Datasets:
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: species800
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B
'2': I
config_name: species_800
splits:
- name: train
num_bytes: 2579096
num_examples: 5734
- name: validation
num_bytes: 385756
num_examples: 831
- name: test
num_bytes: 737760
num_examples: 1631
download_size: 18204624
dataset_size: 3702612
Dataset Card for [Dataset Name]
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: SPECIES
- Repository:
- Paper: https://doi.org/10.1371/journal.pone.0065390
- Leaderboard:
- Point of Contact: Lars Juhl Jensen
Dataset Summary
S800 Corpus: a novel abstract-based manually annotated corpus. S800 comprises 800 PubMed abstracts in which organism mentions were identified and mapped to the corresponding NCBI Taxonomy identifiers.
To increase the corpus taxonomic mention diversity the S800 abstracts were collected by selecting 100 abstracts from the following 8 categories: bacteriology, botany, entomology, medicine, mycology, protistology, virology and zoology. S800 has been annotated with a focus at the species level; however, higher taxa mentions (such as genera, families and orders) have also been considered.
The Species-800 dataset was pre-processed and split based on the dataset of Pyysalo (https://github.com/spyysalo/s800).
Supported Tasks and Leaderboards
[More Information Needed]
Languages
English (en
).
Dataset Structure
Data Instances
{'id': '0',
'tokens': ['Methanoregula',
'formicica',
'sp',
'.',
'nov',
'.',
',',
'a',
'methane',
'-',
'producing',
'archaeon',
'isolated',
'from',
'methanogenic',
'sludge',
'.'],
'ner_tags': [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}
Data Fields
id
: Sentence identifier.tokens
: Array of tokens composing a sentence.ner_tags
: Array of tags, where0
indicates no species mentioned,1
signals the first token of a species and2
the subsequent tokens of the species.
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
The species-level S800 corpus is subject to Medline restrictions.
Citation Information
Original data:
@article{pafilis2013species,
title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text},
author={Pafilis, Evangelos and Frankild, Sune P and Fanini, Lucia and Faulwetter, Sarah and Pavloudi, Christina and Vasileiadou, Aikaterini and Arvanitidis, Christos and Jensen, Lars Juhl},
journal={PloS one},
volume={8},
number={6},
pages={e65390},
year={2013},
publisher={Public Library of Science}
}
Source data of this dataset:
@article{10.1093/bioinformatics/btz682,
author = {Lee, Jinhyuk and Yoon, Wonjin and Kim, Sungdong and Kim, Donghyeon and Kim, Sunkyu and So, Chan Ho and Kang, Jaewoo},
title = "{BioBERT: a pre-trained biomedical language representation model for biomedical text mining}",
journal = {Bioinformatics},
volume = {36},
number = {4},
pages = {1234-1240},
year = {2019},
month = {09},
issn = {1367-4803},
doi = {10.1093/bioinformatics/btz682},
url = {https://doi.org/10.1093/bioinformatics/btz682},
eprint = {https://academic.oup.com/bioinformatics/article-pdf/36/4/1234/48983216/bioinformatics\_36\_4\_1234.pdf},
}
and
https://github.com/spyysalo/s800
Contributions
Thanks to @edugp for adding this dataset.