network ffn_output = self.ffn(sa_output, training=training) # (bs, seq_length, dim) ffn_output = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim) output = (ffn_output,) if output_attentions: output = (sa_weights,) + output return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "sa_layer_norm", None) is not None: with tf.name_scope(self.sa_layer_norm.name): self.sa_layer_norm.build([None, None, self.config.dim]) if getattr(self, "ffn", None) is not None: with tf.name_scope(self.ffn.name): self.ffn.build(None) if getattr(self, "output_layer_norm", None) is not None: with tf.name_scope(self.output_layer_norm.name): self.output_layer_norm.build([None, None, self.config.dim]) class TFTransformer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.n_layers = config.n_layers self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.layer = [TFTransformerBlock(config, name=f"layer_._{i}") for i in range(config.n_layers)] def call(self, x, attn_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False): # docstyle-ignore """ Parameters: x: tf.Tensor(bs, seq_length, dim) Input sequence embedded. attn_mask: tf.Tensor(bs, seq_length) Attention mask on the sequence. Returns: hidden_state: tf.Tensor(bs, seq_length, dim) Sequence of hidden states in the last (top) layer all_hidden_states: Tuple[tf.Tensor(bs, seq_length, dim)] Tuple of length n_layers with the hidden states from each layer. Optional: only if output_hidden_states=True all_attentions: Tuple[tf.Tensor(bs, n_heads, seq_length, seq_length)] Tuple of length n_layers with the attention weights from each layer Optional: only if output_attentions=True """ all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_state = x for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) layer_outputs = layer_module(hidden_state, attn_mask, head_mask[i], output_attentions, training=training) hidden_state = layer_outputs[-1] if output_attentions: assert len(layer_outputs) == 2 attentions = layer_outputs[0] all_attentions = all_attentions + (attentions,) else: assert len(layer_outputs) == 1, f"Incorrect number of outputs {len(layer_outputs)} instead of 1" # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFDistilBertMainLayer(keras.layers.Layer): config_class = DistilBertConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings self.transformer = TFTransformer(config, name="transformer") # Encoder def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = value.shape[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError @unpack_inputs def call( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.ones(input_shape) # (bs, seq_length) attention_mask = tf.cast(attention_mask, dtype=tf.float32) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers embedding_output = self.embeddings(input_ids, inputs_embeds=inputs_embeds) # (bs, seq_length, dim) tfmr_output = self.transformer( embedding_output, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=training, ) return tfmr_output # last-layer hidden-state, (all hidden_states), (all attentions) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) # INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL # class TFDistilBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DistilBertConfig base_model_prefix = "distilbert" DISTILBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DISTILBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.", DISTILBERT_START_DOCSTRING, ) class TFDistilBertModel(TFDistilBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings @unpack_inputs @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: outputs = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) class TFDistilBertLMHead(keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.dim = config.dim # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.dim]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states @add_start_docstrings( """DistilBert Model with a `masked language modeling` head on top.""", DISTILBERT_START_DOCSTRING, ) class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.vocab_transform = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="vocab_transform" ) self.act = get_tf_activation(config.activation) self.vocab_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="vocab_layer_norm") self.vocab_projector = TFDistilBertLMHead(config, self.distilbert.embeddings, name="vocab_projector") def get_lm_head(self): return self.vocab_projector def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.vocab_projector.name @unpack_inputs @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ distilbert_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = distilbert_output[0] # (bs, seq_length, dim) prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) prediction_logits = self.act(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_projector(prediction_logits) loss = None if labels is None else self.hf_compute_loss(labels, prediction_logits) if not return_dict: output = (prediction_logits,) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) if getattr(self, "vocab_transform", None) is not None: with tf.name_scope(self.vocab_transform.name): self.vocab_transform.build([None, None, self.config.dim]) if getattr(self, "vocab_layer_norm", None) is not None: with tf.name_scope(self.vocab_layer_norm.name): self.vocab_layer_norm.build([None, None, self.config.dim]) if getattr(self, "vocab_projector", None) is not None: with tf.name_scope(self.vocab_projector.name): self.vocab_projector.build(None) @add_start_docstrings( """ DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.pre_classifier = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), activation="relu", name="pre_classifier", ) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.dropout = keras.layers.Dropout(config.seq_classif_dropout) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ distilbert_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = self.dropout(pooled_output, training=training) # (bs, dim) logits = self.classifier(pooled_output) # (bs, dim) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) if getattr(self, "pre_classifier", None) is not None: with tf.name_scope(self.pre_classifier.name): self.pre_classifier.build([None, None, self.config.dim]) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.dim]) @add_start_docstrings( """ DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.dropout = keras.layers.Dropout(config.dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.dropout = keras.layers.Dropout(config.seq_classif_dropout) self.pre_classifier = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), activation="relu", name="pre_classifier", ) self.classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward( DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) distilbert_output = self.distilbert( flat_input_ids, flat_attention_mask, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = self.dropout(pooled_output, training=training) # (bs, dim) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) if getattr(self, "pre_classifier", None) is not None: with tf.name_scope(self.pre_classifier.name): self.pre_classifier.build([None, None, self.config.dim]) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.dim]) @add_start_docstrings( """ DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) assert config.num_labels == 2, f"Incorrect number of labels {config.num_labels} instead of 2" self.dropout = keras.layers.Dropout(config.qa_dropout) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ distilbert_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = distilbert_output[0] # (bs, max_query_len, dim) hidden_states = self.dropout(hidden_states, training=training) # (bs, max_query_len, dim) logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.dim])
transformers/src/transformers/models/distilbert/modeling_tf_distilbert.py/0
{ "file_path": "transformers/src/transformers/models/distilbert/modeling_tf_distilbert.py", "repo_id": "transformers", "token_count": 21218 }
307
# coding=utf-8 # Copyright 2018 DPR Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow DPR model for Open Domain Question Answering.""" from __future__ import annotations from dataclasses import dataclass from typing import Tuple, Union import tensorflow as tf from ...modeling_tf_outputs import TFBaseModelOutputWithPooling from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, get_initializer, keras, shape_list, unpack_inputs from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..bert.modeling_tf_bert import TFBertMainLayer from .configuration_dpr import DPRConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DPRConfig" TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/dpr-ctx_encoder-single-nq-base", "facebook/dpr-ctx_encoder-multiset-base", ] TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/dpr-question_encoder-single-nq-base", "facebook/dpr-question_encoder-multiset-base", ] TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/dpr-reader-single-nq-base", "facebook/dpr-reader-multiset-base", ] ########## # Outputs ########## @dataclass class TFDPRContextEncoderOutput(ModelOutput): r""" Class for outputs of [`TFDPRContextEncoder`]. Args: pooler_output (`tf.Tensor` of shape `(batch_size, embeddings_size)`): The DPR encoder outputs the *pooler_output* that corresponds to the context representation. Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer. This output is to be used to embed contexts for nearest neighbors queries with questions embeddings. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ pooler_output: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFDPRQuestionEncoderOutput(ModelOutput): """ Class for outputs of [`TFDPRQuestionEncoder`]. Args: pooler_output (`tf.Tensor` of shape `(batch_size, embeddings_size)`): The DPR encoder outputs the *pooler_output* that corresponds to the question representation. Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer. This output is to be used to embed questions for nearest neighbors queries with context embeddings. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ pooler_output: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFDPRReaderOutput(ModelOutput): """ Class for outputs of [`TFDPRReaderEncoder`]. Args: start_logits (`tf.Tensor` of shape `(n_passages, sequence_length)`): Logits of the start index of the span for each passage. end_logits (`tf.Tensor` of shape `(n_passages, sequence_length)`): Logits of the end index of the span for each passage. relevance_logits (`tf.Tensor` of shape `(n_passages, )`): Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the question, compared to all the other passages. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ start_logits: tf.Tensor = None end_logits: tf.Tensor = None relevance_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None class TFDPREncoderLayer(keras.layers.Layer): base_model_prefix = "bert_model" def __init__(self, config: DPRConfig, **kwargs): super().__init__(**kwargs) # resolve name conflict with TFBertMainLayer instead of TFBertModel self.bert_model = TFBertMainLayer(config, add_pooling_layer=False, name="bert_model") self.config = config if self.config.hidden_size <= 0: raise ValueError("Encoder hidden_size can't be zero") self.projection_dim = config.projection_dim if self.projection_dim > 0: self.encode_proj = keras.layers.Dense( config.projection_dim, kernel_initializer=get_initializer(config.initializer_range), name="encode_proj" ) @unpack_inputs def call( self, input_ids: tf.Tensor = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool = None, output_hidden_states: bool = None, return_dict: bool = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]: outputs = self.bert_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = sequence_output[:, 0, :] if self.projection_dim > 0: pooled_output = self.encode_proj(pooled_output) if not return_dict: return (sequence_output, pooled_output) + outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @property def embeddings_size(self) -> int: if self.projection_dim > 0: return self.projection_dim return self.bert_model.config.hidden_size def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert_model", None) is not None: with tf.name_scope(self.bert_model.name): self.bert_model.build(None) if getattr(self, "encode_proj", None) is not None: with tf.name_scope(self.encode_proj.name): self.encode_proj.build(None) class TFDPRSpanPredictorLayer(keras.layers.Layer): base_model_prefix = "encoder" def __init__(self, config: DPRConfig, **kwargs): super().__init__(**kwargs) self.config = config self.encoder = TFDPREncoderLayer(config, name="encoder") self.qa_outputs = keras.layers.Dense( 2, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.qa_classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="qa_classifier" ) @unpack_inputs def call( self, input_ids: tf.Tensor = None, attention_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, training: bool = False, ) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: # notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length n_passages, sequence_length = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:2] # feed encoder outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] # compute logits logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) relevance_logits = self.qa_classifier(sequence_output[:, 0, :]) # resize start_logits = tf.reshape(start_logits, [n_passages, sequence_length]) end_logits = tf.reshape(end_logits, [n_passages, sequence_length]) relevance_logits = tf.reshape(relevance_logits, [n_passages]) if not return_dict: return (start_logits, end_logits, relevance_logits) + outputs[2:] return TFDPRReaderOutput( start_logits=start_logits, end_logits=end_logits, relevance_logits=relevance_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.encoder.embeddings_size]) if getattr(self, "qa_classifier", None) is not None: with tf.name_scope(self.qa_classifier.name): self.qa_classifier.build([None, None, self.encoder.embeddings_size]) class TFDPRSpanPredictor(TFPreTrainedModel): base_model_prefix = "encoder" def __init__(self, config: DPRConfig, **kwargs): super().__init__(config, **kwargs) self.encoder = TFDPRSpanPredictorLayer(config) @unpack_inputs def call( self, input_ids: tf.Tensor = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, training: bool = False, ) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs class TFDPREncoder(TFPreTrainedModel): base_model_prefix = "encoder" def __init__(self, config: DPRConfig, **kwargs): super().__init__(config, **kwargs) self.encoder = TFDPREncoderLayer(config) @unpack_inputs def call( self, input_ids: tf.Tensor = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, training: bool = False, ) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs ################## # PreTrainedModel ################## class TFDPRPretrainedContextEncoder(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig base_model_prefix = "ctx_encoder" class TFDPRPretrainedQuestionEncoder(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig base_model_prefix = "question_encoder" class TFDPRPretrainedReader(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig base_model_prefix = "reader" ############### # Actual Models ############### TF_DPR_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Tensorflow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`DPRConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ TF_DPR_ENCODERS_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. To match pretraining, DPR input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs (for a pair title+text for example): ``` tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 ``` (b) For single sequences (for a question for example): ``` tokens: [CLS] the dog is hairy . [SEP] token_type_ids: 0 0 0 0 0 0 0 ``` DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) inputs_embeds (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ TF_DPR_READER_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shapes `(n_passages, sequence_length)`): Indices of input sequence tokens in the vocabulary. It has to be a sequence triplet with 1) the question and 2) the passages titles and 3) the passages texts To match pretraining, DPR `input_ids` sequence should be formatted with [CLS] and [SEP] with the format: `[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>` DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using [`DPRReaderTokenizer`]. See this class documentation for more details. attention_mask (`Numpy array` or `tf.Tensor` of shape `(n_passages, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`Numpy array` or `tf.Tensor` of shape `(n_passages, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare DPRContextEncoder transformer outputting pooler outputs as context representations.", TF_DPR_START_DOCSTRING, ) class TFDPRContextEncoder(TFDPRPretrainedContextEncoder): def __init__(self, config: DPRConfig, *args, **kwargs): super().__init__(config, *args, **kwargs) self.ctx_encoder = TFDPREncoderLayer(config, name="ctx_encoder") def get_input_embeddings(self): try: return self.ctx_encoder.bert_model.get_input_embeddings() except AttributeError: self.build() return self.ctx_encoder.bert_model.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(TF_DPR_ENCODERS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFDPRContextEncoderOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> TFDPRContextEncoderOutput | Tuple[tf.Tensor, ...]: r""" Return: Examples: ```python >>> from transformers import TFDPRContextEncoder, DPRContextEncoderTokenizer >>> tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") >>> model = TFDPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", from_pt=True) >>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="tf")["input_ids"] >>> embeddings = model(input_ids).pooler_output ``` """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = ( tf.ones(input_shape, dtype=tf.dtypes.int32) if input_ids is None else (input_ids != self.config.pad_token_id) ) if token_type_ids is None: token_type_ids = tf.zeros(input_shape, dtype=tf.dtypes.int32) outputs = self.ctx_encoder( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return outputs[1:] return TFDPRContextEncoderOutput( pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "ctx_encoder", None) is not None: with tf.name_scope(self.ctx_encoder.name): self.ctx_encoder.build(None) @add_start_docstrings( "The bare DPRQuestionEncoder transformer outputting pooler outputs as question representations.", TF_DPR_START_DOCSTRING, ) class TFDPRQuestionEncoder(TFDPRPretrainedQuestionEncoder): def __init__(self, config: DPRConfig, *args, **kwargs): super().__init__(config, *args, **kwargs) self.question_encoder = TFDPREncoderLayer(config, name="question_encoder") def get_input_embeddings(self): try: return self.question_encoder.bert_model.get_input_embeddings() except AttributeError: self.build() return self.question_encoder.bert_model.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(TF_DPR_ENCODERS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFDPRQuestionEncoderOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> TFDPRQuestionEncoderOutput | Tuple[tf.Tensor, ...]: r""" Return: Examples: ```python >>> from transformers import TFDPRQuestionEncoder, DPRQuestionEncoderTokenizer >>> tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") >>> model = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", from_pt=True) >>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="tf")["input_ids"] >>> embeddings = model(input_ids).pooler_output ``` """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = ( tf.ones(input_shape, dtype=tf.dtypes.int32) if input_ids is None else (input_ids != self.config.pad_token_id) ) if token_type_ids is None: token_type_ids = tf.zeros(input_shape, dtype=tf.dtypes.int32) outputs = self.question_encoder( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return outputs[1:] return TFDPRQuestionEncoderOutput( pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "question_encoder", None) is not None: with tf.name_scope(self.question_encoder.name): self.question_encoder.build(None) @add_start_docstrings( "The bare DPRReader transformer outputting span predictions.", TF_DPR_START_DOCSTRING, ) class TFDPRReader(TFDPRPretrainedReader): def __init__(self, config: DPRConfig, *args, **kwargs): super().__init__(config, *args, **kwargs) self.span_predictor = TFDPRSpanPredictorLayer(config, name="span_predictor") def get_input_embeddings(self): try: return self.span_predictor.encoder.bert_model.get_input_embeddings() except AttributeError: self.build() return self.span_predictor.encoder.bert_model.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(TF_DPR_READER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFDPRReaderOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> TFDPRReaderOutput | Tuple[tf.Tensor, ...]: r""" Return: Examples: ```python >>> from transformers import TFDPRReader, DPRReaderTokenizer >>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base") >>> model = TFDPRReader.from_pretrained("facebook/dpr-reader-single-nq-base", from_pt=True) >>> encoded_inputs = tokenizer( ... questions=["What is love ?"], ... titles=["Haddaway"], ... texts=["'What Is Love' is a song recorded by the artist Haddaway"], ... return_tensors="tf", ... ) >>> outputs = model(encoded_inputs) >>> start_logits = outputs.start_logits >>> end_logits = outputs.end_logits >>> relevance_logits = outputs.relevance_logits ``` """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.ones(input_shape, dtype=tf.dtypes.int32) return self.span_predictor( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "span_predictor", None) is not None: with tf.name_scope(self.span_predictor.name): self.span_predictor.build(None)
transformers/src/transformers/models/dpr/modeling_tf_dpr.py/0
{ "file_path": "transformers/src/transformers/models/dpr/modeling_tf_dpr.py", "repo_id": "transformers", "token_count": 13909 }
308
# coding=utf-8 # Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Ernie-M.""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} RESOURCE_FILES_NAMES = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "ernie-m-base": 514, "ernie-m-large": 514, } PRETRAINED_INIT_CONFIGURATION = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } # Adapted from paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer class ErnieMTokenizer(PreTrainedTokenizer): r""" Constructs a Ernie-M tokenizer. It uses the `sentencepiece` tools to cut the words to sub-words. Args: sentencepiece_model_file (`str`): The file path of sentencepiece model. vocab_file (`str`, *optional*): The file path of the vocabulary. do_lower_case (`str`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): A special token representing the `unknown (out-of-vocabulary)` token. An unknown token is set to be `unk_token` inorder to be converted to an ID. sep_token (`str`, *optional*, defaults to `"[SEP]"`): A special token separating two different sentences in the same input. pad_token (`str`, *optional*, defaults to `"[PAD]"`): A special token used to make arrays of tokens the same size for batching purposes. cls_token (`str`, *optional*, defaults to `"[CLS]"`): A special token used for sequence classification. It is the last token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): A special token representing a masked token. This is the token used in the masked language modeling task which the model tries to predict the original unmasked ones. """ # Ernie-M model doesn't have token_type embedding. model_input_names: List[str] = ["input_ids"] vocab_files_names = VOCAB_FILES_NAMES pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP resource_files_names = RESOURCE_FILES_NAMES def __init__( self, sentencepiece_model_ckpt, vocab_file=None, do_lower_case=False, encoding="utf8", unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.sentencepiece_model_ckpt = sentencepiece_model_ckpt self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(sentencepiece_model_ckpt) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: self.vocab = self.load_vocab(filepath=vocab_file) else: self.vocab = {self.sp_model.id_to_piece(id): id for id in range(self.sp_model.get_piece_size())} self.reverse_vocab = {v: k for k, v in self.vocab.items()} super().__init__( do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, vocab_file=vocab_file, encoding=encoding, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) def get_offset_mapping(self, text): if text is None: return None split_tokens = self.tokenize(text) normalized_text, char_mapping = "", [] for i, ch in enumerate(text): if ch in self.SP_CHAR_MAPPING: ch = self.SP_CHAR_MAPPING.get(ch) else: ch = unicodedata.normalize("NFKC", ch) if self.is_whitespace(ch): continue normalized_text += ch char_mapping.extend([i] * len(ch)) text, token_mapping, offset = normalized_text, [], 0 if self.do_lower_case: text = text.lower() for token in split_tokens: if token[:1] == "▁": token = token[1:] start = text[offset:].index(token) + offset end = start + len(token) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1)) offset = end return token_mapping @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.sentencepiece_model_ckpt) def clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" return "".join((self.SP_CHAR_MAPPING.get(c, c) for c in text)) def _tokenize(self, text, enable_sampling=False, nbest_size=64, alpha=0.1): """Tokenize a string.""" if self.sp_model_kwargs.get("enable_sampling") is True: enable_sampling = True if self.sp_model_kwargs.get("alpha") is not None: alpha = self.sp_model_kwargs.get("alpha") if self.sp_model_kwargs.get("nbest_size") is not None: nbest_size = self.sp_model_kwargs.get("nbest_size") if not enable_sampling: pieces = self.sp_model.EncodeAsPieces(text) else: pieces = self.sp_model.SampleEncodeAsPieces(text, nbest_size, alpha) new_pieces = [] for pi, piece in enumerate(pieces): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(SPIECE_UNDERLINE) and pi != 0: new_pieces.append(SPIECE_UNDERLINE) continue else: continue lst_i = 0 for i, chunk in enumerate(piece): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(chunk) or self.is_punct(chunk): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) new_pieces.append(chunk) lst_i = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) lst_i = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) lst_i = i if len(piece) > lst_i: new_pieces.append(piece[lst_i:]) return new_pieces def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def convert_ids_to_string(self, ids): """ Converts a sequence of tokens (strings for sub-words) in a single string. """ tokens = self.convert_ids_to_tokens(ids) out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning def _convert_token_to_id(self, token): return self.vocab.get(token, self.vocab.get(self.unk_token)) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.reverse_vocab.get(index, self.unk_token) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): r""" Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An ErnieM sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of input_id with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] _cls = [self.cls_token_id] _sep = [self.sep_token_id] return _cls + token_ids_0 + _sep + _sep + token_ids_1 + _sep def build_offset_mapping_with_special_tokens(self, offset_mapping_0, offset_mapping_1=None): r""" Build offset map from a pair of offset map by concatenating and adding offsets of special tokens. An Ernie-M offset_mapping has the following format: - single sequence: `(0,0) X (0,0)` - pair of sequences: `(0,0) A (0,0) (0,0) B (0,0)` Args: offset_mapping_ids_0 (`List[tuple]`): List of char offsets to which the special tokens will be added. offset_mapping_ids_1 (`List[tuple]`, *optional*): Optional second list of wordpiece offsets for offset mapping pairs. Returns: `List[tuple]`: List of wordpiece offsets with the appropriate offsets of special tokens. """ if offset_mapping_1 is None: return [(0, 0)] + offset_mapping_0 + [(0, 0)] return [(0, 0)] + offset_mapping_0 + [(0, 0), (0, 0)] + offset_mapping_1 + [(0, 0)] def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): r""" Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `encode` method. Args: token_ids_0 (`List[int]`): List of ids of the first sequence. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`str`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: The list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create the token type IDs corresponding to the sequences passed. [What are token type IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of building: those. Args: token_ids_0 (`List[int]`): The first tokenized sequence. token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. Returns: `List[int]`: The token type ids. """ # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_1 is None: # [CLS] X [SEP] return (len(token_ids_0) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(token_ids_0) + 1) + [1] * (len(token_ids_1) + 3) def is_ch_char(self, char): """ is_ch_char """ if "\u4e00" <= char <= "\u9fff": return True return False def is_alpha(self, char): """ is_alpha """ if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def is_punct(self, char): """ is_punct """ if char in ",;:.?!~,;:。?!《》【】": return True return False def is_whitespace(self, char): """ is whitespace """ if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(char) == 1: cat = unicodedata.category(char) if cat == "Zs": return True return False def load_vocab(self, filepath): token_to_idx = {} with io.open(filepath, "r", encoding="utf-8") as f: for index, line in enumerate(f): token = line.rstrip("\n") token_to_idx[token] = int(index) return token_to_idx def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 tokenizer_model_file = os.path.join(save_directory, "sentencepiece.bpe.model") with open(tokenizer_model_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (vocab_file,)
transformers/src/transformers/models/ernie_m/tokenization_ernie_m.py/0
{ "file_path": "transformers/src/transformers/models/ernie_m/tokenization_ernie_m.py", "repo_id": "transformers", "token_count": 7974 }
309
# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for ESM.""" import os from typing import List, Optional from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/esm2_t6_8M_UR50D": 1024, "facebook/esm2_t12_35M_UR50D": 1024, } def load_vocab_file(vocab_file): with open(vocab_file, "r") as f: lines = f.read().splitlines() return [l.strip() for l in lines] class EsmTokenizer(PreTrainedTokenizer): """ Constructs an ESM tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, unk_token="<unk>", cls_token="<cls>", pad_token="<pad>", mask_token="<mask>", eos_token="<eos>", **kwargs, ): self.all_tokens = load_vocab_file(vocab_file) self._id_to_token = dict(enumerate(self.all_tokens)) self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)} super().__init__( unk_token=unk_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, eos_token=eos_token, **kwargs, ) # TODO, all the tokens are added? But they are also part of the vocab... bit strange. # none of them are special, but they all need special splitting. self.unique_no_split_tokens = self.all_tokens self._update_trie(self.unique_no_split_tokens) def _convert_id_to_token(self, index: int) -> str: return self._id_to_token.get(index, self.unk_token) def _convert_token_to_id(self, token: str) -> int: return self._token_to_id.get(token, self._token_to_id.get(self.unk_token)) def _tokenize(self, text, **kwargs): return text.split() def get_vocab(self): base_vocab = self._token_to_id.copy() base_vocab.update(self.added_tokens_encoder) return base_vocab def token_to_id(self, token: str) -> int: return self._token_to_id.get(token, self._token_to_id.get(self.unk_token)) def id_to_token(self, index: int) -> str: return self._id_to_token.get(index, self.unk_token) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: cls = [self.cls_token_id] sep = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_1 is None: if self.eos_token_id is None: return cls + token_ids_0 else: return cls + token_ids_0 + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!") return cls + token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of ids of the first sequence. token_ids_1 (`List[int]`, *optional*): List of ids of the second sequence. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_0] mask = [1] + ([0] * len(token_ids_0)) + [1] if token_ids_1 is not None: mask += [0] * len(token_ids_1) + [1] return mask def save_vocabulary(self, save_directory, filename_prefix): vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt") with open(vocab_file, "w") as f: f.write("\n".join(self.all_tokens)) return (vocab_file,) @property def vocab_size(self) -> int: return len(self.all_tokens)
transformers/src/transformers/models/esm/tokenization_esm.py/0
{ "file_path": "transformers/src/transformers/models/esm/tokenization_esm.py", "repo_id": "transformers", "token_count": 2598 }
310
# coding=utf-8 # Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Flaubert.""" import json import os import re import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "flaubert/flaubert_small_cased": ( "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/vocab.json" ), "flaubert/flaubert_base_uncased": ( "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/vocab.json" ), "flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/vocab.json", "flaubert/flaubert_large_cased": ( "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/vocab.json" ), }, "merges_file": { "flaubert/flaubert_small_cased": ( "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/merges.txt" ), "flaubert/flaubert_base_uncased": ( "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/merges.txt" ), "flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/merges.txt", "flaubert/flaubert_large_cased": ( "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/merges.txt" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "flaubert/flaubert_small_cased": 512, "flaubert/flaubert_base_uncased": 512, "flaubert/flaubert_base_cased": 512, "flaubert/flaubert_large_cased": 512, } PRETRAINED_INIT_CONFIGURATION = { "flaubert/flaubert_small_cased": {"do_lowercase": False}, "flaubert/flaubert_base_uncased": {"do_lowercase": True}, "flaubert/flaubert_base_cased": {"do_lowercase": False}, "flaubert/flaubert_large_cased": {"do_lowercase": False}, } def convert_to_unicode(text): """ Converts `text` to Unicode (if it's not already), assuming UTF-8 input. """ def ensure_text(s, encoding="utf-8", errors="strict"): if isinstance(s, bytes): return s.decode(encoding, errors) elif isinstance(s, str): return s else: raise TypeError(f"not expecting type '{type(s)}'") return ensure_text(text, encoding="utf-8", errors="ignore") # Copied from transformers.models.xlm.tokenization_xlm.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs # Copied from transformers.models.xlm.tokenization_xlm.replace_unicode_punct def replace_unicode_punct(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl """ text = text.replace(",", ",") text = re.sub(r"。\s*", ". ", text) text = text.replace("、", ",") text = text.replace("”", '"') text = text.replace("“", '"') text = text.replace("∶", ":") text = text.replace(":", ":") text = text.replace("?", "?") text = text.replace("《", '"') text = text.replace("》", '"') text = text.replace(")", ")") text = text.replace("!", "!") text = text.replace("(", "(") text = text.replace(";", ";") text = text.replace("1", "1") text = text.replace("」", '"') text = text.replace("「", '"') text = text.replace("0", "0") text = text.replace("3", "3") text = text.replace("2", "2") text = text.replace("5", "5") text = text.replace("6", "6") text = text.replace("9", "9") text = text.replace("7", "7") text = text.replace("8", "8") text = text.replace("4", "4") text = re.sub(r".\s*", ". ", text) text = text.replace("~", "~") text = text.replace("’", "'") text = text.replace("…", "...") text = text.replace("━", "-") text = text.replace("〈", "<") text = text.replace("〉", ">") text = text.replace("【", "[") text = text.replace("】", "]") text = text.replace("%", "%") return text # Copied from transformers.models.xlm.tokenization_xlm.remove_non_printing_char def remove_non_printing_char(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl """ output = [] for char in text: cat = unicodedata.category(char) if cat.startswith("C"): continue output.append(char) return "".join(output) class FlaubertTokenizer(PreTrainedTokenizer): """ Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: - Moses preprocessing and tokenization. - Normalizing all inputs text. - The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like "__classify__") to a vocabulary. - The argument `do_lowercase` controls lower casing (automatically set for pretrained vocabularies). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Vocabulary file. merges_file (`str`): Merges file. do_lowercase (`bool`, *optional*, defaults to `False`): Controls lower casing. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"</s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<special1>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `['<special0>', '<special1>', '<special2>', '<special3>', '<special4>', '<special5>', '<special6>', '<special7>', '<special8>', '<special9>']`): List of additional special tokens. lang2id (`Dict[str, int]`, *optional*): Dictionary mapping languages string identifiers to their IDs. id2lang (`Dict[int, str]`, *optional*): Dictionary mapping language IDs to their string identifiers. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, merges_file, do_lowercase=False, unk_token="<unk>", bos_token="<s>", sep_token="</s>", pad_token="<pad>", cls_token="</s>", mask_token="<special1>", additional_special_tokens=[ "<special0>", "<special1>", "<special2>", "<special3>", "<special4>", "<special5>", "<special6>", "<special7>", "<special8>", "<special9>", ], lang2id=None, id2lang=None, **kwargs, ): do_lowercase_and_remove_accent = kwargs.pop("do_lowercase_and_remove_accent", None) if do_lowercase_and_remove_accent is not None: logger.warning( "`do_lowercase_and_remove_accent` is passed as a keyword argument, but this won't do anything." " `FlaubertTokenizer` will always set it to `False`." ) # always `False` self.do_lowercase_and_remove_accent = False self.do_lowercase = do_lowercase try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use FlaubertTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses # cache of sm.MosesPunctNormalizer instance self.cache_moses_punct_normalizer = {} # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = {} self.lang_with_custom_tokenizer = {"zh", "th", "ja"} self.lang2id = lang2id self.id2lang = id2lang if lang2id is not None and id2lang is not None: assert len(lang2id) == len(id2lang) self.ja_word_tokenizer = None self.zh_word_tokenizer = None with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( unk_token=unk_token, bos_token=bos_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, lang2id=lang2id, id2lang=id2lang, **kwargs, ) @property # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.do_lower_case def do_lower_case(self): return self.do_lowercase_and_remove_accent # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_punct_norm def moses_punct_norm(self, text, lang): if lang not in self.cache_moses_punct_normalizer: punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) self.cache_moses_punct_normalizer[lang] = punct_normalizer else: punct_normalizer = self.cache_moses_punct_normalizer[lang] return punct_normalizer.normalize(text) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_tokenize def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = self.sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer else: moses_tokenizer = self.cache_moses_tokenizer[lang] return moses_tokenizer.tokenize(text, return_str=False, escape=False) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_pipeline def moses_pipeline(self, text, lang): text = replace_unicode_punct(text) text = self.moses_punct_norm(text, lang) text = remove_non_printing_char(text) return text # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.ja_tokenize def ja_tokenize(self, text): if self.ja_word_tokenizer is None: try: import Mykytea self.ja_word_tokenizer = Mykytea.Mykytea( f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin" ) except (AttributeError, ImportError): logger.error( "Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper" " (https://github.com/chezou/Mykytea-python) with the following steps" ) logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea") logger.error("2. autoreconf -i") logger.error("3. ./configure --prefix=$HOME/local") logger.error("4. make && make install") logger.error("5. pip install kytea") raise return list(self.ja_word_tokenizer.getWS(text)) @property # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.vocab_size def vocab_size(self): return len(self.encoder) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_vocab def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.bpe def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def preprocess_text(self, text): text = text.replace("``", '"').replace("''", '"') text = convert_to_unicode(text) text = unicodedata.normalize("NFC", text) if self.do_lowercase: text = text.lower() return text def _tokenize(self, text, bypass_tokenizer=False): """ Tokenize a string given language code using Moses. Details of tokenization: - [sacremoses](https://github.com/alvations/sacremoses): port of Moses - Install with `pip install sacremoses` Args: - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) (bool). If True, we only apply BPE. Returns: List of tokens. """ lang = "fr" if lang and self.lang2id and lang not in self.lang2id: logger.error( "Supplied language code not found in lang2id mapping. Please check that your language is supported by" " the loaded pretrained model." ) if bypass_tokenizer: text = text.split() else: text = self.preprocess_text(text) text = self.moses_pipeline(text, lang=lang) text = self.moses_tokenize(text, lang=lang) split_tokens = [] for token in text: if token: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = "".join(tokens).replace("</w>", " ").strip() return out_string # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ bos = [self.bos_token_id] sep = [self.sep_token_id] if token_ids_1 is None: return bos + token_ids_0 + sep return bos + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sm"] = None return state # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses
transformers/src/transformers/models/flaubert/tokenization_flaubert.py/0
{ "file_path": "transformers/src/transformers/models/flaubert/tokenization_flaubert.py", "repo_id": "transformers", "token_count": 10882 }
311
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ FocalNet model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class FocalNetConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FocalNetModel`]. It is used to instantiate a FocalNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FocalNet [microsoft/focalnet-tiny](https://huggingface.co/microsoft/focalnet-tiny) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch in the embeddings layer. num_channels (`int`, *optional*, defaults to 3): The number of input channels. embed_dim (`int`, *optional*, defaults to 96): Dimensionality of patch embedding. use_conv_embed (`bool`, *optional*, defaults to `False`): Whether to use convolutional embedding. The authors noted that using convolutional embedding usually improve the performance, but it's not used by default. hidden_sizes (`List[int]`, *optional*, defaults to `[192, 384, 768, 768]`): Dimensionality (hidden size) at each stage. depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`): Depth (number of layers) of each stage in the encoder. focal_levels (`list(int)`, *optional*, defaults to `[2, 2, 2, 2]`): Number of focal levels in each layer of the respective stages in the encoder. focal_windows (`list(int)`, *optional*, defaults to `[3, 3, 3, 3]`): Focal window size in each layer of the respective stages in the encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. mlp_ratio (`float`, *optional*, defaults to 4.0): Ratio of MLP hidden dimensionality to embedding dimensionality. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings and encoder. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate. use_layerscale (`bool`, *optional*, defaults to `False`): Whether to use layer scale in the encoder. layerscale_value (`float`, *optional*, defaults to 0.0001): The initial value of the layer scale. use_post_layernorm (`bool`, *optional*, defaults to `False`): Whether to use post layer normalization in the encoder. use_post_layernorm_in_modulation (`bool`, *optional*, defaults to `False`): Whether to use post layer normalization in the modulation layer. normalize_modulator (`bool`, *optional*, defaults to `False`): Whether to normalize the modulator. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. encoder_stride (`int`, *optional*, defaults to 32): Factor to increase the spatial resolution by in the decoder head for masked image modeling. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import FocalNetConfig, FocalNetModel >>> # Initializing a FocalNet microsoft/focalnet-tiny style configuration >>> configuration = FocalNetConfig() >>> # Initializing a model (with random weights) from the microsoft/focalnet-tiny style configuration >>> model = FocalNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "focalnet" def __init__( self, image_size=224, patch_size=4, num_channels=3, embed_dim=96, use_conv_embed=False, hidden_sizes=[192, 384, 768, 768], depths=[2, 2, 6, 2], focal_levels=[2, 2, 2, 2], focal_windows=[3, 3, 3, 3], hidden_act="gelu", mlp_ratio=4.0, hidden_dropout_prob=0.0, drop_path_rate=0.1, use_layerscale=False, layerscale_value=1e-4, use_post_layernorm=False, use_post_layernorm_in_modulation=False, normalize_modulator=False, initializer_range=0.02, layer_norm_eps=1e-5, encoder_stride=32, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.use_conv_embed = use_conv_embed self.hidden_sizes = hidden_sizes self.depths = depths self.focal_levels = focal_levels self.focal_windows = focal_windows self.hidden_act = hidden_act self.mlp_ratio = mlp_ratio self.hidden_dropout_prob = hidden_dropout_prob self.drop_path_rate = drop_path_rate self.use_layerscale = use_layerscale self.layerscale_value = layerscale_value self.use_post_layernorm = use_post_layernorm self.use_post_layernorm_in_modulation = use_post_layernorm_in_modulation self.normalize_modulator = normalize_modulator self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.encoder_stride = encoder_stride self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
transformers/src/transformers/models/focalnet/configuration_focalnet.py/0
{ "file_path": "transformers/src/transformers/models/focalnet/configuration_focalnet.py", "repo_id": "transformers", "token_count": 3131 }
312
# coding=utf-8 # Copyright 2023 Adept AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fuyu model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP = { "adept/fuyu-8b": "https://huggingface.co/adept/fuyu-8b/resolve/main/config.json", } class FuyuConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FuyuForCausalLM`]. It is used to instantiate an Fuyu model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 262144): Vocabulary size of the Fuyu model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FuyuForCausalLM`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 16384): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 36): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 64): Number of attention heads for each attention layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 16384): The maximum sequence length that this model might ever be used with. image_size (`int`, *optional*, defaults to 300): The input image size. patch_size (`int`, *optional*, defaults to 30): The input vision transformer encoding patch size. num_channels (`int`, *optional*, defaults to 3): The input image number of channels. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Whether to tie weight embeddings tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie input and output embeddings. rope_theta (`float`, *optional*, defaults to 25000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalFuyu/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. qk_layernorm (`bool`, *optional*, defaults to `True`): Whether or not to normalize the Queries and Keys after projecting the hidden states hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after applying the MLP to the hidden states. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after computing the attention scores. partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding. pad_token_id (`int`, *optional*): The id of the *padding* token. bos_token_id (`int`, *optional*, defaults to 1): The id of the *beginning-of-sequence* token. eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. text_config (`dict`, *optional*): Dictionary of configuration options used to initialize the `language``[`Aut`]. ```python >>> from transformers import FuyuConfig >>> # Initializing a Fuyu fuyu-7b style configuration >>> configuration = FuyuConfig() ```""" model_type = "fuyu" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=262144, hidden_size=4096, intermediate_size=16384, num_hidden_layers=36, num_attention_heads=64, hidden_act="relu2", max_position_embeddings=16384, image_size=300, patch_size=30, num_channels=3, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, tie_word_embeddings=False, rope_theta=25000.0, rope_scaling=None, qk_layernorm=True, hidden_dropout=0.0, attention_dropout=0.0, partial_rotary_factor=0.5, pad_token_id=None, bos_token_id=1, eos_token_id=2, text_config=None, **kwargs, ): if text_config is None: text_config = { "vocab_size": vocab_size, "max_position_embeddings": max_position_embeddings, "hidden_size": hidden_size, "intermediate_size": intermediate_size, "num_hidden_layers": num_hidden_layers, "num_attention_heads": num_attention_heads, "hidden_act": hidden_act, "initializer_range": initializer_range, "layer_norm_eps": layer_norm_eps, "use_cache": use_cache, "rope_theta": rope_theta, "rope_scaling": rope_scaling, "qk_layernorm": qk_layernorm, "hidden_dropout": hidden_dropout, "attention_dropout": attention_dropout, "partial_rotary_factor": partial_rotary_factor, "pad_token_id": pad_token_id, "bos_token_id": bos_token_id, "eos_token_id": eos_token_id, "tie_word_embeddings": tie_word_embeddings, } logger.info("text_config is None. initializing the text model with default values.") text_model_type = text_config["model_type"] if "model_type" in text_config else "persimmon" self.text_config = CONFIG_MAPPING[text_model_type](**text_config) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.qk_layernorm = qk_layernorm self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.partial_rotary_factor = partial_rotary_factor self._rope_scaling_validation() super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers/src/transformers/models/fuyu/configuration_fuyu.py/0
{ "file_path": "transformers/src/transformers/models/fuyu/configuration_fuyu.py", "repo_id": "transformers", "token_count": 4239 }
313
Here is how to convert a GPT2 model generated outside of `transformers` * [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)-generated model: Use [convert_megatron_gpt2_checkpoint.py](../megatron_gpt2/convert_megatron_gpt2_checkpoint.py) * [big-science fork of Megatron-Deepspeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed/)-generated model: Use the instructions [here](https://github.com/bigscience-workshop/bigscience/tree/aa872e754106f6678e8a9dac8c6962404ba39a6d/train/tr1-13B-base#checkpoint-conversion-and-upload). This approach uses a set of scripts that require the use of this particular fork of Megatron-Deepspeed.
transformers/src/transformers/models/gpt2/CONVERSION.md/0
{ "file_path": "transformers/src/transformers/models/gpt2/CONVERSION.md", "repo_id": "transformers", "token_count": 216 }
314
# coding=utf-8 # Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPT-J model.""" import warnings from typing import Optional, Tuple, Union import torch import torch.fx import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, logging, ) from ...utils.model_parallel_utils import assert_device_map, get_device_map from .configuration_gptj import GPTJConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj" _REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B" _CONFIG_FOR_DOC = "GPTJConfig" GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [ "EleutherAI/gpt-j-6B", # See all GPT-J models at https://huggingface.co/models?filter=gptj ] def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim)) sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq).float() return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) @torch.fx.wrap def get_embed_positions(embed_positions, position_ids): return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1) def rotate_every_two(x: torch.Tensor) -> torch.Tensor: x1 = x[:, :, :, ::2] x2 = x[:, :, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)') def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor: sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) return (tensor * cos) + (rotate_every_two(tensor) * sin) class GPTJAttention(nn.Module): def __init__(self, config): super().__init__() max_positions = config.max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( 1, 1, max_positions, max_positions ), persistent=False, ) self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.embed_dim = config.hidden_size self.num_attention_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_attention_heads if self.head_dim * self.num_attention_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" f" `num_attention_heads`: {self.num_attention_heads})." ) self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()) self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.rotary_dim = config.rotary_dim pos_embd_dim = self.rotary_dim or self.embed_dim self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary): """ Splits hidden dim into attn_head_size and num_attention_heads """ new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) tensor = tensor.view(new_shape) if rotary: return tensor if len(tensor.shape) == 5: return tensor.permute(0, 1, 3, 2, 4) # (batch, blocks, head, block_length, head_features) elif len(tensor.shape) == 4: return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) else: raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") def _merge_heads(self, tensor, num_attention_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden dim """ if len(tensor.shape) == 5: tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() elif len(tensor.shape) == 4: tensor = tensor.permute(0, 2, 1, 3).contiguous() else: raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) return tensor.view(new_shape) def _attn( self, query, key, value, attention_mask=None, head_mask=None, ): # compute causal mask from causal mask buffer query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] # Keep the attention weights computation in fp32 to avoid overflow issues query = query.to(torch.float32) key = key.to(torch.float32) attn_weights = torch.matmul(query, key.transpose(-1, -2)) mask_value = torch.finfo(attn_weights.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights, mask_value) attn_weights = attn_weights / self.scale_attn if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) attn_weights = attn_weights.to(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def _get_embed_positions(self, position_ids): embed_positions = self.embed_positions if embed_positions.device != position_ids.device: embed_positions = embed_positions.to(position_ids.device) self.embed_positions = embed_positions return embed_positions.repeat(position_ids.shape[0], 1, 1) def forward( self, hidden_states: torch.FloatTensor, layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[ Tuple[torch.Tensor, Tuple[torch.Tensor]], Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], ]: query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query, self.num_attention_heads, self.head_dim, True) key = self._split_heads(key, self.num_attention_heads, self.head_dim, True) value = self._split_heads(value, self.num_attention_heads, self.head_dim, False) if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing(): # The logic to conditionally copy to GPU could not be traced, so we do this # every time in the torch.fx case embed_positions = get_embed_positions(self.embed_positions, position_ids) else: embed_positions = self._get_embed_positions(position_ids) repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1]) sincos = torch.gather(embed_positions, 1, repeated_position_ids) sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) if self.rotary_dim is not None: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] k_rot = apply_rotary_pos_emb(k_rot, sin, cos) q_rot = apply_rotary_pos_emb(q_rot, sin, cos) key = torch.cat([k_rot, k_pass], dim=-1) query = torch.cat([q_rot, q_pass], dim=-1) else: key = apply_rotary_pos_emb(key, sin, cos) query = apply_rotary_pos_emb(query, sin, cos) key = key.permute(0, 2, 1, 3) query = query.permute(0, 2, 1, 3) if layer_past is not None: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: # Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation. # Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128 present = (key.to(hidden_states.dtype), value) else: present = None # compute self-attention: V x Softmax(QK^T) attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs # a, present, (attentions) class GPTJMLP(nn.Module): def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim super().__init__() embed_dim = config.n_embd self.fc_in = nn.Linear(embed_dim, intermediate_size) self.fc_out = nn.Linear(intermediate_size, embed_dim) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: hidden_states = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc_out(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class GPTJBlock(nn.Module): def __init__(self, config): super().__init__() inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.attn = GPTJAttention(config) self.mlp = GPTJMLP(inner_dim, config) def forward( self, hidden_states: Optional[torch.FloatTensor], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states=hidden_states, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] feed_forward_hidden_states = self.mlp(hidden_states) hidden_states = attn_output + feed_forward_hidden_states + residual if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions) class GPTJPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTJConfig base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True _no_split_modules = ["GPTJBlock"] _skip_keys_device_placement = "past_key_values" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear,)): # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) GPTJ_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GPTJConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GPTJ_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PARALLELIZE_DOCSTRING = r""" This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices. Args: device_map (`Dict[int, list]`, optional, defaults to None): A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the following number of attention modules: - gpt-j-6B: 28 Example: ```python # Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules: model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") device_map = { 0: [0, 1, 2, 3, 4, 5, 6], 1: [7, 8, 9, 10, 11, 12, 13], 2: [14, 15, 16, 17, 18, 19, 20], 3: [21, 22, 23, 24, 25, 26, 27], } model.parallelize(device_map) ``` """ DEPARALLELIZE_DOCSTRING = r""" Moves the model to CPU from a model parallel state. Example: ```python # On a 4 GPU machine with gpt-j-6B: model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") device_map = { 0: [0, 1, 2, 3, 4, 5, 6], 1: [7, 8, 9, 10, 11, 12, 13], 2: [14, 15, 16, 17, 18, 19, 20], 3: [21, 22, 23, 24, 25, 26, 27], } model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() ``` """ @add_start_docstrings( "The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.", GPTJ_START_DOCSTRING, ) class GPTJModel(GPTJPreTrainedModel): def __init__(self, config): super().__init__(config) self.embed_dim = config.n_embd self.vocab_size = config.vocab_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) # Model parallel self.model_parallel = False self.device_map = None self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your" " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1," " ...}", FutureWarning, ) # Check validity of device_map self.device_map = ( get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.h)) self.model_parallel = True self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) self.last_device = "cuda:" + str(max(self.device_map.keys())) self.wte = self.wte.to(self.first_device) # Load onto devices for k, v in self.device_map.items(): for block in v: cuda_device = "cuda:" + str(k) self.h[block] = self.h[block].to(cuda_device) # ln_f to last self.ln_f = self.ln_f.to(self.last_device) @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.model_parallel = False self.device_map = None self.first_device = "cpu" self.last_device = "cpu" self.wte = self.wte.to("cpu") for index in range(len(self.h)): self.h[index] = self.h[index].to("cpu") self.ln_f = self.ln_f.to("cpu") torch.cuda.empty_cache() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0) # Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x num_attention_heads x N x N # head_mask has shape n_layer x batch x num_attention_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) hidden_states = inputs_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure layer_past is on same device as hidden_states (might not be correct) if layer_past is not None: layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if isinstance(head_mask, torch.Tensor): head_mask = head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, None, attention_mask, position_ids, head_mask[i], use_cache, output_attentions, ) else: outputs = block( hidden_states=hidden_states, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @add_start_docstrings( """ The GPT-J Model transformer with a language modeling head on top. """, GPTJ_START_DOCSTRING, ) class GPTJForCausalLM(GPTJPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = GPTJModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':" " 0, 'transformer.h.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.transformer.h)) self.transformer.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.transformer.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.transformer.deparallelize() self.transformer = self.transformer.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False torch.cuda.empty_cache() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # Omit tokens covered by past_key_values if past_key_values: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] if token_type_ids is not None: token_type_ids = token_type_ids[:, -input_ids.shape[1] :] attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } ) return model_inputs @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.transformer.first_device) hidden_states = hidden_states.to(self.lm_head.weight.device) # make sure sampling in fp16 works correctly and # compute loss in fp32 to match with mesh-tf version # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 lm_logits = self.lm_head(hidden_states).to(torch.float32) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) loss = loss.to(hidden_states.dtype) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache( past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor ) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past_key_values ) @add_start_docstrings( """ The GPT-J Model transformer with a sequence classification head on top (linear layer). [`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT, GPT-2, GPT-Neo) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, GPTJ_START_DOCSTRING, ) class GPTJForSequenceClassification(GPTJPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTJModel(config) self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification", output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(pooled_logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, GPTJ_START_DOCSTRING, ) class GPTJForQuestionAnswering(GPTJPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTJModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1).to(start_logits.device) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1).to(end_logits.device) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/gptj/modeling_gptj.py/0
{ "file_path": "transformers/src/transformers/models/gptj/modeling_gptj.py", "repo_id": "transformers", "token_count": 22144 }
315
# coding=utf-8 # Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 GroupViT model.""" from __future__ import annotations import collections.abc import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_tensorflow_probability_available, logging, replace_return_docstrings, ) from .configuration_groupvit import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig logger = logging.get_logger(__name__) # soft dependency if is_tensorflow_probability_available(): try: import tensorflow_probability as tfp # On the first call, check whether a compatible version of TensorFlow is installed # TensorFlow Probability depends on a recent stable release of TensorFlow _ = tfp.distributions.Normal(loc=0.0, scale=1.0) except ImportError: logger.error( "GroupViT models are not usable since `tensorflow_probability` can't be loaded. " "It seems you have `tensorflow_probability` installed with the wrong tensorflow version." "Please try to reinstall it following the instructions here: https://github.com/tensorflow/probability." ) _CHECKPOINT_FOR_DOC = "nvidia/groupvit-gcc-yfcc" TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "nvidia/groupvit-gcc-yfcc", # See all GroupViT models at https://huggingface.co/models?filter=groupvit ] LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html def contrastive_loss(logits: tf.Tensor) -> tf.Tensor: return tf.math.reduce_mean( keras.metrics.sparse_categorical_crossentropy( y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True ) ) # Copied from transformers.models.clip.modeling_tf_clip.clip_loss with clip->groupvit def groupvit_loss(similarity: tf.Tensor) -> tf.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(tf.transpose(similarity)) return (caption_loss + image_loss) / 2.0 def hard_softmax(logits: tf.Tensor, dim: int) -> tf.Tensor: y_soft = stable_softmax(logits, dim) # Straight through. index = tf.argmax(y_soft, dim) y_hard = tf.one_hot( index, depth=shape_list(logits)[dim], # TensorFlow expects axis to be -1 or between [0, 3). But received: -2 # This is why the following code snippet is used. axis=range(len(shape_list(logits)))[dim], dtype=y_soft.dtype, ) ret = y_hard - tf.stop_gradient(y_soft) + y_soft return ret def gumbel_softmax(logits: tf.Tensor, tau: float = 1, hard: bool = False, dim: int = -1) -> tf.Tensor: gumbel_dist = tfp.distributions.Gumbel(0.0, 1.0) gumbels = gumbel_dist.sample(tf.shape(logits), dtype=logits.dtype) gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau) y_soft = stable_softmax(gumbels, dim) if hard: # Straight through. index = tf.argmax(y_soft, dim) y_hard = tf.one_hot( index, depth=shape_list(logits)[dim], # TensorFlow expects axis to be -1 or between [0, 3). But received: -2 # This is why the following code snippet is used. axis=range(len(shape_list(logits)))[dim], dtype=y_soft.dtype, ) ret = y_hard - tf.stop_gradient(y_soft) + y_soft else: # Reparametrization trick. ret = y_soft return ret def resize_attention_map(attentions: tf.Tensor, height: int, width: int, align_corners: bool = False) -> tf.Tensor: """ Args: attentions (`tf.Tensor`): attention map of shape [batch_size, groups, feat_height*feat_width] height (`int`): height of the output attention map width (`int`): width of the output attention map align_corners (`bool`, *optional*): the `align_corner` argument for `nn.functional.interpolate`. Returns: `tf.Tensor`: resized attention map of shape [batch_size, groups, height, width] """ scale = (height * width // attentions.shape[2]) ** 0.5 if height > width: feat_width = int(np.round(width / scale)) feat_height = shape_list(attentions)[2] // feat_width else: feat_height = int(np.round(height / scale)) feat_width = shape_list(attentions)[2] // feat_height batch_size = shape_list(attentions)[0] groups = shape_list(attentions)[1] # number of group token # [batch_size, groups, height x width, groups] -> [batch_size, groups, height, width] attentions = tf.reshape(attentions, (batch_size, groups, feat_height, feat_width)) attentions = tf.transpose(attentions, perm=(0, 2, 3, 1)) if align_corners: attentions = tf.compat.v1.image.resize( attentions, size=(height, width), method="bilinear", align_corners=align_corners, ) else: attentions = tf.image.resize(attentions, size=(height, width), method="bilinear") attentions = tf.transpose(attentions, perm=(0, 3, 1, 2)) return attentions def get_grouping_from_attentions(attentions: Tuple[tf.Tensor], hw_shape: Tuple[int]) -> tf.Tensor: """ Args: attentions (`tuple(tf.Tensor)`: tuple of attention maps returned by `TFGroupViTVisionTransformer` hw_shape (`tuple(int)`): height and width of the output attention map Returns: `tf.Tensor`: the attention map of shape [batch_size, groups, height, width] """ attn_maps = [] prev_attn_masks = None for attn_masks in attentions: # [batch_size, num_groups, height x width] -> [batch_size, height x width, num_groups] attn_masks = tf.transpose(attn_masks, perm=(0, 2, 1)) if prev_attn_masks is None: prev_attn_masks = attn_masks else: prev_attn_masks = tf.matmul(prev_attn_masks, attn_masks) # [batch_size, height x width, num_groups] -> [batch_size, num_groups, height x width] -> [batch_size, num_groups, height, width] cur_attn_map = resize_attention_map(tf.transpose(prev_attn_masks, perm=(0, 2, 1)), *hw_shape) attn_maps.append(cur_attn_map) # [batch_size, num_groups, height, width] final_grouping = attn_maps[-1] return tf.stop_gradient(final_grouping) @dataclass class TFGroupViTModelOutput(ModelOutput): """ Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image (`tf.Tensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text (`tf.Tensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. segmentation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`): Classification scores for each pixel. <Tip warning={true}> The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the original image size as post-processing. You should always check your logits shape and resize as needed. </Tip> text_embeds (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`TFGroupViTTextModel`]. image_embeds (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`TFGroupViTVisionModel`]. text_model_output (`TFBaseModelOutputWithPooling`): The output of the [`TFGroupViTTextModel`]. vision_model_output (`TFBaseModelOutputWithPooling`): The output of the [`TFGroupViTVisionModel`]. """ loss: tf.Tensor | None = None logits_per_image: tf.Tensor = None logits_per_text: tf.Tensor = None segmentation_logits: tf.Tensor = None text_embeds: tf.Tensor = None image_embeds: tf.Tensor = None text_model_output: TFBaseModelOutputWithPooling = None vision_model_output: TFBaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class TFGroupViTCrossAttentionLayer(keras.layers.Layer): def __init__(self, config: GroupViTVisionConfig, **kwargs): super().__init__(**kwargs) self.attn = TFGroupViTAttention(config, name="attn") self.norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm2") self.mlp = TFGroupViTMLP(config, name="mlp") self.norm_post = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_post") self.config = config def call(self, query: tf.Tensor, key: tf.Tensor, training: bool = False) -> tf.Tensor: x = query x = x + self.attn(query, encoder_hidden_states=key)[0] x = x + self.mlp(self.norm2(x)) x = self.norm_post(x) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attn", None) is not None: with tf.name_scope(self.attn.name): self.attn.build(None) if getattr(self, "norm2", None) is not None: with tf.name_scope(self.norm2.name): self.norm2.build([None, None, self.config.hidden_size]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) if getattr(self, "norm_post", None) is not None: with tf.name_scope(self.norm_post.name): self.norm_post.build([None, None, self.config.hidden_size]) class TFGroupViTAssignAttention(keras.layers.Layer): def __init__(self, config: GroupViTVisionConfig, **kwargs): super().__init__(**kwargs) self.scale = config.hidden_size**-0.5 self.q_proj = keras.layers.Dense(config.hidden_size, name="q_proj") self.k_proj = keras.layers.Dense(config.hidden_size, name="k_proj") self.v_proj = keras.layers.Dense(config.hidden_size, name="v_proj") self.proj = keras.layers.Dense(config.hidden_size, name="proj") self.assign_eps = config.assign_eps self.config = config def get_attn(self, attn: tf.Tensor, gumbel: bool = True, hard: bool = True, training: bool = False) -> tf.Tensor: if gumbel and training: attn = gumbel_softmax(attn, dim=-2, hard=hard) else: if hard: attn = hard_softmax(attn, dim=-2) else: attn = stable_softmax(attn, axis=-2) return attn def call(self, query: tf.Tensor, key: tf.Tensor, training: bool = False): value = key # [batch_size, query_length, channels] query = self.q_proj(query) # [batch_size, key_length, channels] key = self.k_proj(key) # [batch_size, key_length, channels] value = self.v_proj(value) # [batch_size, query_length, key_length] raw_attn = tf.matmul(query, key, transpose_b=True) * self.scale attn = self.get_attn(raw_attn, training=training) soft_attn = self.get_attn(raw_attn, training=training, gumbel=False, hard=False) attn = attn / (tf.math.reduce_sum(attn, axis=-1, keepdims=True) + self.assign_eps) out = tf.matmul(attn, value) out = self.proj(out) return out, soft_attn def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.config.hidden_size]) if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.config.hidden_size]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.config.hidden_size]) if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, self.config.hidden_size]) class TFGroupViTTokenAssign(keras.layers.Layer): def __init__(self, config: GroupViTVisionConfig, num_group_token: int, num_output_group: int, **kwargs): super().__init__(**kwargs) self.num_output_group = num_output_group # norm on group_tokens self.norm_tokens = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_tokens") assign_mlp_ratio = ( config.assign_mlp_ratio if isinstance(config.assign_mlp_ratio, collections.abc.Iterable) else (config.assign_mlp_ratio, config.assign_mlp_ratio) ) tokens_dim, channels_dim = [int(x * config.hidden_size) for x in assign_mlp_ratio] self.mlp_inter = TFGroupViTMixerMLP(config, num_group_token, tokens_dim, num_output_group, name="mlp_inter") self.norm_post_tokens = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_post_tokens") # norm on x self.norm_x = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_x") self.pre_assign_attn = TFGroupViTCrossAttentionLayer(config, name="pre_assign_attn") self.assign = TFGroupViTAssignAttention(config, name="assign") self.norm_new_x = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_new_x") self.mlp_channels = TFGroupViTMLP( config, config.hidden_size, channels_dim, config.hidden_size, name="mlp_channels" ) self.config = config def project_group_token(self, group_tokens: tf.Tensor) -> tf.Tensor: """ Args: group_tokens (tf.Tensor): group tokens, [batch_size, num_group_tokens, channels] Returns: projected_group_tokens (tf.Tensor): [batch_size, num_output_groups, channels] """ # [B, num_output_groups, C] <- [B, num_group_tokens, C] projected_group_tokens = self.mlp_inter(group_tokens) projected_group_tokens = self.norm_post_tokens(projected_group_tokens) return projected_group_tokens def call(self, image_tokens: tf.Tensor, group_tokens: tf.Tensor, training: bool = False): """ Args: image_tokens (`tf.Tensor`): image tokens, of shape [batch_size, input_length, channels] group_tokens (`tf.Tensor`): group tokens, [batch_size, num_group_tokens, channels] """ group_tokens = self.norm_tokens(group_tokens) image_tokens = self.norm_x(image_tokens) # [batch_size, num_output_groups, channels] projected_group_tokens = self.project_group_token(group_tokens) projected_group_tokens = self.pre_assign_attn(projected_group_tokens, image_tokens) new_image_tokens, attention = self.assign(projected_group_tokens, image_tokens) new_image_tokens += projected_group_tokens new_image_tokens = new_image_tokens + self.mlp_channels(self.norm_new_x(new_image_tokens)) return new_image_tokens, attention def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "norm_tokens", None) is not None: with tf.name_scope(self.norm_tokens.name): self.norm_tokens.build([None, None, self.config.hidden_size]) if getattr(self, "mlp_inter", None) is not None: with tf.name_scope(self.mlp_inter.name): self.mlp_inter.build(None) if getattr(self, "norm_post_tokens", None) is not None: with tf.name_scope(self.norm_post_tokens.name): self.norm_post_tokens.build([None, None, self.config.hidden_size]) if getattr(self, "norm_x", None) is not None: with tf.name_scope(self.norm_x.name): self.norm_x.build([None, None, self.config.hidden_size]) if getattr(self, "pre_assign_attn", None) is not None: with tf.name_scope(self.pre_assign_attn.name): self.pre_assign_attn.build(None) if getattr(self, "assign", None) is not None: with tf.name_scope(self.assign.name): self.assign.build(None) if getattr(self, "norm_new_x", None) is not None: with tf.name_scope(self.norm_new_x.name): self.norm_new_x.build([None, None, self.config.hidden_size]) if getattr(self, "mlp_channels", None) is not None: with tf.name_scope(self.mlp_channels.name): self.mlp_channels.build(None) # Adapted from transformers.models.vit.modeling_tf_vit.TFViTPatchEmbeddings with ViT->GroupViT class TFGroupViTPatchEmbeddings(keras.layers.Layer): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config: GroupViTConfig, **kwargs): super().__init__(**kwargs) image_size, patch_size = config.image_size, config.patch_size num_channels = config.num_channels # hidden_size is a member as it will be required in the call method self.hidden_size = config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.num_channels = num_channels self.config = config self.projection = keras.layers.Conv2D( filters=self.hidden_size, kernel_size=patch_size, strides=patch_size, padding="valid", data_format="channels_last", use_bias=True, kernel_initializer=get_initializer(self.config.initializer_range), bias_initializer="zeros", name="projection", ) def call( self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False ) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if ( not interpolate_pos_encoding and tf.executing_eagerly() and (height != self.image_size[0] or width != self.image_size[1]) ): raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) projection = self.projection(pixel_values) # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) # In the TFGroupViTVisionEmbeddings the embeddings from this layer will be layer normalized # LayerNormalization layer needs to have static last dimension (otherwise the test_keras_save_load fails with symbolic tensors) # This is why we have used the hidden_size in the reshape method embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, self.hidden_size)) return embeddings def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, None, self.num_channels]) # Adapted from transformers.vit.modeling_tf_vit.TFViTEmbeddings class TFGroupViTVisionEmbeddings(keras.layers.Layer): """ Construct the position and patch embeddings. """ def __init__(self, config: GroupViTVisionConfig, **kwargs): super().__init__(**kwargs) self.patch_embeddings = TFGroupViTPatchEmbeddings(config, name="patch_embeddings") self.dropout = keras.layers.Dropout(rate=config.dropout, name="dropout") self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") self.config = config def build(self, input_shape=None): num_patches = self.patch_embeddings.num_patches self.position_embeddings = self.add_weight( shape=(1, num_patches, self.config.hidden_size), initializer="zeros", trainable=True, name="position_embeddings", ) if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build(None) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.config.hidden_size]) def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ batch_size, num_patches, dim = shape_list(embeddings) num_positions = shape_list(self.position_embeddings)[1] if num_patches == num_positions and height == width: return self.position_embeddings patch_pos_embed = self.position_embeddings h0 = height // self.config.patch_size w0 = width // self.config.patch_size patch_pos_embed = tf.image.resize( images=tf.reshape( patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) ), size=(h0, w0), method="bicubic", ) patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim)) return patch_pos_embed def call( self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False ) -> tf.Tensor: _, _, height, width = shape_list(pixel_values) embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) embeddings = self.layernorm(embeddings) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextEmbeddings with CLIP->GroupViT class TFGroupViTTextEmbeddings(keras.layers.Layer): def __init__(self, config: GroupViTTextConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.config = config def build(self, input_shape: tf.TensorShape = None): with tf.name_scope("token_embedding"): self.weight = self.add_weight( shape=(self.config.vocab_size, self.embed_dim), initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range), trainable=True, name="weight", ) with tf.name_scope("position_embedding"): self.position_embedding = self.add_weight( shape=(self.config.max_position_embeddings, self.embed_dim), initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range), trainable=True, name="embeddings", ) super().build(input_shape) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embedding, indices=position_ids) position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1)) final_embeddings = inputs_embeds + position_embeds return final_embeddings class TFGroupViTStage(keras.layers.Layer): """This corresponds to the `GroupingLayer` class in the GroupViT implementation.""" def __init__( self, config: GroupViTVisionConfig, depth: int, num_prev_group_token: int, num_group_token: int, num_output_group: int, **kwargs, ): super().__init__(**kwargs) self.config = config self.depth = depth self.num_group_token = num_group_token self.layers = [TFGroupViTEncoderLayer(config, name=f"layers_._{i}") for i in range(depth)] if num_group_token > 0: self.downsample = TFGroupViTTokenAssign( config=config, num_group_token=num_group_token, num_output_group=num_output_group, name="downsample", ) else: self.downsample = None if num_prev_group_token > 0 and num_group_token > 0: self.group_projector = [ keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="group_projector.0"), TFGroupViTMixerMLP( config, num_prev_group_token, config.hidden_size // 2, num_group_token, name="group_projector.1" ), ] else: self.group_projector = None def build(self, input_shape=None): if self.num_group_token > 0: self.group_token = self.add_weight( shape=(1, self.num_group_token, self.config.hidden_size), initializer="zeros", trainable=True, name="group_token", ) else: self.group_token = None if self.built: return self.built = True if getattr(self, "downsample", None) is not None: with tf.name_scope(self.downsample.name): self.downsample.build(None) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) if getattr(self, "group_projector", None) is not None: with tf.name_scope(self.group_projector[0].name): self.group_projector[0].build([None, None, self.config.hidden_size]) with tf.name_scope(self.group_projector[1].name): self.group_projector[1].build(None) @property def with_group_token(self): return self.group_token is not None def split_x(self, x: tf.Tensor) -> tf.Tensor: if self.with_group_token: return x[:, : -self.num_group_token], x[:, -self.num_group_token :] else: return x, None def concat_x(self, x: tf.Tensor, group_token: tf.Tensor | None = None) -> tf.Tensor: if group_token is None: return x return tf.concat([x, group_token], axis=1) def call( self, hidden_states: tf.Tensor, prev_group_token: tf.Tensor | None = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the grouping tensors of Grouping block. """ if self.with_group_token: group_token = tf.tile(self.group_token, multiples=(shape_list(hidden_states)[0], 1, 1)) if self.group_projector is not None: for layer in self.group_projector: prev_group_token = layer(prev_group_token) group_token = group_token + prev_group_token else: group_token = None x = hidden_states cat_x = self.concat_x(x, group_token) for layer in self.layers: layer_out = layer( cat_x, attention_mask=None, causal_attention_mask=None, output_attentions=None, ) cat_x = layer_out[0] x, group_token = self.split_x(cat_x) attention = None if self.downsample is not None: x, attention = self.downsample(x, group_token) outputs = (x, group_token) if output_attentions: outputs = outputs + (attention,) return outputs class TFGroupViTMLP(keras.layers.Layer): def __init__( self, config: GroupViTVisionConfig, hidden_size: Optional[int] = None, intermediate_size: Optional[int] = None, output_size: Optional[int] = None, **kwargs, ): super().__init__(**kwargs) self.config = config self.activation_fn = get_tf_activation(config.hidden_act) hidden_size = hidden_size if hidden_size is not None else config.hidden_size intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size output_size = output_size if output_size is not None else hidden_size self.fc1 = keras.layers.Dense(intermediate_size, name="fc1") self.fc2 = keras.layers.Dense(output_size, name="fc2") self.intermediate_size = intermediate_size self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.hidden_size]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.intermediate_size]) class TFGroupViTMixerMLP(TFGroupViTMLP): def call(self, x, training: bool = False): x = super().call(hidden_states=tf.transpose(x, perm=(0, 2, 1))) return tf.transpose(x, perm=(0, 2, 1)) # Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPAttention class TFGroupViTAttention(keras.layers.Layer): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: GroupViTConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.num_attention_heads = config.num_attention_heads self.attention_head_size = self.embed_dim // self.num_attention_heads if self.attention_head_size * self.num_attention_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_attention_heads})." ) factor = config.initializer_factor in_proj_std = (self.embed_dim**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor out_proj_std = (self.embed_dim**-0.5) * factor self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.q_proj = keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="q_proj" ) self.k_proj = keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="k_proj" ) self.v_proj = keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="v_proj" ) self.dropout = keras.layers.Dropout(rate=config.attention_dropout) self.out_proj = keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(out_proj_std), name="out_proj" ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention.transpose_for_scores def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor = None, causal_attention_mask: tf.Tensor = None, output_attentions: bool = None, encoder_hidden_states: tf.Tensor = None, training: bool = False, ) -> Tuple[tf.Tensor]: """Input shape: Batch x Time x Channel""" batch_size = shape_list(hidden_states)[0] is_cross_attention = encoder_hidden_states is not None mixed_query_layer = self.q_proj(inputs=hidden_states) if is_cross_attention: mixed_key_layer = self.k_proj(inputs=encoder_hidden_states) mixed_value_layer = self.v_proj(inputs=encoder_hidden_states) else: mixed_key_layer = self.k_proj(inputs=hidden_states) mixed_value_layer = self.v_proj(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) # apply the causal_attention_mask first if causal_attention_mask is not None: # Apply the causal attention mask (precomputed for all layers in TFCLIPModel call() function) attention_scores = tf.add(attention_scores, causal_attention_mask) if attention_mask is not None: # Apply the attention mask (precomputed for all layers in TFCLIPModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. _attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=_attention_probs) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, embed_dim) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.embed_dim)) attention_output = self.out_proj(attention_output) # In TFBert, attention weights are returned after dropout. # However, in CLIP, they are returned before dropout. outputs = (attention_output, _attention_probs) if output_attentions else (attention_output,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPEncoderLayer with CLIP->GroupViT class TFGroupViTEncoderLayer(keras.layers.Layer): def __init__(self, config: GroupViTConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.self_attn = TFGroupViTAttention(config, name="self_attn") self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1") self.mlp = TFGroupViTMLP(config, name="mlp") self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, causal_attention_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. causal_attention_mask (`tf.Tensor`): causal attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`): Whether or not to return the attentions tensors of all attention layers. See `outputs` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(inputs=hidden_states) attention_outputs = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = attention_outputs[0] hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(inputs=hidden_states) hidden_states = self.mlp(hidden_states=hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "layer_norm1", None) is not None: with tf.name_scope(self.layer_norm1.name): self.layer_norm1.build([None, None, self.embed_dim]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) if getattr(self, "layer_norm2", None) is not None: with tf.name_scope(self.layer_norm2.name): self.layer_norm2.build([None, None, self.embed_dim]) # Adapted from transformers.models.clip.modeling_tf_clip.TFGroupViTTextEncoder class TFGroupViTTextEncoder(keras.layers.Layer): def __init__(self, config: GroupViTTextConfig, **kwargs): super().__init__(**kwargs) self.layers = [TFGroupViTEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask: tf.Tensor, causal_attention_mask: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) class TFGroupViTVisionEncoder(keras.layers.Layer): def __init__(self, config: GroupViTVisionConfig, **kwargs) -> None: super().__init__(**kwargs) self.stages = [ TFGroupViTStage( config=config, depth=config.depths[i], num_group_token=config.num_group_tokens[i], num_output_group=config.num_output_groups[i], num_prev_group_token=config.num_output_groups[i - 1] if i > 0 else 0, name=f"stages_._{i}", ) for i in range(len(config.depths)) ] def call( self, hidden_states: tf.Tensor, output_hidden_states: bool, output_attentions: bool, return_dict: bool, training: bool = False, ) -> Union[tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_groupings = () if output_attentions else None group_tokens = None for stage in self.stages: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = stage(hidden_states, group_tokens, output_attentions) hidden_states = layer_outputs[0] group_tokens = layer_outputs[1] if output_attentions and layer_outputs[2] is not None: all_groupings = all_groupings + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_groupings] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_groupings ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "stages", None) is not None: for layer in self.stages: with tf.name_scope(layer.name): layer.build(None) # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextTransformer with CLIPText->GroupViTText, CLIPEncoder->GroupViTTextEncoder class TFGroupViTTextTransformer(keras.layers.Layer): def __init__(self, config: GroupViTTextConfig, **kwargs): super().__init__(**kwargs) self.embeddings = TFGroupViTTextEmbeddings(config, name="embeddings") self.encoder = TFGroupViTTextEncoder(config, name="encoder") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="final_layer_norm") # For `pooled_output` computation self.eos_token_id = config.eos_token_id self.embed_dim = config.hidden_size def call( self, input_ids: TFModelInputType, attention_mask: tf.Tensor, position_ids: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: input_shape = shape_list(input_ids) embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids) batch_size, seq_length = input_shape # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_length, dtype=embedding_output.dtype) # check attention mask and invert # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.final_layer_norm(inputs=sequence_output) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) pooled_output = tf.gather_nd( params=sequence_output, indices=tf.stack( values=(tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(input_ids, axis=-1)), axis=1 ), ) else: # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) pooled_output = tf.gather_nd( params=sequence_output, indices=tf.stack( values=( tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(tf.cast(input_ids == self.eos_token_id, dtype=tf.int8), axis=-1), ), axis=1, ), ) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def _build_causal_attention_mask(self, batch_size, seq_length, dtype=tf.float32): # It is possible with an unspecified sequence length for seq_length to be # a runtime value, which is unsupported by tf.constant. Per the TensorFlow # docs, tf.fill can handle runtime dynamic shapes: # https://www.tensorflow.org/api_docs/python/tf/fill diag = tf.cast(tf.fill((seq_length,), 0.0), dtype) # set an additive 2D attention mask with all places being masked to_mask = tf.cast(tf.fill((seq_length, seq_length), -10000.0), dtype) # set diagonal & lower triangular parts to 0 (i.e. the places not to be masked) # TIP: think the 2D matrix as the space of (query_seq, key_seq) to_mask = tf.linalg.band_part(to_mask, 0, -1) # to_mask = tf.linalg.band_part(to_mask, -1, 0) to_mask = tf.linalg.set_diag(to_mask, diagonal=diag) return tf.broadcast_to(input=to_mask, shape=(batch_size, 1, seq_length, seq_length)) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) # Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPVisionTransformer class TFGroupViTVisionTransformer(keras.layers.Layer): def __init__(self, config: GroupViTVisionConfig, **kwargs): super().__init__(**kwargs) self.embeddings = TFGroupViTVisionEmbeddings(config, name="embeddings") self.encoder = TFGroupViTVisionEncoder(config, name="encoder") self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") self.embed_dim = config.hidden_size def call( self, pixel_values: TFModelInputType, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( hidden_states=embedding_output, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] # normalize the last hidden state last_hidden_state = self.layernorm(last_hidden_state) pooled_output = tf.math.reduce_mean(last_hidden_state, axis=1) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.embed_dim]) @keras_serializable # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextMainLayer with CLIP->GroupViT class TFGroupViTTextMainLayer(keras.layers.Layer): config_class = GroupViTTextConfig def __init__(self, config: GroupViTTextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.text_model = TFGroupViTTextTransformer(config, name="text_model") def get_input_embeddings(self) -> keras.layers.Layer: return self.text_model.embeddings def set_input_embeddings(self, value: tf.Variable): self.text_model.embeddings.weight = value self.text_model.embeddings.vocab_size = shape_list(value)[0] @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = shape_list(input_ids) if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) text_model_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return text_model_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "text_model", None) is not None: with tf.name_scope(self.text_model.name): self.text_model.build(None) @keras_serializable # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPVisionMainLayer with CLIP->GroupViT class TFGroupViTVisionMainLayer(keras.layers.Layer): config_class = GroupViTVisionConfig def __init__(self, config: GroupViTVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.vision_model = TFGroupViTVisionTransformer(config, name="vision_model") def get_input_embeddings(self) -> keras.layers.Layer: return self.vision_model.embeddings @unpack_inputs def call( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: if pixel_values is None: raise ValueError("You have to specify pixel_values") vision_model_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return vision_model_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "vision_model", None) is not None: with tf.name_scope(self.vision_model.name): self.vision_model.build(None) @keras_serializable # Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPMainLayer class TFGroupViTMainLayer(keras.layers.Layer): config_class = GroupViTConfig def __init__(self, config: GroupViTConfig, **kwargs): super().__init__(**kwargs) if not isinstance(config.text_config, GroupViTTextConfig): raise ValueError( "config.text_config is expected to be of type GroupViTTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, GroupViTVisionConfig): raise ValueError( "config.vision_config is expected to be of type GroupViTVisionConfig but is of type" f" {type(config.vision_config)}." ) self.config = config text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.projection_intermediate_dim = config.projection_intermediate_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = TFGroupViTTextTransformer(text_config, name="text_model") self.vision_model = TFGroupViTVisionTransformer(vision_config, name="vision_model") self.visual_projection = [ keras.layers.Dense(self.projection_intermediate_dim, name="visual_projection.0"), keras.layers.BatchNormalization(name="visual_projection.1", momentum=0.9, epsilon=1e-5), keras.layers.ReLU(name="visual_projection.2"), keras.layers.Dense(self.projection_dim, name="visual_projection.3"), ] self.text_projection = [ keras.layers.Dense(self.projection_intermediate_dim, name="text_projection.0"), keras.layers.BatchNormalization(name="text_projection.1", momentum=0.9, epsilon=1e-5), keras.layers.ReLU(name="text_projection.2"), keras.layers.Dense(self.projection_dim, name="text_projection.3"), ] def build(self, input_shape=None): self.logit_scale = self.add_weight( shape=(1,), initializer=keras.initializers.Constant(self.config.logit_scale_init_value), trainable=True, name="logit_scale", ) if self.built: return self.built = True if getattr(self, "text_model", None) is not None: with tf.name_scope(self.text_model.name): self.text_model.build(None) if getattr(self, "vision_model", None) is not None: with tf.name_scope(self.vision_model.name): self.vision_model.build(None) if getattr(self, "visual_projection", None) is not None: with tf.name_scope(self.visual_projection[0].name): self.visual_projection[0].build([None, None, None, self.vision_embed_dim]) with tf.name_scope(self.visual_projection[1].name): self.visual_projection[1].build((None, self.projection_intermediate_dim)) with tf.name_scope(self.visual_projection[3].name): self.visual_projection[3].build([None, None, None, self.projection_intermediate_dim]) if getattr(self, "text_projection", None) is not None: with tf.name_scope(self.text_projection[0].name): self.text_projection[0].build([None, None, None, self.text_embed_dim]) with tf.name_scope(self.text_projection[1].name): self.text_projection[1].build((None, self.projection_intermediate_dim)) with tf.name_scope(self.text_projection[3].name): self.text_projection[3].build([None, None, None, self.projection_intermediate_dim]) @unpack_inputs def get_text_features( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: if input_ids is None: raise ValueError("You have to specify either input_ids") input_shape = shape_list(input_ids) if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = text_outputs[1] for layer in self.text_projection: pooled_output = layer(pooled_output) text_features = pooled_output return text_features @unpack_inputs def get_image_features( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: if pixel_values is None: raise ValueError("You have to specify pixel_values") vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = vision_outputs[1] for layer in self.visual_projection: pooled_output = layer(pooled_output) image_features = pooled_output return image_features @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, pixel_values: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_segmentation: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFGroupViTModelOutput, Tuple[tf.Tensor]]: if input_ids is None: raise ValueError("You have to specify either input_ids") if pixel_values is None: raise ValueError("You have to specify pixel_values") input_shape = shape_list(input_ids) if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) if output_segmentation: output_attentions = True vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) image_embeds = vision_outputs[1] for layer in self.visual_projection: image_embeds = layer(image_embeds) text_embeds = text_outputs[1] for layer in self.text_projection: text_embeds = layer(text_embeds) # normalized features image_embeds = image_embeds / tf.norm(image_embeds, axis=-1, keepdims=True) text_embeds = text_embeds / tf.norm(text_embeds, axis=-1, keepdims=True) # cosine similarity as logits logit_scale = tf.math.exp(self.logit_scale) logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale logits_per_image = tf.transpose(logits_per_text) seg_logits = None if output_segmentation: # grouped features # [batch_size_image, num_group, hidden_size] image_group_embeds = vision_outputs[0] # [batch_size_image*num_group, hidden_size] image_group_embeds = tf.reshape(image_group_embeds, shape=(-1, shape_list(image_group_embeds)[-1])) for layer in self.visual_projection: image_group_embeds = layer(image_group_embeds) if output_hidden_states: attentions = vision_outputs[3] else: attentions = vision_outputs[2] # [batch_size_image, num_group, height, width] grouping = get_grouping_from_attentions(attentions, pixel_values.shape[2:]) # normalized features image_group_embeds = image_group_embeds / tf.norm( tensor=image_group_embeds, ord="euclidean", axis=-1, keepdims=True ) # [batch_size_image x num_group, batch_size_text] logits_per_image_group = tf.matmul(image_group_embeds, text_embeds, transpose_b=True) * logit_scale # [batch_size_image, batch_size_text, num_group] logits_per_image_group = tf.reshape( logits_per_image_group, shape=(image_embeds.shape[0], -1, text_embeds.shape[0]) ) logits_per_image_group = tf.transpose(logits_per_image_group, perm=(0, 2, 1)) # [batch_size_image, batch_size_text, height x width] flatten_grouping = tf.reshape(grouping, shape=(shape_list(grouping)[0], shape_list(grouping)[1], -1)) # [batch_size_image, batch_size_text, height, width] seg_logits = tf.matmul(logits_per_image_group, flatten_grouping) * logit_scale seg_logits = tf.reshape( seg_logits, shape=(seg_logits.shape[0], seg_logits.shape[1], grouping.shape[2], grouping.shape[3]) ) loss = None if return_loss: loss = groupvit_loss(logits_per_text)[None, ...] if not return_dict: if seg_logits is not None: output = ( logits_per_image, logits_per_text, seg_logits, text_embeds, image_embeds, text_outputs, vision_outputs, ) else: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return TFGroupViTModelOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, segmentation_logits=seg_logits, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class TFGroupViTPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GroupViTConfig base_model_prefix = "groupvit" GROUPVIT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using [`keras.Model.fit`] method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` </Tip> Args: config ([`GroupViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GROUPVIT_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ GROUPVIT_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ GROUPVIT_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ class TFGroupViTTextModel(TFGroupViTPreTrainedModel): config_class = GroupViTTextConfig main_input_name = "input_ids" def __init__(self, config: GroupViTTextConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.groupvit = TFGroupViTTextMainLayer(config, name="groupvit") @unpack_inputs @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=GroupViTTextConfig) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import CLIPTokenizer, TFGroupViTTextModel >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> model = TFGroupViTTextModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" outputs = self.groupvit( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "groupvit", None) is not None: with tf.name_scope(self.groupvit.name): self.groupvit.build(None) class TFGroupViTVisionModel(TFGroupViTPreTrainedModel): config_class = GroupViTVisionConfig main_input_name = "pixel_values" def __init__(self, config: GroupViTVisionConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.groupvit = TFGroupViTVisionMainLayer(config, name="groupvit") @unpack_inputs @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=GroupViTVisionConfig) def call( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFGroupViTVisionModel >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> model = TFGroupViTVisionModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" outputs = self.groupvit( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "groupvit", None) is not None: with tf.name_scope(self.groupvit.name): self.groupvit.build(None) @add_start_docstrings(GROUPVIT_START_DOCSTRING) class TFGroupViTModel(TFGroupViTPreTrainedModel): config_class = GroupViTConfig def __init__(self, config: GroupViTConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.groupvit = TFGroupViTMainLayer(config, name="groupvit") @unpack_inputs @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def get_text_features( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: r""" Returns: text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`TFGroupViTTextModel`]. Examples: ```python >>> from transformers import CLIPTokenizer, TFGroupViTModel >>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf") >>> text_features = model.get_text_features(**inputs) ```""" text_features = self.groupvit.get_text_features( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return text_features @unpack_inputs @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: r""" Returns: image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`TFGroupViTVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFGroupViTModel >>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="tf") >>> image_features = model.get_image_features(**inputs) ```""" image_features = self.groupvit.get_image_features( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return image_features @unpack_inputs @add_start_docstrings_to_model_forward(GROUPVIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFGroupViTModelOutput, config_class=GroupViTConfig) def call( self, input_ids: TFModelInputType | None = None, pixel_values: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_segmentation: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFGroupViTModelOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFGroupViTModel >>> import tensorflow as tf >>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = tf.math.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities ```""" outputs = self.groupvit( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, return_loss=return_loss, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_segmentation=output_segmentation, return_dict=return_dict, training=training, ) return outputs def serving_output(self, output: TFGroupViTModelOutput) -> TFGroupViTModelOutput: # TODO: As is this currently fails with saved_model=True, because # TensorFlow cannot trace through nested dataclasses. Reference: # https://github.com/huggingface/transformers/pull/16886 return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "groupvit", None) is not None: with tf.name_scope(self.groupvit.name): self.groupvit.build(None)
transformers/src/transformers/models/groupvit/modeling_tf_groupvit.py/0
{ "file_path": "transformers/src/transformers/models/groupvit/modeling_tf_groupvit.py", "repo_id": "transformers", "token_count": 39518 }
316
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ InstructBLIP model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class InstructBlipVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`InstructBlipVisionModel`]. It is used to instantiate a InstructBLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1408): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 6144): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 39): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. to 1e-5): The epsilon used by the layer normalization layers. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 1e-10): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries and values in the self-attention layers. Example: ```python >>> from transformers import InstructBlipVisionConfig, InstructBlipVisionModel >>> # Initializing a InstructBlipVisionConfig with Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipVisionConfig() >>> # Initializing a InstructBlipVisionModel (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "instructblip_vision_model" def __init__( self, hidden_size=1408, intermediate_size=6144, num_hidden_layers=39, num_attention_heads=16, image_size=224, patch_size=14, hidden_act="gelu", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=1e-10, qkv_bias=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.qkv_bias = qkv_bias @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class InstructBlipQFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`InstructBlipQFormerModel`]. It is used to instantiate a InstructBLIP Querying Transformer (Q-Former) model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Note that [`InstructBlipQFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling the model. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). cross_attention_frequency (`int`, *optional*, defaults to 2): The frequency of adding cross-attention to the Transformer layers. encoder_hidden_size (`int`, *optional*, defaults to 1408): The hidden size of the hidden states for cross-attention. Examples: ```python >>> from transformers import InstructBlipQFormerConfig, InstructBlipQFormerModel >>> # Initializing a InstructBLIP Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipQFormerConfig() >>> # Initializing a model (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipQFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "instructblip_qformer" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", cross_attention_frequency=2, encoder_hidden_size=1408, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.cross_attention_frequency = cross_attention_frequency self.encoder_hidden_size = encoder_hidden_size @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": config_dict = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class InstructBlipConfig(PretrainedConfig): r""" [`InstructBlipConfig`] is the configuration class to store the configuration of a [`InstructBlipForConditionalGeneration`]. It is used to instantiate a InstructBLIP model according to the specified arguments, defining the vision model, Q-Former model and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`InstructBlipVisionConfig`]. qformer_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`InstructBlipQFormerConfig`]. text_config (`dict`, *optional*): Dictionary of configuration options used to initialize any [`PretrainedConfig`]. num_query_tokens (`int`, *optional*, defaults to 32): The number of query tokens passed through the Transformer. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ( ... InstructBlipVisionConfig, ... InstructBlipQFormerConfig, ... OPTConfig, ... InstructBlipConfig, ... InstructBlipForConditionalGeneration, ... ) >>> # Initializing a InstructBlipConfig with Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipConfig() >>> # Initializing a InstructBlipForConditionalGeneration (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a InstructBlipConfig from a InstructBlipVisionConfig, InstructBlipQFormerConfig and any PretrainedConfig >>> # Initializing InstructBLIP vision, InstructBLIP Q-Former and language model configurations >>> vision_config = InstructBlipVisionConfig() >>> qformer_config = InstructBlipQFormerConfig() >>> text_config = OPTConfig() >>> config = InstructBlipConfig.from_text_vision_configs(vision_config, qformer_config, text_config) ```""" model_type = "instructblip" def __init__(self, vision_config=None, qformer_config=None, text_config=None, num_query_tokens=32, **kwargs): super().__init__(**kwargs) if vision_config is None: vision_config = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values.") if qformer_config is None: qformer_config = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.") if text_config is None: text_config = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") self.vision_config = InstructBlipVisionConfig(**vision_config) self.qformer_config = InstructBlipQFormerConfig(**qformer_config) text_model_type = text_config["model_type"] if "model_type" in text_config else "opt" self.text_config = CONFIG_MAPPING[text_model_type](**text_config) self.tie_word_embeddings = self.text_config.tie_word_embeddings self.is_encoder_decoder = self.text_config.is_encoder_decoder self.num_query_tokens = num_query_tokens self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES self.initializer_factor = 1.0 self.initializer_range = 0.02 @classmethod def from_vision_qformer_text_configs( cls, vision_config: InstructBlipVisionConfig, qformer_config: InstructBlipQFormerConfig, text_config: PretrainedConfig, **kwargs, ): r""" Instantiate a [`InstructBlipConfig`] (or a derived class) from a InstructBLIP vision model, Q-Former and language model configurations. Returns: [`InstructBlipConfig`]: An instance of a configuration object """ return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **kwargs, )
transformers/src/transformers/models/instructblip/configuration_instructblip.py/0
{ "file_path": "transformers/src/transformers/models/instructblip/configuration_instructblip.py", "repo_id": "transformers", "token_count": 6357 }
317