text
stringlengths 7
318k
| id
stringlengths 14
166
| metadata
dict | __index_level_0__
int64 0
439
|
---|---|---|---|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for OWLv2."""
import warnings
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import (
center_to_corners_format,
pad,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import (
TensorType,
is_scipy_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
if is_torch_available():
import torch
if is_vision_available():
import PIL
if is_scipy_available():
from scipy import ndimage as ndi
logger = logging.get_logger(__name__)
# Copied from transformers.models.owlvit.image_processing_owlvit._upcast
def _upcast(t):
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
return t if t.dtype in (torch.float32, torch.float64) else t.float()
else:
return t if t.dtype in (torch.int32, torch.int64) else t.int()
# Copied from transformers.models.owlvit.image_processing_owlvit.box_area
def box_area(boxes):
"""
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
Args:
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
< x2` and `0 <= y1 < y2`.
Returns:
`torch.FloatTensor`: a tensor containing the area for each box.
"""
boxes = _upcast(boxes)
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# Copied from transformers.models.owlvit.image_processing_owlvit.box_iou
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / union
return iou, union
def _preprocess_resize_output_shape(image, output_shape):
"""Validate resize output shape according to input image.
Args:
image (`np.ndarray`):
Image to be resized.
output_shape (`iterable`):
Size of the generated output image `(rows, cols[, ...][, dim])`. If `dim` is not provided, the number of
channels is preserved.
Returns
image (`np.ndarray):
The input image, but with additional singleton dimensions appended in the case where `len(output_shape) >
input.ndim`.
output_shape (`Tuple`):
The output shape converted to tuple.
Raises ------ ValueError:
If output_shape length is smaller than the image number of dimensions.
Notes ----- The input image is reshaped if its number of dimensions is not equal to output_shape_length.
"""
output_shape = tuple(output_shape)
output_ndim = len(output_shape)
input_shape = image.shape
if output_ndim > image.ndim:
# append dimensions to input_shape
input_shape += (1,) * (output_ndim - image.ndim)
image = np.reshape(image, input_shape)
elif output_ndim == image.ndim - 1:
# multichannel case: append shape of last axis
output_shape = output_shape + (image.shape[-1],)
elif output_ndim < image.ndim:
raise ValueError("output_shape length cannot be smaller than the " "image number of dimensions")
return image, output_shape
def _clip_warp_output(input_image, output_image):
"""Clip output image to range of values of input image.
Note that this function modifies the values of *output_image* in-place.
Taken from:
https://github.com/scikit-image/scikit-image/blob/b4b521d6f0a105aabeaa31699949f78453ca3511/skimage/transform/_warps.py#L640.
Args:
input_image : ndarray
Input image.
output_image : ndarray
Output image, which is modified in-place.
"""
min_val = np.min(input_image)
if np.isnan(min_val):
# NaNs detected, use NaN-safe min/max
min_func = np.nanmin
max_func = np.nanmax
min_val = min_func(input_image)
else:
min_func = np.min
max_func = np.max
max_val = max_func(input_image)
output_image = np.clip(output_image, min_val, max_val)
return output_image
class Owlv2ImageProcessor(BaseImageProcessor):
r"""
Constructs an OWLv2 image processor.
Args:
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess`
method.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image to a square with gray pixels on the bottom and the right. Can be overriden by
`do_pad` in the `preprocess` method.
do_resize (`bool`, *optional*, defaults to `True`):
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden
by `do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 960, "width": 960}`):
Size to resize the image to. Can be overriden by `size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling method to use if resizing the image. Can be overriden by `resample` in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_pad: bool = True,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.do_resize = do_resize
self.size = size if size is not None else {"height": 960, "width": 960}
self.resample = resample
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
def pad(
self,
image: np.array,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Pad an image to a square with gray pixels on the bottom and the right, as per the original OWLv2
implementation.
Args:
image (`np.ndarray`):
Image to pad.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
height, width = get_image_size(image)
size = max(height, width)
image = pad(
image=image,
padding=((0, size - height), (0, size - width)),
constant_values=0.5,
data_format=data_format,
input_data_format=input_data_format,
)
return image
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
anti_aliasing: bool = True,
anti_aliasing_sigma=None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image as per the original implementation.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary containing the height and width to resize the image to.
anti_aliasing (`bool`, *optional*, defaults to `True`):
Whether to apply anti-aliasing when downsampling the image.
anti_aliasing_sigma (`float`, *optional*, defaults to `None`):
Standard deviation for Gaussian kernel when downsampling the image. If `None`, it will be calculated
automatically.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
requires_backends(self, "scipy")
output_shape = (size["height"], size["width"])
image = to_channel_dimension_format(image, ChannelDimension.LAST)
image, output_shape = _preprocess_resize_output_shape(image, output_shape)
input_shape = image.shape
factors = np.divide(input_shape, output_shape)
# Translate modes used by np.pad to those used by scipy.ndimage
ndi_mode = "mirror"
cval = 0
order = 1
if anti_aliasing:
if anti_aliasing_sigma is None:
anti_aliasing_sigma = np.maximum(0, (factors - 1) / 2)
else:
anti_aliasing_sigma = np.atleast_1d(anti_aliasing_sigma) * np.ones_like(factors)
if np.any(anti_aliasing_sigma < 0):
raise ValueError("Anti-aliasing standard deviation must be " "greater than or equal to zero")
elif np.any((anti_aliasing_sigma > 0) & (factors <= 1)):
warnings.warn(
"Anti-aliasing standard deviation greater than zero but " "not down-sampling along all axes"
)
filtered = ndi.gaussian_filter(image, anti_aliasing_sigma, cval=cval, mode=ndi_mode)
else:
filtered = image
zoom_factors = [1 / f for f in factors]
out = ndi.zoom(filtered, zoom_factors, order=order, mode=ndi_mode, cval=cval, grid_mode=True)
image = _clip_warp_output(image, out)
image = to_channel_dimension_format(image, input_data_format, ChannelDimension.LAST)
image = (
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
)
return image
def preprocess(
self,
images: ImageInput,
do_pad: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the image to a square with gray pixels on the bottom and the right.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size to resize the image to.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_pad = do_pad if do_pad is not None else self.do_pad
do_resize = do_resize if do_resize is not None else self.do_resize
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_pad:
images = [self.pad(image=image, input_data_format=input_data_format) for image in images]
if do_resize:
images = [
self.resize(
image=image,
size=size,
input_data_format=input_data_format,
)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
# Copied from transformers.models.owlvit.image_processing_owlvit.OwlViTImageProcessor.post_process_object_detection
def post_process_object_detection(
self, outputs, threshold: float = 0.1, target_sizes: Union[TensorType, List[Tuple]] = None
):
"""
Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format.
Args:
outputs ([`OwlViTObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
# TODO: (amy) add support for other frameworks
logits, boxes = outputs.logits, outputs.pred_boxes
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
probs = torch.max(logits, dim=-1)
scores = torch.sigmoid(probs.values)
labels = probs.indices
# Convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(boxes)
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for s, l, b in zip(scores, labels, boxes):
score = s[s > threshold]
label = l[s > threshold]
box = b[s > threshold]
results.append({"scores": score, "labels": label, "boxes": box})
return results
# Copied from transformers.models.owlvit.image_processing_owlvit.OwlViTImageProcessor.post_process_image_guided_detection
def post_process_image_guided_detection(self, outputs, threshold=0.0, nms_threshold=0.3, target_sizes=None):
"""
Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO
api.
Args:
outputs ([`OwlViTImageGuidedObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.0):
Minimum confidence threshold to use to filter out predicted boxes.
nms_threshold (`float`, *optional*, defaults to 0.3):
IoU threshold for non-maximum suppression of overlapping boxes.
target_sizes (`torch.Tensor`, *optional*):
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to
None, predictions will not be unnormalized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model. All labels are set to None as
`OwlViTForObjectDetection.image_guided_detection` perform one-shot object detection.
"""
logits, target_boxes = outputs.logits, outputs.target_pred_boxes
if len(logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
probs = torch.max(logits, dim=-1)
scores = torch.sigmoid(probs.values)
# Convert to [x0, y0, x1, y1] format
target_boxes = center_to_corners_format(target_boxes)
# Apply non-maximum suppression (NMS)
if nms_threshold < 1.0:
for idx in range(target_boxes.shape[0]):
for i in torch.argsort(-scores[idx]):
if not scores[idx][i]:
continue
ious = box_iou(target_boxes[idx][i, :].unsqueeze(0), target_boxes[idx])[0][0]
ious[i] = -1.0 # Mask self-IoU.
scores[idx][ious > nms_threshold] = 0.0
# Convert from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(target_boxes.device)
target_boxes = target_boxes * scale_fct[:, None, :]
# Compute box display alphas based on prediction scores
results = []
alphas = torch.zeros_like(scores)
for idx in range(target_boxes.shape[0]):
# Select scores for boxes matching the current query:
query_scores = scores[idx]
if not query_scores.nonzero().numel():
continue
# Apply threshold on scores before scaling
query_scores[query_scores < threshold] = 0.0
# Scale box alpha such that the best box for each query has alpha 1.0 and the worst box has alpha 0.1.
# All other boxes will either belong to a different query, or will not be shown.
max_score = torch.max(query_scores) + 1e-6
query_alphas = (query_scores - (max_score * 0.1)) / (max_score * 0.9)
query_alphas = torch.clip(query_alphas, 0.0, 1.0)
alphas[idx] = query_alphas
mask = alphas[idx] > 0
box_scores = alphas[idx][mask]
boxes = target_boxes[idx][mask]
results.append({"scores": box_scores, "labels": None, "boxes": boxes})
return results
| transformers/src/transformers/models/owlv2/image_processing_owlv2.py/0 | {
"file_path": "transformers/src/transformers/models/owlv2/image_processing_owlv2.py",
"repo_id": "transformers",
"token_count": 11225
} | 352 |
# coding=utf-8
# Copyright 2021 Deepmind and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Perceiver model."""
import abc
import math
from dataclasses import dataclass
from functools import reduce
from operator import __add__
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithCrossAttentions
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_perceiver import PerceiverConfig
ModalitySizeType = Mapping[str, int]
PreprocessorOutputType = Tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor]
PreprocessorType = Callable[..., PreprocessorOutputType]
PostprocessorType = Callable[..., Any]
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "deepmind/language-perceiver"
_CONFIG_FOR_DOC = "PerceiverConfig"
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"deepmind/language-perceiver",
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
]
@dataclass
class PerceiverModelOutput(ModelOutput):
"""
Base class for Perceiver base model's outputs, with potential hidden states, attentions and cross-attentions.
Args:
logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
logits: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PerceiverDecoderOutput(ModelOutput):
"""
Base class for Perceiver decoder outputs, with potential cross-attentions.
Args:
logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Output of the basic decoder.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
logits: torch.FloatTensor = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PerceiverMaskedLMOutput(ModelOutput):
"""
Base class for Perceiver's masked language model outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_latents,
num_latents)`. Attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PerceiverClassifierOutput(ModelOutput):
"""
Base class for Perceiver's outputs of sequence/image classification models, optical flow and multimodal
autoencoding.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class PerceiverEmbeddings(nn.Module):
"""Construct the latent embeddings."""
def __init__(self, config):
super().__init__()
self.latents = nn.Parameter(torch.randn(config.num_latents, config.d_latents))
def forward(self, batch_size: int):
return self.latents.expand(batch_size, -1, -1) # Thanks, Phil Wang
class PerceiverSelfAttention(nn.Module):
"""Multi-headed {cross, self}-attention. Can be used both in the encoder as well as in the decoder."""
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
):
super().__init__()
self.num_heads = num_heads
# Q and K must have the same number of channels.
# Default to preserving Q's input's shape.
if qk_channels is None:
qk_channels = q_dim
# V's num_channels determines the shape of the output of QKV-attention.
# Default to the same number of channels used in the key-query operation.
if v_channels is None:
v_channels = qk_channels
if qk_channels % num_heads != 0:
raise ValueError(f"qk_channels ({qk_channels}) must be divisible by num_heads ({num_heads}).")
if v_channels % num_heads != 0:
raise ValueError(f"v_channels ({v_channels}) must be divisible by num_heads ({num_heads}).")
self.qk_channels = qk_channels
self.v_channels = v_channels
self.qk_channels_per_head = self.qk_channels // num_heads
self.v_channels_per_head = self.v_channels // num_heads
# Layer normalization
self.layernorm1 = nn.LayerNorm(q_dim)
self.layernorm2 = nn.LayerNorm(kv_dim) if is_cross_attention else nn.Identity()
# Projection matrices
self.query = nn.Linear(q_dim, qk_channels)
self.key = nn.Linear(kv_dim, qk_channels)
self.value = nn.Linear(kv_dim, v_channels)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x, channels_per_head):
new_x_shape = x.size()[:-1] + (self.num_heads, channels_per_head)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
hidden_states = self.layernorm1(hidden_states)
inputs = self.layernorm2(inputs)
# Project queries, keys and values to a common feature dimension. If this is instantiated as a cross-attention module,
# the keys and values come from the inputs; the attention mask needs to be such that the inputs's non-relevant tokens are not attended to.
is_cross_attention = inputs is not None
queries = self.query(hidden_states)
if is_cross_attention:
keys = self.key(inputs)
values = self.value(inputs)
attention_mask = inputs_mask
else:
keys = self.key(hidden_states)
values = self.value(hidden_states)
# Reshape channels for multi-head attention.
# We reshape from (batch_size, time, channels) to (batch_size, num_heads, time, channels per head)
queries = self.transpose_for_scores(queries, self.qk_channels_per_head)
keys = self.transpose_for_scores(keys, self.qk_channels_per_head)
values = self.transpose_for_scores(values, self.v_channels_per_head)
# Take the dot product between the queries and keys to get the raw attention scores.
attention_scores = torch.matmul(queries, keys.transpose(-1, -2))
batch_size, num_heads, seq_len, q_head_dim = queries.shape
_, _, _, v_head_dim = values.shape
hiddens = self.num_heads * v_head_dim
attention_scores = attention_scores / math.sqrt(q_head_dim)
if attention_mask is not None:
# Apply the attention mask (precomputed for all layers in PerceiverModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, values)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (hiddens,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class PerceiverSelfOutput(nn.Module):
def __init__(self, config, input_channels, output_channels):
super().__init__()
self.dense = nn.Linear(input_channels, output_channels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
return hidden_states
class PerceiverAttention(nn.Module):
"""Attention module, including a dense block."""
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
use_query_residual=True,
):
super().__init__()
# MultiHead attention
if is_cross_attention and qk_channels is None:
if config.cross_attention_shape_for_attention == "q":
qk_channels = q_dim
elif config.cross_attention_shape_for_attention == "kv":
qk_channels = kv_dim
else:
raise ValueError(
f"Unknown value {config.cross_attention_shape_for_attention} for "
"cross_attention_shape_for_attention."
)
else:
if qk_channels is None:
qk_channels = q_dim
if v_channels is None:
v_channels = qk_channels
self.self = PerceiverSelfAttention(
config,
is_cross_attention=is_cross_attention,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=q_dim,
kv_dim=kv_dim,
)
# dense block
output_channels = None
if is_cross_attention:
output_channels = q_dim
else:
if output_channels is None:
output_channels = v_channels
self.output = PerceiverSelfOutput(config, input_channels=self.self.v_channels, output_channels=output_channels)
self.use_query_residual = use_query_residual
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
inputs,
inputs_mask,
output_attentions,
)
# Output projection
attention_output = self.output(self_outputs[0])
# Optionally include a residual to the original queries.
# Consider omitting the residual if the semantics of query and output
# are different, e.g. if queries are positions and outputs are pixels.
if self.use_query_residual:
attention_output = attention_output + hidden_states
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class PerceiverMLP(nn.Module):
"""A Transformer-style dense module to follow attention."""
def __init__(self, config, input_size, widening_factor):
super().__init__()
self.dense1 = nn.Linear(input_size, widening_factor * input_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dense2 = nn.Linear(widening_factor * input_size, input_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense1(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dense2(hidden_states)
return hidden_states
class PerceiverLayer(nn.Module):
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
widening_factor=4,
use_query_residual=True,
):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = PerceiverAttention(
config,
is_cross_attention=is_cross_attention,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=q_dim,
kv_dim=kv_dim,
use_query_residual=use_query_residual,
)
self.layernorm = nn.LayerNorm(q_dim)
self.mlp = PerceiverMLP(config, input_size=q_dim, widening_factor=widening_factor)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
inputs,
inputs_mask,
output_attentions,
)
attention_output = attention_outputs[0]
outputs = attention_outputs[1:] # add attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
layer_output = layer_output + attention_output # residual connection
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
layer_output = self.layernorm(attention_output)
layer_output = self.mlp(layer_output)
return layer_output
class PerceiverEncoder(nn.Module):
"""The Perceiver Encoder: a scalable, fully attentional encoder."""
def __init__(self, config, kv_dim=None):
super().__init__()
self.config = config
# Check that we can use multihead-attention with these shapes.
if config.d_latents % config.num_self_attention_heads != 0:
raise ValueError(
f"num_z_channels ({config.d_latents}) must be divisible by"
f" num_self_attend_heads ({config.num_self_attention_heads})."
)
if config.d_latents % config.num_cross_attention_heads != 0:
raise ValueError(
f"num_z_channels ({config.d_latents}) must be divisible by"
f" num_cross_attend_heads ({config.num_cross_attention_heads})."
)
# Construct the cross attention layer.
self.cross_attention = PerceiverLayer(
config,
is_cross_attention=True,
qk_channels=config.qk_channels,
v_channels=config.v_channels,
num_heads=config.num_cross_attention_heads,
q_dim=config.d_latents,
kv_dim=kv_dim,
widening_factor=config.cross_attention_widening_factor,
use_query_residual=config.use_query_residual,
)
# Construct a single block of self-attention layers.
# We get deeper architectures by applying this block more than once.
self_attention_layers = []
for _ in range(config.num_self_attends_per_block):
layer = PerceiverLayer(
config,
is_cross_attention=False,
qk_channels=config.qk_channels,
v_channels=config.v_channels,
num_heads=config.num_self_attention_heads,
q_dim=config.d_latents,
kv_dim=config.d_latents,
widening_factor=config.self_attention_widening_factor,
)
self_attention_layers.append(layer)
self.self_attends = nn.ModuleList(self_attention_layers)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions else None
# Apply the cross-attention between the latents (hidden_states) and inputs:
layer_outputs = self.cross_attention(
hidden_states,
attention_mask=attention_mask,
head_mask=None,
inputs=inputs,
inputs_mask=inputs_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_cross_attentions = all_cross_attentions + (layer_outputs[1],)
# Apply the block of self-attention layers more than once:
for _ in range(self.config.num_blocks):
for i, layer_module in enumerate(self.self_attends):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states,
attention_mask=attention_mask,
head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class PerceiverPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PerceiverConfig
base_model_prefix = "perceiver"
main_input_name = "inputs"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif hasattr(module, "latents"):
module.latents.data.normal_(mean=0.0, std=self.config.initializer_range)
elif hasattr(module, "position_embeddings") and isinstance(module, PerceiverTrainablePositionEncoding):
module.position_embeddings.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.ParameterDict):
for modality in module.keys():
module[modality].data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
PERCEIVER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PERCEIVER_MODEL_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
decoder (*DecoderType*, *optional*):
Optional decoder to use to decode the latent representation of the encoder. Examples include
*transformers.models.perceiver.modeling_perceiver.PerceiverBasicDecoder*,
*transformers.models.perceiver.modeling_perceiver.PerceiverClassificationDecoder*,
*transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder*.
input_preprocessor (*PreprocessorType*, *optional*):
Optional input preprocessor to use. Examples include
*transformers.models.perceiver.modeling_perceiver.PerceiverImagePreprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverAudioPreprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverTextPreprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor*.
output_postprocessor (*PostprocessorType*, *optional*):
Optional output postprocessor to use. Examples include
*transformers.models.perceiver.modeling_perceiver.PerceiverImagePostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverAudioPostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverClassificationPostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverProjectionPostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPostprocessor*.
Note that you can define your own decoders, preprocessors and/or postprocessors to fit your use-case.
"""
PERCEIVER_INPUTS_DOCSTRING = r"""
Args:
inputs (`torch.FloatTensor`):
Inputs to the perceiver. Can be anything: images, text, audio, video, etc.
attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The Perceiver: a scalable, fully attentional architecture.""",
PERCEIVER_MODEL_START_DOCSTRING,
)
class PerceiverModel(PerceiverPreTrainedModel):
def __init__(
self,
config,
decoder=None,
input_preprocessor: PreprocessorType = None,
output_postprocessor: PostprocessorType = None,
):
super().__init__(config)
self.config = config
self.input_preprocessor = input_preprocessor
self.output_postprocessor = output_postprocessor
self.embeddings = PerceiverEmbeddings(config)
self.encoder = PerceiverEncoder(
config, kv_dim=input_preprocessor.num_channels if input_preprocessor is not None else config.d_model
)
self.decoder = decoder
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.latents
def set_input_embeddings(self, value):
self.embeddings.latents = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@replace_return_docstrings(output_type=PerceiverModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PerceiverModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import PerceiverConfig, PerceiverTokenizer, PerceiverImageProcessor, PerceiverModel
>>> from transformers.models.perceiver.modeling_perceiver import (
... PerceiverTextPreprocessor,
... PerceiverImagePreprocessor,
... PerceiverClassificationDecoder,
... )
>>> import torch
>>> import requests
>>> from PIL import Image
>>> # EXAMPLE 1: using the Perceiver to classify texts
>>> # - we define a TextPreprocessor, which can be used to embed tokens
>>> # - we define a ClassificationDecoder, which can be used to decode the
>>> # final hidden states of the latents to classification logits
>>> # using trainable position embeddings
>>> config = PerceiverConfig()
>>> preprocessor = PerceiverTextPreprocessor(config)
>>> decoder = PerceiverClassificationDecoder(
... config,
... num_channels=config.d_latents,
... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1),
... use_query_residual=True,
... )
>>> model = PerceiverModel(config, input_preprocessor=preprocessor, decoder=decoder)
>>> # you can then do a forward pass as follows:
>>> tokenizer = PerceiverTokenizer()
>>> text = "hello world"
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
>>> with torch.no_grad():
... outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2]
>>> # to train, one can train the model using standard cross-entropy:
>>> criterion = torch.nn.CrossEntropyLoss()
>>> labels = torch.tensor([1])
>>> loss = criterion(logits, labels)
>>> # EXAMPLE 2: using the Perceiver to classify images
>>> # - we define an ImagePreprocessor, which can be used to embed images
>>> config = PerceiverConfig(image_size=224)
>>> preprocessor = PerceiverImagePreprocessor(
... config,
... prep_type="conv1x1",
... spatial_downsample=1,
... out_channels=256,
... position_encoding_type="trainable",
... concat_or_add_pos="concat",
... project_pos_dim=256,
... trainable_position_encoding_kwargs=dict(
... num_channels=256,
... index_dims=config.image_size**2,
... ),
... )
>>> model = PerceiverModel(
... config,
... input_preprocessor=preprocessor,
... decoder=PerceiverClassificationDecoder(
... config,
... num_channels=config.d_latents,
... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1),
... use_query_residual=True,
... ),
... )
>>> # you can then do a forward pass as follows:
>>> image_processor = PerceiverImageProcessor()
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(image, return_tensors="pt").pixel_values
>>> with torch.no_grad():
... outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2]
>>> # to train, one can train the model using standard cross-entropy:
>>> criterion = torch.nn.CrossEntropyLoss()
>>> labels = torch.tensor([1])
>>> loss = criterion(logits, labels)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.input_preprocessor is not None:
inputs, modality_sizes, inputs_without_pos = self.input_preprocessor(inputs)
else:
modality_sizes = None
inputs_without_pos = None
if inputs.size()[-1] != self.config.d_model:
raise ValueError(
f"Last dimension of the inputs: {inputs.size()[-1]} doesn't correspond to config.d_model:"
f" {self.config.d_model}. Make sure to set config.d_model appropriately."
)
batch_size, seq_length, _ = inputs.size()
device = inputs.device
# If no attention mask is provided, make them all ones
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length), device=device)
# Make the attention mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
extended_attention_mask = self.invert_attention_mask(attention_mask)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_blocks x num_heads]
# and head_mask is converted to shape [num_blocks x batch x num_heads x N x N]
head_mask = self.get_head_mask(head_mask, self.config.num_blocks * self.config.num_self_attends_per_block)
embedding_output = self.embeddings(batch_size=batch_size)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=None,
head_mask=head_mask,
inputs=inputs,
inputs_mask=extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
logits = None
if self.decoder:
if subsampled_output_points is not None:
output_modality_sizes = {
"audio": subsampled_output_points["audio"].shape[0],
"image": subsampled_output_points["image"].shape[0],
"label": 1,
}
else:
output_modality_sizes = modality_sizes
decoder_query = self.decoder.decoder_query(
inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_output_points
)
decoder_outputs = self.decoder(
decoder_query,
z=sequence_output,
query_mask=extended_attention_mask,
output_attentions=output_attentions,
)
logits = decoder_outputs.logits
# add cross-attentions of decoder
if output_attentions and decoder_outputs.cross_attentions is not None:
if return_dict:
encoder_outputs.cross_attentions = (
encoder_outputs.cross_attentions + decoder_outputs.cross_attentions
)
else:
encoder_outputs = encoder_outputs + decoder_outputs.cross_attentions
if self.output_postprocessor:
logits = self.output_postprocessor(logits, modality_sizes=output_modality_sizes)
if not return_dict:
if logits is not None:
return (logits, sequence_output) + encoder_outputs[1:]
else:
return (sequence_output,) + encoder_outputs[1:]
return PerceiverModelOutput(
logits=logits,
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""Example use of Perceiver for masked language modeling.""", PERCEIVER_START_DOCSTRING)
class PerceiverForMaskedLM(PerceiverPreTrainedModel):
def __init__(self, config: PerceiverConfig):
super().__init__(config)
text_preprocessor = PerceiverTextPreprocessor(config)
trainable_position_encoding_kwargs_decoder = {
"num_channels": text_preprocessor.num_channels,
"index_dims": config.max_position_embeddings,
}
self.perceiver = PerceiverModel(
config,
input_preprocessor=text_preprocessor,
decoder=PerceiverBasicDecoder(
config,
output_num_channels=config.d_latents,
output_index_dims=config.max_position_embeddings, # we need to define the seq_len of the inputs beforehand
num_channels=text_preprocessor.num_channels,
qk_channels=8 * 32,
v_channels=text_preprocessor.num_channels,
num_heads=8,
use_query_residual=False,
final_project=False,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
),
)
self.embedding_decoder = PerceiverEmbeddingDecoder(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
input_ids: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverMaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, PerceiverForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver")
>>> model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver")
>>> # training
>>> text = "This is an incomplete sentence where some words are missing."
>>> inputs = tokenizer(text, padding="max_length", return_tensors="pt")
>>> # mask " missing."
>>> inputs["input_ids"][0, 52:61] = tokenizer.mask_token_id
>>> labels = tokenizer(text, padding="max_length", return_tensors="pt").input_ids
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
19.87
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2048, 262]
>>> # inference
>>> text = "This is an incomplete sentence where some words are missing."
>>> encoding = tokenizer(text, padding="max_length", return_tensors="pt")
>>> # mask bytes corresponding to " missing.". Note that the model performs much better if the masked span starts with a space.
>>> encoding["input_ids"][0, 52:61] = tokenizer.mask_token_id
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**encoding)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2048, 262]
>>> masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist()
>>> tokenizer.decode(masked_tokens_predictions)
' missing.'
```"""
if inputs is not None and input_ids is not None:
raise ValueError("You cannot use both `inputs` and `input_ids`")
elif inputs is None and input_ids is not None:
inputs = input_ids
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.embedding_decoder(
outputs.logits if return_dict else outputs[0], embedding_layer=self.perceiver.input_preprocessor.embeddings
)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return PerceiverMaskedLMOutput(
loss=masked_lm_loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings("""Example use of Perceiver for text classification.""", PERCEIVER_START_DOCSTRING)
class PerceiverForSequenceClassification(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverTextPreprocessor(config),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
input_ids: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the classification/regression loss. Indices should be in `[0, ..., config.num_labels -
1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels >
1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, PerceiverForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver")
>>> model = PerceiverForSequenceClassification.from_pretrained("deepmind/language-perceiver")
>>> text = "hello world"
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2]
```"""
if inputs is not None and input_ids is not None:
raise ValueError("You cannot use both `inputs` and `input_ids`")
elif inputs is None and input_ids is not None:
inputs = input_ids
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for image classification, for tasks such as ImageNet.
This model uses learned position embeddings. In other words, this model is not given any privileged information about
the structure of images. As shown in the paper, this model can achieve a top-1 accuracy of 72.7 on ImageNet.
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="conv1x1"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationLearned(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
trainable_position_encoding_kwargs_preprocessor = {"num_channels": 256, "index_dims": config.image_size**2}
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverImagePreprocessor(
config,
prep_type="conv1x1",
spatial_downsample=1,
out_channels=256,
position_encoding_type="trainable",
concat_or_add_pos="concat",
project_pos_dim=256,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_preprocessor,
),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, PerceiverForImageClassificationLearned
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-learned")
>>> model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned")
>>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 1000]
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: tabby, tabby cat
```"""
if inputs is not None and pixel_values is not None:
raise ValueError("You cannot use both `inputs` and `pixel_values`")
elif inputs is None and pixel_values is not None:
inputs = pixel_values
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for image classification, for tasks such as ImageNet.
This model uses fixed 2D Fourier position embeddings. As shown in the paper, this model can achieve a top-1 accuracy of
79.0 on ImageNet, and 84.5 when pre-trained on a large-scale dataset (i.e. JFT).
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="pixels"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationFourier(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
fourier_position_encoding_kwargs_preprocessor = {
"concat_pos": True,
"max_resolution": (224, 224),
"num_bands": 64,
"sine_only": False,
}
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverImagePreprocessor(
config,
prep_type="pixels",
spatial_downsample=1,
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, PerceiverForImageClassificationFourier
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-fourier")
>>> model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier")
>>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 1000]
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: tabby, tabby cat
```"""
if inputs is not None and pixel_values is not None:
raise ValueError("You cannot use both `inputs` and `pixel_values`")
elif inputs is None and pixel_values is not None:
inputs = pixel_values
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for image classification, for tasks such as ImageNet.
This model uses a 2D conv+maxpool preprocessing network. As shown in the paper, this model can achieve a top-1 accuracy
of 82.1 on ImageNet.
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="conv"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationConvProcessing(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
fourier_position_encoding_kwargs_preprocessor = {
"concat_pos": True,
"max_resolution": (56, 56),
"num_bands": 64,
"sine_only": False,
}
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverImagePreprocessor(
config,
prep_type="conv",
spatial_downsample=1,
position_encoding_type="fourier",
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, PerceiverForImageClassificationConvProcessing
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-conv")
>>> model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
>>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 1000]
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: tabby, tabby cat
```"""
if inputs is not None and pixel_values is not None:
raise ValueError("You cannot use both `inputs` and `pixel_values`")
elif inputs is None and pixel_values is not None:
inputs = pixel_values
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for optical flow, for tasks such as Sintel and KITTI. [`PerceiverForOpticalFlow`] uses
[`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] (with *prep_type="patches"*) to preprocess the
input images, and [`~models.perceiver.modeling_perceiver.PerceiverOpticalFlowDecoder`] to decode the latent
representation of [`PerceiverModel`].
As input, one concatenates 2 subsequent frames along the channel dimension and extract a 3 x 3 patch around each pixel
(leading to 3 x 3 x 3 x 2 = 54 values for each pixel). Fixed Fourier position encodings are used to encode the position
of each pixel in the patch. Next, one applies the Perceiver encoder. To decode, one queries the latent representation
using the same encoding used for the input.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForOpticalFlow(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
fourier_position_encoding_kwargs_preprocessor = {
"num_bands": 64,
"max_resolution": config.train_size,
"sine_only": False,
"concat_pos": True,
}
fourier_position_encoding_kwargs_decoder = {
"concat_pos": True,
"max_resolution": config.train_size,
"num_bands": 64,
"sine_only": False,
}
image_preprocessor = PerceiverImagePreprocessor(
config,
prep_type="patches",
spatial_downsample=1,
conv_after_patching=True,
conv_after_patching_in_channels=54,
temporal_downsample=2,
position_encoding_type="fourier",
# position_encoding_kwargs
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
)
self.perceiver = PerceiverModel(
config,
input_preprocessor=image_preprocessor,
decoder=PerceiverOpticalFlowDecoder(
config,
num_channels=image_preprocessor.num_channels,
output_image_shape=config.train_size,
rescale_factor=100.0,
# decoder kwargs
use_query_residual=False,
output_num_channels=2,
# We query the decoder using the first frame features
# rather than a standard decoder position encoding.
position_encoding_type="fourier",
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_decoder,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the optical flow loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
Examples:
```python
>>> from transformers import PerceiverForOpticalFlow
>>> import torch
>>> model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver")
>>> # in the Perceiver IO paper, the authors extract a 3 x 3 patch around each pixel,
>>> # leading to 3 x 3 x 3 = 27 values for each pixel (as each pixel also has 3 color channels)
>>> # patches have shape (batch_size, num_frames, num_channels, height, width)
>>> # the authors train on resolutions of 368 x 496
>>> patches = torch.randn(1, 2, 27, 368, 496)
>>> outputs = model(inputs=patches)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 368, 496, 2]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
raise NotImplementedError("Optical flow training is not yet supported")
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for multimodal (video) autoencoding, for tasks such as Kinetics-700.
[`PerceiverForMultimodalAutoencoding`] uses [`~models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor`] to
preprocess the 3 modalities: images, audio and class labels. This preprocessor uses modality-specific preprocessors to
preprocess every modality separately, after which they are concatenated. Trainable position embeddings are used to pad
each modality to the same number of channels to make concatenation along the time dimension possible. Next, one applies
the Perceiver encoder.
[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] is used to decode the latent representation of
[`PerceiverModel`]. This decoder uses each modality-specific decoder to construct queries. The decoder queries are
created based on the inputs after preprocessing. However, autoencoding an entire video in a single forward pass is
computationally infeasible, hence one only uses parts of the decoder queries to do cross-attention with the latent
representation. This is determined by the subsampled indices for each modality, which can be provided as additional
input to the forward pass of [`PerceiverForMultimodalAutoencoding`].
[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] also pads the decoder queries of the different
modalities to the same number of channels, in order to concatenate them along the time dimension. Next, cross-attention
is performed with the latent representation of [`PerceiverModel`].
Finally, [`~models.perceiver.modeling_perceiver.PerceiverMultiModalPostprocessor`] is used to turn this tensor into an
actual video. It first splits up the output into the different modalities, and then applies the respective
postprocessor for each modality.
Note that, by masking the classification label during evaluation (i.e. simply providing a tensor of zeros for the
"label" modality), this auto-encoding model becomes a Kinetics 700 video classifier.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForMultimodalAutoencoding(PerceiverPreTrainedModel):
def __init__(self, config: PerceiverConfig):
super().__init__(config)
n_audio_samples = config.num_frames * config.audio_samples_per_frame
input_preprocessor = PerceiverMultimodalPreprocessor(
min_padding_size=4,
modalities={
"audio": PerceiverAudioPreprocessor(
config,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 192,
"max_resolution": (n_audio_samples,),
"sine_only": False,
"concat_pos": True,
},
prep_type="patches",
samples_per_patch=config.samples_per_patch,
),
"image": PerceiverImagePreprocessor(
config,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 32,
"max_resolution": (config.num_frames, config.image_size, config.image_size),
"sine_only": False,
"concat_pos": True,
},
prep_type="patches",
spatial_downsample=4,
temporal_downsample=1,
),
"label": PerceiverOneHotPreprocessor(config),
},
mask_probs={"image": 0.0, "audio": 0.0, "label": 1.0},
)
image_decoder = PerceiverBasicVideoAutoencodingDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
output_shape=config.output_shape,
output_num_channels=config.output_num_channels,
use_query_residual=False,
position_encoding_only=True,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 32,
"max_resolution": (config.num_frames, config.image_size, config.image_size),
"sine_only": False,
"concat_pos": True,
},
)
decoder = PerceiverMultimodalDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
# Modality specific decoders are used ONLY to generate queries.
# All modalties are decoded together using a unified decoder.
modalities={
"audio": PerceiverBasicDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
output_index_dims=(n_audio_samples // config.samples_per_patch,),
output_num_channels=config.output_num_channels,
use_query_residual=False,
position_encoding_only=True,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 192,
"max_resolution": (n_audio_samples,),
"sine_only": False,
"concat_pos": True,
},
),
"image": image_decoder,
"label": PerceiverClassificationDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
use_query_residual=False,
position_encoding_only=True,
position_encoding_type="trainable",
trainable_position_encoding_kwargs={
"num_channels": config._label_trainable_num_channels,
"index_dims": 1,
},
),
},
num_outputs=None,
output_num_channels=config.output_num_channels,
use_query_residual=False,
)
output_postprocessor = PerceiverMultimodalPostprocessor(
modalities={
"audio": PerceiverAudioPostprocessor(config, in_channels=config.output_num_channels),
"image": PerceiverProjectionPostprocessor(in_channels=config.output_num_channels, out_channels=3),
"label": PerceiverClassificationPostprocessor(config, in_channels=config.output_num_channels),
}
)
self.perceiver = PerceiverModel(
config,
input_preprocessor=input_preprocessor,
decoder=decoder,
output_postprocessor=output_postprocessor,
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import PerceiverForMultimodalAutoencoding
>>> import torch
>>> import numpy as np
>>> # create multimodal inputs
>>> images = torch.randn((1, 16, 3, 224, 224))
>>> audio = torch.randn((1, 30720, 1))
>>> inputs = dict(image=images, audio=audio, label=torch.zeros((images.shape[0], 700)))
>>> model = PerceiverForMultimodalAutoencoding.from_pretrained("deepmind/multimodal-perceiver")
>>> # in the Perceiver IO paper, videos are auto-encoded in chunks
>>> # each chunk subsamples different index dimensions of the image and audio modality decoder queries
>>> nchunks = 128
>>> image_chunk_size = np.prod((16, 224, 224)) // nchunks
>>> audio_chunk_size = audio.shape[1] // model.config.samples_per_patch // nchunks
>>> # process the first chunk
>>> chunk_idx = 0
>>> subsampling = {
... "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)),
... "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)),
... "label": None,
... }
>>> outputs = model(inputs=inputs, subsampled_output_points=subsampling)
>>> logits = outputs.logits
>>> list(logits["audio"].shape)
[1, 240]
>>> list(logits["image"].shape)
[1, 6272, 3]
>>> list(logits["label"].shape)
[1, 700]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
subsampled_output_points=subsampled_output_points,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
raise NotImplementedError("Multimodal autoencoding training is not yet supported")
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Below: position encodings
def build_position_encoding(
position_encoding_type,
out_channels=None,
project_pos_dim=-1,
trainable_position_encoding_kwargs=None,
fourier_position_encoding_kwargs=None,
):
"""
Builds the position encoding.
Args:
- out_channels: refers to the number of channels of the position encodings.
- project_pos_dim: if specified, will project the position encodings to this dimension.
"""
if position_encoding_type == "trainable":
if not trainable_position_encoding_kwargs:
raise ValueError("Make sure to pass trainable_position_encoding_kwargs")
output_pos_enc = PerceiverTrainablePositionEncoding(**trainable_position_encoding_kwargs)
elif position_encoding_type == "fourier":
# We don't use the index_dims argument, as this is only known during the forward pass
if not fourier_position_encoding_kwargs:
raise ValueError("Make sure to pass fourier_position_encoding_kwargs")
output_pos_enc = PerceiverFourierPositionEncoding(**fourier_position_encoding_kwargs)
else:
raise ValueError(f"Unknown position encoding type: {position_encoding_type}.")
# Optionally, project the position encoding to a target dimension:
positions_projection = nn.Linear(out_channels, project_pos_dim) if project_pos_dim > 0 else nn.Identity()
return output_pos_enc, positions_projection
# Below: Perceiver decoders
class PerceiverAbstractDecoder(nn.Module, metaclass=abc.ABCMeta):
"""Perceiver abstract decoder."""
@abc.abstractmethod
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
raise NotImplementedError
@property
@abc.abstractmethod
def num_query_channels(self):
raise NotImplementedError
@abc.abstractmethod
def forward(self, query, z, query_mask=None):
raise NotImplementedError
class PerceiverProjectionDecoder(PerceiverAbstractDecoder):
"""
Baseline projection decoder (no cross-attention).
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config):
super().__init__()
self.classifier = nn.Linear(config.d_latents, config.num_labels)
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
return None
def forward(
self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
# (batch_size, num_latents, d_latents) -> (batch_size, d_latents)
z = torch.mean(z, dim=1)
# (batch_size, d_latents) -> (batch_size, config.num_labels)
logits = self.classifier(z)
return logits
class PerceiverBasicDecoder(PerceiverAbstractDecoder):
"""
Cross-attention-based decoder. This class can be used to decode the final hidden states of the latents using a
cross-attention operation, in which the latents produce keys and values.
The shape of the output of this class depends on how one defines the output queries (also called decoder queries).
Args:
config ([*PerceiverConfig*]):
Model configuration.
output_num_channels (`int`, *optional*):
The number of channels in the output. Will only be used in case *final_project* is set to `True`.
position_encoding_type (`str`, *optional*, defaults to "trainable"):
The type of position encoding to use. Can be either "trainable", "fourier", or "none".
output_index_dims (`int`, *optional*):
The number of dimensions of the output queries. Ignored if 'position_encoding_type' == 'none'.
num_channels (`int`, *optional*, defaults to 128):
The number of channels of the decoder queries. Ignored if 'position_encoding_type' == 'none'.
qk_channels (`int`, *optional*):
The number of channels of the queries and keys in the cross-attention layer.
v_channels (`int`, *optional*):
The number of channels of the values in the cross-attention layer.
num_heads (`int`, *optional*, defaults to 1):
The number of attention heads in the cross-attention layer.
widening_factor (`int`, *optional*, defaults to 1):
The widening factor of the cross-attention layer.
use_query_residual (`bool`, *optional*, defaults to `False`):
Whether to use a residual connection between the query and the output of the cross-attention layer.
concat_preprocessed_input (`bool`, *optional*, defaults to `False`):
Whether to concatenate the preprocessed input to the query.
final_project (`bool`, *optional*, defaults to `True`):
Whether to project the output of the cross-attention layer to a target dimension.
position_encoding_only (`bool`, *optional*, defaults to `False`):
Whether to only use this class to define output queries.
"""
def __init__(
self,
config: PerceiverConfig,
output_num_channels: int,
position_encoding_type: Optional[str] = "trainable",
# The following 2 arguments are ignored if position_encoding_type == 'none':
output_index_dims: Optional[int] = None,
num_channels: Optional[int] = 128,
subsampled_index_dims: Optional[int] = None,
qk_channels: Optional[int] = None,
v_channels: Optional[int] = None,
num_heads: Optional[int] = 1,
widening_factor: Optional[int] = 1,
use_query_residual: Optional[bool] = False,
concat_preprocessed_input: Optional[bool] = False,
final_project: Optional[bool] = True,
position_encoding_only: Optional[bool] = False,
**position_encoding_kwargs,
) -> None:
super().__init__()
self.output_num_channels = output_num_channels
# If `none`, the decoder will not construct any position encodings.
# You should construct your own when querying the decoder.
self.output_position_encodings = None
self.position_encoding_type = position_encoding_type
self.position_encoding_kwargs = position_encoding_kwargs
if position_encoding_type != "none":
self.output_position_encodings, self.positions_projection = build_position_encoding(
position_encoding_type=position_encoding_type, **position_encoding_kwargs
)
self.output_index_dims = output_index_dims
self.num_channels = num_channels
if subsampled_index_dims is None:
subsampled_index_dims = output_index_dims
self.subsampled_index_dims = subsampled_index_dims
self.concat_preprocessed_input = concat_preprocessed_input
self.final_project = final_project
self.position_encoding_only = position_encoding_only
# for multimodal autoencoding, we don't need the decoder cross-attention and final layer
# so then we will set position_encoding_only to True
if not self.position_encoding_only:
self.decoding_cross_attention = PerceiverLayer(
config,
is_cross_attention=True,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=num_channels,
kv_dim=config.d_latents,
widening_factor=widening_factor,
use_query_residual=use_query_residual,
)
self.final_layer = nn.Linear(num_channels, output_num_channels) if final_project else nn.Identity()
@property
def num_query_channels(self) -> int:
if self.position_encoding_type == "none": # Queries come from elsewhere
raise ValueError(
"You cannot calculate number of decoder query channels when position_encoding_type is set to none"
)
if self.position_encoding_only:
if "project_pos_dim" in self.position_encoding_kwargs:
return self.position_encoding_kwargs["project_pos_dim"]
return self.output_position_encodings.output_size()
if self.final_project:
return self.output_num_channels
return self.num_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
if self.position_encoding_type == "none": # Queries come from elsewhere
raise ValueError("You cannot construct decoder queries when position_encoding_type is set to none")
if subsampled_points is not None:
# subsampled_points are the indices if the inputs would be flattened
# however, the inputs aren't flattened, that's why we use unravel_index
# to get the indices for the unflattened array
# unravel_index returns a tuple (x_idx, y_idx, ...)
# stack to get the [n, d] tensor of coordinates
indices = [torch.from_numpy(x) for x in np.unravel_index(subsampled_points.cpu(), self.output_index_dims)]
pos = torch.stack(indices, dim=1)
batch_size = inputs.shape[0]
# Map these coordinates to [-1, 1]
pos = -1 + 2 * pos / torch.tensor(self.output_index_dims)[None, :]
pos = torch.broadcast_to(pos[None], [batch_size, pos.shape[0], pos.shape[1]])
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_emb = self.output_position_encodings(batch_size)
elif self.position_encoding_type == "fourier":
pos_emb = self.output_position_encodings(
self.output_index_dims, batch_size=batch_size, device=inputs.device, dtype=inputs.dtype, pos=pos
)
# Optionally project them to a target dimension.
pos_emb = self.positions_projection(pos_emb)
pos_emb = torch.reshape(pos_emb, [pos_emb.shape[0], -1, pos_emb.shape[-1]])
else:
batch_size = inputs.shape[0]
index_dims = inputs.shape[2:]
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_emb = self.output_position_encodings(batch_size)
elif self.position_encoding_type == "fourier":
pos_emb = self.output_position_encodings(
index_dims, batch_size, device=inputs.device, dtype=inputs.dtype
)
# Optionally project them to a target dimension.
pos_emb = self.positions_projection(pos_emb)
if self.concat_preprocessed_input:
if inputs_without_pos is None:
raise ValueError("Value is required for inputs_without_pos if concat_preprocessed_input is True")
pos_emb = torch.cat([inputs_without_pos, pos_emb], dim=-1)
return pos_emb
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> PerceiverDecoderOutput:
# Cross-attention decoding.
# key, value: B x N x K; query: B x M x K
# Attention maps -> B x N x M
# Output -> B x M x K
cross_attentions = () if output_attentions else None
layer_outputs = self.decoding_cross_attention(
query,
attention_mask=query_mask,
head_mask=None,
inputs=z,
inputs_mask=None,
output_attentions=output_attentions,
)
output = layer_outputs[0]
if output_attentions:
cross_attentions = cross_attentions + (layer_outputs[1],)
logits = self.final_layer(output)
return PerceiverDecoderOutput(logits=logits, cross_attentions=cross_attentions)
class PerceiverClassificationDecoder(PerceiverAbstractDecoder):
"""
Cross-attention based classification decoder. Light-weight wrapper of [`PerceiverBasicDecoder`] for logit output.
Will turn the output of the Perceiver encoder which is of shape (batch_size, num_latents, d_latents) to a tensor of
shape (batch_size, num_labels). The queries are of shape (batch_size, 1, num_labels).
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config, **decoder_kwargs):
super().__init__()
self.num_labels = config.num_labels
self.decoder = PerceiverBasicDecoder(
config,
output_num_channels=self.num_labels,
output_index_dims=1, # Predict a single logit array.
**decoder_kwargs,
)
@property
def num_query_channels(self) -> int:
return self.decoder.num_query_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
return self.decoder.decoder_query(
inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_points
)
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> PerceiverDecoderOutput:
decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
# B x 1 x num_classes -> B x num_classes
logits = decoder_outputs.logits[:, 0, :]
return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)
class PerceiverOpticalFlowDecoder(PerceiverAbstractDecoder):
"""Cross-attention based optical flow decoder."""
def __init__(self, config, output_image_shape, output_num_channels=2, rescale_factor=100.0, **decoder_kwargs):
super().__init__()
self.output_image_shape = output_image_shape
self.output_num_channels = output_num_channels
self.rescale_factor = rescale_factor
self.decoder = PerceiverBasicDecoder(config, output_num_channels=output_num_channels, **decoder_kwargs)
@property
def num_query_channels(self) -> int:
return self.decoder.num_query_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
if subsampled_points is not None:
raise ValueError("FlowDecoder doesn't support subsampling yet.")
return inputs
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> PerceiverDecoderOutput:
decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
preds = decoder_outputs.logits
# Output flow and rescale.
preds /= self.rescale_factor
preds = preds.reshape([preds.shape[0]] + list(self.output_image_shape) + [preds.shape[-1]])
return PerceiverDecoderOutput(logits=preds, cross_attentions=decoder_outputs.cross_attentions)
class PerceiverBasicVideoAutoencodingDecoder(PerceiverAbstractDecoder):
"""
Cross-attention based video-autoencoding decoder. Light-weight wrapper of [*PerceiverBasicDecoder*] with video
reshaping logic.
Args:
config ([*PerceiverConfig*]):
Model configuration.
output_shape (`List[int]`):
Shape of the output as (batch_size, num_frames, height, width), excluding the channel dimension.
position_encoding_type (`str`):
The type of position encoding to use. Can be either "trainable", "fourier", or "none".
"""
def __init__(
self, config: PerceiverConfig, output_shape: List[int], position_encoding_type: str, **decoder_kwargs
) -> None:
super().__init__()
if len(output_shape) != 4: # B, T, H, W
raise ValueError(f"Expected rank 4 output_shape, got {output_shape}.")
# Build the decoder components:
self.output_shape = output_shape
self.output_num_channels = decoder_kwargs["output_num_channels"]
self.decoder = PerceiverBasicDecoder(
config,
output_index_dims=self.output_shape[1:4], # T*H*W
position_encoding_type=position_encoding_type,
**decoder_kwargs,
)
@property
def num_query_channels(self) -> int:
return self.decoder.num_query_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
return self.decoder.decoder_query(
inputs,
modality_sizes=modality_sizes,
inputs_without_pos=inputs_without_pos,
subsampled_points=subsampled_points,
)
def forward(
self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None
) -> PerceiverDecoderOutput:
decoder_outputs = self.decoder(query, z)
logits = decoder_outputs.logits
logits = torch.reshape(logits, self.output_shape + [logits.shape[-1]])
return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)
def restructure(modality_sizes: ModalitySizeType, inputs: torch.Tensor) -> Mapping[str, torch.Tensor]:
"""
Partitions a [B, N, C] tensor into tensors for each modality.
Args:
modality_sizes
dict specifying the size of the modality
inputs:
input tensor
Returns:
dict mapping name of modality to its associated tensor.
"""
outputs = {}
index = 0
# Apply a predictable ordering to the modalities
for modality in sorted(modality_sizes.keys()):
size = modality_sizes[modality]
inp = inputs[:, index : index + size]
index += size
outputs[modality] = inp
return outputs
class PerceiverMultimodalDecoder(PerceiverAbstractDecoder):
"""
Multimodal decoding by composing uni-modal decoders. The *modalities* argument of the constructor is a dictionary
mapping modality name to the decoder of that modality. That decoder will be used to construct queries for that
modality. Modality-specific queries are padded with trainable modality-specific parameters, after which they are
concatenated along the time dimension.
Next, there is a shared cross attention operation across all modalities.
Args:
config ([*PerceiverConfig*]):
Model configuration.
modalities (`Dict[str, PerceiverAbstractDecoder]`):
Dictionary mapping modality name to the decoder of that modality.
num_outputs (`int`):
The number of outputs of the decoder.
output_num_channels (`int`):
The number of channels in the output.
min_padding_size (`int`, *optional*, defaults to 2):
The minimum padding size for all modalities. The final output will have num_channels equal to the maximum
channels across all modalities plus min_padding_size.
subsampled_index_dims (`Dict[str, PerceiverAbstractDecoder]`, *optional*):
Dictionary mapping modality name to the subsampled index dimensions to use for the decoder query of that
modality.
"""
def __init__(
self,
config: PerceiverConfig,
modalities: Dict[str, PerceiverAbstractDecoder],
num_outputs: int,
output_num_channels: int,
min_padding_size: Optional[int] = 2,
subsampled_index_dims: Optional[Dict[str, PerceiverAbstractDecoder]] = None,
**decoder_kwargs,
) -> None:
super().__init__()
self.modalities = nn.ModuleDict(modalities)
self.subsampled_index_dims = subsampled_index_dims
self.min_padding_size = min_padding_size
self.output_num_channels = output_num_channels
self.num_outputs = num_outputs
self.decoder = PerceiverBasicDecoder(
config,
output_index_dims=(num_outputs,),
output_num_channels=output_num_channels,
position_encoding_type="none",
num_channels=self.num_query_channels,
**decoder_kwargs,
)
self.padding = nn.ParameterDict(
{
modality: nn.Parameter(torch.randn(1, self.num_query_channels - decoder.num_query_channels))
for modality, decoder in modalities.items()
}
)
@property
def num_query_channels(self) -> int:
max_channel_size = max(decoder.num_query_channels for _, decoder in self.modalities.items())
common_channel_size = max_channel_size + self.min_padding_size
return common_channel_size
def decoder_query(self, inputs, modality_sizes, inputs_without_pos=None, subsampled_points=None):
# Partition the flat inputs among the different modalities
inputs = restructure(modality_sizes, inputs)
# Obtain modality-specific decoders' queries
subsampled_points = subsampled_points or {}
decoder_queries = {}
for modality, decoder in self.modalities.items():
# Get input_without_pos for this modality if it exists.
input_without_pos = None
if inputs_without_pos is not None:
input_without_pos = inputs_without_pos.get(modality, None)
query = decoder.decoder_query(
inputs=inputs[modality],
modality_sizes=None,
inputs_without_pos=input_without_pos,
subsampled_points=subsampled_points.get(modality, None),
)
decoder_queries[modality] = query
# Pad all queries with trainable position encodings to make them have the same channels
def embed(modality, x):
x = torch.reshape(x, [x.shape[0], np.prod(x.shape[1:-1]), x.shape[-1]])
pos = self.padding[modality]
pos = torch.broadcast_to(pos, [x.shape[0], x.shape[1], self.num_query_channels - x.shape[2]])
return torch.cat([x, pos], dim=2)
# Apply a predictable ordering to the modalities
return torch.cat(
[embed(modality, decoder_queries[modality]) for modality in sorted(self.modalities.keys())], dim=1
)
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> torch.Tensor:
# B x 1 x num_classes -> B x num_classes
decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
return decoder_outputs
# Below: IO pre- and post-processor classes for Perceiver.
def space_to_depth(frames: torch.Tensor, temporal_block_size: int = 1, spatial_block_size: int = 1) -> torch.Tensor:
"""
Space to depth transform. Rearranges blocks of spatial data, into depth.
This function assumes the channels to be first, but will place the channels last after transformation.
Based on https://discuss.pytorch.org/t/is-there-any-layer-like-tensorflows-space-to-depth-function/3487/15.
"""
if len(frames.shape) == 4:
batch_size, num_channels, height, width = frames.shape
# split up dimensions (height by spatial_block_size, width by spatial_block_size)
frames = frames.view(
batch_size,
num_channels,
height // spatial_block_size,
spatial_block_size,
width // spatial_block_size,
spatial_block_size,
)
# move blocks to last dimension: (batch_size, H//bs, W//bs, bs, bs, C)
frames = frames.permute(0, 2, 4, 3, 5, 1).contiguous()
# concatenate blocks along channel dimension: (batch_size, H//bs, W//bs, bs*bs*C)
frames = frames.view(
batch_size,
height // spatial_block_size,
width // spatial_block_size,
(spatial_block_size**2) * num_channels,
)
return frames
elif len(frames.shape) == 5:
batch_size, time, num_channels, height, width = frames.shape
# split up dimensions (time by temporal_block_size, height by spatial_block_size, width by spatial_block_size)
frames = frames.view(
batch_size,
time // temporal_block_size,
temporal_block_size,
num_channels,
height // spatial_block_size,
spatial_block_size,
width // spatial_block_size,
spatial_block_size,
)
# move blocks to last dimension: (batch_size, T//ts, H//bs, W//bs, ts, bs, bs, C)
frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
# concatenate blocks along channel dimension: (batch_size, T//ts, H//bs, W//bs, ts*bs*bs*C)
frames = frames.view(
batch_size,
time // temporal_block_size,
height // spatial_block_size,
width // spatial_block_size,
temporal_block_size * (spatial_block_size**2) * num_channels,
)
return frames
else:
raise ValueError(
"Frames should be of rank 4 (batch, channels, height, width)"
" or rank 5 (batch, time, channels, height, width)"
)
class Conv2dSamePadding(nn.Conv2d):
"""
Conv2d layer with padding="same" support. Source:
https://gist.github.com/sumanmichael/4de9dee93f972d47c80c4ade8e149ea6
"""
def __init__(self, *args, **kwargs):
super(Conv2dSamePadding, self).__init__(*args, **kwargs)
self.zero_pad_2d = nn.ZeroPad2d(
reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in self.kernel_size[::-1]])
)
def forward(self, input):
return self._conv_forward(self.zero_pad_2d(input), self.weight, self.bias)
class Conv2DDownsample(nn.Module):
"""Downsamples 4x by applying a 2D convolution and doing max pooling."""
def __init__(
self,
num_layers: int = 1,
in_channels: int = 3,
out_channels: int = 64,
use_batchnorm: bool = True,
):
"""
Constructs a Conv2DDownsample model.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 64):
The number of conv output channels.
use_batchnorm (`bool`, *optional*, defaults to `True`):
Whether to use batchnorm.
"""
super().__init__()
self.conv = Conv2dSamePadding(
in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=2, bias=False
)
self.batchnorm = nn.BatchNorm2d(num_features=out_channels) if use_batchnorm else nn.Identity()
self.relu = nn.ReLU()
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
out = self.conv(inputs)
out = self.batchnorm(out)
out = self.relu(out)
out = self.max_pool(out)
return out
def generate_fourier_features(pos, num_bands, max_resolution=(224, 224), concat_pos=True, sine_only=False):
"""
Generate a Fourier frequency position encoding with linear spacing.
Args:
pos (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`):
The Tensor containing the position of n points in d dimensional space.
num_bands (`int`):
The number of frequency bands (K) to use.
max_resolution (`Tuple[int]`, *optional*, defaults to (224, 224)):
The maximum resolution (i.e. the number of pixels per dim). A tuple representing resolution for each dimension.
concat_pos (`bool`, *optional*, defaults to `True`):
Whether to concatenate the input position encoding to the Fourier features.
sine_only (`bool`, *optional*, defaults to `False`):
Whether to use a single phase (sin) or two (sin/cos) for each frequency band.
Returns:
`torch.FloatTensor` of shape `(batch_size, sequence_length, n_channels)`: The Fourier position embeddings. If
`concat_pos` is `True` and `sine_only` is `False`, output dimensions are ordered as: [dim_1, dim_2, ..., dim_d,
sin(pi*f_1*dim_1), ..., sin(pi*f_K*dim_1), ..., sin(pi*f_1*dim_d), ..., sin(pi*f_K*dim_d), cos(pi*f_1*dim_1),
..., cos(pi*f_K*dim_1), ..., cos(pi*f_1*dim_d), ..., cos(pi*f_K*dim_d)], where dim_i is pos[:, i] and f_k is the
kth frequency band.
"""
batch_size = pos.shape[0]
min_freq = 1.0
# Nyquist frequency at the target resolution:
freq_bands = torch.stack(
[torch.linspace(start=min_freq, end=res / 2, steps=num_bands) for res in max_resolution], dim=0
)
# Get frequency bands for each spatial dimension.
# Output is size [n, d * num_bands]
per_pos_features = pos[0, :, :][:, :, None] * freq_bands[None, :, :]
per_pos_features = torch.reshape(per_pos_features, [-1, np.prod(per_pos_features.shape[1:])])
if sine_only:
# Output is size [n, d * num_bands]
per_pos_features = torch.sin(np.pi * (per_pos_features))
else:
# Output is size [n, 2 * d * num_bands]
per_pos_features = torch.cat(
[torch.sin(np.pi * per_pos_features), torch.cos(np.pi * per_pos_features)], dim=-1
)
# Concatenate the raw input positions.
if concat_pos:
# Adds d bands to the encoding.
per_pos_features = torch.cat([pos, per_pos_features.expand(batch_size, -1, -1)], dim=-1)
return per_pos_features
def build_linear_positions(index_dims, output_range=(-1.0, 1.0)):
"""
Generate an array of position indices for an N-D input array.
Args:
index_dims (`List[int]`):
The shape of the index dimensions of the input array.
output_range (`Tuple[float]`, *optional*, defaults to `(-1.0, 1.0)`):
The min and max values taken by each input index dimension.
Returns:
`torch.FloatTensor` of shape `(index_dims[0], index_dims[1], .., index_dims[-1], N)`.
"""
def _linspace(n_xels_per_dim):
return torch.linspace(start=output_range[0], end=output_range[1], steps=n_xels_per_dim, dtype=torch.float32)
dim_ranges = [_linspace(n_xels_per_dim) for n_xels_per_dim in index_dims]
array_index_grid = meshgrid(*dim_ranges, indexing="ij")
return torch.stack(array_index_grid, dim=-1)
class PerceiverAbstractPositionEncoding(nn.Module, metaclass=abc.ABCMeta):
"""Perceiver abstract position encoding."""
@property
@abc.abstractmethod
def num_dimensions(self) -> int:
raise NotImplementedError
@abc.abstractmethod
def output_size(self, *args, **kwargs) -> int:
raise NotImplementedError
@abc.abstractmethod
def forward(self, batch_size, pos):
raise NotImplementedError
class PerceiverTrainablePositionEncoding(PerceiverAbstractPositionEncoding):
"""Trainable position encoding."""
def __init__(self, index_dims, num_channels=128):
super().__init__()
self._num_channels = num_channels
self._index_dims = index_dims
index_dim = np.prod(index_dims)
self.position_embeddings = nn.Parameter(torch.randn(index_dim, num_channels))
@property
def num_dimensions(self) -> int:
if isinstance(self._index_dims, int):
return 1
return len(self._index_dims)
def output_size(self, *args, **kwargs) -> int:
return self._num_channels
def forward(self, batch_size: int) -> torch.Tensor:
position_embeddings = self.position_embeddings
if batch_size is not None:
position_embeddings = position_embeddings.expand(batch_size, -1, -1)
return position_embeddings
def _check_or_build_spatial_positions(pos, index_dims, batch_size):
"""
Checks or builds spatial position features (x, y, ...).
Args:
pos (`torch.FloatTensor`):
None, or an array of position features. If None, position features are built. Otherwise, their size is checked.
index_dims (`List[int]`):
An iterable giving the spatial/index size of the data to be featurized.
batch_size (`int`):
The batch size of the data to be featurized.
Returns:
`torch.FloatTensor` of shape `(batch_size, prod(index_dims))` an array of position features.
"""
if pos is None:
pos = build_linear_positions(index_dims)
# equivalent to `torch.broadcast_to(pos[None], (batch_size,) + pos.shape)`
# but `torch.broadcast_to` cannot be converted to ONNX
pos = pos[None].expand((batch_size,) + pos.shape)
pos = torch.reshape(pos, [batch_size, np.prod(index_dims), -1])
else:
# Just a warning label: you probably don't want your spatial features to
# have a different spatial layout than your pos coordinate system.
# But feel free to override if you think it'll work!
if pos.shape[-1] != len(index_dims):
raise ValueError("Spatial features have the wrong number of dimensions.")
return pos
class PerceiverFourierPositionEncoding(PerceiverAbstractPositionEncoding):
"""Fourier (Sinusoidal) position encoding."""
def __init__(self, num_bands, max_resolution, concat_pos=True, sine_only=False):
super().__init__()
self.num_bands = num_bands
self.max_resolution = max_resolution
self.concat_pos = concat_pos
self.sine_only = sine_only
@property
def num_dimensions(self) -> int:
return len(self.max_resolution)
def output_size(self):
"""Returns size of positional encodings last dimension."""
num_dims = len(self.max_resolution)
encoding_size = self.num_bands * num_dims
if not self.sine_only:
encoding_size *= 2
if self.concat_pos:
encoding_size += self.num_dimensions
return encoding_size
def forward(
self,
index_dims: List[int],
batch_size: int,
device: torch.device,
dtype: torch.dtype,
pos: torch.FloatTensor = None,
) -> torch.FloatTensor:
pos = _check_or_build_spatial_positions(pos, index_dims, batch_size)
fourier_pos_enc = generate_fourier_features(
pos,
num_bands=self.num_bands,
max_resolution=self.max_resolution,
concat_pos=self.concat_pos,
sine_only=self.sine_only,
).to(device=device, dtype=dtype)
return fourier_pos_enc
class AbstractPreprocessor(nn.Module):
@property
def num_channels(self) -> int:
"""Returns size of preprocessor output."""
raise NotImplementedError()
class PerceiverTextPreprocessor(AbstractPreprocessor):
"""
Text preprocessing for Perceiver Encoder. Can be used to embed `inputs` and add positional encodings.
The dimensionality of the embeddings is determined by the `d_model` attribute of the configuration.
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config: PerceiverConfig) -> None:
super().__init__()
self.config = config
self.embeddings = nn.Embedding(num_embeddings=config.vocab_size, embedding_dim=config.d_model)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model)
@property
def num_channels(self) -> int:
return self.config.d_model
def forward(self, inputs: torch.LongTensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True):
embeddings_without_pos = self.embeddings(inputs)
seq_length = inputs.shape[1]
position_ids = torch.arange(0, seq_length, device=inputs.device)
embeddings = embeddings_without_pos + self.position_embeddings(position_ids)
return embeddings, None, embeddings_without_pos
class PerceiverEmbeddingDecoder(nn.Module):
"""
Module to decode embeddings (for masked language modeling).
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config: PerceiverConfig) -> None:
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.bias = nn.Parameter(torch.zeros(self.vocab_size))
def forward(self, hidden_states: torch.Tensor, embedding_layer: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, d_model = hidden_states.shape
# Flatten batch dim
output = torch.matmul(hidden_states.reshape([-1, d_model]), embedding_layer.weight.transpose(0, 1))
output = output + self.bias
return output.reshape([batch_size, seq_len, self.vocab_size])
class PerceiverMultimodalPostprocessor(nn.Module):
"""
Multimodal postprocessing for Perceiver. Can be used to combine modality-specific postprocessors into a single
postprocessor.
Args:
modalities (`Mapping[str, PostprocessorType]`):
Dictionary mapping modality name to postprocessor class for that modality.
input_is_dict (`bool`, *optional*, defaults to `False`):
If True, input is assumed to be dictionary structured, and outputs keep the same dictionary shape. If
False, input is a tensor which is sliced up during postprocessing by *modality_sizes*.
"""
def __init__(self, modalities: Mapping[str, PostprocessorType], input_is_dict: bool = False):
super().__init__()
self.modalities = nn.ModuleDict(modalities)
self.input_is_dict = input_is_dict
def forward(
self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None
) -> Mapping[str, torch.Tensor]:
if not self.input_is_dict:
# Slice up modalities by their sizes.
if modality_sizes is None:
raise ValueError("Modality sizes should be specified if input is not a dictionary.")
inputs = restructure(modality_sizes=modality_sizes, inputs=inputs)
outputs = {
modality: postprocessor(inputs[modality], pos=pos, modality_sizes=None)
for modality, postprocessor in self.modalities.items()
}
return outputs
class PerceiverClassificationPostprocessor(nn.Module):
"""
Classification postprocessing for Perceiver. Can be used to convert the decoder output to classification logits.
Args:
config ([*PerceiverConfig*]):
Model configuration.
in_channels (`int`):
Number of channels in the input.
"""
def __init__(self, config: PerceiverConfig, in_channels: int) -> None:
super().__init__()
self.classifier = nn.Linear(in_channels, config.num_labels)
def forward(self, inputs, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
logits = self.classifier(inputs)
return logits[:, 0, :]
class PerceiverAudioPostprocessor(nn.Module):
"""
Audio postprocessing for Perceiver. Can be used to convert the decoder output to audio features.
Args:
config ([*PerceiverConfig*]):
Model configuration.
in_channels (`int`):
Number of channels in the input.
postproc_type (`str`, *optional*, defaults to `"patches"`):
Postprocessor type to use. Currently, only "patches" is supported.
"""
def __init__(self, config: PerceiverConfig, in_channels: int, postproc_type: str = "patches") -> None:
super().__init__()
if postproc_type not in ("patches",): # to be supported: 'conv', 'patches', 'pixels'
raise ValueError("Invalid postproc_type!")
# Architecture parameters:
self.classifier = nn.Linear(in_channels, config.samples_per_patch)
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
logits = self.classifier(inputs)
return torch.reshape(logits, [inputs.shape[0], -1])
class PerceiverProjectionPostprocessor(nn.Module):
"""
Projection postprocessing for Perceiver. Can be used to project the channels of the decoder output to a lower
dimension.
Args:
in_channels (`int`):
Number of channels in the input.
out_channels (`int`):
Number of channels in the output.
"""
def __init__(self, in_channels: int, out_channels: int) -> None:
super().__init__()
self.classifier = nn.Linear(in_channels, out_channels)
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
logits = self.classifier(inputs)
return logits
class PerceiverImagePreprocessor(AbstractPreprocessor):
"""
Image preprocessing for Perceiver Encoder.
Note: the *out_channels* argument refers to the output channels of a convolutional layer, if *prep_type* is set to
"conv1x1" or "conv". If one adds absolute position embeddings, one must make sure the *num_channels* of the
position encoding kwargs are set equal to the *out_channels*.
Args:
config ([*PerceiverConfig*]):
Model configuration.
prep_type (`str`, *optional*, defaults to `"conv"`):
Preprocessing type. Can be "conv1x1", "conv", "patches", "pixels".
spatial_downsample (`int`, *optional*, defaults to 4):
Spatial downsampling factor.
temporal_downsample (`int`, *optional*, defaults to 1):
Temporal downsampling factor (only relevant in case a time dimension is present).
position_encoding_type (`str`, *optional*, defaults to `"fourier"`):
Position encoding type. Can be "fourier" or "trainable".
in_channels (`int`, *optional*, defaults to 3):
Number of channels in the input.
out_channels (`int`, *optional*, defaults to 64):
Number of channels in the output.
conv_after_patching (`bool`, *optional*, defaults to `False`):
Whether to apply a convolutional layer after patching.
conv_after_patching_in_channels (`int`, *optional*, defaults to 54):
Number of channels in the input of the convolutional layer after patching.
conv2d_use_batchnorm (`bool`, *optional*, defaults to `True`):
Whether to use batch normalization in the convolutional layer.
concat_or_add_pos (`str`, *optional*, defaults to `"concat"`):
How to concatenate the position encoding to the input. Can be "concat" or "add".
project_pos_dim (`int`, *optional*, defaults to -1):
Dimension of the position encoding to project to. If -1, no projection is applied.
**position_encoding_kwargs (`Dict`, *optional*):
Keyword arguments for the position encoding.
"""
def __init__(
self,
config,
prep_type="conv",
spatial_downsample: int = 4,
temporal_downsample: int = 1,
position_encoding_type: str = "fourier",
in_channels: int = 3,
out_channels: int = 64,
conv_after_patching: bool = False,
conv_after_patching_in_channels: int = 54, # only relevant when conv_after_patching = True
conv2d_use_batchnorm: bool = True,
concat_or_add_pos: str = "concat",
project_pos_dim: int = -1,
**position_encoding_kwargs,
):
super().__init__()
self.config = config
if prep_type not in ("conv", "patches", "pixels", "conv1x1"):
raise ValueError(f"Prep_type {prep_type} is invalid")
if concat_or_add_pos not in ["concat", "add"]:
raise ValueError(f"Invalid value {concat_or_add_pos} for concat_or_add_pos.")
self.in_channels = in_channels
self.prep_type = prep_type
self.spatial_downsample = spatial_downsample
self.temporal_downsample = temporal_downsample
self.position_encoding_type = position_encoding_type
self.concat_or_add_pos = concat_or_add_pos
self.conv_after_patching = conv_after_patching
self.out_channels = out_channels
if self.prep_type == "conv":
# Downsampling with conv is currently restricted
convnet_num_layers = math.log(spatial_downsample, 4)
convnet_num_layers_is_int = convnet_num_layers == np.round(convnet_num_layers)
if not convnet_num_layers_is_int or temporal_downsample != 1:
raise ValueError(
"Only powers of 4 expected for spatial and 1 expected for temporal downsampling with conv."
)
self.convnet = Conv2DDownsample(
in_channels=in_channels,
num_layers=int(convnet_num_layers),
out_channels=out_channels,
use_batchnorm=conv2d_use_batchnorm,
)
elif self.prep_type == "conv1x1":
if temporal_downsample != 1:
raise ValueError("Conv1x1 does not downsample in time.")
self.convnet_1x1 = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(1, 1),
# spatial_downsample is unconstrained for 1x1 convolutions.
stride=(spatial_downsample, spatial_downsample),
)
# Position embeddings
self.project_pos_dim = project_pos_dim
self.position_embeddings, self.positions_projection = build_position_encoding(
position_encoding_type=position_encoding_type,
out_channels=out_channels,
project_pos_dim=project_pos_dim,
**position_encoding_kwargs,
)
# Optional convolutional layer after patches.
self.conv_after_patches = (
nn.Linear(conv_after_patching_in_channels, self.out_channels) if conv_after_patching else nn.Identity()
)
@property
def num_channels(self) -> int:
# Let's assume that the number of resolutions (in the context of image preprocessing)
# of the input data is 2 or 3 depending on whether we are processing image or video respectively.
# In this case, for convenience, we will declare is_temporal variable,
# which will show whether the data has a temporal dimension or not.
is_temporal = self.position_embeddings.num_dimensions > 2
# position embedding
if self.project_pos_dim > 0:
pos_dim = self.project_pos_dim
else:
pos_dim = self.position_embeddings.output_size()
if self.concat_or_add_pos == "add":
return pos_dim
# inputs
if self.conv_after_patching or self.prep_type in ("conv1x1", "conv"):
inp_dim = self.out_channels
elif self.prep_type == "pixels":
inp_dim = self.in_channels
if not is_temporal:
inp_dim = math.ceil(inp_dim / self.spatial_downsample)
elif self.prep_type == "patches":
if self.conv_after_patching:
inp_dim = self.out_channels
else:
inp_dim = self.in_channels * self.spatial_downsample**2
if is_temporal:
inp_dim *= self.temporal_downsample
return inp_dim + pos_dim
def _build_network_inputs(self, inputs: torch.Tensor, network_input_is_1d: bool = True):
"""
Construct the final input, including position encoding.
This method expects the inputs to always have channels as last dimension.
"""
batch_size = inputs.shape[0]
index_dims = inputs.shape[1:-1]
indices = np.prod(index_dims)
# Flatten input features to a 1D index dimension if necessary.
if len(inputs.shape) > 3 and network_input_is_1d:
inputs = torch.reshape(inputs, [batch_size, indices, -1])
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_enc = self.position_embeddings(batch_size)
elif self.position_encoding_type == "fourier":
pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype)
# Optionally project them to a target dimension.
pos_enc = self.positions_projection(pos_enc)
if not network_input_is_1d:
# Reshape pos to match the input feature shape
# if the network takes non-1D inputs
sh = inputs.shape
pos_enc = torch.reshape(pos_enc, list(sh)[:-1] + [-1])
if self.concat_or_add_pos == "concat":
inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1)
elif self.concat_or_add_pos == "add":
inputs_with_pos = inputs + pos_enc
return inputs_with_pos, inputs
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True):
if self.prep_type == "conv":
# Convnet image featurization.
# Downsamples spatially by a factor of 4
inputs = self.convnet(inputs)
elif self.prep_type == "conv1x1":
# map inputs to self.out_channels
inputs = self.convnet_1x1(inputs)
elif self.prep_type == "pixels":
# if requested, downsamples in the crudest way
if inputs.ndim == 4:
inputs = inputs[:: self.spatial_downsample, :: self.spatial_downsample]
elif inputs.ndim == 5:
inputs = inputs[
:, :: self.temporal_downsample, :, :: self.spatial_downsample, :: self.spatial_downsample
]
else:
raise ValueError("Unsupported data format for pixels.")
elif self.prep_type == "patches":
# Space2depth featurization.
# Video: B x T x C x H x W
inputs = space_to_depth(
inputs, temporal_block_size=self.temporal_downsample, spatial_block_size=self.spatial_downsample
)
if inputs.ndim == 5 and inputs.shape[1] == 1:
# for flow
inputs = inputs.squeeze(dim=1)
# Optionally apply conv layer.
inputs = self.conv_after_patches(inputs)
if self.prep_type != "patches":
# move channels to last dimension, as the _build_network_inputs method below expects this
if inputs.ndim == 4:
inputs = inputs.permute(0, 2, 3, 1)
elif inputs.ndim == 5:
inputs = inputs.permute(0, 1, 3, 4, 2)
else:
raise ValueError("Unsupported data format for conv1x1.")
inputs, inputs_without_pos = self._build_network_inputs(inputs, network_input_is_1d)
modality_sizes = None # Size for each modality, only needed for multimodal
return inputs, modality_sizes, inputs_without_pos
class PerceiverOneHotPreprocessor(AbstractPreprocessor):
"""
One-hot preprocessor for Perceiver Encoder. Can be used to add a dummy index dimension to the input.
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config: PerceiverConfig) -> None:
super().__init__()
self.config: PerceiverConfig = config
@property
def num_channels(self) -> int:
return self.config.num_labels
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True):
# Add a dummy index dimension.
inputs = inputs[:, None, :]
# No position encodings, so the 1st (input) and 3rd (inputs_without_pos)
# outputs are identical.
return inputs, None, inputs
class PerceiverAudioPreprocessor(AbstractPreprocessor):
"""
Audio preprocessing for Perceiver Encoder.
Args:
config ([*PerceiverConfig*]):
Model configuration.
prep_type (`str`, *optional*, defaults to `"patches"`):
Preprocessor type to use. Only "patches" is supported.
samples_per_patch (`int`, *optional*, defaults to 96):
Number of samples per patch.
position_encoding_type (`str`, *optional*, defaults to `"fourier"`):
Type of position encoding to use. Can be "trainable" or "fourier".
concat_or_add_pos (`str`, *optional*, defaults to `"concat"`):
How to concatenate the position encoding to the input. Can be "concat" or "add".
out_channels (`int`, *optional*, defaults to 64):
Number of channels in the output.
project_pos_dim (`int`, *optional*, defaults to -1):
Dimension of the position encoding to project to. If -1, no projection is applied.
**position_encoding_kwargs (`Dict`, *optional*):
Keyword arguments for the position encoding.
"""
def __init__(
self,
config,
prep_type: str = "patches",
samples_per_patch: int = 96,
position_encoding_type: str = "fourier",
concat_or_add_pos: str = "concat",
out_channels=64,
project_pos_dim=-1,
**position_encoding_kwargs,
):
super().__init__()
self.config = config
if prep_type not in ("patches",):
raise ValueError(f"Prep_type {prep_type} is invalid, can only be 'patches'.")
if concat_or_add_pos not in ["concat", "add"]:
raise ValueError(f"Concat_or_pos {concat_or_add_pos} is invalid, can only be 'concat' or 'add'.")
self.samples_per_patch = samples_per_patch
self.position_encoding_type = position_encoding_type
self.concat_or_add_pos = concat_or_add_pos
self.project_pos_dim = project_pos_dim
# Position embeddings
self.position_embeddings, self.positions_projection = build_position_encoding(
position_encoding_type=position_encoding_type,
out_channels=out_channels,
project_pos_dim=project_pos_dim,
**position_encoding_kwargs,
)
@property
def num_channels(self) -> int:
# position embedding
if self.project_pos_dim > 0:
pos_dim = self.project_pos_dim
else:
pos_dim = self.position_embeddings.output_size()
if self.concat_or_add_pos == "add":
return pos_dim
return self.samples_per_patch + pos_dim
def _build_network_inputs(self, inputs):
"""Construct the final input, including position encoding."""
batch_size = inputs.shape[0]
index_dims = inputs.shape[1:-1]
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_enc = self.position_embeddings(batch_size)
elif self.position_encoding_type == "fourier":
pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype)
# Optionally project them to a target dimension.
pos_enc = self.positions_projection(pos_enc)
if self.concat_or_add_pos == "concat":
inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1)
elif self.concat_or_add_pos == "add":
inputs_with_pos = inputs + pos_enc
return inputs_with_pos, inputs
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True):
inputs = torch.reshape(inputs, [inputs.shape[0], -1, self.samples_per_patch])
inputs, inputs_without_pos = self._build_network_inputs(inputs)
modality_sizes = None # Size for each modality, only needed for multimodal
return inputs, modality_sizes, inputs_without_pos
class PerceiverMultimodalPreprocessor(AbstractPreprocessor):
"""
Multimodal preprocessing for Perceiver Encoder.
Inputs for each modality are preprocessed, then padded with trainable position embeddings to have the same number
of channels.
Args:
modalities (`Mapping[str, PreprocessorType]`):
Dict mapping modality name to preprocessor.
mask_probs (`Dict[str, float]`):
Dict mapping modality name to masking probability of that modality.
min_padding_size (`int`, *optional*, defaults to 2):
The minimum padding size for all modalities. The final output will have num_channels equal to the maximum
channels across all modalities plus min_padding_size.
"""
def __init__(
self,
modalities: Mapping[str, PreprocessorType],
mask_probs: Optional[Mapping[str, float]] = None,
min_padding_size: int = 2,
):
super().__init__()
self.modalities = nn.ModuleDict(modalities)
self.min_padding_size = min_padding_size
self.mask_probs = mask_probs if mask_probs is not None else {}
self.padding = nn.ParameterDict(
{
modality: nn.Parameter(torch.randn(1, self.num_channels - preprocessor.num_channels))
for modality, preprocessor in modalities.items()
}
)
self.mask = nn.ParameterDict(
{modality: nn.Parameter(torch.randn(1, self.num_channels)) for modality, _ in self.mask_probs.items()}
)
@property
def num_channels(self) -> int:
max_channel_size = max(processor.num_channels for _, processor in self.modalities.items())
common_channel_size = max_channel_size + self.min_padding_size
return common_channel_size
def forward(
self, inputs: Mapping[str, torch.Tensor], pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True
) -> PreprocessorOutputType:
padded = {}
modality_sizes = {}
inputs_without_pos = {}
for modality, preprocessor in self.modalities.items():
# preprocess each modality using the respective preprocessor.
output, _, inputs_without_pos[modality] = preprocessor(
inputs[modality], pos=pos, network_input_is_1d=network_input_is_1d
)
# pad to the same common_channel_size.
batch_size, num_samples, num_channels = output.shape
pos_enc = self.padding[modality].expand(batch_size, -1, -1)
padding = torch.broadcast_to(
pos_enc,
[batch_size, num_samples, self.num_channels - num_channels],
)
output_padded = torch.cat([output, padding], dim=2)
# mask if required
if modality in self.mask_probs:
mask_token = self.mask[modality].expand(batch_size, -1, -1)
mask_prob = self.mask_probs[modality]
mask = torch.bernoulli(torch.full([batch_size, num_samples], mask_prob))
mask = torch.unsqueeze(mask, dim=2).to(mask_token.device)
output_padded = (1 - mask) * output_padded + mask * mask_token
padded[modality] = output_padded
modality_sizes[modality] = output_padded.shape[1]
# Apply a predictable ordering to the modalities
padded_ls = [padded[k] for k in sorted(padded.keys())]
# Finally, concatenate along the time dimension
final_inputs = torch.cat(padded_ls, dim=1)
return final_inputs, modality_sizes, inputs_without_pos
| transformers/src/transformers/models/perceiver/modeling_perceiver.py/0 | {
"file_path": "transformers/src/transformers/models/perceiver/modeling_perceiver.py",
"repo_id": "transformers",
"token_count": 62743
} | 353 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. & Google team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Pix2Struct modeling file"""
import math
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
logging,
replace_return_docstrings,
)
from .configuration_pix2struct import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "Pix2StructConfig"
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/pix2struct-textcaps-base",
"google/pix2struct-textcaps-large",
"google/pix2struct-base",
"google/pix2struct-large",
"google/pix2struct-ai2d-base",
"google/pix2struct-ai2d-large",
"google/pix2struct-widget-captioning-base",
"google/pix2struct-widget-captioning-large",
"google/pix2struct-screen2words-base",
"google/pix2struct-screen2words-large",
"google/pix2struct-docvqa-base",
"google/pix2struct-docvqa-large",
"google/pix2struct-ocrvqa-base",
"google/pix2struct-ocrvqa-large",
"google/pix2struct-chartqa-base",
"google/pix2struct-inforgraphics-vqa-base",
"google/pix2struct-inforgraphics-vqa-large",
# See all Pix2StructVision models at https://huggingface.co/models?filter=pix2struct
]
# Adapted from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pix2Struct
class Pix2StructLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
try:
from apex.normalization import FusedRMSNorm
Pix2StructLayerNorm = FusedRMSNorm # noqa
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pix2StructLayerNorm")
except ImportError:
# using the normal Pix2StructLayerNorm
pass
except Exception:
logger.warning("Discovered apex but it failed to load, falling back to Pix2StructLayerNorm")
pass
ALL_LAYERNORM_LAYERS.append(Pix2StructLayerNorm)
class Pix2StructVisionEmbeddings(nn.Module):
r"""
Construct the embeddings from patch. In `Pix2Struct` the input is different from classic Vision-transformer models.
Here the input is a sequence of `seq_len` flattened patches that also combines padding patches (tokens). Each patch
is represented by a vector of `hidden_size` values.
"""
def __init__(self, config: Pix2StructConfig) -> None:
super().__init__()
self.patch_projection = nn.Linear(config.patch_embed_hidden_size, config.hidden_size)
self.row_embedder = nn.Embedding(config.seq_len, config.hidden_size)
self.column_embedder = nn.Embedding(config.seq_len, config.hidden_size)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, flattened_patches: torch.Tensor) -> torch.Tensor:
# the row and column indices are stored in the first and second position of the flattened_patches
# flattened_patches: `batch_size`, `seq_len`, `hidden_size` + 2
row_indices = flattened_patches[:, :, 0].long()
col_indices = flattened_patches[:, :, 1].long()
flattened_patches = flattened_patches[:, :, 2:]
embeddings = self.patch_projection(flattened_patches)
row_embeddings = self.row_embedder(row_indices)
col_embeddings = self.column_embedder(col_indices)
# sum all embeddings together
embeddings = embeddings + row_embeddings + col_embeddings
embeddings = self.dropout(embeddings)
return embeddings
class Pix2StructVisionAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_attention_heads
self.dropout = config.attention_dropout
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.query = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
self.key = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
self.value = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
self.output = nn.Linear(self.inner_dim, self.hidden_size, bias=False)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
"""
Self-attention block
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
def to_projection_shape(states):
"""projection"""
return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
# get query states
# (batch_size, n_heads, seq_length, dim_per_head)
query_states = to_projection_shape(self.query(hidden_states))
# get key/value states
key_states = to_projection_shape(self.key(hidden_states))
value_states = to_projection_shape(self.value(hidden_states))
# compute scores
# equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, seq_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length), device=scores.device, dtype=scores.dtype)
if attention_mask.dim() == 2:
position_bias = position_bias + attention_mask[:, None, None, :].to(position_bias.device)
else:
# (batch_size, n_heads, seq_length, key_length)
position_bias = position_bias + attention_mask.to(position_bias.device)
position_bias = 1 - position_bias
position_bias_masked = position_bias.masked_fill(position_bias == 1, torch.finfo(scores.dtype).min)
scores += position_bias_masked
scores = torch.max(scores, torch.tensor(torch.finfo(scores.dtype).min))
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores, dim=-1, dtype=torch.float32).type_as(scores)
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
# (batch_size, seq_length, dim)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
attn_output = self.output(attn_output)
outputs = (attn_output,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5DenseGatedActDense->Pix2StructVisionMlp,T5Config->Pix2StructVisionConfig,config.d_model->config.hidden_size,dropout_rate->dropout_rate
class Pix2StructVisionMlp(nn.Module):
def __init__(self, config: Pix2StructVisionConfig):
super().__init__()
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
class Pix2StructVisionLayer(nn.Module):
def __init__(self, config: Pix2StructConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = Pix2StructVisionAttention(config)
self.mlp = Pix2StructVisionMlp(config)
self.pre_mlp_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pre_attention_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
residual = hidden_states
# in Pix2StructVision, layernorm is applied before self-attention
hidden_states = self.pre_attention_layer_norm(hidden_states)
self_attention_outputs = self.attention(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + residual
# in Pix2StructVision, layernorm is also applied after self-attention
layer_output = self.pre_mlp_layer_norm(hidden_states)
layer_output = self.mlp(layer_output) + hidden_states # second residual connection
outputs = (layer_output,) + outputs
return outputs
class Pix2StructVisionEncoder(nn.Module):
def __init__(self, config: Pix2StructConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([Pix2StructVisionLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Pix2StructPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Pix2StructConfig
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, Pix2StructLayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, Pix2StructTextDenseGatedActDense):
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
d_ff = self.config.text_config.d_ff if isinstance(self.config, Pix2StructConfig) else self.config.d_ff
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, Pix2StructTextAttention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
key_value_proj_dim = (
self.config.text_config.d_kv if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size
)
n_heads = (
self.config.text_config.num_heads
if isinstance(self.config, Pix2StructConfig)
else self.config.num_heads
)
module.query.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * key_value_proj_dim) ** -0.5))
module.key.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5))
module.value.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5))
module.output.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
elif isinstance(module, nn.Embedding):
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
module.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, Pix2StructTextModel):
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
module.lm_head.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
elif isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, Pix2StructLayerNorm):
if module.weight is not None:
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->Pix2Struct
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In Pix2Struct it is usually set to the pad_token_id. "
"See Pix2Struct docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
PIX2STRUCT_VISION_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Pix2StructConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PIX2STRUCT_VISION_INPUTS_DOCSTRING = r"""
Args:
flattened_patches (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_channels x patch_height x patch_width)`):
Flattened and padded pixel values. These values can be obtained using [`AutoImageProcessor`]. See
[`Pix2StructVisionImageProcessor.__call__`] for details. Check the [original
paper](https://arxiv.org/abs/2210.03347) (figure 5) for more details.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Pix2StructVision Model transformer outputting raw hidden-states without any specific head on top.",
PIX2STRUCT_VISION_START_DOCSTRING,
)
class Pix2StructVisionModel(Pix2StructPreTrainedModel):
config_class = Pix2StructVisionConfig
main_input_name = "flattened_patches"
supports_gradient_checkpointing = True
_no_split_modules = ["Pix2StructVisionLayer"]
def __init__(self, config: Pix2StructConfig):
super().__init__(config)
self.config = config
self.embeddings = Pix2StructVisionEmbeddings(config)
self.encoder = Pix2StructVisionEncoder(config)
self.layernorm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_projection
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(PIX2STRUCT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
flattened_patches: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Example:
```python
>>> import requests
>>> from PIL import Image
>>> from transformers import AutoProcessor, Pix2StructVisionModel
>>> image_processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
>>> model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base")
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 2048, 768]
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if flattened_patches is None:
raise ValueError("You have to specify flattened_patches")
if attention_mask is None:
# check where `flattened_patches` is not 0
attention_mask = (flattened_patches.sum(dim=-1) != 0).float()
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(flattened_patches)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
if not return_dict:
head_outputs = (sequence_output,)
return head_outputs + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pix2StructText,d_model->hidden_size
class Pix2StructTextDenseGatedActDense(nn.Module):
def __init__(self, config: Pix2StructTextConfig):
super().__init__()
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
class Pix2StructTextLayerFF(nn.Module):
def __init__(self, config: Pix2StructTextConfig):
super().__init__()
self.DenseReluDense = Pix2StructTextDenseGatedActDense(config)
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Copied from transformers.models.t5.modeling_t5.T5LayerFF.forward
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
class Pix2StructTextAttention(nn.Module):
def __init__(self, config: Pix2StructTextConfig, has_relative_attention_bias=False):
super().__init__()
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.hidden_size = config.hidden_size
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.key = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.value = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.output = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
# Adapted from transformers.models.t5.modeling_t5.T5Attention.compute_bias
def compute_bias(self, query_length, key_length, device=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=False,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
real_seq_length = seq_length
if past_key_value is not None:
if len(past_key_value) != 2:
raise ValueError(
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
)
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
def to_projection_shape(states):
"""projection"""
return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
def project(hidden_states, proj_layer, key_value_states, past_key_value):
"""projects hidden states correctly to key/query states"""
if key_value_states is None:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = to_projection_shape(proj_layer(hidden_states))
elif past_key_value is None:
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = to_projection_shape(proj_layer(key_value_states))
if past_key_value is not None:
if key_value_states is None:
# self-attn
# (batch_size, n_heads, key_length, dim_per_head)
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
elif past_key_value.shape[2] != key_value_states.shape[1]:
# checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = to_projection_shape(proj_layer(key_value_states))
else:
# cross-attn
hidden_states = past_key_value
return hidden_states
# get query states
# (batch_size, n_heads, seq_length, dim_per_head)
query_states = to_projection_shape(self.query(hidden_states))
# get key/value states
key_states = project(
hidden_states, self.key, key_value_states, past_key_value[0] if past_key_value is not None else None
)
value_states = project(
hidden_states, self.value, key_value_states, past_key_value[1] if past_key_value is not None else None
)
# compute scores
scores = torch.matmul(
query_states, key_states.transpose(3, 2)
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
if position_bias is None:
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
# if key and values are already calculated
# we want only the last query position bias
if past_key_value is not None:
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
if mask is not None:
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
# (batch_size, seq_length, dim)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
attn_output = self.output(attn_output)
present_key_value_state = (key_states, value_states) if use_cache else None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.SelfAttention->self.attention,config.d_model->config.hidden_size
class Pix2StructTextLayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.attention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.EncDecAttention->self.attention,config.d_model->config.hidden_size
class Pix2StructTextLayerCrossAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=False)
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.attention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class Pix2StructTextBlock(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.self_attention = Pix2StructTextLayerSelfAttention(
config, has_relative_attention_bias=has_relative_attention_bias
)
self.encoder_decoder_attention = Pix2StructTextLayerCrossAttention(config)
self.mlp = Pix2StructTextLayerFF(config)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
):
if past_key_value is not None:
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
if len(past_key_value) != expected_num_past_key_values:
raise ValueError(
f"There should be {expected_num_past_key_values} past states. "
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
f"Got {len(past_key_value)} past key / value states"
)
self_attn_past_key_value = past_key_value[:2]
cross_attn_past_key_value = past_key_value[2:]
else:
self_attn_past_key_value, cross_attn_past_key_value = None, None
self_attention_outputs = self.self_attention(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, present_key_value_state = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = encoder_hidden_states is not None
if do_cross_attention:
# the actual query length is unknown for cross attention
# if using past key value states. Need to inject it here
if present_key_value_state is not None:
query_length = present_key_value_state[0].shape[2]
else:
query_length = None
cross_attention_outputs = self.encoder_decoder_attention(
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
query_length=query_length,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = cross_attention_outputs[0]
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Combine self attn and cross attn key value states
if present_key_value_state is not None:
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.mlp(hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (present_key_value_state,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs
PIX2STRUCT_START_DOCSTRING = r"""
The Pix2Struct model was proposed in [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language
Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu,
Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. It's an encoder decoder
transformer pre-trained in a image-to-text setting.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config (Union[`Pix2StructConfig`, `Pix2StructTextConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PIX2STRUCT_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Pix2StructText is a model with relative position
embeddings so you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [Pix2StructText
Training](./t5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText
Training](./t5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
PIX2STRUCT_INPUTS_DOCSTRING = r"""
Args:
flattened_patches (`torch.FloatTensor` of shape `(batch_size, seq_length, hidden_size)`):
Flattened pixel patches. the `hidden_size` is obtained by the following formula: `hidden_size` =
`num_channels` * `patch_size` * `patch_size`
The process of flattening the pixel patches is done by `Pix2StructProcessor`.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText
Training](./t5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss for the decoder.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The standalone text decoder of Pix2Struct",
PIX2STRUCT_START_DOCSTRING,
)
class Pix2StructTextModel(Pix2StructPreTrainedModel):
config_class = Pix2StructTextConfig
_no_split_modules = ["Pix2StructTextBlock"]
_tied_weights_keys = ["lm_head.weight"]
supports_gradient_checkpointing = True
def __init__(self, config):
super().__init__(config)
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layer = nn.ModuleList(
[Pix2StructTextBlock(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
)
self.final_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(PIX2STRUCT_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor, ...], CausalLMOutputWithCrossAttentions]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoProcessor, Pix2StructTextModel
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
>>> model = Pix2StructTextModel.from_pretrained("google/pix2struct-textcaps-base")
>>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> loss = outputs.loss
```
"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if encoder_attention_mask is None and encoder_hidden_states is not None:
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.layer)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(zip(self.layer, past_key_values)):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
extended_attention_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + (present_key_value_state,)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
loss_fct = nn.CrossEntropyLoss(ignore_index=-100, reduction="mean")
loss = loss_fct(logits.contiguous().view(-1, logits.size(-1)), labels.contiguous().view(-1))
if not return_dict:
return tuple(
v
for v in [
loss,
logits,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"A conditional generation model with a language modeling head. Can be used for sequence generation tasks.",
PIX2STRUCT_START_DOCSTRING,
)
class Pix2StructForConditionalGeneration(Pix2StructPreTrainedModel):
config_class = Pix2StructConfig
main_input_name = "flattened_patches"
_tied_weights_keys = ["decoder.lm_head.weight"]
def __init__(self, config: Pix2StructConfig):
super().__init__(config)
self.encoder = Pix2StructVisionModel(config.vision_config)
self.decoder = Pix2StructTextModel(config.text_config)
self.is_vqa = config.is_vqa
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.decoder.set_input_embeddings(new_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.decoder.set_output_embeddings(new_embeddings)
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
model_embeds = self.decoder.resize_token_embeddings(new_num_tokens)
# update vocab size
self.config.text_config.vocab_size = new_num_tokens
return model_embeds
def get_decoder(self):
return self.decoder
def get_encoder(self):
return self.encoder
@add_start_docstrings_to_model_forward(PIX2STRUCT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
flattened_patches: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
Inference:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
>>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base")
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> # autoregressive generation
>>> generated_ids = model.generate(**inputs, max_new_tokens=50)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_text)
A stop sign is on a street corner.
>>> # conditional generation
>>> text = "A picture of"
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_special_tokens=False)
>>> generated_ids = model.generate(**inputs, max_new_tokens=50)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_text)
A picture of a stop sign with a red stop sign
```
Training:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-base")
>>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-base")
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "A stop sign is on the street corner."
>>> inputs = processor(images=image, return_tensors="pt")
>>> labels = processor(text=text, return_tensors="pt").input_ids
>>> # forward pass
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> print(f"{loss.item():.5f}")
5.94282
```"""
use_cache = use_cache if use_cache is not None else self.config.text_config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
flattened_patches=flattened_patches,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
decoder_attention_mask = (
decoder_attention_mask
if decoder_attention_mask is not None
else decoder_input_ids.ne(self.config.pad_token_id).float()
)
# Always attend to the first token
decoder_attention_mask[:, 0] = 1
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
labels=labels,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=decoder_outputs.loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
flattened_patches: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
if decoder_attention_mask is None:
decoder_attention_mask = torch.ones_like(input_ids).to(input_ids.device)
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
return {
"flattened_patches": flattened_patches,
"decoder_input_ids": input_ids,
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
| transformers/src/transformers/models/pix2struct/modeling_pix2struct.py/0 | {
"file_path": "transformers/src/transformers/models/pix2struct/modeling_pix2struct.py",
"repo_id": "transformers",
"token_count": 35764
} | 354 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Feature extractor class for Pop2Piano"""
import warnings
from typing import List, Optional, Union
import numpy
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import (
TensorType,
is_essentia_available,
is_librosa_available,
is_scipy_available,
logging,
requires_backends,
)
if is_essentia_available():
import essentia
import essentia.standard
if is_librosa_available():
import librosa
if is_scipy_available():
import scipy
logger = logging.get_logger(__name__)
class Pop2PianoFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a Pop2Piano feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
This class extracts rhythm and preprocesses the audio before it is passed to the model. First the audio is passed
to `RhythmExtractor2013` algorithm which extracts the beat_times, beat positions and estimates their confidence as
well as tempo in bpm, then beat_times is interpolated and to get beatsteps. Later we calculate
extrapolated_beatsteps from it to be used in tokenizer. On the other hand audio is resampled to self.sampling_rate
and preprocessed and then log mel spectogram is computed from that to be used in our transformer model.
Args:
sampling_rate (`int`, *optional*, defaults to 22050):
Target Sampling rate of audio signal. It's the sampling rate that we forward to the model.
padding_value (`int`, *optional*, defaults to 0):
Padding value used to pad the audio. Should correspond to silences.
window_size (`int`, *optional*, defaults to 4096):
Length of the window in samples to which the Fourier transform is applied.
hop_length (`int`, *optional*, defaults to 1024):
Step size between each window of the waveform, in samples.
min_frequency (`float`, *optional*, defaults to 10.0):
Lowest frequency that will be used in the log-mel spectrogram.
feature_size (`int`, *optional*, defaults to 512):
The feature dimension of the extracted features.
num_bars (`int`, *optional*, defaults to 2):
Determines interval between each sequence.
"""
model_input_names = ["input_features", "beatsteps", "extrapolated_beatstep"]
def __init__(
self,
sampling_rate: int = 22050,
padding_value: int = 0,
window_size: int = 4096,
hop_length: int = 1024,
min_frequency: float = 10.0,
feature_size: int = 512,
num_bars: int = 2,
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
**kwargs,
)
self.sampling_rate = sampling_rate
self.padding_value = padding_value
self.window_size = window_size
self.hop_length = hop_length
self.min_frequency = min_frequency
self.feature_size = feature_size
self.num_bars = num_bars
self.mel_filters = mel_filter_bank(
num_frequency_bins=(self.window_size // 2) + 1,
num_mel_filters=self.feature_size,
min_frequency=self.min_frequency,
max_frequency=float(self.sampling_rate // 2),
sampling_rate=self.sampling_rate,
norm=None,
mel_scale="htk",
)
def mel_spectrogram(self, sequence: np.ndarray):
"""
Generates MelSpectrogram.
Args:
sequence (`numpy.ndarray`):
The sequence of which the mel-spectrogram will be computed.
"""
mel_specs = []
for seq in sequence:
window = np.hanning(self.window_size + 1)[:-1]
mel_specs.append(
spectrogram(
waveform=seq,
window=window,
frame_length=self.window_size,
hop_length=self.hop_length,
power=2.0,
mel_filters=self.mel_filters,
)
)
mel_specs = np.array(mel_specs)
return mel_specs
def extract_rhythm(self, audio: np.ndarray):
"""
This algorithm(`RhythmExtractor2013`) extracts the beat positions and estimates their confidence as well as
tempo in bpm for an audio signal. For more information please visit
https://essentia.upf.edu/reference/std_RhythmExtractor2013.html .
Args:
audio(`numpy.ndarray`):
raw audio waveform which is passed to the Rhythm Extractor.
"""
requires_backends(self, ["essentia"])
essentia_tracker = essentia.standard.RhythmExtractor2013(method="multifeature")
bpm, beat_times, confidence, estimates, essentia_beat_intervals = essentia_tracker(audio)
return bpm, beat_times, confidence, estimates, essentia_beat_intervals
def interpolate_beat_times(
self, beat_times: numpy.ndarray, steps_per_beat: numpy.ndarray, n_extend: numpy.ndarray
):
"""
This method takes beat_times and then interpolates that using `scipy.interpolate.interp1d` and the output is
then used to convert raw audio to log-mel-spectrogram.
Args:
beat_times (`numpy.ndarray`):
beat_times is passed into `scipy.interpolate.interp1d` for processing.
steps_per_beat (`int`):
used as an parameter to control the interpolation.
n_extend (`int`):
used as an parameter to control the interpolation.
"""
requires_backends(self, ["scipy"])
beat_times_function = scipy.interpolate.interp1d(
np.arange(beat_times.size),
beat_times,
bounds_error=False,
fill_value="extrapolate",
)
ext_beats = beat_times_function(
np.linspace(0, beat_times.size + n_extend - 1, beat_times.size * steps_per_beat + n_extend)
)
return ext_beats
def preprocess_mel(self, audio: np.ndarray, beatstep: np.ndarray):
"""
Preprocessing for log-mel-spectrogram
Args:
audio (`numpy.ndarray` of shape `(audio_length, )` ):
Raw audio waveform to be processed.
beatstep (`numpy.ndarray`):
Interpolated values of the raw audio. If beatstep[0] is greater than 0.0, then it will be shifted by
the value at beatstep[0].
"""
if audio is not None and len(audio.shape) != 1:
raise ValueError(
f"Expected `audio` to be a single channel audio input of shape `(n, )` but found shape {audio.shape}."
)
if beatstep[0] > 0.0:
beatstep = beatstep - beatstep[0]
num_steps = self.num_bars * 4
num_target_steps = len(beatstep)
extrapolated_beatstep = self.interpolate_beat_times(
beat_times=beatstep, steps_per_beat=1, n_extend=(self.num_bars + 1) * 4 + 1
)
sample_indices = []
max_feature_length = 0
for i in range(0, num_target_steps, num_steps):
start_idx = i
end_idx = min(i + num_steps, num_target_steps)
start_sample = int(extrapolated_beatstep[start_idx] * self.sampling_rate)
end_sample = int(extrapolated_beatstep[end_idx] * self.sampling_rate)
sample_indices.append((start_sample, end_sample))
max_feature_length = max(max_feature_length, end_sample - start_sample)
padded_batch = []
for start_sample, end_sample in sample_indices:
feature = audio[start_sample:end_sample]
padded_feature = np.pad(
feature,
((0, max_feature_length - feature.shape[0]),),
"constant",
constant_values=0,
)
padded_batch.append(padded_feature)
padded_batch = np.asarray(padded_batch)
return padded_batch, extrapolated_beatstep
def _pad(self, features: np.ndarray, add_zero_line=True):
features_shapes = [each_feature.shape for each_feature in features]
attention_masks, padded_features = [], []
for i, each_feature in enumerate(features):
# To pad "input_features".
if len(each_feature.shape) == 3:
features_pad_value = max([*zip(*features_shapes)][1]) - features_shapes[i][1]
attention_mask = np.ones(features_shapes[i][:2], dtype=np.int64)
feature_padding = ((0, 0), (0, features_pad_value), (0, 0))
attention_mask_padding = (feature_padding[0], feature_padding[1])
# To pad "beatsteps" and "extrapolated_beatstep".
else:
each_feature = each_feature.reshape(1, -1)
features_pad_value = max([*zip(*features_shapes)][0]) - features_shapes[i][0]
attention_mask = np.ones(features_shapes[i], dtype=np.int64).reshape(1, -1)
feature_padding = attention_mask_padding = ((0, 0), (0, features_pad_value))
each_padded_feature = np.pad(each_feature, feature_padding, "constant", constant_values=self.padding_value)
attention_mask = np.pad(
attention_mask, attention_mask_padding, "constant", constant_values=self.padding_value
)
if add_zero_line:
# if it is batched then we seperate each examples using zero array
zero_array_len = max([*zip(*features_shapes)][1])
# we concatenate the zero array line here
each_padded_feature = np.concatenate(
[each_padded_feature, np.zeros([1, zero_array_len, self.feature_size])], axis=0
)
attention_mask = np.concatenate(
[attention_mask, np.zeros([1, zero_array_len], dtype=attention_mask.dtype)], axis=0
)
padded_features.append(each_padded_feature)
attention_masks.append(attention_mask)
padded_features = np.concatenate(padded_features, axis=0).astype(np.float32)
attention_masks = np.concatenate(attention_masks, axis=0).astype(np.int64)
return padded_features, attention_masks
def pad(
self,
inputs: BatchFeature,
is_batched: bool,
return_attention_mask: bool,
return_tensors: Optional[Union[str, TensorType]] = None,
):
"""
Pads the inputs to same length and returns attention_mask.
Args:
inputs (`BatchFeature`):
Processed audio features.
is_batched (`bool`):
Whether inputs are batched or not.
return_attention_mask (`bool`):
Whether to return attention mask or not.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
If nothing is specified, it will return list of `np.ndarray` arrays.
Return:
`BatchFeature` with attention_mask, attention_mask_beatsteps and attention_mask_extrapolated_beatstep added
to it:
- **attention_mask** numpy.ndarray of shape `(batch_size, max_input_features_seq_length)` --
Example :
1, 1, 1, 0, 0 (audio 1, also here it is padded to max length of 5 thats why there are 2 zeros at
the end indicating they are padded)
0, 0, 0, 0, 0 (zero pad to seperate audio 1 and 2)
1, 1, 1, 1, 1 (audio 2)
0, 0, 0, 0, 0 (zero pad to seperate audio 2 and 3)
1, 1, 1, 1, 1 (audio 3)
- **attention_mask_beatsteps** numpy.ndarray of shape `(batch_size, max_beatsteps_seq_length)`
- **attention_mask_extrapolated_beatstep** numpy.ndarray of shape `(batch_size,
max_extrapolated_beatstep_seq_length)`
"""
processed_features_dict = {}
for feature_name, feature_value in inputs.items():
if feature_name == "input_features":
padded_feature_values, attention_mask = self._pad(feature_value, add_zero_line=True)
processed_features_dict[feature_name] = padded_feature_values
if return_attention_mask:
processed_features_dict["attention_mask"] = attention_mask
else:
padded_feature_values, attention_mask = self._pad(feature_value, add_zero_line=False)
processed_features_dict[feature_name] = padded_feature_values
if return_attention_mask:
processed_features_dict[f"attention_mask_{feature_name}"] = attention_mask
# If we are processing only one example, we should remove the zero array line since we don't need it to
# seperate examples from each other.
if not is_batched and not return_attention_mask:
processed_features_dict["input_features"] = processed_features_dict["input_features"][:-1, ...]
outputs = BatchFeature(processed_features_dict, tensor_type=return_tensors)
return outputs
def __call__(
self,
audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
sampling_rate: Union[int, List[int]],
steps_per_beat: int = 2,
resample: Optional[bool] = True,
return_attention_mask: Optional[bool] = False,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model.
Args:
audio (`np.ndarray`, `List`):
The audio or batch of audio to be processed. Each audio can be a numpy array, a list of float values, a
list of numpy arrays or a list of list of float values.
sampling_rate (`int`):
The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
steps_per_beat (`int`, *optional*, defaults to 2):
This is used in interpolating `beat_times`.
resample (`bool`, *optional*, defaults to `True`):
Determines whether to resample the audio to `sampling_rate` or not before processing. Must be True
during inference.
return_attention_mask (`bool` *optional*, defaults to `False`):
Denotes if attention_mask for input_features, beatsteps and extrapolated_beatstep will be given as
output or not. Automatically set to True for batched inputs.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
If nothing is specified, it will return list of `np.ndarray` arrays.
"""
requires_backends(self, ["librosa"])
is_batched = bool(isinstance(audio, (list, tuple)) and isinstance(audio[0], (np.ndarray, tuple, list)))
if is_batched:
# This enables the user to process files of different sampling_rate at same time
if not isinstance(sampling_rate, list):
raise ValueError(
"Please give sampling_rate of each audio separately when you are passing multiple raw_audios at the same time. "
f"Received {sampling_rate}, expected [audio_1_sr, ..., audio_n_sr]."
)
return_attention_mask = True if return_attention_mask is None else return_attention_mask
else:
audio = [audio]
sampling_rate = [sampling_rate]
return_attention_mask = False if return_attention_mask is None else return_attention_mask
batch_input_features, batch_beatsteps, batch_ext_beatstep = [], [], []
for single_raw_audio, single_sampling_rate in zip(audio, sampling_rate):
bpm, beat_times, confidence, estimates, essentia_beat_intervals = self.extract_rhythm(
audio=single_raw_audio
)
beatsteps = self.interpolate_beat_times(beat_times=beat_times, steps_per_beat=steps_per_beat, n_extend=1)
if self.sampling_rate != single_sampling_rate and self.sampling_rate is not None:
if resample:
# Change sampling_rate to self.sampling_rate
single_raw_audio = librosa.core.resample(
single_raw_audio,
orig_sr=single_sampling_rate,
target_sr=self.sampling_rate,
res_type="kaiser_best",
)
else:
warnings.warn(
f"The sampling_rate of the provided audio is different from the target sampling_rate "
f"of the Feature Extractor, {self.sampling_rate} vs {single_sampling_rate}. "
f"In these cases it is recommended to use `resample=True` in the `__call__` method to "
f"get the optimal behaviour."
)
single_sampling_rate = self.sampling_rate
start_sample = int(beatsteps[0] * single_sampling_rate)
end_sample = int(beatsteps[-1] * single_sampling_rate)
input_features, extrapolated_beatstep = self.preprocess_mel(
single_raw_audio[start_sample:end_sample], beatsteps - beatsteps[0]
)
mel_specs = self.mel_spectrogram(input_features.astype(np.float32))
# apply np.log to get log mel-spectrograms
log_mel_specs = np.log(np.clip(mel_specs, a_min=1e-6, a_max=None))
input_features = np.transpose(log_mel_specs, (0, -1, -2))
batch_input_features.append(input_features)
batch_beatsteps.append(beatsteps)
batch_ext_beatstep.append(extrapolated_beatstep)
output = BatchFeature(
{
"input_features": batch_input_features,
"beatsteps": batch_beatsteps,
"extrapolated_beatstep": batch_ext_beatstep,
}
)
output = self.pad(
output,
is_batched=is_batched,
return_attention_mask=return_attention_mask,
return_tensors=return_tensors,
)
return output
| transformers/src/transformers/models/pop2piano/feature_extraction_pop2piano.py/0 | {
"file_path": "transformers/src/transformers/models/pop2piano/feature_extraction_pop2piano.py",
"repo_id": "transformers",
"token_count": 8827
} | 355 |
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" RemBERT model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/config.json",
# See all RemBERT models at https://huggingface.co/models?filter=rembert
}
class RemBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`RemBertModel`]. It is used to instantiate an
RemBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the RemBERT
[google/rembert](https://huggingface.co/google/rembert) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 250300):
Vocabulary size of the RemBERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`RemBertModel`] or [`TFRemBertModel`]. Vocabulary size of the model.
Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of
[`RemBertModel`].
hidden_size (`int`, *optional*, defaults to 1152):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 18):
Number of attention heads for each attention layer in the Transformer encoder.
input_embedding_size (`int`, *optional*, defaults to 256):
Dimensionality of the input embeddings.
output_embedding_size (`int`, *optional*, defaults to 1664):
Dimensionality of the output embeddings.
intermediate_size (`int`, *optional*, defaults to 4608):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0):
The dropout ratio for the attention probabilities.
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the classifier layer when fine-tuning.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`RemBertModel`] or [`TFRemBertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
Example:
```python
>>> from transformers import RemBertModel, RemBertConfig
>>> # Initializing a RemBERT rembert style configuration
>>> configuration = RemBertConfig()
>>> # Initializing a model from the rembert style configuration
>>> model = RemBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "rembert"
def __init__(
self,
vocab_size=250300,
hidden_size=1152,
num_hidden_layers=32,
num_attention_heads=18,
input_embedding_size=256,
output_embedding_size=1664,
intermediate_size=4608,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
classifier_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_cache=True,
pad_token_id=0,
bos_token_id=312,
eos_token_id=313,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.input_embedding_size = input_embedding_size
self.output_embedding_size = output_embedding_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.classifier_dropout_prob = classifier_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.tie_word_embeddings = False
class RemBertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
| transformers/src/transformers/models/rembert/configuration_rembert.py/0 | {
"file_path": "transformers/src/transformers/models/rembert/configuration_rembert.py",
"repo_id": "transformers",
"token_count": 2855
} | 356 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch RoBERTa model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN, gelu
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_roberta import RobertaConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "roberta-base"
_CONFIG_FOR_DOC = "RobertaConfig"
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"roberta-base",
"roberta-large",
"roberta-large-mnli",
"distilroberta-base",
"roberta-base-openai-detector",
"roberta-large-openai-detector",
# See all RoBERTa models at https://huggingface.co/models?filter=roberta
]
class RobertaEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
# End copy
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
class RobertaSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class RobertaSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
class RobertaAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = RobertaSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = RobertaSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class RobertaIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class RobertaOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
class RobertaLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = RobertaAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = RobertaAttention(config, position_embedding_type="absolute")
self.intermediate = RobertaIntermediate(config)
self.output = RobertaOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
class RobertaEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler
class RobertaPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class RobertaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RobertaConfig
base_model_prefix = "roberta"
supports_gradient_checkpointing = True
_no_split_modules = ["RobertaEmbeddings", "RobertaSelfAttention"]
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
ROBERTA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`RobertaConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ROBERTA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
>= 2. All the value in this tensor should be always < type_vocab_size.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
ROBERTA_START_DOCSTRING,
)
class RobertaModel(RobertaPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
"""
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = RobertaEmbeddings(config)
self.encoder = RobertaEncoder(config)
self.pooler = RobertaPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.""", ROBERTA_START_DOCSTRING
)
class RobertaForCausalLM(RobertaPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.lm_head = RobertaLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, RobertaForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> config = AutoConfig.from_pretrained("roberta-base")
>>> config.is_decoder = True
>>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(prediction_scores.device)
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING)
class RobertaForMaskedLM(RobertaPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.lm_head = RobertaLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
expected_output="' Paris'",
expected_loss=0.1,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(prediction_scores.device)
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class RobertaLMHead(nn.Module):
"""Roberta Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
return x
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
self.bias = self.decoder.bias
@add_start_docstrings(
"""
RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ROBERTA_START_DOCSTRING,
)
class RobertaForSequenceClassification(RobertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.classifier = RobertaClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="cardiffnlp/twitter-roberta-base-emotion",
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'optimism'",
expected_loss=0.08,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ROBERTA_START_DOCSTRING,
)
class RobertaForMultipleChoice(RobertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.roberta = RobertaModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.roberta(
flat_input_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(reshaped_logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
ROBERTA_START_DOCSTRING,
)
class RobertaForTokenClassification(RobertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="Jean-Baptiste/roberta-large-ner-english",
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
expected_loss=0.01,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class RobertaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ROBERTA_START_DOCSTRING,
)
class RobertaForQuestionAnswering(RobertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="deepset/roberta-base-squad2",
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="' puppet'",
expected_loss=0.86,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
| transformers/src/transformers/models/roberta/modeling_roberta.py/0 | {
"file_path": "transformers/src/transformers/models/roberta/modeling_roberta.py",
"repo_id": "transformers",
"token_count": 30190
} | 357 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert RoFormer checkpoint."""
import argparse
import torch
from transformers import RoFormerConfig, RoFormerForMaskedLM, load_tf_weights_in_roformer
from transformers.utils import logging
logging.set_verbosity_info()
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
# Initialise PyTorch model
config = RoFormerConfig.from_json_file(bert_config_file)
print(f"Building PyTorch model from configuration: {config}")
model = RoFormerForMaskedLM(config)
# Load weights from tf checkpoint
load_tf_weights_in_roformer(model, config, tf_checkpoint_path)
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}")
torch.save(model.state_dict(), pytorch_dump_path, _use_new_zipfile_serialization=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| transformers/src/transformers/models/roformer/convert_roformer_original_tf_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/roformer/convert_roformer_original_tf_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 776
} | 358 |
# coding=utf-8
# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TensorFlow SAM model. This file was mostly generated by auto-translation from the PyTorch original. In the event of a
discrepancy, the original file should be regarded as the 'reference' version.
"""
from __future__ import annotations
import collections
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import ACT2FN
from ...modeling_tf_outputs import TFBaseModelOutput
from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, keras, shape_list, unpack_inputs
from ...tf_utils import flatten, functional_layernorm
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "SamConfig"
_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge"
TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/sam-vit-huge",
"facebook/sam-vit-large",
"facebook/sam-vit-base",
# See all SAM models at https://huggingface.co/models?filter=sam
]
@dataclass
class TFSamVisionEncoderOutput(ModelOutput):
"""
Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection
layer to the pooler_output.
Args:
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: tf.Tensor | None = None
last_hidden_state: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFSamImageSegmentationOutput(ModelOutput):
"""
Base class for Segment-Anything model's output
Args:
iou_scores (`tf.Tensor` of shape `(batch_size, num_masks)`):
The iou scores of the predicted masks.
pred_masks (`tf.Tensor` of shape `(batch_size, num_masks, height, width)`):
The predicted low resolutions masks. Needs to be post-processed by the processor
vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs.
vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
mask_decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
iou_scores: tf.Tensor = None
pred_masks: tf.Tensor = None
vision_hidden_states: Tuple[tf.Tensor, ...] | None = None
vision_attentions: Tuple[tf.Tensor, ...] | None = None
mask_decoder_attentions: Tuple[tf.Tensor, ...] | None = None
class TFSamPatchEmbeddings(keras.layers.Layer):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = keras.layers.Conv2D(
hidden_size, kernel_size=patch_size, strides=patch_size, name="projection"
)
def call(self, pixel_values):
batch_size, num_channels, height, width = shape_list(pixel_values)
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
embeddings = self.projection(tf.transpose(pixel_values, perm=[0, 2, 3, 1]))
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
class TFSamMLPBlock(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.lin1 = keras.layers.Dense(config.mlp_dim, name="lin1")
self.lin2 = keras.layers.Dense(config.hidden_size, name="lin2")
self.act = ACT2FN[config.hidden_act]
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.lin1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.lin2(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "lin1", None) is not None:
with tf.name_scope(self.lin1.name):
self.lin1.build([None, None, self.config.hidden_size])
if getattr(self, "lin2", None) is not None:
with tf.name_scope(self.lin2.name):
self.lin2.build([None, None, self.config.mlp_dim])
class TFSamLayerNorm(keras.layers.Layer):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", **kwargs):
super().__init__(**kwargs)
self.eps = eps
self.data_format = data_format
self.normalized_shape = normalized_shape
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
def build(self, input_shape):
self.weight = self.add_weight(shape=self.normalized_shape, initializer="ones", name="weight")
self.bias = self.add_weight(shape=self.normalized_shape, initializer="zeros", name="bias")
super().build(input_shape)
def call(self, x: tf.Tensor) -> tf.Tensor:
if self.data_format == "channels_last":
x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=-1)
elif self.data_format == "channels_first":
x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=1)
return x
class TFSamAttention(keras.layers.Layer):
"""
SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
values.
"""
def __init__(self, config, downsample_rate=None, **kwargs):
super().__init__(**kwargs)
self.hidden_size = config.hidden_size
downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate
self.internal_dim = config.hidden_size // downsample_rate
self.num_attention_heads = config.num_attention_heads
if self.internal_dim % config.num_attention_heads != 0:
raise ValueError("num_attention_heads must divide hidden_size.")
self.q_proj = keras.layers.Dense(self.internal_dim, name="q_proj")
self.k_proj = keras.layers.Dense(self.internal_dim, name="k_proj")
self.v_proj = keras.layers.Dense(self.internal_dim, name="v_proj")
self.out_proj = keras.layers.Dense(self.hidden_size, name="out_proj")
def _separate_heads(self, hidden_states: tf.Tensor, num_attention_heads: int) -> tf.Tensor:
batch, point_batch_size, n_tokens, channel = shape_list(hidden_states)
c_per_head = channel // num_attention_heads
hidden_states = tf.reshape(
hidden_states, (batch * point_batch_size, n_tokens, num_attention_heads, c_per_head)
)
return tf.transpose(hidden_states, perm=[0, 2, 1, 3])
def _recombine_heads(self, hidden_states: tf.Tensor, point_batch_size: int) -> tf.Tensor:
batch, n_heads, n_tokens, c_per_head = shape_list(hidden_states)
hidden_states = tf.transpose(hidden_states, perm=[0, 2, 1, 3])
return tf.reshape(
hidden_states,
(batch // tf.reduce_max([1, point_batch_size]), point_batch_size, n_tokens, n_heads * c_per_head),
)
def call(self, query: tf.Tensor, key: tf.Tensor, value: tf.Tensor) -> tf.Tensor:
# Input projections
query = self.q_proj(query)
key = self.k_proj(key)
value = self.v_proj(value)
point_batch_size = shape_list(query)[1]
# Separate into heads
query = self._separate_heads(query, self.num_attention_heads)
key = self._separate_heads(key, self.num_attention_heads)
value = self._separate_heads(value, self.num_attention_heads)
# SamAttention
_, _, _, c_per_head = shape_list(query)
attn = tf.matmul(
query, tf.transpose(key, perm=[0, 1, 3, 2])
) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens
attn = attn / tf.math.sqrt(float(c_per_head))
attn = tf.nn.softmax(attn, axis=-1)
# Get output
out = tf.matmul(attn, value)
out = self._recombine_heads(out, point_batch_size)
out = self.out_proj(out)
return out
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.hidden_size])
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.hidden_size])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.internal_dim])
class TFSamTwoWayAttentionBlock(keras.layers.Layer):
def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, **kwargs):
"""
A transformer block with four layers:
(1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on
sparse inputs (4) cross attention of dense inputs -> sparse inputs
Arguments:
config (`SamMaskDecoderConfig`):
The configuration file used to instantiate the block
attention_downsample_rate (*optionalk*, int, defaults to 2):
The downsample ratio of the block used to reduce the inner dim of the attention.
skip_first_layer_pe (*optional*, bool, defaults to `False`):
Whether or not to skip the addition of the query_point_embedding on the first layer.
"""
super().__init__(**kwargs)
self.hidden_size = config.hidden_size
self.layer_norm_eps = config.layer_norm_eps
self.self_attn = TFSamAttention(config, downsample_rate=1, name="self_attn")
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm1")
self.cross_attn_token_to_image = TFSamAttention(
config, downsample_rate=attention_downsample_rate, name="cross_attn_token_to_image"
)
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm2")
self.mlp = TFSamMLPBlock(config, name="mlp")
self.layer_norm3 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm3")
self.layer_norm4 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm4")
self.cross_attn_image_to_token = TFSamAttention(
config, downsample_rate=attention_downsample_rate, name="cross_attn_image_to_token"
)
self.skip_first_layer_pe = skip_first_layer_pe
def call(
self,
queries: tf.Tensor,
keys: tf.Tensor,
query_point_embedding: tf.Tensor,
key_point_embedding: tf.Tensor,
output_attentions: bool = False,
):
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(query=queries, key=queries, value=queries)
else:
query = queries + query_point_embedding
attn_out = self.self_attn(query=query, key=query, value=queries)
queries = queries + attn_out
queries = self.layer_norm1(queries)
# Cross attention block, tokens attending to image embedding
query = queries + query_point_embedding
key = keys + key_point_embedding
attn_out = self.cross_attn_token_to_image(query=query, key=key, value=keys)
queries = queries + attn_out
queries = self.layer_norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.layer_norm3(queries)
# Cross attention block, image embedding attending to tokens
query = queries + query_point_embedding
key = keys + key_point_embedding
attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries)
keys = keys + attn_out
keys = self.layer_norm4(keys)
outputs = (queries, keys)
if output_attentions:
outputs = outputs + (attn_out,)
else:
outputs = outputs + (None,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "layer_norm1", None) is not None:
with tf.name_scope(self.layer_norm1.name):
self.layer_norm1.build([None, None, None, self.hidden_size])
if getattr(self, "cross_attn_token_to_image", None) is not None:
with tf.name_scope(self.cross_attn_token_to_image.name):
self.cross_attn_token_to_image.build(None)
if getattr(self, "layer_norm2", None) is not None:
with tf.name_scope(self.layer_norm2.name):
self.layer_norm2.build([None, None, None, self.hidden_size])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "layer_norm3", None) is not None:
with tf.name_scope(self.layer_norm3.name):
self.layer_norm3.build([None, None, None, self.hidden_size])
if getattr(self, "layer_norm4", None) is not None:
with tf.name_scope(self.layer_norm4.name):
self.layer_norm4.build([None, None, None, self.hidden_size])
if getattr(self, "cross_attn_image_to_token", None) is not None:
with tf.name_scope(self.cross_attn_image_to_token.name):
self.cross_attn_image_to_token.build(None)
class TFSamTwoWayTransformer(keras.layers.Layer):
def __init__(self, config: SamMaskDecoderConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.num_hidden_layers = config.num_hidden_layers
self.layers = []
for i in range(self.num_hidden_layers):
self.layers.append(TFSamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0), name=f"layers_._{i}"))
self.final_attn_token_to_image = TFSamAttention(config, name="final_attn_token_to_image")
self.layer_norm_final_attn = keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="layer_norm_final_attn"
)
def call(
self,
point_embeddings: tf.Tensor,
image_embeddings: tf.Tensor,
image_positional_embeddings: tf.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TFBaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
all_attentions = ()
if image_embeddings is None:
raise ValueError("You have to specify an image_embedding")
image_embeddings = tf.transpose(flatten(image_embeddings, 2), perm=(0, 2, 1))[:, None]
image_positional_embeddings = tf.transpose(flatten(image_positional_embeddings, 2), (0, 2, 1))[:, None]
# Prepare queries
queries = point_embeddings
keys = image_embeddings
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys, attention_outputs = layer(
queries=queries,
keys=keys,
query_point_embedding=point_embeddings,
key_point_embedding=image_positional_embeddings,
output_attentions=output_attentions,
)
if output_attentions:
all_attentions = all_attentions + (attention_outputs,)
# Apply the final attenion layer from the points to the image
query = queries + point_embeddings
key = keys + image_positional_embeddings
attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys)
queries = queries + attn_out
queries = self.layer_norm_final_attn(queries)
return queries, keys, all_attentions
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "final_attn_token_to_image", None) is not None:
with tf.name_scope(self.final_attn_token_to_image.name):
self.final_attn_token_to_image.build(None)
if getattr(self, "layer_norm_final_attn", None) is not None:
with tf.name_scope(self.layer_norm_final_attn.name):
self.layer_norm_final_attn.build([None, None, None, self.config.hidden_size])
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFSamFeedForward(keras.layers.Layer):
def __init__(
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, **kwargs
):
super().__init__(**kwargs)
self.num_layers = num_layers
self.activation = keras.layers.ReLU()
self.proj_in = keras.layers.Dense(hidden_dim, input_shape=(input_dim,), name="proj_in")
self.proj_out = keras.layers.Dense(output_dim, input_shape=(hidden_dim,), name="proj_out")
self.layers = [
keras.layers.Dense(hidden_dim, input_shape=(hidden_dim,), name=f"layers_._{i}")
for i in range(num_layers - 2)
]
self.sigmoid_output = sigmoid_output
self.hidden_dim = hidden_dim
self.input_dim = input_dim
def call(self, hidden_states):
hidden_states = self.proj_in(hidden_states)
hidden_states = self.activation(hidden_states)
for layer in self.layers:
hidden_states = self.activation(layer(hidden_states))
hidden_states = self.proj_out(hidden_states)
if self.sigmoid_output:
hidden_states = tf.sigmoid(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "proj_in", None) is not None:
with tf.name_scope(self.proj_in.name):
self.proj_in.build([None, None, self.input_dim])
if getattr(self, "proj_out", None) is not None:
with tf.name_scope(self.proj_out.name):
self.proj_out.build([None, None, self.hidden_dim])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build([None, None, self.hidden_dim])
class TFSamMaskDecoder(keras.layers.Layer):
def __init__(self, config: SamMaskDecoderConfig, **kwargs):
super().__init__(**kwargs)
self.hidden_size = config.hidden_size
self.num_multimask_outputs = config.num_multimask_outputs
self.num_mask_tokens = config.num_multimask_outputs + 1
self.transformer = TFSamTwoWayTransformer(config, name="transformer")
self.upscale_conv1 = keras.layers.Conv2DTranspose(
self.hidden_size // 4, kernel_size=2, strides=2, name="upscale_conv1", data_format="channels_first"
)
self.upscale_conv2 = keras.layers.Conv2DTranspose(
self.hidden_size // 8, kernel_size=2, strides=2, name="upscale_conv2", data_format="channels_first"
)
self.upscale_layer_norm = TFSamLayerNorm(
self.hidden_size // 4, data_format="channels_first", name="upscale_layer_norm"
)
self.activation = tf.nn.gelu
mlps_list = []
for i in range(self.num_mask_tokens):
mlps_list += [
TFSamFeedForward(
self.hidden_size,
self.hidden_size,
self.hidden_size // 8,
3,
name=f"output_hypernetworks_mlps_._{i}",
)
]
self.output_hypernetworks_mlps = mlps_list
self.iou_prediction_head = TFSamFeedForward(
self.hidden_size,
config.iou_head_hidden_dim,
self.num_mask_tokens,
config.iou_head_depth,
name="iou_prediction_head",
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
self.iou_token = self.add_weight(shape=(1, self.hidden_size), name="iou_token.weight", trainable=True)
self.mask_tokens = self.add_weight(
shape=(self.num_mask_tokens, self.hidden_size), name="mask_tokens.weight", trainable=True
)
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "upscale_conv1", None) is not None:
with tf.name_scope(self.upscale_conv1.name):
self.upscale_conv1.build([None, self.hidden_size, None, None])
if getattr(self, "upscale_conv2", None) is not None:
with tf.name_scope(self.upscale_conv2.name):
self.upscale_conv2.build([None, self.hidden_size // 4, None, None])
if getattr(self, "upscale_layer_norm", None) is not None:
with tf.name_scope(self.upscale_layer_norm.name):
self.upscale_layer_norm.build(None)
if getattr(self, "iou_prediction_head", None) is not None:
with tf.name_scope(self.iou_prediction_head.name):
self.iou_prediction_head.build(None)
for mlp in self.output_hypernetworks_mlps:
with tf.name_scope(mlp.name):
mlp.build(None)
def call(
self,
image_embeddings: tf.Tensor,
image_positional_embeddings: tf.Tensor,
sparse_prompt_embeddings: tf.Tensor,
dense_prompt_embeddings: tf.Tensor,
multimask_output: bool,
output_attentions: Optional[bool] = None,
) -> Tuple[tf.Tensor, tf.Tensor]:
batch_size, num_channels, height, width = shape_list(image_embeddings)
point_batch_size = tf.math.maximum(1, tf.shape(sparse_prompt_embeddings)[1])
output_tokens = tf.concat([self.iou_token, self.mask_tokens], axis=0) # Should be (1, 32) + (4, 32) = (5, 32)
output_tokens = tf.tile(
output_tokens[None, None, :], [batch_size, point_batch_size, 1, 1]
) # Should be (batch_size, point_size, 5, 32)
# Matt: The original Torch code checked that the sum of sparse_prompt_embeddings equalled 0. However, this only
# happens when the sparse prompt embeddings are an empty tensor with shape[1] == 0. I replaced
# it with an explicit shape check to avoid data-dependent control flow which breaks XLA.
if shape_list(sparse_prompt_embeddings)[1] != 0:
tokens = tf.concat((output_tokens, sparse_prompt_embeddings), axis=2)
else:
tokens = output_tokens
point_embeddings = tf.cast(tokens, self.iou_token.dtype)
image_embeddings = image_embeddings + dense_prompt_embeddings
image_embeddings = tf.repeat(image_embeddings, point_batch_size, axis=0)
image_positional_embeddings = tf.repeat(image_positional_embeddings, point_batch_size, axis=0)
point_embedding, image_embeddings, attentions = self.transformer(
point_embeddings=point_embeddings,
image_embeddings=image_embeddings,
image_positional_embeddings=image_positional_embeddings,
output_attentions=output_attentions,
)
iou_token_out = point_embedding[:, :, 0, :]
mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :]
image_embeddings = tf.transpose(image_embeddings, perm=(0, 1, 3, 2))
image_embeddings = tf.reshape(image_embeddings, [batch_size * point_batch_size, num_channels, height, width])
upscaled_embedding = self.upscale_conv1(image_embeddings)
upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding))
upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding))
hyper_in_list = []
for i in range(self.num_mask_tokens):
current_mlp = self.output_hypernetworks_mlps[i]
hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])]
hyper_in = tf.stack(hyper_in_list, axis=2)
_, num_channels, height, width = shape_list(upscaled_embedding)
upscaled_embedding = tf.reshape(
upscaled_embedding, [batch_size, point_batch_size, num_channels, height * width]
)
masks = tf.reshape(hyper_in @ upscaled_embedding, [batch_size, point_batch_size, -1, height, width])
iou_pred = self.iou_prediction_head(iou_token_out)
if multimask_output:
mask_slice = slice(1, None)
else:
mask_slice = slice(0, 1)
masks = masks[:, :, mask_slice, :, :]
iou_pred = iou_pred[:, :, mask_slice]
outputs = (masks, iou_pred)
if output_attentions:
outputs = outputs + (attentions,)
else:
outputs = outputs + (None,)
return outputs
class TFSamPositionalEmbedding(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.scale = config.hidden_size // 2
self.config = config
def build(self, input_shape):
# TODO Matt: What is going on here? Why is a non-trainable weight randomly initialized?
self.positional_embedding = self.add_weight(
name="positional_embedding",
shape=(2, self.config.num_pos_feats),
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=self.scale),
trainable=False,
)
super().build(input_shape)
def call(self, input_coords, input_shape=None):
"""Positionally encode points that are normalized to [0,1]."""
coordinates = tf.identity(input_coords)
if input_shape is not None:
coordinates = tf.stack(
[
tf.cast(coordinates[:, :, :, 0], tf.float32) / input_shape[1],
tf.cast(coordinates[:, :, :, 1], tf.float32) / input_shape[0],
],
axis=-1,
)
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coordinates = 2 * coordinates - 1
coordinates = tf.cast(coordinates, self.positional_embedding.dtype)
coordinates = tf.matmul(coordinates, self.positional_embedding)
coordinates = 2 * np.pi * coordinates
# outputs d_1 x ... x d_n x channel shape
return tf.concat([tf.sin(coordinates), tf.cos(coordinates)], axis=-1)
class TFSamMaskEmbedding(keras.layers.Layer):
def __init__(self, config: SamPromptEncoderConfig, **kwargs):
super().__init__(**kwargs)
self.mask_input_channels = config.mask_input_channels // 4
self.activation = ACT2FN[config.hidden_act]
self.conv1 = keras.layers.Conv2D(self.mask_input_channels, kernel_size=2, strides=2, name="conv1")
self.conv2 = keras.layers.Conv2D(config.mask_input_channels, kernel_size=2, strides=2, name="conv2")
self.conv3 = keras.layers.Conv2D(config.hidden_size, kernel_size=1, name="conv3")
self.layer_norm1 = TFSamLayerNorm(self.mask_input_channels, config.layer_norm_eps, name="layer_norm1")
self.layer_norm2 = TFSamLayerNorm(self.mask_input_channels * 4, config.layer_norm_eps, name="layer_norm2")
self.config = config
def call(self, masks):
masks = tf.transpose(masks, perm=(0, 2, 3, 1)) # Convert to channels-last
hidden_states = self.conv1(masks)
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.activation(hidden_states)
dense_embeddings = self.conv3(hidden_states)
dense_embeddings = tf.transpose(dense_embeddings, perm=(0, 3, 1, 2)) # Convert back to channels-first
return dense_embeddings
def build(self, input_shape=None):
# This class needs an explicit build method because it isn't called with the standard dummy inputs
if self.built:
return
self.built = True
with tf.name_scope("conv1"):
self.conv1.build([None, None, None, 1])
with tf.name_scope("conv2"):
self.conv2.build([None, None, None, self.mask_input_channels])
with tf.name_scope("conv3"):
self.conv3.build([None, None, None, self.mask_input_channels * 4])
with tf.name_scope("layer_norm1"):
self.layer_norm1.build([None, None, None, self.mask_input_channels])
with tf.name_scope("layer_norm2"):
self.layer_norm2.build([None, None, None, self.mask_input_channels * 4])
class TFSamPromptEncoder(keras.layers.Layer):
def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding, **kwargs):
super().__init__(**kwargs)
self.shared_embedding = shared_patch_embedding
self.mask_embed = TFSamMaskEmbedding(config, name="mask_embed")
self.no_mask_embed = None
self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size)
self.input_image_size = config.image_size
self.point_embed = []
self.hidden_size = config.hidden_size
self.not_a_point_embed = None
self.config = config
def build(self, input_shape=None):
self.no_mask_embed = self.add_weight(
name="no_mask_embed.weight",
shape=(1, self.hidden_size),
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
trainable=True,
)
self.point_embed = [
self.add_weight(
name=f"point_embed_._{i}.weight",
shape=(1, self.hidden_size),
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
trainable=True,
)
for i in range(self.config.num_point_embeddings)
]
self.not_a_point_embed = self.add_weight(
name="not_a_point_embed.weight",
shape=(1, self.hidden_size),
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
trainable=True,
)
with tf.name_scope("mask_embed"):
# We must explicitly build the mask embed because it isn't touched by the standard dummy inputs
self.mask_embed.build(
(None, self.config.mask_input_channels, self.config.image_size, self.config.image_size)
)
if self.built:
return
self.built = True
if getattr(self, "mask_embed", None) is not None:
with tf.name_scope(self.mask_embed.name):
self.mask_embed.build(None)
def _embed_points(self, points: tf.Tensor, labels: tf.Tensor, pad: bool) -> tf.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
if pad:
target_point_shape = (shape_list(points)[0], shape_list(points)[1], 1, shape_list(points)[-1])
target_labels_shape = (shape_list(points)[0], shape_list(points)[1], 1)
padding_point = tf.zeros(target_point_shape, dtype=points.dtype)
padding_label = -tf.ones(target_labels_shape, dtype=labels.dtype)
points = tf.concat([points, padding_point], axis=2)
labels = tf.concat([labels, padding_label], axis=2)
input_shape = (self.input_image_size, self.input_image_size)
point_embedding = self.shared_embedding(points, input_shape)
point_embedding = tf.where(labels[..., None] == -1, self.not_a_point_embed[0], point_embedding)
point_embedding = tf.where(
labels[..., None] != -10,
point_embedding,
tf.zeros_like(point_embedding),
)
point_embedding = tf.where(
(labels == 0)[:, :, :, None], point_embedding + self.point_embed[0], point_embedding
)
point_embedding = tf.where(
(labels == 1)[:, :, :, None], point_embedding + self.point_embed[1], point_embedding
)
return point_embedding
def _embed_boxes(self, boxes: tf.Tensor) -> tf.Tensor:
"""Embeds box prompts."""
boxes = boxes + 0.5 # Shift to center of pixel
batch_size, nb_boxes = shape_list(boxes)[:2]
coords = tf.reshape(boxes, (batch_size, nb_boxes, 2, 2))
input_shape = (self.input_image_size, self.input_image_size)
corner_embedding = self.shared_embedding(coords, input_shape)
corner_embedding += tf.where(
tf.range(shape_list(corner_embedding)[2])[None, None, :, None] == 0,
self.point_embed[2][0],
self.point_embed[3][0],
)
return corner_embedding
def call(
self,
batch_size: Optional[int],
input_points: Optional[Tuple[tf.Tensor, tf.Tensor]],
input_labels: tf.Tensor | None,
input_boxes: tf.Tensor | None,
input_masks: tf.Tensor | None,
) -> Tuple[tf.Tensor, tf.Tensor]:
"""
Embeds different types of prompts, returning both sparse and dense embeddings.
Args:
points (`tf.Tensor`, *optional*):
point coordinates and labels to embed.
boxes (`tf.Tensor`, *optional*):
boxes to embed
masks (`tf.Tensor`, *optional*):
masks to embed
"""
sparse_embeddings = None
if input_points is not None:
batch_size, point_batch_size = shape_list(input_points)[:2]
if input_labels is None:
raise ValueError("If points are provided, labels must also be provided.")
point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None))
sparse_embeddings = tf.zeros(
(batch_size, point_batch_size, 0, self.hidden_size), dtype=point_embeddings.dtype
)
sparse_embeddings = tf.concat([sparse_embeddings, point_embeddings], axis=2)
if input_boxes is not None:
batch_size = shape_list(input_boxes)[0]
box_embeddings = self._embed_boxes(input_boxes)
if sparse_embeddings is None:
sparse_embeddings = box_embeddings
else:
sparse_embeddings = tf.concat([sparse_embeddings, box_embeddings], axis=2)
if input_masks is not None:
dense_embeddings = self.mask_embed(input_masks)
else:
dense_embeddings = self.no_mask_embed[0]
dense_embeddings = tf.reshape(dense_embeddings, (1, -1, 1, 1))
dense_embeddings = tf.tile(
dense_embeddings, (batch_size, 1, self.image_embedding_size[0], self.image_embedding_size[1])
)
if sparse_embeddings is None:
sparse_embeddings = tf.zeros((batch_size, 0, 1, self.hidden_size), dtype=dense_embeddings.dtype)
return sparse_embeddings, dense_embeddings
class TFSamVisionAttention(keras.layers.Layer):
"""Multi-head Attention block with relative position embeddings."""
def __init__(self, config, window_size, **kwargs):
super().__init__(**kwargs)
input_size = (
(config.image_size // config.patch_size, config.image_size // config.patch_size)
if window_size == 0
else (window_size, window_size)
)
self.input_size = input_size
self.num_attention_heads = config.num_attention_heads
head_dim = config.hidden_size // config.num_attention_heads
self.head_dim = head_dim
self.scale = head_dim**-0.5
self.dropout = config.attention_dropout
self.qkv = keras.layers.Dense(config.hidden_size * 3, use_bias=config.qkv_bias, name="qkv")
self.proj = keras.layers.Dense(config.hidden_size, name="proj")
self.use_rel_pos = config.use_rel_pos
if self.use_rel_pos:
if input_size is None:
raise ValueError("Input size must be provided if using relative positional encoding.")
self.config = config
def build(self, input_shape=None):
if self.input_size is not None:
# initialize relative positional embeddings
self.rel_pos_h = self.add_weight(
shape=(2 * self.input_size[0] - 1, self.head_dim), initializer="zeros", name="rel_pos_h"
)
self.rel_pos_w = self.add_weight(
shape=(2 * self.input_size[1] - 1, self.head_dim), initializer="zeros", name="rel_pos_w"
)
if self.built:
return
self.built = True
if getattr(self, "qkv", None) is not None:
with tf.name_scope(self.qkv.name):
self.qkv.build([None, None, self.config.hidden_size])
if getattr(self, "proj", None) is not None:
with tf.name_scope(self.proj.name):
self.proj.build([None, None, self.config.hidden_size])
def get_rel_pos(self, q_size: int, k_size: int, rel_pos: tf.Tensor) -> tf.Tensor:
"""
Get relative positional embeddings according to the relative positions of
query and key sizes.
Args:
q_size (int):
size of the query.
k_size (int):
size of key k.
rel_pos (`tf.Tensor`):
relative position embeddings (L, channel).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
rel_pos_resized = tf.image.resize(
tf.reshape(rel_pos, (1, rel_pos.shape[0], -1)),
size=(max_rel_dist, rel_pos.shape[1]),
method="bilinear",
)
rel_pos_resized = tf.reshape(rel_pos_resized, (-1, max_rel_dist))
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = tf.expand_dims(tf.range(q_size, dtype=tf.float32), 1) * max(k_size / q_size, 1.0)
k_coords = tf.expand_dims(tf.range(k_size, dtype=tf.float32), 0) * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return tf.gather(rel_pos_resized, tf.cast(relative_coords, tf.int32))
def add_decomposed_rel_pos(
self,
attn: tf.Tensor,
query: tf.Tensor,
rel_pos_h: tf.Tensor,
rel_pos_w: tf.Tensor,
q_size: Tuple[int, int],
k_size: Tuple[int, int],
) -> tf.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
Args:
attn (`tf.Tensor`):
attention map.
query (`tf.Tensor`):
query q in the attention layer with shape (batch_size, query_height * query_width, channel).
rel_pos_h (`tf.Tensor`):
relative position embeddings (Lh, channel) for height axis.
rel_pos_w (`tf.Tensor`):
relative position embeddings (Lw, channel) for width axis.
q_size (tuple):
spatial sequence size of query q with (query_height, query_width).
k_size (tuple):
spatial sequence size of key k with (key_height, key_width).
Returns:
attn (`tf.Tensor`):
attention map with added relative positional embeddings.
"""
query_height, query_width = q_size
key_height, key_width = k_size
relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)
batch_size, _, dim = shape_list(query)
reshaped_query = tf.reshape(query, (batch_size, query_height, query_width, dim))
rel_h = tf.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
rel_w = tf.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
attn = tf.reshape(attn, (batch_size, query_height, query_width, key_height, key_width))
attn = attn + tf.expand_dims(rel_h, axis=-1) + tf.expand_dims(rel_w, axis=-2)
attn = tf.reshape(attn, (batch_size, query_height * query_width, key_height * key_width))
return attn
def call(self, hidden_states: tf.Tensor, output_attentions=False, training=False) -> tf.Tensor:
batch_size, height, width, _ = shape_list(hidden_states)
# qkv with shape (3, batch_size, nHead, height * width, channel)
qkv = tf.reshape(self.qkv(hidden_states), (batch_size, height * width, 3, self.num_attention_heads, -1))
qkv = tf.transpose(qkv, perm=(2, 0, 3, 1, 4))
# q, k, v with shape (batch_size * nHead, height * width, channel)
query, key, value = tf.unstack(
tf.reshape(qkv, (3, batch_size * self.num_attention_heads, height * width, -1)), axis=0
)
attn_weights = tf.matmul(query * self.scale, key, transpose_b=True)
if self.use_rel_pos:
attn_weights = self.add_decomposed_rel_pos(
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
)
attn_weights = tf.nn.softmax(attn_weights, axis=-1)
if training:
attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout)
else:
attn_probs = attn_weights
attn_output = tf.reshape(attn_probs @ value, (batch_size, self.num_attention_heads, height, width, -1))
attn_output = tf.transpose(attn_output, perm=(0, 2, 3, 1, 4))
attn_output = tf.reshape(attn_output, (batch_size, height, width, self.config.hidden_size))
attn_output = self.proj(attn_output)
if output_attentions:
outputs = (attn_output, attn_weights)
else:
outputs = (attn_output, None)
return outputs
class TFSamVisionLayer(keras.layers.Layer):
def __init__(self, config, window_size, **kwargs):
super().__init__(**kwargs)
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
self.attn = TFSamVisionAttention(config, window_size, name="attn")
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
self.mlp = TFSamMLPBlock(config, name="mlp")
self.window_size = window_size
self.config = config
def window_partition(self, hidden_states: tf.Tensor, window_size: int) -> Tuple[tf.Tensor, Tuple[int, int]]:
batch_size, height, width, channel = shape_list(hidden_states)
pad_h = (window_size - height % window_size) % window_size
pad_w = (window_size - width % window_size) % window_size
if pad_h > 0 or pad_w > 0:
hidden_states = tf.pad(hidden_states, [[0, 0], [0, pad_h], [0, pad_w], [0, 0]])
pad_height, pad_width = height + pad_h, width + pad_w
hidden_states = tf.reshape(
hidden_states,
[batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel],
)
windows = tf.reshape(
tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [-1, window_size, window_size, channel]
)
return windows, (pad_height, pad_width)
def window_unpartition(
self, windows: tf.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int]
) -> tf.Tensor:
pad_height, pad_width = padding_shape
height, width = original_shape
batch_size = shape_list(windows)[0] // (pad_height * pad_width // window_size // window_size)
hidden_states = tf.reshape(
windows, [batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1]
)
hidden_states = tf.reshape(
tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [batch_size, pad_height, pad_width, -1]
)
if pad_height > height or pad_width > width:
hidden_states = hidden_states[:, :height, :width, :]
return hidden_states
def call(
self,
hidden_states: tf.Tensor,
output_attentions: Optional[bool] = False,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
if self.window_size > 0:
height, width = hidden_states.shape[1], hidden_states.shape[2]
hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)
hidden_states, attn_weights = self.attn(
hidden_states=hidden_states,
output_attentions=output_attentions,
training=training,
)
if self.window_size > 0:
hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width))
hidden_states = residual + hidden_states
layernorm_output = self.layer_norm2(hidden_states)
hidden_states = hidden_states + self.mlp(layernorm_output)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer_norm1", None) is not None:
with tf.name_scope(self.layer_norm1.name):
self.layer_norm1.build([None, None, None, self.config.hidden_size])
if getattr(self, "attn", None) is not None:
with tf.name_scope(self.attn.name):
self.attn.build(None)
if getattr(self, "layer_norm2", None) is not None:
with tf.name_scope(self.layer_norm2.name):
self.layer_norm2.build([None, None, None, self.config.hidden_size])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
class TFSamVisionNeck(keras.layers.Layer):
def __init__(self, config: SamVisionConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.conv1 = keras.layers.Conv2D(
config.output_channels,
kernel_size=1,
use_bias=False,
name="conv1",
)
self.layer_norm1 = TFSamLayerNorm(config.output_channels, name="layer_norm1")
self.conv2 = keras.layers.Conv2D(
config.output_channels,
kernel_size=3,
padding="same",
use_bias=False,
name="conv2",
)
self.layer_norm2 = TFSamLayerNorm(config.output_channels, name="layer_norm2")
def call(self, hidden_states):
hidden_states = self.conv1(hidden_states)
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.layer_norm2(hidden_states)
hidden_states = tf.transpose(hidden_states, perm=[0, 3, 1, 2])
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv1", None) is not None:
with tf.name_scope(self.conv1.name):
self.conv1.build([None, None, None, self.config.hidden_size])
if getattr(self, "layer_norm1", None) is not None:
with tf.name_scope(self.layer_norm1.name):
self.layer_norm1.build(None)
if getattr(self, "conv2", None) is not None:
with tf.name_scope(self.conv2.name):
self.conv2.build([None, None, None, self.config.output_channels])
if getattr(self, "layer_norm2", None) is not None:
with tf.name_scope(self.layer_norm2.name):
self.layer_norm2.build(None)
class TFSamVisionEncoder(keras.layers.Layer):
def __init__(self, config: SamVisionConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.image_size = config.image_size
self.patch_embed = TFSamPatchEmbeddings(config, name="patch_embed")
self.pos_embed = None
self.layers = []
for i in range(config.num_hidden_layers):
layer = TFSamVisionLayer(
config,
window_size=config.window_size if i not in config.global_attn_indexes else 0,
name=f"layers_._{i}",
)
self.layers.append(layer)
self.neck = TFSamVisionNeck(config, name="neck")
def build(self, input_shape=None):
if self.built:
return
self.built = True
if self.config.use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = self.add_weight(
shape=[
1,
self.config.image_size // self.config.patch_size,
self.config.image_size // self.config.patch_size,
self.config.hidden_size,
],
initializer="zeros",
trainable=True,
name="pos_embed",
)
if getattr(self, "patch_embed", None) is not None:
with tf.name_scope(self.patch_embed.name):
self.patch_embed.build(None)
if getattr(self, "neck", None) is not None:
with tf.name_scope(self.neck.name):
self.neck.build(None)
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
def get_input_embeddings(self):
return self.patch_embed
def call(
self,
pixel_values: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFSamVisionEncoderOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.patch_embed(pixel_values)
if self.pos_embed is not None:
hidden_states = hidden_states + self.pos_embed
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(hidden_states, output_attentions=output_attentions, training=training)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.neck(hidden_states)
if not return_dict:
outputs = (hidden_states,)
if output_hidden_states:
outputs = outputs + (all_hidden_states,)
if output_attentions:
outputs = outputs + (all_self_attentions,)
return outputs
return TFSamVisionEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class TFSamPreTrainedModel(TFPreTrainedModel):
config_class = SamConfig
base_model_prefix = "sam"
main_input_name = "pixel_values"
SAM_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a TensorFlow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
subclass. Use it as a regular TensorFlow Model and refer to the TensorFlow documentation for all matter related to
general usage and behavior.
Parameters:
config ([`SamConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
SAM_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for
details.
input_points (`tf.Tensor` of shape `(batch_size, num_points, 2)`):
Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much
better results. The points can be obtained by passing a list of list of list to the processor that will
create corresponding `tf` tensors of dimension 4. The first dimension is the image batch size, the second
dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict per
input point), the third dimension is the number of points per segmentation mask (it is possible to pass
multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal)
coordinates of the point. If a different number of points is passed either for each image, or for each
mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the
computation of the embedding will be skipped for these points using the labels.
input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points)`):
Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the
official implementation, there are 3 types of labels
- `1`: the point is a point that contains the object of interest
- `0`: the point is a point that does not contain the object of interest
- `-1`: the point corresponds to the background
We added the label:
- `-10`: the point is a padding point, thus should be ignored by the prompt encoder
The padding labels should be automatically done by the processor.
input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes, 4)`):
Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to
much better generated masks. The boxes can be obtained by passing a list of list of list to the processor,
that will generate a `tf` tensor, with each dimension corresponding respectively to the image batch size,
the number of boxes per image and the coordinates of the top left and botton right point of the box. In the
order (`x1`, `y1`, `x2`, `y2`):
- `x1`: the x coordinate of the top left point of the input box
- `y1`: the y coordinate of the top left point of the input box
- `x2`: the x coordinate of the bottom right point of the input box
- `y2`: the y coordinate of the bottom right point of the input box
input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`):
SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to
generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be
manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`).
image_embeddings (`tf.Tensor` of shape `(batch_size, output_channels, window_size, window_size)`):
Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory
efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings`
method, and then feed them to the `call` method instead of feeding the `pixel_values`.
multimask_output (`bool`, *optional*):
In the original implementation and paper, the model always outputs 3 masks per image (or per point / per
bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the
"best" mask, by specifying `multimask_output=False`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"Segment Anything Model (SAM) for generating segmentation masks, given an input image and ",
" optional 2D location and bounding boxes.",
SAM_START_DOCSTRING,
)
class TFSamModel(TFSamPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"prompt_encoder.shared_embedding.positional_embedding"]
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.shared_image_embedding = TFSamPositionalEmbedding(config.vision_config, name="shared_image_embedding")
self.vision_encoder = TFSamVisionEncoder(config.vision_config, name="vision_encoder")
self.prompt_encoder = TFSamPromptEncoder(
config.prompt_encoder_config, self.shared_image_embedding, name="prompt_encoder"
)
self.mask_decoder = TFSamMaskDecoder(config.mask_decoder_config, name="mask_decoder")
self.config = config
def get_input_embeddings(self):
return self.vision_encoder.get_input_embeddings()
def get_image_wide_positional_embeddings(self):
size = self.config.prompt_encoder_config.image_embedding_size
grid = tf.ones((size, size))
y_embed = tf.math.cumsum(grid, axis=0) - 0.5
x_embed = tf.math.cumsum(grid, axis=1) - 0.5
y_embed = y_embed / size
x_embed = x_embed / size
positional_embedding = self.shared_image_embedding(tf.stack([x_embed, y_embed], axis=-1))
return tf.expand_dims(tf.transpose(positional_embedding, perm=[2, 0, 1]), axis=0) # channel x height x width
def get_image_embeddings(
self,
pixel_values,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Returns the image embeddings by passing the pixel values through the vision encoder.
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Input pixel values
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.TFModelOutput`] instead of a plain tuple.
"""
vision_output = self.vision_encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeddings = vision_output[0]
return image_embeddings
def get_prompt_embeddings(
self,
input_points: tf.Tensor | None = None,
input_labels: tf.Tensor | None = None,
input_boxes: tf.Tensor | None = None,
input_masks: tf.Tensor | None = None,
):
r"""
Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder.
Args:
input_points (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`):
Optional input points for the prompt encoder. The padding of the point is automatically done by the
processor. `point_batch_size` refers to the number of masks that we want the model to predict per
point. The model will output `point_batch_size` times 3 masks in total.
input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image)`):
Optional input labels for the prompt encoder. The padding of the labels is automatically done by the
processor, or can be fed by the user.
input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes_per_image, 4)`):
Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the
processor. users can also pass manually the input boxes.
input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`):
Optional input masks for the prompt encoder.
"""
prompt_output = self.prompt_encoder(
input_points=input_points,
input_labels=input_labels,
input_boxes=input_boxes,
input_masks=input_masks,
)
return prompt_output
@unpack_inputs
@add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING)
def call(
self,
pixel_values: TFModelInputType | None = None,
input_points: tf.Tensor | None = None,
input_labels: tf.Tensor | None = None,
input_boxes: tf.Tensor | None = None,
input_masks: tf.Tensor | None = None,
image_embeddings: tf.Tensor | None = None,
multimask_output: bool = True,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
**kwargs,
) -> TFSamImageSegmentationOutput | Tuple[tf.Tensor]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None and image_embeddings is None:
raise ValueError("Either pixel_values or image_embeddings must be provided.")
if pixel_values is not None and image_embeddings is not None:
raise ValueError("Only one of pixel_values and image_embeddings can be provided.")
if input_points is not None and len(input_points.shape) != 4:
raise ValueError(
"The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.",
" got {}.".format(input_points.shape),
)
if input_boxes is not None and len(input_boxes.shape) != 3:
raise ValueError(
"The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.",
" got {}.".format(input_boxes.shape),
)
if input_points is not None and input_boxes is not None:
point_batch_size = shape_list(input_points)[1]
box_batch_size = shape_list(input_boxes)[1]
if point_batch_size != box_batch_size:
raise ValueError(
"You should provide as many bounding boxes as input points per box. Got {} and {}.".format(
point_batch_size, box_batch_size
)
)
if pixel_values is not None:
# Ensures that later checks pass even with an all-None shape from the serving signature
pixel_values = tf.ensure_shape(
pixel_values,
[
None,
self.config.vision_config.num_channels,
self.config.vision_config.image_size,
self.config.vision_config.image_size,
],
)
image_positional_embeddings = self.get_image_wide_positional_embeddings()
# repeat with batch size
batch_size = shape_list(pixel_values)[0] if pixel_values is not None else shape_list(image_embeddings)[0]
image_positional_embeddings = tf.repeat(image_positional_embeddings, batch_size, axis=0)
vision_attentions = None
vision_hidden_states = None
if pixel_values is not None:
vision_outputs = self.vision_encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
training=training,
)
image_embeddings = vision_outputs["last_hidden_state"]
if output_hidden_states:
vision_hidden_states = vision_outputs["hidden_states"]
if output_attentions:
vision_attentions = vision_outputs["attentions"]
if input_points is not None and input_labels is None:
input_labels = tf.ones_like(input_points[:, :, :, 0], dtype=tf.int32)
if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]:
raise ValueError(
"The batch size of the image embeddings and the input points must be the same. ",
"Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]),
" if you want to pass multiple points for the same image, make sure that you passed ",
" input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ",
" input_labels of shape (batch_size, point_batch_size, num_points_per_image)",
)
sparse_embeddings, dense_embeddings = self.prompt_encoder(
batch_size=shape_list(image_embeddings)[0],
input_points=input_points,
input_labels=input_labels,
input_boxes=input_boxes,
input_masks=input_masks,
)
low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder(
image_embeddings=image_embeddings,
image_positional_embeddings=image_positional_embeddings,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
output_attentions=output_attentions,
)
if not return_dict:
output = (iou_predictions, low_res_masks)
if output_hidden_states:
output = output + (vision_hidden_states,)
if output_attentions:
output = output + (vision_attentions, mask_decoder_attentions)
return output
return TFSamImageSegmentationOutput(
iou_scores=iou_predictions,
pred_masks=low_res_masks,
vision_hidden_states=vision_hidden_states,
vision_attentions=vision_attentions,
mask_decoder_attentions=mask_decoder_attentions,
)
def serving_output(self, output: TFSamImageSegmentationOutput) -> TFSamImageSegmentationOutput:
hs = tf.convert_to_tensor(output.vision_hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.vision_attentions) if self.config.output_attentions else None
return TFSamImageSegmentationOutput(
iou_scores=output.iou_scores,
pred_masks=output.pred_masks,
vision_hidden_states=hs if self.config.output_hidden_states else None,
vision_attentions=attns if self.config.output_attentions else None,
mask_decoder_attentions=output.mask_decoder_attentions if self.config.output_attentions else None,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "shared_image_embedding", None) is not None:
with tf.name_scope(self.shared_image_embedding.name):
self.shared_image_embedding.build(None)
if getattr(self, "vision_encoder", None) is not None:
with tf.name_scope(self.vision_encoder.name):
self.vision_encoder.build(None)
if getattr(self, "prompt_encoder", None) is not None:
with tf.name_scope(self.prompt_encoder.name):
self.prompt_encoder.build(None)
if getattr(self, "mask_decoder", None) is not None:
with tf.name_scope(self.mask_decoder.name):
self.mask_decoder.build(None)
| transformers/src/transformers/models/sam/modeling_tf_sam.py/0 | {
"file_path": "transformers/src/transformers/models/sam/modeling_tf_sam.py",
"repo_id": "transformers",
"token_count": 33371
} | 359 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert SegFormer checkpoints."""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def rename_keys(state_dict, encoder_only=False):
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head"):
key = "segformer.encoder." + key
if key.startswith("backbone"):
key = key.replace("backbone", "segformer.encoder")
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
idx = key[key.find("patch_embed") + len("patch_embed")]
key = key.replace(f"patch_embed{idx}", f"patch_embeddings.{int(idx)-1}")
if "norm" in key:
key = key.replace("norm", "layer_norm")
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
idx = key[key.find("segformer.encoder.layer_norm") + len("segformer.encoder.layer_norm")]
key = key.replace(f"layer_norm{idx}", f"layer_norm.{int(idx)-1}")
if "layer_norm1" in key:
key = key.replace("layer_norm1", "layer_norm_1")
if "layer_norm2" in key:
key = key.replace("layer_norm2", "layer_norm_2")
if "block" in key:
# replace for example block1 by block.0
idx = key[key.find("block") + len("block")]
key = key.replace(f"block{idx}", f"block.{int(idx)-1}")
if "attn.q" in key:
key = key.replace("attn.q", "attention.self.query")
if "attn.proj" in key:
key = key.replace("attn.proj", "attention.output.dense")
if "attn" in key:
key = key.replace("attn", "attention.self")
if "fc1" in key:
key = key.replace("fc1", "dense1")
if "fc2" in key:
key = key.replace("fc2", "dense2")
if "linear_pred" in key:
key = key.replace("linear_pred", "classifier")
if "linear_fuse" in key:
key = key.replace("linear_fuse.conv", "linear_fuse")
key = key.replace("linear_fuse.bn", "batch_norm")
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
idx = key[key.find("linear_c") + len("linear_c")]
key = key.replace(f"linear_c{idx}", f"linear_c.{int(idx)-1}")
if key.startswith("head"):
key = key.replace("head", "classifier")
new_state_dict[key] = value
return new_state_dict
def read_in_k_v(state_dict, config):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks):
for j in range(config.depths[i]):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
kv_weight = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.weight")
kv_bias = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.bias")
# next, add keys and values (in that order) to the state dict
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[
: config.hidden_sizes[i], :
]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[
config.hidden_sizes[i] :, :
]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[
config.hidden_sizes[i] :
]
# We will verify our results on a COCO image
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@torch.no_grad()
def convert_segformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our SegFormer structure.
"""
# load default SegFormer configuration
config = SegformerConfig()
encoder_only = False
# set attributes based on model_name
repo_id = "huggingface/label-files"
if "segformer" in model_name:
size = model_name[len("segformer.") : len("segformer.") + 2]
if "ade" in model_name:
config.num_labels = 150
filename = "ade20k-id2label.json"
expected_shape = (1, 150, 128, 128)
elif "city" in model_name:
config.num_labels = 19
filename = "cityscapes-id2label.json"
expected_shape = (1, 19, 128, 128)
else:
raise ValueError(f"Model {model_name} not supported")
elif "mit" in model_name:
encoder_only = True
size = model_name[4:6]
config.num_labels = 1000
filename = "imagenet-1k-id2label.json"
expected_shape = (1, 1000)
else:
raise ValueError(f"Model {model_name} not supported")
# set config attributes
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
if size == "b0":
pass
elif size == "b1":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 256
elif size == "b2":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 4, 6, 3]
elif size == "b3":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 4, 18, 3]
elif size == "b4":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 8, 27, 3]
elif size == "b5":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 6, 40, 3]
else:
raise ValueError(f"Size {size} not supported")
# load image processor (only resize + normalize)
image_processor = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
# prepare image
image = prepare_img()
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
logger.info(f"Converting model {model_name}...")
# load original state dict
if encoder_only:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
else:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))["state_dict"]
# rename keys
state_dict = rename_keys(state_dict, encoder_only=encoder_only)
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(state_dict, config)
# create HuggingFace model and load state dict
if encoder_only:
config.reshape_last_stage = False
model = SegformerForImageClassification(config)
else:
model = SegformerForSemanticSegmentation(config)
model.load_state_dict(state_dict)
model.eval()
# forward pass
outputs = model(pixel_values)
logits = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
]
)
elif model_name == "segformer.b1.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]],
[[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]],
[[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]],
]
)
elif model_name == "segformer.b2.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]],
[[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]],
[[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]],
]
)
elif model_name == "segformer.b3.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]],
[[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]],
[[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]],
]
)
elif model_name == "segformer.b4.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]],
[[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]],
[[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]],
]
)
elif model_name == "segformer.b5.640x640.ade.160k":
expected_slice = torch.tensor(
[
[[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]],
[[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]],
[[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]],
]
)
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]],
[[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]],
[[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]],
]
)
elif model_name == "segformer.b0.512x1024.city.160k":
expected_slice = torch.tensor(
[
[[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]],
[[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]],
[[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]],
]
)
elif model_name == "segformer.b0.640x1280.city.160k":
expected_slice = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
]
)
elif model_name == "segformer.b0.768x768.city.160k":
expected_slice = torch.tensor(
[
[[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]],
[[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]],
[[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]],
]
)
elif model_name == "segformer.b1.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
]
)
elif model_name == "segformer.b2.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]],
[[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]],
[[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]],
]
)
elif model_name == "segformer.b3.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]],
[[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]],
[[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]],
]
)
elif model_name == "segformer.b4.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]],
[[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]],
[[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]],
]
)
elif model_name == "segformer.b5.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]],
[[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]],
[[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]],
]
)
else:
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-2)
# finally, save model and image processor
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
image_processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
args = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/segformer/convert_segformer_original_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/segformer/convert_segformer_original_to_pytorch.py",
"repo_id": "transformers",
"token_count": 8906
} | 360 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for SigLIP."""
from typing import Dict, List, Optional, Union
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
logger = logging.get_logger(__name__)
if is_vision_available():
import PIL
class SiglipImageProcessor(BaseImageProcessor):
r"""
Constructs a SigLIP image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
`do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, param_name="size", default_to_square=False)
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
height, width = size["height"], size["width"]
images = [
resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| transformers/src/transformers/models/siglip/image_processing_siglip.py/0 | {
"file_path": "transformers/src/transformers/models/siglip/image_processing_siglip.py",
"repo_id": "transformers",
"token_count": 4605
} | 361 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Speech processor class for Speech2Text
"""
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class Speech2TextProcessor(ProcessorMixin):
r"""
Constructs a Speech2Text processor which wraps a Speech2Text feature extractor and a Speech2Text tokenizer into a
single processor.
[`Speech2TextProcessor`] offers all the functionalities of [`Speech2TextFeatureExtractor`] and
[`Speech2TextTokenizer`]. See the [`~Speech2TextProcessor.__call__`] and [`~Speech2TextProcessor.decode`] for more
information.
Args:
feature_extractor (`Speech2TextFeatureExtractor`):
An instance of [`Speech2TextFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`Speech2TextTokenizer`):
An instance of [`Speech2TextTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "Speech2TextFeatureExtractor"
tokenizer_class = "Speech2TextTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
def __call__(self, *args, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to Speech2TextFeatureExtractor's
[`~Speech2TextFeatureExtractor.__call__`] and returns its output. If used in the context
[`~Speech2TextProcessor.as_target_processor`] this method forwards all its arguments to Speech2TextTokenizer's
[`~Speech2TextTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
audio = kwargs.pop("raw_speech")
else:
audio = kwargs.pop("audio", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if audio is not None:
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif audio is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@contextmanager
def as_target_processor(self):
"""
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning
Speech2Text.
"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call."
)
self._in_target_context_manager = True
self.current_processor = self.tokenizer
yield
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
| transformers/src/transformers/models/speech_to_text/processing_speech_to_text.py/0 | {
"file_path": "transformers/src/transformers/models/speech_to_text/processing_speech_to_text.py",
"repo_id": "transformers",
"token_count": 1792
} | 362 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_splinter": ["SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SplinterConfig"],
"tokenization_splinter": ["SplinterTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_splinter_fast"] = ["SplinterTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_splinter"] = [
"SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST",
"SplinterForQuestionAnswering",
"SplinterForPreTraining",
"SplinterLayer",
"SplinterModel",
"SplinterPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_splinter import SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP, SplinterConfig
from .tokenization_splinter import SplinterTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_splinter_fast import SplinterTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_splinter import (
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST,
SplinterForPreTraining,
SplinterForQuestionAnswering,
SplinterLayer,
SplinterModel,
SplinterPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/splinter/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/splinter/__init__.py",
"repo_id": "transformers",
"token_count": 927
} | 363 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Swin SimMIM checkpoints from the original repository.
URL: https://github.com/microsoft/Swin-Transformer/blob/main/MODELHUB.md#simmim-pretrained-swin-v1-models"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def get_swin_config(model_name):
config = SwinConfig(image_size=192)
if "base" in model_name:
window_size = 6
embed_dim = 128
depths = (2, 2, 18, 2)
num_heads = (4, 8, 16, 32)
elif "large" in model_name:
window_size = 12
embed_dim = 192
depths = (2, 2, 18, 2)
num_heads = (6, 12, 24, 48)
else:
raise ValueError("Model not supported, only supports base and large variants")
config.window_size = window_size
config.embed_dim = embed_dim
config.depths = depths
config.num_heads = num_heads
return config
def rename_key(name):
if "encoder.mask_token" in name:
name = name.replace("encoder.mask_token", "embeddings.mask_token")
if "encoder.patch_embed.proj" in name:
name = name.replace("encoder.patch_embed.proj", "embeddings.patch_embeddings.projection")
if "encoder.patch_embed.norm" in name:
name = name.replace("encoder.patch_embed.norm", "embeddings.norm")
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name:
name = name.replace("attn", "attention.self")
if "norm1" in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if name == "encoder.norm.weight":
name = "layernorm.weight"
if name == "encoder.norm.bias":
name = "layernorm.bias"
if "decoder" in name:
pass
else:
name = "swin." + name
return name
def convert_state_dict(orig_state_dict, model):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "attn_mask" in key:
pass
elif "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[2])
block_num = int(key_split[4])
dim = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
orig_state_dict[
f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight"
] = val[:dim, :]
orig_state_dict[f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight"] = val[
dim : dim * 2, :
]
orig_state_dict[
f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight"
] = val[-dim:, :]
else:
orig_state_dict[f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias"] = val[
:dim
]
orig_state_dict[f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias"] = val[
dim : dim * 2
]
orig_state_dict[f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias"] = val[
-dim:
]
else:
orig_state_dict[rename_key(key)] = val
return orig_state_dict
def convert_swin_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub):
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
config = get_swin_config(model_name)
model = SwinForMaskedImageModeling(config)
model.eval()
new_state_dict = convert_state_dict(state_dict, model)
model.load_state_dict(new_state_dict)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_processor = ViTImageProcessor(size={"height": 192, "width": 192})
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
print(outputs.keys())
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print(f"Pushing model and image processor for {model_name} to hub")
model.push_to_hub(f"microsoft/{model_name}")
image_processor.push_to_hub(f"microsoft/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="swin-base-simmim-window6-192",
type=str,
choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"],
help="Name of the Swin SimMIM model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path",
default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth",
type=str,
help="Path to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| transformers/src/transformers/models/swin/convert_swin_simmim_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/swin/convert_swin_simmim_to_pytorch.py",
"repo_id": "transformers",
"token_count": 2896
} | 364 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert SwitchTransformersX checkpoints from the original repository to JAX/FLAX model."""
import argparse
import re
from flax.traverse_util import flatten_dict, unflatten_dict
from t5x import checkpoints
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.utils import logging
logging.set_verbosity_info()
# should not include what is already done by the `from_pt` argument
MOE_LAYER_NAME_MAPPING = {
"/attention/": "/0/SelfAttention/",
"/self_attention/": "/0/SelfAttention/",
"/encoder_decoder_attention/": "/1/EncDecAttention/",
"value": "v",
"query": "q",
"key": "k",
"out": "o",
"pre_self_attention_layer_norm": "0/layer_norm",
"pre_cross_attention_layer_norm": "1/layer_norm",
"pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong
"token_embedder": "shared",
"encoder_norm": "final_layer_norm",
"decoder_norm": "final_layer_norm",
"relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight",
"router/router_weights/w/": "router/classifier/",
"roer/roer_weights/w/": "router/classifier/",
"logits_dense": "lm_head",
}
def rename_keys(s_dict):
# 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in
# the original model
keys = list(s_dict.keys())
for key in keys:
layer_to_block_of_layer = r".*/layers_(\d+)"
new_key = key
if re.match(layer_to_block_of_layer, key):
new_key = re.sub(r"layers_(\d+)", r"block/\1/layer", new_key)
layer_to_block_of_layer = r"(encoder|decoder)\/"
if re.match(layer_to_block_of_layer, key):
groups = re.match(layer_to_block_of_layer, new_key).groups()
if groups[0] == "encoder":
new_key = re.sub(r"/mlp/", r"/1/mlp/", new_key)
new_key = re.sub(r"/pre_mlp_layer_norm/", r"/1/layer_norm/", new_key)
elif groups[0] == "decoder":
new_key = re.sub(r"/mlp/", r"/2/mlp/", new_key)
new_key = re.sub(r"/pre_mlp_layer_norm/", r"/2/layer_norm/", new_key)
# 2. Convert other classic mappings
for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items():
if old_key in new_key:
new_key = new_key.replace(old_key, temp_key)
print(f"{key} -> {new_key}")
s_dict[new_key] = s_dict.pop(key)
if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
s_dict["encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"] = s_dict[
"encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"
].T
if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
s_dict["decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"] = s_dict[
"decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"
].T
# 3. Take extra care of the EXPERTS layer
for key in list(s_dict.keys()):
if "expert" in key:
num_experts = s_dict[key].shape[0]
expert_weihts = s_dict[key]
for idx in range(num_experts):
s_dict[key.replace("expert/", f"experts/expert_{idx}/")] = expert_weihts[idx]
print(f"{key} -> {key.replace('expert/', f'experts/expert_{idx}/')}")
s_dict.pop(key)
return s_dict
GIN_TO_CONFIG_MAPPING = {
"NUM_ENCODER_LAYERS": "num_layers",
"NUM_DECODER_LAYERS": "num_decoder_layers",
"NUM_HEADS": "num_heads",
"HEAD_DIM": "d_kv",
"EMBED_DIM": "d_model",
"MLP_DIM": "d_ff",
"NUM_SELECTED_EXPERTS": "num_selected_experts",
"NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers",
"NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers",
"dense.MlpBlock.activations": "feed_forward_proj",
}
def convert_gin_to_config(gin_file, num_experts):
# Convert a google style config to the hugging face fromat
import regex as re
with open(gin_file, "r") as f:
raw_gin = f.read()
regex_match = re.findall(r"(.*) = ([0-9.]*)", raw_gin)
args = {}
for param, value in regex_match:
if param in GIN_TO_CONFIG_MAPPING and value != "":
args[GIN_TO_CONFIG_MAPPING[param]] = float(value) if "." in value else int(value)
activation = re.findall(r"(.*activations) = \(\'(.*)\',\)", raw_gin)[0]
args[GIN_TO_CONFIG_MAPPING[activation[0]]] = str(activation[1])
args["num_experts"] = num_experts
config = SwitchTransformersConfig(**args)
return config
def convert_flax_checkpoint_to_pytorch(
flax_checkpoint_path, config_file, gin_file=None, pytorch_dump_path="./", num_experts=8
):
# Initialise PyTorch model
print(f"Loading flax weights from : {flax_checkpoint_path}")
flax_params = checkpoints.load_t5x_checkpoint(flax_checkpoint_path)
if gin_file is not None:
config = convert_gin_to_config(gin_file, num_experts)
else:
config = SwitchTransformersConfig.from_pretrained(config_file)
pt_model = SwitchTransformersForConditionalGeneration(config)
flax_params = flax_params["target"]
flax_params = flatten_dict(flax_params, sep="/")
flax_params = rename_keys(flax_params)
flax_params = unflatten_dict(flax_params, sep="/")
# Load the flax params in the PT model
load_flax_weights_in_pytorch_model(pt_model, flax_params)
print(f"Save PyTorch model to {pytorch_dump_path}")
pt_model.save_pretrained(pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the"
" model architecture. If not provided, a `gin_file` has to be provided."
),
)
parser.add_argument(
"--gin_file",
default=None,
type=str,
required=False,
help="Path to the gin config file. If not provided, a `config_file` has to be passed ",
)
parser.add_argument(
"--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model."
)
parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts")
args = parser.parse_args()
convert_flax_checkpoint_to_pytorch(
args.switch_t5x_checkpoint_path,
args.config_name,
args.gin_file,
args.pytorch_dump_folder_path,
args.num_experts,
)
| transformers/src/transformers/models/switch_transformers/convert_switch_transformers_original_flax_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/switch_transformers/convert_switch_transformers_original_flax_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 3257
} | 365 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Configuration for Backbone models"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class TimmBackboneConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration for a timm backbone [`TimmBackbone`].
It is used to instantiate a timm backbone model according to the specified arguments, defining the model.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
backbone (`str`, *optional*):
The timm checkpoint to load.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
features_only (`bool`, *optional*, defaults to `True`):
Whether to output only the features or also the logits.
use_pretrained_backbone (`bool`, *optional*, defaults to `True`):
Whether to use a pretrained backbone.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). Will default to the last stage if unset.
freeze_batch_norm_2d (`bool`, *optional*, defaults to `False`):
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`.
Example:
```python
>>> from transformers import TimmBackboneConfig, TimmBackbone
>>> # Initializing a timm backbone
>>> configuration = TimmBackboneConfig("resnet50")
>>> # Initializing a model from the configuration
>>> model = TimmBackbone(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "timm_backbone"
def __init__(
self,
backbone=None,
num_channels=3,
features_only=True,
use_pretrained_backbone=True,
out_indices=None,
freeze_batch_norm_2d=False,
**kwargs,
):
super().__init__(**kwargs)
self.backbone = backbone
self.num_channels = num_channels
self.features_only = features_only
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = True
self.out_indices = out_indices if out_indices is not None else (-1,)
self.freeze_batch_norm_2d = freeze_batch_norm_2d
| transformers/src/transformers/models/timm_backbone/configuration_timm_backbone.py/0 | {
"file_path": "transformers/src/transformers/models/timm_backbone/configuration_timm_backbone.py",
"repo_id": "transformers",
"token_count": 1106
} | 366 |
# coding=utf-8
# Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License=, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing=, software
# distributed under the License is distributed on an "AS IS" BASIS=,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch TVP Model"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ModelOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import prune_linear_layer
from ...utils import logging
from ...utils.backbone_utils import load_backbone
from .configuration_tvp import TvpConfig
logger = logging.get_logger(__name__)
TVP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"Intel/tvp-base",
"Intel/tvp-base-ANet",
# See all Tvp models at https://huggingface.co/models?filter=tvp
]
@dataclass
class TvpVideoGroundingOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Temporal-Distance IoU loss for video grounding.
logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Contains start_time/duration and end_time/duration. It is the time slot of the videos corresponding to the
input texts.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class TvpLoss(nn.Module):
"""
This class computes the losses for `TvpForVideoGrounding`. The process happens in two steps: 1) we compute
hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched
ground-truth / prediction (supervise class and box).
Args:
losses (`List[str]`):
List of all the losses to be applied.
"""
def __init__(self, losses):
super().__init__()
self.loss_map = {
"iou": self.loss_iou,
"distance": self.loss_distance,
"duration": self.loss_duration,
}
for loss in losses:
if loss not in self.loss_map:
raise ValueError(f"Loss {loss} not supported")
self.losses = losses
def loss_iou(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
"""
Measure the intersection over union.
"""
inter = torch.min(candidates_end_time, end_time) - torch.max(candidates_start_time, start_time)
union = torch.max(candidates_end_time, end_time) - torch.min(candidates_start_time, start_time)
iou = 1 - inter.clamp(min=0) / union
return iou
def loss_distance(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
"""
Measure the distance of mid points.
"""
mid_candidates = torch.div(torch.add(candidates_start_time, candidates_end_time), 2.0)
mid_groundtruth = torch.div(torch.add(start_time, end_time), 2.0)
distance_diff = torch.div(
torch.max(mid_candidates, mid_groundtruth) - torch.min(mid_candidates, mid_groundtruth), duration
).clamp(min=0.2)
return distance_diff
def loss_duration(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
"""
Measure the difference of duration.
"""
duration_candidates = torch.sub(candidates_end_time, candidates_start_time)
duration_groundtruth = torch.sub(end_time, start_time)
duration_diff = torch.square(torch.div(torch.sub(duration_candidates, duration_groundtruth), duration))
duration_diff = duration_diff.clamp(min=0.4)
return duration_diff
def forward(self, logits, labels):
"""
This performs the loss computation.
Args:
logits (`torch.FloatTensor`):
The output logits of head module.
labels (`List[torch.FloatTensor]`):
List of tensors ([start, end, duration]), which contains start time, end time of the video corresponding to the text, and also the duration.
"""
duration, start_time, end_time = labels
candidates = torch.mul(logits, duration)
candidates_start_time, candidates_end_time = candidates[:, 0].float(), candidates[:, 1].float()
losses_dict = {}
for loss in self.losses:
losses_dict.update(
{loss: self.loss_map[loss](start_time, end_time, candidates_start_time, candidates_end_time, duration)}
)
return losses_dict
class TvpVisionModel(nn.Module):
def __init__(self, config):
super().__init__()
self.backbone = load_backbone(config)
self.grid_encoder_conv = nn.Conv2d(
config.backbone_config.hidden_sizes[-1],
config.hidden_size,
kernel_size=3,
stride=1,
padding=1,
groups=1,
bias=False,
)
def forward(self, pixel_values):
batch_size, num_frames, num_channels, height, width = pixel_values.shape
# (batch_size * num_frames, num_channels, height, width)
pixel_values = pixel_values.view(batch_size * num_frames, num_channels, height, width)
grid_feat_outputs = self.backbone(pixel_values)["feature_maps"][0]
grid = self.grid_encoder_conv(grid_feat_outputs)
grid = nn.functional.max_pool2d(grid, kernel_size=2, stride=2)
grid = nn.functional.relu(grid, inplace=True)
new_channel, new_height, new_width = grid.shape[-3:]
# (batch_size, num_frames, num_channels, height, width)
grid = grid.view(batch_size, num_frames, new_channel, new_height, new_width)
# (batch_size, num_frames, height, width, num_channels)
grid = grid.permute(0, 1, 3, 4, 2)
return grid
class TvpVisualInputEmbedding(nn.Module):
"""
Takes input of both image and video (multi-frame)
"""
def __init__(self, config):
super().__init__()
# sequence embedding
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.row_position_embeddings = nn.Embedding(config.max_grid_row_position_embeddings, config.hidden_size)
self.col_position_embeddings = nn.Embedding(config.max_grid_col_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(1, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def add_2d_positional_embeddings(self, grid):
"""
Args:
grid: (batch_size, height, width, hidden_dim)
Returns:
grid + col_position_embeddings.view(*col_shape): (batch_size, *, height, width, hidden_dim)
"""
batch_size, height, width, hidden_dim = grid.shape
# add row-wise position embeddings
row_position_ids = torch.arange(height, dtype=torch.long, device=grid.device) # (height, )
row_position_embeddings = self.row_position_embeddings(row_position_ids) # (height, hidden_dim)
row_shape = (1,) * (len(grid.shape) - 3) + (height, 1, hidden_dim) # (1, height, 1, hidden_dim)
grid = grid + row_position_embeddings.view(*row_shape) # broadcast automatically
# add column-wise position embeddings
col_position_ids = torch.arange(width, dtype=torch.long, device=grid.device) # (width, )
col_position_embeddings = self.col_position_embeddings(col_position_ids) # (width, hidden_dim)
col_shape = (batch_size, 1, width, hidden_dim) # (1, 1, width, hidden_dim)
return grid + col_position_embeddings.view(*col_shape) # broadcast automatically
def forward(self, grid):
"""
Args:
grid: Array of shape (batch_size, num_frames, height, width, num_channels).
It contains processed frames extracted from videos, and is generated by Tvp image preprocessor. Note,
num_frames can be 1
Returns:
embeddings: The embedding of grid with size (batch_size, height*width, num_channels)
"""
batch_size, num_frames, height, width, num_channels = grid.shape
# temporal mean pooling, (batch_size, height, width, hidden_size)
grid = grid.mean(1)
grid = self.add_2d_positional_embeddings(grid)
# image token sequence, (batch_size, height*width, num_channels)
visual_tokens = grid.view(batch_size, -1, num_channels)
visual_tokens_shape = visual_tokens.shape[:-1]
device = visual_tokens.device
# image token type embeddings.
token_type_ids = torch.zeros(visual_tokens_shape, dtype=torch.long, device=device)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = visual_tokens + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class TvpTextInputEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand(input_shape)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class TvpAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.attn_dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.num_attention_heads, self.attention_head_size)
heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads
for head in heads:
# Compute how many pruned heads are before the head and move the index accordingly
head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.query = prune_linear_layer(self.query, index)
self.key = prune_linear_layer(self.key, index)
self.value = prune_linear_layer(self.value, index)
self.dense = prune_linear_layer(self.dense, index, dim=1)
# Update hyper params and store pruned heads
self.num_attention_heads = self.num_attention_heads - len(heads)
self.all_head_size = self.attention_head_size * self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def _reshape(self, tensor: torch.Tensor, sequence_length: int, batch_size: int):
return (
tensor.view(batch_size, sequence_length, self.num_attention_heads, self.attention_head_size)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions: Optional[bool] = None,
):
batch_size, sequence_length = hidden_states.shape[:2]
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self._reshape(mixed_query_layer, sequence_length, batch_size)
key_layer = self._reshape(mixed_key_layer, sequence_length, batch_size)
value_layer = self._reshape(mixed_value_layer, sequence_length, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attn_dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
attn_output = torch.matmul(attention_probs, value_layer)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, sequence_length, self.all_head_size)
attn_output = self.dense(attn_output)
attn_output = self.dropout(attn_output)
attn_output = self.layer_norm(attn_output + hidden_states)
# add attentions if we output them
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Tvp
class TvpIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class TvpOutputLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.layer_norm(hidden_states + input_tensor)
return hidden_states
class TvpEncodeLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = TvpAttention(config)
self.intermediate = TvpIntermediate(config)
self.output = TvpOutputLayer(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions: Optional[bool] = None,
):
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + outputs
return outputs
class TvpEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([TvpEncodeLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
return_dict = return_dict if return_dict is not None else self.config.return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
(head_mask[i] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
outputs = (hidden_states,)
if output_hidden_states:
outputs = outputs + (all_hidden_states,)
if output_attentions:
outputs = outputs + (all_attentions,)
return outputs # last-layer hidden state, (all hidden states), (all attentions)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states if output_hidden_states else None,
attentions=all_attentions if output_attentions else None,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Tvp
class TvpPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class TvpPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = TvpConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
if module.bias is not None:
nn.init.constant_(module.bias, 0)
TVP_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`TvpConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
TVP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`TvpImageProcessor`]. See [`TvpImageProcessor.__call__`]
for details.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class TvpFrameDownPadPrompter(nn.Module):
"""
Pad frames extracted from videos only at the bottom.
"""
def __init__(self, config):
if config.visual_prompter_apply not in ("add", "replace", "remove"):
raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)")
super().__init__()
self.visual_prompt_size = config.visual_prompt_size
self.frame_num = config.frame_num
self.max_img_size = config.max_img_size
self.visual_prompter_apply = config.visual_prompter_apply
self.pad_down = nn.Parameter(
torch.randn([1, config.frame_num, 3, config.visual_prompt_size, config.max_img_size])
)
def forward(self, pixel_values):
if self.visual_prompter_apply != "add":
visual_prompt_mask = torch.ones(
[self.max_img_size, self.max_img_size], dtype=pixel_values.dtype, device=pixel_values.device
)
visual_prompt_mask[self.max_img_size - self.visual_prompt_size : self.max_img_size, :] = 0.0
pixel_values *= visual_prompt_mask
if self.visual_prompter_apply != "remove":
prompt = torch.zeros(
[pixel_values.shape[0], pixel_values.shape[1], 3, self.max_img_size, self.max_img_size],
device=pixel_values.device,
)
start_point = self.max_img_size - self.visual_prompt_size
prompt[:, :, :, start_point : self.max_img_size, :] = self.pad_down
pixel_values += prompt.to(pixel_values.dtype)
return pixel_values
class TvpFramePadPrompter(nn.Module):
"""
Pad frames extracted from videos in the surroundings.
"""
def __init__(self, config):
if config.visual_prompter_apply not in ("add", "replace", "remove"):
raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)")
super().__init__()
self.num_frames = config.num_frames
self.max_img_size = config.max_img_size
self.visual_prompter_apply = config.visual_prompter_apply
self.base_size = config.max_img_size - config.visual_prompt_size * 2
self.pad_up = nn.Parameter(
torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size])
)
self.pad_down = nn.Parameter(
torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size])
)
self.pad_left = nn.Parameter(
torch.randn(
[
1,
config.num_frames,
3,
config.max_img_size - config.visual_prompt_size * 2,
config.visual_prompt_size,
]
)
)
self.pad_right = nn.Parameter(
torch.randn(
[
1,
config.num_frames,
3,
config.max_img_size - config.visual_prompt_size * 2,
config.visual_prompt_size,
]
)
)
def forward(self, pixel_values):
if self.visual_prompter_apply not in ("add", "remove", "replace"):
raise ValueError(f"Invalid visual_prompter_apply value {self.visual_prompter_apply}")
if self.visual_prompter_apply in ("replace", "remove"):
visual_prompt_mask = torch.ones(
[self.max_img_size, self.max_img_size], dtype=pixel_values.dtype, device=pixel_values.device
)
pixel_values *= visual_prompt_mask
if self.visual_prompter_apply in ("replace", "add"):
base = torch.zeros(1, self.num_frames, 3, self.base_size, self.base_size, device=pixel_values.device)
prompt = torch.cat([self.pad_left, base, self.pad_right], dim=4)
prompt = torch.cat([self.pad_up, prompt, self.pad_down], dim=3)
prompt = torch.cat(pixel_values.size(0) * [prompt])
pixel_values += prompt.to(pixel_values.dtype)
return pixel_values
TVP_PROMPTER_CLASSES_MAPPING = {
"framedownpad": TvpFrameDownPadPrompter,
"framepad": TvpFramePadPrompter,
}
@add_start_docstrings(
"The bare Tvp Model transformer outputting BaseModelOutputWithPooling object without any specific head on" " top.",
TVP_START_DOCSTRING,
)
class TvpModel(TvpPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.vision_model = TvpVisionModel(config)
self.embeddings = TvpTextInputEmbeddings(config)
self.visual_embeddings = TvpVisualInputEmbedding(config)
self.encoder = TvpEncoder(config)
self.pooler = TvpPooler(config)
self.text_prompt = nn.Parameter(torch.randn([1, 10, config.hidden_size]))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if config.visual_prompter_type not in TVP_PROMPTER_CLASSES_MAPPING:
raise ValueError("`visual_prompter_type` must be in (framedownpad, framepad)")
self.visual_prompter = TVP_PROMPTER_CLASSES_MAPPING[config.visual_prompter_type](config)
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(TVP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=TvpConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Returns:
Examples:
```python
>>> import torch
>>> from transformers import AutoConfig, AutoTokenizer, TvpModel
>>> model = TvpModel.from_pretrained("Jiqing/tiny-random-tvp")
>>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp")
>>> pixel_values = torch.rand(1, 1, 3, 448, 448)
>>> text_inputs = tokenizer("This is an example input", return_tensors="pt")
>>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask)
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
# Add visual prompt, it compensates for the spatiotemporal information loss in 2D visual features.
pixel_values = self.vision_model(self.visual_prompter(pixel_values))
# (batch_size, sequence_length, hidden_size)
text_embedding_output = self.embeddings(input_ids=input_ids)
# (batch_size, visual_sequence_length, hidden_size)
visual_embedding_output = self.visual_embeddings(pixel_values)
if attention_mask is not None:
# (batch_size, visual_sequence_length)
visual_attention_mask = attention_mask.new_ones(visual_embedding_output.shape[:2])
pt_mask = torch.ones(attention_mask.shape[0], 10).to(
device=attention_mask.device, dtype=attention_mask.dtype
)
attention_mask = torch.cat([pt_mask, attention_mask, visual_attention_mask], dim=-1)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.size()).to(input_ids.device)
text_prompt = self.text_prompt.expand(text_embedding_output.shape[0], -1, -1)
# (batch_size, sequence_length + visual_sequence_length, hidden_size)
embedding_output = torch.cat([text_prompt, text_embedding_output, visual_embedding_output], dim=1)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=attention_mask,
head_mask=self.get_head_mask(head_mask, self.config.num_hidden_layers),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs.last_hidden_state if return_dict else encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
last_hidden_state = self.dropout(last_hidden_state)
pooled_output = self.dropout(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class TvpVideoGroundingHead(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_0 = nn.Linear(config.hidden_size, config.hidden_size * 2)
self.layer_1 = nn.Linear(config.hidden_size * 2, 2)
self.activation_0 = nn.ReLU()
self.activation_1 = nn.Sigmoid()
def forward(self, pooler_output):
logits = self.activation_0(self.layer_0(pooler_output))
logits = self.activation_1(self.layer_1(logits))
return logits
@add_start_docstrings(
"""
Tvp Model with a video grounding head on top computing IoU, distance, and duration loss.
""",
TVP_START_DOCSTRING,
)
class TvpForVideoGrounding(TvpPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.model = TvpModel(config)
self.video_grounding_head = TvpVideoGroundingHead(config)
self.post_init()
@add_start_docstrings_to_model_forward(TVP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TvpVideoGroundingOutput, config_class=TvpConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
labels: Tuple[torch.Tensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
labels (`torch.FloatTensor` of shape `(batch_size, 3)`, *optional*):
The labels contains duration, start time, and end time of the video corresponding to the text.
Returns:
Examples:
```python
>>> import torch
>>> from transformers import AutoConfig, AutoTokenizer, TvpForVideoGrounding
>>> model = TvpForVideoGrounding.from_pretrained("Jiqing/tiny-random-tvp")
>>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp")
>>> pixel_values = torch.rand(1, 1, 3, 448, 448)
>>> text_inputs = tokenizer("This is an example input", return_tensors="pt")
>>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask)
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
outputs = self.model(
input_ids,
pixel_values,
attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooler_output = outputs[1]
logits = self.video_grounding_head(pooler_output)
loss = None
if labels is not None:
criterion = TvpLoss(["iou", "distance", "duration"])
criterion.to(self.device)
loss_dict = criterion(logits, labels)
loss = (
loss_dict["iou"]
+ self.config.distance_loss_weight * loss_dict["distance"]
+ self.config.duration_loss_weight * loss_dict["duration"]
)
if not return_dict:
outputs = (logits,) + outputs[2:]
if loss is not None:
outputs = (loss,) + outputs
return outputs
return TvpVideoGroundingOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/tvp/modeling_tvp.py/0 | {
"file_path": "transformers/src/transformers/models/tvp/modeling_tvp.py",
"repo_id": "transformers",
"token_count": 16441
} | 367 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" UnivNetModel model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"dg845/univnet-dev": "https://huggingface.co/dg845/univnet-dev/resolve/main/config.json",
}
class UnivNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`UnivNetModel`]. It is used to instantiate a
UnivNet vocoder model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the UnivNet
[dg845/univnet-dev](https://huggingface.co/dg845/univnet-dev) architecture, which corresponds to the 'c32'
architecture in [maum-ai/univnet](https://github.com/maum-ai/univnet/blob/master/config/default_c32.yaml).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
model_in_channels (`int`, *optional*, defaults to 64):
The number of input channels for the UnivNet residual network. This should correspond to
`noise_sequence.shape[1]` and the value used in the [`UnivNetFeatureExtractor`] class.
model_hidden_channels (`int`, *optional*, defaults to 32):
The number of hidden channels of each residual block in the UnivNet residual network.
num_mel_bins (`int`, *optional*, defaults to 100):
The number of frequency bins in the conditioning log-mel spectrogram. This should correspond to the value
used in the [`UnivNetFeatureExtractor`] class.
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 3, 3]`):
A tuple of integers defining the kernel sizes of the 1D convolutional layers in the UnivNet residual
network. The length of `resblock_kernel_sizes` defines the number of resnet blocks and should match that of
`resblock_stride_sizes` and `resblock_dilation_sizes`.
resblock_stride_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 4]`):
A tuple of integers defining the stride sizes of the 1D convolutional layers in the UnivNet residual
network. The length of `resblock_stride_sizes` should match that of `resblock_kernel_sizes` and
`resblock_dilation_sizes`.
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 9, 27], [1, 3, 9, 27], [1, 3, 9, 27]]`):
A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the
UnivNet residual network. The length of `resblock_dilation_sizes` should match that of
`resblock_kernel_sizes` and `resblock_stride_sizes`. The length of each nested list in
`resblock_dilation_sizes` defines the number of convolutional layers per resnet block.
kernel_predictor_num_blocks (`int`, *optional*, defaults to 3):
The number of residual blocks in the kernel predictor network, which calculates the kernel and bias for
each location variable convolution layer in the UnivNet residual network.
kernel_predictor_hidden_channels (`int`, *optional*, defaults to 64):
The number of hidden channels for each residual block in the kernel predictor network.
kernel_predictor_conv_size (`int`, *optional*, defaults to 3):
The kernel size of each 1D convolutional layer in the kernel predictor network.
kernel_predictor_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for each residual block in the kernel predictor network.
initializer_range (`float`, *optional*, defaults to 0.01):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
leaky_relu_slope (`float`, *optional*, defaults to 0.2):
The angle of the negative slope used by the leaky ReLU activation.
Example:
```python
>>> from transformers import UnivNetModel, UnivNetConfig
>>> # Initializing a Tortoise TTS style configuration
>>> configuration = UnivNetConfig()
>>> # Initializing a model (with random weights) from the Tortoise TTS style configuration
>>> model = UnivNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "univnet"
def __init__(
self,
model_in_channels=64,
model_hidden_channels=32,
num_mel_bins=100,
resblock_kernel_sizes=[3, 3, 3],
resblock_stride_sizes=[8, 8, 4],
resblock_dilation_sizes=[[1, 3, 9, 27], [1, 3, 9, 27], [1, 3, 9, 27]],
kernel_predictor_num_blocks=3,
kernel_predictor_hidden_channels=64,
kernel_predictor_conv_size=3,
kernel_predictor_dropout=0.0,
initializer_range=0.01,
leaky_relu_slope=0.2,
**kwargs,
):
if not (len(resblock_kernel_sizes) == len(resblock_stride_sizes) == len(resblock_dilation_sizes)):
raise ValueError(
"`resblock_kernel_sizes`, `resblock_stride_sizes`, and `resblock_dilation_sizes` must all have the"
" same length (which will be the number of resnet blocks in the model)."
)
self.model_in_channels = model_in_channels
self.model_hidden_channels = model_hidden_channels
self.num_mel_bins = num_mel_bins
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_stride_sizes = resblock_stride_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.kernel_predictor_num_blocks = kernel_predictor_num_blocks
self.kernel_predictor_hidden_channels = kernel_predictor_hidden_channels
self.kernel_predictor_conv_size = kernel_predictor_conv_size
self.kernel_predictor_dropout = kernel_predictor_dropout
self.initializer_range = initializer_range
self.leaky_relu_slope = leaky_relu_slope
super().__init__(**kwargs)
| transformers/src/transformers/models/univnet/configuration_univnet.py/0 | {
"file_path": "transformers/src/transformers/models/univnet/configuration_univnet.py",
"repo_id": "transformers",
"token_count": 2525
} | 368 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VilT model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
VILT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"dandelin/vilt-b32-mlm": "https://huggingface.co/dandelin/vilt-b32-mlm/blob/main/config.json"
}
class ViltConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ViLTModel`]. It is used to instantiate an ViLT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the ViLT
[dandelin/vilt-b32-mlm](https://huggingface.co/dandelin/vilt-b32-mlm) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the text part of the model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`ViltModel`].
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`ViltModel`]. This is used when encoding
text.
modality_type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the modalities passed when calling [`ViltModel`]. This is used after concatening the
embeddings of the text and image modalities.
max_position_embeddings (`int`, *optional*, defaults to 40):
The maximum sequence length that this model might ever be used with.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 384):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
max_image_length (`int`, *optional*, defaults to -1):
The maximum number of patches to take as input for the Transformer encoder. If set to a positive integer,
the encoder will sample `max_image_length` patches at maximum. If set to -1, will not be taken into
account.
num_images (`int`, *optional*, defaults to -1):
The number of images to use for natural language visual reasoning. If set to a positive integer, will be
used by [`ViltForImagesAndTextClassification`] for defining the classifier head.
Example:
```python
>>> from transformers import ViLTModel, ViLTConfig
>>> # Initializing a ViLT dandelin/vilt-b32-mlm style configuration
>>> configuration = ViLTConfig()
>>> # Initializing a model from the dandelin/vilt-b32-mlm style configuration
>>> model = ViLTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vilt"
def __init__(
self,
vocab_size=30522,
type_vocab_size=2,
modality_type_vocab_size=2,
max_position_embeddings=40,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
image_size=384,
patch_size=32,
num_channels=3,
qkv_bias=True,
max_image_length=-1,
tie_word_embeddings=False,
num_images=-1,
**kwargs,
):
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
self.vocab_size = vocab_size
self.type_vocab_size = type_vocab_size
self.modality_type_vocab_size = modality_type_vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.max_image_length = max_image_length
self.num_images = num_images
| transformers/src/transformers/models/vilt/configuration_vilt.py/0 | {
"file_path": "transformers/src/transformers/models/vilt/configuration_vilt.py",
"repo_id": "transformers",
"token_count": 2640
} | 369 |
# coding=utf-8
# Copyright The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VisionTextDualEncoder model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
from ..clip.configuration_clip import CLIPVisionConfig
logger = logging.get_logger(__name__)
class VisionTextDualEncoderConfig(PretrainedConfig):
r"""
[`VisionTextDualEncoderConfig`] is the configuration class to store the configuration of a
[`VisionTextDualEncoderModel`]. It is used to instantiate [`VisionTextDualEncoderModel`] model according to the
specified arguments, defining the text model and vision model configs.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
projection_dim (`int`, *optional*, defaults to 512):
Dimentionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
kwargs (*optional*):
Dictionary of keyword arguments.
Examples:
```python
>>> from transformers import ViTConfig, BertConfig, VisionTextDualEncoderConfig, VisionTextDualEncoderModel
>>> # Initializing a BERT and ViT configuration
>>> config_vision = ViTConfig()
>>> config_text = BertConfig()
>>> config = VisionTextDualEncoderConfig.from_vision_text_configs(config_vision, config_text, projection_dim=512)
>>> # Initializing a BERT and ViT model (with random weights)
>>> model = VisionTextDualEncoderModel(config=config)
>>> # Accessing the model configuration
>>> config_vision = model.config.vision_config
>>> config_text = model.config.text_config
>>> # Saving the model, including its configuration
>>> model.save_pretrained("vit-bert")
>>> # loading model and config from pretrained folder
>>> vision_text_config = VisionTextDualEncoderConfig.from_pretrained("vit-bert")
>>> model = VisionTextDualEncoderModel.from_pretrained("vit-bert", config=vision_text_config)
```"""
model_type = "vision-text-dual-encoder"
is_composition = True
def __init__(self, projection_dim=512, logit_scale_init_value=2.6592, **kwargs):
super().__init__(**kwargs)
if "vision_config" not in kwargs:
raise ValueError("`vision_config` can not be `None`.")
if "text_config" not in kwargs:
raise ValueError("`text_config` can not be `None`.")
vision_config = kwargs.pop("vision_config")
text_config = kwargs.pop("text_config")
vision_model_type = vision_config.pop("model_type")
text_model_type = text_config.pop("model_type")
if vision_model_type == "clip":
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config).vision_config
elif vision_model_type == "clip_vision_model":
self.vision_config = CLIPVisionConfig(**vision_config)
else:
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config)
self.text_config = AutoConfig.for_model(text_model_type, **text_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
@classmethod
def from_vision_text_configs(cls, vision_config: PretrainedConfig, text_config: PretrainedConfig, **kwargs):
r"""
Instantiate a [`VisionTextDualEncoderConfig`] (or a derived class) from text model configuration and vision
model configuration.
Returns:
[`VisionTextDualEncoderConfig`]: An instance of a configuration object
"""
return cls(vision_config=vision_config.to_dict(), text_config=text_config.to_dict(), **kwargs)
| transformers/src/transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py/0 | {
"file_path": "transformers/src/transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py",
"repo_id": "transformers",
"token_count": 1524
} | 370 |
# coding=utf-8
# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 ViT model."""
from __future__ import annotations
import collections.abc
import math
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_vit import ViTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "ViTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
class TFViTEmbeddings(keras.layers.Layer):
"""
Construct the CLS token, position and patch embeddings.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.patch_embeddings = TFViTPatchEmbeddings(config, name="patch_embeddings")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def build(self, input_shape=None):
num_patches = self.patch_embeddings.num_patches
self.cls_token = self.add_weight(
shape=(1, 1, self.config.hidden_size),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="cls_token",
)
self.position_embeddings = self.add_weight(
shape=(1, num_patches + 1, self.config.hidden_size),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="position_embeddings",
)
if self.built:
return
self.built = True
if getattr(self, "patch_embeddings", None) is not None:
with tf.name_scope(self.patch_embeddings.name):
self.patch_embeddings.build(None)
def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
batch_size, seq_len, dim = shape_list(embeddings)
num_patches = seq_len - 1
_, num_positions, _ = shape_list(self.position_embeddings)
num_positions -= 1
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
h0 = height // self.config.patch_size
w0 = width // self.config.patch_size
patch_pos_embed = tf.image.resize(
images=tf.reshape(
patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
),
size=(h0, w0),
method="bicubic",
)
shape = shape_list(patch_pos_embed)
assert h0 == shape[-3] and w0 == shape[-2]
patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim))
return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1)
def call(
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
embeddings = self.patch_embeddings(
pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, training=training
)
# add the [CLS] token to the embedded patch tokens
cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
embeddings = tf.concat((cls_tokens, embeddings), axis=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings, training=training)
return embeddings
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class TFViTPatchEmbeddings(keras.layers.Layer):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.num_channels = num_channels
self.config = config
self.projection = keras.layers.Conv2D(
filters=hidden_size,
kernel_size=patch_size,
strides=patch_size,
padding="valid",
data_format="channels_last",
use_bias=True,
kernel_initializer=get_initializer(self.config.initializer_range),
bias_initializer="zeros",
name="projection",
)
def call(
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if not interpolate_pos_encoding:
if tf.executing_eagerly():
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
projection = self.projection(pixel_values)
# Change the 2D spatial dimensions to a single temporal dimension.
# shape = (batch_size, num_patches, out_channels=embed_dim)
num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0])
embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1))
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
class TFViTSelfAttention(keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
mixed_key_layer = self.key(inputs=hidden_states)
mixed_value_layer = self.value(inputs=hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
class TFViTSelfOutput(keras.layers.Layer):
"""
The residual connection is defined in TFViTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFViTAttention(keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFViTSelfAttention(config, name="attention")
self.dense_output = TFViTSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attention", None) is not None:
with tf.name_scope(self.self_attention.name):
self.self_attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
class TFViTIntermediate(keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFViTOutput(keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = hidden_states + input_tensor
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
class TFViTLayer(keras.layers.Layer):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFViTAttention(config, name="attention")
self.intermediate = TFViTIntermediate(config, name="intermediate")
self.vit_output = TFViTOutput(config, name="output")
self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before")
self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
attention_outputs = self.attention(
# in ViT, layernorm is applied before self-attention
input_tensor=self.layernorm_before(inputs=hidden_states),
head_mask=head_mask,
output_attentions=output_attentions,
training=training,
)
attention_output = attention_outputs[0]
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(inputs=hidden_states)
intermediate_output = self.intermediate(hidden_states=layer_output)
# second residual connection is done here
layer_output = self.vit_output(
hidden_states=intermediate_output, input_tensor=hidden_states, training=training
)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "vit_output", None) is not None:
with tf.name_scope(self.vit_output.name):
self.vit_output.build(None)
if getattr(self, "layernorm_before", None) is not None:
with tf.name_scope(self.layernorm_before.name):
self.layernorm_before.build([None, None, self.config.hidden_size])
if getattr(self, "layernorm_after", None) is not None:
with tf.name_scope(self.layernorm_after.name):
self.layernorm_after.build([None, None, self.config.hidden_size])
class TFViTEncoder(keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.layer = [TFViTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states=hidden_states,
head_mask=head_mask[i],
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFViTMainLayer(keras.layers.Layer):
config_class = ViTConfig
def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFViTEmbeddings(config, name="embeddings")
self.encoder = TFViTEncoder(config, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
self.pooler = TFViTPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
pixel_values: TFModelInputType | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
training=training,
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(inputs=sequence_output)
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.config.hidden_size])
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
class TFViTPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ViTConfig
base_model_prefix = "vit"
main_input_name = "pixel_values"
VIT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
VIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
interpolate_pos_encoding (`bool`, *optional*):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
VIT_START_DOCSTRING,
)
class TFViTModel(TFViTPreTrainedModel):
def __init__(self, config: ViTConfig, *inputs, add_pooling_layer=True, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.vit = TFViTMainLayer(config, add_pooling_layer=add_pooling_layer, name="vit")
@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: TFModelInputType | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.vit(
pixel_values=pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "vit", None) is not None:
with tf.name_scope(self.vit.name):
self.vit.build(None)
class TFViTPooler(keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
<Tip>
Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
position embeddings to the higher resolution.
</Tip>
""",
VIT_START_DOCSTRING,
)
class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: ViTConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.vit = TFViTMainLayer(config, add_pooling_layer=False, name="vit")
# Classifier head
self.classifier = keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="classifier",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: TFModelInputType | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.vit(
pixel_values=pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(inputs=sequence_output[:, 0, :])
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "vit", None) is not None:
with tf.name_scope(self.vit.name):
self.vit.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
| transformers/src/transformers/models/vit/modeling_tf_vit.py/0 | {
"file_path": "transformers/src/transformers/models/vit/modeling_tf_vit.py",
"repo_id": "transformers",
"token_count": 15720
} | 371 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Vivit."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
def make_batched(videos) -> List[List[ImageInput]]:
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
return [videos]
elif is_valid_image(videos):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}")
class VivitImageProcessor(BaseImageProcessor):
r"""
Constructs a Vivit image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`):
Size of the output image after resizing. The shortest edge of the image will be resized to
`size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by
`size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
parameter in the `preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/127.5`):
Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
in the `preprocess` method.
offset (`bool`, *optional*, defaults to `True`):
Whether to scale the image in both negative and positive directions. Can be overriden by the `offset` in
the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 127.5,
offset: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 256}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.offset = offset
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its
shortest edge of length `s` while keeping the aspect ratio of the original image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" in size:
output_size = get_resize_output_image_size(
image, size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
)
elif "height" in size and "width" in size:
output_size = (size["height"], size["width"])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# Copied from transformers.models.efficientnet.image_processing_efficientnet.EfficientNetImageProcessor.rescale
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
offset: bool = True,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
"""
Rescale an image by a scale factor.
If `offset` is `True`, the image has its values rescaled by `scale` and then offset by 1. If `scale` is
1/127.5, the image is rescaled between [-1, 1].
image = image * scale - 1
If `offset` is `False`, and `scale` is 1/255, the image is rescaled between [0, 1].
image = image * scale
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
offset (`bool`, *optional*):
Whether to scale the image in both negative and positive directions.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
rescaled_image = rescale(
image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs
)
if offset:
rescaled_image = rescaled_image - 1
return rescaled_image
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
offset: bool = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
if offset and not do_rescale:
raise ValueError("For offset, do_rescale must also be set to True.")
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if is_scaled_image(image) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, offset=offset, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def preprocess(
self,
videos: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
offset: bool = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
videos (`ImageInput`):
Video frames to preprocess. Expects a single or batch of video frames with pixel values ranging from 0
to 255. If passing in frames with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after applying resize.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
Whether to centre crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after applying the centre crop.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between `[-1 - 1]` if `offset` is `True`, `[0, 1]` otherwise.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
offset (`bool`, *optional*, defaults to `self.offset`):
Whether to scale the image in both negative and positive directions.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the inferred channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
offset = offset if offset is not None else self.offset
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
if not valid_images(videos):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
videos = make_batched(videos)
videos = [
[
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
offset=offset,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for img in video
]
for video in videos
]
data = {"pixel_values": videos}
return BatchFeature(data=data, tensor_type=return_tensors)
| transformers/src/transformers/models/vivit/image_processing_vivit.py/0 | {
"file_path": "transformers/src/transformers/models/vivit/image_processing_vivit.py",
"repo_id": "transformers",
"token_count": 8101
} | 372 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Speech processor class for Wav2Vec2-BERT
"""
import warnings
from ...processing_utils import ProcessorMixin
from ..seamless_m4t.feature_extraction_seamless_m4t import SeamlessM4TFeatureExtractor
from ..wav2vec2.tokenization_wav2vec2 import Wav2Vec2CTCTokenizer
class Wav2Vec2BertProcessor(ProcessorMixin):
r"""
Constructs a Wav2Vec2-BERT processor which wraps a Wav2Vec2-BERT feature extractor and a Wav2Vec2 CTC tokenizer into a single
processor.
[`Wav2Vec2Processor`] offers all the functionalities of [`SeamlessM4TFeatureExtractor`] and [`PreTrainedTokenizer`].
See the docstring of [`~Wav2Vec2Processor.__call__`] and [`~Wav2Vec2Processor.decode`] for more information.
Args:
feature_extractor (`SeamlessM4TFeatureExtractor`):
An instance of [`SeamlessM4TFeatureExtractor`]. The feature extractor is a required input.
tokenizer ([`PreTrainedTokenizer`]):
An instance of [`PreTrainedTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "SeamlessM4TFeatureExtractor"
tokenizer_class = "AutoTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
try:
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
except OSError:
warnings.warn(
f"Loading a tokenizer inside {cls.__name__} from a config that does not"
" include a `tokenizer_class` attribute is deprecated and will be "
"removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`"
" attribute to either your `config.json` or `tokenizer_config.json` "
"file to suppress this warning: ",
FutureWarning,
)
feature_extractor = SeamlessM4TFeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs)
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
return cls(feature_extractor=feature_extractor, tokenizer=tokenizer)
def __call__(self, audio=None, text=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `audio`
and `kwargs` arguments to SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.__call__`] if `audio` is not
`None` to pre-process the audio. To prepare the target sequences(s), this method forwards the `text` and `kwargs` arguments to
PreTrainedTokenizer's [`~PreTrainedTokenizer.__call__`] if `text` is not `None`. Please refer to the doctsring of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
and T the sample length of the audio.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the
tokenizer.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_features** -- Audio input features to be fed to a model. Returned when `audio` is not `None`.
- **attention_mask** -- List of indices specifying which timestamps should be attended to by the model when `audio` is not `None`.
When only `text` is specified, returns the token attention mask.
- **labels** -- List of token ids to be fed to a model. Returned when both `text` and `audio` are not `None`.
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None` and `audio` is `None`.
"""
sampling_rate = kwargs.pop("sampling_rate", None)
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if audio is not None:
inputs = self.feature_extractor(audio, sampling_rate=sampling_rate, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif audio is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def pad(self, input_features=None, labels=None, **kwargs):
"""
If `input_features` is not `None`, this method forwards the `input_features` and `kwargs` arguments to SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.pad`] to pad the input features.
If `labels` is not `None`, this method forwards the `labels` and `kwargs` arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.pad`] to pad the label(s).
Please refer to the doctsring of the above two methods for more information.
"""
if input_features is None and labels is None:
raise ValueError("You need to specify either an `input_features` or `labels` input to pad.")
if input_features is not None:
input_features = self.feature_extractor.pad(input_features, **kwargs)
if labels is not None:
labels = self.tokenizer.pad(labels, **kwargs)
if labels is None:
return input_features
elif input_features is None:
return labels
else:
input_features["labels"] = labels["input_ids"]
return input_features
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
| transformers/src/transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py/0 | {
"file_path": "transformers/src/transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py",
"repo_id": "transformers",
"token_count": 2889
} | 373 |
#!/usr/bin/env python
"""Converts a Whisper model in OpenAI format to Hugging Face format."""
# Copyright 2022 The HuggingFace Inc. team and the OpenAI team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import io
import json
import os
import tempfile
import urllib
import warnings
from typing import Any, Optional, Tuple
import torch
from huggingface_hub.utils import insecure_hashlib
from torch import nn
from tqdm import tqdm
from transformers import (
GenerationConfig,
WhisperConfig,
WhisperFeatureExtractor,
WhisperForConditionalGeneration,
WhisperProcessor,
WhisperTokenizer,
WhisperTokenizerFast,
)
from transformers.models.whisper.tokenization_whisper import LANGUAGES, bytes_to_unicode
from transformers.utils.import_utils import _is_package_available
_MODELS = {
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt",
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
}
_TOKENIZERS = {
"multilingual": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/multilingual.tiktoken",
"english": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/gpt2.tiktoken",
}
def _get_generation_config(
is_multilingual: bool,
num_languages: int = 100,
openai_version: Optional[str] = None,
) -> GenerationConfig:
"""
Loads the appropriate generation config from HF repo
"""
if openai_version is not None:
repo = f"openai/whisper-{openai_version}"
elif not is_multilingual:
repo = "openai/whisper-medium.en"
elif num_languages < 100:
repo = "openai/whisper-large-v2"
else:
repo = "openai/whisper-large-v3"
gen_cfg = GenerationConfig.from_pretrained(repo)
if openai_version is None:
gen_cfg.alignment_heads = None
warnings.warn(
"Alignment heads have not been included in the generation config, since they are available "
"only for the original OpenAI checkpoints."
"If you want to use word-level timestamps with a custom version of Whisper,"
"see https://github.com/openai/whisper/blob/main/notebooks/Multilingual_ASR.ipynb"
"for the example of how to produce word-level timestamps manually."
)
return gen_cfg
def remove_ignore_keys_(state_dict):
ignore_keys = ["layers", "blocks"]
for k in ignore_keys:
state_dict.pop(k, None)
WHISPER_MAPPING = {
"blocks": "layers",
"mlp.0": "fc1",
"mlp.2": "fc2",
"mlp_ln": "final_layer_norm",
".attn.query": ".self_attn.q_proj",
".attn.key": ".self_attn.k_proj",
".attn.value": ".self_attn.v_proj",
".attn_ln": ".self_attn_layer_norm",
".attn.out": ".self_attn.out_proj",
".cross_attn.query": ".encoder_attn.q_proj",
".cross_attn.key": ".encoder_attn.k_proj",
".cross_attn.value": ".encoder_attn.v_proj",
".cross_attn_ln": ".encoder_attn_layer_norm",
".cross_attn.out": ".encoder_attn.out_proj",
"decoder.ln.": "decoder.layer_norm.",
"encoder.ln.": "encoder.layer_norm.",
"token_embedding": "embed_tokens",
"encoder.positional_embedding": "encoder.embed_positions.weight",
"decoder.positional_embedding": "decoder.embed_positions.weight",
"ln_post": "layer_norm",
}
def rename_keys(s_dict):
keys = list(s_dict.keys())
for key in keys:
new_key = key
for k, v in WHISPER_MAPPING.items():
if k in key:
new_key = new_key.replace(k, v)
print(f"{key} -> {new_key}")
s_dict[new_key] = s_dict.pop(key)
return s_dict
def make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
def _download(url: str, root: str) -> Any:
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)
expected_sha256 = url.split("/")[-2]
download_target = os.path.join(root, filename)
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
model_bytes = open(download_target, "rb").read()
if insecure_hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
return torch.load(io.BytesIO(model_bytes))
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(
total=int(source.info().get("Content-Length")), ncols=80, unit="iB", unit_scale=True, unit_divisor=1024
) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
model_bytes = open(download_target, "rb").read()
if insecure_hashlib.sha256(model_bytes).hexdigest() != expected_sha256:
raise RuntimeError(
"Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model."
)
return torch.load(io.BytesIO(model_bytes))
def convert_openai_whisper_to_tfms(
checkpoint_path, pytorch_dump_folder_path
) -> Tuple[WhisperForConditionalGeneration, bool, int]:
if ".pt" not in checkpoint_path:
root = os.path.dirname(pytorch_dump_folder_path) or "."
original_checkpoint = _download(_MODELS[checkpoint_path], root)
openai_version = checkpoint_path
else:
original_checkpoint = torch.load(checkpoint_path, map_location="cpu")
openai_version = None
dimensions = original_checkpoint["dims"]
state_dict = original_checkpoint["model_state_dict"]
proj_out_weights = state_dict["decoder.token_embedding.weight"]
remove_ignore_keys_(state_dict)
rename_keys(state_dict)
tie_embeds = True
ffn_dim = state_dict["decoder.layers.0.fc1.weight"].shape[0]
# a hacky way to properly set up the bos/eos/pad token ids in the model
endoftext_id = 50257 if dimensions["n_vocab"] > 51865 else 50256
config = WhisperConfig(
vocab_size=dimensions["n_vocab"],
encoder_ffn_dim=ffn_dim,
decoder_ffn_dim=ffn_dim,
num_mel_bins=dimensions["n_mels"],
d_model=dimensions["n_audio_state"],
max_target_positions=dimensions["n_text_ctx"],
encoder_layers=dimensions["n_audio_layer"],
encoder_attention_heads=dimensions["n_audio_head"],
decoder_layers=dimensions["n_text_layer"],
decoder_attention_heads=dimensions["n_text_head"],
max_source_positions=dimensions["n_audio_ctx"],
eos_token_id=endoftext_id,
bos_token_id=endoftext_id,
pad_token_id=endoftext_id,
decoder_start_token_id=endoftext_id + 1,
)
model = WhisperForConditionalGeneration(config)
missing, unexpected = model.model.load_state_dict(state_dict, strict=False)
if len(missing) > 0 and not set(missing) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"
f" but all the following weights are missing {missing}"
)
if tie_embeds:
model.proj_out = make_linear_from_emb(model.model.decoder.embed_tokens)
else:
model.proj_out.weight.data = proj_out_weights
# determine those parameters from a model checkpoint as Whisper repo does
is_multilingual = model.config.vocab_size >= 51865
num_languages = model.config.vocab_size - 51765 - int(is_multilingual)
model.generation_config = _get_generation_config(
is_multilingual,
num_languages,
openai_version,
)
return model, is_multilingual, num_languages
# Adapted from https://github.com/openai/tiktoken/issues/60#issuecomment-1499977960
def _bpe(mergeable_ranks, token: bytes, max_rank=None) -> list[bytes]:
parts = [bytes([b]) for b in token]
while True:
min_idx = None
min_rank = None
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
rank = mergeable_ranks.get(pair[0] + pair[1])
if rank is not None and (min_rank is None or rank < min_rank):
min_idx = i
min_rank = rank
if min_rank is None or (max_rank is not None and min_rank >= max_rank):
break
assert min_idx is not None
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2 :]
return parts
def convert_tiktoken_bpe_to_hf(tiktoken_url: str):
bpe_ranks = load_tiktoken_bpe(tiktoken_url)
byte_encoder = bytes_to_unicode()
def token_bytes_to_string(b):
return "".join([byte_encoder[ord(char)] for char in b.decode("latin-1")])
merges = []
vocab = {}
for token, rank in bpe_ranks.items():
vocab[token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = tuple(_bpe(bpe_ranks, token, max_rank=rank))
if len(merged) == 2: # account for empty token
merges.append(" ".join(map(token_bytes_to_string, merged)))
return vocab, merges
def convert_tiktoken_to_hf(
multilingual: bool = True, num_languages: int = 100, time_precision=0.02
) -> WhisperTokenizer:
# requires whisper, unless we use the path to the tiktoken file
tiktoken_tokenizer_path = _TOKENIZERS["multilingual" if multilingual else "english"]
start_of_transcript = ["<|endoftext|>", "<|startoftranscript|>"]
control_tokens = [
"<|translate|>",
"<|transcribe|>",
"<|startoflm|>",
"<|startofprev|>",
"<|nospeech|>",
"<|notimestamps|>",
]
# these are special tokens, not normalized
language_tokens = [f"<|{k}|>" for k in list(LANGUAGES)[:num_languages]]
# These are not special but normalized
timestamp_tokens = [("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)]
vocab, merges = convert_tiktoken_bpe_to_hf(tiktoken_tokenizer_path)
with tempfile.TemporaryDirectory() as tmpdirname:
vocab_file = f"{tmpdirname}/vocab.json"
merge_file = f"{tmpdirname}/merges.txt"
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens in merges:
writer.write(bpe_tokens + "\n")
hf_tokenizer = WhisperTokenizer(vocab_file, merge_file)
hf_tokenizer.add_tokens(start_of_transcript + language_tokens + control_tokens, special_tokens=True)
hf_tokenizer.add_tokens(timestamp_tokens, special_tokens=False)
return hf_tokenizer
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# # Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to the downloaded checkpoints")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--convert_preprocessor",
type=bool,
default=False,
help="Whether or not the preprocessor (tokenizer + feature extractor) should be converted along with the model.",
)
args = parser.parse_args()
model, is_multilingual, num_languages = convert_openai_whisper_to_tfms(
args.checkpoint_path, args.pytorch_dump_folder_path
)
if args.convert_preprocessor:
try:
if not _is_package_available("tiktoken"):
raise """`tiktoken` is not installed, use `pip install tiktoken` to convert the tokenizer"""
except Exception:
pass
else:
from tiktoken.load import load_tiktoken_bpe
tokenizer = convert_tiktoken_to_hf(is_multilingual, num_languages)
feature_extractor = WhisperFeatureExtractor(
feature_size=model.config.num_mel_bins,
# the rest of default parameters are the same as hardcoded in openai/whisper
)
processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(args.pytorch_dump_folder_path)
# save fast tokenizer as well
fast_tokenizer = WhisperTokenizerFast.from_pretrained(args.pytorch_dump_folder_path)
fast_tokenizer.save_pretrained(args.pytorch_dump_folder_path, legacy_format=False)
model.save_pretrained(args.pytorch_dump_folder_path)
| transformers/src/transformers/models/whisper/convert_openai_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/whisper/convert_openai_to_hf.py",
"repo_id": "transformers",
"token_count": 6393
} | 374 |
# coding=utf-8
# Copyright The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XGLM model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json",
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class XGLMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`XGLMModel`]. It is used to instantiate an XGLM
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the XGLM
[facebook/xglm-564M](https://huggingface.co/facebook/xglm-564M) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256008):
Vocabulary size of the XGLM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`XGLMModel`] or [`FlaxXGLMModel`].
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
d_model (`int`, *optional*, defaults to 1024):
Dimension of the layers and the pooler layer.
ffn_dim (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
num_layers (`int`, *optional*, defaults to 24):
Number of hidden layers Transformer decoder.
attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, dencoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_embedding (`bool`, *optional*, defaults to `True`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import XGLMModel, XGLMConfig
>>> # Initializing a XGLM facebook/xglm-564M style configuration
>>> configuration = XGLMConfig()
>>> # Initializing a model from the facebook/xglm-564M style configuration
>>> model = XGLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "xglm"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
vocab_size=256008,
max_position_embeddings=2048,
d_model=1024,
ffn_dim=4096,
num_layers=24,
attention_heads=16,
activation_function="gelu",
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
layerdrop=0.0,
init_std=0.02,
scale_embedding=True,
use_cache=True,
decoder_start_token_id=2,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.ffn_dim = ffn_dim
self.num_layers = num_layers
self.attention_heads = attention_heads
self.activation_function = activation_function
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.layerdrop = layerdrop
self.init_std = init_std
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.use_cache = use_cache
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
| transformers/src/transformers/models/xglm/configuration_xglm.py/0 | {
"file_path": "transformers/src/transformers/models/xglm/configuration_xglm.py",
"repo_id": "transformers",
"token_count": 2346
} | 375 |
# coding=utf-8
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "prophetnet.tokenizer"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
PRETRAINED_INIT_CONFIGURATION = {
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"microsoft/xprophetnet-large-wiki100-cased": 512,
}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
class XLMProphetNetTokenizer(PreTrainedTokenizer):
"""
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"[SEP]"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="[SEP]",
eos_token="[SEP]",
sep_token="[SEP]",
unk_token="[UNK]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece"
)
raise
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
self.fairseq_tokens_to_ids = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4}
for i in range(10):
tok = f"[unused{i}]"
self.fairseq_tokens_to_ids[tok] = 5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
self.fairseq_offset = 12
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
# TODO ArthurZ fairseq_ids_to_tokens should be removed
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
unk_token=unk_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece"
)
raise
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + [1]
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLMProphetNet
does not make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0]
return len(token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
@property
def vocab_size(self):
return len(self.sp_model) + self.fairseq_offset
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> str:
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
spm_id = self.sp_model.PieceToId(token)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A XLMProphetNet sequence has the following format:
- single sequence: `X [SEP]`
- pair of sequences: `A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return token_ids_0 + [self.sep_token_id]
sep = [self.sep_token_id]
return token_ids_0 + sep + token_ids_1 + sep
| transformers/src/transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py/0 | {
"file_path": "transformers/src/transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py",
"repo_id": "transformers",
"token_count": 5985
} | 376 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch XLNet model.
"""
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_utils import PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits, PreTrainedModel, SequenceSummary
from ...pytorch_utils import apply_chunking_to_forward
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_xlnet import XLNetConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "xlnet-base-cased"
_CONFIG_FOR_DOC = "XLNetConfig"
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
"xlnet-base-cased",
"xlnet-large-cased",
# See all XLNet models at https://huggingface.co/models?filter=xlnet
]
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
"""
A map of modules from TF to PyTorch. I use a map to keep the PyTorch model as identical to the original PyTorch
model as possible.
"""
tf_to_pt_map = {}
if hasattr(model, "transformer"):
if hasattr(model, "lm_loss"):
# We will load also the output bias
tf_to_pt_map["model/lm_loss/bias"] = model.lm_loss.bias
if hasattr(model, "sequence_summary") and "model/sequnece_summary/summary/kernel" in tf_weights:
# We will load also the sequence summary
tf_to_pt_map["model/sequnece_summary/summary/kernel"] = model.sequence_summary.summary.weight
tf_to_pt_map["model/sequnece_summary/summary/bias"] = model.sequence_summary.summary.bias
if (
hasattr(model, "logits_proj")
and config.finetuning_task is not None
and f"model/regression_{config.finetuning_task}/logit/kernel" in tf_weights
):
tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/kernel"] = model.logits_proj.weight
tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/bias"] = model.logits_proj.bias
# Now load the rest of the transformer
model = model.transformer
# Embeddings and output
tf_to_pt_map.update(
{
"model/transformer/word_embedding/lookup_table": model.word_embedding.weight,
"model/transformer/mask_emb/mask_emb": model.mask_emb,
}
)
# Transformer blocks
for i, b in enumerate(model.layer):
layer_str = f"model/transformer/layer_{i}/"
tf_to_pt_map.update(
{
layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
layer_str + "rel_attn/o/kernel": b.rel_attn.o,
layer_str + "rel_attn/q/kernel": b.rel_attn.q,
layer_str + "rel_attn/k/kernel": b.rel_attn.k,
layer_str + "rel_attn/r/kernel": b.rel_attn.r,
layer_str + "rel_attn/v/kernel": b.rel_attn.v,
layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
}
)
# Relative positioning biases
if config.untie_r:
r_r_list = []
r_w_list = []
r_s_list = []
seg_embed_list = []
for b in model.layer:
r_r_list.append(b.rel_attn.r_r_bias)
r_w_list.append(b.rel_attn.r_w_bias)
r_s_list.append(b.rel_attn.r_s_bias)
seg_embed_list.append(b.rel_attn.seg_embed)
else:
r_r_list = [model.r_r_bias]
r_w_list = [model.r_w_bias]
r_s_list = [model.r_s_bias]
seg_embed_list = [model.seg_embed]
tf_to_pt_map.update(
{
"model/transformer/r_r_bias": r_r_list,
"model/transformer/r_w_bias": r_w_list,
"model/transformer/r_s_bias": r_s_list,
"model/transformer/seg_embed": seg_embed_list,
}
)
return tf_to_pt_map
def load_tf_weights_in_xlnet(model, config, tf_path):
"""Load tf checkpoints in a pytorch model"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
tf_weights = {}
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
tf_weights[name] = array
# Build TF to PyTorch weights loading map
tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
for name, pointer in tf_to_pt_map.items():
logger.info(f"Importing {name}")
if name not in tf_weights:
logger.info(f"{name} not in tf pre-trained weights, skipping")
continue
array = tf_weights[name]
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if "kernel" in name and ("ff" in name or "summary" in name or "logit" in name):
logger.info("Transposing")
array = np.transpose(array)
if isinstance(pointer, list):
# Here we will split the TF weights
assert (
len(pointer) == array.shape[0]
), f"Pointer length {len(pointer)} and array length {array.shape[0]} mismatched"
for i, p_i in enumerate(pointer):
arr_i = array[i, ...]
try:
assert (
p_i.shape == arr_i.shape
), f"Pointer shape {p_i.shape} and array shape {arr_i.shape} mismatched"
except AssertionError as e:
e.args += (p_i.shape, arr_i.shape)
raise
logger.info(f"Initialize PyTorch weight {name} for layer {i}")
p_i.data = torch.from_numpy(arr_i)
else:
try:
assert (
pointer.shape == array.shape
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
tf_weights.pop(name, None)
tf_weights.pop(name + "/Adam", None)
tf_weights.pop(name + "/Adam_1", None)
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
return model
class XLNetRelativeAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.d_model % config.n_head != 0:
raise ValueError(
f"The hidden size ({config.d_model}) is not a multiple of the number of attention "
f"heads ({config.n_head}"
)
self.n_head = config.n_head
self.d_head = config.d_head
self.d_model = config.d_model
self.scale = 1 / (config.d_head**0.5)
self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head))
self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.dropout)
def prune_heads(self, heads):
raise NotImplementedError
@staticmethod
def rel_shift(x, klen=-1):
"""perform relative shift to form the relative attention score."""
x_size = x.shape
x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
x = x[1:, ...]
x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
# x = x[:, 0:klen, :, :]
x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
return x
@staticmethod
def rel_shift_bnij(x, klen=-1):
x_size = x.shape
x = x.reshape(x_size[0], x_size[1], x_size[3], x_size[2])
x = x[:, :, 1:, :]
x = x.reshape(x_size[0], x_size[1], x_size[2], x_size[3] - 1)
# Note: the tensor-slice form was faster in my testing than torch.index_select
# However, tracing doesn't like the nature of the slice, and if klen changes
# during the run then it'll fail, whereas index_select will be fine.
x = torch.index_select(x, 3, torch.arange(klen, device=x.device, dtype=torch.long))
# x = x[:, :, :, :klen]
return x
def rel_attn_core(
self,
q_head,
k_head_h,
v_head_h,
k_head_r,
seg_mat=None,
attn_mask=None,
head_mask=None,
output_attentions=False,
):
"""Core relative positional attention operations."""
# content based attention score
ac = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_w_bias, k_head_h)
# position based attention score
bd = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_r_bias, k_head_r)
bd = self.rel_shift_bnij(bd, klen=ac.shape[3])
# segment based attention score
if seg_mat is None:
ef = 0
else:
ef = torch.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed)
ef = torch.einsum("ijbs,ibns->bnij", seg_mat, ef)
# merge attention scores and perform masking
attn_score = (ac + bd + ef) * self.scale
if attn_mask is not None:
# attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
if attn_mask.dtype == torch.float16:
attn_score = attn_score - 65500 * torch.einsum("ijbn->bnij", attn_mask)
else:
attn_score = attn_score - 1e30 * torch.einsum("ijbn->bnij", attn_mask)
# attention probability
attn_prob = nn.functional.softmax(attn_score, dim=3)
attn_prob = self.dropout(attn_prob)
# Mask heads if we want to
if head_mask is not None:
attn_prob = attn_prob * torch.einsum("ijbn->bnij", head_mask)
# attention output
attn_vec = torch.einsum("bnij,jbnd->ibnd", attn_prob, v_head_h)
if output_attentions:
return attn_vec, torch.einsum("bnij->ijbn", attn_prob)
return attn_vec
def post_attention(self, h, attn_vec, residual=True):
"""Post-attention processing."""
# post-attention projection (back to `d_model`)
attn_out = torch.einsum("ibnd,hnd->ibh", attn_vec, self.o)
attn_out = self.dropout(attn_out)
if residual:
attn_out = attn_out + h
output = self.layer_norm(attn_out)
return output
def forward(
self,
h,
g,
attn_mask_h,
attn_mask_g,
r,
seg_mat,
mems=None,
target_mapping=None,
head_mask=None,
output_attentions=False,
):
if g is not None:
# Two-stream attention with relative positional encoding.
# content based attention score
if mems is not None and mems.dim() > 1:
cat = torch.cat([mems, h], dim=0)
else:
cat = h
# content-based key head
k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k)
# content-based value head
v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v)
# position-based key head
k_head_r = torch.einsum("ibh,hnd->ibnd", r, self.r)
# h-stream
# content-stream query head
q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q)
# core attention ops
attn_vec_h = self.rel_attn_core(
q_head_h,
k_head_h,
v_head_h,
k_head_r,
seg_mat=seg_mat,
attn_mask=attn_mask_h,
head_mask=head_mask,
output_attentions=output_attentions,
)
if output_attentions:
attn_vec_h, attn_prob_h = attn_vec_h
# post processing
output_h = self.post_attention(h, attn_vec_h)
# g-stream
# query-stream query head
q_head_g = torch.einsum("ibh,hnd->ibnd", g, self.q)
# core attention ops
if target_mapping is not None:
q_head_g = torch.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping)
attn_vec_g = self.rel_attn_core(
q_head_g,
k_head_h,
v_head_h,
k_head_r,
seg_mat=seg_mat,
attn_mask=attn_mask_g,
head_mask=head_mask,
output_attentions=output_attentions,
)
if output_attentions:
attn_vec_g, attn_prob_g = attn_vec_g
attn_vec_g = torch.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping)
else:
attn_vec_g = self.rel_attn_core(
q_head_g,
k_head_h,
v_head_h,
k_head_r,
seg_mat=seg_mat,
attn_mask=attn_mask_g,
head_mask=head_mask,
output_attentions=output_attentions,
)
if output_attentions:
attn_vec_g, attn_prob_g = attn_vec_g
# post processing
output_g = self.post_attention(g, attn_vec_g)
if output_attentions:
attn_prob = attn_prob_h, attn_prob_g
else:
# Multi-head attention with relative positional encoding
if mems is not None and mems.dim() > 1:
cat = torch.cat([mems, h], dim=0)
else:
cat = h
# content heads
q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q)
k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k)
v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v)
# positional heads
# type casting for fp16 support
k_head_r = torch.einsum("ibh,hnd->ibnd", r.type(self.r.dtype), self.r)
# core attention ops
attn_vec = self.rel_attn_core(
q_head_h,
k_head_h,
v_head_h,
k_head_r,
seg_mat=seg_mat,
attn_mask=attn_mask_h,
head_mask=head_mask,
output_attentions=output_attentions,
)
if output_attentions:
attn_vec, attn_prob = attn_vec
# post processing
output_h = self.post_attention(h, attn_vec)
output_g = None
outputs = (output_h, output_g)
if output_attentions:
outputs = outputs + (attn_prob,)
return outputs
class XLNetFeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
self.layer_1 = nn.Linear(config.d_model, config.d_inner)
self.layer_2 = nn.Linear(config.d_inner, config.d_model)
self.dropout = nn.Dropout(config.dropout)
if isinstance(config.ff_activation, str):
self.activation_function = ACT2FN[config.ff_activation]
else:
self.activation_function = config.ff_activation
def forward(self, inp):
output = inp
output = self.layer_1(output)
output = self.activation_function(output)
output = self.dropout(output)
output = self.layer_2(output)
output = self.dropout(output)
output = self.layer_norm(output + inp)
return output
class XLNetLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.rel_attn = XLNetRelativeAttention(config)
self.ff = XLNetFeedForward(config)
self.dropout = nn.Dropout(config.dropout)
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
def forward(
self,
output_h,
output_g,
attn_mask_h,
attn_mask_g,
r,
seg_mat,
mems=None,
target_mapping=None,
head_mask=None,
output_attentions=False,
):
outputs = self.rel_attn(
output_h,
output_g,
attn_mask_h,
attn_mask_g,
r,
seg_mat,
mems=mems,
target_mapping=target_mapping,
head_mask=head_mask,
output_attentions=output_attentions,
)
output_h, output_g = outputs[:2]
if output_g is not None:
output_g = apply_chunking_to_forward(
self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_g
)
output_h = apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_h)
outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there
return outputs
def ff_chunk(self, output_x):
output_x = self.ff(output_x)
return output_x
class XLNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XLNetConfig
load_tf_weights = load_tf_weights_in_xlnet
base_model_prefix = "transformer"
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, XLNetRelativeAttention):
for param in [
module.q,
module.k,
module.v,
module.o,
module.r,
module.r_r_bias,
module.r_s_bias,
module.r_w_bias,
module.seg_embed,
]:
param.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, XLNetModel):
module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
@dataclass
class XLNetModelOutput(ModelOutput):
"""
Output type of [`XLNetModel`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`):
Sequence of hidden-states at the last layer of the model.
`num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
corresponds to `sequence_length`.
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
token ids which have their past given to this model should not be passed as `input_ids` as they have
already been computed.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor
mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class XLNetLMHeadModelOutput(ModelOutput):
"""
Output type of [`XLNetLMHeadModel`].
Args:
loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided)
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
`num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
corresponds to `sequence_length`.
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
token ids which have their past given to this model should not be passed as `input_ids` as they have
already been computed.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class XLNetForSequenceClassificationOutput(ModelOutput):
"""
Output type of [`XLNetForSequenceClassification`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
token ids which have their past given to this model should not be passed as `input_ids` as they have
already been computed.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class XLNetForTokenClassificationOutput(ModelOutput):
"""
Output type of [`XLNetForTokenClassificationOutput`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores (before SoftMax).
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
token ids which have their past given to this model should not be passed as `input_ids` as they have
already been computed.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class XLNetForMultipleChoiceOutput(ModelOutput):
"""
Output type of [`XLNetForMultipleChoice`].
Args:
loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
*num_choices* is the second dimension of the input tensors. (see *input_ids* above).
Classification scores (before SoftMax).
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
token ids which have their past given to this model should not be passed as `input_ids` as they have
already been computed.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class XLNetForQuestionAnsweringSimpleOutput(ModelOutput):
"""
Output type of [`XLNetForQuestionAnsweringSimple`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`):
Span-end scores (before SoftMax).
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
token ids which have their past given to this model should not be passed as `input_ids` as they have
already been computed.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None
mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class XLNetForQuestionAnsweringOutput(ModelOutput):
"""
Output type of [`XLNetForQuestionAnswering`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
losses.
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Indices for the top config.start_n_top start token possibilities (beam-search).
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
(beam-search).
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the `is_impossible` label of the answers.
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
token ids which have their past given to this model should not be passed as `input_ids` as they have
already been computed.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_top_log_probs: Optional[torch.FloatTensor] = None
start_top_index: Optional[torch.LongTensor] = None
end_top_log_probs: Optional[torch.FloatTensor] = None
end_top_index: Optional[torch.LongTensor] = None
cls_logits: Optional[torch.FloatTensor] = None
mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
XLNET_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`XLNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
XLNET_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
input_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.",
XLNET_START_DOCSTRING,
)
class XLNetModel(XLNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.mem_len = config.mem_len
self.reuse_len = config.reuse_len
self.d_model = config.d_model
self.same_length = config.same_length
self.attn_type = config.attn_type
self.bi_data = config.bi_data
self.clamp_len = config.clamp_len
self.n_layer = config.n_layer
self.word_embedding = nn.Embedding(config.vocab_size, config.d_model)
self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model))
self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
self.dropout = nn.Dropout(config.dropout)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.word_embedding
def set_input_embeddings(self, new_embeddings):
self.word_embedding = new_embeddings
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
def create_mask(self, qlen, mlen):
"""
Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.
Args:
qlen: Sequence length
mlen: Mask length
::
same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen >
^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1]
[0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1]
qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1]
v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0]
"""
mask = torch.ones((qlen, qlen + mlen), device=self.device)
if self.same_length:
mask_lo = mask[:, :qlen].tril(-1)
mask.triu_(mlen + 1)
mask[:, :qlen] += mask_lo
else:
mask.triu_(mlen + 1)
return mask
def cache_mem(self, curr_out, prev_mem):
# cache hidden states into memory.
if self.reuse_len is not None and self.reuse_len > 0:
curr_out = curr_out[: self.reuse_len]
if self.mem_len is None or self.mem_len == 0:
# If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time
# and returns all of the past and current hidden states.
cutoff = 0
else:
# If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden
# states. This is the preferred setting for training and long-form generation.
cutoff = -self.mem_len
if prev_mem is None:
# if `use_mems` is active and `mem_len` is defined, the model
new_mem = curr_out[cutoff:]
else:
new_mem = torch.cat([prev_mem, curr_out], dim=0)[cutoff:]
return new_mem.detach()
@staticmethod
def positional_embedding(pos_seq, inv_freq, bsz=None):
sinusoid_inp = torch.einsum("i,d->id", pos_seq, inv_freq)
pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
pos_emb = pos_emb[:, None, :]
if bsz is not None:
pos_emb = pos_emb.expand(-1, bsz, -1)
return pos_emb
def relative_positional_encoding(self, qlen, klen, bsz=None):
# create relative positional encoding.
freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.int64).float()
inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
if self.attn_type == "bi":
# beg, end = klen - 1, -qlen
beg, end = klen, -qlen
elif self.attn_type == "uni":
# beg, end = klen - 1, -1
beg, end = klen, -1
else:
raise ValueError(f"Unknown `attn_type` {self.attn_type}.")
if self.bi_data:
fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float()
bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.int64).float()
if self.clamp_len > 0:
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
if bsz is not None:
fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2)
bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2)
else:
fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
else:
fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float()
if self.clamp_len > 0:
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
return pos_emb
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=XLNetModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete after depreciation warning is removed
) -> Union[Tuple, XLNetModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems`"
" instead.",
FutureWarning,
)
use_mems = kwargs["use_cache"]
if self.training:
use_mems = use_mems if use_mems is not None else self.config.use_mems_train
else:
use_mems = use_mems if use_mems is not None else self.config.use_mems_eval
# the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
# but we want a unified interface in the library with the batch size on the first dimension
# so we move here the first dimension (batch) to the end
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_ids = input_ids.transpose(0, 1).contiguous()
qlen, bsz = input_ids.shape[0], input_ids.shape[1]
elif inputs_embeds is not None:
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0
klen = mlen + qlen
dtype_float = self.dtype
device = self.device
# Attention mask
# causal attention mask
if self.attn_type == "uni":
attn_mask = self.create_mask(qlen, mlen)
attn_mask = attn_mask[:, :, None, None]
elif self.attn_type == "bi":
attn_mask = None
else:
raise ValueError(f"Unsupported attention type: {self.attn_type}")
# data mask: input mask & perm mask
assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
"or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one."
if input_mask is None and attention_mask is not None:
input_mask = 1.0 - attention_mask
if input_mask is not None and perm_mask is not None:
data_mask = input_mask[None] + perm_mask
elif input_mask is not None and perm_mask is None:
data_mask = input_mask[None]
elif input_mask is None and perm_mask is not None:
data_mask = perm_mask
else:
data_mask = None
if data_mask is not None:
# all mems can be attended to
if mlen > 0:
mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
data_mask = torch.cat([mems_mask, data_mask], dim=1)
if attn_mask is None:
attn_mask = data_mask[:, :, :, None]
else:
attn_mask += data_mask[:, :, :, None]
if attn_mask is not None:
attn_mask = (attn_mask > 0).to(dtype_float)
if attn_mask is not None:
non_tgt_mask = -torch.eye(qlen).to(attn_mask)
if mlen > 0:
non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
else:
non_tgt_mask = None
# Word embeddings and prepare h & g hidden states
if inputs_embeds is not None:
word_emb_k = inputs_embeds
else:
word_emb_k = self.word_embedding(input_ids)
output_h = self.dropout(word_emb_k)
if target_mapping is not None:
word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
# else: # We removed the inp_q input which was same as target mapping
# inp_q_ext = inp_q[:, :, None]
# word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
output_g = self.dropout(word_emb_q)
else:
output_g = None
# Segment embedding
if token_type_ids is not None:
# Convert `token_type_ids` to one-hot `seg_mat`
if mlen > 0:
mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
else:
cat_ids = token_type_ids
# `1` indicates not in the same segment [qlen x klen x bsz]
seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
seg_mat = nn.functional.one_hot(seg_mat, num_classes=2).to(dtype_float)
else:
seg_mat = None
# Positional encoding
pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
pos_emb = pos_emb.to(output_h.device)
pos_emb = self.dropout(pos_emb)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype
) # switch to float if need + fp16 compatibility
else:
head_mask = [None] * self.n_layer
new_mems = ()
if mems is None:
mems = [None] * len(self.layer)
attentions = [] if output_attentions else None
hidden_states = [] if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if use_mems:
# cache new mems
new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
if output_hidden_states:
hidden_states.append((output_h, output_g) if output_g is not None else output_h)
outputs = layer_module(
output_h,
output_g,
attn_mask_h=non_tgt_mask,
attn_mask_g=attn_mask,
r=pos_emb,
seg_mat=seg_mat,
mems=mems[i],
target_mapping=target_mapping,
head_mask=head_mask[i],
output_attentions=output_attentions,
)
output_h, output_g = outputs[:2]
if output_attentions:
attentions.append(outputs[2])
# Add last hidden state
if output_hidden_states:
hidden_states.append((output_h, output_g) if output_g is not None else output_h)
output = self.dropout(output_g if output_g is not None else output_h)
# Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
output = output.permute(1, 0, 2).contiguous()
if not use_mems:
new_mems = None
if output_hidden_states:
if output_g is not None:
hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
else:
hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
if output_attentions:
if target_mapping is not None:
# when target_mapping is provided, there are 2-tuple of attentions
attentions = tuple(
tuple(att_stream.permute(2, 3, 0, 1).contiguous() for att_stream in t) for t in attentions
)
else:
attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
if not return_dict:
return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None)
return XLNetModelOutput(
last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions
)
@add_start_docstrings(
"""
XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
""",
XLNET_START_DOCSTRING,
)
class XLNetLMHeadModel(XLNetPreTrainedModel):
_tied_weights_keys = ["lm_loss.weight"]
def __init__(self, config):
super().__init__(config)
self.attn_type = config.attn_type
self.same_length = config.same_length
self.transformer = XLNetModel(config)
self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_loss
def set_output_embeddings(self, new_embeddings):
self.lm_loss = new_embeddings
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_mems=None, **kwargs):
# Add dummy token at the end (no attention on this one)
effective_batch_size = input_ids.shape[0]
dummy_token = torch.zeros((effective_batch_size, 1), dtype=torch.long, device=input_ids.device)
# At every pass, the attention values for the new token and the two last generated tokens
# are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have
# offset = 1; offset = 2 seems to have slightly better computation.
offset = 2
if past_key_values:
input_ids = torch.cat([input_ids[:, -offset:], dummy_token], dim=1)
else:
input_ids = torch.cat([input_ids, dummy_token], dim=1)
# Build permutation mask so that previous tokens don't see last token
sequence_length = input_ids.shape[1]
perm_mask = torch.zeros(
(effective_batch_size, sequence_length, sequence_length), dtype=torch.float, device=input_ids.device
)
perm_mask[:, :, -1] = 1.0
# We'll only predict the last token
target_mapping = torch.zeros(
(effective_batch_size, 1, sequence_length), dtype=torch.float, device=input_ids.device
)
target_mapping[:, 0, -1] = 1.0
inputs = {
"input_ids": input_ids,
"perm_mask": perm_mask,
"target_mapping": target_mapping,
"use_mems": use_mems,
}
# if past is defined in model kwargs then use it for faster decoding
if past_key_values:
inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values)
return inputs
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=XLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetLMHeadModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, num_predict)`, *optional*):
Labels for masked language modeling. `num_predict` corresponds to `target_mapping.shape[1]`. If
`target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`.
The labels should correspond to the masked input words that should be predicted and depends on
`target_mapping`. Note in order to perform standard auto-regressive language modeling a *<mask>* token has
to be added to the `input_ids` (see the `prepare_inputs_for_generation` function and examples below)
Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored, the loss
is only computed for labels in `[0, ..., config.vocab_size]`
Return:
Examples:
```python
>>> from transformers import AutoTokenizer, XLNetLMHeadModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet-large-cased")
>>> model = XLNetLMHeadModel.from_pretrained("xlnet-large-cased")
>>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
... ).unsqueeze(
... 0
... ) # We will predict the masked token
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float
... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[
... 0, 0, -1
... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
>>> next_token_logits = outputs[
... 0
... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
>>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling.
>>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
... ).unsqueeze(
... 0
... ) # We will predict the masked token
>>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0)
>>> assert labels.shape[0] == 1, "only one word will be predicted"
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[
... :, :, -1
... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training
>>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float
... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[
... 0, 0, -1
... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels)
>>> loss = outputs.loss
>>> next_token_logits = (
... outputs.logits
... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
logits = self.lm_loss(transformer_outputs[0])
loss = None
if labels is not None:
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return XLNetLMHeadModelOutput(
loss=loss,
logits=logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@staticmethod
def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
"""
This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every
generation step.
"""
return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]
@add_start_docstrings(
"""
XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g.
for GLUE tasks.
""",
XLNET_START_DOCSTRING,
)
class XLNetForSequenceClassification(XLNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.transformer = XLNetModel(config)
self.sequence_summary = SequenceSummary(config)
self.logits_proj = nn.Linear(config.d_model, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=XLNetForSequenceClassificationOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetForSequenceClassificationOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
output = transformer_outputs[0]
output = self.sequence_summary(output)
logits = self.logits_proj(output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return XLNetForSequenceClassificationOutput(
loss=loss,
logits=logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
XLNET_START_DOCSTRING,
)
class XLNetForTokenClassification(XLNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = XLNetModel(config)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=XLNetForTokenClassificationOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetForTokenClassificationOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return XLNetForTokenClassificationOutput(
loss=loss,
logits=logits,
mems=outputs.mems,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
XLNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RACE/SWAG tasks.
""",
XLNET_START_DOCSTRING,
)
class XLNetForMultipleChoice(XLNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = XLNetModel(config)
self.sequence_summary = SequenceSummary(config)
self.logits_proj = nn.Linear(config.d_model, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=XLNetForMultipleChoiceOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetForMultipleChoiceOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_input_mask = input_mask.view(-1, input_mask.size(-1)) if input_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
transformer_outputs = self.transformer(
flat_input_ids,
token_type_ids=flat_token_type_ids,
input_mask=flat_input_mask,
attention_mask=flat_attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
output = transformer_outputs[0]
output = self.sequence_summary(output)
logits = self.logits_proj(output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels.view(-1))
if not return_dict:
output = (reshaped_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return XLNetForMultipleChoiceOutput(
loss=loss,
logits=reshaped_logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
XLNET_START_DOCSTRING,
)
class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = XLNetModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=XLNetForQuestionAnsweringSimpleOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetForQuestionAnsweringSimpleOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return XLNetForQuestionAnsweringSimpleOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
mems=outputs.mems,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
XLNET_START_DOCSTRING,
)
class XLNetForQuestionAnswering(XLNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.start_n_top = config.start_n_top
self.end_n_top = config.end_n_top
self.transformer = XLNetModel(config)
self.start_logits = PoolerStartLogits(config)
self.end_logits = PoolerEndLogits(config)
self.answer_class = PoolerAnswerClass(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=XLNetForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
is_impossible: Optional[torch.Tensor] = None,
cls_index: Optional[torch.Tensor] = None,
p_mask: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetForQuestionAnsweringOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels whether a question has an answer or no answer (SQuAD 2.0)
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the classification token to use as input for computing plausibility of the
answer.
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
masked. 0.0 mean token is not masked.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, XLNetForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
>>> model = XLNetForQuestionAnswering.from_pretrained("xlnet-base-cased")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0
... ) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
hidden_states = transformer_outputs[0]
start_logits = self.start_logits(hidden_states, p_mask=p_mask)
outputs = transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, let's remove the dimension added by batch splitting
for x in (start_positions, end_positions, cls_index, is_impossible):
if x is not None and x.dim() > 1:
x.squeeze_(-1)
# during training, compute the end logits based on the ground truth of the start position
end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
loss_fct = CrossEntropyLoss()
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if cls_index is not None and is_impossible is not None:
# Predict answerability from the representation of CLS and START
cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
loss_fct_cls = nn.BCEWithLogitsLoss()
cls_loss = loss_fct_cls(cls_logits, is_impossible)
# note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
total_loss += cls_loss * 0.5
if not return_dict:
return (total_loss,) + transformer_outputs[1:]
else:
return XLNetForQuestionAnsweringOutput(
loss=total_loss,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
else:
# during inference, compute the end logits based on beam search
bsz, slen, hsz = hidden_states.size()
start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen)
start_top_log_probs, start_top_index = torch.topk(
start_log_probs, self.start_n_top, dim=-1
) # shape (bsz, start_n_top)
start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)
hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
start_states
) # shape (bsz, slen, start_n_top, hsz)
p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)
end_top_log_probs, end_top_index = torch.topk(
end_log_probs, self.end_n_top, dim=1
) # shape (bsz, end_n_top, start_n_top)
end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)
start_states = torch.einsum(
"blh,bl->bh", hidden_states, start_log_probs
) # get the representation of START as weighted sum of hidden states
cls_logits = self.answer_class(
hidden_states, start_states=start_states, cls_index=cls_index
) # Shape (batch size,): one single `cls_logits` for each sample
if not return_dict:
outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
return outputs + transformer_outputs[1:]
else:
return XLNetForQuestionAnsweringOutput(
start_top_log_probs=start_top_log_probs,
start_top_index=start_top_index,
end_top_log_probs=end_top_log_probs,
end_top_index=end_top_index,
cls_logits=cls_logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
| transformers/src/transformers/models/xlnet/modeling_xlnet.py/0 | {
"file_path": "transformers/src/transformers/models/xlnet/modeling_xlnet.py",
"repo_id": "transformers",
"token_count": 41780
} | 377 |
# coding=utf-8
# Copyright 2022 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch YOSO model."""
import math
from pathlib import Path
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_yoso import YosoConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "uw-madison/yoso-4096"
_CONFIG_FOR_DOC = "YosoConfig"
YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = [
"uw-madison/yoso-4096",
# See all YOSO models at https://huggingface.co/models?filter=yoso
]
def load_cuda_kernels():
global lsh_cumulation
try:
from torch.utils.cpp_extension import load
def append_root(files):
src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "yoso"
return [src_folder / file for file in files]
src_files = append_root(
["fast_lsh_cumulation_torch.cpp", "fast_lsh_cumulation.cu", "fast_lsh_cumulation_cuda.cu"]
)
load("fast_lsh_cumulation", src_files, verbose=True)
import fast_lsh_cumulation as lsh_cumulation
return True
except Exception:
lsh_cumulation = None
return False
def to_contiguous(input_tensors):
if isinstance(input_tensors, list):
out = []
for tensor in input_tensors:
if not tensor.is_contiguous():
tensor = tensor.contiguous()
out.append(tensor)
return out
else:
if not input_tensors.is_contiguous():
input_tensors = input_tensors.contiguous()
return input_tensors
def normalize(input_tensors):
if isinstance(input_tensors, list):
out = []
for tensor in input_tensors:
out.append(nn.functional.normalize(tensor, p=2, dim=-1))
return out
else:
return nn.functional.normalize(input_tensors, p=2, dim=-1)
def hashing(query, key, num_hash, hash_len):
if len(query.size()) != 3:
raise ValueError("Query has incorrect size.")
if len(key.size()) != 3:
raise ValueError("Key has incorrect size.")
rmat = torch.randn(query.size(0), query.size(2), num_hash * hash_len, device=query.device)
raise_pow = 2 ** torch.arange(hash_len, device=query.device)
query_projection = torch.matmul(query, rmat).reshape(query.size(0), query.size(1), num_hash, hash_len)
key_projection = torch.matmul(key, rmat).reshape(key.size(0), key.size(1), num_hash, hash_len)
query_binary = (query_projection > 0).int()
key_binary = (key_projection > 0).int()
query_hash = torch.sum(query_binary * raise_pow, dim=-1)
query_hash = torch.sum(key_binary * raise_pow, dim=-1)
return query_hash.int(), query_hash.int()
class YosoCumulation(torch.autograd.Function):
@staticmethod
def forward(ctx, query_mask, key_mask, query, key, value, config):
hash_code_len = config["hash_code_len"]
expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len
expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :]
cumulation_value = torch.matmul(expectation, value)
ctx.save_for_backward(query_mask, key_mask, expectation, query, key, value)
ctx.config = config
return cumulation_value
@staticmethod
def backward(ctx, grad):
grad = to_contiguous(grad)
query_mask, key_mask, expectation, query, key, value = ctx.saved_tensors
config = ctx.config
hash_code_len = config["hash_code_len"]
weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation
grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key)
grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query)
grad_value = torch.matmul(expectation.transpose(-1, -2), grad)
return None, None, grad_query, grad_key, grad_value, None
class YosoLSHCumulation(torch.autograd.Function):
@staticmethod
def forward(ctx, query_mask, key_mask, query, key, value, config):
if query_mask.size(0) != key_mask.size(0):
raise ValueError("Query mask and Key mask differ in sizes in dimension 0")
if query_mask.size(0) != query.size(0):
raise ValueError("Query mask and Query differ in sizes in dimension 0")
if query_mask.size(0) != key.size(0):
raise ValueError("Query mask and Key differ in sizes in dimension 0")
if query_mask.size(0) != value.size(0):
raise ValueError("Query mask and Value mask differ in sizes in dimension 0")
if key.size(1) != value.size(1):
raise ValueError("Key and Value differ in sizes in dimension 1")
if query.size(2) != key.size(2):
raise ValueError("Query and Key differ in sizes in dimension 2")
query_mask, key_mask, query, key, value = to_contiguous([query_mask, key_mask, query, key, value])
use_cuda = query_mask.is_cuda
num_hash = config["num_hash"]
hash_code_len = config["hash_code_len"]
hashtable_capacity = int(2**hash_code_len)
if config["use_fast_hash"]:
query_hash_code, key_hash_code = lsh_cumulation.fast_hash(
query_mask, query, key_mask, key, num_hash, hash_code_len, use_cuda, 1
)
else:
query_hash_code, key_hash_code = hashing(query, key, num_hash, hash_code_len)
cumulation_value = lsh_cumulation.lsh_cumulation(
query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda, 1
)
ctx.save_for_backward(query_mask, key_mask, query_hash_code, key_hash_code, query, key, value)
ctx.config = config
return cumulation_value
@staticmethod
def backward(ctx, grad):
grad = to_contiguous(grad)
query_mask, key_mask, query_hash_code, key_hash_code, query, key, value = ctx.saved_tensors
config = ctx.config
use_cuda = grad.is_cuda
hash_code_len = config["hash_code_len"]
hashtable_capacity = int(2**hash_code_len)
if config["lsh_backward"]:
grad_value = lsh_cumulation.lsh_cumulation(
key_mask, key_hash_code, query_mask, query_hash_code, grad, hashtable_capacity, use_cuda, 1
)
grad_query = lsh_cumulation.lsh_weighted_cumulation(
query_mask,
query_hash_code,
grad,
key_mask,
key_hash_code,
value,
(hash_code_len / 2) * key,
hashtable_capacity,
use_cuda,
4,
)
grad_key = lsh_cumulation.lsh_weighted_cumulation(
key_mask,
key_hash_code,
value,
query_mask,
query_hash_code,
grad,
(hash_code_len / 2) * query,
hashtable_capacity,
use_cuda,
4,
)
else:
expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len
expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :]
weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation
grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key)
grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query)
grad_value = torch.matmul(expectation.transpose(-1, -2), grad)
return None, None, grad_query, grad_key, grad_value, None
# Copied from transformers.models.nystromformer.modeling_nystromformer.NystromformerEmbeddings
class YosoEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class YosoSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = (
position_embedding_type if position_embedding_type is not None else config.position_embedding_type
)
self.use_expectation = config.use_expectation
self.hash_code_len = config.hash_code_len
self.use_conv = config.conv_window is not None
self.use_fast_hash = config.use_fast_hash
self.num_hash = config.num_hash
self.lsh_backward = config.lsh_backward
self.lsh_config = {
"hash_code_len": self.hash_code_len,
"use_fast_hash": self.use_fast_hash,
"num_hash": self.num_hash,
"lsh_backward": self.lsh_backward,
}
if config.conv_window is not None:
self.conv = nn.Conv2d(
in_channels=config.num_attention_heads,
out_channels=config.num_attention_heads,
kernel_size=(config.conv_window, 1),
padding=(config.conv_window // 2, 0),
bias=False,
groups=config.num_attention_heads,
)
def transpose_for_scores(self, layer):
new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
layer = layer.view(*new_layer_shape)
return layer.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.use_conv:
conv_value_layer = self.conv(value_layer * attention_mask[:, None, :, None])
batch_size, num_heads, seq_len, head_dim = query_layer.size()
query_layer = query_layer.reshape(batch_size * num_heads, seq_len, head_dim)
key_layer = key_layer.reshape(batch_size * num_heads, seq_len, head_dim)
value_layer = value_layer.reshape(batch_size * num_heads, seq_len, head_dim)
# revert changes made by get_extended_attention_mask
attention_mask = 1.0 + attention_mask / 10000.0
attention_mask = (
attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int()
)
# The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs
# smaller than this are padded with zeros.
gpu_warp_size = 32
if (not self.use_expectation) and head_dim < gpu_warp_size:
pad_size = batch_size * num_heads, seq_len, gpu_warp_size - head_dim
query_layer = torch.cat(
[
query_layer,
torch.zeros(pad_size, device=query_layer.device),
],
dim=-1,
)
key_layer = torch.cat(
[
key_layer,
torch.zeros(pad_size, device=key_layer.device),
],
dim=-1,
)
value_layer = torch.cat(
[
value_layer,
torch.zeros(pad_size, device=value_layer.device),
],
dim=-1,
)
if self.use_expectation or self.training:
query_layer, key_layer = normalize([query_layer, key_layer])
if self.use_expectation:
context_layer = YosoCumulation.apply(
attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config
)
else:
context_layer = YosoLSHCumulation.apply(
attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config
)
if (not self.use_expectation) and head_dim < gpu_warp_size:
context_layer = context_layer[:, :, :head_dim]
context_layer = normalize(context_layer)
context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim)
if self.use_conv:
context_layer += conv_value_layer
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, context_layer) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class YosoSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class YosoAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = YosoSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = YosoSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
self_outputs = self.self(hidden_states, attention_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class YosoIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class YosoOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class YosoLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = YosoAttention(config)
self.add_cross_attention = config.add_cross_attention
self.intermediate = YosoIntermediate(config)
self.output = YosoOutput(config)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class YosoEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([YosoLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform
class YosoPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Yoso
class YosoLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = YosoPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Yoso
class YosoOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = YosoLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class YosoPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = YosoConfig
base_model_prefix = "yoso"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
YOSO_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`YosoConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
YOSO_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare YOSO Model transformer outputting raw hidden-states without any specific head on top.",
YOSO_START_DOCSTRING,
)
class YosoModel(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = YosoEmbeddings(config)
self.encoder = YosoEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""YOSO Model with a `language modeling` head on top.""", YOSO_START_DOCSTRING)
class YosoForMaskedLM(YosoPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.yoso = YosoModel(config)
self.cls = YosoOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class YosoClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks.""",
YOSO_START_DOCSTRING,
)
class YosoForSequenceClassification(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.yoso = YosoModel(config)
self.classifier = YosoClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""YOSO Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""",
YOSO_START_DOCSTRING,
)
class YosoForMultipleChoice(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.yoso = YosoModel(config)
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""YOSO Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""",
YOSO_START_DOCSTRING,
)
class YosoForTokenClassification(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.yoso = YosoModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""YOSO Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""",
YOSO_START_DOCSTRING,
)
class YosoForQuestionAnswering(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.yoso = YosoModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/yoso/modeling_yoso.py/0 | {
"file_path": "transformers/src/transformers/models/yoso/modeling_yoso.py",
"repo_id": "transformers",
"token_count": 23753
} | 378 |
# Copyright 2022 The Impira Team and the HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import List, Optional, Tuple, Union
import numpy as np
from ..utils import (
ExplicitEnum,
add_end_docstrings,
is_pytesseract_available,
is_torch_available,
is_vision_available,
logging,
)
from .base import ChunkPipeline, build_pipeline_init_args
from .question_answering import select_starts_ends
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES
TESSERACT_LOADED = False
if is_pytesseract_available():
TESSERACT_LOADED = True
import pytesseract
logger = logging.get_logger(__name__)
# normalize_bbox() and apply_tesseract() are derived from apply_tesseract in models/layoutlmv3/feature_extraction_layoutlmv3.py.
# However, because the pipeline may evolve from what layoutlmv3 currently does, it's copied (vs. imported) to avoid creating an
# unnecessary dependency.
def normalize_box(box, width, height):
return [
int(1000 * (box[0] / width)),
int(1000 * (box[1] / height)),
int(1000 * (box[2] / width)),
int(1000 * (box[3] / height)),
]
def apply_tesseract(image: "Image.Image", lang: Optional[str], tesseract_config: Optional[str]):
"""Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes."""
# apply OCR
data = pytesseract.image_to_data(image, lang=lang, output_type="dict", config=tesseract_config)
words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"]
# filter empty words and corresponding coordinates
irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()]
words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices]
left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices]
top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices]
width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices]
height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
actual_boxes = []
for x, y, w, h in zip(left, top, width, height):
actual_box = [x, y, x + w, y + h]
actual_boxes.append(actual_box)
image_width, image_height = image.size
# finally, normalize the bounding boxes
normalized_boxes = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(box, image_width, image_height))
if len(words) != len(normalized_boxes):
raise ValueError("Not as many words as there are bounding boxes")
return words, normalized_boxes
class ModelType(ExplicitEnum):
LayoutLM = "layoutlm"
LayoutLMv2andv3 = "layoutlmv2andv3"
VisionEncoderDecoder = "vision_encoder_decoder"
@add_end_docstrings(build_pipeline_init_args(has_image_processor=True, has_tokenizer=True))
class DocumentQuestionAnsweringPipeline(ChunkPipeline):
# TODO: Update task_summary docs to include an example with document QA and then update the first sentence
"""
Document Question Answering pipeline using any `AutoModelForDocumentQuestionAnswering`. The inputs/outputs are
similar to the (extractive) question answering pipeline; however, the pipeline takes an image (and optional OCR'd
words/boxes) as input instead of text context.
Example:
```python
>>> from transformers import pipeline
>>> document_qa = pipeline(model="impira/layoutlm-document-qa")
>>> document_qa(
... image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png",
... question="What is the invoice number?",
... )
[{'score': 0.425, 'answer': 'us-001', 'start': 16, 'end': 16}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This document question answering pipeline can currently be loaded from [`pipeline`] using the following task
identifier: `"document-question-answering"`.
The models that this pipeline can use are models that have been fine-tuned on a document question answering task.
See the up-to-date list of available models on
[huggingface.co/models](https://huggingface.co/models?filter=document-question-answering).
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.tokenizer is not None and not self.tokenizer.__class__.__name__.endswith("Fast"):
raise ValueError(
"`DocumentQuestionAnsweringPipeline` requires a fast tokenizer, but a slow tokenizer "
f"(`{self.tokenizer.__class__.__name__}`) is provided."
)
if self.model.config.__class__.__name__ == "VisionEncoderDecoderConfig":
self.model_type = ModelType.VisionEncoderDecoder
if self.model.config.encoder.model_type != "donut-swin":
raise ValueError("Currently, the only supported VisionEncoderDecoder model is Donut")
else:
self.check_model_type(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES)
if self.model.config.__class__.__name__ == "LayoutLMConfig":
self.model_type = ModelType.LayoutLM
else:
self.model_type = ModelType.LayoutLMv2andv3
def _sanitize_parameters(
self,
padding=None,
doc_stride=None,
max_question_len=None,
lang: Optional[str] = None,
tesseract_config: Optional[str] = None,
max_answer_len=None,
max_seq_len=None,
top_k=None,
handle_impossible_answer=None,
timeout=None,
**kwargs,
):
preprocess_params, postprocess_params = {}, {}
if padding is not None:
preprocess_params["padding"] = padding
if doc_stride is not None:
preprocess_params["doc_stride"] = doc_stride
if max_question_len is not None:
preprocess_params["max_question_len"] = max_question_len
if max_seq_len is not None:
preprocess_params["max_seq_len"] = max_seq_len
if lang is not None:
preprocess_params["lang"] = lang
if tesseract_config is not None:
preprocess_params["tesseract_config"] = tesseract_config
if timeout is not None:
preprocess_params["timeout"] = timeout
if top_k is not None:
if top_k < 1:
raise ValueError(f"top_k parameter should be >= 1 (got {top_k})")
postprocess_params["top_k"] = top_k
if max_answer_len is not None:
if max_answer_len < 1:
raise ValueError(f"max_answer_len parameter should be >= 1 (got {max_answer_len}")
postprocess_params["max_answer_len"] = max_answer_len
if handle_impossible_answer is not None:
postprocess_params["handle_impossible_answer"] = handle_impossible_answer
return preprocess_params, {}, postprocess_params
def __call__(
self,
image: Union["Image.Image", str],
question: Optional[str] = None,
word_boxes: Tuple[str, List[float]] = None,
**kwargs,
):
"""
Answer the question(s) given as inputs by using the document(s). A document is defined as an image and an
optional list of (word, box) tuples which represent the text in the document. If the `word_boxes` are not
provided, it will use the Tesseract OCR engine (if available) to extract the words and boxes automatically for
LayoutLM-like models which require them as input. For Donut, no OCR is run.
You can invoke the pipeline several ways:
- `pipeline(image=image, question=question)`
- `pipeline(image=image, question=question, word_boxes=word_boxes)`
- `pipeline([{"image": image, "question": question}])`
- `pipeline([{"image": image, "question": question, "word_boxes": word_boxes}])`
Args:
image (`str` or `PIL.Image`):
The pipeline handles three types of images:
- A string containing a http link pointing to an image
- A string containing a local path to an image
- An image loaded in PIL directly
The pipeline accepts either a single image or a batch of images. If given a single image, it can be
broadcasted to multiple questions.
question (`str`):
A question to ask of the document.
word_boxes (`List[str, Tuple[float, float, float, float]]`, *optional*):
A list of words and bounding boxes (normalized 0->1000). If you provide this optional input, then the
pipeline will use these words and boxes instead of running OCR on the image to derive them for models
that need them (e.g. LayoutLM). This allows you to reuse OCR'd results across many invocations of the
pipeline without having to re-run it each time.
top_k (`int`, *optional*, defaults to 1):
The number of answers to return (will be chosen by order of likelihood). Note that we return less than
top_k answers if there are not enough options available within the context.
doc_stride (`int`, *optional*, defaults to 128):
If the words in the document are too long to fit with the question for the model, it will be split in
several chunks with some overlap. This argument controls the size of that overlap.
max_answer_len (`int`, *optional*, defaults to 15):
The maximum length of predicted answers (e.g., only answers with a shorter length are considered).
max_seq_len (`int`, *optional*, defaults to 384):
The maximum length of the total sentence (context + question) in tokens of each chunk passed to the
model. The context will be split in several chunks (using `doc_stride` as overlap) if needed.
max_question_len (`int`, *optional*, defaults to 64):
The maximum length of the question after tokenization. It will be truncated if needed.
handle_impossible_answer (`bool`, *optional*, defaults to `False`):
Whether or not we accept impossible as an answer.
lang (`str`, *optional*):
Language to use while running OCR. Defaults to english.
tesseract_config (`str`, *optional*):
Additional flags to pass to tesseract while running OCR.
timeout (`float`, *optional*, defaults to None):
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
the call may block forever.
Return:
A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys:
- **score** (`float`) -- The probability associated to the answer.
- **start** (`int`) -- The start word index of the answer (in the OCR'd version of the input or provided
`word_boxes`).
- **end** (`int`) -- The end word index of the answer (in the OCR'd version of the input or provided
`word_boxes`).
- **answer** (`str`) -- The answer to the question.
- **words** (`list[int]`) -- The index of each word/box pair that is in the answer
"""
if isinstance(question, str):
inputs = {"question": question, "image": image}
if word_boxes is not None:
inputs["word_boxes"] = word_boxes
else:
inputs = image
return super().__call__(inputs, **kwargs)
def preprocess(
self,
input,
padding="do_not_pad",
doc_stride=None,
max_seq_len=None,
word_boxes: Tuple[str, List[float]] = None,
lang=None,
tesseract_config="",
timeout=None,
):
# NOTE: This code mirrors the code in question answering and will be implemented in a follow up PR
# to support documents with enough tokens that overflow the model's window
if max_seq_len is None:
max_seq_len = self.tokenizer.model_max_length
if doc_stride is None:
doc_stride = min(max_seq_len // 2, 256)
image = None
image_features = {}
if input.get("image", None) is not None:
image = load_image(input["image"], timeout=timeout)
if self.image_processor is not None:
image_features.update(self.image_processor(images=image, return_tensors=self.framework))
elif self.feature_extractor is not None:
image_features.update(self.feature_extractor(images=image, return_tensors=self.framework))
elif self.model_type == ModelType.VisionEncoderDecoder:
raise ValueError("If you are using a VisionEncoderDecoderModel, you must provide a feature extractor")
words, boxes = None, None
if not self.model_type == ModelType.VisionEncoderDecoder:
if "word_boxes" in input:
words = [x[0] for x in input["word_boxes"]]
boxes = [x[1] for x in input["word_boxes"]]
elif "words" in image_features and "boxes" in image_features:
words = image_features.pop("words")[0]
boxes = image_features.pop("boxes")[0]
elif image is not None:
if not TESSERACT_LOADED:
raise ValueError(
"If you provide an image without word_boxes, then the pipeline will run OCR using Tesseract,"
" but pytesseract is not available"
)
if TESSERACT_LOADED:
words, boxes = apply_tesseract(image, lang=lang, tesseract_config=tesseract_config)
else:
raise ValueError(
"You must provide an image or word_boxes. If you provide an image, the pipeline will automatically"
" run OCR to derive words and boxes"
)
if self.tokenizer.padding_side != "right":
raise ValueError(
"Document question answering only supports tokenizers whose padding side is 'right', not"
f" {self.tokenizer.padding_side}"
)
if self.model_type == ModelType.VisionEncoderDecoder:
task_prompt = f'<s_docvqa><s_question>{input["question"]}</s_question><s_answer>'
# Adapted from https://huggingface.co/spaces/nielsr/donut-docvqa/blob/main/app.py
encoding = {
"inputs": image_features["pixel_values"],
"decoder_input_ids": self.tokenizer(
task_prompt, add_special_tokens=False, return_tensors=self.framework
).input_ids,
"return_dict_in_generate": True,
}
yield {
**encoding,
"p_mask": None,
"word_ids": None,
"words": None,
"output_attentions": True,
"is_last": True,
}
else:
tokenizer_kwargs = {}
if self.model_type == ModelType.LayoutLM:
tokenizer_kwargs["text"] = input["question"].split()
tokenizer_kwargs["text_pair"] = words
tokenizer_kwargs["is_split_into_words"] = True
else:
tokenizer_kwargs["text"] = [input["question"]]
tokenizer_kwargs["text_pair"] = [words]
tokenizer_kwargs["boxes"] = [boxes]
encoding = self.tokenizer(
padding=padding,
max_length=max_seq_len,
stride=doc_stride,
return_token_type_ids=True,
truncation="only_second",
return_overflowing_tokens=True,
**tokenizer_kwargs,
)
# TODO: check why slower `LayoutLMTokenizer` and `LayoutLMv2Tokenizer` don't have this key in outputs
# FIXME: ydshieh and/or Narsil
encoding.pop("overflow_to_sample_mapping", None) # We do not use this
num_spans = len(encoding["input_ids"])
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
# We put 0 on the tokens from the context and 1 everywhere else (question and special tokens)
# This logic mirrors the logic in the question_answering pipeline
p_mask = [[tok != 1 for tok in encoding.sequence_ids(span_id)] for span_id in range(num_spans)]
for span_idx in range(num_spans):
if self.framework == "pt":
span_encoding = {k: torch.tensor(v[span_idx : span_idx + 1]) for (k, v) in encoding.items()}
if "pixel_values" in image_features:
span_encoding["image"] = image_features["pixel_values"]
else:
raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline")
input_ids_span_idx = encoding["input_ids"][span_idx]
# keep the cls_token unmasked (some models use it to indicate unanswerable questions)
if self.tokenizer.cls_token_id is not None:
cls_indices = np.nonzero(np.array(input_ids_span_idx) == self.tokenizer.cls_token_id)[0]
for cls_index in cls_indices:
p_mask[span_idx][cls_index] = 0
# For each span, place a bounding box [0,0,0,0] for question and CLS tokens, [1000,1000,1000,1000]
# for SEP tokens, and the word's bounding box for words in the original document.
if "boxes" not in tokenizer_kwargs:
bbox = []
for input_id, sequence_id, word_id in zip(
encoding.input_ids[span_idx],
encoding.sequence_ids(span_idx),
encoding.word_ids(span_idx),
):
if sequence_id == 1:
bbox.append(boxes[word_id])
elif input_id == self.tokenizer.sep_token_id:
bbox.append([1000] * 4)
else:
bbox.append([0] * 4)
if self.framework == "pt":
span_encoding["bbox"] = torch.tensor(bbox).unsqueeze(0)
elif self.framework == "tf":
raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline")
yield {
**span_encoding,
"p_mask": p_mask[span_idx],
"word_ids": encoding.word_ids(span_idx),
"words": words,
"is_last": span_idx == num_spans - 1,
}
def _forward(self, model_inputs):
p_mask = model_inputs.pop("p_mask", None)
word_ids = model_inputs.pop("word_ids", None)
words = model_inputs.pop("words", None)
is_last = model_inputs.pop("is_last", False)
if self.model_type == ModelType.VisionEncoderDecoder:
model_outputs = self.model.generate(**model_inputs)
else:
model_outputs = self.model(**model_inputs)
model_outputs = dict(model_outputs.items())
model_outputs["p_mask"] = p_mask
model_outputs["word_ids"] = word_ids
model_outputs["words"] = words
model_outputs["attention_mask"] = model_inputs.get("attention_mask", None)
model_outputs["is_last"] = is_last
return model_outputs
def postprocess(self, model_outputs, top_k=1, **kwargs):
if self.model_type == ModelType.VisionEncoderDecoder:
answers = [self.postprocess_encoder_decoder_single(o) for o in model_outputs]
else:
answers = self.postprocess_extractive_qa(model_outputs, top_k=top_k, **kwargs)
answers = sorted(answers, key=lambda x: x.get("score", 0), reverse=True)[:top_k]
return answers
def postprocess_encoder_decoder_single(self, model_outputs, **kwargs):
sequence = self.tokenizer.batch_decode(model_outputs["sequences"])[0]
# TODO: A lot of this logic is specific to Donut and should probably be handled in the tokenizer
# (see https://github.com/huggingface/transformers/pull/18414/files#r961747408 for more context).
sequence = sequence.replace(self.tokenizer.eos_token, "").replace(self.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
ret = {
"answer": None,
}
answer = re.search(r"<s_answer>(.*)</s_answer>", sequence)
if answer is not None:
ret["answer"] = answer.group(1).strip()
return ret
def postprocess_extractive_qa(
self, model_outputs, top_k=1, handle_impossible_answer=False, max_answer_len=15, **kwargs
):
min_null_score = 1000000 # large and positive
answers = []
for output in model_outputs:
words = output["words"]
starts, ends, scores, min_null_score = select_starts_ends(
start=output["start_logits"],
end=output["end_logits"],
p_mask=output["p_mask"],
attention_mask=output["attention_mask"].numpy()
if output.get("attention_mask", None) is not None
else None,
min_null_score=min_null_score,
top_k=top_k,
handle_impossible_answer=handle_impossible_answer,
max_answer_len=max_answer_len,
)
word_ids = output["word_ids"]
for start, end, score in zip(starts, ends, scores):
word_start, word_end = word_ids[start], word_ids[end]
if word_start is not None and word_end is not None:
answers.append(
{
"score": float(score),
"answer": " ".join(words[word_start : word_end + 1]),
"start": word_start,
"end": word_end,
}
)
if handle_impossible_answer:
answers.append({"score": min_null_score, "answer": "", "start": 0, "end": 0})
return answers
| transformers/src/transformers/pipelines/document_question_answering.py/0 | {
"file_path": "transformers/src/transformers/pipelines/document_question_answering.py",
"repo_id": "transformers",
"token_count": 10332
} | 379 |
import types
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
from ..models.bert.tokenization_bert import BasicTokenizer
from ..utils import (
ExplicitEnum,
add_end_docstrings,
is_tf_available,
is_torch_available,
)
from .base import ArgumentHandler, ChunkPipeline, Dataset, build_pipeline_init_args
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
class TokenClassificationArgumentHandler(ArgumentHandler):
"""
Handles arguments for token classification.
"""
def __call__(self, inputs: Union[str, List[str]], **kwargs):
if inputs is not None and isinstance(inputs, (list, tuple)) and len(inputs) > 0:
inputs = list(inputs)
batch_size = len(inputs)
elif isinstance(inputs, str):
inputs = [inputs]
batch_size = 1
elif Dataset is not None and isinstance(inputs, Dataset) or isinstance(inputs, types.GeneratorType):
return inputs, None
else:
raise ValueError("At least one input is required.")
offset_mapping = kwargs.get("offset_mapping")
if offset_mapping:
if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple):
offset_mapping = [offset_mapping]
if len(offset_mapping) != batch_size:
raise ValueError("offset_mapping should have the same batch size as the input")
return inputs, offset_mapping
class AggregationStrategy(ExplicitEnum):
"""All the valid aggregation strategies for TokenClassificationPipeline"""
NONE = "none"
SIMPLE = "simple"
FIRST = "first"
AVERAGE = "average"
MAX = "max"
@add_end_docstrings(
build_pipeline_init_args(has_tokenizer=True),
r"""
ignore_labels (`List[str]`, defaults to `["O"]`):
A list of labels to ignore.
grouped_entities (`bool`, *optional*, defaults to `False`):
DEPRECATED, use `aggregation_strategy` instead. Whether or not to group the tokens corresponding to the
same entity together in the predictions or not.
stride (`int`, *optional*):
If stride is provided, the pipeline is applied on all the text. The text is split into chunks of size
model_max_length. Works only with fast tokenizers and `aggregation_strategy` different from `NONE`. The
value of this argument defines the number of overlapping tokens between chunks. In other words, the model
will shift forward by `tokenizer.model_max_length - stride` tokens each step.
aggregation_strategy (`str`, *optional*, defaults to `"none"`):
The strategy to fuse (or not) tokens based on the model prediction.
- "none" : Will simply not do any aggregation and simply return raw results from the model
- "simple" : Will attempt to group entities following the default schema. (A, B-TAG), (B, I-TAG), (C,
I-TAG), (D, B-TAG2) (E, B-TAG2) will end up being [{"word": ABC, "entity": "TAG"}, {"word": "D",
"entity": "TAG2"}, {"word": "E", "entity": "TAG2"}] Notice that two consecutive B tags will end up as
different entities. On word based languages, we might end up splitting words undesirably : Imagine
Microsoft being tagged as [{"word": "Micro", "entity": "ENTERPRISE"}, {"word": "soft", "entity":
"NAME"}]. Look for FIRST, MAX, AVERAGE for ways to mitigate that and disambiguate words (on languages
that support that meaning, which is basically tokens separated by a space). These mitigations will
only work on real words, "New york" might still be tagged with two different entities.
- "first" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot
end up with different tags. Words will simply use the tag of the first token of the word when there
is ambiguity.
- "average" : (works only on word based models) Will use the `SIMPLE` strategy except that words,
cannot end up with different tags. scores will be averaged first across tokens, and then the maximum
label is applied.
- "max" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot
end up with different tags. Word entity will simply be the token with the maximum score.""",
)
class TokenClassificationPipeline(ChunkPipeline):
"""
Named Entity Recognition pipeline using any `ModelForTokenClassification`. See the [named entity recognition
examples](../task_summary#named-entity-recognition) for more information.
Example:
```python
>>> from transformers import pipeline
>>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple")
>>> sentence = "Je m'appelle jean-baptiste et je vis à montréal"
>>> tokens = token_classifier(sentence)
>>> tokens
[{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}]
>>> token = tokens[0]
>>> # Start and end provide an easy way to highlight words in the original text.
>>> sentence[token["start"] : token["end"]]
' jean-baptiste'
>>> # Some models use the same idea to do part of speech.
>>> syntaxer = pipeline(model="vblagoje/bert-english-uncased-finetuned-pos", aggregation_strategy="simple")
>>> syntaxer("My name is Sarah and I live in London")
[{'entity_group': 'PRON', 'score': 0.999, 'word': 'my', 'start': 0, 'end': 2}, {'entity_group': 'NOUN', 'score': 0.997, 'word': 'name', 'start': 3, 'end': 7}, {'entity_group': 'AUX', 'score': 0.994, 'word': 'is', 'start': 8, 'end': 10}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'sarah', 'start': 11, 'end': 16}, {'entity_group': 'CCONJ', 'score': 0.999, 'word': 'and', 'start': 17, 'end': 20}, {'entity_group': 'PRON', 'score': 0.999, 'word': 'i', 'start': 21, 'end': 22}, {'entity_group': 'VERB', 'score': 0.998, 'word': 'live', 'start': 23, 'end': 27}, {'entity_group': 'ADP', 'score': 0.999, 'word': 'in', 'start': 28, 'end': 30}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'london', 'start': 31, 'end': 37}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This token recognition pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous).
The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the
up-to-date list of available models on
[huggingface.co/models](https://huggingface.co/models?filter=token-classification).
"""
default_input_names = "sequences"
def __init__(self, args_parser=TokenClassificationArgumentHandler(), *args, **kwargs):
super().__init__(*args, **kwargs)
self.check_model_type(
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
if self.framework == "tf"
else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
self._basic_tokenizer = BasicTokenizer(do_lower_case=False)
self._args_parser = args_parser
def _sanitize_parameters(
self,
ignore_labels=None,
grouped_entities: Optional[bool] = None,
ignore_subwords: Optional[bool] = None,
aggregation_strategy: Optional[AggregationStrategy] = None,
offset_mapping: Optional[List[Tuple[int, int]]] = None,
stride: Optional[int] = None,
):
preprocess_params = {}
if offset_mapping is not None:
preprocess_params["offset_mapping"] = offset_mapping
postprocess_params = {}
if grouped_entities is not None or ignore_subwords is not None:
if grouped_entities and ignore_subwords:
aggregation_strategy = AggregationStrategy.FIRST
elif grouped_entities and not ignore_subwords:
aggregation_strategy = AggregationStrategy.SIMPLE
else:
aggregation_strategy = AggregationStrategy.NONE
if grouped_entities is not None:
warnings.warn(
"`grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to"
f' `aggregation_strategy="{aggregation_strategy}"` instead.'
)
if ignore_subwords is not None:
warnings.warn(
"`ignore_subwords` is deprecated and will be removed in version v5.0.0, defaulted to"
f' `aggregation_strategy="{aggregation_strategy}"` instead.'
)
if aggregation_strategy is not None:
if isinstance(aggregation_strategy, str):
aggregation_strategy = AggregationStrategy[aggregation_strategy.upper()]
if (
aggregation_strategy
in {AggregationStrategy.FIRST, AggregationStrategy.MAX, AggregationStrategy.AVERAGE}
and not self.tokenizer.is_fast
):
raise ValueError(
"Slow tokenizers cannot handle subwords. Please set the `aggregation_strategy` option"
' to `"simple"` or use a fast tokenizer.'
)
postprocess_params["aggregation_strategy"] = aggregation_strategy
if ignore_labels is not None:
postprocess_params["ignore_labels"] = ignore_labels
if stride is not None:
if stride >= self.tokenizer.model_max_length:
raise ValueError(
"`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)"
)
if aggregation_strategy == AggregationStrategy.NONE:
raise ValueError(
"`stride` was provided to process all the text but `aggregation_strategy="
f'"{aggregation_strategy}"`, please select another one instead.'
)
else:
if self.tokenizer.is_fast:
tokenizer_params = {
"return_overflowing_tokens": True,
"padding": True,
"stride": stride,
}
preprocess_params["tokenizer_params"] = tokenizer_params
else:
raise ValueError(
"`stride` was provided to process all the text but you're using a slow tokenizer."
" Please use a fast tokenizer."
)
return preprocess_params, {}, postprocess_params
def __call__(self, inputs: Union[str, List[str]], **kwargs):
"""
Classify each token of the text(s) given as inputs.
Args:
inputs (`str` or `List[str]`):
One or several texts (or one list of texts) for token classification.
Return:
A list or a list of list of `dict`: Each result comes as a list of dictionaries (one for each token in the
corresponding input, or each entity if this pipeline was instantiated with an aggregation_strategy) with
the following keys:
- **word** (`str`) -- The token/word classified. This is obtained by decoding the selected tokens. If you
want to have the exact string in the original sentence, use `start` and `end`.
- **score** (`float`) -- The corresponding probability for `entity`.
- **entity** (`str`) -- The entity predicted for that token/word (it is named *entity_group* when
*aggregation_strategy* is not `"none"`.
- **index** (`int`, only present when `aggregation_strategy="none"`) -- The index of the corresponding
token in the sentence.
- **start** (`int`, *optional*) -- The index of the start of the corresponding entity in the sentence. Only
exists if the offsets are available within the tokenizer
- **end** (`int`, *optional*) -- The index of the end of the corresponding entity in the sentence. Only
exists if the offsets are available within the tokenizer
"""
_inputs, offset_mapping = self._args_parser(inputs, **kwargs)
if offset_mapping:
kwargs["offset_mapping"] = offset_mapping
return super().__call__(inputs, **kwargs)
def preprocess(self, sentence, offset_mapping=None, **preprocess_params):
tokenizer_params = preprocess_params.pop("tokenizer_params", {})
truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False
inputs = self.tokenizer(
sentence,
return_tensors=self.framework,
truncation=truncation,
return_special_tokens_mask=True,
return_offsets_mapping=self.tokenizer.is_fast,
**tokenizer_params,
)
inputs.pop("overflow_to_sample_mapping", None)
num_chunks = len(inputs["input_ids"])
for i in range(num_chunks):
if self.framework == "tf":
model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()}
else:
model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()}
if offset_mapping is not None:
model_inputs["offset_mapping"] = offset_mapping
model_inputs["sentence"] = sentence if i == 0 else None
model_inputs["is_last"] = i == num_chunks - 1
yield model_inputs
def _forward(self, model_inputs):
# Forward
special_tokens_mask = model_inputs.pop("special_tokens_mask")
offset_mapping = model_inputs.pop("offset_mapping", None)
sentence = model_inputs.pop("sentence")
is_last = model_inputs.pop("is_last")
if self.framework == "tf":
logits = self.model(**model_inputs)[0]
else:
output = self.model(**model_inputs)
logits = output["logits"] if isinstance(output, dict) else output[0]
return {
"logits": logits,
"special_tokens_mask": special_tokens_mask,
"offset_mapping": offset_mapping,
"sentence": sentence,
"is_last": is_last,
**model_inputs,
}
def postprocess(self, all_outputs, aggregation_strategy=AggregationStrategy.NONE, ignore_labels=None):
if ignore_labels is None:
ignore_labels = ["O"]
all_entities = []
for model_outputs in all_outputs:
logits = model_outputs["logits"][0].numpy()
sentence = all_outputs[0]["sentence"]
input_ids = model_outputs["input_ids"][0]
offset_mapping = (
model_outputs["offset_mapping"][0] if model_outputs["offset_mapping"] is not None else None
)
special_tokens_mask = model_outputs["special_tokens_mask"][0].numpy()
maxes = np.max(logits, axis=-1, keepdims=True)
shifted_exp = np.exp(logits - maxes)
scores = shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
if self.framework == "tf":
input_ids = input_ids.numpy()
offset_mapping = offset_mapping.numpy() if offset_mapping is not None else None
pre_entities = self.gather_pre_entities(
sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy
)
grouped_entities = self.aggregate(pre_entities, aggregation_strategy)
# Filter anything that is in self.ignore_labels
entities = [
entity
for entity in grouped_entities
if entity.get("entity", None) not in ignore_labels
and entity.get("entity_group", None) not in ignore_labels
]
all_entities.extend(entities)
num_chunks = len(all_outputs)
if num_chunks > 1:
all_entities = self.aggregate_overlapping_entities(all_entities)
return all_entities
def aggregate_overlapping_entities(self, entities):
if len(entities) == 0:
return entities
entities = sorted(entities, key=lambda x: x["start"])
aggregated_entities = []
previous_entity = entities[0]
for entity in entities:
if previous_entity["start"] <= entity["start"] < previous_entity["end"]:
current_length = entity["end"] - entity["start"]
previous_length = previous_entity["end"] - previous_entity["start"]
if current_length > previous_length:
previous_entity = entity
elif current_length == previous_length and entity["score"] > previous_entity["score"]:
previous_entity = entity
else:
aggregated_entities.append(previous_entity)
previous_entity = entity
aggregated_entities.append(previous_entity)
return aggregated_entities
def gather_pre_entities(
self,
sentence: str,
input_ids: np.ndarray,
scores: np.ndarray,
offset_mapping: Optional[List[Tuple[int, int]]],
special_tokens_mask: np.ndarray,
aggregation_strategy: AggregationStrategy,
) -> List[dict]:
"""Fuse various numpy arrays into dicts with all the information needed for aggregation"""
pre_entities = []
for idx, token_scores in enumerate(scores):
# Filter special_tokens
if special_tokens_mask[idx]:
continue
word = self.tokenizer.convert_ids_to_tokens(int(input_ids[idx]))
if offset_mapping is not None:
start_ind, end_ind = offset_mapping[idx]
if not isinstance(start_ind, int):
if self.framework == "pt":
start_ind = start_ind.item()
end_ind = end_ind.item()
word_ref = sentence[start_ind:end_ind]
if getattr(self.tokenizer, "_tokenizer", None) and getattr(
self.tokenizer._tokenizer.model, "continuing_subword_prefix", None
):
# This is a BPE, word aware tokenizer, there is a correct way
# to fuse tokens
is_subword = len(word) != len(word_ref)
else:
# This is a fallback heuristic. This will fail most likely on any kind of text + punctuation mixtures that will be considered "words". Non word aware models cannot do better than this unfortunately.
if aggregation_strategy in {
AggregationStrategy.FIRST,
AggregationStrategy.AVERAGE,
AggregationStrategy.MAX,
}:
warnings.warn(
"Tokenizer does not support real words, using fallback heuristic",
UserWarning,
)
is_subword = start_ind > 0 and " " not in sentence[start_ind - 1 : start_ind + 1]
if int(input_ids[idx]) == self.tokenizer.unk_token_id:
word = word_ref
is_subword = False
else:
start_ind = None
end_ind = None
is_subword = False
pre_entity = {
"word": word,
"scores": token_scores,
"start": start_ind,
"end": end_ind,
"index": idx,
"is_subword": is_subword,
}
pre_entities.append(pre_entity)
return pre_entities
def aggregate(self, pre_entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]:
if aggregation_strategy in {AggregationStrategy.NONE, AggregationStrategy.SIMPLE}:
entities = []
for pre_entity in pre_entities:
entity_idx = pre_entity["scores"].argmax()
score = pre_entity["scores"][entity_idx]
entity = {
"entity": self.model.config.id2label[entity_idx],
"score": score,
"index": pre_entity["index"],
"word": pre_entity["word"],
"start": pre_entity["start"],
"end": pre_entity["end"],
}
entities.append(entity)
else:
entities = self.aggregate_words(pre_entities, aggregation_strategy)
if aggregation_strategy == AggregationStrategy.NONE:
return entities
return self.group_entities(entities)
def aggregate_word(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> dict:
word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities])
if aggregation_strategy == AggregationStrategy.FIRST:
scores = entities[0]["scores"]
idx = scores.argmax()
score = scores[idx]
entity = self.model.config.id2label[idx]
elif aggregation_strategy == AggregationStrategy.MAX:
max_entity = max(entities, key=lambda entity: entity["scores"].max())
scores = max_entity["scores"]
idx = scores.argmax()
score = scores[idx]
entity = self.model.config.id2label[idx]
elif aggregation_strategy == AggregationStrategy.AVERAGE:
scores = np.stack([entity["scores"] for entity in entities])
average_scores = np.nanmean(scores, axis=0)
entity_idx = average_scores.argmax()
entity = self.model.config.id2label[entity_idx]
score = average_scores[entity_idx]
else:
raise ValueError("Invalid aggregation_strategy")
new_entity = {
"entity": entity,
"score": score,
"word": word,
"start": entities[0]["start"],
"end": entities[-1]["end"],
}
return new_entity
def aggregate_words(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]:
"""
Override tokens from a given word that disagree to force agreement on word boundaries.
Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft|
company| B-ENT I-ENT
"""
if aggregation_strategy in {
AggregationStrategy.NONE,
AggregationStrategy.SIMPLE,
}:
raise ValueError("NONE and SIMPLE strategies are invalid for word aggregation")
word_entities = []
word_group = None
for entity in entities:
if word_group is None:
word_group = [entity]
elif entity["is_subword"]:
word_group.append(entity)
else:
word_entities.append(self.aggregate_word(word_group, aggregation_strategy))
word_group = [entity]
# Last item
if word_group is not None:
word_entities.append(self.aggregate_word(word_group, aggregation_strategy))
return word_entities
def group_sub_entities(self, entities: List[dict]) -> dict:
"""
Group together the adjacent tokens with the same entity predicted.
Args:
entities (`dict`): The entities predicted by the pipeline.
"""
# Get the first entity in the entity group
entity = entities[0]["entity"].split("-", 1)[-1]
scores = np.nanmean([entity["score"] for entity in entities])
tokens = [entity["word"] for entity in entities]
entity_group = {
"entity_group": entity,
"score": np.mean(scores),
"word": self.tokenizer.convert_tokens_to_string(tokens),
"start": entities[0]["start"],
"end": entities[-1]["end"],
}
return entity_group
def get_tag(self, entity_name: str) -> Tuple[str, str]:
if entity_name.startswith("B-"):
bi = "B"
tag = entity_name[2:]
elif entity_name.startswith("I-"):
bi = "I"
tag = entity_name[2:]
else:
# It's not in B-, I- format
# Default to I- for continuation.
bi = "I"
tag = entity_name
return bi, tag
def group_entities(self, entities: List[dict]) -> List[dict]:
"""
Find and group together the adjacent tokens with the same entity predicted.
Args:
entities (`dict`): The entities predicted by the pipeline.
"""
entity_groups = []
entity_group_disagg = []
for entity in entities:
if not entity_group_disagg:
entity_group_disagg.append(entity)
continue
# If the current entity is similar and adjacent to the previous entity,
# append it to the disaggregated entity group
# The split is meant to account for the "B" and "I" prefixes
# Shouldn't merge if both entities are B-type
bi, tag = self.get_tag(entity["entity"])
last_bi, last_tag = self.get_tag(entity_group_disagg[-1]["entity"])
if tag == last_tag and bi != "B":
# Modify subword type to be previous_type
entity_group_disagg.append(entity)
else:
# If the current entity is different from the previous entity
# aggregate the disaggregated entity group
entity_groups.append(self.group_sub_entities(entity_group_disagg))
entity_group_disagg = [entity]
if entity_group_disagg:
# it's the last entity, add it to the entity groups
entity_groups.append(self.group_sub_entities(entity_group_disagg))
return entity_groups
NerPipeline = TokenClassificationPipeline
| transformers/src/transformers/pipelines/token_classification.py/0 | {
"file_path": "transformers/src/transformers/pipelines/token_classification.py",
"repo_id": "transformers",
"token_count": 11839
} | 380 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .agents import BASE_PYTHON_TOOLS, clean_code_for_chat, clean_code_for_run
from .python_interpreter import InterpretorError, evaluate
### Fake tools for test
def classifier(text, labels):
return f"This is the classification of {text} along {labels}."
def translator(text, src_lang, tgt_lang):
return f"This is the translation of {text} from {src_lang} to {tgt_lang}."
def speaker(text):
return f"This is actually a sound reading {text}."
def transcriber(audio):
if "sound" not in audio:
raise ValueError(f"`audio` ({audio}) is not a sound.")
return f"This is the transcribed text from {audio}."
def image_generator(prompt):
return f"This is actually an image representing {prompt}."
def image_captioner(image):
if "image" not in image:
raise ValueError(f"`image` ({image}) is not an image.")
return f"This is a description of {image}."
def image_transformer(image, prompt):
if "image" not in image:
raise ValueError(f"`image` ({image}) is not an image.")
return f"This is a transformation of {image} according to {prompt}."
def question_answerer(text, question):
return f"This is the answer to {question} from {text}."
def image_qa(image, question):
if "image" not in image:
raise ValueError(f"`image` ({image}) is not an image.")
return f"This is the answer to {question} from {image}."
def text_downloader(url):
return f"This is the content of {url}."
def summarizer(text):
return f"This is a summary of {text}."
def video_generator(prompt, seconds=2):
return f"A video of {prompt}"
def document_qa(image, question):
return f"This is the answer to {question} from the document {image}."
def image_segmenter(image, prompt):
return f"This is the mask of {prompt} in {image}"
TEST_TOOLS = {
"text_classifier": classifier,
"translator": translator,
"text_reader": speaker,
"summarizer": summarizer,
"transcriber": transcriber,
"image_generator": image_generator,
"image_captioner": image_captioner,
"image_transformer": image_transformer,
"text_qa": question_answerer,
"text_downloader": text_downloader,
"image_qa": image_qa,
"video_generator": video_generator,
"document_qa": document_qa,
"image_segmenter": image_segmenter,
}
class Problem:
"""
A class regrouping all the information to solve a problem on which we will evaluate agents.
Args:
task (`str` ou `list[str]`):
One or several descriptions of the task to perform. If a list, it should contain variations on the
phrasing, but for the same task.
inputs (`list[str]` or `dict[str, str]`):
The inputs that will be fed to the tools. For this testing environment, only strings are accepted as
values. Pass along a dictionary when you want to specify the values of each inputs, or just the list of
inputs expected (the value used will be `<<input_name>>` in this case).
answer (`str` or `list[str`]):
The theoretical answer (or list of possible valid answers) to the problem, as code.
"""
def __init__(self, task, inputs, answer):
self.task = task
self.inputs = inputs
self.answer = answer
### The list of problems the agent will be evaluated on.
EVALUATION_TASKS = [
Problem(
task=[
"Is the following `text` (in Spanish) positive or negative?",
"Is the text in the variable `text` (in Spanish) positive or negative?",
"Translate the following `text` from Spanish to English then tell me if its positive or negative.",
],
inputs=["text"],
answer="""text_classifier(translator(text, src_lang="Spanish", tgt_lang="English"), labels=["positive", "negative"])""",
),
Problem(
task=[
"Tell me out loud what the `image` contains.",
"Describe the following `image` out loud.",
"Find what is in the picture stored in `image` then read it out loud.",
],
inputs=["image"],
answer=[
"text_reader(image_captioner(image))",
"text_reader(image_qa(image, question='What is in the image?'))",
],
),
Problem(
task=[
"Generate an image from the text given in `text_input`. Then transform it according to the text in `prompt`.",
"Use the following `text_input` to generate an image, then transform it by using the text in `prompt`.",
],
inputs=["text_input", "prompt"],
answer="image_transformer(image_generator(text_input), prompt)",
),
Problem(
task=[
"Download the content of `url`, summarize it then generate an image from its content.",
"Use a summary of the web page at `url` to generate an image.",
"Summarize the content of the web page at `url`, and use the result to generate an image.",
],
inputs=["url"],
answer="image_generator(summarizer(text_downloader(url)))",
),
Problem(
task=[
"Transform the following `image` using the prompt in `text`. The prompt is in Spanish.",
"Use the text prompt in `text` (in Spanish) to transform the following `image`.",
"Translate the `text` from Spanish to English then use it to transform the picture in `image`.",
],
inputs=["text", "image"],
answer="image_transformer(image, translator(text, src_lang='Spanish', tgt_lang='English'))",
),
Problem(
task=[
"Download the content of `url`, summarize it then read it out loud to me.",
"Read me a summary of the web page at `url`.",
],
inputs=["url"],
answer="text_reader(summarizer(text_downloader(url)))",
),
Problem(
task=[
"Generate an image from the text given in `text_input`.",
],
inputs=["text_input"],
answer="image_generator(text_input)",
),
Problem(
task=[
"Replace the beaver in the `image` by the `prompt`.",
"Transform the `image` so that it contains the `prompt`.",
"Use `prompt` to transform this `image`.",
],
inputs=["image", "prompt"],
answer="image_transformer(image, prompt)",
),
Problem(
task=[
"Provide me the summary of the `text`, then read it to me before transcribing it and translating it in French.",
"Summarize `text`, read it out loud then transcribe the audio and translate it in French.",
"Read me a summary of the `text` out loud. Transcribe this and translate it in French.",
],
inputs=["text"],
answer="translator(transcriber(text_reader(summarizer(text))), src_lang='English', tgt_lang='French')",
),
Problem(
task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."],
inputs={"prompt": "A lobster swimming"},
answer="video_generator('A lobster swimming')",
),
Problem(
task=[
"Download the following file `url`, summarize it in a few words and generate a video from it."
"Fetch the file at this `url`, summarize it, and create an animation out of it."
],
inputs=["url"],
answer="video_generator(summarizer(text_downloader(url)))",
),
]
EVALUATION_CHATS = [
[
Problem(
task=[
"Translate the following `text` from Spanish to English.",
"Translate the following `text` from Spanish to English.",
],
inputs=["text"],
answer="translated_text=translator(text, src_lang='Spanish', tgt_lang='English')",
),
Problem(
task=[
"Is it positive or negative?",
"Tell me if its positive or negative.",
],
inputs=[],
answer="text_classifier(translated_text, labels=['positive', 'negative'])",
),
],
[
Problem(
task=[
"What does this `image` contain?",
"Describe the following `image`.",
"Find what is in the picture stored in `image`",
],
inputs=["image"],
answer=[
"description=image_captioner(image)",
"description=image_qa(image, question='What is in the image?')",
],
),
Problem(
task=["Now, read the description out loud.", "Great! Can you read it out loud?", "Read it out loud."],
inputs=[],
answer=["audio=text_reader(description)", "audio=text_reader(description)"],
),
],
[
Problem(
task=[
"Generate an image from the text given in `text_input`.",
"Use the following `text_input` to generate an image",
],
inputs=["text_input"],
answer="image = image_generator(text_input)",
),
Problem(
task=[
"Transform it according to the text in `prompt`.",
"Transform it by using the text in `prompt`.",
],
inputs=["prompt"],
answer="image_transformer(image, prompt)",
),
],
[
Problem(
task=[
"Download the content of `url` and summarize it.",
"Summarize the content of the web page at `url`.",
],
inputs=["url"],
answer="summary = summarizer(text_downloader(url))",
),
Problem(
task=[
"Generate an image from its content.",
"Use the previous result to generate an image.",
],
inputs=[],
answer="image_generator(summary)",
),
],
[
Problem(
task=[
"Translate this Spanish `text` in English.",
"Translate the `text` from Spanish to English.",
],
inputs=["text"],
answer="translated_text = translator(text, src_lang='Spanish', tgt_lang='English')",
),
Problem(
task=[
"Transform the following `image` using the translated `text`.",
"Use the previous result to transform the following `image`.",
],
inputs=["image"],
answer="image_transformer(image, translated_text)",
),
],
[
Problem(
task=["Download the content of `url`.", "Get me the text on the weg page `url`."],
inputs=["url"],
answer="text = text_downloader(url)",
),
Problem(
task=["Summarize this text.", "Summarize this text."],
inputs=[],
answer="summary = summarizer(text)",
),
Problem(
task=["Read it out loud to me.", "Read me the previous result."],
inputs=[],
answer="text_reader(summary)",
),
],
[
Problem(
task=[
"Generate an image from the text given in `text_input`.",
],
inputs=["text_input"],
answer="image_generator(text_input)",
),
],
[
Problem(
task=[
"Replace the beaver in the `image` by the `prompt`.",
"Transform the `image` so that it contains the `prompt`.",
"Use `prompt` to transform this `image`.",
],
inputs=["image", "prompt"],
answer="image_transformer(image, prompt)",
),
],
[
Problem(
task=["Provide me the summary of the `text`.", "Summarize `text`."],
inputs=["text"],
answer="summary = summarizer(text)",
),
Problem(
task=["Read this summary to me.", "Read it out loud."],
inputs=[],
answer="audio = text_reader(summarizer(text))",
),
Problem(
task=["Transcribing the previous result back in text.", "Transcribe the audio."],
inputs=[],
answer="text = transcriber(audio)",
),
Problem(
task=["Translating the last result in French.", "Translate this in French."],
inputs=[],
answer="translator(text, src_lang='English', tgt_lang='French')",
),
],
[
Problem(
task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."],
inputs={"prompt": "A lobster swimming"},
answer="video_generator('A lobster swimming')",
),
],
[
Problem(
task=[
"Download the content of `url` and summarize it.",
"Summarize the content of the web page at `url`.",
],
inputs=["url"],
answer="summary = summarizer(text_downloader(url))",
),
Problem(
task=["generate a video from it.", "Create an animation from the last result."],
inputs=[],
answer="video_generator(summary)",
),
],
]
def get_theoretical_tools(agent_answer, theoretical_answer, code_answer):
if not isinstance(theoretical_answer, list):
return {name for name in TEST_TOOLS if name in code_answer}
if isinstance(agent_answer, dict):
for one_answer, one_code in zip(theoretical_answer, code_answer):
if one_answer in agent_answer.values():
return {name for name in TEST_TOOLS if name in one_code}
for one_answer, one_code in zip(theoretical_answer, code_answer):
if agent_answer == one_answer:
return {name for name in TEST_TOOLS if name in one_code}
return {name for name in TEST_TOOLS if name in code_answer[0]}
def evaluate_code(code, inputs=None, state=None, verbose=False, return_interpretor_error=False):
tools = BASE_PYTHON_TOOLS.copy()
for name, tool in TEST_TOOLS.items():
if name not in code:
continue
tools[name] = tool
if isinstance(inputs, dict):
inputs = inputs.copy()
elif inputs is not None:
inputs = {inp: f"<<{inp}>>" for inp in inputs}
if state is not None:
state.update(inputs)
else:
state = inputs
try:
return evaluate(code, tools, state)
except InterpretorError as e:
return str(e)
except Exception as e:
if verbose:
print(e)
return None
def score_code(agent_answer, theoretical_answer, verbose: bool = False):
if verbose:
print(agent_answer, theoretical_answer)
theoretical_answer = theoretical_answer if isinstance(theoretical_answer, list) else [theoretical_answer]
if agent_answer in theoretical_answer:
if verbose:
print("Perfect!")
return 1
elif isinstance(agent_answer, dict) and any(v in theoretical_answer for v in agent_answer.values()):
if verbose:
print("Almsot perfect, result in state!")
return 0.75
else:
if verbose:
print("Result is not the right one but code executed.")
return 0.3
def evaluate_one_result(explanation, code, agent_answer, theoretical_answer, answer, verbose=False):
tools_in_explanation = {name for name in TEST_TOOLS if f"`{name}`" in explanation}
theoretical_tools = get_theoretical_tools(agent_answer, theoretical_answer, answer)
if tools_in_explanation == theoretical_tools:
tool_selection_score = 1.0
tool_selection_errors = None
else:
missing_tools = len(theoretical_tools - tools_in_explanation)
unexpected_tools = len(tools_in_explanation - theoretical_tools)
tool_selection_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools)
tool_selection_errors = {
"selected_tools": tools_in_explanation,
"theoretical_tools": theoretical_tools,
}
tools_in_code = {name for name in TEST_TOOLS if name in code}
if tools_in_code == theoretical_tools:
tool_used_score = 1.0
tool_used_errors = None
else:
missing_tools = len(theoretical_tools - tools_in_code)
unexpected_tools = len(tools_in_code - theoretical_tools)
tool_used_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools)
tool_used_errors = {
"selected_tools": tools_in_explanation,
"theoretical_tools": theoretical_tools,
}
score = score_code(agent_answer, theoretical_answer, verbose=verbose)
if score < 1.0:
code_errors = {
"code_produced": code,
"evaluation": agent_answer,
"theoretical_answer": theoretical_answer,
}
else:
code_errors = None
return (tool_selection_score, tool_used_score, score), (tool_selection_errors, tool_used_errors, code_errors)
def evaluate_agent(agent, batch_size=8, verbose=False, return_errors=False):
"""
Evaluates a new agent on all `EVALUATION_TASKS`.
Example:
```py
agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key)
bads = new_evaluate_agent(agent)
for bad in bads:
print(bad)
```
"""
# Sanity check
agent_tools = set(agent.toolbox.keys())
if agent_tools != set(TEST_TOOLS):
missing_tools = set(TEST_TOOLS) - agent_tools
unexpected_tools = set(agent_tools) - TEST_TOOLS
raise ValueError(
f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}."
)
eval_tasks = []
eval_idx = []
for idx, pb in enumerate(EVALUATION_TASKS):
if isinstance(pb.task, list):
eval_tasks.extend(pb.task)
eval_idx.extend([idx] * len(pb.task))
else:
eval_tasks.append(pb.task)
eval_idx.append(idx)
tool_selection_score = 0
tool_used_score = 0
code_score = 0
if return_errors:
tool_selection_errors = {}
tool_used_errors = {}
code_errors = {}
for start_idx in range(0, len(eval_tasks), batch_size):
end_idx = min(start_idx + batch_size, len(eval_tasks))
batch_tasks = eval_tasks[start_idx:end_idx]
prompts = [agent.format_prompt(task) for task in batch_tasks]
results = agent.generate_many(prompts, stop=["Task:"])
for idx, result in enumerate(results):
problem = EVALUATION_TASKS[eval_idx[start_idx + idx]]
if verbose:
print(f"====Task {start_idx + idx}====\n{batch_tasks[idx]}\n")
explanation, code = clean_code_for_run(result)
# Evaluate agent answer and code answer
agent_answer = evaluate_code(code, problem.inputs, verbose=verbose)
if isinstance(problem.answer, list):
theoretical_answer = [evaluate_code(answer, problem.inputs) for answer in problem.answer]
else:
theoretical_answer = evaluate_code(problem.answer, problem.inputs)
scores, errors = evaluate_one_result(
explanation, code, agent_answer, theoretical_answer, problem.answer, verbose=verbose
)
tool_selection_score += scores[0]
tool_used_score += scores[1]
code_score += scores[2]
if return_errors:
if errors[0] is not None:
tool_selection_errors[batch_tasks[idx]] = errors[0]
if errors[1] is not None:
tool_used_errors[batch_tasks[idx]] = errors[1]
if errors[2] is not None:
code_errors[batch_tasks[idx]] = errors[2]
scores = {
"tool selection score": 100 * (tool_selection_score / len(eval_tasks)),
"tool used score": 100 * (tool_used_score / len(eval_tasks)),
"code score": 100 * (code_score / len(eval_tasks)),
}
if return_errors:
return scores, tool_selection_errors, tool_used_errors, code_errors
else:
return scores
def evaluate_chat_agent(agent, verbose=False, return_errors=False):
"""
Evaluates a new agent on all `EVALUATION_CHATS`.
Example:
```py
agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key)
bads = new_evaluate_agent(agent)
for bad in bads:
print(bad)
```
"""
# Sanity check
agent_tools = set(agent.toolbox.keys())
if agent_tools != set(TEST_TOOLS):
missing_tools = set(TEST_TOOLS) - agent_tools
unexpected_tools = agent_tools - set(TEST_TOOLS)
raise ValueError(
f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}."
)
tool_selection_score = 0
tool_used_score = 0
code_score = 0
total_steps = 0
if return_errors:
tool_selection_errors = {}
tool_used_errors = {}
code_errors = {}
for chat_problem in EVALUATION_CHATS:
if isinstance(chat_problem[0].task, str):
resolved_problems = [chat_problem]
else:
resolved_problems = [
[Problem(task=pb.task[i], inputs=pb.inputs, answer=pb.answer) for pb in chat_problem]
for i in range(len(chat_problem[0].task))
]
for problem in resolved_problems:
agent.prepare_for_new_chat()
agent_state = {}
theoretical_state = (
[{} for _ in range(len(problem[0].answer))] if isinstance(problem[0].answer, list) else {}
)
for step, step_problem in enumerate(problem):
if verbose:
print(step_problem.task)
total_steps += 1
prompt = agent.format_prompt(step_problem.task, chat_mode=True)
result = agent.generate_one(prompt, stop=["Human:", "====="])
agent.chat_history = prompt + result + "\n"
explanation, code = clean_code_for_chat(result)
if verbose:
print(f"==Explanation from the agent==\n{explanation}")
print(f"\n==Code generated by the agent==\n{code}")
# Evaluate agent answer and code answer
agent_answer = evaluate_code(code, step_problem.inputs, state=agent_state, verbose=verbose)
answer = step_problem.answer
if isinstance(answer, list):
theoretical_answer = [
evaluate_code(a, step_problem.inputs, state=state)
for a, state in zip(answer, theoretical_state)
]
else:
theoretical_answer = evaluate_code(answer, step_problem.inputs, state=theoretical_state)
scores, errors = evaluate_one_result(
explanation, code, agent_answer, theoretical_answer, answer, verbose=verbose
)
tool_selection_score += scores[0]
tool_used_score += scores[1]
code_score += scores[2]
if return_errors:
if errors[0] is not None:
tool_selection_errors[step_problem.task] = errors[0]
if errors[1] is not None:
tool_used_errors[step_problem.task] = errors[1]
if errors[2] is not None:
code_errors[step_problem.task] = errors[2]
scores = {
"tool selection score": 100 * (tool_selection_score / total_steps),
"tool used score": 100 * (tool_used_score / total_steps),
"code score": 100 * (code_score / total_steps),
}
if return_errors:
return scores, tool_selection_errors, tool_used_errors, code_errors
else:
return scores
| transformers/src/transformers/tools/evaluate_agent.py/0 | {
"file_path": "transformers/src/transformers/tools/evaluate_agent.py",
"repo_id": "transformers",
"token_count": 10886
} | 381 |
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch-independent utilities for the Trainer class.
"""
import copy
import functools
import gc
import inspect
import os
import random
import re
import threading
import time
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union
import numpy as np
from .utils import (
ExplicitEnum,
is_psutil_available,
is_tf_available,
is_torch_available,
is_torch_cuda_available,
is_torch_mps_available,
is_torch_npu_available,
is_torch_tpu_available,
is_torch_xpu_available,
requires_backends,
)
if is_torch_available():
import torch
def seed_worker(_):
"""
Helper function to set worker seed during Dataloader initialization.
"""
worker_seed = torch.initial_seed() % 2**32
set_seed(worker_seed)
def enable_full_determinism(seed: int, warn_only: bool = False):
"""
Helper function for reproducible behavior during distributed training. See
- https://pytorch.org/docs/stable/notes/randomness.html for pytorch
- https://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinism for tensorflow
"""
# set seed first
set_seed(seed)
if is_torch_available():
# Enable PyTorch deterministic mode. This potentially requires either the environment
# variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
# depending on the CUDA version, so we set them both here
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(True, warn_only=warn_only)
# Enable CUDNN deterministic mode
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if is_tf_available():
import tensorflow as tf
tf.config.experimental.enable_op_determinism()
def set_seed(seed: int):
"""
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch` and/or `tf` (if installed).
Args:
seed (`int`): The seed to set.
"""
random.seed(seed)
np.random.seed(seed)
if is_torch_available():
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ^^ safe to call this function even if cuda is not available
if is_torch_npu_available():
torch.npu.manual_seed_all(seed)
if is_torch_xpu_available():
torch.xpu.manual_seed_all(seed)
if is_tf_available():
import tensorflow as tf
tf.random.set_seed(seed)
def neftune_post_forward_hook(module, input, output):
"""
Implements the NEFTune forward pass for the model using forward hooks. Note this works only for torch.nn.Embedding
layers. This method is slightly adapted from the original source code that can be found here:
https://github.com/neelsjain/NEFTune Simply add it to your model as follows:
```python
model = ...
model.embed_tokens.neftune_noise_alpha = 0.1
model.embed_tokens.register_forward_hook(neftune_post_forward_hook)
```
Args:
module (`torch.nn.Module`):
The embedding module where the hook is attached. Note that you need to set `module.neftune_noise_alpha` to
the desired noise alpha value.
input (`torch.Tensor`):
The input tensor to the model.
output (`torch.Tensor`):
The output tensor of the model (i.e. the embeddings).
"""
if module.training:
dims = torch.tensor(output.size(1) * output.size(2))
mag_norm = module.neftune_noise_alpha / torch.sqrt(dims)
output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm)
return output
class EvalPrediction:
"""
Evaluation output (always contains labels), to be used to compute metrics.
Parameters:
predictions (`np.ndarray`): Predictions of the model.
label_ids (`np.ndarray`): Targets to be matched.
inputs (`np.ndarray`, *optional*):
"""
def __init__(
self,
predictions: Union[np.ndarray, Tuple[np.ndarray]],
label_ids: Union[np.ndarray, Tuple[np.ndarray]],
inputs: Optional[Union[np.ndarray, Tuple[np.ndarray]]] = None,
):
self.predictions = predictions
self.label_ids = label_ids
self.inputs = inputs
def __iter__(self):
if self.inputs is not None:
return iter((self.predictions, self.label_ids, self.inputs))
else:
return iter((self.predictions, self.label_ids))
def __getitem__(self, idx):
if idx < 0 or idx > 2:
raise IndexError("tuple index out of range")
if idx == 2 and self.inputs is None:
raise IndexError("tuple index out of range")
if idx == 0:
return self.predictions
elif idx == 1:
return self.label_ids
elif idx == 2:
return self.inputs
class EvalLoopOutput(NamedTuple):
predictions: Union[np.ndarray, Tuple[np.ndarray]]
label_ids: Optional[Union[np.ndarray, Tuple[np.ndarray]]]
metrics: Optional[Dict[str, float]]
num_samples: Optional[int]
class PredictionOutput(NamedTuple):
predictions: Union[np.ndarray, Tuple[np.ndarray]]
label_ids: Optional[Union[np.ndarray, Tuple[np.ndarray]]]
metrics: Optional[Dict[str, float]]
class TrainOutput(NamedTuple):
global_step: int
training_loss: float
metrics: Dict[str, float]
PREFIX_CHECKPOINT_DIR = "checkpoint"
_re_checkpoint = re.compile(r"^" + PREFIX_CHECKPOINT_DIR + r"\-(\d+)$")
def get_last_checkpoint(folder):
content = os.listdir(folder)
checkpoints = [
path
for path in content
if _re_checkpoint.search(path) is not None and os.path.isdir(os.path.join(folder, path))
]
if len(checkpoints) == 0:
return
return os.path.join(folder, max(checkpoints, key=lambda x: int(_re_checkpoint.search(x).groups()[0])))
class IntervalStrategy(ExplicitEnum):
NO = "no"
STEPS = "steps"
EPOCH = "epoch"
class EvaluationStrategy(ExplicitEnum):
NO = "no"
STEPS = "steps"
EPOCH = "epoch"
class HubStrategy(ExplicitEnum):
END = "end"
EVERY_SAVE = "every_save"
CHECKPOINT = "checkpoint"
ALL_CHECKPOINTS = "all_checkpoints"
class BestRun(NamedTuple):
"""
The best run found by a hyperparameter search (see [`~Trainer.hyperparameter_search`]).
Parameters:
run_id (`str`):
The id of the best run (if models were saved, the corresponding checkpoint will be in the folder ending
with run-{run_id}).
objective (`float`):
The objective that was obtained for this run.
hyperparameters (`Dict[str, Any]`):
The hyperparameters picked to get this run.
run_summary (`Optional[Any]`):
A summary of tuning experiments. `ray.tune.ExperimentAnalysis` object for Ray backend.
"""
run_id: str
objective: Union[float, List[float]]
hyperparameters: Dict[str, Any]
run_summary: Optional[Any] = None
def default_compute_objective(metrics: Dict[str, float]) -> float:
"""
The default objective to maximize/minimize when doing an hyperparameter search. It is the evaluation loss if no
metrics are provided to the [`Trainer`], the sum of all metrics otherwise.
Args:
metrics (`Dict[str, float]`): The metrics returned by the evaluate method.
Return:
`float`: The objective to minimize or maximize
"""
metrics = copy.deepcopy(metrics)
loss = metrics.pop("eval_loss", None)
_ = metrics.pop("epoch", None)
# Remove speed metrics
speed_metrics = [
m
for m in metrics.keys()
if m.endswith("_runtime") or m.endswith("_per_second") or m.endswith("_compilation_time")
]
for sm in speed_metrics:
_ = metrics.pop(sm, None)
return loss if len(metrics) == 0 else sum(metrics.values())
def default_hp_space_optuna(trial) -> Dict[str, float]:
from .integrations import is_optuna_available
assert is_optuna_available(), "This function needs Optuna installed: `pip install optuna`"
return {
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
"num_train_epochs": trial.suggest_int("num_train_epochs", 1, 5),
"seed": trial.suggest_int("seed", 1, 40),
"per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [4, 8, 16, 32, 64]),
}
def default_hp_space_ray(trial) -> Dict[str, float]:
from .integrations import is_ray_tune_available
assert is_ray_tune_available(), "This function needs ray installed: `pip install ray[tune]`"
from ray import tune
return {
"learning_rate": tune.loguniform(1e-6, 1e-4),
"num_train_epochs": tune.choice(list(range(1, 6))),
"seed": tune.uniform(1, 40),
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
}
def default_hp_space_sigopt(trial):
return [
{"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double", "transformamtion": "log"},
{"bounds": {"min": 1, "max": 6}, "name": "num_train_epochs", "type": "int"},
{"bounds": {"min": 1, "max": 40}, "name": "seed", "type": "int"},
{
"categorical_values": ["4", "8", "16", "32", "64"],
"name": "per_device_train_batch_size",
"type": "categorical",
},
]
def default_hp_space_wandb(trial) -> Dict[str, float]:
from .integrations import is_wandb_available
if not is_wandb_available():
raise ImportError("This function needs wandb installed: `pip install wandb`")
return {
"method": "random",
"metric": {"name": "objective", "goal": "minimize"},
"parameters": {
"learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
"num_train_epochs": {"distribution": "int_uniform", "min": 1, "max": 6},
"seed": {"distribution": "int_uniform", "min": 1, "max": 40},
"per_device_train_batch_size": {"values": [4, 8, 16, 32, 64]},
},
}
class HPSearchBackend(ExplicitEnum):
OPTUNA = "optuna"
RAY = "ray"
SIGOPT = "sigopt"
WANDB = "wandb"
def is_main_process(local_rank):
"""
Whether or not the current process is the local process, based on `xm.get_ordinal()` (for TPUs) first, then on
`local_rank`.
"""
if is_torch_tpu_available(check_device=True):
import torch_xla.core.xla_model as xm
return xm.get_ordinal() == 0
return local_rank in [-1, 0]
def total_processes_number(local_rank):
"""
Return the number of processes launched in parallel. Works with `torch.distributed` and TPUs.
"""
if is_torch_tpu_available(check_device=True):
import torch_xla.core.xla_model as xm
return xm.xrt_world_size()
elif local_rank != -1 and is_torch_available():
import torch
return torch.distributed.get_world_size()
return 1
def speed_metrics(split, start_time, num_samples=None, num_steps=None, num_tokens=None):
"""
Measure and return speed performance metrics.
This function requires a time snapshot `start_time` before the operation to be measured starts and this function
should be run immediately after the operation to be measured has completed.
Args:
- split: name to prefix metric (like train, eval, test...)
- start_time: operation start time
- num_samples: number of samples processed
- num_steps: number of steps processed
- num_tokens: number of tokens processed
"""
runtime = time.time() - start_time
result = {f"{split}_runtime": round(runtime, 4)}
if runtime == 0:
return result
if num_samples is not None:
samples_per_second = num_samples / runtime
result[f"{split}_samples_per_second"] = round(samples_per_second, 3)
if num_steps is not None:
steps_per_second = num_steps / runtime
result[f"{split}_steps_per_second"] = round(steps_per_second, 3)
if num_tokens is not None:
tokens_per_second = num_tokens / runtime
result[f"{split}_tokens_per_second"] = round(tokens_per_second, 3)
return result
class SchedulerType(ExplicitEnum):
LINEAR = "linear"
COSINE = "cosine"
COSINE_WITH_RESTARTS = "cosine_with_restarts"
POLYNOMIAL = "polynomial"
CONSTANT = "constant"
CONSTANT_WITH_WARMUP = "constant_with_warmup"
INVERSE_SQRT = "inverse_sqrt"
REDUCE_ON_PLATEAU = "reduce_lr_on_plateau"
class TrainerMemoryTracker:
"""
A helper class that tracks cpu and gpu memory.
This class will silently skip unless `psutil` is available. Install with `pip install psutil`.
When a stage completes, it can pass metrics dict to update with the memory metrics gathered during this stage.
Example :
```python
self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics)
self._memory_tracker.start()
# code ...
metrics = {"train_runtime": 10.5}
self._memory_tracker.stop_and_update_metrics(metrics)
```
At the moment GPU tracking is only for `pytorch`, but can be extended to support `tensorflow`.
To understand this class' intricacies please read the documentation of [`~Trainer.log_metrics`].
"""
# map trainer methods to metrics prefix
stages = {
"__init__": "init",
"train": "train",
"_inner_training_loop": "train",
"evaluate": "eval",
"predict": "test",
}
def __init__(self, skip_memory_metrics=False):
self.skip_memory_metrics = skip_memory_metrics
if not is_psutil_available():
# soft dependency on psutil
self.skip_memory_metrics = True
if self.skip_memory_metrics:
return
import psutil # noqa
if is_torch_cuda_available():
import torch
self.torch = torch
self.gpu = {}
elif is_torch_mps_available():
import torch
self.torch = torch
self.gpu = {}
elif is_torch_xpu_available():
import torch
self.torch = torch
self.gpu = {}
elif is_torch_npu_available():
import torch
self.torch = torch
self.gpu = {}
else:
self.torch = None
self.process = psutil.Process()
self.cur_stage = None
self.cpu = {}
self.init_reported = False
def derive_stage(self):
"""derives the stage/caller name automatically"""
caller = inspect.currentframe().f_back.f_back.f_code.co_name
if caller in self.stages:
return self.stages[caller]
else:
raise ValueError(
f"was called from {caller}, but only expect to be called from one of {self.stages.keys()}"
)
def cpu_mem_used(self):
"""get resident set size memory for the current process"""
return self.process.memory_info().rss
def peak_monitor_func(self):
self.cpu_mem_used_peak = -1
while True:
self.cpu_mem_used_peak = max(self.cpu_mem_used(), self.cpu_mem_used_peak)
# can't sleep or will not catch the peak right (this comment is here on purpose)
# time.sleep(0.001) # 1msec
if not self.peak_monitoring:
break
def start(self):
"""start tracking for the caller's stage"""
if self.skip_memory_metrics:
return
stage = self.derive_stage()
# deal with nested calls of eval during train - simply ignore those
if self.cur_stage is not None and self.cur_stage != stage:
return
self.cur_stage = stage
gc.collect()
if self.torch is not None:
if torch.cuda.is_available():
self.torch.cuda.reset_peak_memory_stats()
self.torch.cuda.empty_cache()
elif is_torch_xpu_available():
self.torch.xpu.reset_peak_memory_stats()
self.torch.xpu.empty_cache()
elif is_torch_npu_available():
self.torch.npu.reset_peak_memory_stats()
self.torch.npu.empty_cache()
# gpu
if self.torch is not None:
if torch.cuda.is_available():
self.gpu_mem_used_at_start = self.torch.cuda.memory_allocated()
elif is_torch_xpu_available():
self.gpu_mem_used_at_start = self.torch.xpu.memory_allocated()
elif is_torch_npu_available():
self.gpu_mem_used_at_start = self.torch.npu.memory_allocated()
# cpu
self.cpu_mem_used_at_start = self.cpu_mem_used()
self.peak_monitoring = True
peak_monitor_thread = threading.Thread(target=self.peak_monitor_func)
peak_monitor_thread.daemon = True
peak_monitor_thread.start()
def stop(self, stage):
"""stop tracking for the passed stage"""
# deal with nested calls of eval during train - simply ignore those
if self.cur_stage is not None and self.cur_stage != stage:
return
# this sends a signal to peak_monitor_func to complete its loop
self.peak_monitoring = False
# first ensure all objects get collected and their memory is freed
gc.collect()
if self.torch is not None:
if torch.cuda.is_available():
self.torch.cuda.empty_cache()
elif is_torch_xpu_available():
self.torch.xpu.empty_cache()
elif is_torch_npu_available():
self.torch.npu.empty_cache()
# concepts:
# - alloc_delta: the difference of allocated memory between the end and the start
# - peaked_delta: the difference between the peak memory and the current memory
# in order to know how much memory the measured code consumed one needs to sum these two
# gpu
if self.torch is not None:
if torch.cuda.is_available():
self.gpu_mem_used_now = self.torch.cuda.memory_allocated()
self.gpu_mem_used_peak = self.torch.cuda.max_memory_allocated()
elif is_torch_xpu_available():
self.gpu_mem_used_now = self.torch.xpu.memory_allocated()
self.gpu_mem_used_peak = self.torch.xpu.max_memory_allocated()
elif is_torch_npu_available():
self.gpu_mem_used_now = self.torch.npu.memory_allocated()
self.gpu_mem_used_peak = self.torch.npu.max_memory_allocated()
else:
raise ValueError("No available GPU device found!")
self.gpu[self.cur_stage] = {
"begin": self.gpu_mem_used_at_start,
"end": self.gpu_mem_used_now,
"alloc": (self.gpu_mem_used_now - self.gpu_mem_used_at_start),
"peaked": max(0, self.gpu_mem_used_peak - self.gpu_mem_used_now),
}
# cpu
self.cpu_mem_used_now = self.cpu_mem_used()
self.cpu[self.cur_stage] = {
"begin": self.cpu_mem_used_at_start,
"end": self.cpu_mem_used_now,
"alloc": (self.cpu_mem_used_now - self.cpu_mem_used_at_start),
"peaked": max(0, self.cpu_mem_used_peak - self.cpu_mem_used_now),
}
# reset - cycle finished
self.cur_stage = None
def update_metrics(self, stage, metrics):
"""updates the metrics"""
if self.skip_memory_metrics:
return
# deal with nested calls of eval during train - simply ignore those
if self.cur_stage is not None and self.cur_stage != stage:
return
# since we don't have a way to return init metrics, we push them into the first of train/val/predict
stages = [stage]
if not self.init_reported:
stages.insert(0, "init")
self.init_reported = True
for stage in stages:
for t in ["alloc", "peaked"]:
if stage in self.cpu and t in self.cpu[stage]:
metrics[f"{stage}_mem_cpu_{t}_delta"] = self.cpu[stage][t]
if self.torch is not None and stage in self.gpu and t in self.gpu[stage]:
metrics[f"{stage}_mem_gpu_{t}_delta"] = self.gpu[stage][t]
# if we need additional debug info, enable the following
# for t in ["begin", "end"]:
# if stage in self.cpu and t in self.cpu[stage]:
# metrics[f"{stage}_mem_cpu_{t}"] = self.cpu[stage][t]
# if self.torch is not None and stage in self.gpu and t in self.gpu[stage]:
# metrics[f"{stage}_mem_gpu_{t}"] = self.gpu[stage][t]
# since memory can be allocated before init, and it might be difficult to track overall
# memory usage, in particular for GPU, let's report memory usage at the point init was called
if stages[0] == "init":
metrics["before_init_mem_cpu"] = self.cpu["init"]["begin"]
if self.torch is not None:
metrics["before_init_mem_gpu"] = self.gpu["init"]["begin"]
# if we also wanted to report any additional memory allocations in between init and
# whatever the next stage was we could also report this:
# if self.cpu["init"]["end"] != self.cpu[stage]["begin"]:
# metrics[f"after_init_mem_cpu_delta"] = self.cpu[stage]["begin"] - self.cpu["init"]["end"]
# if self.torch is not None and self.gpu["init"]["end"] != self.gpu[stage]["begin"]:
# metrics[f"after_init_mem_gpu_delta"] = self.gpu[stage]["begin"] - self.gpu["init"]["end"]
def stop_and_update_metrics(self, metrics=None):
"""combine stop and metrics update in one call for simpler code"""
if self.skip_memory_metrics:
return
stage = self.derive_stage()
self.stop(stage)
# init doesn't have metrics to update so we just save that data for later stages to retrieve
if metrics is not None:
self.update_metrics(stage, metrics)
def has_length(dataset):
"""
Checks if the dataset implements __len__() and it doesn't raise an error
"""
try:
return len(dataset) is not None
except TypeError:
# TypeError: len() of unsized object
return False
def denumpify_detensorize(metrics):
"""
Recursively calls `.item()` on the element of the dictionary passed
"""
if isinstance(metrics, (list, tuple)):
return type(metrics)(denumpify_detensorize(m) for m in metrics)
elif isinstance(metrics, dict):
return type(metrics)({k: denumpify_detensorize(v) for k, v in metrics.items()})
elif isinstance(metrics, np.generic):
return metrics.item()
elif is_torch_available() and isinstance(metrics, torch.Tensor) and metrics.numel() == 1:
return metrics.item()
return metrics
def number_of_arguments(func):
"""
Return the number of arguments of the passed function, even if it's a partial function.
"""
if isinstance(func, functools.partial):
total_args = len(inspect.signature(func.func).parameters)
return total_args - len(func.args) - len(func.keywords)
return len(inspect.signature(func).parameters)
def find_executable_batch_size(
function: callable = None, starting_batch_size: int = 128, auto_find_batch_size: bool = False
):
"""
Args:
A basic decorator that will try to execute `function`. If it fails from exceptions related to out-of-memory or
CUDNN, the batch size is cut in half and passed to `function`. `function` must take in a `batch_size` parameter as
its first argument.
function (`callable`, *optional*)
A function to wrap
starting_batch_size (`int`, *optional*)
The batch size to try and fit into memory
auto_find_batch_size (`bool`, *optional*)
If False, will just execute `function`
"""
if function is None:
return functools.partial(
find_executable_batch_size,
starting_batch_size=starting_batch_size,
auto_find_batch_size=auto_find_batch_size,
)
if auto_find_batch_size:
requires_backends(find_executable_batch_size, "accelerate")
from accelerate.utils import find_executable_batch_size as accelerate_find_executable_batch_size
return accelerate_find_executable_batch_size(function=function, starting_batch_size=starting_batch_size)
return functools.partial(function, batch_size=starting_batch_size)
class FSDPOption(ExplicitEnum):
FULL_SHARD = "full_shard"
SHARD_GRAD_OP = "shard_grad_op"
NO_SHARD = "no_shard"
HYBRID_SHARD = "hybrid_shard"
HYBRID_SHARD_ZERO2 = "hybrid_shard_zero2"
OFFLOAD = "offload"
AUTO_WRAP = "auto_wrap"
class RemoveColumnsCollator:
"""Wrap the data collator to remove unused columns before they are passed to the collator."""
def __init__(
self,
data_collator,
signature_columns,
logger=None,
model_name: Optional[str] = None,
description: Optional[str] = None,
):
self.data_collator = data_collator
self.signature_columns = signature_columns
self.logger = logger
self.description = description
self.model_name = model_name
self.message_logged = False
def _remove_columns(self, feature: dict) -> dict:
if not isinstance(feature, dict):
return feature
if not self.message_logged and self.logger and self.model_name:
ignored_columns = list(set(feature.keys()) - set(self.signature_columns))
if len(ignored_columns) > 0:
dset_description = "" if self.description is None else f"in the {self.description} set"
self.logger.info(
f"The following columns {dset_description} don't have a corresponding argument in "
f"`{self.model_name}.forward` and have been ignored: {', '.join(ignored_columns)}."
f" If {', '.join(ignored_columns)} are not expected by `{self.model_name}.forward`, "
" you can safely ignore this message."
)
self.message_logged = True
return {k: v for k, v in feature.items() if k in self.signature_columns}
def __call__(self, features: List[dict]):
features = [self._remove_columns(feature) for feature in features]
return self.data_collator(features)
| transformers/src/transformers/trainer_utils.py/0 | {
"file_path": "transformers/src/transformers/trainer_utils.py",
"repo_id": "transformers",
"token_count": 11573
} | 382 |
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
class AlbertTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class BarthezTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class BartphoTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class BertGenerationTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class BigBirdTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class CamembertTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class CodeLlamaTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class CpmTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class DebertaV2Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class ErnieMTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class FNetTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class GPTSw3Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class LayoutXLMTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class LlamaTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class M2M100Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class MarianTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class MBart50Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class MBartTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class MLukeTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class MT5Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class NllbTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class PegasusTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class PLBartTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class ReformerTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class RemBertTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class SeamlessM4TTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class SiglipTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class Speech2TextTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class SpeechT5Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class T5Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class XGLMTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class XLMProphetNetTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class XLMRobertaTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class XLNetTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
| transformers/src/transformers/utils/dummy_sentencepiece_objects.py/0 | {
"file_path": "transformers/src/transformers/utils/dummy_sentencepiece_objects.py",
"repo_id": "transformers",
"token_count": 2376
} | 383 |
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: sentencepiece_model.proto
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor.FileDescriptor(
name="sentencepiece_model.proto",
package="sentencepiece",
syntax="proto2",
serialized_options=b"H\003",
create_key=_descriptor._internal_create_key,
serialized_pb=(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\xa1\n\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01'
b" \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02"
b" \x01(\t\x12\x41\n\nmodel_type\x18\x03"
b" \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04"
b" \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12"
b' \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n'
b" \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b"
b" \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12"
b' \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r'
b" \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e"
b" \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f"
b" \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12"
b" \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10"
b" \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11"
b" \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14"
b" \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15"
b" \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17"
b" \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16"
b" \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18"
b" \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19"
b" \x01(\x08:\x05\x66\x61lse\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e"
b" \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$"
b" \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18"
b' \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18"'
b" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18)"
b" \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+"
b" \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18."
b" \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30"
b" \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87"
b" \x12+\n\x1ctrain_extremely_large_corpus\x18\x31"
b' \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01'
b" \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03"
b" \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12"
b" \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06"
b' \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01'
b' \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01'
b" \x01(\t\x12\x10\n\x08\x65xpected\x18\x02"
b' \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01'
b" \x03(\x0b\x32'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02"
b" \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03"
b" \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04"
b" \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05"
b" \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01"
b" \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03"
b' \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
),
)
_TRAINERSPEC_MODELTYPE = _descriptor.EnumDescriptor(
name="ModelType",
full_name="sentencepiece.TrainerSpec.ModelType",
filename=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
values=[
_descriptor.EnumValueDescriptor(
name="UNIGRAM",
index=0,
number=1,
serialized_options=None,
type=None,
create_key=_descriptor._internal_create_key,
),
_descriptor.EnumValueDescriptor(
name="BPE",
index=1,
number=2,
serialized_options=None,
type=None,
create_key=_descriptor._internal_create_key,
),
_descriptor.EnumValueDescriptor(
name="WORD",
index=2,
number=3,
serialized_options=None,
type=None,
create_key=_descriptor._internal_create_key,
),
_descriptor.EnumValueDescriptor(
name="CHAR",
index=3,
number=4,
serialized_options=None,
type=None,
create_key=_descriptor._internal_create_key,
),
],
containing_type=None,
serialized_options=None,
serialized_start=1294,
serialized_end=1347,
)
_sym_db.RegisterEnumDescriptor(_TRAINERSPEC_MODELTYPE)
_MODELPROTO_SENTENCEPIECE_TYPE = _descriptor.EnumDescriptor(
name="Type",
full_name="sentencepiece.ModelProto.SentencePiece.Type",
filename=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
values=[
_descriptor.EnumValueDescriptor(
name="NORMAL",
index=0,
number=1,
serialized_options=None,
type=None,
create_key=_descriptor._internal_create_key,
),
_descriptor.EnumValueDescriptor(
name="UNKNOWN",
index=1,
number=2,
serialized_options=None,
type=None,
create_key=_descriptor._internal_create_key,
),
_descriptor.EnumValueDescriptor(
name="CONTROL",
index=2,
number=3,
serialized_options=None,
type=None,
create_key=_descriptor._internal_create_key,
),
_descriptor.EnumValueDescriptor(
name="USER_DEFINED",
index=3,
number=4,
serialized_options=None,
type=None,
create_key=_descriptor._internal_create_key,
),
_descriptor.EnumValueDescriptor(
name="BYTE",
index=4,
number=6,
serialized_options=None,
type=None,
create_key=_descriptor._internal_create_key,
),
_descriptor.EnumValueDescriptor(
name="UNUSED",
index=5,
number=5,
serialized_options=None,
type=None,
create_key=_descriptor._internal_create_key,
),
],
containing_type=None,
serialized_options=None,
serialized_start=2100,
serialized_end=2184,
)
_sym_db.RegisterEnumDescriptor(_MODELPROTO_SENTENCEPIECE_TYPE)
_TRAINERSPEC = _descriptor.Descriptor(
name="TrainerSpec",
full_name="sentencepiece.TrainerSpec",
filename=None,
file=DESCRIPTOR,
containing_type=None,
create_key=_descriptor._internal_create_key,
fields=[
_descriptor.FieldDescriptor(
name="input",
full_name="sentencepiece.TrainerSpec.input",
index=0,
number=1,
type=9,
cpp_type=9,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="input_format",
full_name="sentencepiece.TrainerSpec.input_format",
index=1,
number=7,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=b"".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="model_prefix",
full_name="sentencepiece.TrainerSpec.model_prefix",
index=2,
number=2,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=b"".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="model_type",
full_name="sentencepiece.TrainerSpec.model_type",
index=3,
number=3,
type=14,
cpp_type=8,
label=1,
has_default_value=True,
default_value=1,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="vocab_size",
full_name="sentencepiece.TrainerSpec.vocab_size",
index=4,
number=4,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=8000,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="accept_language",
full_name="sentencepiece.TrainerSpec.accept_language",
index=5,
number=5,
type=9,
cpp_type=9,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="self_test_sample_size",
full_name="sentencepiece.TrainerSpec.self_test_sample_size",
index=6,
number=6,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=0,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="character_coverage",
full_name="sentencepiece.TrainerSpec.character_coverage",
index=7,
number=10,
type=2,
cpp_type=6,
label=1,
has_default_value=True,
default_value=float(0.9995),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="input_sentence_size",
full_name="sentencepiece.TrainerSpec.input_sentence_size",
index=8,
number=11,
type=4,
cpp_type=4,
label=1,
has_default_value=True,
default_value=0,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="shuffle_input_sentence",
full_name="sentencepiece.TrainerSpec.shuffle_input_sentence",
index=9,
number=19,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=True,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="mining_sentence_size",
full_name="sentencepiece.TrainerSpec.mining_sentence_size",
index=10,
number=12,
type=5,
cpp_type=1,
label=1,
has_default_value=False,
default_value=0,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=b"\030\001",
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="training_sentence_size",
full_name="sentencepiece.TrainerSpec.training_sentence_size",
index=11,
number=13,
type=5,
cpp_type=1,
label=1,
has_default_value=False,
default_value=0,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=b"\030\001",
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="seed_sentencepiece_size",
full_name="sentencepiece.TrainerSpec.seed_sentencepiece_size",
index=12,
number=14,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=1000000,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="shrinking_factor",
full_name="sentencepiece.TrainerSpec.shrinking_factor",
index=13,
number=15,
type=2,
cpp_type=6,
label=1,
has_default_value=True,
default_value=float(0.75),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="max_sentence_length",
full_name="sentencepiece.TrainerSpec.max_sentence_length",
index=14,
number=18,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=4192,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="num_threads",
full_name="sentencepiece.TrainerSpec.num_threads",
index=15,
number=16,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=16,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="num_sub_iterations",
full_name="sentencepiece.TrainerSpec.num_sub_iterations",
index=16,
number=17,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=2,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="max_sentencepiece_length",
full_name="sentencepiece.TrainerSpec.max_sentencepiece_length",
index=17,
number=20,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=16,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="split_by_unicode_script",
full_name="sentencepiece.TrainerSpec.split_by_unicode_script",
index=18,
number=21,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=True,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="split_by_number",
full_name="sentencepiece.TrainerSpec.split_by_number",
index=19,
number=23,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=True,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="split_by_whitespace",
full_name="sentencepiece.TrainerSpec.split_by_whitespace",
index=20,
number=22,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=True,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="treat_whitespace_as_suffix",
full_name="sentencepiece.TrainerSpec.treat_whitespace_as_suffix",
index=21,
number=24,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=False,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="split_digits",
full_name="sentencepiece.TrainerSpec.split_digits",
index=22,
number=25,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=False,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="control_symbols",
full_name="sentencepiece.TrainerSpec.control_symbols",
index=23,
number=30,
type=9,
cpp_type=9,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="user_defined_symbols",
full_name="sentencepiece.TrainerSpec.user_defined_symbols",
index=24,
number=31,
type=9,
cpp_type=9,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="required_chars",
full_name="sentencepiece.TrainerSpec.required_chars",
index=25,
number=36,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=b"".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="byte_fallback",
full_name="sentencepiece.TrainerSpec.byte_fallback",
index=26,
number=35,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=False,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="vocabulary_output_piece_score",
full_name="sentencepiece.TrainerSpec.vocabulary_output_piece_score",
index=27,
number=32,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=True,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="hard_vocab_limit",
full_name="sentencepiece.TrainerSpec.hard_vocab_limit",
index=28,
number=33,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=True,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="use_all_vocab",
full_name="sentencepiece.TrainerSpec.use_all_vocab",
index=29,
number=34,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=False,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="unk_id",
full_name="sentencepiece.TrainerSpec.unk_id",
index=30,
number=40,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=0,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="bos_id",
full_name="sentencepiece.TrainerSpec.bos_id",
index=31,
number=41,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=1,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="eos_id",
full_name="sentencepiece.TrainerSpec.eos_id",
index=32,
number=42,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=2,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="pad_id",
full_name="sentencepiece.TrainerSpec.pad_id",
index=33,
number=43,
type=5,
cpp_type=1,
label=1,
has_default_value=True,
default_value=-1,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="unk_piece",
full_name="sentencepiece.TrainerSpec.unk_piece",
index=34,
number=45,
type=9,
cpp_type=9,
label=1,
has_default_value=True,
default_value=b"<unk>".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="bos_piece",
full_name="sentencepiece.TrainerSpec.bos_piece",
index=35,
number=46,
type=9,
cpp_type=9,
label=1,
has_default_value=True,
default_value=b"<s>".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="eos_piece",
full_name="sentencepiece.TrainerSpec.eos_piece",
index=36,
number=47,
type=9,
cpp_type=9,
label=1,
has_default_value=True,
default_value=b"</s>".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="pad_piece",
full_name="sentencepiece.TrainerSpec.pad_piece",
index=37,
number=48,
type=9,
cpp_type=9,
label=1,
has_default_value=True,
default_value=b"<pad>".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="unk_surface",
full_name="sentencepiece.TrainerSpec.unk_surface",
index=38,
number=44,
type=9,
cpp_type=9,
label=1,
has_default_value=True,
default_value=b" \342\201\207 ".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="train_extremely_large_corpus",
full_name="sentencepiece.TrainerSpec.train_extremely_large_corpus",
index=39,
number=49,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=False,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
],
extensions=[],
nested_types=[],
enum_types=[
_TRAINERSPEC_MODELTYPE,
],
serialized_options=None,
is_extendable=True,
syntax="proto2",
extension_ranges=[
(200, 536870912),
],
oneofs=[],
serialized_start=45,
serialized_end=1358,
)
_NORMALIZERSPEC = _descriptor.Descriptor(
name="NormalizerSpec",
full_name="sentencepiece.NormalizerSpec",
filename=None,
file=DESCRIPTOR,
containing_type=None,
create_key=_descriptor._internal_create_key,
fields=[
_descriptor.FieldDescriptor(
name="name",
full_name="sentencepiece.NormalizerSpec.name",
index=0,
number=1,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=b"".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="precompiled_charsmap",
full_name="sentencepiece.NormalizerSpec.precompiled_charsmap",
index=1,
number=2,
type=12,
cpp_type=9,
label=1,
has_default_value=False,
default_value=b"",
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="add_dummy_prefix",
full_name="sentencepiece.NormalizerSpec.add_dummy_prefix",
index=2,
number=3,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=True,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="remove_extra_whitespaces",
full_name="sentencepiece.NormalizerSpec.remove_extra_whitespaces",
index=3,
number=4,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=True,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="escape_whitespaces",
full_name="sentencepiece.NormalizerSpec.escape_whitespaces",
index=4,
number=5,
type=8,
cpp_type=7,
label=1,
has_default_value=True,
default_value=True,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="normalization_rule_tsv",
full_name="sentencepiece.NormalizerSpec.normalization_rule_tsv",
index=5,
number=6,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=b"".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
],
extensions=[],
nested_types=[],
enum_types=[],
serialized_options=None,
is_extendable=True,
syntax="proto2",
extension_ranges=[
(200, 536870912),
],
oneofs=[],
serialized_start=1361,
serialized_end=1570,
)
_SELFTESTDATA_SAMPLE = _descriptor.Descriptor(
name="Sample",
full_name="sentencepiece.SelfTestData.Sample",
filename=None,
file=DESCRIPTOR,
containing_type=None,
create_key=_descriptor._internal_create_key,
fields=[
_descriptor.FieldDescriptor(
name="input",
full_name="sentencepiece.SelfTestData.Sample.input",
index=0,
number=1,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=b"".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="expected",
full_name="sentencepiece.SelfTestData.Sample.expected",
index=1,
number=2,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=b"".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
],
extensions=[],
nested_types=[],
enum_types=[],
serialized_options=None,
is_extendable=False,
syntax="proto2",
extension_ranges=[],
oneofs=[],
serialized_start=1641,
serialized_end=1682,
)
_SELFTESTDATA = _descriptor.Descriptor(
name="SelfTestData",
full_name="sentencepiece.SelfTestData",
filename=None,
file=DESCRIPTOR,
containing_type=None,
create_key=_descriptor._internal_create_key,
fields=[
_descriptor.FieldDescriptor(
name="samples",
full_name="sentencepiece.SelfTestData.samples",
index=0,
number=1,
type=11,
cpp_type=10,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
],
extensions=[],
nested_types=[
_SELFTESTDATA_SAMPLE,
],
enum_types=[],
serialized_options=None,
is_extendable=True,
syntax="proto2",
extension_ranges=[
(200, 536870912),
],
oneofs=[],
serialized_start=1572,
serialized_end=1693,
)
_MODELPROTO_SENTENCEPIECE = _descriptor.Descriptor(
name="SentencePiece",
full_name="sentencepiece.ModelProto.SentencePiece",
filename=None,
file=DESCRIPTOR,
containing_type=None,
create_key=_descriptor._internal_create_key,
fields=[
_descriptor.FieldDescriptor(
name="piece",
full_name="sentencepiece.ModelProto.SentencePiece.piece",
index=0,
number=1,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=b"".decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="score",
full_name="sentencepiece.ModelProto.SentencePiece.score",
index=1,
number=2,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="type",
full_name="sentencepiece.ModelProto.SentencePiece.type",
index=2,
number=3,
type=14,
cpp_type=8,
label=1,
has_default_value=True,
default_value=1,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
],
extensions=[],
nested_types=[],
enum_types=[
_MODELPROTO_SENTENCEPIECE_TYPE,
],
serialized_options=None,
is_extendable=True,
syntax="proto2",
extension_ranges=[
(200, 536870912),
],
oneofs=[],
serialized_start=1985,
serialized_end=2195,
)
_MODELPROTO = _descriptor.Descriptor(
name="ModelProto",
full_name="sentencepiece.ModelProto",
filename=None,
file=DESCRIPTOR,
containing_type=None,
create_key=_descriptor._internal_create_key,
fields=[
_descriptor.FieldDescriptor(
name="pieces",
full_name="sentencepiece.ModelProto.pieces",
index=0,
number=1,
type=11,
cpp_type=10,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="trainer_spec",
full_name="sentencepiece.ModelProto.trainer_spec",
index=1,
number=2,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="normalizer_spec",
full_name="sentencepiece.ModelProto.normalizer_spec",
index=2,
number=3,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="self_test_data",
full_name="sentencepiece.ModelProto.self_test_data",
index=3,
number=4,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
_descriptor.FieldDescriptor(
name="denormalizer_spec",
full_name="sentencepiece.ModelProto.denormalizer_spec",
index=4,
number=5,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
create_key=_descriptor._internal_create_key,
),
],
extensions=[],
nested_types=[
_MODELPROTO_SENTENCEPIECE,
],
enum_types=[],
serialized_options=None,
is_extendable=True,
syntax="proto2",
extension_ranges=[
(200, 536870912),
],
oneofs=[],
serialized_start=1696,
serialized_end=2206,
)
_TRAINERSPEC.fields_by_name["model_type"].enum_type = _TRAINERSPEC_MODELTYPE
_TRAINERSPEC_MODELTYPE.containing_type = _TRAINERSPEC
_SELFTESTDATA_SAMPLE.containing_type = _SELFTESTDATA
_SELFTESTDATA.fields_by_name["samples"].message_type = _SELFTESTDATA_SAMPLE
_MODELPROTO_SENTENCEPIECE.fields_by_name["type"].enum_type = _MODELPROTO_SENTENCEPIECE_TYPE
_MODELPROTO_SENTENCEPIECE.containing_type = _MODELPROTO
_MODELPROTO_SENTENCEPIECE_TYPE.containing_type = _MODELPROTO_SENTENCEPIECE
_MODELPROTO.fields_by_name["pieces"].message_type = _MODELPROTO_SENTENCEPIECE
_MODELPROTO.fields_by_name["trainer_spec"].message_type = _TRAINERSPEC
_MODELPROTO.fields_by_name["normalizer_spec"].message_type = _NORMALIZERSPEC
_MODELPROTO.fields_by_name["self_test_data"].message_type = _SELFTESTDATA
_MODELPROTO.fields_by_name["denormalizer_spec"].message_type = _NORMALIZERSPEC
DESCRIPTOR.message_types_by_name["TrainerSpec"] = _TRAINERSPEC
DESCRIPTOR.message_types_by_name["NormalizerSpec"] = _NORMALIZERSPEC
DESCRIPTOR.message_types_by_name["SelfTestData"] = _SELFTESTDATA
DESCRIPTOR.message_types_by_name["ModelProto"] = _MODELPROTO
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
TrainerSpec = _reflection.GeneratedProtocolMessageType(
"TrainerSpec",
(_message.Message,),
{
"DESCRIPTOR": _TRAINERSPEC,
"__module__": "sentencepiece_model_pb2",
# @@protoc_insertion_point(class_scope:sentencepiece.TrainerSpec)
},
)
_sym_db.RegisterMessage(TrainerSpec)
NormalizerSpec = _reflection.GeneratedProtocolMessageType(
"NormalizerSpec",
(_message.Message,),
{
"DESCRIPTOR": _NORMALIZERSPEC,
"__module__": "sentencepiece_model_pb2",
# @@protoc_insertion_point(class_scope:sentencepiece.NormalizerSpec)
},
)
_sym_db.RegisterMessage(NormalizerSpec)
SelfTestData = _reflection.GeneratedProtocolMessageType(
"SelfTestData",
(_message.Message,),
{
"Sample": _reflection.GeneratedProtocolMessageType(
"Sample",
(_message.Message,),
{
"DESCRIPTOR": _SELFTESTDATA_SAMPLE,
"__module__": "sentencepiece_model_pb2",
# @@protoc_insertion_point(class_scope:sentencepiece.SelfTestData.Sample)
},
),
"DESCRIPTOR": _SELFTESTDATA,
"__module__": "sentencepiece_model_pb2",
# @@protoc_insertion_point(class_scope:sentencepiece.SelfTestData)
},
)
_sym_db.RegisterMessage(SelfTestData)
_sym_db.RegisterMessage(SelfTestData.Sample)
ModelProto = _reflection.GeneratedProtocolMessageType(
"ModelProto",
(_message.Message,),
{
"SentencePiece": _reflection.GeneratedProtocolMessageType(
"SentencePiece",
(_message.Message,),
{
"DESCRIPTOR": _MODELPROTO_SENTENCEPIECE,
"__module__": "sentencepiece_model_pb2",
# @@protoc_insertion_point(class_scope:sentencepiece.ModelProto.SentencePiece)
},
),
"DESCRIPTOR": _MODELPROTO,
"__module__": "sentencepiece_model_pb2",
# @@protoc_insertion_point(class_scope:sentencepiece.ModelProto)
},
)
_sym_db.RegisterMessage(ModelProto)
_sym_db.RegisterMessage(ModelProto.SentencePiece)
DESCRIPTOR._options = None
_TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
_TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# @@protoc_insertion_point(module_scope)
| transformers/src/transformers/utils/sentencepiece_model_pb2.py/0 | {
"file_path": "transformers/src/transformers/utils/sentencepiece_model_pb2.py",
"repo_id": "transformers",
"token_count": 28261
} | 384 |
# coding=utf-8
# Copyright 2022 {{cookiecutter.authors}} The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch {{cookiecutter.modelname}} model. """
{% if cookiecutter.is_encoder_decoder_model == "False" %}
import math
import os
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from typing import Optional, Tuple, Union
from ...activations import ACT2FN
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from ...utils import logging
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "{{cookiecutter.checkpoint_identifier}}"
_CONFIG_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Config"
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST = [
"{{cookiecutter.checkpoint_identifier}}",
# See all {{cookiecutter.modelname}} models at https://huggingface.co/models?filter={{cookiecutter.lowercase_modelname}}
]
def load_tf_weights_in_{{cookiecutter.lowercase_modelname}}(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
assert (
pointer.shape == array.shape
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}Embeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}SelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in {{cookiecutter.camelcase_modelname}}Model forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}SelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}Attention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = {{cookiecutter.camelcase_modelname}}SelfAttention(config, position_embedding_type=position_embedding_type)
self.output = {{cookiecutter.camelcase_modelname}}SelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}Intermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}Output(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}Layer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = {{cookiecutter.camelcase_modelname}}Attention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
self.crossattention = {{cookiecutter.camelcase_modelname}}Attention(config, position_embedding_type="absolute")
self.intermediate = {{cookiecutter.camelcase_modelname}}Intermediate(config)
self.output = {{cookiecutter.camelcase_modelname}}Output(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
assert hasattr(
self, "crossattention"
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}Encoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([{{cookiecutter.camelcase_modelname}}Layer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
if self.gradient_checkpointing and self.training and use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}PredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}LMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = {{cookiecutter.camelcase_modelname}}PredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}OnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = {{cookiecutter.camelcase_modelname}}LMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class {{cookiecutter.camelcase_modelname}}PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = {{cookiecutter.camelcase_modelname}}Config
load_tf_weights = load_tf_weights_in_{{cookiecutter.lowercase_modelname}}
base_model_prefix = "{{cookiecutter.lowercase_modelname}}"
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
usage and behavior.
Parameters:
config ([`~{{cookiecutter.camelcase_modelname}}Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
{{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`{{cookiecutter.camelcase_modelname}}Tokenizer`].
See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range `[0, config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare {{cookiecutter.modelname}} Model transformer outputting raw hidden-states without any specific head on top.",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}Model({{cookiecutter.camelcase_modelname}}PreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well
as a decoder, in which case a layer of cross-attention is added between
the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the
`is_decoder` argument of the configuration set to `True`.
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
argument and `add_cross_attention` set to `True`; an
`encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = {{cookiecutter.camelcase_modelname}}Embeddings(config)
self.encoder = {{cookiecutter.camelcase_modelname}}Encoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
See base class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the model is configured as a decoder.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids`
(those that don't have their past key value states given to this model) of shape `(batch_size, 1)`
instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up
decoding (see `past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=sequence_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""{{cookiecutter.modelname}} Model with a `language modeling` head on top. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING)
class {{cookiecutter.camelcase_modelname}}ForMaskedLM({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `{{cookiecutter.camelcase_modelname}}ForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.{{cookiecutter.lowercase_modelname}} = {{cookiecutter.camelcase_modelname}}Model(config)
self.cls = {{cookiecutter.camelcase_modelname}}OnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss.
Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring)
Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels
in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
dummy_token = torch.full(
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@add_start_docstrings(
"""{{cookiecutter.modelname}} Model with a `language modeling` head on top for CLM fine-tuning. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING
)
class {{cookiecutter.camelcase_modelname}}ForCausalLM({{cookiecutter.camelcase_modelname}}PreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `{{cookiecutter.camelcase_modelname}}ForCausalLM` as a standalone, add `is_decoder=True.`")
self.{{cookiecutter.lowercase_modelname}} = {{cookiecutter.camelcase_modelname}}Model(config)
self.cls = {{cookiecutter.camelcase_modelname}}OnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2
tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional
tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two
additional tensors are only required when the model is used as a decoder in a Sequence to Sequence
model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids`
(those that don't have their past key value states given to this model) of shape `(batch_size, 1)`
instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up
decoding (see `past_key_values`).
Returns:
Example:
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, {{cookiecutter.camelcase_modelname}}ForCausalLM, {{cookiecutter.camelcase_modelname}}Config
>>> import torch
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> config = {{cookiecutter.camelcase_modelname}}Config.from_pretrained("{{cookiecutter.checkpoint_identifier}}")
>>> config.is_decoder = True
>>> model = {{cookiecutter.camelcase_modelname}}ForCausalLM.from_pretrained('{{cookiecutter.checkpoint_identifier}}', config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:],)
return reordered_past
class {{cookiecutter.camelcase_modelname}}ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""{{cookiecutter.modelname}} Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """,
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}ForSequenceClassification({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.{{cookiecutter.lowercase_modelname}} = {{cookiecutter.camelcase_modelname}}Model(config)
self.classifier = {{cookiecutter.camelcase_modelname}}ClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss.
Indices should be in `[0, ..., config.num_labels - 1]`.
If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""{{cookiecutter.modelname}} Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}ForMultipleChoice({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.{{cookiecutter.lowercase_modelname}} = {{cookiecutter.camelcase_modelname}}Model(config)
self.sequence_summary = SequenceSummary(config)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss.
Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension
of the input tensors. (See `input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
pooled_output = self.sequence_summary(sequence_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""{{cookiecutter.modelname}} Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}ForTokenClassification({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.{{cookiecutter.lowercase_modelname}} = {{cookiecutter.camelcase_modelname}}Model(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss.
Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""{{cookiecutter.modelname}} Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}ForQuestionAnswering({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.{{cookiecutter.lowercase_modelname}} = {{cookiecutter.camelcase_modelname}}Model(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
{% else %}
import math
import copy
from typing import Optional, Tuple, List, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
CausalLMOutputWithCrossAttentions
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "{{cookiecutter.checkpoint_identifier}}"
_CONFIG_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Config"
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST = [
"{{cookiecutter.checkpoint_identifier}}",
# See all {{cookiecutter.modelname}} models at https://huggingface.co/models?filter={{cookiecutter.lowercase_modelname}}
]
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class {{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings, embedding_dim)
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
class {{cookiecutter.camelcase_modelname}}Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads})."
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class {{cookiecutter.camelcase_modelname}}EncoderLayer(nn.Module):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = {{cookiecutter.camelcase_modelname}}Attention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(config.encoder_attention_heads,)*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class {{cookiecutter.camelcase_modelname}}DecoderLayer(nn.Module):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = {{cookiecutter.camelcase_modelname}}Attention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = {{cookiecutter.camelcase_modelname}}Attention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*.
cross_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size *(decoder_attention_heads,)*.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class {{cookiecutter.camelcase_modelname}}PreTrainedModel(PreTrainedModel):
config_class = {{cookiecutter.camelcase_modelname}}Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
pruning heads etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
general usage and behavior.
Parameters:
config ([`~{{cookiecutter.camelcase_modelname}}Config`]):
Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model
weights.
"""
{{cookiecutter.uppercase_modelname}}_GENERATION_EXAMPLE = r"""
Summarization example:
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = {{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5)
>>> print(tokenizer.decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
"""
{{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the `input_ids` to the right, following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read [`modeling_{{cookiecutter.lowercase_modelname}}._prepare_decoder_attention_mask`] and
modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`,
*optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors
of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids`
(those that don't have their past key value states given to this model) of shape `(batch_size, 1)`
instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds`
have to be input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds`
takes the value of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up
decoding (see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
{{cookiecutter.uppercase_modelname}}_STANDALONE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`ProphetNetTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class {{cookiecutter.camelcase_modelname}}Encoder({{cookiecutter.camelcase_modelname}}PreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`{{cookiecutter.camelcase_modelname}}EncoderLayer`].
Args:
config: {{cookiecutter.camelcase_modelname}}Config
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = {{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([{{cookiecutter.camelcase_modelname}}EncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert `input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.randn([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class {{cookiecutter.camelcase_modelname}}Decoder({{cookiecutter.camelcase_modelname}}PreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`{{cookiecutter.camelcase_modelname}}DecoderLayer`]
Args:
config: {{cookiecutter.camelcase_modelname}}Config
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = {{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([{{cookiecutter.camelcase_modelname}}DecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2
tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional
tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential
decoding.
If `past_key_values` are used, the user can optionally input only the last
`decoder_input_ids` (those that don't have their past key value states given to this model) of
shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size,
sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = _prepare_4d_causal_attention_mask(attention_mask, input_shape, inputs_embeds, past_key_values_length)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
if self.gradient_checkpointing and self.training and use_cache:
logger.warning("`use_cache = True` is incompatible with gradient checkpointing`. Setting `use_cache = False`...")
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
assert attn_mask.size()[0] == (
len(self.layers)
), f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = torch.randn([])
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare {{cookiecutter.modelname}} Model outputting raw hidden-states without any specific head on top.",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}Model({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = {{cookiecutter.camelcase_modelname}}Encoder(config, self.shared)
self.decoder = {{cookiecutter.camelcase_modelname}}Decoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The {{cookiecutter.modelname}} Model with a language modeling head. Can be used for summarization.", {{cookiecutter.uppercase_modelname}}_START_DOCSTRING
)
class {{cookiecutter.camelcase_modelname}}ForConditionalGeneration({{cookiecutter.camelcase_modelname}}PreTrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [
r"final_logits_bias",
r"encoder\.version",
r"decoder\.version",
r"lm_head\.weight",
]
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config):
super().__init__(config)
self.model = {{cookiecutter.camelcase_modelname}}Model(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens)
self._resize_final_logits_bias(new_num_tokens)
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings({{cookiecutter.uppercase_modelname}}_GENERATION_EXAMPLE)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Conditional generation example:
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = {{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> input_ids = tokenizer([TXT], return_tensors='pt')['input_ids']
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),)
return reordered_past
@add_start_docstrings(
"""
{{cookiecutter.camelcase_modelname}} model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}ForSequenceClassification({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs):
super().__init__(config, **kwargs)
self.model = {{cookiecutter.camelcase_modelname}}Model(config)
self.classification_head = {{cookiecutter.camelcase_modelname}}ClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
self.model._init_weights(self.classification_head.dense)
self.model._init_weights(self.classification_head.out_proj)
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
{{cookiecutter.modelname}} Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}ForQuestionAnswering({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = {{cookiecutter.camelcase_modelname}}Model(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.model._init_weights(self.qa_outputs)
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
start_positions=None,
end_positions=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}DecoderWrapper({{cookiecutter.camelcase_modelname}}PreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = {{cookiecutter.camelcase_modelname}}Decoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}ForCausalLM({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = {{cookiecutter.camelcase_modelname}}DecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids`
(those that don't have their past key value states given to this model) of shape `(batch_size, 1)`
instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up
decoding (see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, {{cookiecutter.camelcase_modelname}}ForCausalLM
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('facebook/bart-large')
>>> model = {{cookiecutter.camelcase_modelname}}ForCausalLM.from_pretrained('facebook/bart-large', add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs):
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past_key_values:
input_ids = input_ids[:, -1:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),)
return reordered_past
{% endif -%}
| transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_{{cookiecutter.lowercase_modelname}}.py/0 | {
"file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_{{cookiecutter.lowercase_modelname}}.py",
"repo_id": "transformers",
"token_count": 65421
} | 385 |
{
"modelname": "TemplateBI",
"uppercase_modelname": "TEMPLATE_BI",
"lowercase_modelname": "template_bi",
"camelcase_modelname": "TemplateBi",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "bi-brand-new-bert-base-cased",
"tokenizer_type": "Standalone",
"generate_tensorflow_pytorch_and_flax": "PyTorch, TensorFlow and Flax",
"is_encoder_decoder_model": "False"
}
| transformers/templates/adding_a_new_model/tests/standalone.json/0 | {
"file_path": "transformers/templates/adding_a_new_model/tests/standalone.json",
"repo_id": "transformers",
"token_count": 155
} | 386 |
{
"model_type": "roberta"
} | transformers/tests/fixtures/dummy-config.json/0 | {
"file_path": "transformers/tests/fixtures/dummy-config.json",
"repo_id": "transformers",
"token_count": 15
} | 387 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from typing import List, Union
from parameterized import parameterized
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from torch import nn
from transformers.generation import (
EncoderNoRepeatNGramLogitsProcessor,
EncoderRepetitionPenaltyLogitsProcessor,
EpsilonLogitsWarper,
EtaLogitsWarper,
ExponentialDecayLengthPenalty,
ForcedBOSTokenLogitsProcessor,
ForcedEOSTokenLogitsProcessor,
HammingDiversityLogitsProcessor,
InfNanRemoveLogitsProcessor,
LogitNormalization,
LogitsProcessorList,
MinLengthLogitsProcessor,
MinNewTokensLengthLogitsProcessor,
NoBadWordsLogitsProcessor,
NoRepeatNGramLogitsProcessor,
PrefixConstrainedLogitsProcessor,
RepetitionPenaltyLogitsProcessor,
SequenceBiasLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
TypicalLogitsWarper,
UnbatchedClassifierFreeGuidanceLogitsProcessor,
)
from transformers.generation.logits_process import BarkEosPrioritizerLogitsProcessor
@require_torch
class LogitsProcessorTest(unittest.TestCase):
def _get_uniform_logits(self, batch_size: int, length: int):
scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length
return scores
def test_min_length_dist_processor(self):
vocab_size = 20
batch_size = 4
eos_token_id = 0
min_dist_processor = MinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
# check that min length is applied at length 5
input_ids = ids_tensor((batch_size, 5), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = min_dist_processor(input_ids, scores)
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf")])
# check that min length is not applied anymore at length 15
input_ids = ids_tensor((batch_size, 15), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = min_dist_processor(input_ids, scores)
self.assertFalse(torch.isinf(scores_before_min_length).any())
@parameterized.expand([(0,), ([0, 18],)])
def test_new_min_length_dist_processor(self, eos_token_id: Union[int, List[int]]):
vocab_size = 20
batch_size = 4
# check that first input is skipped (min new length applying)
input_ids = ids_tensor((batch_size, 5), vocab_size=20)
new_min_dist_processor = MinNewTokensLengthLogitsProcessor(
prompt_length_to_skip=input_ids.shape[-1], min_new_tokens=3, eos_token_id=eos_token_id
)
expected_eos_scores_before_min_length = batch_size * [-float("inf")]
if isinstance(eos_token_id, list):
expected_eos_scores_before_min_length *= len(eos_token_id)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertListEqual(
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
)
# check that, for skipping, now prompt length is 5, after that we expect first 5 tokens will be skipped
self.assertTrue(new_min_dist_processor.prompt_length_to_skip == 5)
# check that min length is applied at length 2
input_ids = ids_tensor((batch_size, 2), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertListEqual(
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
)
# check that min new length is applied at length 6 (because it has only 1 new token)
input_ids = ids_tensor((batch_size, 6), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertListEqual(
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
)
# check that min new length is applied at length 7 (because it has only 2 new tokens)
input_ids = ids_tensor((batch_size, 7), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertListEqual(
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
)
# check that min new length is not applied anymore at length 8
input_ids = ids_tensor((batch_size, 8), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertFalse(torch.isinf(scores_before_min_length).any())
# check that min new length is not applied anymore at length 15
input_ids = ids_tensor((batch_size, 15), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertFalse(torch.isinf(scores_before_min_length).any())
def test_temperature_dist_warper(self):
input_ids = None
length = 20
scores = self._get_uniform_logits(batch_size=2, length=length)
# tweak scores to not be uniform anymore
scores[1, 5] = (1 / length) + 0.1 # peak, 1st batch
scores[1, 10] = (1 / length) - 0.4 # valley, 1st batch
# compute softmax
probs = nn.functional.softmax(scores, dim=-1)
temp_dist_warper_sharper = TemperatureLogitsWarper(temperature=0.5)
temp_dist_warper_smoother = TemperatureLogitsWarper(temperature=1.3)
warped_prob_sharp = nn.functional.softmax(temp_dist_warper_sharper(input_ids, scores.clone()), dim=-1)
warped_prob_smooth = nn.functional.softmax(temp_dist_warper_smoother(input_ids, scores.clone()), dim=-1)
# uniform distribution stays uniform
self.assertTrue(torch.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3))
self.assertTrue(torch.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3))
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max())
self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min())
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max())
self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min())
def test_repetition_penalty_dist_process(self):
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
vocab_size = 10
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
# give values special values
scores[0, 0] = -(1 / vocab_size)
scores[1, 5] = 4 / vocab_size
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=2.0)
scores = rep_penalty_proc(input_ids, scores.clone())
# check that values were correctly changed
self.assertAlmostEqual(scores[0, 0].item(), -(1 / vocab_size) * 2)
self.assertAlmostEqual(scores[0, 1].item(), (1 / vocab_size) / 2)
self.assertAlmostEqual(scores[1, 0].item(), (1 / vocab_size) / 2)
self.assertAlmostEqual(scores[1, 5].item(), (4 / vocab_size) / 2)
def test_encoder_repetition_penalty_dist_process(self):
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
vocab_size = 10
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
# give values special values
scores[0, 0] = -(1 / vocab_size)
scores[1, 5] = 4 / vocab_size
rep_penalty_proc = EncoderRepetitionPenaltyLogitsProcessor(penalty=2.0, encoder_input_ids=input_ids)
scores = rep_penalty_proc(input_ids, scores.clone())
# check that values were correctly changed
self.assertAlmostEqual(scores[0, 0].item(), -(1 / vocab_size) / 2)
self.assertAlmostEqual(scores[0, 1].item(), (1 / vocab_size) * 2)
self.assertAlmostEqual(scores[1, 0].item(), (1 / vocab_size) * 2)
self.assertAlmostEqual(scores[1, 5].item(), (4 / vocab_size) * 2)
# check that values not in the encoder ids were NOT changed
self.assertAlmostEqual(scores[0, 2].item(), (1 / vocab_size))
self.assertAlmostEqual(scores[1, 2].item(), (1 / vocab_size))
def test_top_k_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create ramp distribution
ramp_logits = (
torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(batch_size, 1)
)
ramp_logits[1:, : vocab_size // 2] = ramp_logits[1:, : vocab_size // 2] + vocab_size
top_k_warp = TopKLogitsWarper(3)
scores = top_k_warp(input_ids, ramp_logits)
# check that correct tokens are filtered
self.assertListEqual(torch.isinf(scores[0]).tolist(), 7 * [True] + 3 * [False])
self.assertListEqual(torch.isinf(scores[1]).tolist(), 2 * [True] + 3 * [False] + 5 * [True])
# check special cases
length = 5
logits = self._get_uniform_logits(batch_size=batch_size, length=length)
top_k_warp_safety_check = TopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3)
scores = top_k_warp_safety_check(input_ids, logits)
# uniform dist is not changed
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [0, 0])
ramp_logits = torch.arange(length, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(batch_size, 1)
scores = top_k_warp_safety_check(input_ids, ramp_logits)
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
def test_top_p_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
dist = torch.log(
torch.tensor([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]], device=torch_device, dtype=torch.float)
)
top_p_warp = TopPLogitsWarper(0.8)
filtered_dist = torch.exp(top_p_warp(input_ids, dist))
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
EXPECTED_FILTERED_DIST = torch.tensor(
[[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]], device=torch_device, dtype=torch.float
)
self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))
# check edge cases with negative and extreme logits
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
batch_size, 1
) - (vocab_size // 2)
# make ramp_logits more extreme
ramp_logits[1] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
top_p_warp = TopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0)
filtered_dist = top_p_warp(input_ids, ramp_logits)
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [3, 2])
def test_typical_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
dist = torch.log(
torch.tensor([[0.97, 0.01, 0.01, 0.01], [0.4, 0.2, 0.2, 0.2]], device=torch_device, dtype=torch.float)
)
typical_warp = TypicalLogitsWarper(0.5)
filtered_dist = torch.exp(typical_warp(input_ids, dist))
# dist should be filtered to keep min num values so that sum is >= 0.7
# exp (-inf) => 0
EXPECTED_FILTERED_DIST = torch.tensor(
[[0.97, 0.0, 0.0, 0.0], [0.0, 0.2, 0.2, 0.2]], device=torch_device, dtype=torch.float
)
self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))
# check special cases
length = 5
logits = self._get_uniform_logits(batch_size=batch_size, length=length)
typical_warp_safety_check = TypicalLogitsWarper(mass=0.5, filter_value=0.0, min_tokens_to_keep=3)
scores = typical_warp_safety_check(input_ids, logits)
# uniform dist is not changed
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [0, 0])
# check edge cases with negative and extreme logits
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
batch_size, 1
) - (vocab_size // 2)
# make ramp_logits more extreme
ramp_logits[1] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
typical_warp = TypicalLogitsWarper(0.7, min_tokens_to_keep=2, filter_value=0.0)
filtered_dist = typical_warp(input_ids, ramp_logits)
# first batch should keep two tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
def test_epsilon_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
dist = torch.log(
torch.tensor(
[[0.87, 0.099, 0.001, 0.03], [0.4, 0.299, 0.101, 0.2]], device=torch_device, dtype=torch.float
)
)
epsilon_warp = EpsilonLogitsWarper(0.1)
filtered_dist = torch.exp(epsilon_warp(input_ids, dist))
# dist should be filtered to only keep values with proba >= 0.1
# exp (-inf) => 0
EXPECTED_FILTERED_DIST = torch.tensor(
[[0.87, 0, 0, 0], [0.4, 0.299, 0.101, 0.2]], device=torch_device, dtype=torch.float
)
self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))
# check edge cases with negative and extreme logits
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
batch_size, 1
) - (vocab_size // 2)
# make ramp_logits more extreme
ramp_logits[1] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
epsilon_warp = EpsilonLogitsWarper(5e-2, min_tokens_to_keep=2, filter_value=0.0)
filtered_dist = epsilon_warp(input_ids, ramp_logits)
# first batch should keep 3 tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [3, 2])
def test_eta_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
dist = torch.log(
torch.tensor([[0.0, 0.1, 0.8, 0.1], [0.01, 0.04, 0.9, 0.05]], device=torch_device, dtype=torch.float)
)
eta_warp = EtaLogitsWarper(0.0625)
filtered_dist = torch.exp(eta_warp(input_ids, dist))
# dist should be filtered to only keep values with proba >= min(0.0625, sqrt(0.0625) * e^-H(p))
# min(0.0625, 0.1320) is the cutoff for the first row and min(0.0625, 0.1644) is for the second
# where H is the entropy function and p is the probability vector.
# exp (-inf) => 0
EXPECTED_FILTERED_DIST = torch.tensor(
[[0.0, 0.1, 0.8, 0.1], [0.0, 0.0, 0.9, 0.0]], device=torch_device, dtype=torch.float
)
self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))
# check edge cases with negative and extreme logits
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
batch_size, 1
) - (vocab_size // 2)
# make ramp_logits more extreme
ramp_logits[1] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
eta_warp = EtaLogitsWarper(0.1, min_tokens_to_keep=2, filter_value=0.0)
filtered_dist = eta_warp(input_ids, ramp_logits)
# first batch should keep 2 tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
def test_no_repeat_ngram_dist_processor(self):
vocab_size = 3
batch_size = 2
input_ids = torch.tensor([[1, 1, 2, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
scores = self._get_uniform_logits(batch_size, vocab_size)
no_repeat_proc_2_gram = NoRepeatNGramLogitsProcessor(2)
no_repeat_proc_3_gram = NoRepeatNGramLogitsProcessor(3)
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())
# 2-gram would forbid 2nd and 3rd token (1,2) at 1st batch and 1st token (0) at 2nd batch
self.assertListEqual(torch.isinf(filtered_scores_2_gram).tolist(), [[False, True, True], [True, False, False]])
# 3-gram would forbid no token at 1st batch and 1st token (0) at 2nd batch
self.assertListEqual(
torch.isinf(filtered_scores_3_gram).tolist(), [[False, False, False], [True, False, False]]
)
def test_encoder_no_repeat_ngram_dist_processor(self):
vocab_size = 3
num_beams = 2
batch_size = 1
encoder_input_ids = torch.tensor([1, 2, 1, 1], device=torch_device, dtype=torch.long)
input_ids = torch.tensor([[1, 2, 1], [8, 0, 2]], device=torch_device, dtype=torch.long)
scores = self._get_uniform_logits(batch_size * num_beams, vocab_size)
no_repeat_proc_2_gram = EncoderNoRepeatNGramLogitsProcessor(2, encoder_input_ids=encoder_input_ids)
no_repeat_proc_3_gram = EncoderNoRepeatNGramLogitsProcessor(3, encoder_input_ids=encoder_input_ids)
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())
# 2-gram would forbid 1st and 2nd token at 1st beam and 1st token (0) at 2nd beam
self.assertListEqual(torch.isinf(filtered_scores_2_gram).tolist(), [[False, True, True], [False, True, False]])
# 3-gram would forbid 1st token at 1st beam and no token at 2nd beam
self.assertListEqual(
torch.isinf(filtered_scores_3_gram).tolist(), [[False, True, False], [False, False, False]]
)
# Batched input
vocab_size = 3
num_beams = 2
batch_size = 2
encoder_input_ids = torch.tensor([[1, 2, 1, 1], [0, 0, 2, 1]], device=torch_device, dtype=torch.long)
input_ids = torch.tensor([[1, 2, 1], [1, 0, 2], [0, 0, 0], [0, 2, 2]], device=torch_device, dtype=torch.long)
scores = self._get_uniform_logits(batch_size * num_beams, vocab_size)
no_repeat_proc_2_gram = EncoderNoRepeatNGramLogitsProcessor(2, encoder_input_ids=encoder_input_ids)
no_repeat_proc_3_gram = EncoderNoRepeatNGramLogitsProcessor(3, encoder_input_ids=encoder_input_ids)
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())
# 2gram
# Batch 1
# - Beam 1: tokens (1, 2) forbidden
# - Beam 2: tokens (1) forbidden
# Batch 2
# - Beam 1: tokens (0, 2) forbidden
# - Beam 2: tokens (1) forbidden
self.assertListEqual(
torch.isinf(filtered_scores_2_gram).tolist(),
[[False, True, True], [False, True, False], [True, False, True], [False, True, False]],
)
# Batch 1
# - Beam 1: tokens (1) forbidden
# - Beam 2: tokens () forbidden
# Batch 2
# - Beam 1: tokens (2) forbidden
# - Beam 2: tokens () forbidden
self.assertListEqual(
torch.isinf(filtered_scores_3_gram).tolist(),
[[False, True, False], [False, False, False], [False, False, True], [False, False, False]],
)
def test_no_bad_words_dist_processor(self):
vocab_size = 5
batch_size = 2
eos_token_id = 4
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
bad_word_tokens = [[1], [4], [1, 0], [0, 1, 2], [1, 3, 1, 3]]
scores = self._get_uniform_logits(batch_size, vocab_size)
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=bad_word_tokens, eos_token_id=eos_token_id)
filtered_scores = no_bad_words_dist_proc(input_ids, scores.clone())
# batch 1: 1st, 2nd, and 4th (0, 1, 3) token are forbidden
# batch 2: 1st, 2nd, and 3rd (0, 1, 2) token are forbidden
# Note that 5th element cannot be forbidden as it is EOS token
self.assertListEqual(
torch.isinf(filtered_scores).tolist(), [[True, True, False, True, False], [True, True, True, False, False]]
)
# check edge case
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=[[4]], eos_token_id=eos_token_id)
filtered_scores = no_bad_words_dist_proc(input_ids, scores.clone())
self.assertTrue(torch.allclose(scores, filtered_scores, atol=1e-3))
def test_bias_dist_processor(self):
vocab_size = 5
batch_size = 2
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
positive_bias = {(1,): 100.0, (4,): 100.0}
negative_bias = {(1, 0): -100.0, (0, 1, 2): -100.0, (1, 3, 1, 3): -100.0}
# biases the same termination twice, to ensure we can handle overlapping terminations (it won't have an effect
# on the test cases, though)
negative_bias.update({(1, 3, 1, 3, 1, 3): -100.0})
sequence_bias = {**positive_bias, **negative_bias}
# scores = 0 to facilitate checks
scores = torch.zeros((batch_size, vocab_size), dtype=torch.float, device=torch_device)
bias_dist_proc = SequenceBiasLogitsProcessor(sequence_bias=sequence_bias)
filtered_scores = bias_dist_proc(input_ids, scores.clone())
# batch 1: positive bias: tokens (1, 4); negative bias: tokens (0, 3); neutral: tokens (2)
# batch 2: positive bias: tokens (1, 4); negative bias: tokens (0, 2); neutral: tokens (3)
self.assertListEqual(
filtered_scores.tolist(), [[-100.0, 100.0, 0.0, -100.0, 100.0], [-100.0, 100.0, -100.0, 0.0, 100.0]]
)
def test_processor_list(self):
batch_size = 4
sequence_length = 10
vocab_size = 15
eos_token_id = 0
# dummy input_ids and scores
input_ids = ids_tensor((batch_size, sequence_length), vocab_size)
input_ids_comp = input_ids.clone()
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_comp = scores.clone()
# instantiate all dist processors
min_dist_proc = MinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
temp_dist_warp = TemperatureLogitsWarper(temperature=0.5)
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=2.0)
top_k_warp = TopKLogitsWarper(3)
top_p_warp = TopPLogitsWarper(0.8)
no_repeat_proc = NoRepeatNGramLogitsProcessor(2)
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=[[1]], eos_token_id=eos_token_id)
# no processor list
scores = min_dist_proc(input_ids, scores)
scores = temp_dist_warp(input_ids, scores)
scores = rep_penalty_proc(input_ids, scores)
scores = top_k_warp(input_ids, scores)
scores = top_p_warp(input_ids, scores)
scores = no_repeat_proc(input_ids, scores)
scores = no_bad_words_dist_proc(input_ids, scores)
# with processor list
processor = LogitsProcessorList(
[
min_dist_proc,
temp_dist_warp,
rep_penalty_proc,
top_k_warp,
top_p_warp,
no_repeat_proc,
no_bad_words_dist_proc,
]
)
scores_comp = processor(input_ids, scores_comp)
# scores should be equal
self.assertTrue(torch.allclose(scores, scores_comp, atol=1e-3))
# input_ids should never be changed
self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist())
def test_prefix_constrained_logits_processor(self):
vocab_size = 5
batch_size = 2
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
scores = self._get_uniform_logits(batch_size, vocab_size)
def prefix_allowed_tokens_fn(batch_id, inputs_ids):
return [[0, 1], [2, 3]][batch_id]
prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor(prefix_allowed_tokens_fn, 1)
filtered_scores = prefix_constrained_logits_proc(input_ids, scores.clone())
# batch 1: 1st, 2nd (0, 1) token are allowed
# batch 2: 3rd, 4th (2, 3) token are allowed
self.assertListEqual(
torch.isinf(filtered_scores).tolist(), [[False, False, True, True, True], [True, True, False, False, True]]
)
def empty_prefix_allowed_tokens_fn(batch_id, inputs_ids):
return []
prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor(empty_prefix_allowed_tokens_fn, 1)
self.assertRaises(ValueError, prefix_constrained_logits_proc, input_ids, scores.clone())
def test_hamming_diversity(self):
vocab_size = 4
num_beams = 2
num_beam_groups = 2
scores = self._get_uniform_logits(num_beams, vocab_size)
# batch_idx = 0 -> index batch_idx * num_beam_groups -> idx = 0 * 2 = 0 -> penalises tokens 1
# batch_idx = 1 -> index batch_idx * num_beam_groups -> idx = 1 * 2 = 2 -> penalises tokens 1
current_tokens = torch.tensor([0, 3, 1, 2], device=torch_device, dtype=torch.long)
diversity_logits_processor = HammingDiversityLogitsProcessor(
diversity_penalty=1.0, num_beams=num_beams, num_beam_groups=num_beam_groups
)
processed_scores = diversity_logits_processor(None, scores, current_tokens, 1)
self.assertTrue(
torch.allclose(
processed_scores[0], torch.tensor([-0.7500, 0.2500, 0.2500, 0.2500], device=torch_device), atol=1e-3
)
)
self.assertTrue(
torch.allclose(
processed_scores[1], torch.tensor([0.2500, -0.7500, 0.2500, 0.2500], device=torch_device), atol=1e-3
)
)
def test_forced_bos_token_logits_processor(self):
vocab_size = 20
batch_size = 4
bos_token_id = 0
logits_processor = ForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)
# check that all scores are -inf except the bos_token_id score
input_ids = ids_tensor((batch_size, 1), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores = logits_processor(input_ids, scores)
self.assertTrue(torch.isneginf(scores[:, bos_token_id + 1 :]).all())
self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0]) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
input_ids = ids_tensor((batch_size, 4), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores = logits_processor(input_ids, scores)
self.assertFalse(torch.isinf(scores).any())
def test_forced_eos_token_logits_processor(self):
vocab_size = 20
batch_size = 4
eos_token_id = 0
max_length = 5
logits_processor = ForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id)
# check that all scores are -inf except the eos_token_id when max_length-1 is reached
input_ids = ids_tensor((batch_size, 4), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores = logits_processor(input_ids, scores)
self.assertTrue(torch.isneginf(scores[:, eos_token_id + 1 :]).all())
self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0]) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length-1 is not reached
input_ids = ids_tensor((batch_size, 3), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores = logits_processor(input_ids, scores)
self.assertFalse(torch.isinf(scores).any())
def test_remove_nan_inf_logits_processor(self):
scores = torch.tensor(
[[0.0, 0.7, 0.8, float("nan")], [0.1, float("inf"), 0.3, float("-inf")]], device=torch_device
)
input_ids = ids_tensor((2, 4), vocab_size=20)
logits_processor = InfNanRemoveLogitsProcessor()
scores = logits_processor(input_ids, scores)
self.assertTrue(
torch.allclose(
scores,
torch.tensor(
[[0.0, 0.7, 0.8, 0.0], [0.1, torch.finfo(scores.dtype).max, 0.3, torch.finfo(scores.dtype).min]],
device=torch_device,
),
atol=1e-6,
)
)
def test_exponential_decay_length_penalty(self):
vocab_size = 20
batch_size = 4
eos_token_id = 0
penalty_start = 5
penalty_factor = 1.1
input_ids = ids_tensor((batch_size, 2), vocab_size=vocab_size)
input_ids_seq_length = input_ids.shape[-1]
length_decay_processor = ExponentialDecayLengthPenalty(
exponential_decay_length_penalty=(penalty_start, penalty_factor),
eos_token_id=eos_token_id,
input_ids_seq_length=input_ids_seq_length,
)
# check that penalty is not applied before start
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_start = torch.clone(scores) # clone scores as precessor updates them inplace
scores_before_start = length_decay_processor(input_ids, scores_before_start)
self.assertListEqual(scores_before_start[:, eos_token_id].tolist(), scores[:, eos_token_id].tolist())
# check that penalty is applied after start
input_ids = ids_tensor((batch_size, 20), vocab_size=vocab_size)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_after_start = torch.clone(scores) # clone scores as precessor updates them inplace
scores_after_start = length_decay_processor(input_ids, scores_after_start)
self.assertTrue(torch.gt(scores_after_start[:, eos_token_id], scores[:, eos_token_id]).all())
# check the penalty increases negative scores
input_ids = ids_tensor((batch_size, 20), vocab_size=vocab_size)
scores = torch.neg(self._get_uniform_logits(batch_size, vocab_size))
scores_after_start = torch.clone(scores) # clone scores as precessor updates them inplace
scores_after_start = length_decay_processor(input_ids, scores_after_start)
self.assertTrue(torch.gt(scores_after_start[:, eos_token_id], scores[:, eos_token_id]).all())
def test_normalization(self):
input_ids = None
scores = torch.tensor(
[[-23.18, -29.96, -43.54, 47.77], [-33.58, -26.87, -32.96, 22.51]], device=torch_device, dtype=torch.float
)
logit_normalization = LogitNormalization()
normalized_scores = logit_normalization(input_ids, scores).exp()
ones = torch.ones(scores.shape[0], device=torch_device, dtype=torch.float)
self.assertTrue(normalized_scores.sum(dim=-1).allclose(ones))
self.assertTrue(normalized_scores.allclose(scores.softmax(dim=-1)))
def test_classifier_free_guidance(self):
class Namespace(dict):
pass
logits_uncond = torch.tensor([[[1.0, 0, 1.5]]])
logits_cond = torch.tensor([[[1.0, 1.0, 1.0]]])
def dummy_model(input_ids, attention_mask, use_cache=True, past_key_values=None):
out = Namespace()
out.logits = logits_uncond
out.past_key_values = None
return out
def lsm(x):
return torch.nn.functional.log_softmax(x, dim=-1)
# explicit unconditional prompt + attention mask
input_ids = torch.LongTensor([[0]])
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(
1.5, dummy_model, input_ids, torch.ones_like(input_ids, dtype=torch.long)
)
out = cfg(input_ids, logits_cond)[0, -1]
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
self.assertAlmostEqual(out[0].item(), res[0].item())
self.assertAlmostEqual(out[1].item(), res[1].item())
self.assertAlmostEqual(out[2].item(), res[2].item())
# explicit unconditional prompt
input_ids = torch.LongTensor([[0]])
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(1.5, dummy_model, input_ids)
out = cfg(input_ids, logits_cond)[0, -1]
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
self.assertAlmostEqual(out[0].item(), res[0].item())
self.assertAlmostEqual(out[1].item(), res[1].item())
self.assertAlmostEqual(out[2].item(), res[2].item())
# all implicit
input_ids = torch.LongTensor([[0]])
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(1.5, dummy_model)
out = cfg(input_ids, logits_cond)[0, -1]
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
self.assertAlmostEqual(out[0].item(), res[0].item())
self.assertAlmostEqual(out[1].item(), res[1].item())
self.assertAlmostEqual(out[2].item(), res[2].item())
def test_early_stop_processor(self):
input_ids = None
eos_token_id = 2
min_eos_p = 0.1 ## some small float
scores = self._get_uniform_logits(2, 4)
scores[0][eos_token_id] = -6 ## less than log(min_eos_p)
esp = BarkEosPrioritizerLogitsProcessor(eos_token_id=eos_token_id, min_eos_p=min_eos_p)
actual_scores = esp(input_ids, scores)
expected_scores_list = [
scores[0].tolist(),
[float("-inf"), float("-inf"), scores[0][0], float("-inf")],
]
self.assertListEqual(actual_scores.tolist(), expected_scores_list)
def test_early_stop_processor_multi_eos(self):
input_ids = None
eos_token_id = [2, 3]
min_eos_p = 0.1 ## some small float
scores = self._get_uniform_logits(2, 4)
scores[0][eos_token_id] = -6 ## less than log(min_eos_p)
esp = BarkEosPrioritizerLogitsProcessor(eos_token_id=eos_token_id, min_eos_p=min_eos_p)
actual_scores = esp(input_ids, scores)
expected_scores_list = [
scores[0].tolist(),
[float("-inf"), float("-inf"), scores[0][0], scores[0][0]],
]
self.assertListEqual(actual_scores.tolist(), expected_scores_list)
| transformers/tests/generation/test_logits_process.py/0 | {
"file_path": "transformers/tests/generation/test_logits_process.py",
"repo_id": "transformers",
"token_count": 16668
} | 388 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch AltCLIP model. """
import inspect
import os
import tempfile
import unittest
import numpy as np
import requests
from transformers import AltCLIPConfig, AltCLIPProcessor, AltCLIPTextConfig, AltCLIPVisionConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
import torch.nn as nn
from transformers import AltCLIPModel, AltCLIPTextModel, AltCLIPVisionModel
from transformers.models.altclip.modeling_altclip import ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class AltCLIPVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return AltCLIPVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = AltCLIPVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class AltCLIPVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (AltCLIPVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = AltCLIPVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=AltCLIPVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="CLIP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="AltCLIPVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="AltCLIPVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(reason="AltCLIPVisionModel use the same cv backbone with CLIP model.")
def test_model_from_pretrained(self):
pass
class AltCLIPTextModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
project_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.project_dim = project_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return AltCLIPTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
project_dim=self.project_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
pad_token_id=1,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = AltCLIPTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class AltCLIPTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (AltCLIPTextModel,) if is_torch_available() else ()
fx_compatible = True
test_pruning = False
test_head_masking = False
# TODO (@SunMarc): Fix me
@unittest.skip("It's broken.")
def test_resize_tokens_embeddings(self):
super().test_resize_tokens_embeddings()
def setUp(self):
self.model_tester = AltCLIPTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=AltCLIPTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_model_outputs_equivalence(self):
pass
@unittest.skip(reason="Result of the model is a dict")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="AltCLIP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="AltCLIPTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="AltCLIPTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = AltCLIPTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class AltCLIPModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = AltCLIPTextModelTester(parent, **text_kwargs)
self.vision_model_tester = AltCLIPVisionModelTester(parent, **vision_kwargs)
self.is_training = is_training
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return AltCLIPConfig.from_text_vision_configs(
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = AltCLIPModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
model(input_ids, pixel_values, attention_mask)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"return_loss": True,
}
return config, inputs_dict
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@require_torch
class AltCLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (AltCLIPModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": AltCLIPModel} if is_torch_available() else {}
fx_compatible = True
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
# TODO: Fix the failed tests when this model gets more usage
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "FeatureExtractionPipelineTests":
return True
return False
def setUp(self):
self.model_tester = AltCLIPModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="CLIPModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for AltCLIP
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # CLIP needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
@slow
def test_model_from_pretrained(self):
for model_name in ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = AltCLIPModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_vision
@require_torch
class AltCLIPModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "BAAI/AltCLIP"
model = AltCLIPModel.from_pretrained(model_name).to(torch_device)
processor = AltCLIPProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(text=["一张猫的照片", "一张狗的照片"], images=image, padding=True, return_tensors="pt").to(torch_device) # fmt: skip
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.logits_per_image.shape,
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.logits_per_text.shape,
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
)
probs = outputs.logits_per_image.softmax(dim=1)
expected_probs = torch.tensor([[9.9942e-01, 5.7805e-04]], device=torch_device)
self.assertTrue(torch.allclose(probs, expected_probs, atol=5e-3))
| transformers/tests/models/altclip/test_modeling_altclip.py/0 | {
"file_path": "transformers/tests/models/altclip/test_modeling_altclip.py",
"repo_id": "transformers",
"token_count": 9801
} | 389 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeq2SeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class TFBlenderbotSmallModelTester:
config_cls = BlenderbotSmallConfig
config_updates = {}
hidden_act = "gelu"
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=50,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
def prepare_config_and_inputs_for_common(self):
input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
input_ids = tf.concat([input_ids, eos_tensor], axis=1)
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.config_cls(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_ids=[2],
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.pad_token_id,
**self.config_updates,
)
inputs_dict = prepare_blenderbot_small_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = TFBlenderbotSmallModel(config=config).get_decoder()
input_ids = inputs_dict["input_ids"]
input_ids = input_ids[:1, :]
attention_mask = inputs_dict["attention_mask"][:1, :]
head_mask = inputs_dict["head_mask"]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def prepare_blenderbot_small_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
if decoder_attention_mask is None:
decoder_attention_mask = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
],
axis=-1,
)
if head_mask is None:
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class TFBlenderbotSmallModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
all_generative_model_classes = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
pipeline_model_mapping = (
{
"conversational": TFBlenderbotSmallForConditionalGeneration,
"feature-extraction": TFBlenderbotSmallModel,
"summarization": TFBlenderbotSmallForConditionalGeneration,
"text2text-generation": TFBlenderbotSmallForConditionalGeneration,
"translation": TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
is_encoder_decoder = True
test_pruning = False
test_onnx = False
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return pipeline_test_casse_name in ("TextGenerationPipelineTests", "ConversationalPipelineTests")
def setUp(self):
self.model_tester = TFBlenderbotSmallModelTester(self)
self.config_tester = ConfigTester(self, config_class=BlenderbotSmallConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
@require_tokenizers
@require_tf
class TFBlenderbot90MIntegrationTests(unittest.TestCase):
src_text = [
"Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like "
" i'm going to throw up.\nand why is that?"
]
model_name = "facebook/blenderbot_small-90M"
@cached_property
def tokenizer(self):
# use "old" tokenizer here because of bug when downloading new tokenizer
return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M")
@cached_property
def model(self):
model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
return model
@slow
def test_90_generation_from_long_input(self):
model_inputs = self.tokenizer(self.src_text, return_tensors="tf")
generated_ids = self.model.generate(
model_inputs.input_ids,
attention_mask=model_inputs.attention_mask,
num_beams=2,
use_cache=True,
)
generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| transformers/tests/models/blenderbot_small/test_modeling_tf_blenderbot_small.py/0 | {
"file_path": "transformers/tests/models/blenderbot_small/test_modeling_tf_blenderbot_small.py",
"repo_id": "transformers",
"token_count": 4273
} | 390 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Chinese-CLIP model. """
import inspect
import os
import tempfile
import unittest
import numpy as np
import requests
from transformers import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
ChineseCLIPModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
from transformers.models.chinese_clip.modeling_chinese_clip import CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPProcessor
class ChineseCLIPTextModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
"""
Returns a tiny configuration by default.
"""
return ChineseCLIPTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ChineseCLIPTextModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = ChineseCLIPTextModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
class ChineseCLIPVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return ChineseCLIPVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = ChineseCLIPVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class ChineseCLIPTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (ChineseCLIPTextModel,) if is_torch_available() else ()
fx_compatible = False
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
inputs_dict["next_sentence_label"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = ChineseCLIPTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=ChineseCLIPTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
@slow
def test_model_from_pretrained(self):
for model_name in CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ChineseCLIPTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="ChineseCLIPTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="ChineseCLIPTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@require_torch
class ChineseCLIPVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as CHINESE_CLIP does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (ChineseCLIPVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = ChineseCLIPVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=ChineseCLIPVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="CHINESE_CLIP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="ChineseCLIPVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="ChineseCLIPVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ChineseCLIPVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class ChineseCLIPModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = ChineseCLIPTextModelTester(parent, **text_kwargs)
self.vision_model_tester = ChineseCLIPVisionModelTester(parent, **vision_kwargs)
self.is_training = is_training
def prepare_config_and_inputs(self):
(
config,
input_ids,
token_type_ids,
attention_mask,
_,
__,
___,
) = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, token_type_ids, attention_mask, pixel_values
def get_config(self):
return ChineseCLIPConfig.from_text_vision_configs(
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, token_type_ids, attention_mask, pixel_values):
model = ChineseCLIPModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, pixel_values, attention_mask, token_type_ids)
self.parent.assertEqual(
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, token_type_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"return_loss": True,
}
return config, inputs_dict
@require_torch
class ChineseCLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (ChineseCLIPModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": ChineseCLIPModel} if is_torch_available() else {}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
text_kwargs = {"use_labels": False, "batch_size": 12}
vision_kwargs = {"batch_size": 12}
self.model_tester = ChineseCLIPModelTester(self, text_kwargs, vision_kwargs)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="ChineseCLIPModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for CHINESE_CLIP
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for sub_config_key in ("vision_config", "text_config"):
sub_config = getattr(configs_no_init, sub_config_key, {})
setattr(configs_no_init, sub_config_key, _config_zero_init(sub_config))
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # CHINESE_CLIP needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
@slow
def test_model_from_pretrained(self):
for model_name in CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ChineseCLIPModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of Pikachu
def prepare_img():
url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@require_vision
@require_torch
class ChineseCLIPModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "OFA-Sys/chinese-clip-vit-base-patch16"
model = ChineseCLIPModel.from_pretrained(model_name).to(torch_device)
processor = ChineseCLIPProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(
text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, padding=True, return_tensors="pt"
).to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.logits_per_image.shape,
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.logits_per_text.shape,
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
)
probs = outputs.logits_per_image.softmax(dim=1)
expected_probs = torch.tensor([[1.2686e-03, 5.4499e-02, 6.7968e-04, 9.4355e-01]], device=torch_device)
self.assertTrue(torch.allclose(probs, expected_probs, atol=5e-3))
| transformers/tests/models/chinese_clip/test_modeling_chinese_clip.py/0 | {
"file_path": "transformers/tests/models/chinese_clip/test_modeling_chinese_clip.py",
"repo_id": "transformers",
"token_count": 12666
} | 391 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DETR model. """
import inspect
import math
import unittest
from transformers import DetrConfig, ResNetConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_timm, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DetrForObjectDetection, DetrForSegmentation, DetrModel
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class DetrModelTester:
def __init__(
self,
parent,
batch_size=8,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=8,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
num_queries=12,
num_channels=3,
min_size=200,
max_size=200,
n_targets=8,
num_labels=91,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.num_queries = num_queries
self.num_channels = num_channels
self.min_size = min_size
self.max_size = max_size
self.n_targets = n_targets
self.num_labels = num_labels
# we also set the expected seq length for both encoder and decoder
self.encoder_seq_length = math.ceil(self.min_size / 32) * math.ceil(self.max_size / 32)
self.decoder_seq_length = self.num_queries
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size])
pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device)
labels = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
labels = []
for i in range(self.batch_size):
target = {}
target["class_labels"] = torch.randint(
high=self.num_labels, size=(self.n_targets,), device=torch_device
)
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
target["masks"] = torch.rand(self.n_targets, self.min_size, self.max_size, device=torch_device)
labels.append(target)
config = self.get_config()
return config, pixel_values, pixel_mask, labels
def get_config(self):
resnet_config = ResNetConfig(
num_channels=3,
embeddings_size=10,
hidden_sizes=[10, 20, 30, 40],
depths=[1, 1, 2, 1],
hidden_act="relu",
num_labels=3,
out_features=["stage2", "stage3", "stage4"],
out_indices=[2, 3, 4],
)
return DetrConfig(
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
num_queries=self.num_queries,
num_labels=self.num_labels,
use_timm_backbone=False,
backbone_config=resnet_config,
backbone=None,
use_pretrained_backbone=False,
)
def prepare_config_and_inputs_for_common(self):
config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs()
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
return config, inputs_dict
def create_and_check_detr_model(self, config, pixel_values, pixel_mask, labels):
model = DetrModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size)
)
def create_and_check_detr_object_detection_head_model(self, config, pixel_values, pixel_mask, labels):
model = DetrForObjectDetection(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
@require_torch
class DetrModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
DetrModel,
DetrForObjectDetection,
DetrForSegmentation,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": DetrModel,
"image-segmentation": DetrForSegmentation,
"object-detection": DetrForObjectDetection,
}
if is_torch_available()
else {}
)
is_encoder_decoder = True
test_torchscript = False
test_pruning = False
test_head_masking = False
test_missing_keys = False
# special case for head models
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ in ["DetrForObjectDetection", "DetrForSegmentation"]:
labels = []
for i in range(self.model_tester.batch_size):
target = {}
target["class_labels"] = torch.ones(
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
)
target["boxes"] = torch.ones(
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
)
target["masks"] = torch.ones(
self.model_tester.n_targets,
self.model_tester.min_size,
self.model_tester.max_size,
device=torch_device,
dtype=torch.float,
)
labels.append(target)
inputs_dict["labels"] = labels
return inputs_dict
def setUp(self):
self.model_tester = DetrModelTester(self)
self.config_tester = ConfigTester(self, config_class=DetrConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
def test_detr_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_detr_model(*config_and_inputs)
def test_detr_object_detection_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_detr_object_detection_head_model(*config_and_inputs)
# TODO: check if this works again for PyTorch 2.x.y
@unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.")
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip(reason="DETR does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="DETR does not have a get_input_embeddings method")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="DETR is not a generative model")
def test_generate_without_input_ids(self):
pass
@unittest.skip(reason="DETR does not use token embeddings")
def test_resize_tokens_embeddings(self):
pass
@slow
def test_model_outputs_equivalence(self):
# TODO Niels: fix me!
pass
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
decoder_seq_length = self.model_tester.decoder_seq_length
encoder_seq_length = self.model_tester.encoder_seq_length
decoder_key_length = self.model_tester.decoder_seq_length
encoder_key_length = self.model_tester.encoder_seq_length
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Object Detection model returns pred_logits and pred_boxes
if model_class.__name__ == "DetrForObjectDetection":
correct_outlen += 2
# Panoptic Segmentation model returns pred_logits, pred_boxes, pred_masks
if model_class.__name__ == "DetrForSegmentation":
correct_outlen += 3
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_retain_grad_hidden_states_attentions(self):
# removed retain_grad and grad on decoder_hidden_states, as queries don't require grad
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_attentions = outputs.encoder_attentions[0]
encoder_hidden_states.retain_grad()
encoder_attentions.retain_grad()
decoder_attentions = outputs.decoder_attentions[0]
decoder_attentions.retain_grad()
cross_attentions = outputs.cross_attentions[0]
cross_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(encoder_attentions.grad)
self.assertIsNotNone(decoder_attentions.grad)
self.assertIsNotNone(cross_attentions.grad)
def test_forward_auxiliary_loss(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.auxiliary_loss = True
# only test for object detection and segmentation model
for model_class in self.all_model_classes[1:]:
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
outputs = model(**inputs)
self.assertIsNotNone(outputs.auxiliary_outputs)
self.assertEqual(len(outputs.auxiliary_outputs), self.model_tester.num_hidden_layers - 1)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
if model.config.is_encoder_decoder:
expected_arg_names = ["pixel_values", "pixel_mask"]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" in arg_names
else []
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
else:
expected_arg_names = ["pixel_values", "pixel_mask"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_different_timm_backbone(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# let's pick a random timm backbone
config.backbone = "tf_mobilenetv3_small_075"
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if model_class.__name__ == "DetrForObjectDetection":
expected_shape = (
self.model_tester.batch_size,
self.model_tester.num_queries,
self.model_tester.num_labels + 1,
)
self.assertEqual(outputs.logits.shape, expected_shape)
self.assertTrue(outputs)
def test_greyscale_images(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# use greyscale pixel values
inputs_dict["pixel_values"] = floats_tensor(
[self.model_tester.batch_size, 1, self.model_tester.min_size, self.model_tester.max_size]
)
# let's set num_channels to 1
config.num_channels = 1
config.backbone_config.num_channels = 1
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertTrue(outputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
configs_no_init.init_xavier_std = 1e9
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
if "bbox_attention" in name and "bias" not in name:
self.assertLess(
100000,
abs(param.data.max().item()),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
TOLERANCE = 1e-4
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_timm
@require_vision
@slow
class DetrModelIntegrationTestsTimmBackbone(unittest.TestCase):
@cached_property
def default_image_processor(self):
return DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") if is_vision_available() else None
def test_inference_no_head(self):
model = DetrModel.from_pretrained("facebook/detr-resnet-50").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape = torch.Size((1, 100, 256))
assert outputs.last_hidden_state.shape == expected_shape
expected_slice = torch.tensor(
[[0.0616, -0.5146, -0.4032], [-0.7629, -0.4934, -1.7153], [-0.4768, -0.6403, -0.7826]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
def test_inference_object_detection_head(self):
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
pixel_values = encoding["pixel_values"].to(torch_device)
pixel_mask = encoding["pixel_mask"].to(torch_device)
with torch.no_grad():
outputs = model(pixel_values, pixel_mask)
# verify outputs
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels + 1))
self.assertEqual(outputs.logits.shape, expected_shape_logits)
expected_slice_logits = torch.tensor(
[[-19.1194, -0.0893, -11.0154], [-17.3640, -1.8035, -14.0219], [-20.0461, -0.5837, -11.1060]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4))
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
expected_slice_boxes = torch.tensor(
[[0.4433, 0.5302, 0.8853], [0.5494, 0.2517, 0.0529], [0.4998, 0.5360, 0.9956]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
# verify postprocessing
results = image_processor.post_process_object_detection(
outputs, threshold=0.3, target_sizes=[image.size[::-1]]
)[0]
expected_scores = torch.tensor([0.9982, 0.9960, 0.9955, 0.9988, 0.9987]).to(torch_device)
expected_labels = [75, 75, 63, 17, 17]
expected_slice_boxes = torch.tensor([40.1633, 70.8115, 175.5471, 117.9841]).to(torch_device)
self.assertEqual(len(results["scores"]), 5)
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4))
self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))
def test_inference_panoptic_segmentation_head(self):
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
pixel_values = encoding["pixel_values"].to(torch_device)
pixel_mask = encoding["pixel_mask"].to(torch_device)
with torch.no_grad():
outputs = model(pixel_values, pixel_mask)
# verify outputs
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels + 1))
self.assertEqual(outputs.logits.shape, expected_shape_logits)
expected_slice_logits = torch.tensor(
[[-18.1565, -1.7568, -13.5029], [-16.8888, -1.4138, -14.1028], [-17.5709, -2.5080, -11.8654]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4))
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
expected_slice_boxes = torch.tensor(
[[0.5344, 0.1789, 0.9285], [0.4420, 0.0572, 0.0875], [0.6630, 0.6887, 0.1017]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
expected_shape_masks = torch.Size((1, model.config.num_queries, 200, 267))
self.assertEqual(outputs.pred_masks.shape, expected_shape_masks)
expected_slice_masks = torch.tensor(
[[-7.7558, -10.8788, -11.9797], [-11.8881, -16.4329, -17.7451], [-14.7316, -19.7383, -20.3004]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_masks[0, 0, :3, :3], expected_slice_masks, atol=1e-3))
# verify postprocessing
results = image_processor.post_process_panoptic_segmentation(
outputs, threshold=0.3, target_sizes=[image.size[::-1]]
)[0]
expected_shape = torch.Size([480, 640])
expected_slice_segmentation = torch.tensor([[4, 4, 4], [4, 4, 4], [4, 4, 4]], dtype=torch.int32).to(
torch_device
)
expected_number_of_segments = 5
expected_first_segment = {"id": 1, "label_id": 17, "was_fused": False, "score": 0.994097}
number_of_unique_segments = len(torch.unique(results["segmentation"]))
self.assertTrue(
number_of_unique_segments, expected_number_of_segments + 1
) # we add 1 for the background class
self.assertTrue(results["segmentation"].shape, expected_shape)
self.assertTrue(torch.allclose(results["segmentation"][:3, :3], expected_slice_segmentation, atol=1e-4))
self.assertTrue(len(results["segments_info"]), expected_number_of_segments)
self.assertDictEqual(results["segments_info"][0], expected_first_segment)
@require_vision
@require_torch
@slow
class DetrModelIntegrationTests(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
if is_vision_available()
else None
)
def test_inference_no_head(self):
model = DetrModel.from_pretrained("facebook/detr-resnet-50", revision="no_timm").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape = torch.Size((1, 100, 256))
assert outputs.last_hidden_state.shape == expected_shape
expected_slice = torch.tensor(
[[0.0616, -0.5146, -0.4032], [-0.7629, -0.4934, -1.7153], [-0.4768, -0.6403, -0.7826]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
| transformers/tests/models/detr/test_modeling_detr.py/0 | {
"file_path": "transformers/tests/models/detr/test_modeling_detr.py",
"repo_id": "transformers",
"token_count": 12983
} | 392 |
# coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch FLAVA model. """
import inspect
import os
import random
import tempfile
import unittest
import numpy as np
import requests
from transformers import (
FlavaConfig,
FlavaImageCodebookConfig,
FlavaImageConfig,
FlavaMultimodalConfig,
FlavaTextConfig,
)
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FlavaForPreTraining,
FlavaImageCodebook,
FlavaImageModel,
FlavaModel,
FlavaMultimodalModel,
FlavaTextModel,
)
from transformers.models.flava.modeling_flava import (
FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST,
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
)
else:
FlavaModel = None
FlavaForPreTraining = None
torch = {}
if is_vision_available():
from PIL import Image
from transformers import FlavaProcessor
class FlavaImageModelTester:
def __init__(
self,
parent,
batch_size=12,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
image_size=30,
patch_size=2,
num_channels=3,
qkv_bias=True,
mask_token=True,
vocab_size=99,
):
self.parent = parent
self.batch_size = batch_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.mask_token = mask_token
self.vocab_size = vocab_size
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
num_patches = self.image_size // self.patch_size
bool_masked_pos = (
torch.rand((self.batch_size, num_patches, num_patches), device=pixel_values.device) < 0.9
).long()
config = self.get_config()
return config, pixel_values, bool_masked_pos
def get_config(self):
return FlavaImageConfig(
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
qkv_bias=self.qkv_bias,
mask_token=self.mask_token,
vocab_size=self.vocab_size,
)
def create_and_check_model(self, config, pixel_values, bool_masked_pos):
model = FlavaImageModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values, bool_masked_pos)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, bool_masked_pos = config_and_inputs
inputs_dict = {"pixel_values": pixel_values, "bool_masked_pos": bool_masked_pos}
return config, inputs_dict
@require_torch
class FlavaImageModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as FLAVA does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (FlavaImageModel,) if is_torch_available() else ()
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = FlavaImageModelTester(self)
self.config_tester = ConfigTester(self, config_class=FlavaImageConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_inputs_embeds(self):
# FLAVA does not use inputs_embeds
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
# in FLAVA, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
image_size = (self.model_tester.image_size, self.model_tester.image_size)
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_len = num_patches + 1
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# FLAVA has a different seq_length
image_size = (self.model_tester.image_size, self.model_tester.image_size)
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_length = num_patches + 1
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# skip this test as FlavaImageModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_from_base(self):
pass
# skip this test as FlavaImageModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = FlavaImageModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class FlavaTextModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
vocab_size=102,
type_vocab_size=2,
max_position_embeddings=512,
position_embedding_type="absolute",
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
qkv_bias=True,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.seq_length = seq_length
self.vocab_size = vocab_size
self.type_vocab_size = type_vocab_size
self.max_position_embeddings = max_position_embeddings
self.position_embedding_type = position_embedding_type
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.pad_token_id = pad_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask
def get_config(self):
return FlavaTextConfig(
vocab_size=self.vocab_size,
type_vocab_size=self.type_vocab_size,
max_position_embeddings=self.max_position_embeddings,
position_embedding_type=self.position_embedding_type,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
pad_token_id=self.pad_token_id,
qkv_bias=self.qkv_bias,
)
def create_and_check_model(self, config, input_ids, token_type_ids, input_mask):
model = FlavaTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, token_type_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class FlavaTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (FlavaTextModel,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
test_torchscript = False
def setUp(self):
self.model_tester = FlavaTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=FlavaTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_inputs_embeds(self):
# FLAVA does not use inputs_embeds
pass
# skip this test as FlavaTextModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_from_base(self):
pass
# skip this test as FlavaTextModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = FlavaTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class FlavaMultimodalModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=44,
use_input_mask=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
qkv_bias=True,
ce_ignore_index=-100,
use_cls_token=True,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.use_input_mask = use_input_mask
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.ce_ignore_index = ce_ignore_index
self.use_cls_token = use_cls_token
def prepare_config_and_inputs(self):
hidden_states = floats_tensor([self.batch_size, self.seq_length - 1, self.hidden_size])
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, hidden_states, input_mask
def get_config(self):
return FlavaMultimodalConfig(
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
qkv_bias=self.qkv_bias,
use_cls_token=self.use_cls_token,
ce_ignore_index=self.ce_ignore_index,
)
def create_and_check_model(self, config, hidden_states, input_mask):
model = FlavaMultimodalModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(hidden_states, attention_mask=input_mask)
result = model(hidden_states)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, hidden_states, input_mask = config_and_inputs
inputs_dict = {"hidden_states": hidden_states, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (FlavaMultimodalModel,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
test_resize_embeddings = False
test_torchscript = False
def setUp(self):
self.model_tester = FlavaMultimodalModelTester(self)
self.config_tester = ConfigTester(
self, config_class=FlavaMultimodalConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["hidden_states"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model_common_attributes(self):
# No embedding in multimodal model
pass
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_inputs_embeds(self):
# FLAVA does not use inputs_embeds
pass
# skip this test as FlavaMultimodalModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_from_base(self):
pass
# skip this test as FlavaMultimodalModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = FlavaMultimodalModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class FlavaImageCodebookTester:
def __init__(
self,
parent,
batch_size=12,
image_size=112,
num_channels=3,
hidden_size=32,
num_groups=2,
vocab_size=99,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.hidden_size = hidden_size
self.num_groups = num_groups
self.vocab_size = vocab_size
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return FlavaImageCodebookConfig(
hidden_size=self.hidden_size, num_groups=self.num_groups, vocab_size=self.vocab_size
)
def create_and_check_model(self, config, pixel_values):
model = FlavaImageCodebook(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
self.parent.assertEqual(
result.shape, (self.batch_size, config.vocab_size, self.image_size // 8, self.image_size // 8)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class FlavaImageCodebookTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (FlavaImageCodebook,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
test_resize_embeddings = False
test_torchscript = False
has_attentions = False
def setUp(self):
self.model_tester = FlavaImageCodebookTester(self)
self.config_tester = ConfigTester(self, config_class=FlavaImageCodebookConfig, has_text_modality=False)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@unittest.skip(reason="Flava does not output attentions")
def test_attention_outputs(self):
pass
def test_model_common_attributes(self):
# No embedding in multimodal model
pass
def test_training(self):
pass
def test_hidden_states_output(self):
pass
def test_retain_grad_hidden_states_attentions(self):
# no attentions
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_inputs_embeds(self):
# FLAVA does not use inputs_embeds
pass
def test_model_outputs_equivalence(self):
pass
# skip this test as FlavaImageCodebook has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_from_base(self):
pass
# skip this test as FlavaImageCodebook has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = FlavaImageCodebook.from_pretrained(model_name)
self.assertIsNotNone(model)
class FlavaModelTester:
model_class = FlavaModel
def __init__(
self,
parent,
text_kwargs=None,
image_kwargs=None,
multimodal_kwargs=None,
image_codebook_kwargs=None,
is_training=True,
hidden_size=32,
projection_dim=32,
initializer_range=0.02,
layer_norm_eps=1e-12,
):
if text_kwargs is None:
text_kwargs = {}
if image_kwargs is None:
image_kwargs = {}
if multimodal_kwargs is None:
multimodal_kwargs = {}
if image_codebook_kwargs is None:
image_codebook_kwargs = {}
self.parent = parent
self.image_model_tester = FlavaImageModelTester(parent, **image_kwargs)
self.text_model_tester = FlavaTextModelTester(parent, **text_kwargs)
self.multimodal_model_tester = FlavaMultimodalModelTester(parent, **multimodal_kwargs)
self.image_codebook_tester = FlavaImageCodebookTester(parent, **image_codebook_kwargs)
self.is_training = is_training
self.config_tester = ConfigTester(self, config_class=FlavaConfig, hidden_size=37)
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
def test_config(self):
self.config_tester.run_common_tests()
def prepare_config_and_inputs_for_common(self):
_, pixel_values, bool_masked_pos = self.image_model_tester.prepare_config_and_inputs()
_, input_ids, token_type_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"bool_masked_pos": bool_masked_pos,
}
def get_config(self):
return FlavaConfig.from_configs(
self.image_model_tester.get_config(),
self.text_model_tester.get_config(),
self.multimodal_model_tester.get_config(),
self.image_codebook_tester.get_config(),
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
)
def create_and_check_model(self, config, inputs):
self._test_model(config, inputs, test_image=True)
self._test_model(config, inputs, test_text=True)
self._test_model(config, inputs, test_image=True, test_text=True)
def _test_model(self, config, inputs, test_image=False, test_text=False):
model = self.model_class(config).to(torch_device).eval()
with torch.no_grad():
result = model(
input_ids=inputs["input_ids"] if test_text else None,
attention_mask=inputs["attention_mask"] if test_text else None,
token_type_ids=inputs["token_type_ids"] if test_text else None,
pixel_values=inputs["pixel_values"] if test_image else None,
bool_masked_pos=inputs["bool_masked_pos"] if test_image else None,
)
image_size = (self.image_model_tester.image_size, self.image_model_tester.image_size)
patch_size = (self.image_model_tester.patch_size, self.image_model_tester.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
if test_image:
self.parent.assertEqual(
result.image_embeddings.shape,
(self.image_model_tester.batch_size, num_patches + 1, self.image_model_tester.hidden_size),
)
else:
self.parent.assertIsNone(result.image_embeddings)
if test_text:
self.parent.assertEqual(
result.text_embeddings.shape,
(
self.text_model_tester.batch_size,
self.text_model_tester.seq_length,
self.text_model_tester.hidden_size,
),
)
else:
self.parent.assertIsNone(result.text_embeddings)
if test_image and test_text:
self.parent.assertEqual(
result.multimodal_embeddings.shape,
(
self.multimodal_model_tester.batch_size,
self.text_model_tester.seq_length + num_patches + 2,
self.multimodal_model_tester.hidden_size,
),
)
else:
self.parent.assertIsNone(result.multimodal_embeddings)
@require_torch
class FlavaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (FlavaModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": FlavaModel} if is_torch_available() else {}
class_for_tester = FlavaModelTester
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
self.model_tester = self.class_for_tester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(*config_and_inputs)
# hidden_states are tested in individual model tests
def test_hidden_states_output(self):
pass
# input_embeds are tested in individual model tests
def test_inputs_embeds(self):
pass
# tested in individual model tests
def test_retain_grad_hidden_states_attentions(self):
pass
# FlavaModel does not have input/output embeddings
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for FLAVA
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale" or name == "flava.logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
configs_no_init.return_loss = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # FLAVA needs pixel_values
if "input_ids_masked" in inputs_dict:
# For pretraining
inputs = (input_ids, inputs_dict["input_ids_masked"], pixel_values)
else:
inputs = (input_ids, pixel_values)
traced_model = torch.jit.trace(model, inputs)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
# Non persistent buffers won't be in original state dict
loaded_model_state_dict.pop("text_model.embeddings.token_type_ids", None)
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_image_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save FlavaConfig and check if we can load FlavaImageConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
image_config = FlavaImageConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.image_config.to_dict(), image_config.to_dict())
# Save FlavaConfig and check if we can load FlavaTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = FlavaTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
# Save FlavaConfig and check if we can load FlavaMultimodalConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
multimodal_config = FlavaMultimodalConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.multimodal_config.to_dict(), multimodal_config.to_dict())
# overwrite from common since FlavaModel/TFFlavaModel return FLAVAOutput/TFFLAVAOutput
@slow
def test_model_from_pretrained(self):
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = FlavaModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class FlavaForPreTrainingTester(FlavaModelTester):
model_class = FlavaForPreTraining
def prepare_config_and_inputs_for_common(self):
_, pixel_values, bool_masked_pos = self.image_model_tester.prepare_config_and_inputs()
_, input_ids, token_type_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
input_ids_masked = input_ids.detach().clone()
input_ids_masked[:, 1:3] = 100
mlm_labels = input_ids.detach().clone()
mlm_labels[:, :] = config.ce_ignore_index
mlm_labels[:, 1:3] = input_ids[:, 1:3]
mim_labels = torch.randint(
0, self.image_model_tester.vocab_size, bool_masked_pos.size(), device=bool_masked_pos.device
).long()
mim_labels[bool_masked_pos.ne(True)] = config.ce_ignore_index
itm_labels = torch.ones(mlm_labels.size(0), device=bool_masked_pos.device).long()
return config, {
"input_ids": input_ids,
"input_ids_masked": input_ids_masked,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"bool_masked_pos": bool_masked_pos,
"mlm_labels": mlm_labels,
"mim_labels": mim_labels,
"itm_labels": itm_labels,
"return_loss": True,
}
def _test_model(self, config, inputs, test_image=False, test_text=False):
model = self.model_class(config).to(torch_device).eval()
with torch.no_grad():
result = model(
input_ids=inputs["input_ids"] if test_text else None,
input_ids_masked=inputs["input_ids_masked"] if test_text else None,
attention_mask=inputs["attention_mask"] if test_text else None,
token_type_ids=inputs["token_type_ids"] if test_text else None,
pixel_values=inputs["pixel_values"] if test_image else None,
bool_masked_pos=inputs["bool_masked_pos"] if test_image else None,
mlm_labels=inputs["mlm_labels"],
mim_labels=inputs["mim_labels"],
itm_labels=inputs["itm_labels"],
return_loss=inputs["return_loss"],
)
image_size = (self.image_model_tester.image_size, self.image_model_tester.image_size)
patch_size = (self.image_model_tester.patch_size, self.image_model_tester.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
if test_image:
self.parent.assertEqual(
result.image_embeddings.shape,
(self.image_model_tester.batch_size, num_patches + 1, self.image_model_tester.hidden_size),
)
if not test_text:
self.parent.assertEqual(
result.loss_info.mim.dim(),
0,
)
self.parent.assertEqual(
result.mim_logits.shape,
(inputs["bool_masked_pos"].sum().item(), self.image_model_tester.vocab_size),
)
else:
self.parent.assertIsNone(result.image_embeddings)
if test_text:
self.parent.assertEqual(
result.text_embeddings.shape,
(
self.text_model_tester.batch_size,
self.text_model_tester.seq_length,
self.text_model_tester.hidden_size,
),
)
if not test_image:
self.parent.assertEqual(result.loss_info.mlm.dim(), 0)
self.parent.assertEqual(
result.mlm_logits.shape,
(
(inputs["mlm_labels"] != self.multimodal_model_tester.ce_ignore_index).sum().item(),
self.text_model_tester.vocab_size,
),
)
else:
self.parent.assertIsNone(result.text_embeddings)
if test_image and test_text:
self.parent.assertEqual(
result.multimodal_masked_embeddings.shape,
(
self.multimodal_model_tester.batch_size,
self.text_model_tester.seq_length + num_patches + 2,
self.multimodal_model_tester.hidden_size,
),
)
self.parent.assertEqual(
result.itm_logits.shape,
(self.text_model_tester.batch_size, 2),
)
self.parent.assertEqual(
result.mmm_text_logits.shape,
(
(inputs["mlm_labels"] != self.multimodal_model_tester.ce_ignore_index).sum().item(),
self.text_model_tester.vocab_size,
),
)
self.parent.assertEqual(
result.mmm_image_logits.shape,
(inputs["bool_masked_pos"].sum().item(), self.image_model_tester.vocab_size),
)
self.parent.assertEqual(
result.contrastive_logits_per_image.shape,
(self.image_model_tester.batch_size, self.text_model_tester.batch_size),
)
self.parent.assertEqual(
result.contrastive_logits_per_text.shape,
(self.text_model_tester.batch_size, self.image_model_tester.batch_size),
)
for item in [
result.loss_info.global_contrastive,
result.loss_info.itm,
result.loss_info.mmm_text,
result.loss_info.mmm_image,
]:
self.parent.assertEqual(item.dim(), 0)
for item in [result.loss_info.mim, result.loss_info.mlm]:
self.parent.assertIsNone(item)
else:
self.parent.assertIsNone(result.multimodal_masked_embeddings)
for item in [
result.loss_info.global_contrastive,
result.loss_info.itm,
result.loss_info.mmm_text,
result.loss_info.mmm_image,
]:
self.parent.assertIsNone(item)
self.parent.assertIsNone(result.multimodal_embeddings)
@require_torch
class FlavaForPreTrainingTest(FlavaModelTest):
all_model_classes = (FlavaForPreTraining,) if is_torch_available() else ()
class_for_tester = FlavaForPreTrainingTester
test_torchscript = False
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@require_vision
@require_torch
class FlavaModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "facebook/flava-full"
model = FlavaModel.from_pretrained(model_name).to(torch_device)
processor = FlavaProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(
text=["a photo of a cat", "a photo of a dog"],
images=[image, image],
padding="max_length",
max_length=77,
return_tensors="pt",
).to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs, return_dict=True)
# verify the embeddings
self.assertAlmostEqual(outputs.image_embeddings.sum().item(), -1352.53540, places=4)
self.assertAlmostEqual(outputs.text_embeddings.sum().item(), -198.98225, places=4)
self.assertAlmostEqual(outputs.multimodal_embeddings.sum().item(), -3988.51367, places=4)
@require_vision
@require_torch
class FlavaForPreTrainingIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "facebook/flava-full"
model = FlavaForPreTraining.from_pretrained(model_name).to(torch_device)
processor = FlavaProcessor.from_pretrained(model_name)
torch.manual_seed(1)
random.seed(1)
image = prepare_img()
inputs = processor(
text=["a photo of a cat", "a photo of a dog"],
images=[image, image],
padding="max_length",
max_length=77,
return_tensors="pt",
return_codebook_pixels=True,
return_image_mask=True,
)
# Create a clone of the input_ids tensor that will be its masked version
inputs["input_ids_masked"] = inputs["input_ids"].clone()
# Mask the tokens "a" & "cat" from the "a photo of a cat" text using the special 103 value
inputs["input_ids_masked"][0, 4:6] = 103
# MLM labels. It is a cloned version of input_ids where all values are -100 (i.e., ignored)
# except those that are masked, whose original values are stored
inputs["mlm_labels"] = inputs["input_ids"].clone()
inputs["mlm_labels"][:, :] = -100
inputs["mlm_labels"][0, 4:6] = inputs["input_ids"][0, 4:6]
inputs = inputs.to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.contrastive_logits_per_image.shape,
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.contrastive_logits_per_text.shape,
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
)
expected_logits = torch.tensor([[16.1291, 8.4033], [16.1291, 8.4033]], device=torch_device)
self.assertTrue(torch.allclose(outputs.contrastive_logits_per_image, expected_logits, atol=1e-3))
self.assertAlmostEqual(outputs.loss_info.mmm_text.item(), 1.75533199, places=4)
self.assertAlmostEqual(outputs.loss_info.mmm_image.item(), 7.0290069, places=4)
self.assertAlmostEqual(outputs.loss.item(), 11.0626, places=4)
@slow
def test_inference_with_itm_labels(self):
model_name = "facebook/flava-full"
model = FlavaForPreTraining.from_pretrained(model_name).to(torch_device)
processor = FlavaProcessor.from_pretrained(model_name)
torch.manual_seed(1)
random.seed(1)
image = prepare_img()
inputs = processor(
text=["a photo of a cat", "a photo of a dog"],
images=[image, image],
padding="max_length",
max_length=77,
return_tensors="pt",
return_codebook_pixels=True,
return_image_mask=True,
)
# Create a clone of the input_ids tensor that will be its masked version
inputs["input_ids_masked"] = inputs["input_ids"].clone()
# Mask the tokens "a" & "cat" from the "a photo of a cat" text using the special 103 value
inputs["input_ids_masked"][0, 4:6] = 103
# MLM labels. It is a cloned version of input_ids where all values are -100 (i.e., ignored)
# except those that are masked, whose original values are stored
inputs["mlm_labels"] = inputs["input_ids"].clone()
inputs["mlm_labels"][:, :] = -100
inputs["mlm_labels"][0, 4:6] = inputs["input_ids"][0, 4:6]
# Manually create the itm_labels tensor that indicates if the image-text match.
# In this case, the firs pair matches and the second does not
inputs["itm_labels"] = torch.tensor([1, 0])
inputs = inputs.to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.contrastive_logits_per_image.shape,
torch.Size((torch.count_nonzero(inputs["itm_labels"]).item(), inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.contrastive_logits_per_text.shape,
torch.Size((torch.count_nonzero(inputs["itm_labels"]).item(), inputs.pixel_values.shape[0])),
)
expected_logits = torch.tensor([[16.1291, 8.4033], [16.1291, 8.4033]], device=torch_device)
self.assertTrue(torch.allclose(outputs.contrastive_logits_per_image, expected_logits, atol=1e-3))
self.assertAlmostEqual(outputs.loss_info.mmm_text.item(), 1.75533199, places=4)
self.assertAlmostEqual(outputs.loss_info.mmm_image.item(), 6.89590501, places=4)
self.assertAlmostEqual(outputs.loss.item(), 9.1995, places=4)
| transformers/tests/models/flava/test_modeling_flava.py/0 | {
"file_path": "transformers/tests/models/flava/test_modeling_flava.py",
"repo_id": "transformers",
"token_count": 25176
} | 393 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Fuyu model. """
import io
import unittest
import requests
from transformers import FuyuConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from transformers.utils import cached_property
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_vision_available():
from PIL import Image
if is_torch_available() and is_vision_available():
from transformers import FuyuProcessor
if is_torch_available():
import torch
from transformers import FuyuForCausalLM
class FuyuModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
image_size=30,
patch_size=15,
num_channels=3,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
sequence_labels = None
token_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
config = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels
def get_config(self):
return FuyuConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
def create_and_check_model(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
):
model = FuyuForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = FuyuForCausalLM(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = FuyuForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = FuyuForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class FuyuModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (FuyuForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = {"text-generation": FuyuForCausalLM} if is_torch_available() else {}
test_head_masking = False
test_pruning = False
test_cpu_offload = False
test_disk_offload = False
test_model_parallel = False
def setUp(self):
self.model_tester = FuyuModelTester(self)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# TODO: Fix me (once this model gets more usage)
@unittest.skip("Does not work on the tiny model.")
def test_disk_offload_bin(self):
super().test_disk_offload()
# TODO: Fix me (once this model gets more usage)
@unittest.skip("Does not work on the tiny model.")
def test_disk_offload_safetensors(self):
super().test_disk_offload()
# TODO: Fix me (once this model gets more usage)
@unittest.skip("Does not work on the tiny model.")
def test_model_parallelism(self):
super().test_model_parallelism()
@slow
@require_torch_gpu
class FuyuModelIntegrationTest(unittest.TestCase):
@cached_property
def default_processor(self):
return FuyuProcessor.from_pretrained("adept/fuyu-8b")
@cached_property
def default_model(self):
return FuyuForCausalLM.from_pretrained("adept/fuyu-8b")
def test_greedy_generation(self):
processor = self.default_processor
model = self.default_model
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bus.png"
image = Image.open(io.BytesIO(requests.get(url).content))
text_prompt_coco_captioning = "Generate a coco-style caption.\n"
inputs = processor(text=text_prompt_coco_captioning, images=image, return_tensors="pt")
generated_ids = model.generate(**inputs, max_new_tokens=10)
# take the last 8 tokens (in order to skip special \n\x04 characters) and decode them
generated_text = processor.batch_decode(generated_ids[:, -8:], skip_special_tokens=True)[0]
self.assertEqual(generated_text, "A blue bus parked on the side of a road.")
"""
@slow
@require_torch_accelerator
def test_model_8b_chat_greedy_generation_bus_color(self):
EXPECTED_TEXT_COMPLETION = "The bus is blue.\n|ENDOFTEXT|"
text_prompt_bus_color = "What color is the bus?\n"
model_inputs_bus_color = self.processor(text=text_prompt_bus_color, images=self.bus_image_pil)
generated_tokens = self.model.generate(**model_inputs_bus_color, max_new_tokens=10)
text = self.processor.tokenizer.batch_decode(generated_tokens)
end_sequence = text[0].split("\x04")[1]
clean_sequence = (
end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")]
if "|ENDOFTEXT|" in end_sequence
else end_sequence
)
self.assertEqual(EXPECTED_TEXT_COMPLETION, clean_sequence)
@slow
@require_torch_accelerator
def test_model_8b_chat_greedy_generation_chart_vqa(self):
EXPECTED_TEXT_TOKENS = ["The","life expectancy","at","birth","of male","s in","","20","18","is","","80",".","7",".","\n","|ENDOFTEXT|",] # fmt: skip
expected_text_completion = " ".join(EXPECTED_TEXT_TOKENS) # TODO make sure the end string matches
text_prompt_chart_vqa = "What is the highest life expectancy at birth of male?\n"
chart_image_url = (
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/chart.png"
)
chart_image_pil = Image.open(io.BytesIO(requests.get(chart_image_url).content))
model_inputs_chart_vqa = self.processor(text=text_prompt_chart_vqa, images=chart_image_pil)
generated_tokens = self.model.generate(**model_inputs_chart_vqa, max_new_tokens=10)
text = self.processor.tokenizer.batch_decode(generated_tokens)
end_sequence = text[0].split("\x04")[1]
clean_sequence = (
end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")]
if "|ENDOFTEXT|" in end_sequence
else end_sequence
)
self.assertEqual(expected_text_completion, clean_sequence)
@slow
@require_torch_accelerator
def test_model_8b_chat_greedy_generation_bounding_box(self):
EXPECTED_TEXT_COMPLETION = "\x00194213202244\x01|ENDOFTEXT|"
text_prompt_bbox = "When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\\nWilliams" # noqa: E231
bbox_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bbox_sample_image.png"
bbox_image_pil = Image.open(io.BytesIO(requests.get(bbox_image_url).content))
model_inputs_bbox = self.processor(text=text_prompt_bbox, images=bbox_image_pil)
generated_tokens = self.model.generate(**model_inputs_bbox, max_new_tokens=10)
text = self.processor.tokenizer.batch_decode(generated_tokens)
end_sequence = text[0].split("\x04")[1]
clean_sequence = (
end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")]
if "|ENDOFTEXT|" in end_sequence
else end_sequence
)
self.assertEqual(EXPECTED_TEXT_COMPLETION, clean_sequence)
"""
| transformers/tests/models/fuyu/test_modeling_fuyu.py/0 | {
"file_path": "transformers/tests/models/fuyu/test_modeling_fuyu.py",
"repo_id": "transformers",
"token_count": 6740
} | 394 |
# coding=utf-8
# Copyright 2023 Toshiyuki Sakamoto(tanreinama) and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_jinja, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class GPTSanJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = GPTSanJapaneseTokenizer
test_rust_tokenizer = False
from_pretrained_kwargs = {"do_clean_text": False, "add_prefix_space": False}
def setUp(self):
super().setUp()
vocab_tokens = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: skip
emoji_tokens = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.emoji_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["emoji_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
with open(self.emoji_file, "w") as emoji_writer:
emoji_writer.write(json.dumps(emoji_tokens))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname, **kwargs)
# Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.get_input_output_texts
def get_input_output_texts(self, tokenizer):
input_text = "こんにちは、世界。 \nこんばんは、㔺界。😀"
output_text = "こんにちは、世界。 \nこんばんは、世界。😀"
return input_text, output_text
# Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.get_clean_sequence
def get_clean_sequence(self, tokenizer):
input_text, output_text = self.get_input_output_texts(tokenizer)
ids = tokenizer.encode(output_text, add_special_tokens=False)
text = tokenizer.decode(ids, clean_up_tokenization_spaces=False)
return text, ids
# Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_pretokenized_inputs
def test_pretokenized_inputs(self):
pass # TODO add if relevant
# Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_maximum_encoding_length_pair_input
def test_maximum_encoding_length_pair_input(self):
pass # TODO add if relevant
# Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_maximum_encoding_length_single_input
def test_maximum_encoding_length_single_input(self):
pass # TODO add if relevant
# Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_full_tokenizer
def test_full_tokenizer(self):
tokenizer = self.get_tokenizer()
# Testing tokenization
input_text = "こんにちは、世界。 こんばんは、㔺界。"
expected_token = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"]
tokens = tokenizer.tokenize(input_text)
self.assertListEqual(tokens, expected_token)
# Testing conversion to ids without special tokens
expected_ids = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
input_ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(input_ids, expected_ids)
# Testing conversion to ids with special tokens
input_tokens = tokens + [tokenizer.unk_token]
expected_ids = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
input_ids = tokenizer.convert_tokens_to_ids(input_tokens)
self.assertListEqual(input_ids, expected_ids)
def test_token_bagging(self):
tokenizer = self.get_tokenizer()
# Testing tokenization
input_text = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。"
expected_text = "こんにちは、、、、世界。こんばんは、、、、世界。"
tokens = tokenizer.encode(input_text)
output_text = tokenizer.decode(tokens)
self.assertEqual(output_text, expected_text)
@slow
def test_prefix_input(self):
tokenizer = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese")
# Testing tokenization
prefix_text = "こんにちは、世界。"
input_text = "こんばんは、㔺界。😀"
expected_text = "こんにちは、世界。こんばんは、世界。😀"
tokens_1 = tokenizer.encode(prefix_text + input_text)
tokens_2 = tokenizer.encode("", prefix_text=prefix_text + input_text)
tokens_3 = tokenizer.encode(input_text, prefix_text=prefix_text)
output_text_1 = tokenizer.decode(tokens_1)
output_text_2 = tokenizer.decode(tokens_2)
output_text_3 = tokenizer.decode(tokens_3)
self.assertEqual(output_text_1, expected_text)
self.assertEqual(output_text_2, expected_text)
self.assertEqual(output_text_3, expected_text)
@slow
def test_token_type_ids(self):
tokenizer = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese")
# Testing tokenization
prefix_text = "こんにちは、世界。"
input_text = "こんばんは、㔺界。😀"
len_prefix = len(tokenizer.encode(prefix_text)) - 2
len_text = len(tokenizer.encode(input_text)) - 2
expected_mask_1 = [1] + [0] * (len_prefix + len_text + 1)
expected_mask_2 = [1] * (len_prefix + len_text + 1) + [0]
expected_mask_3 = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
type_id_1 = tokenizer(prefix_text + input_text).token_type_ids
type_id_2 = tokenizer("", prefix_text=prefix_text + input_text).token_type_ids
type_id_3 = tokenizer(input_text, prefix_text=prefix_text).token_type_ids
self.assertListEqual(type_id_1, expected_mask_1)
self.assertListEqual(type_id_2, expected_mask_2)
self.assertListEqual(type_id_3, expected_mask_3)
@slow
def test_prefix_tokens(self):
tokenizer = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese")
x_token_1 = tokenizer.encode("あンいワ")
x_token_2 = tokenizer.encode("", prefix_text="あンいワ")
x_token_3 = tokenizer.encode("いワ", prefix_text="あン")
self.assertEqual(tokenizer.decode(x_token_1), tokenizer.decode(x_token_2))
self.assertEqual(tokenizer.decode(x_token_1), tokenizer.decode(x_token_3))
self.assertNotEqual(x_token_1, x_token_2)
self.assertNotEqual(x_token_1, x_token_3)
self.assertEqual(x_token_1[1], x_token_2[-1]) # SEG token
self.assertEqual(x_token_1[1], x_token_3[3]) # SEG token
@slow
def test_batch_encode(self):
tokenizer = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese")
input_pairs = [["武田信玄", "は、"], ["織田信長", "の配下の、"]]
x_token = tokenizer(input_pairs, padding=True)
x_token_2 = tokenizer.batch_encode_plus(input_pairs, padding=True)
# fmt: off
expected_outputs = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]]
expected_typeids = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
expected_attmask = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids, expected_outputs)
self.assertListEqual(x_token.token_type_ids, expected_typeids)
self.assertListEqual(x_token.attention_mask, expected_attmask)
self.assertListEqual(x_token_2.input_ids, expected_outputs)
self.assertListEqual(x_token_2.token_type_ids, expected_typeids)
self.assertListEqual(x_token_2.attention_mask, expected_attmask)
# Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_conversion_reversible
def test_conversion_reversible(self):
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
# Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_padding_different_model_input_name
def test_padding_different_model_input_name(self):
# tokenizer has no padding token
pass
@require_jinja
def test_tokenization_for_chat(self):
tokenizer = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese")
# This is in English, but it's just here to make sure the chat control tokens are being added properly
test_chats = [
[{"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}],
[
{"role": "system", "content": "You are a helpful chatbot."},
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Nice to meet you."},
],
[{"role": "assistant", "content": "Nice to meet you."}, {"role": "user", "content": "Hello!"}],
]
tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats]
# fmt: off
expected_tokens = [
[35993, 35998, 35637, 35659, 35665, 35716, 35645, 35662, 35649, 35716, 35645, 35716, 35652, 35649, 35656, 35660, 35650, 35665, 35656, 35716, 35647, 35652, 35645, 35664, 35646, 35659, 35664, 35595, 35716, 35999, 35993, 35998, 35620, 35649, 35656, 35656, 35659, 35582, 35716, 35999],
[35993, 35998, 35637, 35659, 35665, 35716, 35645, 35662, 35649, 35716, 35645, 35716, 35652, 35649, 35656, 35660, 35650, 35665, 35656, 35716, 35647, 35652, 35645, 35664, 35646, 35659, 35664, 35595, 35716, 35999, 35993, 35998, 35620, 35649, 35656, 35656, 35659, 35582, 35716, 35999, 35993, 35998, 35626, 35653, 35647, 35649, 35716, 35664, 35659, 35716, 35657, 35649, 35649, 35664, 35716, 35669, 35659, 35665, 35595, 35716, 35999],
[35993, 35998, 35626, 35653, 35647, 35649, 35716, 35664, 35659, 35716, 35657, 35649, 35649, 35664, 35716, 35669, 35659, 35665, 35595, 35716, 35999, 35993, 35998, 35620, 35649, 35656, 35656, 35659, 35582, 35716, 35999]
]
# fmt: on
for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens):
self.assertListEqual(tokenized_chat, expected_tokens)
| transformers/tests/models/gptsan_japanese/test_tokenization_gptsan_japanese.py/0 | {
"file_path": "transformers/tests/models/gptsan_japanese/test_tokenization_gptsan_japanese.py",
"repo_id": "transformers",
"token_count": 5044
} | 395 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from transformers.testing_utils import TestCasePlus, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
IdeficsImageProcessor,
IdeficsProcessor,
LlamaTokenizerFast,
PreTrainedTokenizerFast,
)
@require_torch
@require_vision
class IdeficsProcessorTest(TestCasePlus):
def setUp(self):
super().setUp()
self.checkpoint_path = self.get_auto_remove_tmp_dir()
image_processor = IdeficsImageProcessor()
tokenizer = LlamaTokenizerFast.from_pretrained("HuggingFaceM4/tiny-random-idefics")
processor = IdeficsProcessor(image_processor, tokenizer)
processor.save_pretrained(self.checkpoint_path)
self.input_keys = ["pixel_values", "input_ids", "attention_mask", "image_attention_mask"]
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).image_processor
def prepare_prompts(self):
"""This function prepares a list of PIL images"""
num_images = 2
images = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8) for x in range(num_images)]
images = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in images]
# print([type(x) for x in images])
# die
prompts = [
# text and 1 image
[
"User:",
images[0],
"Describe this image.\nAssistant:",
],
# text and images
[
"User:",
images[0],
"Describe this image.\nAssistant: An image of two dogs.\n",
"User:",
images[1],
"Describe this image.\nAssistant:",
],
# only text
[
"User:",
"Describe this image.\nAssistant: An image of two kittens.\n",
"User:",
"Describe this image.\nAssistant:",
],
# only images
[
images[0],
images[1],
],
]
return prompts
def test_save_load_pretrained_additional_features(self):
processor = IdeficsProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.checkpoint_path)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = IdeficsProcessor.from_pretrained(
self.checkpoint_path, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, IdeficsImageProcessor)
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
prompts = self.prepare_prompts()
# test that all prompts succeeded
input_processor = processor(prompts, return_tensors="pt")
for key in self.input_keys:
assert torch.is_tensor(input_processor[key])
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_tokenizer_padding(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer(padding_side="right")
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_tokens = [
"<s> Describe this image.\nAssistant:<unk><unk><unk><unk><unk><unk><unk><unk><unk>",
"<s> Describe this image.\nAssistant:<unk><unk><unk><unk><unk><unk><unk><unk><unk><unk>",
]
prompts = [[prompt] for prompt in self.prepare_prompts()[2]]
max_length = processor(prompts, padding="max_length", truncation=True, max_length=20)
longest = processor(prompts, padding="longest", truncation=True, max_length=30)
decoded_max_length = processor.tokenizer.decode(max_length["input_ids"][-1])
decoded_longest = processor.tokenizer.decode(longest["input_ids"][-1])
self.assertEqual(decoded_max_length, predicted_tokens[1])
self.assertEqual(decoded_longest, predicted_tokens[0])
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
prompts = self.prepare_prompts()
inputs = processor(prompts)
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertSetEqual(set(inputs.keys()), set(self.input_keys))
| transformers/tests/models/idefics/test_processor_idefics.py/0 | {
"file_path": "transformers/tests/models/idefics/test_processor_idefics.py",
"repo_id": "transformers",
"token_count": 2692
} | 396 |
# coding=utf-8
# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import LayoutLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LayoutLMForMaskedLM,
LayoutLMForQuestionAnswering,
LayoutLMForSequenceClassification,
LayoutLMForTokenClassification,
LayoutLMModel,
)
class LayoutLMModelTester:
"""You can also import this e.g from .test_modeling_layoutlm import LayoutLMModelTester"""
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
range_bbox=1000,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.range_bbox = range_bbox
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox)
# Ensure that bbox is legal
for i in range(bbox.shape[0]):
for j in range(bbox.shape[1]):
if bbox[i, j, 3] < bbox[i, j, 1]:
t = bbox[i, j, 3]
bbox[i, j, 3] = bbox[i, j, 1]
bbox[i, j, 1] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
t = bbox[i, j, 2]
bbox[i, j, 2] = bbox[i, j, 0]
bbox[i, j, 0] = t
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return LayoutLMConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
def create_and_check_model(
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = LayoutLMModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, bbox, token_type_ids=token_type_ids)
result = model(input_ids, bbox)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = LayoutLMForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = LayoutLMForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(
input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = LayoutLMForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = LayoutLMForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
bbox=bbox,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
bbox,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"bbox": bbox,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class LayoutLMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
LayoutLMModel,
LayoutLMForMaskedLM,
LayoutLMForSequenceClassification,
LayoutLMForTokenClassification,
LayoutLMForQuestionAnswering,
)
if is_torch_available()
else None
)
pipeline_model_mapping = (
{
"document-question-answering": LayoutLMForQuestionAnswering,
"feature-extraction": LayoutLMModel,
"fill-mask": LayoutLMForMaskedLM,
"text-classification": LayoutLMForSequenceClassification,
"token-classification": LayoutLMForTokenClassification,
"zero-shot": LayoutLMForSequenceClassification,
}
if is_torch_available()
else {}
)
fx_compatible = True
def setUp(self):
self.model_tester = LayoutLMModelTester(self)
self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def prepare_layoutlm_batch_inputs():
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
input_ids = torch.tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]],device=torch_device) # noqa: E231
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],],device=torch_device) # noqa: E231
bbox = torch.tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]],device=torch_device) # noqa: E231
token_type_ids = torch.tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],device=torch_device) # noqa: E231
# these are sequence labels (i.e. at the token level)
labels = torch.tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]],device=torch_device) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_torch
class LayoutLMModelIntegrationTest(unittest.TestCase):
@slow
def test_forward_pass_no_head(self):
model = LayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased").to(torch_device)
input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs()
# forward pass
outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids)
# test the sequence output on [0, :3, :3]
expected_slice = torch.tensor(
[[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]],
device=torch_device,
)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3))
# test the pooled output on [1, :3]
expected_slice = torch.tensor([-0.6580, -0.0214, 0.8552], device=torch_device)
self.assertTrue(torch.allclose(outputs.pooler_output[1, :3], expected_slice, atol=1e-3))
@slow
def test_forward_pass_sequence_classification(self):
# initialize model with randomly initialized sequence classification head
model = LayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2).to(
torch_device
)
input_ids, attention_mask, bbox, token_type_ids, _ = prepare_layoutlm_batch_inputs()
# forward pass
outputs = model(
input_ids=input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
labels=torch.tensor([1, 1], device=torch_device),
)
# test whether we get a loss as a scalar
loss = outputs.loss
expected_shape = torch.Size([])
self.assertEqual(loss.shape, expected_shape)
# test the shape of the logits
logits = outputs.logits
expected_shape = torch.Size((2, 2))
self.assertEqual(logits.shape, expected_shape)
@slow
def test_forward_pass_token_classification(self):
# initialize model with randomly initialized token classification head
model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13).to(
torch_device
)
input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs()
# forward pass
outputs = model(
input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels
)
# test the loss calculation to be around 2.65
# expected_loss = torch.tensor(2.65, device=torch_device)
# The loss is currently somewhat random and can vary between 0.1-0.3 atol.
# self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=0.1))
# test the shape of the logits
logits = outputs.logits
expected_shape = torch.Size((2, 25, 13))
self.assertEqual(logits.shape, expected_shape)
@slow
def test_forward_pass_question_answering(self):
# initialize model with randomly initialized token classification head
model = LayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased").to(torch_device)
input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs()
# forward pass
outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids)
# test the shape of the logits
expected_shape = torch.Size((2, 25))
self.assertEqual(outputs.start_logits.shape, expected_shape)
self.assertEqual(outputs.end_logits.shape, expected_shape)
| transformers/tests/models/layoutlm/test_modeling_layoutlm.py/0 | {
"file_path": "transformers/tests/models/layoutlm/test_modeling_layoutlm.py",
"repo_id": "transformers",
"token_count": 8034
} | 397 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch MaskFormer model. """
import copy
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import (
require_torch,
require_torch_accelerator,
require_torch_fp16,
require_torch_multi_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class MaskFormerModelTester:
def __init__(
self,
parent,
batch_size=2,
is_training=True,
use_auxiliary_loss=False,
num_queries=10,
num_channels=3,
min_size=32 * 4,
max_size=32 * 6,
num_labels=4,
mask_feature_size=32,
num_hidden_layers=2,
num_attention_heads=2,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.use_auxiliary_loss = use_auxiliary_loss
self.num_queries = num_queries
self.num_channels = num_channels
self.min_size = min_size
self.max_size = max_size
self.num_labels = num_labels
self.mask_feature_size = mask_feature_size
# This is passed to the decoder config. We add it to the model tester here for testing
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to(
torch_device
)
pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device)
mask_labels = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=torch_device) > 0.5
).float()
class_labels = (torch.rand((self.batch_size, self.num_labels), device=torch_device) > 0.5).long()
config = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def get_config(self):
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1],
embed_dim=16,
hidden_size=32,
num_heads=[1, 1, 2, 2],
),
backbone=None,
decoder_config=DetrConfig(
decoder_ffn_dim=64,
decoder_layers=self.num_hidden_layers,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=64,
encoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
num_queries=self.num_queries,
d_model=self.mask_feature_size,
),
mask_feature_size=self.mask_feature_size,
fpn_feature_size=self.mask_feature_size,
num_channels=self.num_channels,
num_labels=self.num_labels,
)
def prepare_config_and_inputs_for_common(self):
config, pixel_values, pixel_mask, _, _ = self.prepare_config_and_inputs()
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
return config, inputs_dict
def check_output_hidden_state(self, output, config):
encoder_hidden_states = output.encoder_hidden_states
pixel_decoder_hidden_states = output.pixel_decoder_hidden_states
transformer_decoder_hidden_states = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(encoder_hidden_states), len(config.backbone_config.depths))
self.parent.assertTrue(len(pixel_decoder_hidden_states), len(config.backbone_config.depths))
self.parent.assertTrue(len(transformer_decoder_hidden_states), config.decoder_config.decoder_layers)
def create_and_check_maskformer_model(self, config, pixel_values, pixel_mask, output_hidden_states=False):
with torch.no_grad():
model = MaskFormerModel(config=config)
model.to(torch_device)
model.eval()
output = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
output = model(pixel_values, output_hidden_states=True)
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape,
(self.batch_size, self.num_queries, self.mask_feature_size),
)
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None)
self.parent.assertTrue(output.encoder_last_hidden_state is not None)
if output_hidden_states:
self.check_output_hidden_state(output, config)
def create_and_check_maskformer_instance_segmentation_head_model(
self, config, pixel_values, pixel_mask, mask_labels, class_labels
):
model = MaskFormerForInstanceSegmentation(config=config)
model.to(torch_device)
model.eval()
def comm_check_on_output(result):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None)
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None)
self.parent.assertTrue(result.encoder_last_hidden_state is not None)
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape,
(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4),
)
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)
)
with torch.no_grad():
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
result = model(pixel_values)
comm_check_on_output(result)
result = model(
pixel_values=pixel_values, pixel_mask=pixel_mask, mask_labels=mask_labels, class_labels=class_labels
)
comm_check_on_output(result)
self.parent.assertTrue(result.loss is not None)
self.parent.assertEqual(result.loss.shape, torch.Size([]))
@require_torch
class MaskFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
is_encoder_decoder = False
test_pruning = False
test_head_masking = False
test_missing_keys = False
def setUp(self):
self.model_tester = MaskFormerModelTester(self)
self.config_tester = ConfigTester(self, config_class=MaskFormerConfig, has_text_modality=False)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if return_labels:
if model_class in [MaskFormerForInstanceSegmentation]:
inputs_dict["mask_labels"] = torch.zeros(
(
self.model_tester.batch_size,
self.model_tester.num_labels,
self.model_tester.min_size,
self.model_tester.max_size,
),
dtype=torch.float32,
device=torch_device,
)
inputs_dict["class_labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_labels), dtype=torch.long, device=torch_device
)
return inputs_dict
def test_config(self):
self.config_tester.run_common_tests()
def test_maskformer_model(self):
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(config, **inputs, output_hidden_states=False)
def test_maskformer_instance_segmentation_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*config_and_inputs)
@unittest.skip(reason="MaskFormer does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="MaskFormer does not have a get_input_embeddings method")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="MaskFormer is not a generative model")
def test_generate_without_input_ids(self):
pass
@unittest.skip(reason="MaskFormer does not use token embeddings")
def test_resize_tokens_embeddings(self):
pass
@require_torch_multi_gpu
@unittest.skip(
reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`"
)
def test_multi_gpu_data_parallel_forward(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in ["facebook/maskformer-swin-small-coco"]:
model = MaskFormerModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_model_with_labels(self):
size = (self.model_tester.min_size,) * 2
inputs = {
"pixel_values": torch.randn((2, 3, *size), device=torch_device),
"mask_labels": torch.randn((2, 10, *size), device=torch_device),
"class_labels": torch.zeros(2, 10, device=torch_device).long(),
}
model = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(torch_device)
outputs = model(**inputs)
self.assertTrue(outputs.loss is not None)
def test_hidden_states_output(self):
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(config, **inputs, output_hidden_states=True)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# Check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# encoder_hidden_states, pixel_decoder_hidden_states, transformer_decoder_hidden_states, hidden_states
added_hidden_states = 4
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
def test_retain_grad_hidden_states_attentions(self):
# only MaskFormerForInstanceSegmentation has the loss
model_class = self.all_model_classes[1]
config, pixel_values, pixel_mask, mask_labels, class_labels = self.model_tester.prepare_config_and_inputs()
config.output_hidden_states = True
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.train()
outputs = model(pixel_values, mask_labels=mask_labels, class_labels=class_labels)
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
transformer_decoder_hidden_states = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
attentions = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(pixel_decoder_hidden_states.grad)
self.assertIsNotNone(transformer_decoder_hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_forward_auxiliary_loss(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_auxiliary_loss = True
config.output_auxiliary_logits = True
config.output_hidden_states = True
# only test for object detection and segmentation model
for model_class in self.all_model_classes[1:]:
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
outputs = model(**inputs)
self.assertIsNotNone(outputs.auxiliary_logits)
self.assertEqual(len(outputs.auxiliary_logits), self.model_tester.num_channels - 1)
TOLERANCE = 1e-4
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@slow
class MaskFormerModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco")
if is_vision_available()
else None
)
def test_inference_no_head(self):
model = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(image, return_tensors="pt").to(torch_device)
inputs_shape = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0)
# check size
self.assertEqual(inputs_shape, (1, 3, 800, 1088))
with torch.no_grad():
outputs = model(**inputs)
expected_slice_hidden_state = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]]
).to(torch_device)
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE
)
)
expected_slice_hidden_state = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]]
).to(torch_device)
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE
)
)
expected_slice_hidden_state = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]]
).to(torch_device)
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE
)
)
def test_inference_instance_segmentation_head(self):
model = (
MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco")
.to(torch_device)
.eval()
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(image, return_tensors="pt").to(torch_device)
inputs_shape = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0)
# check size
self.assertEqual(inputs_shape, (1, 3, 800, 1088))
with torch.no_grad():
outputs = model(**inputs)
# masks_queries_logits
masks_queries_logits = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape,
(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4),
)
expected_slice = [
[-1.3737124, -1.7724937, -1.9364233],
[-1.5977281, -1.9867939, -2.1523695],
[-1.5795398, -1.9269832, -2.093942],
]
expected_slice = torch.tensor(expected_slice).to(torch_device)
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], expected_slice, atol=TOLERANCE))
# class_queries_logits
class_queries_logits = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)
)
expected_slice = torch.tensor(
[
[1.6512e00, -5.2572e00, -3.3519e00],
[3.6169e-02, -5.9025e00, -2.9313e00],
[1.0766e-04, -7.7630e00, -5.1263e00],
]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_slice, atol=TOLERANCE))
def test_inference_instance_segmentation_head_resnet_backbone(self):
model = (
MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff")
.to(torch_device)
.eval()
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(image, return_tensors="pt").to(torch_device)
inputs_shape = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0)
# check size
self.assertEqual(inputs_shape, (1, 3, 800, 1088))
with torch.no_grad():
outputs = model(**inputs)
# masks_queries_logits
masks_queries_logits = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape,
(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4),
)
expected_slice = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
expected_slice = torch.tensor(expected_slice).to(torch_device)
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], expected_slice, atol=TOLERANCE))
# class_queries_logits
class_queries_logits = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)
)
expected_slice = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_slice, atol=TOLERANCE))
@require_torch_accelerator
@require_torch_fp16
def test_inference_fp16(self):
model = (
MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff")
.to(torch_device, dtype=torch.float16)
.eval()
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(image, return_tensors="pt").to(torch_device, dtype=torch.float16)
with torch.no_grad():
_ = model(**inputs)
def test_with_segmentation_maps_and_loss(self):
model = (
MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco")
.to(torch_device)
.eval()
)
image_processor = self.default_image_processor
inputs = image_processor(
[np.zeros((3, 400, 333)), np.zeros((3, 400, 333))],
segmentation_maps=[np.zeros((384, 384)).astype(np.float32), np.zeros((384, 384)).astype(np.float32)],
return_tensors="pt",
)
inputs["pixel_values"] = inputs["pixel_values"].to(torch_device)
inputs["mask_labels"] = [el.to(torch_device) for el in inputs["mask_labels"]]
inputs["class_labels"] = [el.to(torch_device) for el in inputs["class_labels"]]
with torch.no_grad():
outputs = model(**inputs)
self.assertTrue(outputs.loss is not None)
| transformers/tests/models/maskformer/test_modeling_maskformer.py/0 | {
"file_path": "transformers/tests/models/maskformer/test_modeling_maskformer.py",
"repo_id": "transformers",
"token_count": 10411
} | 398 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch MGP-STR model. """
import unittest
import requests
from transformers import MgpstrConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MgpstrForSceneTextRecognition
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor
class MgpstrModelTester:
def __init__(
self,
parent,
is_training=False,
batch_size=13,
image_size=(32, 128),
patch_size=4,
num_channels=3,
max_token_length=27,
num_character_labels=38,
num_bpe_labels=99,
num_wordpiece_labels=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
mlp_ratio=4.0,
patch_embeds_hidden_size=257,
output_hidden_states=None,
):
self.parent = parent
self.is_training = is_training
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.max_token_length = max_token_length
self.num_character_labels = num_character_labels
self.num_bpe_labels = num_bpe_labels
self.num_wordpiece_labels = num_wordpiece_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.mlp_ratio = mlp_ratio
self.patch_embeds_hidden_size = patch_embeds_hidden_size
self.output_hidden_states = output_hidden_states
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
config = self.get_config()
return config, pixel_values
def get_config(self):
return MgpstrConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
max_token_length=self.max_token_length,
num_character_labels=self.num_character_labels,
num_bpe_labels=self.num_bpe_labels,
num_wordpiece_labels=self.num_wordpiece_labels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
mlp_ratio=self.mlp_ratio,
output_hidden_states=self.output_hidden_states,
)
def create_and_check_model(self, config, pixel_values):
model = MgpstrForSceneTextRecognition(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
generated_ids = model(pixel_values)
self.parent.assertEqual(
generated_ids[0][0].shape, (self.batch_size, self.max_token_length, self.num_character_labels)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class MgpstrModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (MgpstrForSceneTextRecognition,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": MgpstrForSceneTextRecognition} if is_torch_available() else {}
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_attention_outputs = False
def setUp(self):
self.model_tester = MgpstrModelTester(self)
self.config_tester = ConfigTester(self, config_class=MgpstrConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="MgpstrModel does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
@unittest.skip(reason="MgpstrModel does not support feedforward chunking")
def test_feed_forward_chunking(self):
pass
def test_gradient_checkpointing_backward_compatibility(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class.supports_gradient_checkpointing:
continue
config.gradient_checkpointing = True
model = model_class(config)
self.assertTrue(model.is_gradient_checkpointing)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.patch_embeds_hidden_size, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# override as the `logit_scale` parameter initilization is different for MgpstrModel
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if isinstance(param, (nn.Linear, nn.Conv2d, nn.LayerNorm)):
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
# We will verify our results on an image from the IIIT-5k dataset
def prepare_img():
url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png"
im = Image.open(requests.get(url, stream=True).raw).convert("RGB")
return im
@require_vision
@require_torch
class MgpstrModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "alibaba-damo/mgp-str-base"
model = MgpstrForSceneTextRecognition.from_pretrained(model_name).to(torch_device)
processor = MgpstrProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(inputs)
# verify the logits
self.assertEqual(outputs.logits[0].shape, torch.Size((1, 27, 38)))
out_strs = processor.batch_decode(outputs.logits)
expected_text = "ticket"
self.assertEqual(out_strs["generated_text"][0], expected_text)
expected_slice = torch.tensor(
[[[-39.5397, -44.4024, -36.1844], [-61.4709, -63.8639, -58.3454], [-74.0225, -68.5494, -71.2164]]],
device=torch_device,
)
self.assertTrue(torch.allclose(outputs.logits[0][:, 1:4, 1:4], expected_slice, atol=1e-4))
| transformers/tests/models/mgp_str/test_modeling_mgp_str.py/0 | {
"file_path": "transformers/tests/models/mgp_str/test_modeling_mgp_str.py",
"repo_id": "transformers",
"token_count": 4204
} | 399 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch MobileNetV1 model. """
import unittest
from transformers import MobileNetV1Config
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetV1ForImageClassification, MobileNetV1Model
from transformers.models.mobilenet_v1.modeling_mobilenet_v1 import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetV1ImageProcessor
class MobileNetV1ConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "tf_padding"))
self.parent.assertTrue(hasattr(config, "depth_multiplier"))
class MobileNetV1ModelTester:
def __init__(
self,
parent,
batch_size=13,
num_channels=3,
image_size=32,
depth_multiplier=0.25,
min_depth=8,
tf_padding=True,
last_hidden_size=1024,
output_stride=32,
hidden_act="relu6",
classifier_dropout_prob=0.1,
initializer_range=0.02,
is_training=True,
use_labels=True,
num_labels=10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.depth_multiplier = depth_multiplier
self.min_depth = min_depth
self.tf_padding = tf_padding
self.last_hidden_size = int(last_hidden_size * depth_multiplier)
self.output_stride = output_stride
self.hidden_act = hidden_act
self.classifier_dropout_prob = classifier_dropout_prob
self.use_labels = use_labels
self.is_training = is_training
self.num_labels = num_labels
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return MobileNetV1Config(
num_channels=self.num_channels,
image_size=self.image_size,
depth_multiplier=self.depth_multiplier,
min_depth=self.min_depth,
tf_padding=self.tf_padding,
hidden_act=self.hidden_act,
classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = MobileNetV1Model(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape,
(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileNetV1ForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class MobileNetV1ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as MobileNetV1 does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (MobileNetV1Model, MobileNetV1ForImageClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": MobileNetV1Model, "image-classification": MobileNetV1ForImageClassification}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = MobileNetV1ModelTester(self)
self.config_tester = MobileNetV1ConfigTester(self, config_class=MobileNetV1Config, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions")
def test_attention_outputs(self):
pass
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_stages = 26
self.assertEqual(len(hidden_states), expected_num_stages)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = MobileNetV1Model.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class MobileNetV1ModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
MobileNetV1ImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224") if is_vision_available() else None
)
@slow
def test_inference_image_classification_head(self):
model = MobileNetV1ForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1001))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-4.1739, -1.1233, 3.1205]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
| transformers/tests/models/mobilenet_v1/test_modeling_mobilenet_v1.py/0 | {
"file_path": "transformers/tests/models/mobilenet_v1/test_modeling_mobilenet_v1.py",
"repo_id": "transformers",
"token_count": 3816
} | 400 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class OpenAIGPTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
"""Tests OpenAIGPTTokenizer that uses BERT BasicTokenizer."""
tokenizer_class = OpenAIGPTTokenizer
rust_tokenizer_class = OpenAIGPTTokenizerFast
test_rust_tokenizer = True
test_seq2seq = False
def setUp(self):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l o", "lo w", "e r</w>", ""]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(self.merges_file, "w") as fp:
fp.write("\n".join(merges))
def get_input_output_texts(self, tokenizer):
return "lower newer", "lower newer"
def test_full_tokenizer(self):
tokenizer = OpenAIGPTTokenizer(self.vocab_file, self.merges_file)
text = "lower"
bpe_tokens = ["low", "er</w>"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + ["<unk>"]
input_bpe_tokens = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def test_padding(self, max_length=15):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
# Simple input
s = "This is a simple input"
s2 = ["This is a simple input 1", "This is a simple input 2"]
p = ("This is a simple input", "This is a pair")
p2 = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")
# Simple input
self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")
# Simple input
self.assertRaises(
ValueError,
tokenizer_r.batch_encode_plus,
s2,
max_length=max_length,
padding="max_length",
)
# Pair input
self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")
# Pair input
self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")
# Pair input
self.assertRaises(
ValueError,
tokenizer_r.batch_encode_plus,
p2,
max_length=max_length,
padding="max_length",
)
# tokenizer has no padding token
def test_padding_different_model_input_name(self):
pass
@require_ftfy
@require_spacy
@require_tokenizers
class OpenAIGPTTokenizationTestWithSpacy(OpenAIGPTTokenizationTest):
"""Tests OpenAIGPTTokenizer that uses SpaCy and ftfy."""
pass
| transformers/tests/models/openai/test_tokenization_openai.py/0 | {
"file_path": "transformers/tests/models/openai/test_tokenization_openai.py",
"repo_id": "transformers",
"token_count": 2406
} | 401 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team, The Microsoft Research team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import tempfile
import unittest
from transformers import ProphetNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
ProphetNetDecoder,
ProphetNetEncoder,
ProphetNetForCausalLM,
ProphetNetForConditionalGeneration,
ProphetNetModel,
ProphetNetTokenizer,
)
from transformers.modeling_outputs import BaseModelOutput
class ProphetNetModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
hidden_size=16,
encoder_seq_length=7,
decoder_seq_length=9,
# For common tests
is_training=True,
use_attention_mask=True,
use_labels=True,
decoder_start_token_id=0,
encoder_ffn_dim=32,
num_encoder_layers=2,
num_encoder_attention_heads=4,
decoder_ffn_dim=32,
num_decoder_layers=2,
num_decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
ngram=2,
num_buckets=32,
relative_max_distance=128,
disable_ngram_loss=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_decoder_layers
self.num_encoder_layers = num_encoder_layers
self.num_decoder_layers = num_decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.num_attention_heads = num_decoder_attention_heads
self.num_encoder_attention_heads = num_encoder_attention_heads
self.num_decoder_attention_heads = num_decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.ngram = ngram
self.num_buckets = num_buckets
self.relative_max_distance = relative_max_distance
self.disable_ngram_loss = disable_ngram_loss
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 7
self.num_hidden_states_types = 3 # encoder, decoder_main, decoder_ngram
self.decoder_attention_idx = 2
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = self.get_config()
return (
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def get_config(self):
return ProphetNetConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_encoder_layers=self.num_encoder_layers,
num_decoder_layers=self.num_decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_ffn_dim=self.encoder_ffn_dim,
num_encoder_attention_heads=self.num_encoder_attention_heads,
num_decoder_attention_heads=self.num_decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
ngram=self.ngram,
num_buckets=self.num_buckets,
relative_max_distance=self.relative_max_distance,
disable_ngram_loss=self.disable_ngram_loss,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.encoder_seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
return (
config,
decoder_input_ids,
decoder_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
lm_labels,
)
def check_prepare_lm_labels_via_shift_left(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetModel(config=config)
model.to(torch_device)
model.eval()
# make sure that lm_labels are correctly padded from the right
lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id)
# add casaul pad token mask
triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not()
lm_labels.masked_fill_(triangular_mask, self.pad_token_id)
decoder_input_ids = model._shift_right(lm_labels)
for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)):
# first item
self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id)
if i < decoder_input_ids_slice.shape[-1]:
if i < decoder_input_ids.shape[-1] - 1:
# items before diagonal
self.parent.assertListEqual(
decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist()
)
# pad items after diagonal
if i < decoder_input_ids.shape[-1] - 2:
self.parent.assertListEqual(
decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist()
)
else:
# all items after square
self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist())
def create_and_check_model(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetModel(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
decoder_output = result.last_hidden_state
decoder_past = result.past_key_values
encoder_output = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size))
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(decoder_past), config.num_decoder_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0]), 4) # cross-attention + uni-directional self-attention
def create_and_check_with_lm_head(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetForConditionalGeneration(config=config).to(torch_device).eval()
outputs = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=lm_labels,
)
self.parent.assertEqual(len(outputs), 5)
self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size))
self.parent.assertEqual(outputs["loss"].size(), ())
def create_and_check_causal_lm_decoder(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetForCausalLM(config=config).to(torch_device).eval()
outputs = model(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
labels=lm_labels,
)
self.parent.assertEqual(len(outputs), 4)
self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size))
self.parent.assertEqual(outputs["loss"].size(), ())
def create_and_check_generate_with_past_key_value_states(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetForConditionalGeneration(config=config).to(torch_device).eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_decoder_generate_with_past_key_value_states(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetForCausalLM(config=config).to(torch_device).eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], num_beams=2, max_length=10, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=10, do_sample=True)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_model_fp16_forward(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetModel(config=config).to(torch_device).half().eval()
output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)["last_hidden_state"]
self.parent.assertFalse(torch.isnan(output).any().item())
def create_and_check_encoder_decoder_shared_weights(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
for model_class in [ProphetNetModel, ProphetNetForConditionalGeneration]:
torch.manual_seed(0)
model = model_class(config=config).to(torch_device).eval()
# load state dict copies weights but does not tie them
if model_class == ProphetNetForConditionalGeneration:
model.prophetnet.encoder.load_state_dict(model.prophetnet.decoder.state_dict(), strict=False)
else:
model.encoder.load_state_dict(model.decoder.state_dict(), strict=False)
torch.manual_seed(0)
tied_config = copy.deepcopy(config)
tied_config.tie_encoder_decoder = True
tied_model = model_class(config=tied_config).to(torch_device).eval()
model_result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
tied_model_result = tied_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
# check that models has less parameters
self.parent.assertLess(
sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
)
random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()
# check that outputs are equal
self.parent.assertTrue(
torch.allclose(
model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
)
)
# check that outputs after saving and loading are equal
with tempfile.TemporaryDirectory() as tmpdirname:
tied_model.save_pretrained(tmpdirname)
tied_model = model_class.from_pretrained(tmpdirname)
tied_model.to(torch_device)
tied_model.eval()
# check that models has less parameters
self.parent.assertLess(
sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
)
random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()
tied_model_result = tied_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
# check that outputs are equal
self.parent.assertTrue(
torch.allclose(
model_result[0][0, :, random_slice_idx],
tied_model_result[0][0, :, random_slice_idx],
atol=1e-4,
)
)
def check_fast_integration(
self,
config,
*args,
):
input_ids = torch.tensor([[7, 4, 78, 0, 24, 52, 43]], device=torch_device, dtype=torch.long)
decoder_input_ids = torch.tensor([[12, 62, 25, 11, 47, 15, 14]], device=torch_device, dtype=torch.long)
attention_mask = torch.tensor([[1, 1, 1, 0, 1, 0, 0]], device=torch_device, dtype=torch.long)
decoder_attention_mask = torch.tensor([[1, 1, 1, 0, 0, 1, 0]], device=torch_device, dtype=torch.long)
lm_labels = torch.tensor([[62, 25, 11, 47, 15, 14, 24]], device=torch_device, dtype=torch.long)
torch.manual_seed(0)
config.ngram = 4
model = ProphetNetForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
labels=lm_labels,
)
self.parent.assertTrue(torch.allclose(result.loss, torch.tensor(4.5892, device=torch_device), atol=1e-3))
expected_logit_slice = torch.tensor(
[-0.0184, 0.0758, -0.0543, -0.0093, 0.0050, -0.0660, -0.1453], device=torch_device
)
self.parent.assertTrue(torch.allclose(result.logits[0, :, 1], expected_logit_slice, atol=1e-3))
def check_model_with_attn_mask(self, config, input_ids, decoder_input_ids, *args):
model = ProphetNetModel(config=config)
model.to(torch_device)
model.eval()
outputs_no_mask = model(input_ids=input_ids[:, :5], decoder_input_ids=decoder_input_ids[:, :5])
attention_mask = torch.ones_like(input_ids)
decoder_attention_mask = torch.ones_like(decoder_input_ids)
attention_mask[:, 5:] = 0
outputs_with_mask = model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
# check encoder
self.parent.assertTrue(
torch.allclose(
outputs_no_mask.encoder_last_hidden_state[0, :, 0],
outputs_with_mask.encoder_last_hidden_state[0, :5, 0],
atol=1e-3,
)
)
# check decoder
# main stream
self.parent.assertTrue(
torch.allclose(
outputs_no_mask.last_hidden_state[0, :, 0], outputs_with_mask.last_hidden_state[0, :5, 0], atol=1e-3
)
)
# predict stream
self.parent.assertTrue(
torch.allclose(
outputs_no_mask.last_hidden_state_ngram[0, :5, 0],
outputs_with_mask.last_hidden_state_ngram[0, :5, 0],
atol=1e-2,
)
)
def check_causal_lm_from_pretrained(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, *args
):
model = ProphetNetForConditionalGeneration(config).to(torch_device).eval()
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
decoder = ProphetNetForCausalLM.from_pretrained(tmp_dirname).to(torch_device)
encoder_hidden_states = model.prophetnet.encoder(input_ids).last_hidden_state
model_outputs = model(
encoder_outputs=BaseModelOutput(last_hidden_state=encoder_hidden_states),
decoder_input_ids=decoder_input_ids,
)
dec_outputs = decoder(encoder_hidden_states=encoder_hidden_states, input_ids=decoder_input_ids)
self.parent.assertTrue(
torch.allclose(
model_outputs.logits[0, :5],
dec_outputs.logits[0, :5],
atol=1e-3,
)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"use_cache": False,
}
return config, inputs_dict
class ProphetNetStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
hidden_size=16,
encoder_seq_length=7,
decoder_seq_length=7,
# For common tests
is_training=True,
is_decoder=True,
use_attention_mask=True,
add_cross_attention=False,
use_cache=False,
use_labels=True,
decoder_start_token_id=0,
encoder_ffn_dim=32,
num_encoder_layers=2,
num_encoder_attention_heads=4,
decoder_ffn_dim=32,
num_decoder_layers=2,
num_decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
ngram=2,
num_buckets=32,
relative_max_distance=128,
disable_ngram_loss=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_decoder_layers
self.num_encoder_layers = num_encoder_layers
self.num_decoder_layers = num_decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.num_attention_heads = num_decoder_attention_heads
self.num_encoder_attention_heads = num_encoder_attention_heads
self.num_decoder_attention_heads = num_decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.ngram = ngram
self.num_buckets = num_buckets
self.relative_max_distance = relative_max_distance
self.use_cache = use_cache
self.disable_ngram_loss = disable_ngram_loss
self.max_position_embeddings = max_position_embeddings
self.add_cross_attention = add_cross_attention
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.num_hidden_states_types = 2 # decoder_main, decoder_ngram
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
config = ProphetNetConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_encoder_layers=self.num_encoder_layers,
num_decoder_layers=self.num_decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_ffn_dim=self.encoder_ffn_dim,
num_encoder_attention_heads=self.num_encoder_attention_heads,
num_decoder_attention_heads=self.num_decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
ngram=self.ngram,
num_buckets=self.num_buckets,
relative_max_distance=self.relative_max_distance,
disable_ngram_loss=self.disable_ngram_loss,
max_position_embeddings=self.max_position_embeddings,
add_cross_attention=self.add_cross_attention,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
lm_labels,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
attention_mask,
lm_labels,
) = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.encoder_seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
lm_labels,
)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = ProphetNetDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = ProphetNetDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
class ProphetNetStandaloneEncoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
hidden_size=16,
encoder_seq_length=7,
decoder_seq_length=7,
# For common tests
is_training=True,
is_decoder=False,
use_attention_mask=True,
add_cross_attention=False,
use_cache=False,
use_labels=True,
decoder_start_token_id=0,
encoder_ffn_dim=32,
num_encoder_layers=2,
num_encoder_attention_heads=4,
decoder_ffn_dim=32,
num_decoder_layers=2,
num_decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
num_buckets=32,
relative_max_distance=128,
disable_ngram_loss=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_decoder_layers
self.num_encoder_layers = num_encoder_layers
self.num_decoder_layers = num_decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.num_attention_heads = num_decoder_attention_heads
self.num_encoder_attention_heads = num_encoder_attention_heads
self.num_decoder_attention_heads = num_decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.num_buckets = num_buckets
self.relative_max_distance = relative_max_distance
self.use_cache = use_cache
self.disable_ngram_loss = disable_ngram_loss
self.max_position_embeddings = max_position_embeddings
self.add_cross_attention = add_cross_attention
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 1
self.num_hidden_states_types = 1
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
config = ProphetNetConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_encoder_layers=self.num_encoder_layers,
num_decoder_layers=self.num_decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_ffn_dim=self.encoder_ffn_dim,
num_encoder_attention_heads=self.num_encoder_attention_heads,
num_decoder_attention_heads=self.num_decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
num_buckets=self.num_buckets,
relative_max_distance=self.relative_max_distance,
disable_ngram_loss=self.disable_ngram_loss,
max_position_embeddings=self.max_position_embeddings,
add_cross_attention=self.add_cross_attention,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class ProphetNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (ProphetNetModel, ProphetNetForConditionalGeneration) if is_torch_available() else ()
all_generative_model_classes = (ProphetNetForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"conversational": ProphetNetForConditionalGeneration,
"feature-extraction": ProphetNetModel,
"summarization": ProphetNetForConditionalGeneration,
"text-generation": ProphetNetForCausalLM,
"text2text-generation": ProphetNetForConditionalGeneration,
"translation": ProphetNetForConditionalGeneration,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
is_encoder_decoder = True
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `ProphetNetConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def setUp(self):
self.model_tester = ProphetNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=ProphetNetConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_lm_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_with_lm_head(*config_and_inputs)
def test_only_decoder_causal_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_decoder(*config_and_inputs)
def test_fast_integration(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_fast_integration(*config_and_inputs)
def test_shared_weights(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs)
def test_shift_labels_via_shift_left(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs)
@unittest.skip("Flaky test with no simple resolution. TODO Fix me @patrickvonplaten")
def test_decoder_model_generate(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_generate_with_past_key_value_states(*config_and_inputs)
def test_encoder_decoder_model_generate(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_generate_with_past_key_value_states(*config_and_inputs)
def test_attn_mask_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_model_with_attn_mask(*config_and_inputs)
def test_config_save(self):
config = self.model_tester.prepare_config_and_inputs()[0]
config.add_cross_attention = False
with tempfile.TemporaryDirectory() as tmp_dirname:
config.save_pretrained(tmp_dirname)
config = ProphetNetConfig.from_pretrained(tmp_dirname)
self.assertFalse(config.add_cross_attention)
def test_causal_lm_from_pretrained(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_causal_lm_from_pretrained(*config_and_inputs)
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
def test_fp16_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)
# methods overwrite method in `test_modeling_common.py`
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
correct_outlen = 7
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
(self.model_tester.ngram + 1) * decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(self_attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_attentions = outputs.encoder_attentions[0]
encoder_hidden_states.retain_grad()
encoder_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(encoder_attentions.grad)
def test_generate_with_head_masking(self):
"""Generating with head_masking has not been implemented for ProphetNet models yet."""
pass
@require_torch
class ProphetNetStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (ProphetNetDecoder, ProphetNetForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (ProphetNetForCausalLM,) if is_torch_available() else ()
test_pruning = False
test_resize_embeddings = False
is_encoder_decoder = False
def setUp(self):
self.model_tester = ProphetNetStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=ProphetNetConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
return
@unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :)
def test_left_padding_compatibility(self):
pass
@require_torch
class ProphetNetStandaloneEncoderModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (ProphetNetEncoder,) if is_torch_available() else ()
test_pruning = False
test_resize_embeddings = False
is_encoder_decoder = False
def setUp(self):
self.model_tester = ProphetNetStandaloneEncoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=ProphetNetConfig)
def test_config(self):
self.config_tester.run_common_tests()
@require_torch
class ProphetNetModelIntegrationTest(unittest.TestCase):
@slow
def test_pretrained_checkpoint_hidden_states(self):
model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased")
model.to(torch_device)
# encoder-decoder outputs
encoder_ids = torch.tensor(
[
[
2871,
102,
2048,
3176,
2780,
1997,
2871,
26727,
2169,
2097,
12673,
1996,
8457,
2006,
2049,
8240,
2859,
2799,
1012,
2023,
6512,
2038,
2174,
13977,
2195,
25962,
1012,
102,
]
]
).to(torch_device)
decoder_prev_ids = torch.tensor([[102, 2129, 2116, 2372, 2024, 2006, 2169, 1997, 2122, 2048, 2780, 1029]]).to(
torch_device
)
output = model(
input_ids=encoder_ids,
attention_mask=None,
encoder_outputs=None,
decoder_input_ids=decoder_prev_ids,
)
output_predited_logits = output[0]
expected_shape = torch.Size((1, 12, 30522))
self.assertEqual(output_predited_logits.shape, expected_shape)
expected_slice = torch.tensor(
[[[-7.7729, -8.0343, -8.26001], [-7.74213, -7.8629, -8.6000], [-7.7328, -7.8269, -8.5264]]]
).to(torch_device)
# self.assertTrue(torch.allclose(output_predited_logits[:, :3, :3], expected_slice, atol=1e-4))
assert torch.allclose(output_predited_logits[:, :3, :3], expected_slice, atol=1e-4)
# encoder outputs
encoder_outputs = model.prophetnet.encoder(encoder_ids)[0]
expected_encoder_outputs_slice = torch.tensor(
[[[-0.2526, -0.1951, -0.2185], [-0.8923, 0.2992, -0.4623], [-0.4585, 0.0165, -0.6652]]]
).to(torch_device)
expected_shape_encoder = torch.Size((1, 28, 1024))
self.assertEqual(encoder_outputs.shape, expected_shape_encoder)
# self.assertTrue(torch.allclose(encoder_outputs[:, :3, :3], expected_encoder_outputs_slice, atol=1e-4))
assert torch.allclose(encoder_outputs[:, :3, :3], expected_encoder_outputs_slice, atol=1e-4)
# decoder outputs
decoder_outputs = model.prophetnet.decoder(decoder_prev_ids, encoder_hidden_states=encoder_outputs)
predicting_streams = decoder_outputs[1].view(1, model.config.ngram, 12, -1)
predicting_streams_logits = model.lm_head(predicting_streams)
next_first_stream_logits = predicting_streams_logits[:, 0]
# self.assertTrue(torch.allclose(next_first_stream_logits[:, :3, :3], expected_slice, atol=1e-4))
assert torch.allclose(next_first_stream_logits[:, :3, :3], expected_slice, atol=1e-4)
@slow
def test_cnndm_inference(self):
model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased-cnndm")
model.config.max_length = 512
model.to(torch_device)
tokenizer = ProphetNetTokenizer.from_pretrained("microsoft/prophetnet-large-uncased-cnndm")
ARTICLE_TO_SUMMARIZE = (
"USTC was founded in Beijing by the Chinese Academy of Sciences (CAS) in September 1958. The Director of"
" CAS, Mr. Guo Moruo was appointed the first president of USTC. USTC's founding mission was to develop a"
" high-level science and technology workforce, as deemed critical for development of China's economy,"
' defense, and science and technology education. The establishment was hailed as "A Major Event in the'
' History of Chinese Education and Science." CAS has supported USTC by combining most of its institutes'
" with the departments of the university. USTC is listed in the top 16 national key universities, becoming"
" the youngest national key university.".lower()
)
input_ids = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=511, return_tensors="pt").input_ids
input_ids = input_ids.to(torch_device)
summary_ids = model.generate(
input_ids, num_beams=4, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True
)
EXPECTED_SUMMARIZE_512 = (
"us ##tc was founded by the chinese academy of sciences ( cas ) in 1958 . [X_SEP] us ##tc is listed in the"
" top 16 national key universities ."
)
generated_titles = [
" ".join(tokenizer.convert_ids_to_tokens(g, skip_special_tokens=True)) for g in summary_ids
]
self.assertListEqual(
[EXPECTED_SUMMARIZE_512],
generated_titles,
)
input_ids = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=99, return_tensors="pt").input_ids
input_ids = input_ids.to(torch_device)
# actually 98 tokens are used. max_length=100 contains bos and eos.
summary_ids = model.generate(
input_ids, num_beams=4, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True
)
EXPECTED_SUMMARIZE_100 = (
r"us ##tc was founded in beijing by the chinese academy of sciences ( cas ) in 1958 . [X_SEP] us ##tc "
"'"
" s founding mission was to develop a high - level science and technology workforce . [X_SEP]"
' establishment hailed as " a major event in the history of chinese education and science "'
)
generated_titles = [
" ".join(tokenizer.convert_ids_to_tokens(g, skip_special_tokens=True)) for g in summary_ids
]
self.assertListEqual(
[EXPECTED_SUMMARIZE_100],
generated_titles,
)
@slow
def test_question_gen_inference(self):
model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased-squad-qg")
model.to(torch_device)
tokenizer = ProphetNetTokenizer.from_pretrained("microsoft/prophetnet-large-uncased-squad-qg")
INPUTS = [
"Bill Gates [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.",
"1975 [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.",
"April 4, 1975 [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.",
]
input_ids = tokenizer(INPUTS, truncation=True, padding=True, return_tensors="pt").input_ids
input_ids = input_ids.to(torch_device)
gen_output = model.generate(input_ids, num_beams=5, early_stopping=True)
generated_questions = tokenizer.batch_decode(gen_output, skip_special_tokens=True)
EXPECTED_QUESTIONS = [
"along with paul allen, who founded microsoft?",
"what year was microsoft founded?",
"when was microsoft founded?",
]
self.assertListEqual(
EXPECTED_QUESTIONS,
generated_questions,
)
| transformers/tests/models/prophetnet/test_modeling_prophetnet.py/0 | {
"file_path": "transformers/tests/models/prophetnet/test_modeling_prophetnet.py",
"repo_id": "transformers",
"token_count": 25713
} | 402 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch REALM model. """
import copy
import unittest
import numpy as np
from transformers import RealmConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
RealmEmbedder,
RealmForOpenQA,
RealmKnowledgeAugEncoder,
RealmReader,
RealmRetriever,
RealmScorer,
RealmTokenizer,
)
class RealmModelTester:
def __init__(
self,
parent,
batch_size=13,
retriever_proj_size=128,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
span_hidden_size=50,
max_span_width=10,
reader_layer_norm_eps=1e-3,
reader_beam_size=4,
reader_seq_len=288 + 32,
num_block_records=13353718,
searcher_beam_size=8,
searcher_seq_len=64,
num_labels=3,
num_choices=4,
num_candidates=10,
scope=None,
):
# General config
self.parent = parent
self.batch_size = batch_size
self.retriever_proj_size = retriever_proj_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
# Reader config
self.span_hidden_size = span_hidden_size
self.max_span_width = max_span_width
self.reader_layer_norm_eps = reader_layer_norm_eps
self.reader_beam_size = reader_beam_size
self.reader_seq_len = reader_seq_len
# Searcher config
self.num_block_records = num_block_records
self.searcher_beam_size = searcher_beam_size
self.searcher_seq_len = searcher_seq_len
self.num_labels = num_labels
self.num_choices = num_choices
self.num_candidates = num_candidates
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
candiate_input_ids = ids_tensor([self.batch_size, self.num_candidates, self.seq_length], self.vocab_size)
reader_input_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.vocab_size)
input_mask = None
candiate_input_mask = None
reader_input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
candiate_input_mask = random_attention_mask([self.batch_size, self.num_candidates, self.seq_length])
reader_input_mask = random_attention_mask([self.reader_beam_size, self.reader_seq_len])
token_type_ids = None
candidate_token_type_ids = None
reader_token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
candidate_token_type_ids = ids_tensor(
[self.batch_size, self.num_candidates, self.seq_length], self.type_vocab_size
)
reader_token_type_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
# inputs with additional num_candidates axis.
scorer_encoder_inputs = (candiate_input_ids, candiate_input_mask, candidate_token_type_ids)
# reader inputs
reader_inputs = (reader_input_ids, reader_input_mask, reader_token_type_ids)
return (
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
)
def get_config(self):
return RealmConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
retriever_proj_size=self.retriever_proj_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_candidates=self.num_candidates,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
def create_and_check_embedder(
self,
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
):
model = RealmEmbedder(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.projected_score.shape, (self.batch_size, self.retriever_proj_size))
def create_and_check_encoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
):
model = RealmKnowledgeAugEncoder(config=config)
model.to(torch_device)
model.eval()
relevance_score = floats_tensor([self.batch_size, self.num_candidates])
result = model(
scorer_encoder_inputs[0],
attention_mask=scorer_encoder_inputs[1],
token_type_ids=scorer_encoder_inputs[2],
relevance_score=relevance_score,
labels=token_labels,
)
self.parent.assertEqual(
result.logits.shape, (self.batch_size * self.num_candidates, self.seq_length, self.vocab_size)
)
def create_and_check_reader(
self,
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
):
model = RealmReader(config=config)
model.to(torch_device)
model.eval()
relevance_score = floats_tensor([self.reader_beam_size])
result = model(
reader_inputs[0],
attention_mask=reader_inputs[1],
token_type_ids=reader_inputs[2],
relevance_score=relevance_score,
)
self.parent.assertEqual(result.block_idx.shape, ())
self.parent.assertEqual(result.candidate.shape, ())
self.parent.assertEqual(result.start_pos.shape, ())
self.parent.assertEqual(result.end_pos.shape, ())
def create_and_check_scorer(
self,
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
):
model = RealmScorer(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
candidate_input_ids=scorer_encoder_inputs[0],
candidate_attention_mask=scorer_encoder_inputs[1],
candidate_token_type_ids=scorer_encoder_inputs[2],
)
self.parent.assertEqual(result.relevance_score.shape, (self.batch_size, self.num_candidates))
self.parent.assertEqual(result.query_score.shape, (self.batch_size, self.retriever_proj_size))
self.parent.assertEqual(
result.candidate_score.shape, (self.batch_size, self.num_candidates, self.retriever_proj_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class RealmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
RealmEmbedder,
RealmKnowledgeAugEncoder,
# RealmScorer is excluded from common tests as it is a container model
# consisting of two RealmEmbedders & a simple inner product calculation.
# RealmScorer
)
if is_torch_available()
else ()
)
all_generative_model_classes = ()
pipeline_model_mapping = {} if is_torch_available() else {}
# disable these tests because there is no base_model in Realm
test_save_load_fast_init_from_base = False
test_save_load_fast_init_to_base = False
def setUp(self):
self.test_pruning = False
self.model_tester = RealmModelTester(self)
self.config_tester = ConfigTester(self, config_class=RealmConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_embedder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_embedder(*config_and_inputs)
def test_encoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_encoder(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_embedder(*config_and_inputs)
self.model_tester.create_and_check_encoder(*config_and_inputs)
def test_scorer(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_scorer(*config_and_inputs)
def test_training(self):
if not self.model_tester.is_training:
return
config, *inputs = self.model_tester.prepare_config_and_inputs()
input_ids, token_type_ids, input_mask, scorer_encoder_inputs = inputs[0:4]
config.return_dict = True
tokenizer = RealmTokenizer.from_pretrained("google/realm-orqa-nq-openqa")
# RealmKnowledgeAugEncoder training
model = RealmKnowledgeAugEncoder(config)
model.to(torch_device)
model.train()
inputs_dict = {
"input_ids": scorer_encoder_inputs[0].to(torch_device),
"attention_mask": scorer_encoder_inputs[1].to(torch_device),
"token_type_ids": scorer_encoder_inputs[2].to(torch_device),
"relevance_score": floats_tensor([self.model_tester.batch_size, self.model_tester.num_candidates]),
}
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
inputs = inputs_dict
loss = model(**inputs).loss
loss.backward()
# RealmForOpenQA training
openqa_config = copy.deepcopy(config)
openqa_config.vocab_size = 30522 # the retrieved texts will inevitably have more than 99 vocabs.
openqa_config.num_block_records = 5
openqa_config.searcher_beam_size = 2
block_records = np.array(
[
b"This is the first record.",
b"This is the second record.",
b"This is the third record.",
b"This is the fourth record.",
b"This is the fifth record.",
],
dtype=object,
)
retriever = RealmRetriever(block_records, tokenizer)
model = RealmForOpenQA(openqa_config, retriever)
model.to(torch_device)
model.train()
inputs_dict = {
"input_ids": input_ids[:1].to(torch_device),
"attention_mask": input_mask[:1].to(torch_device),
"token_type_ids": token_type_ids[:1].to(torch_device),
"answer_ids": input_ids[:1].tolist(),
}
inputs = self._prepare_for_class(inputs_dict, RealmForOpenQA)
loss = model(**inputs).reader_output.loss
loss.backward()
# Test model.block_embedding_to
device = torch.device("cpu")
model.block_embedding_to(device)
loss = model(**inputs).reader_output.loss
loss.backward()
self.assertEqual(model.block_emb.device.type, device.type)
@slow
def test_embedder_from_pretrained(self):
model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder")
self.assertIsNotNone(model)
@slow
def test_encoder_from_pretrained(self):
model = RealmKnowledgeAugEncoder.from_pretrained("google/realm-cc-news-pretrained-encoder")
self.assertIsNotNone(model)
@slow
def test_open_qa_from_pretrained(self):
model = RealmForOpenQA.from_pretrained("google/realm-orqa-nq-openqa")
self.assertIsNotNone(model)
@slow
def test_reader_from_pretrained(self):
model = RealmReader.from_pretrained("google/realm-orqa-nq-reader")
self.assertIsNotNone(model)
@slow
def test_scorer_from_pretrained(self):
model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer")
self.assertIsNotNone(model)
@require_torch
class RealmModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_embedder(self):
retriever_projected_size = 128
model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
expected_shape = torch.Size((1, retriever_projected_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[-0.0714, -0.0837, -0.1314]])
self.assertTrue(torch.allclose(output[:, :3], expected_slice, atol=1e-4))
@slow
def test_inference_encoder(self):
num_candidates = 2
vocab_size = 30522
model = RealmKnowledgeAugEncoder.from_pretrained(
"google/realm-cc-news-pretrained-encoder", num_candidates=num_candidates
)
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
relevance_score = torch.tensor([[0.3, 0.7]], dtype=torch.float32)
output = model(input_ids, relevance_score=relevance_score)[0]
expected_shape = torch.Size((2, 6, vocab_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[[-11.0888, -11.2544], [-10.2170, -10.3874]]])
self.assertTrue(torch.allclose(output[1, :2, :2], expected_slice, atol=1e-4))
@slow
def test_inference_open_qa(self):
from transformers.models.realm.retrieval_realm import RealmRetriever
tokenizer = RealmTokenizer.from_pretrained("google/realm-orqa-nq-openqa")
retriever = RealmRetriever.from_pretrained("google/realm-orqa-nq-openqa")
model = RealmForOpenQA.from_pretrained(
"google/realm-orqa-nq-openqa",
retriever=retriever,
)
question = "Who is the pioneer in modern computer science?"
question = tokenizer(
[question],
padding=True,
truncation=True,
max_length=model.config.searcher_seq_len,
return_tensors="pt",
).to(model.device)
predicted_answer_ids = model(**question).predicted_answer_ids
predicted_answer = tokenizer.decode(predicted_answer_ids)
self.assertEqual(predicted_answer, "alan mathison turing")
@slow
def test_inference_reader(self):
config = RealmConfig(reader_beam_size=2, max_span_width=3)
model = RealmReader.from_pretrained("google/realm-orqa-nq-reader", config=config)
concat_input_ids = torch.arange(10).view((2, 5))
concat_token_type_ids = torch.tensor([[0, 0, 1, 1, 1], [0, 0, 1, 1, 1]], dtype=torch.int64)
concat_block_mask = torch.tensor([[0, 0, 1, 1, 0], [0, 0, 1, 1, 0]], dtype=torch.int64)
relevance_score = torch.tensor([0.3, 0.7], dtype=torch.float32)
output = model(
concat_input_ids,
token_type_ids=concat_token_type_ids,
relevance_score=relevance_score,
block_mask=concat_block_mask,
return_dict=True,
)
block_idx_expected_shape = torch.Size(())
start_pos_expected_shape = torch.Size((1,))
end_pos_expected_shape = torch.Size((1,))
self.assertEqual(output.block_idx.shape, block_idx_expected_shape)
self.assertEqual(output.start_pos.shape, start_pos_expected_shape)
self.assertEqual(output.end_pos.shape, end_pos_expected_shape)
expected_block_idx = torch.tensor(1)
expected_start_pos = torch.tensor(3)
expected_end_pos = torch.tensor(3)
self.assertTrue(torch.allclose(output.block_idx, expected_block_idx, atol=1e-4))
self.assertTrue(torch.allclose(output.start_pos, expected_start_pos, atol=1e-4))
self.assertTrue(torch.allclose(output.end_pos, expected_end_pos, atol=1e-4))
@slow
def test_inference_scorer(self):
num_candidates = 2
model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer", num_candidates=num_candidates)
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
candidate_input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
output = model(input_ids, candidate_input_ids=candidate_input_ids)[0]
expected_shape = torch.Size((1, 2))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[0.7410, 0.7170]])
self.assertTrue(torch.allclose(output, expected_slice, atol=1e-4))
| transformers/tests/models/realm/test_modeling_realm.py/0 | {
"file_path": "transformers/tests/models/realm/test_modeling_realm.py",
"repo_id": "transformers",
"token_count": 9513
} | 403 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ResNet model. """
import unittest
from transformers import ResNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ResNetBackbone, ResNetForImageClassification, ResNetModel
from transformers.models.resnet.modeling_resnet import RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class ResNetModelTester:
def __init__(
self,
parent,
batch_size=3,
image_size=32,
num_channels=3,
embeddings_size=10,
hidden_sizes=[10, 20, 30, 40],
depths=[1, 1, 2, 1],
is_training=True,
use_labels=True,
hidden_act="relu",
num_labels=3,
scope=None,
out_features=["stage2", "stage3", "stage4"],
out_indices=[2, 3, 4],
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.embeddings_size = embeddings_size
self.hidden_sizes = hidden_sizes
self.depths = depths
self.is_training = is_training
self.use_labels = use_labels
self.hidden_act = hidden_act
self.num_labels = num_labels
self.scope = scope
self.num_stages = len(hidden_sizes)
self.out_features = out_features
self.out_indices = out_indices
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return ResNetConfig(
num_channels=self.num_channels,
embeddings_size=self.embeddings_size,
hidden_sizes=self.hidden_sizes,
depths=self.depths,
hidden_act=self.hidden_act,
num_labels=self.num_labels,
out_features=self.out_features,
out_indices=self.out_indices,
)
def create_and_check_model(self, config, pixel_values, labels):
model = ResNetModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = ResNetForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_backbone(self, config, pixel_values, labels):
model = ResNetBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4])
# verify channels
self.parent.assertEqual(len(model.channels), len(config.out_features))
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:])
# verify backbone works with out_features=None
config.out_features = None
model = ResNetBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1])
# verify channels
self.parent.assertEqual(len(model.channels), 1)
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class ResNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as ResNet does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(
ResNetModel,
ResNetForImageClassification,
ResNetBackbone,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{"feature-extraction": ResNetModel, "image-classification": ResNetForImageClassification}
if is_torch_available()
else {}
)
fx_compatible = True
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = ResNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=ResNetConfig, has_text_modality=False)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
@unittest.skip(reason="ResNet does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="ResNet does not support input and output embeddings")
def test_model_common_attributes(self):
pass
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_backbone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*config_and_inputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config=config)
for name, module in model.named_modules():
if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
self.assertTrue(
torch.all(module.weight == 1),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
self.assertTrue(
torch.all(module.bias == 0),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_stages = self.model_tester.num_stages
self.assertEqual(len(hidden_states), expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
layers_type = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
config.layer_type = layer_type
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
@unittest.skip(reason="ResNet does not use feedforward chunking")
def test_feed_forward_chunking(self):
pass
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ResNetModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class ResNetModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
AutoImageProcessor.from_pretrained(RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def test_inference_image_classification_head(self):
model = ResNetForImageClassification.from_pretrained(RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-11.1069, -9.7877, -8.3777]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
@require_torch
class ResNetBackboneTest(BackboneTesterMixin, unittest.TestCase):
all_model_classes = (ResNetBackbone,) if is_torch_available() else ()
has_attentions = False
config_class = ResNetConfig
def setUp(self):
self.model_tester = ResNetModelTester(self)
| transformers/tests/models/resnet/test_modeling_resnet.py/0 | {
"file_path": "transformers/tests/models/resnet/test_modeling_resnet.py",
"repo_id": "transformers",
"token_count": 5143
} | 404 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch RoFormer model. """
import unittest
from transformers import RoFormerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerModel,
)
from transformers.models.roformer.modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerSelfAttention,
RoFormerSinusoidalPositionalEmbedding,
)
class RoFormerModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return RoFormerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RoFormerModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = RoFormerModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = RoFormerForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_generate_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
model = RoFormerForCausalLM(config=config).to(torch_device).eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], num_beams=2, max_length=15, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=15, do_sample=True)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RoFormerForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = RoFormerForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RoFormerForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = RoFormerForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = RoFormerForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = RoFormerForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class RoFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
RoFormerModel,
RoFormerForMaskedLM,
RoFormerForCausalLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (RoFormerForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": RoFormerModel,
"fill-mask": RoFormerForMaskedLM,
"question-answering": RoFormerForQuestionAnswering,
"text-classification": RoFormerForSequenceClassification,
"text-generation": RoFormerForCausalLM,
"token-classification": RoFormerForTokenClassification,
"zero-shot": RoFormerForSequenceClassification,
}
if is_torch_available()
else {}
)
def setUp(self):
self.model_tester = RoFormerModelTester(self)
self.config_tester = ConfigTester(self, config_class=RoFormerConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_generate_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_generate_causal_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
@slow
def test_model_from_pretrained(self):
for model_name in ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = RoFormerModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@require_torch
class RoFormerModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
with torch.no_grad():
output = model(input_ids)[0]
# TODO Replace vocab size
vocab_size = 50000
expected_shape = torch.Size((1, 6, vocab_size))
self.assertEqual(output.shape, expected_shape)
# TODO Replace values below with what was printed above.
expected_slice = torch.tensor(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
@require_torch
class RoFormerSinusoidalPositionalEmbeddingTest(unittest.TestCase):
tolerance = 1e-4
def test_basic(self):
input_ids = torch.tensor([[4, 10]], dtype=torch.long, device=torch_device)
emb1 = RoFormerSinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6).to(torch_device)
emb = emb1(input_ids.shape)
desired_weights = torch.tensor(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]]
).to(torch_device)
self.assertTrue(
torch.allclose(emb, desired_weights, atol=self.tolerance),
msg=f"\nexp:\n{desired_weights}\ngot:\n{emb[0]}\n",
)
def test_positional_emb_weights_against_roformer(self):
desired_weights = torch.tensor(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
]
).to(torch_device)
emb1 = RoFormerSinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512).to(torch_device)
weights = emb1.weight.data[:3, :5].to(torch_device)
self.assertTrue(
torch.allclose(weights, desired_weights, atol=self.tolerance),
msg=f"\nexp:\n{desired_weights}\ngot:\n{weights}\n",
)
@require_torch
class RoFormerSelfAttentionRotaryPositionEmbeddingTest(unittest.TestCase):
tolerance = 1e-4
def test_apply_rotary_position_embeddings(self):
# 2,12,16,64
query_layer = (
torch.arange(2 * 12 * 16 * 64, dtype=torch.float, device=torch_device).reshape(2, 12, 16, 64) / 100
).to(torch_device)
key_layer = (
-torch.arange(2 * 12 * 16 * 64, dtype=torch.float, device=torch_device).reshape(2, 12, 16, 64) / 100
).to(torch_device)
embed_positions = RoFormerSinusoidalPositionalEmbedding(num_positions=32, embedding_dim=64).to(torch_device)
sinusoidal_pos = embed_positions([2, 16, 768])[None, None, :, :]
query_layer, key_layer = RoFormerSelfAttention.apply_rotary_position_embeddings(
sinusoidal_pos, query_layer, key_layer
)
desired_query_layer = torch.tensor(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
]
).to(torch_device)
desired_key_layer = torch.tensor(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
]
).to(torch_device)
self.assertTrue(
torch.allclose(query_layer[0, 0, :6, :8], desired_query_layer, atol=self.tolerance),
msg=f"\nexp:\n{desired_query_layer}\ngot:\n{query_layer}\n",
)
self.assertTrue(
torch.allclose(key_layer[0, 0, :6, :8], desired_key_layer, atol=self.tolerance),
msg=f"\nexp:\n{desired_key_layer}\ngot:\n{key_layer}\n",
)
| transformers/tests/models/roformer/test_modeling_roformer.py/0 | {
"file_path": "transformers/tests/models/roformer/test_modeling_roformer.py",
"repo_id": "transformers",
"token_count": 11379
} | 405 |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import Speech2TextFeatureExtractor
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
global_rng = random.Random()
# Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
@require_torch
@require_torchaudio
class Speech2TextFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=24,
num_mel_bins=24,
padding_value=0.0,
sampling_rate=16_000,
return_attention_mask=True,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.feature_size = feature_size
self.num_mel_bins = num_mel_bins
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class Speech2TextFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = Speech2TextFeatureExtractor
def setUp(self):
self.feat_extract_tester = Speech2TextFeatureExtractionTester(self)
def _check_zero_mean_unit_variance(self, input_vector):
self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3))
self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3))
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_cepstral_mean_and_variance_normalization(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
paddings = ["longest", "max_length", "do_not_pad"]
max_lengths = [None, 16, None]
for max_length, padding in zip(max_lengths, paddings):
inputs = feature_extractor(
speech_inputs, padding=padding, max_length=max_length, return_attention_mask=True
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = [np.sum(x) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])
def test_cepstral_mean_and_variance_normalization_np(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
paddings = ["longest", "max_length", "do_not_pad"]
max_lengths = [None, 16, None]
for max_length, padding in zip(max_lengths, paddings):
inputs = feature_extractor(
speech_inputs, max_length=max_length, padding=padding, return_tensors="np", return_attention_mask=True
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = [np.sum(x) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6)
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6)
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])
def test_cepstral_mean_and_variance_normalization_trunc_max_length(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
inputs = feature_extractor(
speech_inputs,
padding="max_length",
max_length=4,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1])
self._check_zero_mean_unit_variance(input_features[2])
def test_cepstral_mean_and_variance_normalization_trunc_longest(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
inputs = feature_extractor(
speech_inputs,
padding="longest",
max_length=4,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape, (3, 4, 24))
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
inputs = feature_extractor(
speech_inputs,
padding="longest",
max_length=16,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape, (3, 6, 24))
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_integration(self):
# fmt: off
expected = np.array([
-1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241,
-1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128,
-1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625,
])
# fmt: on
input_speech = self._load_datasamples(1)
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
input_features = feature_extractor(input_speech, return_tensors="pt").input_features
self.assertEquals(input_features.shape, (1, 584, 24))
self.assertTrue(np.allclose(input_features[0, 0, :30], expected, atol=1e-4))
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
self.assertDictEqual(dict_first, dict_second)
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
self.assertEqual(dict_first, dict_second)
# exact same tests than before, except that we simulate that torchaudio is not available
@require_torch
@unittest.mock.patch(
"transformers.models.speech_to_text.feature_extraction_speech_to_text.is_speech_available", lambda: False
)
class Speech2TextFeatureExtractionWithoutTorchaudioTest(Speech2TextFeatureExtractionTest):
def test_using_audio_utils(self):
# Tests that it uses audio_utils instead of torchaudio
feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
self.assertTrue(hasattr(feat_extract, "window"))
self.assertTrue(hasattr(feat_extract, "mel_filters"))
from transformers.models.speech_to_text.feature_extraction_speech_to_text import is_speech_available
self.assertFalse(is_speech_available())
| transformers/tests/models/speech_to_text/test_feature_extraction_speech_to_text.py/0 | {
"file_path": "transformers/tests/models/speech_to_text/test_feature_extraction_speech_to_text.py",
"repo_id": "transformers",
"token_count": 6315
} | 406 |
# coding=utf-8
# Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class SqueezeBertModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=64,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
q_groups=2,
k_groups=2,
v_groups=2,
post_attention_groups=2,
intermediate_groups=4,
output_groups=1,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.q_groups = q_groups
self.k_groups = k_groups
self.v_groups = v_groups
self.post_attention_groups = post_attention_groups
self.intermediate_groups = intermediate_groups
self.output_groups = output_groups
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return SqueezeBertConfig(
embedding_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
attention_probs_dropout_prob=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
q_groups=self.q_groups,
k_groups=self.k_groups,
v_groups=self.v_groups,
post_attention_groups=self.post_attention_groups,
intermediate_groups=self.intermediate_groups,
output_groups=self.output_groups,
)
def create_and_check_squeezebert_model(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = SqueezeBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_squeezebert_for_masked_lm(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = SqueezeBertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_squeezebert_for_question_answering(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = SqueezeBertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_squeezebert_for_sequence_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = SqueezeBertForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_squeezebert_for_token_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = SqueezeBertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_squeezebert_for_multiple_choice(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = SqueezeBertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class SqueezeBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
pipeline_model_mapping = (
{
"feature-extraction": SqueezeBertModel,
"fill-mask": SqueezeBertForMaskedLM,
"question-answering": SqueezeBertForQuestionAnswering,
"text-classification": SqueezeBertForSequenceClassification,
"token-classification": SqueezeBertForTokenClassification,
"zero-shot": SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = True
test_head_masking = False
def setUp(self):
self.model_tester = SqueezeBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=SqueezeBertConfig, dim=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_squeezebert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = SqueezeBertModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_sentencepiece
@require_tokenizers
@require_torch
class SqueezeBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_classification_head(self):
model = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli")
input_ids = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]])
output = model(input_ids)[0]
expected_shape = torch.Size((1, 3))
self.assertEqual(output.shape, expected_shape)
expected_tensor = torch.tensor([[0.6401, -0.0349, -0.6041]])
self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))
| transformers/tests/models/squeezebert/test_modeling_squeezebert.py/0 | {
"file_path": "transformers/tests/models/squeezebert/test_modeling_squeezebert.py",
"repo_id": "transformers",
"token_count": 5314
} | 407 |
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import pickle
import tempfile
import unittest
from transformers import T5Config, is_torch_available
from transformers.models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
from transformers.testing_utils import (
require_accelerate,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_fx_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_fx_available():
from transformers.utils.fx import symbolic_trace
if is_torch_available():
import torch
from transformers import (
AutoTokenizer,
ByT5Tokenizer,
T5EncoderModel,
T5ForConditionalGeneration,
T5ForQuestionAnswering,
T5ForSequenceClassification,
T5ForTokenClassification,
T5Model,
T5Tokenizer,
)
from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
class T5ModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
encoder_seq_length=7,
decoder_seq_length=7,
# For common tests
is_training=True,
use_attention_mask=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
decoder_start_token_id=0,
scope=None,
decoder_layers=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.scope = None
self.decoder_layers = decoder_layers
def get_large_model_config(self):
return T5Config.from_pretrained("t5-base")
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size).clamp(2)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = self.get_config()
return (
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def get_pipeline_config(self):
return T5Config(
vocab_size=166, # t5 forces 100 extra tokens
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
def get_config(self):
return T5Config(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
def check_prepare_lm_labels_via_shift_left(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = T5Model(config=config)
model.to(torch_device)
model.eval()
# make sure that lm_labels are correctly padded from the right
lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id)
# add casaul pad token mask
triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not()
lm_labels.masked_fill_(triangular_mask, self.pad_token_id)
decoder_input_ids = model._shift_right(lm_labels)
for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)):
# first item
self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id)
if i < decoder_input_ids_slice.shape[-1]:
if i < decoder_input_ids.shape[-1] - 1:
# items before diagonal
self.parent.assertListEqual(
decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist()
)
# pad items after diagonal
if i < decoder_input_ids.shape[-1] - 2:
self.parent.assertListEqual(
decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist()
)
else:
# all items after square
self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist())
def create_and_check_model(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = T5Model(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
decoder_output = result.last_hidden_state
decoder_past = result.past_key_values
encoder_output = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size))
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(decoder_past), config.num_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0]), 4)
def create_and_check_with_lm_head(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = T5ForConditionalGeneration(config=config).to(torch_device).eval()
outputs = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=lm_labels,
)
self.parent.assertEqual(len(outputs), 4)
self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size))
self.parent.assertEqual(outputs["loss"].size(), ())
def create_and_check_with_sequence_classification_head(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
labels = torch.tensor([1] * self.batch_size, dtype=torch.long, device=torch_device)
model = T5ForSequenceClassification(config=config).to(torch_device).eval()
outputs = model(
input_ids=input_ids,
decoder_input_ids=input_ids,
labels=labels,
)
# self.parent.assertEqual(len(outputs), 4)
self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, config.num_labels))
self.parent.assertEqual(outputs["loss"].size(), ())
def create_and_check_decoder_model_past(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = T5Model(config=config).get_decoder().to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
output, past_key_values = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = T5Model(config=config).get_decoder()
model.to(torch_device)
model.eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
output, past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True).to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = T5Model(config=config).get_decoder().to(torch_device).eval()
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_generate_with_past_key_values(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = T5ForConditionalGeneration(config=config).to(torch_device).eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_model_fp16_forward(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = T5Model(config=config).to(torch_device).half().eval()
output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)["last_hidden_state"]
self.parent.assertFalse(torch.isnan(output).any().item())
def create_and_check_encoder_decoder_shared_weights(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
for model_class in [T5Model, T5ForConditionalGeneration]:
torch.manual_seed(0)
model = model_class(config=config).to(torch_device).eval()
# load state dict copies weights but does not tie them
model.encoder.load_state_dict(model.decoder.state_dict(), strict=False)
torch.manual_seed(0)
tied_config = copy.deepcopy(config)
tied_config.tie_encoder_decoder = True
tied_model = model_class(config=tied_config).to(torch_device).eval()
model_result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
tied_model_result = tied_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
# check that models has less parameters
self.parent.assertLess(
sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
)
random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()
# check that outputs are equal
self.parent.assertTrue(
torch.allclose(
model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
)
)
# check that outputs after saving and loading are equal
with tempfile.TemporaryDirectory() as tmpdirname:
tied_model.save_pretrained(tmpdirname)
tied_model = model_class.from_pretrained(tmpdirname)
tied_model.to(torch_device)
tied_model.eval()
# check that models has less parameters
self.parent.assertLess(
sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
)
random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()
tied_model_result = tied_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
# check that outputs are equal
self.parent.assertTrue(
torch.allclose(
model_result[0][0, :, random_slice_idx],
tied_model_result[0][0, :, random_slice_idx],
atol=1e-4,
)
)
def check_resize_embeddings_t5_v1_1(
self,
config,
):
prev_vocab_size = config.vocab_size
config.tie_word_embeddings = False
model = T5ForConditionalGeneration(config=config).to(torch_device).eval()
model.resize_token_embeddings(prev_vocab_size - 10)
self.parent.assertEqual(model.get_input_embeddings().weight.shape[0], prev_vocab_size - 10)
self.parent.assertEqual(model.get_output_embeddings().weight.shape[0], prev_vocab_size - 10)
self.parent.assertEqual(model.config.vocab_size, prev_vocab_size - 10)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"use_cache": False,
}
return config, inputs_dict
@require_torch
class T5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(T5Model, T5ForConditionalGeneration, T5ForSequenceClassification, T5ForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = (T5ForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"conversational": T5ForConditionalGeneration,
"feature-extraction": T5Model,
"question-answering": T5ForQuestionAnswering,
"summarization": T5ForConditionalGeneration,
"text-classification": T5ForSequenceClassification,
"text2text-generation": T5ForConditionalGeneration,
"translation": T5ForConditionalGeneration,
"zero-shot": T5ForSequenceClassification,
}
if is_torch_available()
else {}
)
all_parallelizable_model_classes = (T5Model, T5ForConditionalGeneration) if is_torch_available() else ()
fx_compatible = True
test_pruning = False
test_resize_embeddings = True
test_model_parallel = True
is_encoder_decoder = True
# The small T5 model needs higher percentages for CPU/MP tests
model_split_percents = [0.8, 0.9]
def setUp(self):
self.model_tester = T5ModelTester(self)
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
# `QAPipelineTests` is not working well with slow tokenizers (for some models) and we don't want to touch the file
# `src/transformers/data/processors/squad.py` (where this test fails for this model)
def is_pipeline_test_to_skip(
self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, processor_name
):
if tokenizer_name is None:
return True
if pipeline_test_case_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"):
return True
return False
def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
if not is_torch_fx_available() or not self.fx_compatible:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
if model_class.__name__ == "T5ForSequenceClassification":
continue
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)
try:
if model.config.is_encoder_decoder:
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
labels = inputs.get("labels", None)
input_names = [
"attention_mask",
"decoder_attention_mask",
"decoder_input_ids",
"input_features",
"input_ids",
"input_values",
]
if labels is not None:
input_names.append("labels")
filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
input_names = list(filtered_inputs.keys())
model_output = model(**filtered_inputs)
traced_model = symbolic_trace(model, input_names)
traced_output = traced_model(**filtered_inputs)
else:
input_names = [
"attention_mask",
"bbox",
"input_features",
"input_ids",
"input_values",
"pixel_values",
"token_type_ids",
"visual_feats",
"visual_pos",
]
labels = inputs.get("labels", None)
start_positions = inputs.get("start_positions", None)
end_positions = inputs.get("end_positions", None)
if labels is not None:
input_names.append("labels")
if start_positions is not None:
input_names.append("start_positions")
if end_positions is not None:
input_names.append("end_positions")
filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
input_names = list(filtered_inputs.keys())
if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
not hasattr(model.config, "problem_type") or model.config.problem_type is None
):
model.config.problem_type = "single_label_classification"
traced_model = symbolic_trace(model, input_names)
traced_output = traced_model(**filtered_inputs)
model_output = model(**filtered_inputs)
except Exception as e:
self.fail(f"Couldn't trace module: {e}")
def flatten_output(output):
flatten = []
for x in output:
if isinstance(x, (tuple, list)):
flatten += flatten_output(x)
elif not isinstance(x, torch.Tensor):
continue
else:
flatten.append(x)
return flatten
model_output = flatten_output(model_output)
traced_output = flatten_output(traced_output)
num_outputs = len(model_output)
for i in range(num_outputs):
self.assertTrue(
torch.allclose(model_output[i], traced_output[i]),
f"traced {i}th output doesn't match model {i}th output for {model_class}",
)
# Test that the model can be serialized and restored properly
with tempfile.TemporaryDirectory() as tmp_dir_name:
pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
try:
with open(pkl_file_name, "wb") as f:
pickle.dump(traced_model, f)
with open(pkl_file_name, "rb") as f:
loaded = pickle.load(f)
except Exception as e:
self.fail(f"Couldn't serialize / deserialize the traced model: {e}")
loaded_output = loaded(**filtered_inputs)
loaded_output = flatten_output(loaded_output)
for i in range(num_outputs):
self.assertTrue(
torch.allclose(model_output[i], loaded_output[i]),
f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
def test_config(self):
self.config_tester.run_common_tests()
def test_shift_right(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_v1_1(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
# check that gated gelu feed forward and different word embeddings work
config = config_and_inputs[0]
config.tie_word_embeddings = False
config.feed_forward_proj = "gated-gelu"
self.model_tester.create_and_check_model(config, *config_and_inputs[1:])
# T5ForSequenceClassification does not support inputs_embeds
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (T5Model, T5ForConditionalGeneration, T5ForQuestionAnswering):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
def test_config_and_model_silu_gated(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
config = config_and_inputs[0]
config.feed_forward_proj = "gated-silu"
self.model_tester.create_and_check_model(*config_and_inputs)
def test_with_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_with_lm_head(*config_and_inputs)
def test_with_sequence_classification_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_with_sequence_classification_head(*config_and_inputs)
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_past_with_attn_mask(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_decoder_model_past_with_3d_attn_mask(self):
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = self.model_tester.prepare_config_and_inputs()
attention_mask = ids_tensor(
[self.model_tester.batch_size, self.model_tester.encoder_seq_length, self.model_tester.encoder_seq_length],
vocab_size=2,
)
decoder_attention_mask = ids_tensor(
[self.model_tester.batch_size, self.model_tester.decoder_seq_length, self.model_tester.decoder_seq_length],
vocab_size=2,
)
self.model_tester.create_and_check_decoder_model_attention_mask_past(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_generate_with_past_key_values(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_generate_with_past_key_values(*config_and_inputs)
def test_encoder_decoder_shared_weights(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs)
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
def test_model_fp16_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)
def test_v1_1_resize_embeddings(self):
config = self.model_tester.prepare_config_and_inputs()[0]
self.model_tester.check_resize_embeddings_t5_v1_1(config)
@slow
def test_model_from_pretrained(self):
for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = T5Model.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip("Test has a segmentation fault on torch 1.8.0")
def test_export_to_onnx(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
model = T5Model(config_and_inputs[0]).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
model,
(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
f"{tmpdirname}/t5_test.onnx",
export_params=True,
opset_version=9,
input_names=["input_ids", "decoder_input_ids"],
)
def test_generate_with_head_masking(self):
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
config_and_inputs = self.model_tester.prepare_config_and_inputs()
config = config_and_inputs[0]
max_length = config_and_inputs[1].shape[-1] + 3
model = T5ForConditionalGeneration(config).eval()
model.to(torch_device)
head_masking = {
"head_mask": torch.zeros(config.num_layers, config.num_heads, device=torch_device),
"decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device),
"cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device),
}
for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
head_masks = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
head_masks["decoder_head_mask"] = torch.ones(
config.num_decoder_layers, config.num_heads, device=torch_device
)
out = model.generate(
config_and_inputs[1],
num_beams=1,
max_length=max_length,
output_attentions=True,
return_dict_in_generate=True,
**head_masks,
)
# We check the state of decoder_attentions and cross_attentions just from the last step
attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
def test_disk_offload(self):
pass
@unittest.skip("Does not support conversations.")
def test_pipeline_conversational(self):
pass
class T5EncoderOnlyModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
encoder_seq_length=7,
# For common tests
use_attention_mask=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
is_training=False,
dropout_rate=0.1,
initializer_factor=0.002,
is_encoder_decoder=False,
eos_token_id=1,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
# For common tests
self.seq_length = self.encoder_seq_length
self.use_attention_mask = use_attention_mask
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.is_training = is_training
def get_large_model_config(self):
return T5Config.from_pretrained("t5-base")
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
config = T5Config(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
)
def create_and_check_model(
self,
config,
input_ids,
attention_mask,
):
model = T5EncoderModel(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids=input_ids,
attention_mask=attention_mask,
)
result = model(input_ids=input_ids)
encoder_output = result.last_hidden_state
self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
def create_and_check_model_fp16_forward(
self,
config,
input_ids,
attention_mask,
):
model = T5EncoderModel(config=config).to(torch_device).half().eval()
output = model(input_ids, attention_mask=attention_mask)["last_hidden_state"]
self.parent.assertFalse(torch.isnan(output).any().item())
def create_and_check_with_token_classification_head(
self,
config,
input_ids,
attention_mask,
):
labels = torch.tensor([1] * self.seq_length * self.batch_size, dtype=torch.long, device=torch_device)
model = T5ForTokenClassification(config=config).to(torch_device).eval()
outputs = model(
input_ids=input_ids,
labels=labels,
attention_mask=attention_mask,
)
self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.seq_length, config.num_labels))
self.parent.assertEqual(outputs["loss"].size(), ())
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
class T5EncoderOnlyModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (T5EncoderModel, T5ForTokenClassification) if is_torch_available() else ()
test_pruning = False
test_resize_embeddings = False
test_model_parallel = True
pipeline_model_mapping = (
{
"token-classification": T5ForTokenClassification,
}
if is_torch_available()
else {}
)
all_parallelizable_model_classes = (T5EncoderModel,) if is_torch_available() else ()
def setUp(self):
self.model_tester = T5EncoderOnlyModelTester(self)
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
def test_model_fp16_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)
def test_with_token_classification_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_with_token_classification_head(*config_and_inputs)
def use_task_specific_params(model, task):
model.config.update(model.config.task_specific_params[task])
@require_torch
@require_accelerate
@require_tokenizers
@slow
class T5ModelFp16Tests(unittest.TestCase):
def test_fp16_fp32_conversion(self):
r"""
A test to check whether the argument `keep_in_fp32_modules` correctly does its job
"""
orig_import = __import__
accelerate_mock = unittest.mock.Mock()
# mock import of accelerate
def import_accelerate_mock(name, *args, **kwargs):
if name == "accelerate":
if accelerate_available:
return accelerate_mock
else:
raise ImportError
return orig_import(name, *args, **kwargs)
# Load without using `accelerate`
with unittest.mock.patch("builtins.__import__", side_effect=import_accelerate_mock):
accelerate_available = False
model = T5ForConditionalGeneration.from_pretrained("t5-small", torch_dtype=torch.float16)
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.float16)
# Load without in bf16
model = T5ForConditionalGeneration.from_pretrained("t5-small", torch_dtype=torch.bfloat16)
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.bfloat16)
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.bfloat16)
# Load using `accelerate` in bf16
model = T5ForConditionalGeneration.from_pretrained("t5-small", torch_dtype=torch.bfloat16, device_map="auto")
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.bfloat16)
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.bfloat16)
# Load using `accelerate` in bf16
model = T5ForConditionalGeneration.from_pretrained(
"t5-small", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True
)
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.bfloat16)
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.bfloat16)
# Load without using `accelerate`
model = T5ForConditionalGeneration.from_pretrained(
"t5-small", torch_dtype=torch.float16, low_cpu_mem_usage=True
)
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.float16)
# Load using `accelerate`
model = T5ForConditionalGeneration.from_pretrained("t5-small", torch_dtype=torch.float16, device_map="auto")
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.float16)
@require_torch
@require_sentencepiece
@require_tokenizers
class T5ModelIntegrationTests(unittest.TestCase):
@cached_property
def model(self):
return T5ForConditionalGeneration.from_pretrained("t5-base").to(torch_device)
@cached_property
def tokenizer(self):
return T5Tokenizer.from_pretrained("t5-base")
@slow
def test_torch_quant(self):
r"""
Test that a simple `torch.quantization.quantize_dynamic` call works on a T5 model.
"""
model_name = "google/flan-t5-small"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
input_text = "Answer the following yes/no question by reasoning step-by-step. Can you write a whole Haiku in a single tweet?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
_ = model.generate(input_ids)
@slow
def test_small_generation(self):
model = T5ForConditionalGeneration.from_pretrained("t5-small").to(torch_device)
model.config.max_length = 8
model.config.num_beams = 1
model.config.do_sample = False
tokenizer = T5Tokenizer.from_pretrained("t5-small")
input_ids = tokenizer("summarize: Hello there", return_tensors="pt").input_ids.to(torch_device)
sequences = model.generate(input_ids)
output_str = tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
self.assertTrue(output_str == "Hello there!")
@slow
def test_small_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.7.1
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
>>> path_to_mtf_small_t5_checkpoint = '<fill_in>'
>>> path_to_mtf_small_spm_model_path = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_checkpoint, batch_size=1, tpu=None)
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100)
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = T5ForConditionalGeneration.from_pretrained("t5-small").to(torch_device)
tokenizer = T5Tokenizer.from_pretrained("t5-small")
input_ids = tokenizer("Hello there", return_tensors="pt").input_ids
labels = tokenizer("Hi I am", return_tensors="pt").input_ids
loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss
mtf_score = -(labels.shape[-1] * loss.item())
EXPECTED_SCORE = -19.0845
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
@slow
def test_small_v1_1_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.7.1
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
>>> path_to_mtf_small_t5_v1_1_checkpoint = '<fill_in>'
>>> path_to_mtf_small_spm_model_path = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_v1_1_checkpoint, batch_size=1, tpu=None)
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100)
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = T5ForConditionalGeneration.from_pretrained("google/t5-v1_1-small").to(torch_device)
tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-small")
input_ids = tokenizer("Hello there", return_tensors="pt").input_ids
labels = tokenizer("Hi I am", return_tensors="pt").input_ids
loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss
mtf_score = -(labels.shape[-1] * loss.item())
EXPECTED_SCORE = -59.0293
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
@slow
def test_small_byt5_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.9.1
>>> path_to_byt5_small_checkpoint = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_tf_checkpoint, batch_size=1, tpu=None)
>>> vocab = t5.data.ByteVocabulary()
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = T5ForConditionalGeneration.from_pretrained("google/byt5-small").to(torch_device)
tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
input_ids = tokenizer("Hello there", return_tensors="pt").input_ids
labels = tokenizer("Hi I am", return_tensors="pt").input_ids
loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss
mtf_score = -(labels.shape[-1] * loss.item())
EXPECTED_SCORE = -60.7397
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
@slow
def test_summarization(self):
model = self.model
tok = self.tokenizer
FRANCE_ARTICLE = ( # @noqa
"Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings"
" Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane."
' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."'
' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s'
" comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French"
" Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a"
" phone at the wreckage site. The two publications described the supposed video, but did not post it on"
" their websites. The publications said that they watched the video, which was found by a source close to"
" the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported."
' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the'
" cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the"
' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,'
" editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said"
" the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman"
" in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the"
' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,'
' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be'
" sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by"
" specialized technicians working hand-in-hand with investigators. But none of the cell phones found so"
" far have been sent to the institute, Menichini said. Asked whether staff involved in the search could"
' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin'
' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match'
' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is something'
" we did not know before. ... Overall we can say many things of the investigation weren't revealed by the"
' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline'
" Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the"
" controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the"
' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of'
' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school'
" discovered in an internal investigation, Lufthansa said, included medical documents he submitted in"
" connection with resuming his flight training. The announcement indicates that Lufthansa, the parent"
" company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and"
" ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%"
' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was'
" sharing the information and documents -- including training and medical records -- with public"
" prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the"
" past week to recover human remains and plane debris scattered across a steep mountainside. He saw the"
" crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash"
" site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late"
" Tuesday that no visible human remains were left at the site but recovery teams would keep searching."
" French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all"
" the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said."
" Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew"
" on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with"
" the flight school during his training were among several developments as investigators continued to"
" delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa"
" spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his"
' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in'
" Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at"
" some point before his aviation career and underwent psychotherapy before he got his pilot's license."
" Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the"
" crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to"
" lose his pilot's license, a European government official briefed on the investigation told CNN on"
' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being'
" considered. Another source, a law enforcement official briefed on the investigation, also told CNN that"
" authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would"
" not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had"
" seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded"
" he had psychological issues, the European government official said. But no matter what details emerge"
" about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact'
" that maybe they weren't going to keep doing their job and they're upset about that and so they're"
' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to'
" also take that rage and turn it outward on 149 other people who had nothing to do with the person's"
' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight'
" 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura"
" Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine"
" Amiel and Anna-Maja Rappard contributed to this report."
)
SHORTER_ARTICLE = (
"(CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The"
" formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based."
" The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its"
' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East'
' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the'
" situation in Palestinian territories, paving the way for possible war crimes investigations against"
" Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and"
" the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the"
" body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a"
' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the'
' world is also a step closer to ending a long era of impunity and injustice," he said, according to an'
' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge'
" Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the"
' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine'
" acquires all the rights as well as responsibilities that come with being a State Party to the Statute."
' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights'
' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should'
" immediately end their pressure, and countries that support universal acceptance of the court's treaty"
' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the'
" group. \"What's objectionable is the attempts to undermine international justice, not Palestine's"
' decision to join a treaty to which over 100 countries around the world are members." In January, when'
" the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an"
' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"'
" disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a"
' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in'
' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We'
' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"'
" it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the'
" court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou"
' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war'
" between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry"
" will include alleged war crimes committed since June. The International Criminal Court was set up in"
" 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder"
" and Faith Karimi contributed to this report."
)
IRAN_ARTICLE = (
"(CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran"
" in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively"
" block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger."
" Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli"
" Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a"
" letter to the Iranian leadership warning them away from a deal. The debate that has already begun since"
" the announcement of the new framework will likely result in more heat than light. It will not be helped"
" by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ."
" The most misleading assertion, despite universal rejection by experts, is that the negotiations'"
" objective at the outset was the total elimination of any nuclear program in Iran. That is the position"
" of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it"
" had been, there would have been no Iranian team at the negotiating table. Rather, the objective has"
" always been to structure an agreement or series of agreements so that Iran could not covertly develop a"
" nuclear arsenal before the United States and its allies could respond. The new framework has exceeded"
" expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by"
" two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another"
" dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite"
" sharp accusations by some in the United States and its allies, Iran denies having such a program, and"
" U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's"
" continued cooperation with International Atomic Energy Agency inspections is further evidence on this"
" point, and we'll know even more about Iran's program in the coming months and years because of the deal."
" In fact, the inspections provisions that are part of this agreement are designed to protect against any"
" covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that"
" the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter"
" warning that a deal might be killed by Congress or a future president). This of course is not the case."
" The talks were between Iran and the five permanent members of the U.N. Security Council (United States,"
" United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has"
" played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement"
" reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran"
" and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement"
" contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the"
" case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased"
" or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes"
" Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear"
" sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going"
" forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such"
" a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the"
' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not'
" suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New"
" START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement"
" with Iran will not be so balanced. The restrictions and obligations in the final framework agreement"
" will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove"
" most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally"
" some insist that any agreement must address Iranian missile programs, human rights violations or support"
" for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are"
" unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in"
" the negotiations would be a poison pill. This agreement should be judged on its merits and on how it"
" affects the security of our negotiating partners and allies, including Israel. Those judgments should be"
" fact-based, not based on questionable assertions or dubious assumptions."
)
ARTICLE_SUBWAY = (
"New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
" year later, she got married again in Westchester County, but to a different man and without divorcing"
" her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
" once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
" license application, according to court documents. Prosecutors said the marriages were part of an"
" immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
" her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
" arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
" York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
" Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All"
" occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
" married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
" said the immigration scam involved some of her husbands, who filed for permanent residence status"
" shortly after the marriages. Any divorces happened only after such filings were approved. It was"
" unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
" Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
" Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
" native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
" up to four years in prison. Her next court appearance is scheduled for May 18."
)
expected_summaries = [
'prosecutor: "so far no videos were used in the crash investigation" two magazines claim to have found a'
" cell phone video of the final seconds . \"one can hear cries of 'My God' in several languages,\" one"
" magazine says .",
"the formal accession was marked by a ceremony at The Hague, in the Netherlands . the ICC opened a"
" preliminary examination into the situation in the occupied Palestinian territory . as members of the"
" court, Palestinians may be subject to counter-charges as well .",
"the u.s. and its negotiating partners reached a very strong framework agreement with Iran . aaron miller:"
" the debate that has already begun since the announcement of the new framework will likely result in more"
" heat than light . the deal would reduce Iran's low-enriched uranium stockpile, cut centrifuges and"
" implement a rigorous inspection regime .",
"prosecutors say the marriages were part of an immigration scam . if convicted, barrientos faces two"
' criminal counts of "offering a false instrument for filing in the first degree" she has been married 10'
" times, with nine of her marriages occurring between 1999 and 2002 .",
]
use_task_specific_params(model, "summarization")
dct = tok(
[model.config.prefix + x for x in [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY]],
padding="max_length",
truncation=True,
return_tensors="pt",
).to(torch_device)
self.assertEqual(512, dct["input_ids"].shape[1])
hypotheses_batch = model.generate(
**dct,
num_beams=4,
length_penalty=2.0,
max_length=142,
min_length=56,
no_repeat_ngram_size=3,
do_sample=False,
early_stopping=True,
)
decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertListEqual(
expected_summaries,
decoded,
)
@slow
def test_translation_en_to_de(self):
model = self.model
tok = self.tokenizer
use_task_specific_params(model, "translation_en_to_de")
en_text = '"Luigi often said to me that he never wanted the brothers to end up in court", she wrote.'
expected_translation = (
'"Luigi sagte mir oft, dass er nie wollte, dass die Brüder am Gericht sitzen", schrieb sie.'
)
input_ids = tok.encode(model.config.prefix + en_text, return_tensors="pt")
input_ids = input_ids.to(torch_device)
output = model.generate(input_ids)
translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertEqual(translation, expected_translation)
@slow
def test_translation_en_to_fr(self):
model = self.model # t5-base
tok = self.tokenizer
use_task_specific_params(model, "translation_en_to_fr")
en_text = (
' This image section from an infrared recording by the Spitzer telescope shows a "family portrait" of'
" countless generations of stars: the oldest stars are seen as blue dots. "
)
input_ids = tok.encode(model.config.prefix + en_text, return_tensors="pt")
input_ids = input_ids.to(torch_device)
output = model.generate(
input_ids=input_ids,
num_beams=4,
length_penalty=2.0,
max_length=100,
no_repeat_ngram_size=3,
do_sample=False,
early_stopping=True,
)
translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
new_truncated_translation = (
"Cette section d'images provenant de l'enregistrement infrarouge effectué par le télescope Spitzer montre "
"un "
"« portrait familial » de générations innombrables d’étoiles : les plus anciennes sont observées "
"sous forme "
"de points bleus."
)
self.assertEqual(translation, new_truncated_translation)
@slow
def test_translation_en_to_ro(self):
model = self.model
tok = self.tokenizer
use_task_specific_params(model, "translation_en_to_ro")
en_text = "Taco Bell said it plans to add 2,000 locations in the US by 2022."
expected_translation = "Taco Bell a declarat că intenţionează să adauge 2 000 de locaţii în SUA până în 2022."
inputs = tok(model.config.prefix + en_text, return_tensors="pt").to(torch_device)
output = model.generate(**inputs)
translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertEqual(translation, expected_translation)
@slow
def test_contrastive_search_t5(self):
article = (
" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
" year later, she got married again in Westchester County, but to a different man and without divorcing"
" her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
" once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
" license application, according to court documents. Prosecutors said the marriages were part of an"
" immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
" her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
" arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
" York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
" Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All"
" occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
" married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
" said the immigration scam involved some of her husbands, who filed for permanent residence status"
" shortly after the marriages. Any divorces happened only after such filings were approved. It was"
" unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
" Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
" Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
" native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
" up to four years in prison. Her next court appearance is scheduled for May 18."
)
article = "summarize: " + article.strip()
t5_tokenizer = AutoTokenizer.from_pretrained("flax-community/t5-base-cnn-dm")
t5_model = T5ForConditionalGeneration.from_pretrained("flax-community/t5-base-cnn-dm").to(torch_device)
input_ids = t5_tokenizer(
article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="pt"
).input_ids.to(torch_device)
outputs = t5_model.generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64)
generated_text = t5_tokenizer.batch_decode(outputs, skip_special_tokens=True)
self.assertListEqual(
generated_text,
[
"Liana Barrientos has been married 10 times, nine of them in the Bronx. Her husbands filed for "
"permanent residence after the marriages, prosecutors say."
],
)
@require_torch
class TestAsymmetricT5(unittest.TestCase):
def build_model_and_check_forward_pass(self, **kwargs):
tester = T5ModelTester(self, **kwargs)
config, *inputs = tester.prepare_config_and_inputs()
(
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = inputs
model = T5ForConditionalGeneration(config=config).to(torch_device).eval()
outputs = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=lm_labels,
)
# outputs = model(*inputs)
assert len(outputs) == 4
assert outputs["logits"].size() == (tester.batch_size, tester.decoder_seq_length, tester.vocab_size)
assert outputs["loss"].size() == ()
return model
def test_small_decoder(self):
# num_hidden_layers is passed to T5Config as num_layers
model = self.build_model_and_check_forward_pass(decoder_layers=1, num_hidden_layers=2)
assert len(model.encoder.block) == 2
assert len(model.decoder.block) == 1
def test_defaulting_to_symmetry(self):
# num_hidden_layers is passed to T5Config as num_layers
model = self.build_model_and_check_forward_pass(num_hidden_layers=2)
assert len(model.decoder.block) == len(model.encoder.block) == 2
| transformers/tests/models/t5/test_modeling_t5.py/0 | {
"file_path": "transformers/tests/models/t5/test_modeling_t5.py",
"repo_id": "transformers",
"token_count": 34412
} | 408 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch TrOCR model. """
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class TrOCRStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
d_model=16,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=2,
decoder_attention_heads=4,
max_position_embeddings=30,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = TrOCRConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
)
return (config, input_ids, attention_mask, lm_labels)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = TrOCRDecoder(config=config).to(torch_device).eval()
input_ids = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((2, 1), config.vocab_size - 1) + 1
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, lm_labels = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class TrOCRStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (TrOCRForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {}
fx_compatible = True
test_pruning = False
def setUp(self):
self.model_tester = TrOCRStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=TrOCRConfig)
# not implemented currently
def test_inputs_embeds(self):
pass
# trocr has no base model
def test_save_load_fast_init_from_base(self):
pass
# trocr has no base model
def test_save_load_fast_init_to_base(self):
pass
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
# decoder cannot keep gradients
def test_retain_grad_hidden_states_attentions(self):
return
@unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :)
def test_left_padding_compatibility(self):
pass
| transformers/tests/models/trocr/test_modeling_trocr.py/0 | {
"file_path": "transformers/tests/models/trocr/test_modeling_trocr.py",
"repo_id": "transformers",
"token_count": 3144
} | 409 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import Audio, load_dataset
from transformers import UnivNetFeatureExtractor
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, slow
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
global_rng = random.Random()
# Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
class UnivNetFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=1,
sampling_rate=24000,
padding_value=0.0,
do_normalize=True,
num_mel_bins=100,
hop_length=256,
win_length=1024,
win_function="hann_window",
filter_length=1024,
max_length_s=10,
fmin=0.0,
fmax=12000,
mel_floor=1e-9,
center=False,
compression_factor=1.0,
compression_clip_val=1e-5,
normalize_min=-11.512925148010254,
normalize_max=2.3143386840820312,
model_in_channels=64,
pad_end_length=10,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.feature_size = feature_size
self.sampling_rate = sampling_rate
self.padding_value = padding_value
self.do_normalize = do_normalize
self.num_mel_bins = num_mel_bins
self.hop_length = hop_length
self.win_length = win_length
self.win_function = win_function
self.filter_length = filter_length
self.max_length_s = max_length_s
self.fmin = fmin
self.fmax = fmax
self.mel_floor = mel_floor
self.center = center
self.compression_factor = compression_factor
self.compression_clip_val = compression_clip_val
self.normalize_min = normalize_min
self.normalize_max = normalize_max
self.model_in_channels = model_in_channels
self.pad_end_length = pad_end_length
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"sampling_rate": self.sampling_rate,
"padding_value": self.padding_value,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"filter_length": self.filter_length,
"max_length_s": self.max_length_s,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"center": self.center,
"compression_factor": self.compression_factor,
"compression_clip_val": self.compression_clip_val,
"normalize_min": self.normalize_min,
"normalize_max": self.normalize_max,
"model_in_channels": self.model_in_channels,
"pad_end_length": self.pad_end_length,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = floats_list((self.batch_size, self.max_seq_length))
else:
# make sure that inputs increase in size
speech_inputs = [
_flatten(floats_list((x, self.feature_size)))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
class UnivNetFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = UnivNetFeatureExtractor
def setUp(self):
self.feat_extract_tester = UnivNetFeatureExtractionTester(self)
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_feat_extract_from_and_save_pretrained
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = feat_extract_first.mel_filters
mel_2 = feat_extract_second.mel_filters
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_feat_extract_to_json_file
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = feat_extract_first.mel_filters
mel_2 = feat_extract_second.mel_filters
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(
np_speech_inputs, padding="max_length", max_length=1600, return_tensors="np"
).input_features
self.assertTrue(input_features.ndim == 3)
# Note: for some reason I get a weird padding error when feature_size > 1
# self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size)
# Note: we use the shape convention (batch_size, seq_len, num_mel_bins)
self.assertTrue(input_features.shape[-1] == feature_extractor.num_mel_bins)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test truncation required
speech_inputs = [
floats_list((1, x))[0]
for x in range((feature_extractor.num_max_samples - 100), (feature_extractor.num_max_samples + 500), 200)
]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
speech_inputs_truncated = [x[: feature_extractor.num_max_samples] for x in speech_inputs]
np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated]
encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_batched_unbatched_consistency(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
speech_inputs = floats_list((1, 800))[0]
np_speech_inputs = np.asarray(speech_inputs)
# Test unbatched vs batched list
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor([speech_inputs], return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test np.ndarray vs List[np.ndarray]
encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor([np_speech_inputs], return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test unbatched np.ndarray vs batched np.ndarray
encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(
np.expand_dims(np_speech_inputs, axis=0), return_tensors="np"
).input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_generate_noise(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
features = feature_extractor(speech_inputs, return_noise=True)
input_features = features.input_features
noise_features = features.noise_sequence
for spectrogram, noise in zip(input_features, noise_features):
self.assertEqual(spectrogram.shape[0], noise.shape[0])
def test_pad_end(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
input_features1 = feature_extractor(speech_inputs, padding=False, pad_end=False).input_features
input_features2 = feature_extractor(speech_inputs, padding=False, pad_end=True).input_features
for spectrogram1, spectrogram2 in zip(input_features1, input_features2):
self.assertEqual(spectrogram1.shape[0] + self.feat_extract_tester.pad_end_length, spectrogram2.shape[0])
def test_generate_noise_and_pad_end(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
features = feature_extractor(speech_inputs, padding=False, return_noise=True, pad_end=True)
input_features = features.input_features
noise_features = features.noise_sequence
for spectrogram, noise in zip(input_features, noise_features):
self.assertEqual(spectrogram.shape[0], noise.shape[0])
@require_torch
def test_batch_decode(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
input_lengths = list(range(800, 1400, 200))
pad_samples = feature_extractor.pad_end_length * feature_extractor.hop_length
output_features = {
"waveforms": torch.tensor(floats_list((3, max(input_lengths) + pad_samples))),
"waveform_lengths": torch.tensor(input_lengths),
}
waveforms = feature_extractor.batch_decode(**output_features)
for input_length, waveform in zip(input_lengths, waveforms):
self.assertTrue(len(waveform.shape) == 1, msg="Individual output waveforms should be 1D")
self.assertEqual(waveform.shape[0], input_length)
@require_torch
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_double_precision_pad
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
ds = ds.cast_column("audio", Audio(sampling_rate=self.feat_extract_tester.sampling_rate))
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples], [x["sampling_rate"] for x in speech_samples]
@slow
@require_torch
def test_integration(self):
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
-5.0229, -6.1358, -5.8346, -5.4447, -5.6707, -5.8577, -5.0464, -5.0058,
-5.6015, -5.6410, -5.4325, -5.6116, -5.3700, -5.7956, -5.3196, -5.3274,
-5.9655, -5.6057, -5.8382, -5.9602, -5.9005, -5.9123, -5.7669, -6.1441,
-5.5168, -5.1405, -5.3927, -6.0032, -5.5784, -5.3728
],
)
# fmt: on
input_speech, sr = self._load_datasamples(1)
feature_extractor = UnivNetFeatureExtractor()
input_features = feature_extractor(input_speech, sampling_rate=sr[0], return_tensors="pt").input_features
self.assertEqual(input_features.shape, (1, 548, 100))
input_features_mean = torch.mean(input_features)
input_features_stddev = torch.std(input_features)
EXPECTED_MEAN = torch.tensor(-6.18862009)
EXPECTED_STDDEV = torch.tensor(2.80845642)
torch.testing.assert_close(input_features_mean, EXPECTED_MEAN, atol=5e-5, rtol=5e-6)
torch.testing.assert_close(input_features_stddev, EXPECTED_STDDEV)
torch.testing.assert_close(input_features[0, :30, 0], EXPECTED_INPUT_FEATURES, atol=1e-4, rtol=1e-5)
| transformers/tests/models/univnet/test_feature_extraction_univnet.py/0 | {
"file_path": "transformers/tests/models/univnet/test_feature_extraction_univnet.py",
"repo_id": "transformers",
"token_count": 7246
} | 410 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViTMAE model. """
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class ViTMAEModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=3,
mask_ratio=0.6,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.mask_ratio = mask_ratio
self.scope = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = int(math.ceil((1 - mask_ratio) * (num_patches + 1)))
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return ViTMAEConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
mask_ratio=self.mask_ratio,
decoder_hidden_size=self.hidden_size,
decoder_intermediate_size=self.intermediate_size,
decoder_num_attention_heads=self.num_attention_heads,
decoder_num_hidden_layers=self.num_hidden_layers,
)
def create_and_check_model(self, config, pixel_values, labels):
model = ViTMAEModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_pretraining(self, config, pixel_values, labels):
model = ViTMAEForPreTraining(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
num_patches = (self.image_size // self.patch_size) ** 2
expected_num_channels = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels))
# test greyscale images
config.num_channels = 1
model = ViTMAEForPreTraining(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values)
expected_num_channels = self.patch_size**2
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class ViTMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as ViTMAE does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": ViTMAEModel} if is_torch_available() else {}
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = ViTMAEModelTester(self)
self.config_tester = ConfigTester(self, config_class=ViTMAEConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMAE does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
# overwrite from common since ViTMAEForPretraining has random masking, we need to fix the noise
# to generate masks during test
def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
# make masks reproducible
np.random.seed(2)
num_patches = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2)
noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
pt_noise = torch.from_numpy(noise)
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
pt_inputs_dict["noise"] = pt_noise
super().check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
def test_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
# make random mask reproducible
torch.manual_seed(2)
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
model.to(torch_device)
# make random mask reproducible
torch.manual_seed(2)
with torch.no_grad():
after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# Make sure we don't have nans
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results."""
)
def test_determinism(self):
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results."""
)
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results."""
)
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""")
def test_model_outputs_equivalence(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ViTMAEModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class ViTMAEModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base") if is_vision_available() else None
@slow
def test_inference_for_pretraining(self):
# make random mask reproducible across the PT and TF model
np.random.seed(2)
model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
vit_mae_config = ViTMAEConfig()
num_patches = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2)
noise = np.random.uniform(size=(1, num_patches))
# forward pass
with torch.no_grad():
outputs = model(**inputs, noise=torch.from_numpy(noise).to(device=torch_device))
# verify the logits
expected_shape = torch.Size((1, 196, 768))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]]
)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice.to(torch_device), atol=1e-4))
| transformers/tests/models/vit_mae/test_modeling_vit_mae.py/0 | {
"file_path": "transformers/tests/models/vit_mae/test_modeling_vit_mae.py",
"repo_id": "transformers",
"token_count": 5323
} | 411 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
import multiprocessing
import traceback
import unittest
import numpy as np
from datasets import load_dataset
from transformers import Wav2Vec2Config, is_flax_available
from transformers.testing_utils import (
CaptureLogger,
is_flaky,
is_librosa_available,
is_pt_flax_cross_test,
is_pyctcdecode_available,
require_flax,
require_librosa,
require_pyctcdecode,
require_soundfile,
run_test_in_subprocess,
slow,
)
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
import optax
from flax.traverse_util import flatten_dict
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_flax_wav2vec2 import (
FlaxWav2Vec2ForCTC,
FlaxWav2Vec2ForPreTraining,
FlaxWav2Vec2GumbelVectorQuantizer,
FlaxWav2Vec2Model,
_compute_mask_indices,
_sample_negative_indices,
)
if is_pyctcdecode_available():
import pyctcdecode.decoder
from transformers import Wav2Vec2ProcessorWithLM
from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm
if is_librosa_available():
import librosa
def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout):
error = None
try:
_ = in_queue.get(timeout=timeout)
ds = load_dataset("common_voice", "es", split="test", streaming=True)
sample = next(iter(ds))
resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)
model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(resampled_audio, return_tensors="np").input_values
logits = model(input_values).logits
# use a spawn pool, which should trigger a warning if different than fork
with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool:
transcription = processor.batch_decode(np.array(logits), pool).text
unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
# force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork
multiprocessing.set_start_method("spawn", force=True)
with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
transcription = processor.batch_decode(np.array(logits)).text
unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class FlaxWav2Vec2ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=1024, # speech is longer
is_training=False,
hidden_size=24,
feat_extract_norm="layer",
feat_extract_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_dropout_prob=0.1, # this is most likely not correctly set yet
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
vocab_size=32,
do_stable_layer_norm=True,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_dropout = feat_extract_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.scope = scope
output_seq_length = self.seq_length
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
output_seq_length = (output_seq_length - (kernel - 1)) / stride
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = Wav2Vec2Config(
do_stable_layer_norm=self.do_stable_layer_norm,
hidden_size=self.hidden_size,
feat_extract_norm=self.feat_extract_norm,
feat_extract_dropout=self.feat_extract_dropout,
feat_extract_activation=self.feat_extract_activation,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout_prob=self.hidden_dropout_prob,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
)
return config, input_values, attention_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_values, attention_mask = config_and_inputs
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class FlaxWav2Vec2ModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (
(FlaxWav2Vec2Model, FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining) if is_flax_available() else ()
)
def setUp(self):
self.model_tester = FlaxWav2Vec2ModelTester(self)
def test_train(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_values = inputs_dict["input_values"]
attention_mask = inputs_dict["attention_mask"]
model = FlaxWav2Vec2ForPreTraining(config)
features_shape = (
input_values.shape[0],
model._get_feat_extract_output_lengths(np.array(input_values.shape[1])),
)
batch_size, sequence_length = features_shape[:2]
mask_prob = 0.5
mask_length = 4
mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
dropout_rng, gumbel_rng = jax.random.split(jax.random.PRNGKey(0))
output = model(
input_values,
attention_mask=attention_mask,
mask_time_indices=mask_time_indices,
train=True,
dropout_rng=dropout_rng,
gumbel_rng=gumbel_rng,
)[0]
self.assertTrue(output.shape == (batch_size, sequence_length, model.config.proj_codevector_dim))
# overwrite because of `input_values`
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values", "attention_mask"]
self.assertListEqual(arg_names[:2], expected_arg_names)
# overwrite because of `input_values`
def test_jit_compilation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def model_jitted(input_values, attention_mask=None, **kwargs):
return model(input_values=input_values, attention_mask=attention_mask, **kwargs)
with self.subTest("JIT Enabled"):
jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = model_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def test_freeze_feature_encoder(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_values = inputs_dict["input_values"]
attention_mask = inputs_dict["attention_mask"]
model = FlaxWav2Vec2ForPreTraining(config)
params = model.params
# dummy loss function
def compute_loss(
params, input_values, attention_mask, freeze_feature_encoder: bool = False, epsilon: float = 1e-8
):
outputs = model(
input_values,
attention_mask=attention_mask,
freeze_feature_encoder=freeze_feature_encoder,
params=params,
)
# compute cosine similarity of projected and projected_quantized states
cosine_sim = optax.cosine_similarity(
outputs.projected_states, outputs.projected_quantized_states, epsilon=epsilon
)
loss = cosine_sim.sum()
return loss, outputs.to_tuple()
# transform the loss function to get the gradients
grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
# compute loss, outputs and gradients for unfrozen model
(loss, outputs), grads = grad_fn(params, input_values, attention_mask, freeze_feature_encoder=False)
# compare to loss, outputs and gradients for frozen model
(loss_frozen, outputs_frozen), grads_frozen = grad_fn(
params, input_values, attention_mask, freeze_feature_encoder=True
)
# ensure that the outputs and losses remain precisely equal
for output, output_frozen in zip(outputs, outputs_frozen):
self.assertTrue((output == output_frozen).all())
self.assertEqual(loss, loss_frozen)
grads = flatten_dict(grads)
grads_frozen = flatten_dict(grads_frozen)
# ensure that the dicts of gradients contain the same keys
self.assertEqual(grads.keys(), grads_frozen.keys())
# ensure that the gradients of the feature extractor layers are precisely zero when frozen and contain non-zero entries when unfrozen
feature_extractor_grads = tuple(grads[k] for k in grads if "feature_extractor" in k)
feature_extractor_grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" in k)
for feature_extractor_grad, feature_extractor_grad_frozen in zip(
feature_extractor_grads, feature_extractor_grads_frozen
):
self.assertTrue((feature_extractor_grad_frozen == 0.0).all())
self.assertTrue((feature_extractor_grad > 0.0).any())
# ensure that the gradients of all unfrozen layers remain equal, i.e. all layers excluding the frozen 'feature_extractor'
grads = tuple(grads[k] for k in grads if "feature_extractor" not in k)
grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" not in k)
for grad, grad_frozen in zip(grads, grads_frozen):
self.assertTrue((grad == grad_frozen).all())
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True)
outputs = model(np.ones((1, 1024), dtype="f4"))
self.assertIsNotNone(outputs)
@is_pt_flax_cross_test
@is_flaky()
def test_equivalence_pt_to_flax(self):
super().test_equivalence_pt_to_flax()
@require_flax
class FlaxWav2Vec2UtilsTest(unittest.TestCase):
def test_compute_mask_indices(self):
batch_size = 4
sequence_length = 60
mask_prob = 0.5
mask_length = 1
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])
def test_compute_mask_indices_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
def test_compute_mask_indices_attn_mask_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
attention_mask = np.ones((batch_size, sequence_length), dtype=np.int32)
attention_mask[:2, sequence_length // 2 :] = 0
mask = _compute_mask_indices(
(batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
)
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)
def test_compute_perplexity(self):
probs = np.arange(100).reshape(2, 5, 10) / 100
ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)
# mask half of the input
mask = np.ones((2,), dtype=bool)
mask[0] = 0
ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)
def test_sample_negatives(self):
batch_size = 2
sequence_length = 10
hidden_size = 4
num_negatives = 3
features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape(
sequence_length, hidden_size
) # each value in vector consits of same value
features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size))
negative_indices = _sample_negative_indices(features.shape, num_negatives)
features = features.reshape(-1, hidden_size) # BTC => (BxT)C
# take negative vectors from sampled indices
sampled_negatives = features[negative_indices.reshape(-1)]
negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose(
2, 0, 1, 3
)
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
# make sure no negatively sampled vector is actually a positive one
for negative in negatives:
self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0)
# make sure that full vectors are sampled and not values of vectors
# => this means that `unique()` yields a single value for `hidden_size` dim
self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1))
def test_sample_negatives_with_attn_mask(self):
batch_size = 2
sequence_length = 10
hidden_size = 4
num_negatives = 3
features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape(
sequence_length, hidden_size
) # each value in vector consits of same value
# second half of last input tensor is padded
attention_mask = np.ones((batch_size, sequence_length), dtype=np.int8)
attention_mask[-1, sequence_length // 2 :] = 0
forbidden_indices = (
np.arange(sequence_length // 2, sequence_length, dtype=np.int32) + (batch_size - 1) * sequence_length
).tolist()
features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size))
negative_indices = _sample_negative_indices(features.shape, num_negatives, attention_mask=attention_mask)
# make sure that no padding tokens are sampled
self.assertTrue(all(idx not in negative_indices for idx in forbidden_indices))
features = features.reshape(-1, hidden_size) # BTC => (BxT)C
# take negative vectors from sampled indices
sampled_negatives = features[negative_indices.reshape(-1)]
negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose(
2, 0, 1, 3
)
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
# make sure no negatively sampled vector is actually a positive one
for negative in negatives:
self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0)
# make sure that full vectors are sampled and not just slices of vectors
# => this means that `unique()` yields a single value for `hidden_size` dim
self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1))
@require_flax
@require_soundfile
@slow
class FlaxWav2Vec2ModelIntegrationTest(unittest.TestCase):
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
)[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_inference_ctc_robust_batched(self):
model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
input_speech = self._load_datasamples(4)
inputs = processor(input_speech, return_tensors="np", padding=True)
input_values = inputs.input_values
attention_mask = inputs.attention_mask
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = jnp.argmax(logits, axis=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
"the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
" him with the thousands of spectators were trivialities not worth thinking about",
"his instant panic was followed by a small sharp blow high on his chest",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_pretrained(self):
model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60", from_pt=True)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"facebook/wav2vec2-large-lv60", return_attention_mask=True
)
input_speech = self._load_datasamples(2)
inputs_dict = feature_extractor(input_speech, return_tensors="np", padding=True)
features_shape = (
inputs_dict["input_values"].shape[0],
model._get_feat_extract_output_lengths(np.array(inputs_dict["input_values"].shape[1])),
)
mask_time_indices = _compute_mask_indices(
features_shape,
model.config.mask_time_prob,
model.config.mask_time_length,
min_masks=2,
)
outputs = model(
inputs_dict.input_values,
attention_mask=inputs_dict.attention_mask,
mask_time_indices=mask_time_indices,
)
# compute cosine similarity
cosine_sim = optax.cosine_similarity(
outputs.projected_states, outputs.projected_quantized_states, epsilon=1e-8
)
# retrieve cosine sim of masked features
cosine_sim_masked = cosine_sim[mask_time_indices]
# ... now compare to randomly initialized model
config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-large-lv60")
model_rand = FlaxWav2Vec2ForPreTraining(config)
outputs_rand = model_rand(
inputs_dict.input_values,
attention_mask=inputs_dict.attention_mask,
mask_time_indices=mask_time_indices,
)
# compute cosine similarity
cosine_sim_rand = optax.cosine_similarity(
outputs_rand.projected_states, outputs_rand.projected_quantized_states
)
# retrieve cosine sim of masked features
cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]
# a pretrained wav2vec2 model has learned to predict the quantized latent states
# => the cosine similarity between quantized states and predicted states > 0.5
# a random wav2vec2 model has not learned to predict the quantized latent states
# => the cosine similarity between quantized states and predicted states is very likely < 0.1
self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm(self):
ds = load_dataset("common_voice", "es", split="test", streaming=True)
sample = next(iter(ds))
resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)
model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(resampled_audio, return_tensors="np").input_values
logits = model(input_values).logits
transcription = processor.batch_decode(np.array(logits)).text
self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm_pool(self):
ds = load_dataset("common_voice", "es", split="test", streaming=True)
sample = next(iter(ds))
resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)
model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(resampled_audio, return_tensors="np").input_values
logits = model(input_values).logits
# test user-managed pool
with multiprocessing.get_context("fork").Pool(2) as pool:
transcription = processor.batch_decode(np.array(logits), pool).text
self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
# user-managed pool + num_processes should trigger a warning
with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
2
) as pool:
transcription = processor.batch_decode(np.array(logits), pool, num_processes=2).text
self.assertIn("num_process", cl.out)
self.assertIn("it will be ignored", cl.out)
self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm_invalid_pool(self):
run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)
| transformers/tests/models/wav2vec2/test_modeling_flax_wav2vec2.py/0 | {
"file_path": "transformers/tests/models/wav2vec2/test_modeling_flax_wav2vec2.py",
"repo_id": "transformers",
"token_count": 11180
} | 412 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class XLMModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_lengths=True,
use_token_type_ids=True,
use_labels=True,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False,
asm=False,
n_langs=2,
vocab_size=99,
n_special=0,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=2,
num_choices=4,
summary_type="last",
use_proj=True,
scope=None,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_lengths = use_input_lengths
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.gelu_activation = gelu_activation
self.sinusoidal_embeddings = sinusoidal_embeddings
self.causal = causal
self.asm = asm
self.n_langs = n_langs
self.vocab_size = vocab_size
self.n_special = n_special
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.summary_type = summary_type
self.use_proj = use_proj
self.scope = scope
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = random_attention_mask([self.batch_size, self.seq_length])
input_lengths = None
if self.use_input_lengths:
input_lengths = (
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
sequence_labels = None
token_labels = None
is_impossible_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
is_impossible_labels = ids_tensor([self.batch_size], 2).float()
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def get_config(self):
return XLMConfig(
vocab_size=self.vocab_size,
n_special=self.n_special,
emb_dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
gelu_activation=self.gelu_activation,
sinusoidal_embeddings=self.sinusoidal_embeddings,
asm=self.asm,
causal=self.causal,
n_langs=self.n_langs,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
summary_type=self.summary_type,
use_proj=self.use_proj,
num_labels=self.num_labels,
bos_token_id=self.bos_token_id,
)
def create_and_check_xlm_model(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
):
model = XLMModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
result = model(input_ids, langs=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_xlm_lm_head(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
):
model = XLMWithLMHeadModel(config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_xlm_simple_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
):
model = XLMForQuestionAnsweringSimple(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
result = outputs
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_xlm_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
):
model = XLMForQuestionAnswering(config)
model.to(torch_device)
model.eval()
result = model(input_ids)
result_with_labels = model(
input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
p_mask=input_mask,
)
result_with_labels = model(
input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
)
(total_loss,) = result_with_labels.to_tuple()
result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
(total_loss,) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape, ())
self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
self.parent.assertEqual(
result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
)
self.parent.assertEqual(
result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
)
self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
def create_and_check_xlm_sequence_classif(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
):
model = XLMForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids)
result = model(input_ids, labels=sequence_labels)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def create_and_check_xlm_token_classif(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
):
config.num_labels = self.num_labels
model = XLMForTokenClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_xlm_for_multiple_choice(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
):
config.num_choices = self.num_choices
model = XLMForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
return config, inputs_dict
@require_torch
class XLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
pipeline_model_mapping = (
{
"feature-extraction": XLMModel,
"fill-mask": XLMWithLMHeadModel,
"question-answering": XLMForQuestionAnsweringSimple,
"text-classification": XLMForSequenceClassification,
"text-generation": XLMWithLMHeadModel,
"token-classification": XLMForTokenClassification,
"zero-shot": XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast")
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
# XLM has 2 QA models -> need to manually set the correct labels for one of them here
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
inputs_dict["start_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
inputs_dict["end_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = XLMModelTester(self)
self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_xlm_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*config_and_inputs)
def test_xlm_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
def test_xlm_simple_qa(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)
def test_xlm_qa(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
def test_xlm_sequence_classif(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
def test_xlm_token_classif(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs)
def test_xlm_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)
def _check_attentions_for_generate(
self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
):
self.assertIsInstance(attentions, tuple)
self.assertListEqual(
[isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
)
self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)
for idx, iter_attentions in enumerate(attentions):
# adds PAD dummy token
tgt_len = min_length + idx + 1
src_len = min_length + idx + 1
expected_shape = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
)
def _check_hidden_states_for_generate(
self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
):
self.assertIsInstance(hidden_states, tuple)
self.assertListEqual(
[isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
[True] * len(hidden_states),
)
self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)
for idx, iter_hidden_states in enumerate(hidden_states):
# adds PAD dummy token
seq_len = min_length + idx + 1
expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
[expected_shape] * len(iter_hidden_states),
)
pass
@slow
def test_model_from_pretrained(self):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = XLMModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class XLMModelLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_xlm_mlm_en_2048(self):
model = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
model.to(torch_device)
input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device) # the president
expected_output_ids = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
output_ids = model.generate(input_ids, do_sample=False)
self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)
| transformers/tests/models/xlm/test_modeling_xlm.py/0 | {
"file_path": "transformers/tests/models/xlm/test_modeling_xlm.py",
"repo_id": "transformers",
"token_count": 9334
} | 413 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from huggingface_hub.utils import insecure_hashlib
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
def hashimage(image: Image) -> str:
m = insecure_hashlib.md5(image.tobytes())
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class DepthEstimationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def get_test_pipeline(self, model, tokenizer, processor):
depth_estimator = DepthEstimationPipeline(model=model, image_processor=processor)
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def run_pipeline_test(self, depth_estimator, examples):
outputs = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png")
self.assertEqual({"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, outputs)
import datasets
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
outputs = depth_estimator(
[
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["image"],
# LA
dataset[1]["image"],
# L
dataset[2]["image"],
]
)
self.assertEqual(
[
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)},
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)},
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)},
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)},
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)},
],
outputs,
)
@require_tf
@unittest.skip("Depth estimation is not implemented in TF")
def test_small_model_tf(self):
pass
@slow
@require_torch
def test_large_model_pt(self):
model_id = "Intel/dpt-large"
depth_estimator = pipeline("depth-estimation", model=model_id)
outputs = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg")
outputs["depth"] = hashimage(outputs["depth"])
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item()), 29.304)
self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item()), 2.662)
@require_torch
def test_small_model_pt(self):
# This is highly irregular to have no small tests.
self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT")
| transformers/tests/pipelines/test_pipelines_depth_estimation.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_depth_estimation.py",
"repo_id": "transformers",
"token_count": 1794
} | 414 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import (
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING,
AutoProcessor,
TextToAudioPipeline,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
require_torch,
require_torch_accelerator,
require_torch_or_tf,
slow,
torch_device,
)
from transformers.trainer_utils import set_seed
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class TextToAudioPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING
# for now only test text_to_waveform and not text_to_spectrogram
@slow
@require_torch
def test_small_musicgen_pt(self):
music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt")
forward_params = {
"do_sample": False,
"max_new_tokens": 250,
}
outputs = music_generator("This is a test", forward_params=forward_params)
self.assertEqual({"audio": ANY(np.ndarray), "sampling_rate": 32000}, outputs)
# test two examples side-by-side
outputs = music_generator(["This is a test", "This is a second test"], forward_params=forward_params)
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
# test batching
outputs = music_generator(
["This is a test", "This is a second test"], forward_params=forward_params, batch_size=2
)
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
@slow
@require_torch
def test_small_bark_pt(self):
speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt")
forward_params = {
# Using `do_sample=False` to force deterministic output
"do_sample": False,
"semantic_max_new_tokens": 100,
}
outputs = speech_generator("This is a test", forward_params=forward_params)
self.assertEqual(
{"audio": ANY(np.ndarray), "sampling_rate": 24000},
outputs,
)
# test two examples side-by-side
outputs = speech_generator(
["This is a test", "This is a second test"],
forward_params=forward_params,
)
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
# test other generation strategy
forward_params = {
"do_sample": True,
"semantic_max_new_tokens": 100,
"semantic_num_return_sequences": 2,
}
outputs = speech_generator("This is a test", forward_params=forward_params)
audio = outputs["audio"]
self.assertEqual(ANY(np.ndarray), audio)
# test using a speaker embedding
processor = AutoProcessor.from_pretrained("suno/bark-small")
temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5")
history_prompt = temp_inp["history_prompt"]
forward_params["history_prompt"] = history_prompt
outputs = speech_generator(
["This is a test", "This is a second test"],
forward_params=forward_params,
batch_size=2,
)
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
@slow
@require_torch_accelerator
def test_conversion_additional_tensor(self):
speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt", device=torch_device)
processor = AutoProcessor.from_pretrained("suno/bark-small")
forward_params = {
"do_sample": True,
"semantic_max_new_tokens": 100,
}
# atm, must do to stay coherent with BarkProcessor
preprocess_params = {
"max_length": 256,
"add_special_tokens": False,
"return_attention_mask": True,
"return_token_type_ids": False,
"padding": "max_length",
}
outputs = speech_generator(
"This is a test",
forward_params=forward_params,
preprocess_params=preprocess_params,
)
temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5")
history_prompt = temp_inp["history_prompt"]
forward_params["history_prompt"] = history_prompt
# history_prompt is a torch.Tensor passed as a forward_param
# if generation is successful, it means that it was passed to the right device
outputs = speech_generator(
"This is a test", forward_params=forward_params, preprocess_params=preprocess_params
)
self.assertEqual(
{"audio": ANY(np.ndarray), "sampling_rate": 24000},
outputs,
)
@slow
@require_torch
def test_vits_model_pt(self):
speech_generator = pipeline(task="text-to-audio", model="facebook/mms-tts-eng", framework="pt")
outputs = speech_generator("This is a test")
self.assertEqual(outputs["sampling_rate"], 16000)
audio = outputs["audio"]
self.assertEqual(ANY(np.ndarray), audio)
# test two examples side-by-side
outputs = speech_generator(["This is a test", "This is a second test"])
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
# test batching
outputs = speech_generator(["This is a test", "This is a second test"], batch_size=2)
self.assertEqual(ANY(np.ndarray), outputs[0]["audio"])
@slow
@require_torch
def test_forward_model_kwargs(self):
# use vits - a forward model
speech_generator = pipeline(task="text-to-audio", model="kakao-enterprise/vits-vctk", framework="pt")
# for reproducibility
set_seed(555)
outputs = speech_generator("This is a test", forward_params={"speaker_id": 5})
audio = outputs["audio"]
with self.assertRaises(TypeError):
# assert error if generate parameter
outputs = speech_generator("This is a test", forward_params={"speaker_id": 5, "do_sample": True})
forward_params = {"speaker_id": 5}
generate_kwargs = {"do_sample": True}
with self.assertRaises(ValueError):
# assert error if generate_kwargs with forward-only models
outputs = speech_generator(
"This is a test", forward_params=forward_params, generate_kwargs=generate_kwargs
)
self.assertTrue(np.abs(outputs["audio"] - audio).max() < 1e-5)
@slow
@require_torch
def test_generative_model_kwargs(self):
# use musicgen - a generative model
music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt")
forward_params = {
"do_sample": True,
"max_new_tokens": 250,
}
# for reproducibility
set_seed(555)
outputs = music_generator("This is a test", forward_params=forward_params)
audio = outputs["audio"]
self.assertEqual(ANY(np.ndarray), audio)
# make sure generate kwargs get priority over forward params
forward_params = {
"do_sample": False,
"max_new_tokens": 250,
}
generate_kwargs = {"do_sample": True}
# for reproducibility
set_seed(555)
outputs = music_generator("This is a test", forward_params=forward_params, generate_kwargs=generate_kwargs)
self.assertListEqual(outputs["audio"].tolist(), audio.tolist())
def get_test_pipeline(self, model, tokenizer, processor):
speech_generator = TextToAudioPipeline(model=model, tokenizer=tokenizer)
return speech_generator, ["This is a test", "Another test"]
def run_pipeline_test(self, speech_generator, _):
outputs = speech_generator("This is a test")
self.assertEqual(ANY(np.ndarray), outputs["audio"])
forward_params = (
{"num_return_sequences": 2, "do_sample": True} if speech_generator.model.can_generate() else {}
)
outputs = speech_generator(["This is great !", "Something else"], forward_params=forward_params)
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
| transformers/tests/pipelines/test_pipelines_text_to_audio.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_text_to_audio.py",
"repo_id": "transformers",
"token_count": 3815
} | 415 |
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import pytest
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_auto_gptq,
require_optimum,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
if is_torch_available():
import torch
class GPTQConfigTest(unittest.TestCase):
def test_bits(self):
with self.assertRaises(ValueError):
GPTQConfig(bits="")
GPTQConfig(bits=1)
GPTQConfig(bits=2)
GPTQConfig(bits=4)
def test_dataset(self):
with self.assertRaises(ValueError):
GPTQConfig(bits=2, dataset="auto_gpt")
GPTQConfig(bits=2, dataset="c4")
GPTQConfig(bits=2, dataset="ptb-new")
def test_damp_percent(self):
with self.assertRaises(ValueError):
GPTQConfig(bits=2, damp_percent=10)
GPTQConfig(bits=2, damp_percent=-1)
GPTQConfig(bits=2, damp_percent="0")
GPTQConfig(bits=2, damp_percent=0.01)
def test_to_dict(self):
quantization_config = GPTQConfig(bits=2)
quantization_config.to_dict()
def test_from_dict(self):
dict = {"bits": 2}
quantization_config = GPTQConfig.from_dict(dict)
self.assertEqual(dict["bits"], quantization_config.bits)
@require_optimum
def test_optimum_config(self):
from optimum.gptq import GPTQQuantizer
config = GPTQConfig(bits=2)
optimum_config = GPTQQuantizer.from_dict(config.to_dict_optimum())
self.assertEqual(optimum_config.bits, config.bits)
new_config = GPTQConfig.from_dict_optimum(optimum_config.to_dict())
self.assertEqual(optimum_config.bits, new_config.bits)
@slow
@require_optimum
@require_auto_gptq
@require_torch_gpu
class GPTQTest(unittest.TestCase):
model_name = "bigscience/bloom-560m"
input_text = "Hello my name is"
EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I")
EXPECTED_OUTPUTS.add("Hello my name is John, I am a professional photographer and I")
EXPECTED_OUTPUTS.add("Hello my name is John, I am a student in the University of")
EXPECTED_OUTPUTS.add("Hello my name is John and I am a very good looking man.")
EXPECTED_OUTPUTS.add("Hello my name is Alyson, I am a student in the")
EXPECTED_OUTPUTS.add("Hello my name is Alyson and I am a very sweet,")
# this seems a little small considering that we are doing 4bit quant but we have a small model and ww don't quantize the embeddings
EXPECTED_RELATIVE_DIFFERENCE = 1.664253062
bits = 4
group_size = 128
desc_act = False
use_exllama = False
dataset = [
"auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
]
device_map = None
# called only once for all test in this class
@classmethod
def setUpClass(cls):
"""
Setup quantized model
"""
cls.model_fp16 = AutoModelForCausalLM.from_pretrained(
cls.model_name, torch_dtype=torch.float16, device_map=cls.device_map
)
cls.mem_fp16 = cls.model_fp16.get_memory_footprint()
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)
quantization_config = GPTQConfig(
bits=cls.bits,
dataset=cls.dataset,
tokenizer=cls.tokenizer,
group_size=cls.group_size,
desc_act=cls.desc_act,
use_exllama=cls.use_exllama,
)
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
cls.model_name,
torch_dtype=torch.float16,
device_map=cls.device_map,
quantization_config=quantization_config,
)
def test_memory_footprint(self):
r"""
A simple test to check if the model conversion has been done correctly by checking on the
memory footprint of the converted model
"""
mem_quantized = self.quantized_model.get_memory_footprint()
self.assertAlmostEqual(self.mem_fp16 / mem_quantized, self.EXPECTED_RELATIVE_DIFFERENCE)
def test_device_and_dtype_assignment(self):
r"""
Test whether trying to cast (or assigning a device to) a model after quantization will throw an error.
Checks also if other models are casted correctly.
"""
# This should work
if self.device_map is None:
_ = self.quantized_model.to(0)
with self.assertRaises(ValueError):
# Tries with a `dtype``
self.quantized_model.to(torch.float16)
def test_original_dtype(self):
r"""
A simple test to check if the model succesfully stores the original dtype
"""
self.assertTrue(hasattr(self.quantized_model.config, "_pre_quantization_dtype"))
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
self.assertTrue(self.quantized_model.config._pre_quantization_dtype == torch.float16)
def test_quantized_layers_class(self):
"""
Simple test to check if the model conversion has been done correctly by checking on
the class type of the linear layers of the converted models
"""
from auto_gptq.utils.import_utils import dynamically_import_QuantLinear
QuantLinear = dynamically_import_QuantLinear(
use_triton=False,
desc_act=self.desc_act,
group_size=self.group_size,
bits=self.bits,
disable_exllama=not self.use_exllama,
disable_exllamav2=True,
)
self.assertTrue(self.quantized_model.transformer.h[0].mlp.dense_4h_to_h.__class__ == QuantLinear)
def check_inference_correctness(self, model):
r"""
Test the generation quality of the quantized model and see that we are matching the expected output.
Given that we are operating on small numbers + the testing model is relatively small, we might not get
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
"""
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
# Check the exactness of the results
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
# Get the generation
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def check_quantized_layers_type(self, model, value):
self.assertTrue(model.transformer.h[0].mlp.dense_4h_to_h.QUANT_TYPE == value)
def test_generate_quality(self):
"""
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
"""
if self.device_map is None:
self.check_inference_correctness(self.quantized_model.to(0))
else:
self.check_inference_correctness(self.quantized_model)
def test_serialization(self):
"""
Test the serialization of the model and the loading of the quantized weights works
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
if not self.use_exllama:
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
tmpdirname, quantization_config=GPTQConfig(use_exllama=False, bits=4)
).to(0)
self.check_quantized_layers_type(quantized_model_from_saved, "cuda-old")
else:
# we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map={"": 0})
self.check_quantized_layers_type(quantized_model_from_saved, "exllama")
self.check_inference_correctness(quantized_model_from_saved)
@require_accelerate
def test_serialization_big_model_inference(self):
"""
Test the serialization of the model and the loading of the quantized weights with big model inference
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map="auto")
self.check_inference_correctness(quantized_model_from_saved)
def test_change_loading_attributes(self):
"""
Test the serialization of the model and the loading of the quantized weights works with another config file
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
if not self.use_exllama:
self.check_quantized_layers_type(self.quantized_model, "cuda-old")
# we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
tmpdirname, quantization_config=GPTQConfig(use_exllama=True, bits=4), device_map={"": 0}
)
self.assertEqual(quantized_model_from_saved.config.quantization_config.bits, self.bits)
self.check_quantized_layers_type(quantized_model_from_saved, "exllama")
self.check_inference_correctness(quantized_model_from_saved)
@require_accelerate
@require_torch_multi_gpu
class GPTQTestDeviceMap(GPTQTest):
device_map = "auto"
@require_accelerate
@require_torch_multi_gpu
class GPTQTestDeviceMapExllama(GPTQTest):
device_map = "auto"
use_exllama = True
@slow
@require_optimum
@require_auto_gptq
@require_torch_gpu
@require_accelerate
class GPTQTestActOrderExllama(unittest.TestCase):
"""
Test GPTQ model with exllama kernel and desc_act=True (also known as act-order).
More information on those arguments here:
https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig
"""
EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.")
# 4bit + act_order + 128g
model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ"
input_text = "Hello, how are you ?"
@classmethod
def setUpClass(cls):
"""
Setup quantized model
"""
cls.quantization_config = GPTQConfig(bits=4, max_input_length=4028)
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
cls.model_name,
torch_dtype=torch.float16,
device_map={"": 0},
quantization_config=cls.quantization_config,
)
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)
def check_inference_correctness(self, model):
"""
Test the generation quality of the quantized model and see that we are matching the expected output.
Given that we are operating on small numbers + the testing model is relatively small, we might not get
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
"""
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
# Check the exactness of the results
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
# Get the generation
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_quantized_layers_type(self):
self.assertTrue(self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE == "exllama")
def test_generate_quality(self):
"""
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
"""
self.check_inference_correctness(self.quantized_model)
def test_max_input_length(self):
"""
Test if the max_input_length works. It modifies the maximum input length that of the model that runs with exllama backend.
"""
prompt = "I am in Paris and" * 1000
inp = self.tokenizer(prompt, return_tensors="pt").to(0)
self.assertTrue(inp["input_ids"].shape[1] > 4028)
with self.assertRaises(RuntimeError) as cm:
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
self.assertTrue("temp_state buffer is too small" in str(cm.exception))
prompt = "I am in Paris and"
inp = self.tokenizer(prompt, return_tensors="pt").to(0)
self.assertTrue(inp["input_ids"].shape[1] < 4028)
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
@slow
@require_optimum
@require_auto_gptq
@require_torch_gpu
@require_accelerate
class GPTQTestExllamaV2(unittest.TestCase):
"""
Test GPTQ model with exllamav2 kernel and desc_act=True (also known as act-order).
More information on those arguments here:
https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig
"""
EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.")
# 4bit + act_order + 128g
model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ"
input_text = "Hello, how are you ?"
@classmethod
def setUpClass(cls):
"""
Setup quantized model
"""
cls.quantization_config = GPTQConfig(bits=4, exllama_config={"version": 2})
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
cls.model_name,
torch_dtype=torch.float16,
device_map={"": 0},
quantization_config=cls.quantization_config,
)
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)
def test_quantized_layers_type(self):
self.assertTrue(self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE == "exllamav2")
def check_inference_correctness(self, model):
"""
Test the generation quality of the quantized model and see that we are matching the expected output.
Given that we are operating on small numbers + the testing model is relatively small, we might not get
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
"""
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
# Check the exactness of the results
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
# Get the generation
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_generate_quality(self):
"""
Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens
"""
self.check_inference_correctness(self.quantized_model)
# fail when run all together
@pytest.mark.skip
@require_accelerate
@require_torch_multi_gpu
class GPTQTestDeviceMapCPUOffload(GPTQTest):
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": 0,
"lm_head": 0,
"transformer.h.0": 0,
"transformer.h.1": 0,
"transformer.h.2": 0,
"transformer.h.3": 0,
"transformer.h.4": 0,
"transformer.h.5": 0,
"transformer.h.6": 0,
"transformer.h.7": 0,
"transformer.h.8": 0,
"transformer.h.9": 0,
"transformer.h.10": 1,
"transformer.h.11": 1,
"transformer.h.12": 1,
"transformer.h.13": 1,
"transformer.h.14": 1,
"transformer.h.15": 1,
"transformer.h.16": 1,
"transformer.h.17": 0,
"transformer.h.18": "cpu",
"transformer.h.19": "cpu",
"transformer.h.20": "cpu",
"transformer.h.21": "cpu",
"transformer.h.22": "cpu",
"transformer.h.23": 1,
"transformer.ln_f": 0,
}
| transformers/tests/quantization/gptq/test_gptq.py/0 | {
"file_path": "transformers/tests/quantization/gptq/test_gptq.py",
"repo_id": "transformers",
"token_count": 7230
} | 416 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER", "False")) is not True,
reason="Skipping test because should only be run when releasing minor transformers version",
)
@pytest.mark.usefixtures("sm_env")
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
]
)
class MultiNodeTest(unittest.TestCase):
def setUp(self):
if self.framework == "pytorch":
subprocess.run(
f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(),
encoding="utf-8",
check=True,
)
assert hasattr(self, "env")
def create_estimator(self, instance_count):
# configuration for running training on smdistributed Model Parallel
mpi_options = {
"enabled": True,
"processes_per_host": 8,
}
smp_options = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
distribution = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
name_extension = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script,
source_dir=self.env.test_path,
role=self.env.role,
image_uri=self.env.image_uri,
base_job_name=f"{self.env.base_job_name}-{instance_count}-smp-{name_extension}",
instance_count=instance_count,
instance_type=self.instance_type,
debugger_hook_config=False,
hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 500,
},
metric_definitions=self.env.metric_definitions,
distribution=distribution,
py_version="py36",
)
def save_results_as_csv(self, job_name):
TrainingJobAnalytics(job_name).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv")
# @parameterized.expand([(2,), (4,),])
@parameterized.expand([(1,)])
def test_scripz(self, instance_count):
# create estimator
estimator = self.create_estimator(instance_count)
# run training
estimator.fit()
# result dataframe
result_metrics_df = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
# extract kpis
eval_accuracy = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"])
eval_loss = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"])
# get train time from SageMaker job, this includes starting, preprocessing, stopping
train_runtime = (
Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds", 999999)
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy)
assert all(t <= self.results["eval_loss"] for t in eval_loss)
# dump tests result into json file to share in PR
with open(f"{estimator.latest_training_job.name}.json", "w") as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, outfile)
| transformers/tests/sagemaker/test_multi_node_model_parallel.py/0 | {
"file_path": "transformers/tests/sagemaker/test_multi_node_model_parallel.py",
"repo_id": "transformers",
"token_count": 2097
} | 417 |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import gc
import glob
import json
import os
import os.path
import sys
import tempfile
import unittest
import unittest.mock as mock
import uuid
from pathlib import Path
import requests
from huggingface_hub import HfApi, HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from pytest import mark
from requests.exceptions import HTTPError
from transformers import (
AutoConfig,
AutoModel,
AutoModelForSequenceClassification,
OwlViTForObjectDetection,
PretrainedConfig,
is_torch_available,
logging,
)
from transformers.testing_utils import (
TOKEN,
USER,
CaptureLogger,
LoggingLevel,
TestCasePlus,
is_staging_test,
require_accelerate,
require_flax,
require_safetensors,
require_tf,
require_torch,
require_torch_accelerator,
require_torch_gpu,
require_torch_multi_accelerator,
require_usr_bin_time,
slow,
torch_device,
)
from transformers.utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from transformers.utils.import_utils import (
is_flash_attn_2_available,
is_flax_available,
is_tf_available,
is_torch_sdpa_available,
is_torchdynamo_available,
)
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig # noqa E402
if is_torch_available():
import torch
from safetensors.torch import save_file as safe_save_file
from test_module.custom_modeling import CustomModel, NoSuperInitModel
from torch import nn
from transformers import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoModelForCausalLM,
AutoTokenizer,
BertConfig,
BertModel,
CLIPTextModel,
PreTrainedModel,
T5Config,
T5ForConditionalGeneration,
)
from transformers.modeling_attn_mask_utils import (
AttentionMaskConverter,
_create_4d_causal_attention_mask,
_prepare_4d_attention_mask,
_prepare_4d_causal_attention_mask,
)
from transformers.modeling_utils import shard_checkpoint
# Fake pretrained models for tests
class BaseModel(PreTrainedModel):
base_model_prefix = "base"
config_class = PretrainedConfig
def __init__(self, config):
super().__init__(config)
self.linear = nn.Linear(5, 5)
self.linear_2 = nn.Linear(5, 5)
def forward(self, x):
return self.linear_2(self.linear(x))
class BaseModelWithTiedWeights(PreTrainedModel):
config_class = PretrainedConfig
def __init__(self, config):
super().__init__(config)
self.linear = nn.Linear(5, 5)
self.linear_2 = nn.Linear(5, 5)
def forward(self, x):
return self.linear_2(self.linear(x))
def tie_weights(self):
self.linear_2.weight = self.linear.weight
class ModelWithHead(PreTrainedModel):
base_model_prefix = "base"
config_class = PretrainedConfig
def _init_weights(self, module):
pass
def __init__(self, config):
super().__init__(config)
self.base = BaseModel(config)
# linear is a common name between Base and Head on purpose.
self.linear = nn.Linear(5, 5)
self.linear2 = nn.Linear(5, 5)
def forward(self, x):
return self.linear2(self.linear(self.base(x)))
class ModelWithHeadAndTiedWeights(PreTrainedModel):
base_model_prefix = "base"
config_class = PretrainedConfig
def _init_weights(self, module):
pass
def __init__(self, config):
super().__init__(config)
self.base = BaseModel(config)
self.decoder = nn.Linear(5, 5)
def forward(self, x):
return self.decoder(self.base(x))
def tie_weights(self):
self.decoder.weight = self.base.linear.weight
class Prepare4dCausalAttentionMaskModel(nn.Module):
def forward(self, inputs_embeds):
batch_size, seq_length, _ = inputs_embeds.shape
past_key_values_length = 4
attention_mask = _prepare_4d_causal_attention_mask(
None, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
return attention_mask
class Create4dCausalAttentionMaskModel(nn.Module):
def forward(self, inputs_embeds):
batch_size, seq_length, _ = inputs_embeds.shape
past_key_values_length = 4
attention_mask = _create_4d_causal_attention_mask(
(batch_size, seq_length),
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
return attention_mask
class Prepare4dAttentionMaskModel(nn.Module):
def forward(self, mask, inputs_embeds):
attention_mask = _prepare_4d_attention_mask(mask, dtype=inputs_embeds.dtype)
return attention_mask
if is_flax_available():
from transformers import FlaxBertModel
if is_tf_available():
from transformers import TFBertModel
TINY_T5 = "patrickvonplaten/t5-tiny-random"
TINY_BERT_FOR_TOKEN_CLASSIFICATION = "hf-internal-testing/tiny-bert-for-token-classification"
TINY_MISTRAL = "hf-internal-testing/tiny-random-MistralForCausalLM"
def check_models_equal(model1, model2):
models_are_equal = True
for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
if model1_p.data.ne(model2_p.data).sum() > 0:
models_are_equal = False
return models_are_equal
@require_torch
class ModelUtilsTest(TestCasePlus):
@slow
def test_model_from_pretrained(self):
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = BertConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, PretrainedConfig)
model = BertModel.from_pretrained(model_name)
model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, PreTrainedModel)
self.assertEqual(len(loading_info["missing_keys"]), 0)
self.assertEqual(len(loading_info["unexpected_keys"]), 8)
self.assertEqual(len(loading_info["mismatched_keys"]), 0)
self.assertEqual(len(loading_info["error_msgs"]), 0)
config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
# Not sure this is the intended behavior. TODO fix Lysandre & Thom
config.name_or_path = model_name
model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
self.assertEqual(model.config.output_hidden_states, True)
self.assertEqual(model.config, config)
def test_model_from_pretrained_subfolder(self):
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
model = BertModel(config)
subfolder = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(tmp_dir, subfolder))
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(tmp_dir)
model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)
self.assertTrue(check_models_equal(model, model_loaded))
def test_model_from_pretrained_subfolder_sharded(self):
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
model = BertModel(config)
subfolder = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(tmp_dir)
model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)
self.assertTrue(check_models_equal(model, model_loaded))
def test_model_from_pretrained_hub_subfolder(self):
subfolder = "bert"
model_id = "hf-internal-testing/tiny-random-bert-subfolder"
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(model_id)
model = BertModel.from_pretrained(model_id, subfolder=subfolder)
self.assertIsNotNone(model)
def test_model_from_pretrained_hub_subfolder_sharded(self):
subfolder = "bert"
model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(model_id)
model = BertModel.from_pretrained(model_id, subfolder=subfolder)
self.assertIsNotNone(model)
def test_model_from_pretrained_with_different_pretrained_model_name(self):
model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
self.assertIsNotNone(model)
logger = logging.get_logger("transformers.configuration_utils")
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as cl:
BertModel.from_pretrained(TINY_T5)
self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
@require_accelerate
def test_model_from_pretrained_with_none_quantization_config(self):
# Needs a device_map for to enter the low_cpu_mem branch. We also load AutoModelForSequenceClassification
# deliberately to enter the missing keys branch.
model = AutoModelForSequenceClassification.from_pretrained(
TINY_MISTRAL, device_map="auto", quantization_config=None
)
self.assertIsNotNone(model)
def test_model_from_config_torch_dtype(self):
# test that the model can be instantiated with dtype of user's choice - as long as it's a
# float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
# model from the config object.
config = T5Config.from_pretrained(TINY_T5)
model = AutoModel.from_config(config)
# XXX: isn't supported
# model = T5ForConditionalGeneration.from_config(config)
self.assertEqual(model.dtype, torch.float32)
model = AutoModel.from_config(config, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
with self.assertRaises(ValueError):
model = AutoModel.from_config(config, torch_dtype=torch.int64)
def test_model_from_pretrained_torch_dtype(self):
# test that the model can be instantiated with dtype of either
# 1. explicit from_pretrained's torch_dtype argument
# 2. via autodiscovery by looking at model weights (torch_dtype="auto")
# so if a model.half() was saved, we want it to be instantiated as such.
#
# test an explicit model class, but also AutoModel separately as the latter goes through a different code path
model_path = self.get_auto_remove_tmp_dir()
# baseline - we know TINY_T5 is fp32 model
model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
self.assertEqual(model.dtype, torch.float32)
def remove_torch_dtype(model_path):
file = f"{model_path}/config.json"
with open(file, "r", encoding="utf-8") as f:
s = json.load(f)
s.pop("torch_dtype")
with open(file, "w", encoding="utf-8") as f:
json.dump(s, f)
# test the default fp32 save_pretrained => from_pretrained cycle
model.save_pretrained(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path)
self.assertEqual(model.dtype, torch.float32)
# 1. test torch_dtype="auto" via `config.torch_dtype`
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float32)
# 2. test torch_dtype="auto" via auto-derivation
# now remove the torch_dtype entry from config.json and try "auto" again which should
# perform auto-derivation from weights
remove_torch_dtype(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float32)
# test forced loading in fp16 (even though the weights are in fp32)
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# test fp16 save_pretrained, loaded with auto-detection
model = model.half()
model.save_pretrained(model_path)
# 1. test torch_dtype="auto" via `config.torch_dtype`
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.config.torch_dtype, torch.float16)
self.assertEqual(model.dtype, torch.float16)
# tests `config.torch_dtype` saving
with open(f"{model_path}/config.json") as f:
config_dict = json.load(f)
self.assertEqual(config_dict["torch_dtype"], "float16")
# 2. test torch_dtype="auto" via auto-derivation
# now same with using config info
remove_torch_dtype(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float16)
# 3. now retest that AutoModel behaves the same wrt torch_dtype="auto" as T5ForConditionalGeneration
model = AutoModel.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float16)
# test fp16 save_pretrained, loaded with the explicit fp16
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# test AutoModel separately as it goes through a different path
# test auto-detection - as currently TINY_T5 doesn't have torch_dtype entry
model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
# test that the config object didn't get polluted with torch_dtype="auto"
# there was a bug that after this call we ended up with config.torch_dtype=="auto"
self.assertNotEqual(model.config.torch_dtype, "auto")
# now test the outcome
self.assertEqual(model.dtype, torch.float32)
model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# test model whose first param is not of a floating type, but int
model = AutoModel.from_pretrained(TINY_BERT_FOR_TOKEN_CLASSIFICATION, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float32)
def test_no_super_init_config_and_model(self):
config = NoSuperInitConfig(attribute=32)
model = NoSuperInitModel(config)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
new_model = NoSuperInitModel.from_pretrained(tmp_dir)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_shard_checkpoint(self):
# This is the model we will use, total size 340,000 bytes.
model = torch.nn.Sequential(
torch.nn.Linear(100, 200, bias=False), # size 80,000
torch.nn.Linear(200, 200, bias=False), # size 160,000
torch.nn.Linear(200, 100, bias=False), # size 80,000
torch.nn.Linear(100, 50, bias=False), # size 20,000
)
state_dict = model.state_dict()
with self.subTest("No shard when max size is bigger than model size"):
shards, index = shard_checkpoint(state_dict)
self.assertIsNone(index)
self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})
with self.subTest("Test sharding, no weights bigger than max size"):
shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
# Split is first two layers then last two.
self.assertDictEqual(
index,
{
"metadata": {"total_size": 340000},
"weight_map": {
"0.weight": "pytorch_model-00001-of-00002.bin",
"1.weight": "pytorch_model-00001-of-00002.bin",
"2.weight": "pytorch_model-00002-of-00002.bin",
"3.weight": "pytorch_model-00002-of-00002.bin",
},
},
)
shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
self.assertDictEqual(
shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
)
with self.subTest("Test sharding with weights bigger than max size"):
shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
# Split is first layer, second layer then last 2.
self.assertDictEqual(
index,
{
"metadata": {"total_size": 340000},
"weight_map": {
"0.weight": "pytorch_model-00001-of-00003.bin",
"1.weight": "pytorch_model-00002-of-00003.bin",
"2.weight": "pytorch_model-00003-of-00003.bin",
"3.weight": "pytorch_model-00003-of-00003.bin",
},
},
)
shard1 = {"0.weight": state_dict["0.weight"]}
shard2 = {"1.weight": state_dict["1.weight"]}
shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
self.assertDictEqual(
shards,
{
"pytorch_model-00001-of-00003.bin": shard1,
"pytorch_model-00002-of-00003.bin": shard2,
"pytorch_model-00003-of-00003.bin": shard3,
},
)
def test_checkpoint_sharding_local_bin(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
# We use the same folder for various sizes to make sure a new save erases the old checkpoint.
for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
model.save_pretrained(tmp_dir, max_shard_size=max_size, safe_serialization=False)
# Get each shard file and its size
shard_to_size = {}
for shard in os.listdir(tmp_dir):
if shard.endswith(".bin"):
shard_file = os.path.join(tmp_dir, shard)
shard_to_size[shard_file] = os.path.getsize(shard_file)
index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
# Check there is an index but no regular weight file
self.assertTrue(os.path.isfile(index_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
# Check a file is bigger than max_size only when it has a single weight
for shard_file, size in shard_to_size.items():
if max_size.endswith("kiB"):
max_size_int = int(max_size[:-3]) * 2**10
else:
max_size_int = int(max_size[:-2]) * 10**3
# Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
# the size asked for (since we count parameters)
if size >= max_size_int + 50000:
state_dict = torch.load(shard_file)
self.assertEqual(len(state_dict), 1)
# Check the index and the shard files found match
with open(index_file, "r", encoding="utf-8") as f:
index = json.loads(f.read())
all_shards = set(index["weight_map"].values())
shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".bin")}
self.assertSetEqual(all_shards, shards_found)
# Finally, check the model can be reloaded
new_model = BertModel.from_pretrained(tmp_dir)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_sharding_from_hub(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
# the model above is the same as the model below, just a sharded version.
ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
for p1, p2 in zip(model.parameters(), ref_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_variant_local_bin(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", safe_serialization=False)
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
weights_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_variant_local_sharded_bin(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB", safe_serialization=False)
weights_index_name = ".".join(WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
weights_index_file = os.path.join(tmp_dir, weights_index_name)
self.assertTrue(os.path.isfile(weights_index_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
for i in range(1, 5):
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00005"] + ["bin"])
weights_name_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_name_file))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_checkpoint_variant_local_safe(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", safe_serialization=True)
weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["safetensors"])
weights_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_checkpoint_variant_local_sharded_safe(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB", safe_serialization=True)
weights_index_name = ".".join(SAFE_WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
weights_index_file = os.path.join(tmp_dir, weights_index_name)
self.assertTrue(os.path.isfile(weights_index_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
for i in range(1, 5):
weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00005"] + ["safetensors"])
weights_name_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_name_file))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_variant_hub(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
def test_checkpoint_variant_hub_sharded(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir
)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
@require_safetensors
def test_checkpoint_variant_hub_safe(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
@require_safetensors
def test_checkpoint_variant_hub_sharded_safe(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir
)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
def test_checkpoint_variant_save_load_bin(self):
with tempfile.TemporaryDirectory() as tmp_dir:
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
)
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
model.save_pretrained(tmp_dir, variant="v2", safe_serialization=False)
# saving will create a variant checkpoint
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))
model.save_pretrained(tmp_dir, safe_serialization=False)
# saving shouldn't delete variant checkpoints
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))
# there should be a normal checkpoint
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
self.assertIsNotNone(model)
@require_accelerate
@mark.accelerate_tests
def test_from_pretrained_low_cpu_mem_usage_functional(self):
# test that we can use `from_pretrained(..., low_cpu_mem_usage=True)` with normal and
# sharded models
mnames = [
"hf-internal-testing/tiny-random-bert-sharded",
"hf-internal-testing/tiny-random-bert",
]
for mname in mnames:
_ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True)
@require_usr_bin_time
@require_accelerate
@mark.accelerate_tests
def test_from_pretrained_low_cpu_mem_usage_measured(self):
# test that `from_pretrained(..., low_cpu_mem_usage=True)` uses less cpu memory than default
mname = "bert-base-cased"
preamble = "from transformers import AutoModel"
one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)'
max_rss_normal = self.python_one_liner_max_rss(one_liner_str)
# print(f"{max_rss_normal=}")
one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)'
max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str)
# print(f"{max_rss_low_mem=}")
diff_bytes = max_rss_normal - max_rss_low_mem
diff_percent = diff_bytes / max_rss_low_mem
# print(f"{diff_bytes=}, {diff_percent=}")
# ideally we would compare that the diff is close to ~1x checkpoint size in bytes, but
# measuring cpu memory on linux is very tricky and inconsistent, so instead let's check that
# it's at least 15% less cpu memory consumed
self.assertGreater(
diff_percent,
0.15,
"should use less CPU memory for low_cpu_mem_usage=True, "
f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}",
)
# if you want to compare things manually, let's first look at the size of the model in bytes
# model = BertModel.from_pretrained(mname, low_cpu_mem_usage=False)
# total_numel = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
# total_bytes = total_numel * 4 # 420MB
# Now the diff_bytes should be very close to total_bytes, but the reports are inconsistent.
# The easiest way to test this is to switch the model and torch.load to do all the work on
# gpu - that way one can measure exactly the total and peak memory used. Perhaps once we add
# functionality to load models directly on gpu, this test can be rewritten to use torch's
# cuda memory tracking and then we should be able to do a much more precise test.
@require_accelerate
@mark.accelerate_tests
@require_torch_multi_accelerator
@slow
def test_model_parallelism_gpt2(self):
device_map = {"transformer.wte": 0, "transformer.wpe": 0, "lm_head": 0, "transformer.ln_f": 1}
for i in range(12):
device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1
model = AutoModelForCausalLM.from_pretrained("gpt2", device_map=device_map)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
inputs = tokenizer("Hello, my name is", return_tensors="pt")
output = model.generate(inputs["input_ids"].to(0))
text_output = tokenizer.decode(output[0].tolist())
self.assertEqual(text_output, "Hello, my name is John. I'm a writer, and I'm a writer. I'm")
@require_accelerate
@mark.accelerate_tests
@require_torch_accelerator
def test_from_pretrained_disk_offload_task_model(self):
model = AutoModel.from_pretrained("hf-internal-testing/tiny-random-gpt2")
device_map = {
"transformer.wte": 0,
"transformer.wpe": 0,
"transformer.h.0": "cpu",
"transformer.h.1": "cpu",
"transformer.h.2": "cpu",
"transformer.h.3": "disk",
"transformer.h.4": "disk",
"transformer.ln_f": 0,
"lm_head": 0,
}
with tempfile.TemporaryDirectory() as tmp_dir:
inputs = torch.tensor([[1, 2, 3]]).to(0)
model.save_pretrained(tmp_dir)
new_model = AutoModelForCausalLM.from_pretrained(tmp_dir).to(0)
outputs1 = new_model.to(0)(inputs)
offload_folder = os.path.join(tmp_dir, "offload")
new_model_with_offload = AutoModelForCausalLM.from_pretrained(
tmp_dir, device_map=device_map, offload_folder=offload_folder
)
outputs2 = new_model_with_offload(inputs)
self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))
# With state dict temp offload
offload_folder = os.path.join(tmp_dir, "offload")
new_model_with_offload = AutoModelForCausalLM.from_pretrained(
tmp_dir,
device_map=device_map,
offload_folder=offload_folder,
offload_state_dict=True,
)
outputs2 = new_model_with_offload(inputs)
self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))
@require_accelerate
@mark.accelerate_tests
@require_torch_accelerator
def test_from_pretrained_disk_offload_derived_to_base_model(self):
derived_model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
device_map = {
"wte": 0,
"wpe": 0,
"h.0": "cpu",
"h.1": "cpu",
"h.2": "cpu",
"h.3": "disk",
"h.4": "disk",
"ln_f": 0,
}
with tempfile.TemporaryDirectory() as tmp_dir:
inputs = torch.tensor([[1, 2, 3]]).to(0)
derived_model.save_pretrained(tmp_dir, use_safetensors=True)
base_model = AutoModel.from_pretrained(tmp_dir)
outputs1 = base_model.to(0)(inputs)
# with disk offload
offload_folder = os.path.join(tmp_dir, "offload")
base_model_with_offload = AutoModel.from_pretrained(
tmp_dir, device_map=device_map, offload_folder=offload_folder
)
outputs2 = base_model_with_offload(inputs)
self.assertTrue(torch.allclose(outputs1[0].cpu(), outputs2[0].cpu()))
# With state dict temp offload
new_model_with_offload = AutoModel.from_pretrained(
tmp_dir,
device_map=device_map,
offload_folder=offload_folder,
offload_state_dict=True,
)
outputs2 = new_model_with_offload(inputs)
self.assertTrue(torch.allclose(outputs1[0].cpu(), outputs2[0].cpu()))
@slow
@require_torch
def test_from_pretrained_non_contiguous_checkpoint(self):
# See: https://github.com/huggingface/transformers/pull/28414
# Tiny models on the Hub have contiguous weights, contrarily to google/owlvit
model = OwlViTForObjectDetection.from_pretrained("fxmarty/owlvit-tiny-non-contiguous-weight")
self.assertTrue(model.owlvit.visual_projection.weight.is_contiguous())
model = OwlViTForObjectDetection.from_pretrained(
"fxmarty/owlvit-tiny-non-contiguous-weight", device_map="auto"
)
self.assertTrue(model.owlvit.visual_projection.weight.is_contiguous())
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=False)
model.save_pretrained(tmp_dir, safe_serialization=True)
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# This check we did call the fake head request
mock_head.assert_called()
def test_load_from_one_file(self):
try:
tmp_file = tempfile.mktemp()
with open(tmp_file, "wb") as f:
http_get(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", f
)
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
_ = BertModel.from_pretrained(tmp_file, config=config)
finally:
os.remove(tmp_file)
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
_ = BertModel.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", config=config
)
@require_safetensors
def test_use_safetensors(self):
# Should not raise anymore
AutoModel.from_pretrained("hf-internal-testing/tiny-random-RobertaModel", use_safetensors=True)
# test that error if only safetensors is available
with self.assertRaises(OSError) as env_error:
BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors", use_safetensors=False)
self.assertTrue("does not appear to have a file named pytorch_model.bin" in str(env_error.exception))
# test that only safetensors if both available and use_safetensors=False
with tempfile.TemporaryDirectory() as tmp_dir:
CLIPTextModel.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all",
subfolder="text_encoder",
use_safetensors=False,
cache_dir=tmp_dir,
)
all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*"))
self.assertTrue(any(f.endswith("bin") for f in all_downloaded_files))
self.assertFalse(any(f.endswith("safetensors") for f in all_downloaded_files))
# test that no safetensors if both available and use_safetensors=True
with tempfile.TemporaryDirectory() as tmp_dir:
CLIPTextModel.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all",
subfolder="text_encoder",
use_safetensors=True,
cache_dir=tmp_dir,
)
all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*"))
self.assertTrue(any(f.endswith("safetensors") for f in all_downloaded_files))
self.assertFalse(any(f.endswith("bin") for f in all_downloaded_files))
@require_safetensors
def test_safetensors_save_and_load(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True)
# No pytorch_model.bin file, only a model.safetensors
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
new_model = BertModel.from_pretrained(tmp_dir)
# Check models are equal
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_safetensors_load_from_hub(self):
safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors")
pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# Check models are equal
for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_safetensors_save_and_load_sharded(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB")
# No pytorch_model.bin index file, only a model.safetensors index
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
# No regular weights file
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
new_model = BertModel.from_pretrained(tmp_dir)
# Check models are equal
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_safetensors_load_from_hub_sharded(self):
safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded-safetensors")
pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
# Check models are equal
for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_base_model_to_head_model_load(self):
base_model = BaseModel(PretrainedConfig())
with tempfile.TemporaryDirectory() as tmp_dir:
base_model.save_pretrained(tmp_dir, safe_serialization=False)
# Can load a base model in a model with head
model = ModelWithHead.from_pretrained(tmp_dir)
for p1, p2 in zip(model.base.parameters(), base_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
# It doesn't work if the state dict has a mix of keys of the head and base without prefix though.
base_state_dict = base_model.state_dict()
head_state_dict = model.state_dict()
base_state_dict["linear2.weight"] = head_state_dict["linear2.weight"]
base_state_dict["linear2.bias"] = head_state_dict["linear2.bias"]
safe_save_file(base_state_dict, os.path.join(tmp_dir, SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
with self.assertRaisesRegex(
ValueError, "The state dictionary of the model you are trying to load is corrupted."
):
_ = ModelWithHead.from_pretrained(tmp_dir)
def test_tied_weights_reload(self):
# Base
model = BaseModelWithTiedWeights(PretrainedConfig())
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
new_model = BaseModelWithTiedWeights.from_pretrained(tmp_dir)
self.assertIs(new_model.linear.weight, new_model.linear_2.weight)
state_dict = model.state_dict()
# Remove tied weight from state_dict -> model should load with no complain of missing keys
del state_dict["linear_2.weight"]
torch.save(state_dict, os.path.join(tmp_dir, WEIGHTS_NAME))
new_model, load_info = BaseModelWithTiedWeights.from_pretrained(tmp_dir, output_loading_info=True)
self.assertListEqual(load_info["missing_keys"], [])
self.assertIs(new_model.linear.weight, new_model.linear_2.weight)
# With head
model.save_pretrained(tmp_dir)
new_model, load_info = ModelWithHeadAndTiedWeights.from_pretrained(tmp_dir, output_loading_info=True)
self.assertIs(new_model.base.linear.weight, new_model.decoder.weight)
# Should only complain about the missing bias
self.assertListEqual(load_info["missing_keys"], ["decoder.bias"])
def test_unexpected_keys_warnings(self):
model = ModelWithHead(PretrainedConfig())
logger = logging.get_logger("transformers.modeling_utils")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
# Loading the model with a new class, we don't get a warning for unexpected weights, just an info
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as cl:
_, loading_info = BaseModel.from_pretrained(tmp_dir, output_loading_info=True)
self.assertNotIn("were not used when initializing ModelWithHead", cl.out)
self.assertEqual(
set(loading_info["unexpected_keys"]),
{"linear.weight", "linear.bias", "linear2.weight", "linear2.bias"},
)
# Loading the model with the same class, we do get a warning for unexpected weights
state_dict = model.state_dict()
state_dict["added_key"] = copy.deepcopy(state_dict["linear.weight"])
safe_save_file(state_dict, os.path.join(tmp_dir, SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as cl:
_, loading_info = ModelWithHead.from_pretrained(tmp_dir, output_loading_info=True)
self.assertIn("were not used when initializing ModelWithHead: ['added_key']", cl.out)
self.assertEqual(loading_info["unexpected_keys"], ["added_key"])
def test_warn_if_padding_and_no_attention_mask(self):
logger = logging.get_logger("transformers.modeling_utils")
with self.subTest("Ensure no warnings when pad_token_id is None."):
logger.warning_once.cache_clear()
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as cl:
config_no_pad_token = PretrainedConfig()
config_no_pad_token.pad_token_id = None
model = ModelWithHead(config_no_pad_token)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertNotIn("We strongly recommend passing in an `attention_mask`", cl.out)
with self.subTest("Ensure no warnings when there is an attention_mask."):
logger.warning_once.cache_clear()
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
self.assertNotIn("We strongly recommend passing in an `attention_mask`", cl.out)
with self.subTest("Ensure no warnings when there are no pad_token_ids in the input_ids."):
logger.warning_once.cache_clear()
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[1, 345, 232, 328, 740, 140, 1695, 69, 6078, 2341, 25]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertNotIn("We strongly recommend passing in an `attention_mask`", cl.out)
with self.subTest("Ensure a warning is shown when the input_ids start with a pad_token_id."):
logger.warning_once.cache_clear()
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 432, 5232]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertIn("We strongly recommend passing in an `attention_mask`", cl.out)
with self.subTest("Ensure a warning is shown when the input_ids end with a pad_token_id."):
logger.warning_once.cache_clear()
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[432, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertIn("We strongly recommend passing in an `attention_mask`", cl.out)
with self.subTest("Ensure that the warning is shown at most once."):
logger.warning_once.cache_clear()
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertEqual(cl.out.count("We strongly recommend passing in an `attention_mask`"), 1)
with self.subTest("Ensure a different warning is shown when the pad_token_id is equal to the bos_token_id."):
logger.warning_once.cache_clear()
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
config.bos_token_id = config.pad_token_id
model = ModelWithHead(config)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertIn("You may ignore this warning if your `pad_token_id`", cl.out)
if not is_torchdynamo_available():
return
with self.subTest("Ensure that the warning code is skipped when compiling with torchdynamo."):
logger.warning_once.cache_clear()
from torch._dynamo import config, testing
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 432, 5232]])
def f(input_ids):
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
compile_counter = testing.CompileCounter()
opt_fn = torch.compile(f, dynamic=True, backend=compile_counter)
opt_fn(input_ids)
self.assertEqual(compile_counter.frame_count, 0)
@require_torch_accelerator
@slow
def test_pretrained_low_mem_new_config(self):
# Checking for 1 model(the same one which was described in the issue) .
model_ids = ["gpt2"]
for model_id in model_ids:
model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path=model_id)
model_config.n_layer = 48
model_config.n_head = 25
model_config.n_embd = 1600
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=model_id,
config=model_config,
ignore_mismatched_sizes=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model_ref = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id)
self.assertEqual(model.__class__.__name__, model_ref.__class__.__name__)
def test_generation_config_is_loaded_with_model(self):
# Note: `joaogante/tiny-random-gpt2-with-generation-config` has a `generation_config.json` containing a dummy
# `transformers_version` field set to `foo`. If loading the file fails, this test also fails.
# 1. Load without further parameters
model = AutoModelForCausalLM.from_pretrained("joaogante/tiny-random-gpt2-with-generation-config")
self.assertEqual(model.generation_config.transformers_version, "foo")
# 2. Load with `device_map`
model = AutoModelForCausalLM.from_pretrained(
"joaogante/tiny-random-gpt2-with-generation-config", device_map="auto"
)
self.assertEqual(model.generation_config.transformers_version, "foo")
@require_safetensors
def test_safetensors_torch_from_torch(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True)
new_model = BertModel.from_pretrained(tmp_dir)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
@require_safetensors
@require_flax
def test_safetensors_torch_from_flax(self):
hub_model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only")
model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True)
new_model = BertModel.from_pretrained(tmp_dir)
for p1, p2 in zip(hub_model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
@require_tf
@require_safetensors
def test_safetensors_torch_from_tf(self):
hub_model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only")
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True)
new_model = BertModel.from_pretrained(tmp_dir)
for p1, p2 in zip(hub_model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
@require_safetensors
def test_safetensors_torch_from_torch_sharded(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB")
new_model = BertModel.from_pretrained(tmp_dir)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_modifying_model_config_causes_warning_saving_generation_config(self):
model = AutoModelForCausalLM.from_pretrained("gpt2")
model.config.top_k = 1
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertLogs("transformers.modeling_utils", level="WARNING") as logs:
model.save_pretrained(tmp_dir)
self.assertEqual(len(logs.output), 1)
self.assertIn("Your generation config was originally created from the model config", logs.output[0])
@slow
@require_torch
class ModelOnTheFlyConversionTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.user = "huggingface-hub-ci"
cls.token = os.getenv("HUGGINGFACE_PRODUCTION_USER_TOKEN", None)
if cls.token is None:
raise ValueError("Cannot run tests as secret isn't setup.")
cls.api = HfApi(token=cls.token)
def setUp(self) -> None:
self.repo_name = f"{self.user}/test-model-on-the-fly-{uuid.uuid4()}"
def tearDown(self) -> None:
self.api.delete_repo(self.repo_name)
def test_safetensors_on_the_fly_conversion(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
initial_model = BertModel(config)
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False)
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True)
with self.subTest("Initial and converted models are equal"):
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
with self.subTest("PR was open with the safetensors account"):
discussions = self.api.get_repo_discussions(self.repo_name)
discussion = next(discussions)
self.assertEqual(discussion.author, "SFconvertbot")
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model")
def test_safetensors_on_the_fly_conversion_private(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
initial_model = BertModel(config)
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False, private=True)
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token)
with self.subTest("Initial and converted models are equal"):
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
with self.subTest("PR was open with the safetensors account"):
discussions = self.api.get_repo_discussions(self.repo_name, token=self.token)
discussion = next(discussions)
self.assertEqual(discussion.author, self.user)
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model")
def test_safetensors_on_the_fly_conversion_gated(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
initial_model = BertModel(config)
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False)
headers = {"Authorization": f"Bearer {self.token}"}
requests.put(
f"https://huggingface.co/api/models/{self.repo_name}/settings", json={"gated": "auto"}, headers=headers
)
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token)
with self.subTest("Initial and converted models are equal"):
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
with self.subTest("PR was open with the safetensors account"):
discussions = self.api.get_repo_discussions(self.repo_name)
discussion = next(discussions)
self.assertEqual(discussion.author, "SFconvertbot")
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model")
def test_safetensors_on_the_fly_sharded_conversion(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
initial_model = BertModel(config)
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False, max_shard_size="200kb")
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True)
with self.subTest("Initial and converted models are equal"):
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
with self.subTest("PR was open with the safetensors account"):
discussions = self.api.get_repo_discussions(self.repo_name)
discussion = next(discussions)
self.assertEqual(discussion.author, "SFconvertbot")
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model")
def test_safetensors_on_the_fly_sharded_conversion_private(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
initial_model = BertModel(config)
initial_model.push_to_hub(
self.repo_name, token=self.token, safe_serialization=False, max_shard_size="200kb", private=True
)
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token)
with self.subTest("Initial and converted models are equal"):
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
with self.subTest("PR was open with the safetensors account"):
discussions = self.api.get_repo_discussions(self.repo_name)
discussion = next(discussions)
self.assertEqual(discussion.author, self.user)
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model")
def test_safetensors_on_the_fly_sharded_conversion_gated(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
initial_model = BertModel(config)
initial_model.push_to_hub(self.repo_name, token=self.token, max_shard_size="200kb", safe_serialization=False)
headers = {"Authorization": f"Bearer {self.token}"}
requests.put(
f"https://huggingface.co/api/models/{self.repo_name}/settings", json={"gated": "auto"}, headers=headers
)
converted_model = BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token)
with self.subTest("Initial and converted models are equal"):
for p1, p2 in zip(initial_model.parameters(), converted_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
with self.subTest("PR was open with the safetensors account"):
discussions = self.api.get_repo_discussions(self.repo_name)
discussion = next(discussions)
self.assertEqual(discussion.author, "SFconvertbot")
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model")
@unittest.skip("Edge case, should work once the Space is updated`")
def test_safetensors_on_the_fly_wrong_user_opened_pr(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
initial_model = BertModel(config)
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False, private=True)
BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token)
# This should have opened a PR with the user's account
with self.subTest("PR was open with the safetensors account"):
discussions = self.api.get_repo_discussions(self.repo_name)
discussion = next(discussions)
self.assertEqual(discussion.author, self.user)
self.assertEqual(discussion.title, "Adding `safetensors` variant of this model")
# We now switch the repo visibility to public
self.api.update_repo_visibility(self.repo_name, private=False)
# We once again call from_pretrained, which should call the bot to open a PR
BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token)
with self.subTest("PR was open with the safetensors account"):
discussions = self.api.get_repo_discussions(self.repo_name)
bot_opened_pr = None
bot_opened_pr_title = None
for discussion in discussions:
if discussion.author == "SFconvertBot":
bot_opened_pr = True
bot_opened_pr_title = discussion.title
self.assertTrue(bot_opened_pr)
self.assertEqual(bot_opened_pr_title, "Adding `safetensors` variant of this model")
def test_safetensors_on_the_fly_specific_revision(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
initial_model = BertModel(config)
# Push a model on `main`
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False)
# Push a model on a given revision
initial_model.push_to_hub(self.repo_name, token=self.token, safe_serialization=False, revision="new-branch")
# Try to convert the model on that revision should raise
with self.assertRaises(EnvironmentError):
BertModel.from_pretrained(self.repo_name, use_safetensors=True, token=self.token, revision="new-branch")
@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-model")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-model-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-model")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-model-with-tags")
except HTTPError:
pass
@unittest.skip("This test is flaky")
def test_push_to_hub(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = BertModel(config)
model.push_to_hub("test-model", token=self._token)
new_model = BertModel.from_pretrained(f"{USER}/test-model")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=self._token, repo_id="test-model")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, repo_id="test-model", push_to_hub=True, token=self._token)
new_model = BertModel.from_pretrained(f"{USER}/test-model")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_push_to_hub_with_description(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = BertModel(config)
COMMIT_DESCRIPTION = """
The commit description supports markdown synthax see:
```python
>>> form transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("bert-base-uncased")
```
"""
commit_details = model.push_to_hub(
"test-model", use_auth_token=self._token, create_pr=True, commit_description=COMMIT_DESCRIPTION
)
self.assertEqual(commit_details.commit_description, COMMIT_DESCRIPTION)
@unittest.skip("This test is flaky")
def test_push_to_hub_in_organization(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = BertModel(config)
model.push_to_hub("valid_org/test-model-org", token=self._token)
new_model = BertModel.from_pretrained("valid_org/test-model-org")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-model-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, push_to_hub=True, token=self._token, repo_id="valid_org/test-model-org")
new_model = BertModel.from_pretrained("valid_org/test-model-org")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_push_to_hub_dynamic_model(self):
CustomConfig.register_for_auto_class()
CustomModel.register_for_auto_class()
config = CustomConfig(hidden_size=32)
model = CustomModel(config)
model.push_to_hub("test-dynamic-model", token=self._token)
# checks
self.assertDictEqual(
config.auto_map,
{"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
)
new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
# Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
self.assertEqual(new_model.__class__.__name__, "CustomModel")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
new_model = AutoModel.from_config(config, trust_remote_code=True)
self.assertEqual(new_model.__class__.__name__, "CustomModel")
def test_push_to_hub_with_tags(self):
from huggingface_hub import ModelCard
new_tags = ["tag-1", "tag-2"]
CustomConfig.register_for_auto_class()
CustomModel.register_for_auto_class()
config = CustomConfig(hidden_size=32)
model = CustomModel(config)
self.assertTrue(model.model_tags is None)
model.add_model_tags(new_tags)
self.assertTrue(model.model_tags == new_tags)
model.push_to_hub("test-dynamic-model-with-tags", token=self._token)
loaded_model_card = ModelCard.load(f"{USER}/test-dynamic-model-with-tags")
self.assertEqual(loaded_model_card.data.tags, new_tags)
@require_torch
class AttentionMaskTester(unittest.TestCase):
def check_non_causal(self, bsz, q_len, kv_len, mask_2d, mask_4d):
mask_indices = (mask_2d != 1)[:, None].broadcast_to((bsz, q_len, kv_len))
mask_4d_values = mask_4d[:, 0][mask_indices]
is_inf = mask_4d_values == -float("inf")
is_min = mask_4d_values == torch.finfo(mask_4d.dtype).min
assert torch.logical_or(is_inf, is_min).all()
def check_to_4d(self, mask_converter, q_len, kv_len, additional_mask=None, bsz=3):
mask_2d = torch.ones((bsz, kv_len), device=torch_device, dtype=torch.long)
if additional_mask is not None:
for bsz_idx, seq_idx in additional_mask:
mask_2d[bsz_idx, seq_idx] = 0
mask_4d = mask_converter.to_4d(mask_2d, query_length=q_len, key_value_length=kv_len, dtype=torch.float32)
assert mask_4d.shape == (bsz, 1, q_len, kv_len)
# make sure there are no overflows
assert mask_4d.min() != float("-inf")
context = mask_converter.sliding_window
if mask_converter.is_causal and context is None:
# k * (k+1) / 2 tokens are masked in triangualar masks
num_tokens_masked = bsz * (q_len * (q_len - 1) // 2)
if 0 not in mask_2d:
assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked
if 0 in mask_2d:
# at least causal mask + maybe more
assert (mask_4d != 0).sum().cpu().item() >= num_tokens_masked
self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d)
elif not mask_converter.is_causal and context is None:
if 0 not in mask_2d:
assert (mask_4d != 0).sum().cpu().item() == 0
if 0 in mask_2d:
self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d)
elif mask_converter.is_causal and context is not None:
# k * (k+1) / 2 tokens are masked in triangualar masks
num_tokens_masked = (q_len * (q_len - 1) // 2) + self.compute_num_context_mask(kv_len, context, q_len)
num_tokens_masked = bsz * num_tokens_masked
if 0 not in mask_2d:
assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked
if 0 in mask_2d:
# at least causal mask + maybe more
assert (mask_4d != 0).sum().cpu().item() >= num_tokens_masked
self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d)
def check_to_causal(self, mask_converter, q_len, kv_len, bsz=3):
mask_4d = mask_converter.to_causal_4d(
bsz, query_length=q_len, key_value_length=kv_len, device=torch_device, dtype=torch.float32
)
if q_len == 1 and mask_converter.sliding_window is None:
# no causal mask if q_len is 1
assert mask_4d is None
return
context = mask_converter.sliding_window
if mask_converter.is_causal and context is None:
# k * (k+1) / 2 tokens are masked in triangualar masks
num_tokens_masked = bsz * (q_len * (q_len - 1) // 2)
assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked
elif not mask_converter.is_causal and context is None:
assert (mask_4d != 0).sum().cpu().item() == 0
elif mask_converter.is_causal and context is not None:
# k * (k+1) / 2 tokens are masked in triangualar masks
num_tokens_masked = (q_len * (q_len - 1) // 2) + self.compute_num_context_mask(kv_len, context, q_len)
num_tokens_masked = bsz * num_tokens_masked
assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked
def compute_num_context_mask(self, kv_len, context, q_len):
# This function computes the # of attention tokens that are added for
# the sliding window
c_mask_len = kv_len - context
num_mask_triangle = c_mask_len * (c_mask_len + 1) // 2
cut_mask_len = max(c_mask_len - q_len, 0)
num_cut_mask = cut_mask_len * (cut_mask_len + 1) // 2
return num_mask_triangle - num_cut_mask
def test_2d_to_4d_causal(self):
mask_converter = AttentionMaskConverter(is_causal=True)
# auto-regressive use case
self.check_to_4d(mask_converter, q_len=1, kv_len=7)
# special auto-regressive case
self.check_to_4d(mask_converter, q_len=3, kv_len=7)
# non auto-regressive case
self.check_to_4d(mask_converter, q_len=7, kv_len=7)
# same with extra attention masks
self.check_to_4d(mask_converter, q_len=1, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
self.check_to_4d(mask_converter, q_len=3, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
# check that the mask does not overflow on causal masked tokens
self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 0), (1, 0), (1, 1)])
def test_2d_to_4d(self):
mask_converter = AttentionMaskConverter(is_causal=False)
# non auto-regressive case
self.check_to_4d(mask_converter, q_len=7, kv_len=7)
# same with extra attention masks
self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
def test_2d_to_4d_causal_sliding(self):
mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=5)
# auto-regressive use case
self.check_to_4d(mask_converter, q_len=1, kv_len=7)
# special auto-regressive case
self.check_to_4d(mask_converter, q_len=3, kv_len=7)
# non auto-regressive case
self.check_to_4d(mask_converter, q_len=7, kv_len=7)
# same with extra attention masks
self.check_to_4d(mask_converter, q_len=1, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
self.check_to_4d(mask_converter, q_len=3, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
def test_causal_mask(self):
mask_converter = AttentionMaskConverter(is_causal=True)
# auto-regressive use case
self.check_to_causal(mask_converter, q_len=1, kv_len=7)
# special auto-regressive case
self.check_to_causal(mask_converter, q_len=3, kv_len=7)
# non auto-regressive case
self.check_to_causal(mask_converter, q_len=7, kv_len=7)
def test_causal_mask_sliding(self):
mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=3)
# auto-regressive use case
self.check_to_causal(mask_converter, q_len=1, kv_len=7)
# special auto-regressive case
self.check_to_causal(mask_converter, q_len=3, kv_len=7)
# non auto-regressive case
self.check_to_causal(mask_converter, q_len=7, kv_len=7)
def test_torch_compile_fullgraph(self):
model = Prepare4dCausalAttentionMaskModel()
inputs_embeds = torch.rand([1, 3, 32])
res_non_compiled = model(inputs_embeds)
compiled_model = torch.compile(model, fullgraph=True)
res_compiled = compiled_model(inputs_embeds)
self.assertTrue(torch.equal(res_non_compiled, res_compiled))
model = Create4dCausalAttentionMaskModel()
inputs_embeds = torch.rand(2, 4, 16)
res_non_compiled = model(inputs_embeds)
compiled_model = torch.compile(model, fullgraph=True)
res_compiled = compiled_model(inputs_embeds)
self.assertTrue(torch.equal(res_non_compiled, res_compiled))
model = Prepare4dAttentionMaskModel()
mask = torch.ones(2, 4)
mask[0, :2] = 0
inputs_embeds = torch.rand(2, 4, 16)
res_non_compiled = model(mask, inputs_embeds)
compiled_model = torch.compile(model, fullgraph=True)
res_compiled = compiled_model(mask, inputs_embeds)
self.assertTrue(torch.equal(res_non_compiled, res_compiled))
@require_torch
@slow
def test_unmask_unattended_left_padding(self):
attention_mask = torch.Tensor([[0, 0, 1], [1, 1, 1], [0, 1, 1]]).to(torch.int64)
expanded_mask = torch.Tensor(
[
[[[0, 0, 0], [0, 0, 0], [0, 0, 1]]],
[[[1, 0, 0], [1, 1, 0], [1, 1, 1]]],
[[[0, 0, 0], [0, 1, 0], [0, 1, 1]]],
]
).to(torch.int64)
reference_output = torch.Tensor(
[
[[[1, 1, 1], [1, 1, 1], [0, 0, 1]]],
[[[1, 0, 0], [1, 1, 0], [1, 1, 1]]],
[[[1, 1, 1], [0, 1, 0], [0, 1, 1]]],
]
).to(torch.int64)
result = AttentionMaskConverter._unmask_unattended(expanded_mask, attention_mask, unmasked_value=1)
self.assertTrue(torch.equal(result, reference_output))
attention_mask = torch.Tensor([[0, 0, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 1]]).to(torch.int64)
attn_mask_converter = AttentionMaskConverter(is_causal=True)
past_key_values_length = 0
key_value_length = attention_mask.shape[-1] + past_key_values_length
expanded_mask = attn_mask_converter.to_4d(
attention_mask, attention_mask.shape[-1], key_value_length=key_value_length, dtype=torch.float32
)
result = AttentionMaskConverter._unmask_unattended(expanded_mask, attention_mask, unmasked_value=0)
min_inf = torch.finfo(torch.float32).min
reference_output = torch.Tensor(
[
[
[
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[min_inf, min_inf, 0, min_inf, min_inf],
[min_inf, min_inf, 0, 0, min_inf],
[min_inf, min_inf, 0, 0, 0],
]
],
[
[
[0, min_inf, min_inf, min_inf, min_inf],
[0, 0, min_inf, min_inf, min_inf],
[0, 0, 0, min_inf, min_inf],
[0, 0, 0, 0, min_inf],
[0, 0, 0, 0, 0],
]
],
[
[
[0, 0, 0, 0, 0],
[min_inf, 0, min_inf, min_inf, min_inf],
[min_inf, 0, 0, min_inf, min_inf],
[min_inf, 0, 0, 0, min_inf],
[min_inf, 0, 0, 0, 0],
]
],
]
)
self.assertTrue(torch.equal(reference_output, result))
@require_torch
@slow
def test_unmask_unattended_right_padding(self):
attention_mask = torch.Tensor([[1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 0, 0]]).to(torch.int64)
attn_mask_converter = AttentionMaskConverter(is_causal=True)
past_key_values_length = 0
key_value_length = attention_mask.shape[-1] + past_key_values_length
expanded_mask = attn_mask_converter.to_4d(
attention_mask, attention_mask.shape[-1], key_value_length=key_value_length, dtype=torch.float32
)
result = AttentionMaskConverter._unmask_unattended(expanded_mask, attention_mask, unmasked_value=0)
self.assertTrue(torch.equal(expanded_mask, result))
@require_torch
@slow
def test_unmask_unattended_random_mask(self):
attention_mask = torch.Tensor([[1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1]]).to(torch.int64)
attn_mask_converter = AttentionMaskConverter(is_causal=True)
past_key_values_length = 0
key_value_length = attention_mask.shape[-1] + past_key_values_length
expanded_mask = attn_mask_converter.to_4d(
attention_mask, attention_mask.shape[-1], key_value_length=key_value_length, dtype=torch.float32
)
result = AttentionMaskConverter._unmask_unattended(expanded_mask, attention_mask, unmasked_value=0)
self.assertTrue(torch.equal(expanded_mask, result))
@require_torch
class TestAttentionImplementation(unittest.TestCase):
def test_error_no_sdpa_available(self):
with self.assertRaises(ValueError) as cm:
_ = AutoModel.from_pretrained("hf-tiny-model-private/tiny-random-MCTCTModel", attn_implementation="sdpa")
self.assertTrue(
"does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention"
in str(cm.exception)
)
_ = AutoModel.from_pretrained("hf-tiny-model-private/tiny-random-MCTCTModel")
def test_error_no_flash_available(self):
with self.assertRaises(ValueError) as cm:
_ = AutoModel.from_pretrained(
"hf-tiny-model-private/tiny-random-MCTCTModel", attn_implementation="flash_attention_2"
)
self.assertTrue("does not support Flash Attention 2.0" in str(cm.exception))
def test_error_no_flash_available_with_config(self):
with self.assertRaises(ValueError) as cm:
config = AutoConfig.from_pretrained("hf-tiny-model-private/tiny-random-MCTCTModel")
_ = AutoModel.from_pretrained(
"hf-tiny-model-private/tiny-random-MCTCTModel", config=config, attn_implementation="flash_attention_2"
)
self.assertTrue("does not support Flash Attention 2.0" in str(cm.exception))
def test_error_wrong_attn_implementation(self):
with self.assertRaises(ValueError) as cm:
_ = AutoModel.from_pretrained("hf-tiny-model-private/tiny-random-MCTCTModel", attn_implementation="foo")
self.assertTrue('The only possible arguments are `attn_implementation="eager"' in str(cm.exception))
def test_not_available_flash(self):
if is_flash_attn_2_available():
self.skipTest("Please uninstall flash-attn package to run test_not_available_flash")
with self.assertRaises(ImportError) as cm:
_ = AutoModel.from_pretrained(
"hf-internal-testing/tiny-random-GPTBigCodeModel", attn_implementation="flash_attention_2"
)
self.assertTrue("the package flash_attn seems to be not installed" in str(cm.exception))
def test_not_available_flash_with_config(self):
if is_flash_attn_2_available():
self.skipTest("Please uninstall flash-attn package to run test_not_available_flash")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-GPTBigCodeModel")
with self.assertRaises(ImportError) as cm:
_ = AutoModel.from_pretrained(
"hf-internal-testing/tiny-random-GPTBigCodeModel",
config=config,
attn_implementation="flash_attention_2",
)
self.assertTrue("the package flash_attn seems to be not installed" in str(cm.exception))
def test_not_available_sdpa(self):
if is_torch_sdpa_available():
self.skipTest("This test requires torch<=2.0")
with self.assertRaises(ImportError) as cm:
_ = AutoModel.from_pretrained(
"hf-internal-testing/tiny-random-GPTBigCodeModel", attn_implementation="sdpa"
)
self.assertTrue("PyTorch SDPA requirements in Transformers are not met" in str(cm.exception))
@slow
@require_torch_gpu
class Mask4DTestBase(unittest.TestCase):
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
def get_test_data(self):
texts = ["the cat sat", "the cat had", "the cat is"]
encoded = [self.tokenizer.encode(t) for t in texts]
input_0 = torch.tensor(encoded, device=torch_device)
# tensor([[ 1, 278, 6635, 3290],
# [ 1, 278, 6635, 750],
# [ 1, 278, 6635, 338]], device='cuda:0')
# Combining common prefix with the unique ending tokens:
input_1 = torch.cat([input_0[0][:-1], input_0[:, -1]]).unsqueeze(0)
# tensor([[ 1, 278, 6635, 3290, 750, 338]], device='cuda:0')
# Creating a 4D mask where each of the last 3 tokens do not attend to each other.
mask_1 = torch.tensor(
[
[
[
[1, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 0, 0],
[1, 1, 1, 0, 1, 0],
[1, 1, 1, 0, 0, 1],
]
]
],
device="cuda:0",
dtype=torch.int64,
)
# Creating a position_ids tensor. note the repeating figures in the end.
position_ids_1 = torch.tensor([[0, 1, 2, 3, 3, 3]], device=torch_device, dtype=torch.int64)
return input_0, input_1, mask_1, position_ids_1
@slow
@require_torch_gpu
class Mask4DTestFP32(Mask4DTestBase):
def setUp(self):
model_name = "JackFram/llama-68m" # small Llama-like model from FlexFlow
model_dtype = torch.float32
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=model_dtype).to(torch_device)
def test_attention(self):
"""comparing outputs of attention layer"""
input_0, input_1, mask_1, position_ids_1 = self.get_test_data()
hid_0 = self.model.model.embed_tokens(input_0)
outs_0 = self.model.model.layers[0].self_attn.forward(hid_0)[0]
# outs_0.shape == torch.Size([3, 4, 768])
hid_1 = self.model.model.embed_tokens(input_1)
outs_1 = self.model.model.layers[0].self_attn.forward(
hid_1, attention_mask=mask_1.bool(), position_ids=position_ids_1
)[0]
# outs_1.shape == torch.Size([1, 6, 768])
outs_0_last_tokens = outs_0[:, -1, :] # last tokens in each batch line
outs_1_last_tokens = outs_1[0, -3:, :] # last three tokens
assert torch.allclose(outs_0_last_tokens, outs_1_last_tokens)
def test_inner_model(self):
"""comparing hidden outputs of whole inner model"""
input_0, input_1, mask_1, position_ids_1 = self.get_test_data()
logits_0 = self.model.forward(input_0).logits
logits_1 = self.model.forward(input_1, attention_mask=mask_1.bool(), position_ids=position_ids_1).logits
logits_0_last_tokens = logits_0[:, -1, :] # last tokens in each batch line
logits_1_last_tokens = logits_1[0, -3:, :] # last three tokens
torch.testing.assert_close(
logits_0_last_tokens,
logits_1_last_tokens,
)
def test_causal_model_logits(self):
"""comparing logits outputs of whole inner model"""
input_0, input_1, mask_1, position_ids_1 = self.get_test_data()
logits_0 = self.model.forward(input_0).logits
logits_1 = self.model.forward(input_1, attention_mask=mask_1.bool(), position_ids=position_ids_1).logits
logits_0_last_tokens = logits_0[:, -1, :] # last tokens in each batch line
logits_1_last_tokens = logits_1[0, -3:, :] # last three tokens
torch.testing.assert_close(
logits_0_last_tokens,
logits_1_last_tokens,
)
@slow
@require_torch_gpu
class Mask4DTestFP16(Mask4DTestBase):
test_attention = Mask4DTestFP32.test_attention
def setUp(self):
model_name = "JackFram/llama-68m" # small Llama-like model from FlexFlow
model_dtype = torch.float16
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=model_dtype).to(torch_device)
def test_causal_model_logits(self):
"""comparing logits outputs of whole inner model"""
input_0, input_1, mask_1, position_ids_1 = self.get_test_data()
logits_0 = self.model.forward(input_0).logits
logits_1 = self.model.forward(input_1, attention_mask=mask_1.bool(), position_ids=position_ids_1).logits
logits_0_last_tokens = logits_0[:, -1, :] # last tokens in each batch line
logits_1_last_tokens = logits_1[0, -3:, :] # last three tokens
indices_0 = logits_0_last_tokens.sort(descending=True).indices
indices_1 = logits_1_last_tokens.sort(descending=True).indices
# checking logits, but note relaxed tolerances for FP16
torch.testing.assert_close(logits_0_last_tokens, logits_1_last_tokens, atol=0.02, rtol=0.001)
# checking tokens order for the top tokens
for token_ids_0, token_ids_1 in zip(indices_0, indices_1):
self.assertTrue(torch.equal(token_ids_0[:128], token_ids_1[:128]))
| transformers/tests/test_modeling_utils.py/0 | {
"file_path": "transformers/tests/test_modeling_utils.py",
"repo_id": "transformers",
"token_count": 42668
} | 418 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class TestActivations(unittest.TestCase):
def test_gelu_versions(self):
x = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100])
torch_builtin = get_activation("gelu")
self.assertTrue(torch.allclose(gelu_python(x), torch_builtin(x)))
self.assertFalse(torch.allclose(gelu_python(x), gelu_new(x)))
def test_gelu_10(self):
x = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100])
torch_builtin = get_activation("gelu")
gelu10 = get_activation("gelu_10")
y_gelu = torch_builtin(x)
y_gelu_10 = gelu10(x)
clipped_mask = torch.where(y_gelu_10 < 10.0, 1, 0)
self.assertTrue(torch.max(y_gelu_10).item() == 10.0)
self.assertTrue(torch.allclose(y_gelu * clipped_mask, y_gelu_10 * clipped_mask))
def test_get_activation(self):
get_activation("gelu")
get_activation("gelu_10")
get_activation("gelu_fast")
get_activation("gelu_new")
get_activation("gelu_python")
get_activation("gelu_pytorch_tanh")
get_activation("linear")
get_activation("mish")
get_activation("quick_gelu")
get_activation("relu")
get_activation("sigmoid")
get_activation("silu")
get_activation("swish")
get_activation("tanh")
with self.assertRaises(KeyError):
get_activation("bogus")
with self.assertRaises(KeyError):
get_activation(None)
def test_activations_are_distinct_objects(self):
act1 = get_activation("gelu")
act1.a = 1
act2 = get_activation("gelu")
self.assertEqual(act1.a, 1)
with self.assertRaises(AttributeError):
_ = act2.a
| transformers/tests/utils/test_activations.py/0 | {
"file_path": "transformers/tests/utils/test_activations.py",
"repo_id": "transformers",
"token_count": 1061
} | 419 |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import tempfile
import unittest
from transformers.modelcard import ModelCard
class ModelCardTester(unittest.TestCase):
def setUp(self):
self.inputs_dict = {
"model_details": {
"Organization": "testing",
"Model date": "today",
"Model version": "v2.1, Developed by Test Corp in 2019.",
"Architecture": "Convolutional Neural Network.",
},
"metrics": "BLEU and ROUGE-1",
"evaluation_data": {
"Datasets": {"BLEU": "My-great-dataset-v1", "ROUGE-1": "My-short-dataset-v2.1"},
"Preprocessing": "See details on https://arxiv.org/pdf/1810.03993.pdf",
},
"training_data": {
"Dataset": "English Wikipedia dump dated 2018-12-01",
"Preprocessing": (
"Using SentencePiece vocabulary of size 52k tokens. See details on"
" https://arxiv.org/pdf/1810.03993.pdf"
),
},
"quantitative_analyses": {"BLEU": 55.1, "ROUGE-1": 76},
}
def test_model_card_common_properties(self):
modelcard = ModelCard.from_dict(self.inputs_dict)
self.assertTrue(hasattr(modelcard, "model_details"))
self.assertTrue(hasattr(modelcard, "intended_use"))
self.assertTrue(hasattr(modelcard, "factors"))
self.assertTrue(hasattr(modelcard, "metrics"))
self.assertTrue(hasattr(modelcard, "evaluation_data"))
self.assertTrue(hasattr(modelcard, "training_data"))
self.assertTrue(hasattr(modelcard, "quantitative_analyses"))
self.assertTrue(hasattr(modelcard, "ethical_considerations"))
self.assertTrue(hasattr(modelcard, "caveats_and_recommendations"))
def test_model_card_to_json_string(self):
modelcard = ModelCard.from_dict(self.inputs_dict)
obj = json.loads(modelcard.to_json_string())
for key, value in self.inputs_dict.items():
self.assertEqual(obj[key], value)
def test_model_card_to_json_file(self):
model_card_first = ModelCard.from_dict(self.inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
filename = os.path.join(tmpdirname, "modelcard.json")
model_card_first.to_json_file(filename)
model_card_second = ModelCard.from_json_file(filename)
self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict())
def test_model_card_from_and_save_pretrained(self):
model_card_first = ModelCard.from_dict(self.inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
model_card_first.save_pretrained(tmpdirname)
model_card_second = ModelCard.from_pretrained(tmpdirname)
self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict())
| transformers/tests/utils/test_model_card.py/0 | {
"file_path": "transformers/tests/utils/test_model_card.py",
"repo_id": "transformers",
"token_count": 1475
} | 420 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that checks the custom inits of Transformers are well-defined: Transformers uses init files that delay the
import of an object to when it's actually needed. This is to avoid the main init importing all models, which would
make the line `import transformers` very slow when the user has all optional dependencies installed. The inits with
delayed imports have two halves: one definining a dictionary `_import_structure` which maps modules to the name of the
objects in each module, and one in `TYPE_CHECKING` which looks like a normal init for type-checkers. The goal of this
script is to check the objects defined in both halves are the same.
This also checks the main init properly references all submodules, even if it doesn't import anything from them: every
submodule should be defined as a key of `_import_structure`, with an empty list as value potentially, or the submodule
won't be importable.
Use from the root of the repo with:
```bash
python utils/check_inits.py
```
for a check that will error in case of inconsistencies (used by `make repo-consistency`).
There is no auto-fix possible here sadly :-(
"""
import collections
import os
import re
from pathlib import Path
from typing import Dict, List, Optional, Tuple
# Path is set with the intent you should run this script from the root of the repo.
PATH_TO_TRANSFORMERS = "src/transformers"
# Matches is_xxx_available()
_re_backend = re.compile(r"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
_re_one_line_import_struct = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_re_import_struct_key_value = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
_re_test_backend = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
_re_import_struct_add_one = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_re_import_struct_add_many = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
_re_quote_object = re.compile(r'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
_re_between_brackets = re.compile(r"^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
_re_import = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
_re_try = re.compile(r"^\s*try:")
# Catches a line with else:
_re_else = re.compile(r"^\s*else:")
def find_backend(line: str) -> Optional[str]:
"""
Find one (or multiple) backend in a code line of the init.
Args:
line (`str`): A code line of the main init.
Returns:
Optional[`str`]: If one (or several) backend is found, returns it. In the case of multiple backends (the line
contains `if is_xxx_available() and `is_yyy_available()`) returns all backends joined on `_and_` (so
`xxx_and_yyy` for instance).
"""
if _re_test_backend.search(line) is None:
return None
backends = [b[0] for b in _re_backend.findall(line)]
backends.sort()
return "_and_".join(backends)
def parse_init(init_file) -> Optional[Tuple[Dict[str, List[str]], Dict[str, List[str]]]]:
"""
Read an init_file and parse (per backend) the `_import_structure` objects defined and the `TYPE_CHECKING` objects
defined.
Args:
init_file (`str`): Path to the init file to inspect.
Returns:
`Optional[Tuple[Dict[str, List[str]], Dict[str, List[str]]]]`: A tuple of two dictionaries mapping backends to list of
imported objects, one for the `_import_structure` part of the init and one for the `TYPE_CHECKING` part of the
init. Returns `None` if the init is not a custom init.
"""
with open(init_file, "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
# Get the to `_import_structure` definition.
line_index = 0
while line_index < len(lines) and not lines[line_index].startswith("_import_structure = {"):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lines):
return None
# First grab the objects without a specific backend in _import_structure
objects = []
while not lines[line_index].startswith("if TYPE_CHECKING") and find_backend(lines[line_index]) is None:
line = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(line):
content = _re_one_line_import_struct.search(line).groups()[0]
imports = re.findall(r"\[([^\]]+)\]", content)
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", ")])
line_index += 1
continue
single_line_import_search = _re_import_struct_key_value.search(line)
if single_line_import_search is not None:
imports = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", ") if len(obj) > 0]
objects.extend(imports)
elif line.startswith(" " * 8 + '"'):
objects.append(line[9:-3])
line_index += 1
# Those are stored with the key "none".
import_dict_objects = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING"):
# If the line is an if not is_backend_available, we grab all objects associated.
backend = find_backend(lines[line_index])
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1]) is None:
backend = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index]) is None:
line_index += 1
line_index += 1
objects = []
# Until we unindent, add backend objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 4):
line = lines[line_index]
if _re_import_struct_add_one.search(line) is not None:
objects.append(_re_import_struct_add_one.search(line).groups()[0])
elif _re_import_struct_add_many.search(line) is not None:
imports = _re_import_struct_add_many.search(line).groups()[0].split(", ")
imports = [obj[1:-1] for obj in imports if len(obj) > 0]
objects.extend(imports)
elif _re_between_brackets.search(line) is not None:
imports = _re_between_brackets.search(line).groups()[0].split(", ")
imports = [obj[1:-1] for obj in imports if len(obj) > 0]
objects.extend(imports)
elif _re_quote_object.search(line) is not None:
objects.append(_re_quote_object.search(line).groups()[0])
elif line.startswith(" " * 8 + '"'):
objects.append(line[9:-3])
elif line.startswith(" " * 12 + '"'):
objects.append(line[13:-3])
line_index += 1
import_dict_objects[backend] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
objects = []
while (
line_index < len(lines)
and find_backend(lines[line_index]) is None
and not lines[line_index].startswith("else")
):
line = lines[line_index]
single_line_import_search = _re_import.search(line)
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", "))
elif line.startswith(" " * 8):
objects.append(line[8:-2])
line_index += 1
type_hint_objects = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(lines):
# If the line is an if is_backend_available, we grab all objects associated.
backend = find_backend(lines[line_index])
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1]) is None:
backend = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index]) is None:
line_index += 1
line_index += 1
objects = []
# Until we unindent, add backend objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 8):
line = lines[line_index]
single_line_import_search = _re_import.search(line)
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", "))
elif line.startswith(" " * 12):
objects.append(line[12:-2])
line_index += 1
type_hint_objects[backend] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def analyze_results(import_dict_objects: Dict[str, List[str]], type_hint_objects: Dict[str, List[str]]) -> List[str]:
"""
Analyze the differences between _import_structure objects and TYPE_CHECKING objects found in an init.
Args:
import_dict_objects (`Dict[str, List[str]]`):
A dictionary mapping backend names (`"none"` for the objects independent of any specific backend) to
list of imported objects.
type_hint_objects (`Dict[str, List[str]]`):
A dictionary mapping backend names (`"none"` for the objects independent of any specific backend) to
list of imported objects.
Returns:
`List[str]`: The list of errors corresponding to mismatches.
"""
def find_duplicates(seq):
return [k for k, v in collections.Counter(seq).items() if v > 1]
# If one backend is missing from the other part of the init, error early.
if list(import_dict_objects.keys()) != list(type_hint_objects.keys()):
return ["Both sides of the init do not have the same backends!"]
errors = []
# Find all errors.
for key in import_dict_objects.keys():
# Duplicate imports in any half.
duplicate_imports = find_duplicates(import_dict_objects[key])
if duplicate_imports:
errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}")
duplicate_type_hints = find_duplicates(type_hint_objects[key])
if duplicate_type_hints:
errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}")
# Missing imports in either part of the init.
if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])):
name = "base imports" if key == "none" else f"{key} backend"
errors.append(f"Differences for {name}:")
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f" {a} in TYPE_HINT but not in _import_structure.")
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f" {a} in _import_structure but not in TYPE_HINT.")
return errors
def check_all_inits():
"""
Check all inits in the transformers repo and raise an error if at least one does not define the same objects in
both halves.
"""
failures = []
for root, _, files in os.walk(PATH_TO_TRANSFORMERS):
if "__init__.py" in files:
fname = os.path.join(root, "__init__.py")
objects = parse_init(fname)
if objects is not None:
errors = analyze_results(*objects)
if len(errors) > 0:
errors[0] = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append("\n".join(errors))
if len(failures) > 0:
raise ValueError("\n\n".join(failures))
def get_transformers_submodules() -> List[str]:
"""
Returns the list of Transformers submodules.
"""
submodules = []
for path, directories, files in os.walk(PATH_TO_TRANSFORMERS):
for folder in directories:
# Ignore private modules
if folder.startswith("_"):
directories.remove(folder)
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(path) / folder).glob("*.py"))) == 0:
continue
short_path = str((Path(path) / folder).relative_to(PATH_TO_TRANSFORMERS))
submodule = short_path.replace(os.path.sep, ".")
submodules.append(submodule)
for fname in files:
if fname == "__init__.py":
continue
short_path = str((Path(path) / fname).relative_to(PATH_TO_TRANSFORMERS))
submodule = short_path.replace(".py", "").replace(os.path.sep, ".")
if len(submodule.split(".")) == 1:
submodules.append(submodule)
return submodules
IGNORE_SUBMODULES = [
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
"models.esm.openfold_utils",
"modeling_attn_mask_utils",
"safetensors_conversion",
]
def check_submodules():
"""
Check all submodules of Transformers are properly registered in the main init. Error otherwise.
"""
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
import_structure_keys = set(transformers._import_structure.keys())
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), "r") as f:
init_content = f.read()
import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]", init_content)))
module_not_registered = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(module_not_registered) > 0:
list_of_modules = "\n".join(f"- {module}" for module in module_not_registered)
raise ValueError(
"The following submodules are not properly registed in the main init of Transformers:\n"
f"{list_of_modules}\n"
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value."
)
if __name__ == "__main__":
check_all_inits()
check_submodules()
| transformers/utils/check_inits.py/0 | {
"file_path": "transformers/utils/check_inits.py",
"repo_id": "transformers",
"token_count": 6546
} | 421 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(".")
r"""
The argument `test_file` in this file refers to a model test file. This should be a string of the from
`tests/models/*/test_modeling_*.py`.
"""
def get_module_path(test_file):
"""Return the module path of a model test file."""
components = test_file.split(os.path.sep)
if components[0:2] != ["tests", "models"]:
raise ValueError(
"`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got "
f"{test_file} instead."
)
test_fn = components[-1]
if not test_fn.endswith("py"):
raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead.")
if not test_fn.startswith("test_modeling_"):
raise ValueError(
f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead."
)
components = components[:-1] + [test_fn.replace(".py", "")]
test_module_path = ".".join(components)
return test_module_path
def get_test_module(test_file):
"""Get the module of a model test file."""
test_module_path = get_module_path(test_file)
test_module = importlib.import_module(test_module_path)
return test_module
def get_tester_classes(test_file):
"""Get all classes in a model test file whose names ends with `ModelTester`."""
tester_classes = []
test_module = get_test_module(test_file)
for attr in dir(test_module):
if attr.endswith("ModelTester"):
tester_classes.append(getattr(test_module, attr))
# sort with class names
return sorted(tester_classes, key=lambda x: x.__name__)
def get_test_classes(test_file):
"""Get all [test] classes in a model test file with attribute `all_model_classes` that are non-empty.
These are usually the (model) test classes containing the (non-slow) tests to run and are subclasses of one of the
classes `ModelTesterMixin`, `TFModelTesterMixin` or `FlaxModelTesterMixin`, as well as a subclass of
`unittest.TestCase`. Exceptions include `RagTestMixin` (and its subclasses).
"""
test_classes = []
test_module = get_test_module(test_file)
for attr in dir(test_module):
attr_value = getattr(test_module, attr)
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
model_classes = getattr(attr_value, "all_model_classes", [])
if len(model_classes) > 0:
test_classes.append(attr_value)
# sort with class names
return sorted(test_classes, key=lambda x: x.__name__)
def get_model_classes(test_file):
"""Get all model classes that appear in `all_model_classes` attributes in a model test file."""
test_classes = get_test_classes(test_file)
model_classes = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes)
# sort with class names
return sorted(model_classes, key=lambda x: x.__name__)
def get_model_tester_from_test_class(test_class):
"""Get the model tester class of a model test class."""
test = test_class()
if hasattr(test, "setUp"):
test.setUp()
model_tester = None
if hasattr(test, "model_tester"):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
model_tester = test.model_tester.__class__
return model_tester
def get_test_classes_for_model(test_file, model_class):
"""Get all [test] classes in `test_file` that have `model_class` in their `all_model_classes`."""
test_classes = get_test_classes(test_file)
target_test_classes = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(test_class)
# sort with class names
return sorted(target_test_classes, key=lambda x: x.__name__)
def get_tester_classes_for_model(test_file, model_class):
"""Get all model tester classes in `test_file` that are associated to `model_class`."""
test_classes = get_test_classes_for_model(test_file, model_class)
tester_classes = []
for test_class in test_classes:
tester_class = get_model_tester_from_test_class(test_class)
if tester_class is not None:
tester_classes.append(tester_class)
# sort with class names
return sorted(tester_classes, key=lambda x: x.__name__)
def get_test_to_tester_mapping(test_file):
"""Get a mapping from [test] classes to model tester classes in `test_file`.
This uses `get_test_classes` which may return classes that are NOT subclasses of `unittest.TestCase`.
"""
test_classes = get_test_classes(test_file)
test_tester_mapping = {test_class: get_model_tester_from_test_class(test_class) for test_class in test_classes}
return test_tester_mapping
def get_model_to_test_mapping(test_file):
"""Get a mapping from model classes to test classes in `test_file`."""
model_classes = get_model_classes(test_file)
model_test_mapping = {
model_class: get_test_classes_for_model(test_file, model_class) for model_class in model_classes
}
return model_test_mapping
def get_model_to_tester_mapping(test_file):
"""Get a mapping from model classes to model tester classes in `test_file`."""
model_classes = get_model_classes(test_file)
model_to_tester_mapping = {
model_class: get_tester_classes_for_model(test_file, model_class) for model_class in model_classes
}
return model_to_tester_mapping
def to_json(o):
"""Make the information succinct and easy to read.
Avoid the full class representation like `<class 'transformers.models.bert.modeling_bert.BertForMaskedLM'>` when
displaying the results. Instead, we use class name (`BertForMaskedLM`) for the readability.
"""
if isinstance(o, str):
return o
elif isinstance(o, type):
return o.__name__
elif isinstance(o, (list, tuple)):
return [to_json(x) for x in o]
elif isinstance(o, dict):
return {to_json(k): to_json(v) for k, v in o.items()}
else:
return o
| transformers/utils/get_test_info.py/0 | {
"file_path": "transformers/utils/get_test_info.py",
"repo_id": "transformers",
"token_count": 2577
} | 422 |
from transformers import ProcessorMixin
class CustomProcessor(ProcessorMixin):
feature_extractor_class = "AutoFeatureExtractor"
tokenizer_class = "AutoTokenizer"
| transformers/utils/test_module/custom_processing.py/0 | {
"file_path": "transformers/utils/test_module/custom_processing.py",
"repo_id": "transformers",
"token_count": 51
} | 423 |
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_banner_dark.png">
</div>
# TRL - Transformer Reinforcement Learning
> Full stack transformer language models with reinforcement learning.
<p align="center">
<a href="https://github.com/huggingface/trl/blob/main/LICENSE">
<img alt="License" src="https://img.shields.io/github/license/huggingface/trl.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/trl/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/trl/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/trl/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/trl.svg">
</a>
</p>
## What is it?
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/TRL-readme.png">
</div>
`trl` is a full stack library where we provide a set of tools to train transformer language models and stable diffusion models with Reinforcement Learning, from the Supervised Fine-tuning step (SFT), Reward Modeling step (RM) to the Proximal Policy Optimization (PPO) step. The library is built on top of the [`transformers`](https://github.com/huggingface/transformers) library by 🤗 Hugging Face. Therefore, pre-trained language models can be directly loaded via `transformers`. At this point, most of decoder architectures and encoder-decoder architectures are supported. Refer to the documentation or the `examples/` folder for example code snippets and how to run these tools.
**Highlights:**
- [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer): A light and friendly wrapper around `transformers` Trainer to easily fine-tune language models or adapters on a custom dataset.
- [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer): A light wrapper around `transformers` Trainer to easily fine-tune language models for human preferences (Reward Modeling).
- [`PPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.PPOTrainer): A PPO trainer for language models that just needs (query, response, reward) triplets to optimise the language model.
- [`AutoModelForCausalLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForCausalLMWithValueHead) & [`AutoModelForSeq2SeqLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForSeq2SeqLMWithValueHead): A transformer model with an additional scalar output for each token which can be used as a value function in reinforcement learning.
- [Examples](https://github.com/huggingface/trl/tree/main/examples): Train GPT2 to generate positive movie reviews with a BERT sentiment classifier, full RLHF using adapters only, train GPT-j to be less toxic, [Stack-Llama example](https://huggingface.co/blog/stackllama), etc.
## How PPO works
Fine-tuning a language model via PPO consists of roughly three steps:
1. **Rollout**: The language model generates a response or continuation based on query which could be the start of a sentence.
2. **Evaluation**: The query and response are evaluated with a function, model, human feedback or some combination of them. The important thing is that this process should yield a scalar value for each query/response pair.
3. **Optimization**: This is the most complex part. In the optimisation step the query/response pairs are used to calculate the log-probabilities of the tokens in the sequences. This is done with the model that is trained and a reference model, which is usually the pre-trained model before fine-tuning. The KL-divergence between the two outputs is used as an additional reward signal to make sure the generated responses don't deviate too far from the reference language model. The active language model is then trained with PPO.
This process is illustrated in the sketch below:
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_overview.png" width="800">
<p style="text-align: center;"> <b>Figure:</b> Sketch of the workflow. </p>
</div>
## Installation
### Python package
Install the library with pip:
```bash
pip install trl
```
### From source
If you want to run the examples in the repository a few additional libraries are required. Clone the repository and install it with pip:
```bash
git clone https://github.com/huggingface/trl.git
cd trl/
pip install .
```
If you wish to develop TRL, you should install in editable mode:
```bash
pip install -e .
```
## How to use
### `SFTTrainer`
This is a basic example on how to use the `SFTTrainer` from the library. The `SFTTrainer` is a light wrapper around the `transformers` Trainer to easily fine-tune language models or adapters on a custom dataset.
```python
# imports
from datasets import load_dataset
from trl import SFTTrainer
# get dataset
dataset = load_dataset("imdb", split="train")
# get trainer
trainer = SFTTrainer(
"facebook/opt-350m",
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=512,
)
# train
trainer.train()
```
### `RewardTrainer`
This is a basic example on how to use the `RewardTrainer` from the library. The `RewardTrainer` is a wrapper around the `transformers` Trainer to easily fine-tune reward models or adapters on a custom preference dataset.
```python
# imports
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from trl import RewardTrainer
# load model and dataset - dataset needs to be in a specific format
model = AutoModelForSequenceClassification.from_pretrained("gpt2", num_labels=1)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
...
# load trainer
trainer = RewardTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
)
# train
trainer.train()
```
### `PPOTrainer`
This is a basic example on how to use the `PPOTrainer` from the library. Based on a query the language model creates a response which is then evaluated. The evaluation could be a human in the loop or another model's output.
```python
# imports
import torch
from transformers import AutoTokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model
from trl.core import respond_to_batch
# get models
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
model_ref = create_reference_model(model)
tokenizer = AutoTokenizer.from_pretrained('gpt2')
# initialize trainer
ppo_config = PPOConfig(
batch_size=1,
)
# encode a query
query_txt = "This morning I went to the "
query_tensor = tokenizer.encode(query_txt, return_tensors="pt")
# get model response
response_tensor = respond_to_batch(model, query_tensor)
# create a ppo trainer
ppo_trainer = PPOTrainer(ppo_config, model, model_ref, tokenizer)
# define a reward for response
# (this could be any reward such as human feedback or output from another model)
reward = [torch.tensor(1.0)]
# train model for one step with ppo
train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward)
```
## References
### Proximal Policy Optimisation
The PPO implementation largely follows the structure introduced in the paper **"Fine-Tuning Language Models from Human Preferences"** by D. Ziegler et al. \[[paper](https://arxiv.org/pdf/1909.08593.pdf), [code](https://github.com/openai/lm-human-preferences)].
### Language models
The language models utilize the `transformers` library by 🤗 Hugging Face.
## Citation
```bibtex
@misc{vonwerra2022trl,
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang},
title = {TRL: Transformer Reinforcement Learning},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
| trl/README.md/0 | {
"file_path": "trl/README.md",
"repo_id": "trl",
"token_count": 2437
} | 424 |
# Builds GPU docker image of PyTorch
# Uses multi-staged approach to reduce size
# Stage 1
# Use base conda image to reduce time
FROM continuumio/miniconda3:latest AS compile-image
# Specify py version
ENV PYTHON_VERSION=3.10
# Install apt libs - copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile
RUN apt-get update && \
apt-get install -y curl git wget software-properties-common git-lfs && \
apt-get clean && \
rm -rf /var/lib/apt/lists*
# Install audio-related libraries
RUN apt-get update && \
apt install -y ffmpeg
RUN apt install -y libsndfile1-dev
RUN git lfs install
# Create our conda env - copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile
RUN conda create --name trl python=${PYTHON_VERSION} ipython jupyter pip
RUN python3 -m pip install --no-cache-dir --upgrade pip
# Below is copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile
# We don't install pytorch here yet since CUDA isn't available
# instead we use the direct torch wheel
ENV PATH /opt/conda/envs/trl/bin:$PATH
# Activate our bash shell
RUN chsh -s /bin/bash
SHELL ["/bin/bash", "-c"]
# Stage 2
FROM nvidia/cuda:12.2.2-devel-ubuntu22.04 AS build-image
COPY --from=compile-image /opt/conda /opt/conda
ENV PATH /opt/conda/bin:$PATH
RUN chsh -s /bin/bash
SHELL ["/bin/bash", "-c"]
RUN source activate trl && \
python3 -m pip install --no-cache-dir bitsandbytes optimum auto-gptq
# Install apt libs
RUN apt-get update && \
apt-get install -y curl git wget && \
apt-get clean && \
rm -rf /var/lib/apt/lists*
# Activate the conda env and install transformers + accelerate from source
RUN source activate trl && \
python3 -m pip install -U --no-cache-dir \
librosa \
"soundfile>=0.12.1" \
scipy \
transformers \
accelerate \
peft \
trl[test]@git+https://github.com/huggingface/trl
RUN source activate trl && \
pip freeze | grep trl
RUN echo "source activate trl" >> ~/.profile
# Activate the virtualenv
CMD ["/bin/bash"] | trl/docker/trl-latest-gpu/Dockerfile/0 | {
"file_path": "trl/docker/trl-latest-gpu/Dockerfile",
"repo_id": "trl",
"token_count": 774
} | 425 |
# Models
With the `AutoModelForCausalLMWithValueHead` class TRL supports all decoder model architectures in transformers such as GPT-2, OPT, and GPT-Neo. In addition, with `AutoModelForSeq2SeqLMWithValueHead` you can use encoder-decoder architectures such as T5. TRL also requires reference models which are frozen copies of the model that is trained. With `create_reference_model` you can easily create a frozen copy and also share layers between the two models to save memory.
## PreTrainedModelWrapper
[[autodoc]] PreTrainedModelWrapper
## AutoModelForCausalLMWithValueHead
[[autodoc]] AutoModelForCausalLMWithValueHead
- __init__
- forward
- generate
- _init_weights
## AutoModelForSeq2SeqLMWithValueHead
[[autodoc]] AutoModelForSeq2SeqLMWithValueHead
- __init__
- forward
- generate
- _init_weights
## create_reference_model
[[autodoc]] create_reference_model | trl/docs/source/models.mdx/0 | {
"file_path": "trl/docs/source/models.mdx",
"repo_id": "trl",
"token_count": 283
} | 426 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import numpy as np
import torch
from transformers import AutoTokenizer, load_tool
from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer, TextEnvironment
def generate_data(n):
"""Generate random arithmetic tasks and answers."""
tasks, answers = [], []
for _ in range(n):
a = np.random.randint(0, 50)
b = np.random.randint(0, 50)
op = np.random.choice(["-", "+", "*"])
tasks.append(f"\n\nWhat is {a} {op} {b}?")
if op == "-":
answers.append(a - b)
elif op == "+":
answers.append(a + b)
else:
answers.append(a * b)
return tasks, answers
def exact_match_reward(responses, answers=None):
"""Reward if generated response contains correct answer."""
rewards = []
pattern = r"Result\s*=\s*(-?\d+(?:\.\d+)?)\s*<submit>" # generated by chatGPT
for response, answer in zip(responses, answers):
reward = 0.0
predicted_number = None
match_pattern = re.findall(pattern, response)
if match_pattern:
predicted_number = float(match_pattern[0])
if predicted_number is not None:
if np.abs(predicted_number - answer) < 0.01:
reward += 1.0
rewards.append(torch.tensor(reward))
return rewards
# set up models
model_id = "gpt2"
model = AutoModelForCausalLMWithValueHead.from_pretrained(model_id)
model_ref = AutoModelForCausalLMWithValueHead.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
# system prompt
prompt = """\
What is 13-3?
<request><SimpleCalculatorTool>13-3<call>10.0<response>
Result=10<submit>
What is 4*3?
<request><SimpleCalculatorTool>4*3<call>12.0<response>
Result=12<submit>"""
generation_kwargs = {
"min_length": -1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"eos_token_id": -1,
"max_new_tokens": 32,
}
# trainer
ppo_config = PPOConfig(
batch_size=256,
learning_rate=1.41e-5,
mini_batch_size=64,
log_with="wandb",
)
ppo_trainer = PPOTrainer(ppo_config, model, model_ref, tokenizer)
# text env
text_env = TextEnvironment(
model,
tokenizer,
{"SimpleCalculatorTool": load_tool("ybelkada/simple-calculator")},
exact_match_reward,
prompt,
generation_kwargs=generation_kwargs,
)
# main training loop
for step in range(100):
tasks, answers = generate_data(ppo_config.batch_size)
queries, responses, masks, rewards, histories = text_env.run(tasks, answers=answers)
train_stats = ppo_trainer.step(queries, responses, rewards, masks)
response_texts = [tokenizer.decode(response) for response in responses]
query_texts = [tokenizer.decode(query) for query in queries]
texts = {"query": [qt.split("<submit>")[-1].strip() for qt in query_texts], "response": response_texts}
ppo_trainer.log_stats(train_stats, texts, rewards, columns_to_log=["query", "response", "answer"])
ppo_trainer.save_pretrained(model_id + "-calculator")
| trl/examples/research_projects/tools/calculator.py/0 | {
"file_path": "trl/examples/research_projects/tools/calculator.py",
"repo_id": "trl",
"token_count": 1439
} | 427 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import torch
from datasets import Dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments
from trl import IterativeSFTTrainer
class IterativeTrainerTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model_id = "trl-internal-testing/dummy-GPT2-correct-vocab"
cls.model = AutoModelForCausalLM.from_pretrained(cls.model_id)
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_id)
cls.tokenizer.pad_token = cls.tokenizer.eos_token
# get t5 as seq2seq example:
model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration-correct-vocab"
cls.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
cls.t5_tokenizer = AutoTokenizer.from_pretrained(model_id)
def _init_tensor_dummy_dataset(self):
dummy_dataset_dict = {
"input_ids": [torch.tensor([5303, 3621]), torch.tensor([3666, 1438, 318]), torch.tensor([5303, 3621])],
"attention_mask": [torch.tensor([1, 1]), torch.tensor([1, 1, 1]), torch.tensor([1, 1])],
"labels": [torch.tensor([5303, 3621]), torch.tensor([3666, 1438, 318]), torch.tensor([5303, 3621])],
}
dummy_dataset = Dataset.from_dict(dummy_dataset_dict)
dummy_dataset.set_format("torch")
return dummy_dataset
def _init_textual_dummy_dataset(self):
dummy_dataset_dict = {
"texts": ["Testing the IterativeSFTTrainer.", "This is a test of the IterativeSFTTrainer"],
"texts_labels": ["Testing the IterativeSFTTrainer.", "This is a test of the IterativeSFTTrainer"],
}
dummy_dataset = Dataset.from_dict(dummy_dataset_dict)
dummy_dataset.set_format("torch")
return dummy_dataset
def setUp(self):
# initialize trainer
self.model.train()
return super().setUp()
@parameterized.expand(
[
["gpt2", "tensor"],
["gpt2", "text"],
["t5", "tensor"],
["t5", "text"],
]
)
def test_iterative_step_from_tensor(self, model_name, input_name):
with tempfile.TemporaryDirectory() as tmp_dir:
# initialize dataset
if input_name == "tensor":
dummy_dataset = self._init_tensor_dummy_dataset()
inputs = {
"input_ids": dummy_dataset["input_ids"],
"attention_mask": dummy_dataset["attention_mask"],
"labels": dummy_dataset["labels"],
}
else:
dummy_dataset = self._init_textual_dummy_dataset()
inputs = {
"texts": dummy_dataset["texts"],
"texts_labels": dummy_dataset["texts_labels"],
}
if model_name == "gpt2":
model = self.model
tokenizer = self.tokenizer
else:
model = self.t5_model
tokenizer = self.t5_tokenizer
args = TrainingArguments(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=2,
)
iterative_trainer = IterativeSFTTrainer(model=model, args=args, tokenizer=tokenizer)
iterative_trainer.step(**inputs)
for param in iterative_trainer.model.parameters():
assert param.grad is not None
| trl/tests/test_iterative_sft_trainer.py/0 | {
"file_path": "trl/tests/test_iterative_sft_trainer.py",
"repo_id": "trl",
"token_count": 1898
} | 428 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import sys
if sys.version_info < (3, 8):
_is_python_greater_3_8 = False
else:
_is_python_greater_3_8 = True
def is_peft_available() -> bool:
return importlib.util.find_spec("peft") is not None
def is_unsloth_available() -> bool:
return importlib.util.find_spec("unsloth") is not None
def is_accelerate_greater_20_0() -> bool:
if _is_python_greater_3_8:
from importlib.metadata import version
accelerate_version = version("accelerate")
else:
import pkg_resources
accelerate_version = pkg_resources.get_distribution("accelerate").version
return accelerate_version >= "0.20.0"
def is_transformers_greater_than(version: str) -> bool:
_transformers_version = importlib.metadata.version("transformers")
return _transformers_version > version
def is_torch_greater_2_0() -> bool:
if _is_python_greater_3_8:
from importlib.metadata import version
torch_version = version("torch")
else:
import pkg_resources
torch_version = pkg_resources.get_distribution("torch").version
return torch_version >= "2.0"
def is_diffusers_available() -> bool:
return importlib.util.find_spec("diffusers") is not None
def is_bitsandbytes_available() -> bool:
import torch
# bnb can be imported without GPU but is not usable.
return importlib.util.find_spec("bitsandbytes") is not None and torch.cuda.is_available()
def is_torchvision_available() -> bool:
return importlib.util.find_spec("torchvision") is not None
def is_rich_available() -> bool:
return importlib.util.find_spec("rich") is not None
def is_wandb_available() -> bool:
return importlib.util.find_spec("wandb") is not None
def is_xpu_available() -> bool:
if is_accelerate_greater_20_0():
import accelerate
return accelerate.utils.is_xpu_available()
else:
if importlib.util.find_spec("intel_extension_for_pytorch") is None:
return False
try:
import torch
return hasattr(torch, "xpu") and torch.xpu.is_available()
except RuntimeError:
return False
def is_npu_available() -> bool:
"""Checks if `torch_npu` is installed and potentially if a NPU is in the environment"""
if importlib.util.find_spec("torch") is None or importlib.util.find_spec("torch_npu") is None:
return False
import torch
import torch_npu # noqa: F401
return hasattr(torch, "npu") and torch.npu.is_available()
| trl/trl/import_utils.py/0 | {
"file_path": "trl/trl/import_utils.py",
"repo_id": "trl",
"token_count": 1125
} | 429 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import warnings
from dataclasses import FrozenInstanceError, replace
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from datasets import Dataset
from transformers import DataCollator, PreTrainedModel, PreTrainedTokenizerBase, Trainer, TrainingArguments
from transformers.trainer_callback import TrainerCallback
from transformers.trainer_pt_utils import nested_detach
from transformers.trainer_utils import EvalPrediction
from ..import_utils import is_peft_available
from .reward_config import RewardConfig
from .utils import RewardDataCollatorWithPadding, compute_accuracy
if is_peft_available():
from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training
class RewardTrainer(Trainer):
r"""
The RewardTrainer can be used to train your custom Reward Model. It is a subclass of the
`transformers.Trainer` class and inherits all of its attributes and methods. It is recommended to use
an `AutoModelForSequenceClassification` as the reward model. The reward model should be trained on a dataset
of paired examples, where each example is a tuple of two sequences. The reward model should be trained to
predict which example in the pair is more relevant to the task at hand.
The reward trainer expects a very specific format for the dataset. The dataset should contain two 4 entries at least
if you don't use the default `RewardDataCollatorWithPadding` data collator. The entries should be named
- `input_ids_chosen`
- `attention_mask_chosen`
- `input_ids_rejected`
- `attention_mask_rejected`
Optionally, you can also pass a `margin` entry to the dataset. This entry should contain the margin used to modulate the
loss of the reward model as outlined in https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/.
If you don't pass a margin, no margin will be used.
"""
def __init__(
self,
model: Optional[Union[PreTrainedModel, nn.Module]] = None,
args: Optional[RewardConfig] = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
model_init: Optional[Callable[[], PreTrainedModel]] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (
None,
None,
),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
max_length: Optional[int] = None,
peft_config: Optional[Dict] = None,
):
"""
Initialize RewardTrainer.
Args:
model (`transformers.PreTrainedModel`):
The model to train, preferably an `AutoModelForSequenceClassification`.
args (`RewardConfig`):
The arguments to use for training.
data_collator (`transformers.DataCollator`):
The data collator to use for training. If None is specified, the default data collator (`RewardDataCollatorWithPadding`) will be used
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
train_dataset (`datasets.Dataset`):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
The dataset to use for evaluation.
tokenizer (`transformers.PreTrainedTokenizerBase`):
The tokenizer to use for training. This argument is required if you want to use the default data collator.
model_init (`Callable[[], transformers.PreTrainedModel]`):
The model initializer to use for training. If None is specified, the default model initializer will be used.
compute_metrics (`Callable[[transformers.EvalPrediction], Dict]`, *optional* defaults to `compute_accuracy`):
The metrics to use for evaluation. If no metrics are specified, the default metric (`compute_accuracy`) will be used.
callbacks (`List[transformers.TrainerCallback]`):
The callbacks to use for training.
optimizers (`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
The optimizer and scheduler to use for training.
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
The function to use to preprocess the logits before computing the metrics.
max_length (`int`, defaults to `None`):
The maximum length of the sequences in the batch. This argument is required if you want to use the default data collator.
peft_config (`Dict`, defaults to `None`):
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model.
"""
if type(args) == TrainingArguments:
warnings.warn(
"Using `transformers.TrainingArguments` for `args` is deprecated and will be removed in a future version. Please use `RewardConfig` instead.",
FutureWarning,
)
if max_length is not None:
warnings.warn(
"The `max_length` argument is deprecated and will be removed in a future version. Please use the `RewardConfig` to set `max_length` instead.",
FutureWarning,
)
else:
if max_length is not None and args.max_length is not None:
raise ValueError(
"You cannot specify both `max_length` and `args.max_length`. Please use the `RewardConfig` to set `max_length` once."
)
if max_length is not None and args.max_length is None:
warnings.warn(
"The `max_length` argument is deprecated and will be removed in a future version. Please use the `RewardConfig` to set `max_length` instead.",
FutureWarning,
)
if not is_peft_available() and peft_config is not None:
raise ValueError(
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
)
elif is_peft_available() and peft_config is not None:
if not isinstance(model, PeftModel):
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_quantized", False):
_supports_gc_kwargs = "gradient_checkpointing_kwargs" in list(
inspect.signature(prepare_model_for_kbit_training).parameters
)
preprare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing}
if not _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None:
warnings.warn(
"You passed `gradient_checkpointing_kwargs` in the trainer's kwargs, but your peft version does not support it. "
"please update to the latest version of peft to use `gradient_checkpointing_kwargs`."
)
elif _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None:
preprare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs
model = prepare_model_for_kbit_training(model, **preprare_model_kwargs)
model = get_peft_model(model, peft_config)
if compute_metrics is None:
compute_metrics = compute_accuracy
if data_collator is None:
if tokenizer is None:
raise ValueError(
"max_length or a tokenizer must be specified when using the default RewardDataCollatorWithPadding"
)
if type(args) == TrainingArguments:
if max_length is None:
warnings.warn(
"When using RewardDataCollatorWithPadding, you should set `max_length` in RewardConfig."
" It will be set to `512` by default, but you should do it yourself in the future.",
UserWarning,
)
max_length = 512
else:
if max_length is None and args.max_length is None:
warnings.warn(
"When using RewardDataCollatorWithPadding, you should set `max_length` in RewardConfig."
" It will be set to `512` by default, but you should do it yourself in the future.",
UserWarning,
)
max_length = 512
if max_length is None and args.max_length is not None:
max_length = args.max_length
data_collator = RewardDataCollatorWithPadding(tokenizer, max_length=max_length)
if args.remove_unused_columns:
try: # for bc before https://github.com/huggingface/transformers/pull/25435
args.remove_unused_columns = False
except FrozenInstanceError:
args = replace(args, remove_unused_columns=False)
# warn users
warnings.warn(
"When using RewardDataCollatorWithPadding, you should set `remove_unused_columns=False` in your RewardConfig"
" we have set it for you, but you should do it yourself in the future.",
UserWarning,
)
self.use_reward_data_collator = True
else:
self.use_reward_data_collator = False
super().__init__(
model,
args,
data_collator,
train_dataset,
eval_dataset,
tokenizer,
model_init,
compute_metrics,
callbacks,
optimizers,
preprocess_logits_for_metrics,
)
def compute_loss(
self,
model: Union[PreTrainedModel, nn.Module],
inputs: Dict[str, Union[torch.Tensor, Any]],
return_outputs=False,
) -> Union[torch.Tensor, Tuple[torch.Tensor, Dict[str, torch.Tensor]]]:
if not self.use_reward_data_collator:
warnings.warn(
"The current compute_loss is implemented for RewardDataCollatorWithPadding,"
" if you are using a custom data collator make sure you know what you are doing or"
" implement your own compute_loss method."
)
rewards_chosen = model(
input_ids=inputs["input_ids_chosen"],
attention_mask=inputs["attention_mask_chosen"],
return_dict=True,
)["logits"]
rewards_rejected = model(
input_ids=inputs["input_ids_rejected"],
attention_mask=inputs["attention_mask_rejected"],
return_dict=True,
)["logits"]
# calculate loss, optionally modulate with margin
if "margin" in inputs:
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected - inputs["margin"]).mean()
else:
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean()
if return_outputs:
return loss, {
"rewards_chosen": rewards_chosen,
"rewards_rejected": rewards_rejected,
}
return loss
def prediction_step(
self,
model: Union[PreTrainedModel, nn.Module],
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
inputs = self._prepare_inputs(inputs)
if ignore_keys is None:
if hasattr(self.model, "config"):
ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
else:
ignore_keys = []
with torch.no_grad():
loss, logits_dict = self.compute_loss(model, inputs, return_outputs=True)
if prediction_loss_only:
return (loss, None, None)
loss = loss.detach()
logits = tuple(v for k, v in logits_dict.items() if k not in ignore_keys)
logits = nested_detach(logits)
# Stack accepted against rejected, mean over logits
# and softmax to get preferences between accepted and rejected to sum to 1
logits = torch.stack(logits).mean(dim=2).softmax(dim=0).T
labels = torch.zeros(logits.shape[0])
labels = self._prepare_inputs(labels)
return loss, logits, labels
| trl/trl/trainer/reward_trainer.py/0 | {
"file_path": "trl/trl/trainer/reward_trainer.py",
"repo_id": "trl",
"token_count": 5849
} | 430 |