path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
Deep Learning Specialization/4. Convolutional Neural Networks/Keras_Tutorial_v2a.ipynb
###Markdown Keras tutorial - Emotion Detection in Images of FacesWelcome to the first assignment of week 2. In this assignment, you will:1. Learn to use Keras, a high-level neural networks API (programming framework), written in Python and capable of running on top of several lower-level frameworks including TensorFlow and CNTK. 2. See how you can in a couple of hours build a deep learning algorithm. Why are we using Keras? * Keras was developed to enable deep learning engineers to build and experiment with different models very quickly. * Just as TensorFlow is a higher-level framework than Python, Keras is an even higher-level framework and provides additional abstractions. * Being able to go from idea to result with the least possible delay is key to finding good models. * However, Keras is more restrictive than the lower-level frameworks, so there are some very complex models that you would still implement in TensorFlow rather than in Keras. * That being said, Keras will work fine for many common models. Updates If you were working on the notebook before this update...* The current notebook is version "v2a".* You can find your original work saved in the notebook with the previous version name ("v2").* To view the file directory, go to the menu "File->Open", and this will open a new tab that shows the file directory. List of updates* Changed back-story of model to "emotion detection" from "happy house."* Cleaned/organized wording of instructions and commentary.* Added instructions on how to set `input_shape`* Added explanation of "objects as functions" syntax.* Clarified explanation of variable naming convention.* Added hints for steps 1,2,3,4 Load packages* In this exercise, you'll work on the "Emotion detection" model, which we'll explain below. * Let's load the required packages. ###Code import numpy as np from keras import layers from keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D from keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D from keras.models import Model from keras.preprocessing import image from keras.utils import layer_utils from keras.utils.data_utils import get_file from keras.applications.imagenet_utils import preprocess_input import pydot from IPython.display import SVG from keras.utils.vis_utils import model_to_dot from keras.utils import plot_model from kt_utils import * import keras.backend as K K.set_image_data_format('channels_last') import matplotlib.pyplot as plt from matplotlib.pyplot import imshow %matplotlib inline ###Output _____no_output_____ ###Markdown **Note**: As you can see, we've imported a lot of functions from Keras. You can use them by calling them directly in your code. Ex: `X = Input(...)` or `X = ZeroPadding2D(...)`. In other words, unlike TensorFlow, you don't have to create the graph and then make a separate `sess.run()` call to evaluate those variables. 1 - Emotion Tracking* A nearby community health clinic is helping the local residents monitor their mental health. * As part of their study, they are asking volunteers to record their emotions throughout the day.* To help the participants more easily track their emotions, you are asked to create an app that will classify their emotions based on some pictures that the volunteers will take of their facial expressions.* As a proof-of-concept, you first train your model to detect if someone's emotion is classified as "happy" or "not happy."To build and train this model, you have gathered pictures of some volunteers in a nearby neighborhood. The dataset is labeled.Run the following code to normalize the dataset and learn about its shapes. ###Code X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Normalize image vectors X_train = X_train_orig/255. X_test = X_test_orig/255. # Reshape Y_train = Y_train_orig.T Y_test = Y_test_orig.T print ("number of training examples = " + str(X_train.shape[0])) print ("number of test examples = " + str(X_test.shape[0])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape)) ###Output _____no_output_____ ###Markdown **Details of the "Face" dataset**:- Images are of shape (64,64,3)- Training: 600 pictures- Test: 150 pictures 2 - Building a model in KerasKeras is very good for rapid prototyping. In just a short time you will be able to build a model that achieves outstanding results.Here is an example of a model in Keras:```pythondef model(input_shape): """ input_shape: The height, width and channels as a tuple. Note that this does not include the 'batch' as a dimension. If you have a batch like 'X_train', then you can provide the input_shape using X_train.shape[1:] """ Define the input placeholder as a tensor with shape input_shape. Think of this as your input image! X_input = Input(input_shape) Zero-Padding: pads the border of X_input with zeroes X = ZeroPadding2D((3, 3))(X_input) CONV -> BN -> RELU Block applied to X X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X) X = BatchNormalization(axis = 3, name = 'bn0')(X) X = Activation('relu')(X) MAXPOOL X = MaxPooling2D((2, 2), name='max_pool')(X) FLATTEN X (means convert it to a vector) + FULLYCONNECTED X = Flatten()(X) X = Dense(1, activation='sigmoid', name='fc')(X) Create model. This creates your Keras model instance, you'll use this instance to train/test the model. model = Model(inputs = X_input, outputs = X, name='HappyModel') return model``` Variable naming convention* Note that Keras uses a different convention with variable names than we've previously used with numpy and TensorFlow. * Instead of creating unique variable names for each step and each layer, such as ```X = ...Z1 = ...A1 = ...```* Keras re-uses and overwrites the same variable at each step:```X = ...X = ...X = ...```* The exception is `X_input`, which we kept separate since it's needed later. Objects as functions* Notice how there are two pairs of parentheses in each statement. For example:```X = ZeroPadding2D((3, 3))(X_input)```* The first is a constructor call which creates an object (ZeroPadding2D).* In Python, objects can be called as functions. Search for 'python object as function and you can read this blog post [Python Pandemonium](https://medium.com/python-pandemonium/function-as-objects-in-python-d5215e6d1b0d). See the section titled "Objects as functions."* The single line is equivalent to this:```ZP = ZeroPadding2D((3, 3)) ZP is an object that can be called as a functionX = ZP(X_input) ``` **Exercise**: Implement a `HappyModel()`. * This assignment is more open-ended than most. * Start by implementing a model using the architecture we suggest, and run through the rest of this assignment using that as your initial model. * Later, come back and try out other model architectures. * For example, you might take inspiration from the model above, but then vary the network architecture and hyperparameters however you wish. * You can also use other functions such as `AveragePooling2D()`, `GlobalMaxPooling2D()`, `Dropout()`. **Note**: Be careful with your data's shapes. Use what you've learned in the videos to make sure your convolutional, pooling and fully-connected layers are adapted to the volumes you're applying it to. ###Code # GRADED FUNCTION: HappyModel def HappyModel(input_shape): """ Implementation of the HappyModel. Arguments: input_shape -- shape of the images of the dataset (height, width, channels) as a tuple. Note that this does not include the 'batch' as a dimension. If you have a batch like 'X_train', then you can provide the input_shape using X_train.shape[1:] Returns: model -- a Model() instance in Keras """ ### START CODE HERE ### # Feel free to use the suggested outline in the text above to get started, and run through the whole # exercise (including the later portions of this notebook) once. The come back also try out other # network architectures as well. # Define the input placeholder as a tensor with shape input_shape. Think of this as your input image! X_input = Input(input_shape) # Zero-Padding: pads the border of X_input with zeroes X = ZeroPadding2D((3, 3))(X_input) # CONV -> BN -> RELU Block applied to X X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X) X = BatchNormalization(axis = 3, name = 'bn0')(X) X = Activation('relu')(X) # MAXPOOL X = MaxPooling2D((2, 2), name='max_pool')(X) # FLATTEN X (means convert it to a vector) + FULLYCONNECTED X = Flatten()(X) X = Dense(1, activation='sigmoid', name='fc')(X) # Create model. This creates your Keras model instance, you'll use this instance to train/test the model. model = Model(inputs = X_input, outputs = X, name='HappyModel') ### END CODE HERE ### return model ###Output _____no_output_____ ###Markdown You have now built a function to describe your model. To train and test this model, there are four steps in Keras:1. Create the model by calling the function above 2. Compile the model by calling `model.compile(optimizer = "...", loss = "...", metrics = ["accuracy"])` 3. Train the model on train data by calling `model.fit(x = ..., y = ..., epochs = ..., batch_size = ...)` 4. Test the model on test data by calling `model.evaluate(x = ..., y = ...)` If you want to know more about `model.compile()`, `model.fit()`, `model.evaluate()` and their arguments, refer to the official [Keras documentation](https://keras.io/models/model/). Step 1: create the model. **Hint**: The `input_shape` parameter is a tuple (height, width, channels). It excludes the batch number. Try `X_train.shape[1:]` as the `input_shape`. ###Code ### START CODE HERE ### (1 line) happyModel = HappyModel(X_train.shape[1:]) ### END CODE HERE ### ###Output _____no_output_____ ###Markdown Step 2: compile the model**Hint**: Optimizers you can try include `'adam'`, `'sgd'` or others. See the documentation for [optimizers](https://keras.io/optimizers/) The "happiness detection" is a binary classification problem. The loss function that you can use is `'binary_cross_entropy'`. Note that `'categorical_cross_entropy'` won't work with your data set as its formatted, because the data is an array of 0 or 1 rather than two arrays (one for each category). Documentation for [losses](https://keras.io/losses/) ###Code ### START CODE HERE ### (1 line) happyModel.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy"]) ### END CODE HERE ### ###Output _____no_output_____ ###Markdown Step 3: train the model**Hint**: Use the `'X_train'`, `'Y_train'` variables. Use integers for the epochs and batch_size**Note**: If you run `fit()` again, the `model` will continue to train with the parameters it has already learned instead of reinitializing them. ###Code ### START CODE HERE ### (1 line) happyModel.fit(x = X_train, y = Y_train, epochs = 5, batch_size = 5) ### END CODE HERE ### ###Output _____no_output_____ ###Markdown Step 4: evaluate model **Hint**: Use the `'X_test'` and `'Y_test'` variables to evaluate the model's performance. ###Code ### START CODE HERE ### (1 line) preds = happyModel.evaluate(x=X_test, y=Y_test) ### END CODE HERE ### print() print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1])) ###Output _____no_output_____ ###Markdown Expected performance If your `happyModel()` function worked, its accuracy should be better than random guessing (50% accuracy).To give you a point of comparison, our model gets around **95% test accuracy in 40 epochs** (and 99% train accuracy) with a mini batch size of 16 and "adam" optimizer. Tips for improving your modelIf you have not yet achieved a very good accuracy (>= 80%), here are some things tips:- Use blocks of CONV->BATCHNORM->RELU such as:```pythonX = Conv2D(32, (3, 3), strides = (1, 1), name = 'conv0')(X)X = BatchNormalization(axis = 3, name = 'bn0')(X)X = Activation('relu')(X)```until your height and width dimensions are quite low and your number of channels quite large (≈32 for example). You can then flatten the volume and use a fully-connected layer.- Use MAXPOOL after such blocks. It will help you lower the dimension in height and width.- Change your optimizer. We find 'adam' works well. - If you get memory issues, lower your batch_size (e.g. 12 )- Run more epochs until you see the train accuracy no longer improves. **Note**: If you perform hyperparameter tuning on your model, the test set actually becomes a dev set, and your model might end up overfitting to the test (dev) set. Normally, you'll want separate dev and test sets. The dev set is used for parameter tuning, and the test set is used once to estimate the model's performance in production. 3 - ConclusionCongratulations, you have created a proof of concept for "happiness detection"! Key Points to remember- Keras is a tool we recommend for rapid prototyping. It allows you to quickly try out different model architectures.- Remember The four steps in Keras: 1. Create 2. Compile 3. Fit/Train 4. Evaluate/Test 4 - Test with your own image (Optional)Congratulations on finishing this assignment. You can now take a picture of your face and see if it can classify whether your expression is "happy" or "not happy". To do that:1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub.2. Add your image to this Jupyter Notebook's directory, in the "images" folder3. Write your image's name in the following code4. Run the code and check if the algorithm is right (0 is not happy, 1 is happy)! The training/test sets were quite similar; for example, all the pictures were taken against the same background (since a front door camera is always mounted in the same position). This makes the problem easier, but a model trained on this data may or may not work on your own data. But feel free to give it a try! ###Code ### START CODE HERE ### img_path = 'images/my_image.jpg' ### END CODE HERE ### img = image.load_img(img_path, target_size=(64, 64)) imshow(img) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) print(happyModel.predict(x)) ###Output _____no_output_____ ###Markdown 5 - Other useful functions in Keras (Optional)Two other basic features of Keras that you'll find useful are:- `model.summary()`: prints the details of your layers in a table with the sizes of its inputs/outputs- `plot_model()`: plots your graph in a nice layout. You can even save it as ".png" using SVG() if you'd like to share it on social media ;). It is saved in "File" then "Open..." in the upper bar of the notebook.Run the following code. ###Code happyModel.summary() plot_model(happyModel, to_file='HappyModel.png') SVG(model_to_dot(happyModel).create(prog='dot', format='svg')) ###Output _____no_output_____
Daily Assignments/DA26/DA26.ipynb
###Markdown Daily Assignment 26 - EEP 118 ###Code # Add Preamble code here (load packages and dataset) ###Output _____no_output_____ ###Markdown Time SeriesUsing 41 years of data from 1947 to 1987, we analyze the real wage rate as a function of the average laborproductivity in the US. **1.** Looking at the following graph over time, what potential problem could a regression of wage on labor productivity raise? (*hint: see Lecture notes*) Enter written answer for 1. here **2.** What are the two procedures that could be employed to solve this problem? (*hint: see Lecture notes*) Enter written answer for 2. here **3.** Use the results of the regressions (1)-(3) given below to support the argument that you have just developed.| Model | (1) | (2) | (3) | (4)||---------- | --------- | ----------|---------------------------------|----------------------------------|| Variables | Real Wage | Real Wage | Real Wage (t) - Real Wage (t-1) | Real Wage (t) - Real Wage (t-1) |||||||| Productivity | 0.0360$^{***}$|0.111$^{***}$| | || | (0.00246) | (0.0103| | |||||||| Year | | -0.111$^{***}$ | | || | | (0.0151) | | ||||||||Prod(t) - Prod(t-1) | ||0.0463$^{***}$ | 0.0133 || | | |0.00985) | (0.0113)|||||||| Constant | 1.528$^{***}$ | 213.3$^{***}$ | -0.0217 | 0.0689$^{***}$|| | (0.208) | (28.78) | (0.0185) | (0.0220)|||||||||||||| Observations | 41 | 41 | 40 | 25 || R-squared | 0.846 | 0.936 | 0.368 | 0.057|| Years of Observations | 1947-87 | 1947-87 | 1947-87 | 1947-72|Each column presents a different regression model. The y variable is listed as thecolumn title and the x variables are the row titles. Standard errors are in parentheses. Enter written answer for 3. here **4.** Fully interpret the result of regression (3) (Remember that this means SSS) (*hint: see Lecture notes*) Enter written answer for 4. here **5.** Compute a confidence interval for the effect of productivity on wage from the results of regression (4) estimated from the first 25 years. ###Code # add any code for 5. here ###Output _____no_output_____ ###Markdown Enter written answer for 5. here **6.** Can the results from question 5. be interpreted as suggesting that productivity has at most a small effect on wage? (Think of what you have controlled for in this regression). (*hint: see Lecture notes*) Enter written answer for 6. here **7.** Replicate the plot and regression output below using the Stata file `EARNS.dta` (*hint: see Lecture notes and Coding Bootcamps*) ###Code # add any code for 7. here ###Output _____no_output_____
Phase2/knn-dt.ipynb
###Markdown Data Prep ###Code df = pd.read_csv("../Phase1/main_data.csv", index_col=0) df = df.dropna() df from sklearn.utils import shuffle from sklearn.model_selection import train_test_split X = df.drop('criticality', axis=1).values Y = df['criticality'].values X_train, X_test, Y_train, Y_test = train_test_split(X, Y, stratify=Y, test_size=0.2, random_state=42) # shuffled_data = shuffle(df.values, random_state=0) # shuffled_data.shape # test_index = int(shuffled_data.shape[0] * 0.8) # X_train, X_test = shuffled_data[:test_index, :-1], shuffled_data[test_index:, :-1] # Y_train, Y_test = shuffled_data[:test_index, -1], shuffled_data[test_index:, -1] # shuffled_data.shape print(X_train.shape, X_test.shape) ###Output (6568, 10) (1643, 10) ###Markdown Decision Tree ###Code from sklearn import tree dt_clf = tree.DecisionTreeClassifier(random_state=0, max_depth=10) dt_clf.fit(X_train, Y_train) np.sum(dt_clf.predict(X_test) == Y_test) / len(X_test) ###Output _____no_output_____ ###Markdown Validation Curve ###Code #validation curve from sklearn.model_selection import validation_curve max_depth_list = range(5, 20) train_scores, valid_scores = validation_curve(tree.DecisionTreeClassifier(), X_train, Y_train, param_name="max_depth", param_range=max_depth_list, cv=5, scoring = 'accuracy', verbose=1, n_jobs=-1 ) print(train_scores.shape) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) valid_scores_mean = np.mean(valid_scores, axis=1) valid_scores_std = np.std(valid_scores, axis=1) xlabel = 'max depth' ylabel = 'Accuracy' plt_title = 'Validation Curve, DTClassifier' fig = plt.figure() ax = fig.add_subplot(111, xlabel=xlabel, ylabel=ylabel, title=plt_title) plt.semilogx(max_depth_list, train_scores_mean, label="Training score", color="darkorange", lw=2) plt.fill_between(max_depth_list, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=2) plt.semilogx(max_depth_list, valid_scores_mean, label="Validation score", color="navy", lw=2) plt.fill_between(max_depth_list, valid_scores_mean - valid_scores_std, valid_scores_mean + valid_scores_std, alpha=0.2, color="navy", lw=2) plt.legend(loc="best") plt.savefig('results/validation_curve_DT.jpg', bbox_inches='tight', dpi=200) plt.show() ###Output [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 75 out of 75 | elapsed: 1.8s finished ###Markdown Learning Curve ###Code #learning curve from sklearn.model_selection import learning_curve max_depth_list = range(5, 20) ns_list, train_scores, validation_scores = learning_curve( estimator = tree.DecisionTreeClassifier(), X = X_train, y = Y_train, train_sizes = max_depth_list, scoring = 'accuracy', n_jobs= -1 ) train_scores_mean = train_scores.mean(axis = 1) train_scores_std = np.std(train_scores, axis=1) validation_scores_mean = validation_scores.mean(axis = 1) validation_scores_std = validation_scores.std(axis = 1) xlabel = 'Max Depth' ylabel = 'Accuracy' plt_title = 'Learning Curve, DecisionTreeClassifier' fig = plt.figure() ax = fig.add_subplot(111, xlabel=xlabel, ylabel=ylabel, title=plt_title) ax.plot(max_depth_list, train_scores_mean, label = 'Training Score') ax.plot(max_depth_list, validation_scores_mean, label = 'Validation Score') plt.fill_between(max_depth_list, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkblue", lw=2) plt.fill_between(max_depth_list, validation_scores_mean - validation_scores_std, validation_scores_mean + validation_scores_std, alpha=0.2, color="darkgreen", lw=2) ax.legend(loc=0) plt.savefig("results/learning_curve_DT.jpg", bbox_inches='tight', dpi=200) plt.show() ###Output _____no_output_____ ###Markdown KNN (Neatest Neighbor Classification)**This takes a little bit of time** ###Code from sklearn import neighbors from sklearn.pipeline import Pipeline print(sorted(neighbors.KDTree.valid_metrics)) nca = neighbors.NeighborhoodComponentsAnalysis(random_state=42) knn = neighbors.KNeighborsClassifier(n_neighbors=3) nca_pipe = Pipeline([('nca', nca), ('knn', knn)]) nca_pipe.fit(X_train, Y_train) nca_pipe.score(X_test, Y_test) #validation curve from sklearn.model_selection import validation_curve n_neighbors_list = range(3, 15) train_scores, valid_scores = validation_curve(neighbors.KNeighborsClassifier(metric='l1'), X_train, Y_train, param_name="n_neighbors", param_range=n_neighbors_list, cv=5, scoring = 'accuracy', verbose=1, n_jobs=-1 ) print(train_scores.shape) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) valid_scores_mean = np.mean(valid_scores, axis=1) valid_scores_std = np.std(valid_scores, axis=1) xlabel = '# of Neighbors' ylabel = 'Accuracy' plt_title = 'Validation Curve, KNN' fig = plt.figure() ax = fig.add_subplot(111, xlabel=xlabel, ylabel=ylabel, title=plt_title) plt.semilogx(n_neighbors_list, train_scores_mean, label="Training score", color="darkorange", lw=2) plt.fill_between(n_neighbors_list, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=2) plt.semilogx(n_neighbors_list, valid_scores_mean, label="Validation score", color="navy", lw=2) plt.fill_between(n_neighbors_list, valid_scores_mean - valid_scores_std, valid_scores_mean + valid_scores_std, alpha=0.2, color="navy", lw=2) plt.legend(loc="best") plt.savefig('results/validation_curve_KNN.jpg', bbox_inches='tight', dpi=200) plt.show() #learning curve from sklearn.model_selection import learning_curve n_neighbors_list = range(3, 15) ns_list, train_scores, validation_scores = learning_curve( estimator = neighbors.KNeighborsClassifier(metric='l1', n_jobs=4), X = X_train, y = Y_train, train_sizes = n_neighbors_list, scoring = 'accuracy', n_jobs= -1 ) train_scores_mean = train_scores.mean(axis = 1) train_scores_std = np.std(train_scores, axis=1) validation_scores_mean = validation_scores.mean(axis = 1) validation_scores_std = validation_scores.std(axis = 1) xlabel = '# of Neighbors' ylabel = 'Accuracy' plt_title = 'Learning Curve, KNN' fig = plt.figure() ax = fig.add_subplot(111, xlabel=xlabel, ylabel=ylabel, title=plt_title) ax.plot(n_neighbors_list, train_scores_mean, label = 'Training Score') ax.plot(n_neighbors_list, validation_scores_mean, label = 'Validation Score') plt.fill_between(n_neighbors_list, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkblue", lw=2) plt.fill_between(n_neighbors_list, validation_scores_mean - validation_scores_std, validation_scores_mean + validation_scores_std, alpha=0.2, color="darkgreen", lw=2) ax.legend(loc=0) plt.savefig("results/learning_curve_KNN.jpg", bbox_inches='tight', dpi=200) plt.show() ###Output /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 3, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 4, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 4, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 3, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 3, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 3, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 4, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 4, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 3, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 3, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 4, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 4, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 3, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 3, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 4, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 4, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 3, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 3, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 4, n_neighbors = 5 warnings.warn( /home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:771: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 762, in _score scores = scorer(estimator, X_test, y_test) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 216, in __call__ return self._score( File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 258, in _score y_pred = method_caller(estimator, "predict", X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/metrics/_scorer.py", line 68, in _cached_call return getattr(estimator, method)(*args, **kwargs) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_classification.py", line 216, in predict neigh_dist, neigh_ind = self.kneighbors(X) File "/home/phoenix/Apps/anaconda3/envs/physics/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 724, in kneighbors raise ValueError( ValueError: Expected n_neighbors <= n_samples, but n_samples = 4, n_neighbors = 5 warnings.warn( ###Markdown MetricsCouldn't think of any other mectrics ###Code # confusion metrics from sklearn.metrics import confusion_matrix print("Decision Tree:\n", confusion_matrix(y_true=Y_test, y_pred=dt_clf.predict(X_test), normalize='true', labels=[1, 2, 3])) print("\n\n") print("NCA Pipeline:\n", confusion_matrix(y_true=Y_test, y_pred=nca_pipe.predict(X_test), normalize='true', labels=[1, 2, 3])) ###Output Decision Tree: [[0.9132948 0.06936416 0.01734104] [0.31410256 0.53846154 0.1474359 ] [0.00929752 0.02892562 0.96177686]] NCA Pipeline: [[0.9132948 0.05780347 0.02890173] [0.35897436 0.47435897 0.16666667] [0.02169421 0.02995868 0.94834711]]
lorenz.ipynb
###Markdown Lorenz attractor simulation ###Code import numpy as np from scipy.integrate import solve_ivp import matplotlib.pyplot as plt def lorenz(t, u, σ, ρ, β): x, y, z = u dudt = [ σ*(y - x), x*(ρ - z) - y, x*y - β*z ] return dudt ###Output _____no_output_____ ###Markdown Solve up initial value problem ###Code σ = 10 β = 8/3 ρ = 28 dt = 0.01 u0 = np.random.rand(3) t_eval = np.arange(0, 80+dt, dt) t = 0, t_eval[-1] sol = solve_ivp(lorenz, t, u0, args=(σ, ρ, β), t_eval=t_eval) ###Output _____no_output_____ ###Markdown Visualize trajectory ###Code x, y, z = sol.y fig = plt.figure() ax = plt.axes(projection='3d') ax.plot3D(x, y, z, 'gray') pass ###Output _____no_output_____ ###Markdown Generate training data ###Code sol.y.shape fig,ax = plt.subplots(1,1,subplot_kw={'projection': '3d'}, figsize=(12,12)) inputs = [] outputs = [] for j in range(100): u0 = 30*np.random.rand(3) - 0.5 t_eval = np.arange(0, 80+dt, dt) t = 0, t_eval[-1] sol = solve_ivp(lorenz, t, u0, args=(σ, ρ, β), t_eval=t_eval) inputs.append(sol.y[:, :-1].T) outputs.append(sol.y[:, 1:].T) ax.plot3D(*sol.y) ax.plot3D(*sol.y[:,0], 'ro') ax.view_init(18, -113) np.save('inputs.npy', np.array(inputs)) np.save('outputs.npy', np.array(outputs)) ###Output _____no_output_____
_notebooks/2020-01-01-gol.ipynb
###Markdown Conway's Game of Life> The most famous cellular automaton- toc: true - badges: true- comments: false- categories: [jupyter] > youtube: https://youtu.be/lelsVltLZe4 IntroductionThis is a (slightly) modified version of [Glowing Python]( http://glowingpython.blogspot.co.il/2015/10/game-of-life-with-python.html)'s code. I make it available here because it features a few nice things:* how to make a movie using matplotlib.animation* how to write a generator (function with yield)* how to plot a sparce array (```spy```) The code ###Code import numpy as np from matplotlib import pyplot as plt import matplotlib.animation as manimation def life(X, steps): """ Conway's Game of Life. - X, matrix with the initial state of the game. - steps, number of generations. """ def roll_it(x, y): # rolls the matrix X in a given direction # x=1, y=0 left; x=-1, y=0 right; return np.roll(np.roll(X, y, axis=0), x, axis=1) for _ in range(steps): # count the number of neighbours # the universe is considered toroidal Y = roll_it(1, 0) + roll_it(0, 1) + \ roll_it(-1, 0) + roll_it(0, -1) + \ roll_it(1, 1) + roll_it(-1, -1) + \ roll_it(1, -1) + roll_it(-1, 1) # game of life rules X = np.logical_or(np.logical_and(X, Y == 2), Y == 3) X = X.astype(int) yield X dimensions = (90, 160) # height, width X = np.zeros(dimensions) # Y by X dead cells middle_y = dimensions[0] / 2 middle_x = dimensions[1] / 2 N_iterations = 600 # acorn initial condition # http://www.conwaylife.com/w/index.php?title=Acorn X[middle_y, middle_x:middle_x+2] = 1 X[middle_y, middle_x+4:middle_x+7] = 1 X[middle_y+1, middle_x+3] = 1 X[middle_y+2, middle_x+1] = 1 FFMpegWriter = manimation.writers['ffmpeg'] metadata = dict(title='Game of life', artist='Acorn initial condition') writer = FFMpegWriter(fps=10, metadata=metadata) fig = plt.figure() fig.patch.set_facecolor('black') with writer.saving(fig, "game_of_life.mp4", 300): # last argument: dpi plt.spy(X, origin='lower') plt.axis('off') writer.grab_frame() plt.clf() for i, x in enumerate(life(X, N_iterations)): plt.title("iteration: {:03d}".format(i + 1)) plt.spy(x, origin='lower') plt.axis('off') writer.grab_frame() plt.clf() ###Output _____no_output_____
week05_nlp/part1_common.ipynb
###Markdown все что ниже можно сделать обычным spacy, а на DL курсе фильтровать строки довольно странно Homework part I: Prohibited Comment Classification (3 points)![img](https://github.com/yandexdataschool/nlp_course/raw/master/resources/banhammer.jpg)__In this notebook__ you will build an algorithm that classifies social media comments into normal or toxic.Like in many real-world cases, you only have a small (10^3) dataset of hand-labeled examples to work with. We'll tackle this problem using both classical nlp methods and embedding-based approach. ###Code import pandas as pd data = pd.read_csv("comments.tsv", sep='\t') texts = data['comment_text'].values target = data['should_ban'].values data[50::200] from sklearn.model_selection import train_test_split texts_train, texts_test, y_train, y_test = train_test_split(texts, target, test_size=0.5, random_state=42) ###Output _____no_output_____ ###Markdown __Note:__ it is generally a good idea to split data into train/test before anything is done to them.It guards you against possible data leakage in the preprocessing stage. For example, should you decide to select words present in obscene tweets as features, you should only count those words over the training set. Otherwise your algoritm can cheat evaluation. Preprocessing and tokenizationComments contain raw text with punctuation, upper/lowercase letters and even newline symbols.To simplify all further steps, we'll split text into space-separated tokens using one of nltk tokenizers. ###Code from nltk.tokenize import TweetTokenizer tokenizer = TweetTokenizer() preprocess = lambda text: ' '.join(tokenizer.tokenize(text.lower())) text = 'How to be a grown-up at work: replace "fuck you" with "Ok, great!".' print("before:", text,) print("after:", preprocess(text),) # task: preprocess each comment in train and test texts_train = <YOUR CODE> texts_test = <YOUR CODE> assert texts_train[5] == 'who cares anymore . they attack with impunity .' assert texts_test[89] == 'hey todds ! quick q ? why are you so gay' assert len(texts_test) == len(y_test) ###Output _____no_output_____ ###Markdown Solving it: bag of words![img](http://www.novuslight.com/uploads/n/BagofWords.jpg)One traditional approach to such problem is to use bag of words features:1. build a vocabulary of frequent words (use train data only)2. for each training sample, count the number of times a word occurs in it (for each word in vocabulary).3. consider this count a feature for some classifier__Note:__ in practice, you can compute such features using sklearn. Please don't do that in the current assignment, though.* `from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer` ###Code # task: find up to k most frequent tokens in texts_train, # sort them by number of occurences (highest first) k = 10000 <YOUR CODE> bow_vocabulary = <YOUR CODE> print('example features:', sorted(bow_vocabulary)[::100]) def text_to_bow(text): """ convert text string to an array of token counts. Use bow_vocabulary. """ <YOUR CODE> return np.array(<...>, 'float32') X_train_bow = np.stack(list(map(text_to_bow, texts_train))) X_test_bow = np.stack(list(map(text_to_bow, texts_test))) k_max = len(set(' '.join(texts_train).split())) assert X_train_bow.shape == (len(texts_train), min(k, k_max)) assert X_test_bow.shape == (len(texts_test), min(k, k_max)) assert np.all(X_train_bow[5:10].sum(-1) == np.array([len(s.split()) for s in texts_train[5:10]])) assert len(bow_vocabulary) <= min(k, k_max) assert X_train_bow[6, bow_vocabulary.index('.')] == texts_train[6].split().count('.') ###Output _____no_output_____ ###Markdown Machine learning stuff: fit, predict, evaluate. You know the drill. ###Code from sklearn.linear_model import LogisticRegression bow_model = LogisticRegression().fit(X_train_bow, y_train) from sklearn.metrics import roc_auc_score, roc_curve for name, X, y, model in [ ('train', X_train_bow, y_train, bow_model), ('test ', X_test_bow, y_test, bow_model) ]: proba = model.predict_proba(X)[:, 1] auc = roc_auc_score(y, proba) plt.plot(*roc_curve(y, proba)[:2], label='%s AUC=%.4f' % (name, auc)) plt.plot([0, 1], [0, 1], '--', color='black',) plt.legend(fontsize='large') plt.grid() ###Output _____no_output_____ ###Markdown ```````````````````````````````````````````````` Solving it better: word vectorsLet's try another approach: instead of counting per-word frequencies, we shall map all words to pre-trained word vectors and average over them to get text features.This should give us two key advantages: (1) we now have 10^2 features instead of 10^4 and (2) our model can generalize to word that are not in training dataset.We begin with a standard approach with pre-trained word vectors. However, you may also try* training embeddings from scratch on relevant (unlabeled) data* multiplying word vectors by inverse word frequency in dataset (like tf-idf).* concatenating several embeddings * call `gensim.downloader.info()['models'].keys()` to get a list of available models* clusterizing words by their word-vectors and try bag of cluster_ids__Note:__ loading pre-trained model may take a while. It's a perfect opportunity to refill your cup of tea/coffee and grab some extra cookies. Or binge-watch some tv series if you're slow on internet connection ###Code import gensim.downloader embeddings = gensim.downloader.load("fasttext-wiki-news-subwords-300") # If you're low on RAM or download speed, use "glove-wiki-gigaword-100" instead. Ignore all further asserts. def vectorize_sum(comment): """ implement a function that converts preprocessed comment to a sum of token vectors """ embedding_dim = embeddings.wv.vectors.shape[1] features = np.zeros([embedding_dim], dtype='float32') <YOUR CODE> return features assert np.allclose( vectorize_sum("who cares anymore . they attack with impunity .")[::70], np.array([ 0.0108616 , 0.0261663 , 0.13855131, -0.18510573, -0.46380025]) ) X_train_wv = np.stack([vectorize_sum(text) for text in texts_train]) X_test_wv = np.stack([vectorize_sum(text) for text in texts_test]) wv_model = LogisticRegression().fit(X_train_wv, y_train) for name, X, y, model in [ ('bow train', X_train_bow, y_train, bow_model), ('bow test ', X_test_bow, y_test, bow_model), ('vec train', X_train_wv, y_train, wv_model), ('vec test ', X_test_wv, y_test, wv_model) ]: proba = model.predict_proba(X)[:, 1] auc = roc_auc_score(y, proba) plt.plot(*roc_curve(y, proba)[:2], label='%s AUC=%.4f' % (name, auc)) plt.plot([0, 1], [0, 1], '--', color='black',) plt.legend(fontsize='large') plt.grid() assert roc_auc_score(y_test, wv_model.predict_proba(X_test_wv)[:, 1]) > 0.92, "something's wrong with your features" ###Output _____no_output_____ ###Markdown Homework part I: Prohibited Comment Classification (3 points)![img](https://github.com/yandexdataschool/nlp_course/raw/master/resources/banhammer.jpg)__In this notebook__ you will build an algorithm that classifies social media comments into normal or toxic.Like in many real-world cases, you only have a small (10^3) dataset of hand-labeled examples to work with. We'll tackle this problem using both classical nlp methods and embedding-based approach. ###Code import pandas as pd data = pd.read_csv("comments.tsv", sep='\t') texts = data['comment_text'].values target = data['should_ban'].values data[50::200] from sklearn.model_selection import train_test_split texts_train, texts_test, y_train, y_test = train_test_split(texts, target, test_size=0.5, random_state=42) ###Output _____no_output_____ ###Markdown __Note:__ it is generally a good idea to split data into train/test before anything is done to them.It guards you against possible data leakage in the preprocessing stage. For example, should you decide to select words present in obscene tweets as features, you should only count those words over the training set. Otherwise your algoritm can cheat evaluation. Preprocessing and tokenizationComments contain raw text with punctuation, upper/lowercase letters and even newline symbols.To simplify all further steps, we'll split text into space-separated tokens using one of nltk tokenizers. ###Code from nltk.tokenize import TweetTokenizer tokenizer = TweetTokenizer() preprocess = lambda text: ' '.join(tokenizer.tokenize(text.lower())) text = 'How to be a grown-up at work: replace "fuck you" with "Ok, great!".' print("before:", text,) print("after:", preprocess(text),) # task: preprocess each comment in train and test texts_train = <YOUR CODE> texts_test = <YOUR CODE> assert texts_train[5] == 'who cares anymore . they attack with impunity .' assert texts_test[89] == 'hey todds ! quick q ? why are you so gay' assert len(texts_test) == len(y_test) ###Output _____no_output_____ ###Markdown Solving it: bag of words![img](http://www.novuslight.com/uploads/n/BagofWords.jpg)One traditional approach to such problem is to use bag of words features:1. build a vocabulary of frequent words (use train data only)2. for each training sample, count the number of times a word occurs in it (for each word in vocabulary).3. consider this count a feature for some classifier__Note:__ in practice, you can compute such features using sklearn. Please don't do that in the current assignment, though.* `from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer` ###Code # task: find up to k most frequent tokens in texts_train, # sort them by number of occurences (highest first) k = 10000 <YOUR CODE> bow_vocabulary = <YOUR CODE> print('example features:', sorted(bow_vocabulary)[::100]) def text_to_bow(text): """ convert text string to an array of token counts. Use bow_vocabulary. """ <YOUR CODE> return np.array(<...>, 'float32') X_train_bow = np.stack(list(map(text_to_bow, texts_train))) X_test_bow = np.stack(list(map(text_to_bow, texts_test))) k_max = len(set(' '.join(texts_train).split())) assert X_train_bow.shape == (len(texts_train), min(k, k_max)) assert X_test_bow.shape == (len(texts_test), min(k, k_max)) assert np.all(X_train_bow[5:10].sum(-1) == np.array([len(s.split()) for s in texts_train[5:10]])) assert len(bow_vocabulary) <= min(k, k_max) assert X_train_bow[6, bow_vocabulary.index('.')] == texts_train[6].split().count('.') ###Output _____no_output_____ ###Markdown Machine learning stuff: fit, predict, evaluate. You know the drill. ###Code from sklearn.linear_model import LogisticRegression bow_model = LogisticRegression().fit(X_train_bow, y_train) from sklearn.metrics import roc_auc_score, roc_curve for name, X, y, model in [ ('train', X_train_bow, y_train, bow_model), ('test ', X_test_bow, y_test, bow_model) ]: proba = model.predict_proba(X)[:, 1] auc = roc_auc_score(y, proba) plt.plot(*roc_curve(y, proba)[:2], label='%s AUC=%.4f' % (name, auc)) plt.plot([0, 1], [0, 1], '--', color='black',) plt.legend(fontsize='large') plt.grid() ###Output _____no_output_____ ###Markdown ```````````````````````````````````````````````` Solving it better: word vectorsLet's try another approach: instead of counting per-word frequencies, we shall map all words to pre-trained word vectors and average over them to get text features.This should give us two key advantages: (1) we now have 10^2 features instead of 10^4 and (2) our model can generalize to word that are not in training dataset.We begin with a standard approach with pre-trained word vectors. However, you may also try* training embeddings from scratch on relevant (unlabeled) data* multiplying word vectors by inverse word frequency in dataset (like tf-idf).* concatenating several embeddings * call `gensim.downloader.info()['models'].keys()` to get a list of available models* clusterizing words by their word-vectors and try bag of cluster_ids__Note:__ loading pre-trained model may take a while. It's a perfect opportunity to refill your cup of tea/coffee and grab some extra cookies. Or binge-watch some tv series if you're slow on internet connection ###Code import gensim.downloader embeddings = gensim.downloader.load("fasttext-wiki-news-subwords-300") # If you're low on RAM or download speed, use "glove-wiki-gigaword-100" instead. Ignore all further asserts. def vectorize_sum(comment): """ implement a function that converts preprocessed comment to a sum of token vectors """ embedding_dim = embeddings.wv.vectors.shape[1] features = np.zeros([embedding_dim], dtype='float32') <YOUR CODE> return features assert np.allclose( vectorize_sum("who cares anymore . they attack with impunity .")[::70], np.array([ 0.0108616 , 0.0261663 , 0.13855131, -0.18510573, -0.46380025]) ) X_train_wv = np.stack([vectorize_sum(text) for text in texts_train]) X_test_wv = np.stack([vectorize_sum(text) for text in texts_test]) wv_model = LogisticRegression().fit(X_train_wv, y_train) for name, X, y, model in [ ('bow train', X_train_bow, y_train, bow_model), ('bow test ', X_test_bow, y_test, bow_model), ('vec train', X_train_wv, y_train, wv_model), ('vec test ', X_test_wv, y_test, wv_model) ]: proba = model.predict_proba(X)[:, 1] auc = roc_auc_score(y, proba) plt.plot(*roc_curve(y, proba)[:2], label='%s AUC=%.4f' % (name, auc)) plt.plot([0, 1], [0, 1], '--', color='black',) plt.legend(fontsize='large') plt.grid() assert roc_auc_score(y_test, wv_model.predict_proba(X_test_wv)[:, 1]) > 0.92, "something's wrong with your features" ###Output _____no_output_____ ###Markdown Homework part I: Prohibited Comment Classification (3 points)![img](https://github.com/yandexdataschool/nlp_course/raw/master/resources/banhammer.jpg)__In this notebook__ you will build an algorithm that classifies social media comments into normal or toxic.Like in many real-world cases, you only have a small (10^3) dataset of hand-labeled examples to work with. We'll tackle this problem using both classical nlp methods and embedding-based approach. ###Code import pandas as pd data = pd.read_csv(path + "comments.tsv", sep='\t') texts = data['comment_text'].values target = data['should_ban'].values data[50::200] from sklearn.model_selection import train_test_split texts_train, texts_test, y_train, y_test = train_test_split(texts, target, test_size=0.5, random_state=42) ###Output _____no_output_____ ###Markdown __Note:__ it is generally a good idea to split data into train/test before anything is done to them.It guards you against possible data leakage in the preprocessing stage. For example, should you decide to select words present in obscene tweets as features, you should only count those words over the training set. Otherwise your algoritm can cheat evaluation. Preprocessing and tokenizationComments contain raw text with punctuation, upper/lowercase letters and even newline symbols.To simplify all further steps, we'll split text into space-separated tokens using one of nltk tokenizers. ###Code from nltk.tokenize import TweetTokenizer tokenizer = TweetTokenizer() preprocess = lambda text: ' '.join(tokenizer.tokenize(text.lower())) text = 'How to be a grown-up at work: replace "fuck you" with "Ok, great!".' print("before:", text,) print("after:", preprocess(text),) # task: preprocess each comment in train and test texts_train = list(map(lambda x: ' '.join(tokenizer.tokenize((x.lower()))), texts_train)) texts_test = list(map(lambda x: ' '.join(tokenizer.tokenize((x.lower()))), texts_test)) assert texts_train[5] == 'who cares anymore . they attack with impunity .' assert texts_test[89] == 'hey todds ! quick q ? why are you so gay' assert len(texts_test) == len(y_test) ###Output _____no_output_____ ###Markdown Solving it: bag of words![img](http://www.novuslight.com/uploads/n/BagofWords.jpg)One traditional approach to such problem is to use bag of words features:1. build a vocabulary of frequent words (use train data only)2. for each training sample, count the number of times a word occurs in it (for each word in vocabulary).3. consider this count a feature for some classifier__Note:__ in practice, you can compute such features using sklearn. Please don't do that in the current assignment, though.* `from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer` ###Code # task: find up to k most frequent tokens in texts_train, # sort them by number of occurences (highest first) k = 10000 from collections import Counter tokens = ' '.join(texts_train).split() bow_vocabulary = list(map(lambda pair: pair[0], sorted(Counter(tokens).items(), key=lambda item: item[1], reverse=True)[:k])) print('example features:', sorted(bow_vocabulary)[::100]) def text_to_bow(text): """ convert text string to an array of token counts. Use bow_vocabulary. """ tokens = tokenizer.tokenize(text.lower()) counts = [] for token in bow_vocabulary: if token in tokens: counts.append(tokens.count(token)) else: counts.append(0) return np.array(counts, 'float32') X_train_bow = np.stack(list(map(text_to_bow, texts_train))) X_test_bow = np.stack(list(map(text_to_bow, texts_test))) k_max = len(set(' '.join(texts_train).split())) assert X_train_bow.shape == (len(texts_train), min(k, k_max)) assert X_test_bow.shape == (len(texts_test), min(k, k_max)) assert np.all(X_train_bow[5:10].sum(-1) == np.array([len(s.split()) for s in texts_train[5:10]])) assert len(bow_vocabulary) <= min(k, k_max) assert X_train_bow[6, bow_vocabulary.index('.')] == texts_train[6].split().count('.') ###Output _____no_output_____ ###Markdown Machine learning stuff: fit, predict, evaluate. You know the drill. ###Code from sklearn.linear_model import LogisticRegression bow_model = LogisticRegression().fit(X_train_bow, y_train) from sklearn.metrics import roc_auc_score, roc_curve for name, X, y, model in [ ('train', X_train_bow, y_train, bow_model), ('test ', X_test_bow, y_test, bow_model) ]: proba = model.predict_proba(X)[:, 1] auc = roc_auc_score(y, proba) plt.plot(*roc_curve(y, proba)[:2], label='%s AUC=%.4f' % (name, auc)) plt.plot([0, 1], [0, 1], '--', color='black',) plt.legend(fontsize='large') plt.grid() ###Output _____no_output_____ ###Markdown ```````````````````````````````````````````````` Solving it better: word vectorsLet's try another approach: instead of counting per-word frequencies, we shall map all words to pre-trained word vectors and average over them to get text features.This should give us two key advantages: (1) we now have 10^2 features instead of 10^4 and (2) our model can generalize to word that are not in training dataset.We begin with a standard approach with pre-trained word vectors. However, you may also try* training embeddings from scratch on relevant (unlabeled) data* multiplying word vectors by inverse word frequency in dataset (like tf-idf).* concatenating several embeddings * call `gensim.downloader.info()['models'].keys()` to get a list of available models* clusterizing words by their word-vectors and try bag of cluster_ids__Note:__ loading pre-trained model may take a while. It's a perfect opportunity to refill your cup of tea/coffee and grab some extra cookies. Or binge-watch some tv series if you're slow on internet connection ###Code import gensim.downloader embeddings = gensim.downloader.load("fasttext-wiki-news-subwords-300") # If you're low on RAM or download speed, use "glove-wiki-gigaword-100" instead. Ignore all further asserts. def vectorize_sum(comment): """ implement a function that converts preprocessed comment to a sum of token vectors """ embedding_dim = embeddings.wv.vectors.shape[1] features = np.zeros([embedding_dim], dtype='float32') tokens = comment.split() for token in tokens: if token in embeddings: features += embeddings[token] return features assert np.allclose( vectorize_sum("who cares anymore . they attack with impunity .")[::70], np.array([ 0.0108616 , 0.0261663 , 0.13855131, -0.18510573, -0.46380025]) ) X_train_wv = np.stack([vectorize_sum(text) for text in texts_train]) X_test_wv = np.stack([vectorize_sum(text) for text in texts_test]) wv_model = LogisticRegression().fit(X_train_wv, y_train) for name, X, y, model in [ ('bow train', X_train_bow, y_train, bow_model), ('bow test ', X_test_bow, y_test, bow_model), ('vec train', X_train_wv, y_train, wv_model), ('vec test ', X_test_wv, y_test, wv_model) ]: proba = model.predict_proba(X)[:, 1] auc = roc_auc_score(y, proba) plt.plot(*roc_curve(y, proba)[:2], label='%s AUC=%.4f' % (name, auc)) plt.plot([0, 1], [0, 1], '--', color='black',) plt.legend(fontsize='large') plt.grid() assert roc_auc_score(y_test, wv_model.predict_proba(X_test_wv)[:, 1]) > 0.92, "something's wrong with your features" ###Output /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:940: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
Pipelines/ETLPipelines/15_scaling_exercise/.ipynb_checkpoints/15_scaling_exercise-solution-checkpoint.ipynb
###Markdown Scaling DataIn this exercise, you'll practice scaling data. Sometimes, you'll see the terms **standardization** and **normalization** used interchangeably when referring to feature scaling. However, these are slightly different operations. Standardization refers to scaling a set of values so that they have a mean of zero and a standard deviation of one. Normalization refers to scaling a set of values so that the range if between zero and one.In this exercise, you'll practice implementing standardization and normalization in code. There are libraries, like scikit-learn, that can do this for you; however, in data engineering, you might not always have these tools available.Run this first cell to read in the World Bank GDP and population data. This code cell also filters the data for 2016 and filters out the aggregated values like 'World' and 'OECD Members'. ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline # read in the projects data set and do basic wrangling gdp = pd.read_csv('../data/gdp_data.csv', skiprows=4) gdp.drop(['Unnamed: 62', 'Country Code', 'Indicator Name', 'Indicator Code'], inplace=True, axis=1) population = pd.read_csv('../data/population_data.csv', skiprows=4) population.drop(['Unnamed: 62', 'Country Code', 'Indicator Name', 'Indicator Code'], inplace=True, axis=1) # Reshape the data sets so that they are in long format gdp_melt = gdp.melt(id_vars=['Country Name'], var_name='year', value_name='gdp') # Use back fill and forward fill to fill in missing gdp values gdp_melt['gdp'] = gdp_melt.sort_values('year').groupby('Country Name')['gdp'].fillna(method='ffill').fillna(method='bfill') population_melt = population.melt(id_vars=['Country Name'], var_name='year', value_name='population') # Use back fill and forward fill to fill in missing population values population_melt['population'] = population_melt.sort_values('year').groupby('Country Name')['population'].fillna(method='ffill').fillna(method='bfill') # merge the population and gdp data together into one data frame df_country = gdp_melt.merge(population_melt, on=('Country Name', 'year')) # filter data for the year 2016 df_2016 = df_country[df_country['year'] == '2016'] # filter out values that are not countries non_countries = ['World', 'High income', 'OECD members', 'Post-demographic dividend', 'IDA & IBRD total', 'Low & middle income', 'Middle income', 'IBRD only', 'East Asia & Pacific', 'Europe & Central Asia', 'North America', 'Upper middle income', 'Late-demographic dividend', 'European Union', 'East Asia & Pacific (excluding high income)', 'East Asia & Pacific (IDA & IBRD countries)', 'Euro area', 'Early-demographic dividend', 'Lower middle income', 'Latin America & Caribbean', 'Latin America & the Caribbean (IDA & IBRD countries)', 'Latin America & Caribbean (excluding high income)', 'Europe & Central Asia (IDA & IBRD countries)', 'Middle East & North Africa', 'Europe & Central Asia (excluding high income)', 'South Asia (IDA & IBRD)', 'South Asia', 'Arab World', 'IDA total', 'Sub-Saharan Africa', 'Sub-Saharan Africa (IDA & IBRD countries)', 'Sub-Saharan Africa (excluding high income)', 'Middle East & North Africa (excluding high income)', 'Middle East & North Africa (IDA & IBRD countries)', 'Central Europe and the Baltics', 'Pre-demographic dividend', 'IDA only', 'Least developed countries: UN classification', 'IDA blend', 'Fragile and conflict affected situations', 'Heavily indebted poor countries (HIPC)', 'Low income', 'Small states', 'Other small states', 'Not classified', 'Caribbean small states', 'Pacific island small states'] # remove non countries from the data df_2016 = df_2016[~df_2016['Country Name'].isin(non_countries)] # show the first ten rows print('first ten rows of data') df_2016.head(10) ###Output _____no_output_____ ###Markdown Exercise - Normalize the DataTo normalize data, you take a feature, like gdp, and use the following formula$x_{normalized} = \frac{x - x_{min}}{x_{max} - x_{min}}$where * x is a value of gdp* x_max is the maximum gdp in the data* x_min is the minimum GDP in the dataFirst, write a function that outputs the x_min and x_max values of an array. The inputs are an array of data (like the GDP data). The outputs are the x_min and x_max values ###Code def x_min_max(data): # TODO: Complete this function called x_min_max() # The input is an array of data as an input # The outputs are the minimum and maximum of that array minimum = min(data) maximum = max(data) return minimum, maximum # this should give the result (36572611.88531479, 18624475000000.0) x_min_max(df_2016['gdp']) ###Output _____no_output_____ ###Markdown Next, write a function that normalizes a data point. The inputs are an x value, a minimum value, and a maximum value. The output is the normalized data point ###Code def normalize(x, x_min, x_max): # TODO: Complete this function # The input is a single value # The output is the normalized value return (x - x_min) / (x_max - x_min) ###Output _____no_output_____ ###Markdown Why are you making these separate functions? Let's say you are training a machine learning model and using normalized GDP as a feature. As new data comes in, you'll want to make predictions using the new GDP data. You'll have to normalize this incoming data. To do that, you need to store the x_min and x_max from the training set. Hence the x_min_max() function gives you the minimum and maximum values, which you can then store in a variable.A good way to keep track of the minimum and maximum values would be to use a class. In this next section, fill out the Normalizer() class code to make a class that normalizes a data set and stores min and max values. ###Code class Normalizer(): # TODO: Complete the normalizer class # The normalizer class receives a dataframe as its only input for initialization # For example, the data frame might contain gdp and population data in two separate columns # Follow the TODOs in each section def __init__(self, dataframe): # TODO: complete the init function. # Assume the dataframe has an unknown number of columns like [['gdp', 'population']] # iterate through each column calculating the min and max for each column # append the results to the params attribute list # For example, take the gdp column and calculate the minimum and maximum # Put these results in a list [minimum, maximum] # Append the list to the params variable # Then take the population column and do the same # HINT: You can put your x_min_max() function as part of this class and use it self.params = [] for column in dataframe.columns: self.params.append(x_min_max(dataframe[column])) def x_min_max(data): # TODO: complete the x_min_max method # HINT: You can use the same function defined earlier in the exercise minimum = min(data) maximum = max(data) return minimum, maximum def normalize_data(self, x): # TODO: complete the normalize_data method # The function receives a data point as an input and then outputs the normalized version # For example, if an input data point of [gdp, population] were used. Then the output would # be the normalized version of the [gdp, population] data point # Put the results in the normalized variable defined below # Assume that the columns in the dataframe used to initialize an object are in the same # order as this data point x # HINT: You cannot use the normalize_data function defined earlier in the exercise. # You'll need to iterate through the individual values in the x variable # Use the params attribute where the min and max values are stored normalized = [] for i, value in enumerate(x): x_max = self.params[i][1] x_min = self.params[i][0] normalized.append((x[i] - x_min) / (x_max - x_min)) return normalized ###Output _____no_output_____ ###Markdown Run the code cells below to check your results ###Code gdp_normalizer = Normalizer(df_2016[['gdp', 'population']]) # This cell should output: [(36572611.88531479, 18624475000000.0), (11097.0, 1378665000.0)] gdp_normalizer.params # This cell should output [0.7207969507229194, 0.9429407193285986] gdp_normalizer.normalize_data([13424475000000.0, 1300000000]) ###Output _____no_output_____
Escalabilidad.ipynb
###Markdown W5 - Escalabilidad* Oscar Juárez - 17315* Computación paralela y distribuida* Fecha: 11/02/2021Programa interactivo de python que permite analizar si un programa es escalable, tomando en cuenta su Speedup, Eficiencia y un dominio creciente. **Funciones útiles a lo largo del programa** ###Code from math import log import plotly.express as px import pandas as pd def SpeedupLineal(Ts, Tp): return Ts/Tp def Eficiencia(S, p): return S/p def TParalelo(n, p): return n/p + log(p) def ObtenerDatos(p): for n in range(10, 330, 10): tparalelo = TParalelo(n, p) speedup = SpeedupLineal(n, tparalelo) yield speedup, Eficiencia(speedup, p) ###Output _____no_output_____ ###Markdown **Generación de los datos** ###Code dicc = {} dicc['Dominio'] = [val for val in range(10, 330 ,10)] for n in [1, 2, 4, 8, 16, 32]: data = list(ObtenerDatos(n)) dicc[f'S{n}'] = [i[0] for i in data] dicc[f'E{n}'] = [i[1] for i in data] df = pd.DataFrame(dicc) ###Output _____no_output_____ ###Markdown Speedup de cada núcleo en el dominio ###Code fig = px.line(df, x='Dominio', y=['S1','S2', 'S4', 'S8','S16', 'S32'], labels={ 'value': 'Speedup', 'variable': 'Núcleos' }, title='Speedup de Cada Núcleo por Dominio') fig.show() ###Output _____no_output_____ ###Markdown Comentario del gráficoEn el gráfico del speedup se puede observar que este aumenta de manera logarítmica, proporcional a la cantidad de nucleos. Se denota una mejora en la ejecución del programa con diferentes tareas y se le saca el mejor provecho con una alta cantidad de núcleos. Eficiencia de cada núcleo en el dominio ###Code fig = px.line(df, x='Dominio', y=['E1','E2', 'E4', 'E8','E16', 'E32'], labels={ 'value': 'Eficiencia', 'variable': 'Núcleos' }, title='Eficiencia de Cada Núcleo por Dominio') fig.show() ###Output _____no_output_____ ###Markdown Comentario del gráficoLa eficiencia de cada núcleo también depende de la cantidad de tareas que tengamos. Es decir, para un dominio muy bajo, la eficiencia de múchos núcleos será baja. Sin embargo, a medida que los núcleos y las tareas aumentan, la eficiencia de cada núcleo mejorará hasta llegar a su punto de rendimiento máximo. Proponemos un valor kSe repetirá el procedimiento, esta vez proponiendo un valor de k de 2.5 (factor de crecimiento para los procesadores). Se tomará como base 16 núcleos. **Generación de los datos** ###Code k = 2.5 p = 32 dicc = {} data = list(ObtenerDatos(p*k)) dicc['Dominio'] = [val for val in range(10,330,10)] dicc['Eficiencia'] = [i[1] for i in data] df = pd.DataFrame(dicc) ###Output _____no_output_____ ###Markdown **Se grafica nuevamente la eficiencia** ###Code fig = px.line(df, x='Dominio', y='Eficiencia', labels={'value': 'Eficiencia'}, title='Eficiencia de 32 Núcleos por Dominio, con un Factor k de Crecimiento') fig.show() ###Output _____no_output_____
1_3_Types_of_Features_Image_Segmentation/.ipynb_checkpoints/2. Contour detection and features-checkpoint.ipynb
###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image # The method, cv2.threshold, returns two outputs. #The first is the threshold that was used and the second output is the thresholded image. retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image # The outputs are list of contours in the hierarchy. # The hierarchy is useful if you have many contours nested within one another. # The hierarchy definds their relationship to one another. retval, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) # -1: all of the contours all_contours = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(all_contours) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] for cnt in contours: # Fit an ellipse to a contour and extract the angle from that ellipse (x,y), (Ma,ma), angle = cv2.fitEllipse(cnt) angles.append(angle) return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output Angles of each contour (in degrees): [61.35833740234375, 82.27550506591797] ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour # Find the bounding rectangle of a selected contour x,y,w,h = cv2.boundingRect(selected_contour) # Draw the bounding rectangle on a copy of the original image box_image = np.copy(contours_image) box_image = cv2.rectangle(box_image, (x,y), (x+w,y+h), (200,0,200),2) plt.imshow(box_image) ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop cropped_image = np.copy(image) cropped_image = cropped_image[y: y + h, x: x + w] return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = contours[1] # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) if(selected_contour is not None): plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image retval, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output _____no_output_____ ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop cropped_image = np.copy(image) return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = None # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] for contour in contours: (x,y), (MA,ma), angle = cv2.fitEllipse(contour) angles.append(angle) return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output Angles of each contour (in degrees): [61.35833740234375, 82.27550506591797] ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop cropped_image = np.copy(image) x, y, w, h = cv2.boundingRect(selected_contour) cropped_image = cropped_image[x: x + w + 1, y: y + h + 1] return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = None selected_index = np.argmax(np.array(angles)) selected_contour = contours[selected_index] # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image retval, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output _____no_output_____ ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop cropped_image = np.copy(image) return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = None # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 230, 255, cv2.THRESH_BINARY_INV) #retval, binary = cv2.threshold(gray, 230, 255, cv2.THRESH_BINARY) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) print(contours[1]) #print(contours.lenght) ###Output [[[172 60]] [[169 63]] [[169 65]] [[168 66]] [[168 67]] [[167 68]] [[167 69]] [[166 70]] [[166 71]] [[165 72]] [[165 73]] [[164 74]] [[164 75]] [[163 76]] [[163 77]] [[162 78]] [[162 79]] [[160 81]] [[160 82]] [[159 83]] [[159 84]] [[157 86]] [[157 87]] [[156 88]] [[156 89]] [[153 92]] [[153 93]] [[143 103]] [[142 103]] [[134 111]] [[134 112]] [[132 114]] [[132 115]] [[128 119]] [[128 120]] [[115 133]] [[115 134]] [[112 137]] [[112 138]] [[111 139]] [[111 140]] [[110 141]] [[108 141]] [[107 142]] [[105 142]] [[104 143]] [[ 96 143]] [[ 95 142]] [[ 78 142]] [[ 77 141]] [[ 76 141]] [[ 75 142]] [[ 74 141]] [[ 69 141]] [[ 68 140]] [[ 64 140]] [[ 63 139]] [[ 57 139]] [[ 56 138]] [[ 51 138]] [[ 50 137]] [[ 43 137]] [[ 42 136]] [[ 38 136]] [[ 37 135]] [[ 30 135]] [[ 29 134]] [[ 25 134]] [[ 24 133]] [[ 19 133]] [[ 18 132]] [[ 13 132]] [[ 12 131]] [[ 9 131]] [[ 8 130]] [[ 4 130]] [[ 3 129]] [[ 0 129]] [[ 0 193]] [[ 1 193]] [[ 2 194]] [[ 15 194]] [[ 16 195]] [[ 29 195]] [[ 30 196]] [[ 31 196]] [[ 32 195]] [[ 34 195]] [[ 35 196]] [[ 41 196]] [[ 42 197]] [[ 43 196]] [[ 57 196]] [[ 58 197]] [[ 77 197]] [[ 78 198]] [[ 85 198]] [[ 86 199]] [[105 199]] [[106 200]] [[107 200]] [[108 201]] [[109 201]] [[110 202]] [[112 202]] [[113 203]] [[115 203]] [[116 204]] [[117 204]] [[118 205]] [[120 205]] [[121 206]] [[122 206]] [[123 207]] [[124 207]] [[125 208]] [[127 208]] [[128 209]] [[129 209]] [[130 210]] [[132 210]] [[133 211]] [[135 211]] [[136 212]] [[139 212]] [[140 213]] [[144 213]] [[145 214]] [[163 214]] [[164 215]] [[167 215]] [[168 216]] [[170 216]] [[171 215]] [[173 215]] [[174 214]] [[176 214]] [[177 213]] [[179 213]] [[180 212]] [[182 212]] [[183 211]] [[184 211]] [[185 210]] [[186 210]] [[188 208]] [[188 207]] [[190 205]] [[190 204]] [[191 203]] [[191 198]] [[194 195]] [[194 194]] [[197 191]] [[197 189]] [[198 188]] [[198 187]] [[199 186]] [[199 181]] [[198 180]] [[198 179]] [[204 173]] [[204 172]] [[205 171]] [[205 168]] [[204 167]] [[204 166]] [[203 165]] [[203 163]] [[202 162]] [[202 160]] [[201 159]] [[201 158]] [[200 157]] [[200 155]] [[201 154]] [[201 153]] [[202 152]] [[202 151]] [[203 150]] [[203 148]] [[204 147]] [[204 144]] [[203 143]] [[203 142]] [[201 140]] [[201 138]] [[200 137]] [[200 136]] [[197 133]] [[196 133]] [[195 132]] [[194 132]] [[193 131]] [[190 131]] [[189 132]] [[184 132]] [[183 133]] [[177 133]] [[176 132]] [[175 132]] [[174 131]] [[173 131]] [[170 128]] [[169 128]] [[168 127]] [[167 127]] [[165 125]] [[165 124]] [[164 123]] [[164 122]] [[163 121]] [[163 120]] [[162 119]] [[162 117]] [[163 116]] [[163 114]] [[164 113]] [[164 111]] [[166 109]] [[166 108]] [[168 106]] [[168 105]] [[170 103]] [[170 102]] [[172 100]] [[172 99]] [[174 97]] [[174 96]] [[175 95]] [[175 94]] [[178 91]] [[178 90]] [[179 89]] [[179 88]] [[180 87]] [[180 86]] [[181 85]] [[181 81]] [[182 80]] [[182 66]] [[181 65]] [[181 64]] [[178 61]] [[177 61]] [[176 60]]] ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] for selected_contour in contours: (x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour) angles.append(angle) return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output Angles of each contour (in degrees): [61.08085632324219, 82.78831481933594] ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour x,y,w,h = cv2.boundingRect(selected_contour) ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop cropped_image = np.copy(image) cropped_image = cropped_image[y: y + h, x: x + w] return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = contours[1] # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] for i in range(len(contours)): (x,y), (MA,ma), angle = cv2.fitEllipse(contours[i]) angles.append(angle) return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output Angles of each contour (in degrees): [61.35833740234375, 82.27550506591797] ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour x,y,w,h = cv2.boundingRect(selected_contour) ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop image = np.copy(image) cropped_image = image[y: y + h, x: x + w] return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = contours[1] # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) print(retval) plt.imshow(binary, cmap='gray') ###Output 225.0 ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image retval, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output _____no_output_____ ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop cropped_image = np.copy(image) return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = None # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] for i in range(len(contours)): (x,y), (MA,ma), angle = cv2.fitEllipse(contours[i]) angles.append(angle) return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output Angles of each contour (in degrees): [61.35833740234375, 82.27550506591797] ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour # Find the bounding rectangle of a selected contour x,y,w,h = cv2.boundingRect(selected_contour) # Draw the bounding rectangle as a purple box box_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2) ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop cropped_image = np.copy(image) # Crop using the dimensions of the bounding rectangle (x, y, w, h) cropped_image = image[y: y + h, x: x + w] return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = contours[1] # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image retval, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] for i in range(len(contours)): (x,y), (MA,ma), angle = cv2.fitEllipse(contours[i]) angles.append(angle) return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output Angles of each contour (in degrees): [61.35833740234375, 82.27550506591797] ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour x,y,w,h = cv2.boundingRect(selected_contour) ## TODO: Crop the image using the dimensions of the bounding rectangle box_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2) # Make a copy of the image to crop cropped_image = np.copy(image) cropped_image = cropped_image[y: y + h, x: x + w] return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = contours[1] # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image retval, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] for each in contours: (x,y), (MA,ma), angle = cv2.fitEllipse(each) angles.append(angle) return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output Angles of each contour (in degrees): [61.35833740234375, 82.27550506591797] ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop cropped_image = np.copy(image) return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = None # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image retval, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(image,contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] for contour in contours: ellipse = cv2.fitEllipse(contour) (x,y), (MA,ma), angle = ellipse cv2.ellipse(image, ellipse, (255,0,0), 2,cv2.LINE_AA) angles.append(angle) plt.imshow(image) return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours_image,contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output Angles of each contour (in degrees): [61.35833740234375, 82.27550506591797] ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop cropped_image = np.copy(image) return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = None # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____ ###Markdown Finding Contours Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image image = cv2.imread('images/thumbs_up_down.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Produce a binary image for finding contours ###Code # Convert to grayscale gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # Create a binary thresholded image retval, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV) plt.imshow(binary, cmap='gray') ###Output _____no_output_____ ###Markdown Find and draw the contours ###Code # Find contours from thresholded, binary image retval, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw all contours on a copy of the original image contours_image = np.copy(image) contours_image = cv2.drawContours(contours_image, contours, -1, (0,255,0), 3) plt.imshow(contours_image) ###Output _____no_output_____ ###Markdown Contour FeaturesEvery contour has a number of features that you can calculate, including the area of the contour, it's orientation (the direction that most of the contour is pointing in), it's perimeter, and many other properties outlined in [OpenCV documentation, here](http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html).In the next cell, you'll be asked to identify the orientations of both the left and right hand contours. The orientation should give you an idea of which hand has its thumb up and which one has its thumb down! OrientationThe orientation of an object is the angle at which an object is directed. To find the angle of a contour, you should first find an ellipse that fits the contour and then extract the `angle` from that shape. ```python Fit an ellipse to a contour and extract the angle from that ellipse(x,y), (MA,ma), angle = cv2.fitEllipse(selected_contour)```**Orientation values**These orientation values are in degrees measured from the x-axis. A value of zero means a flat line, and a value of 90 means that a contour is pointing straight up!So, the orientation angles that you calculated for each contour should be able to tell us something about the general position of the hand. The hand with it's thumb up, should have a higher (closer to 90 degrees) orientation than the hand with it's thumb down. TODO: Find the orientation of each contour ###Code ## TODO: Complete this function so that ## it returns the orientations of a list of contours ## The list should be in the same order as the contours ## i.e. the first angle should be the orientation of the first contour def orientations(contours): """ Orientation :param contours: a list of contours :return: angles, the orientations of the contours """ # Create an empty list to store the angles in # Tip: Use angles.append(value) to add values to this list angles = [] return angles # ---------------------------------------------------------- # # Print out the orientation values angles = orientations(contours) print('Angles of each contour (in degrees): ' + str(angles)) ###Output _____no_output_____ ###Markdown Bounding RectangleIn the next cell, you'll be asked to find the bounding rectangle around the *left* hand contour, which has its thumb up, then use that bounding rectangle to crop the image and better focus on that one hand!```python Find the bounding rectangle of a selected contourx,y,w,h = cv2.boundingRect(selected_contour) Draw the bounding rectangle as a purple boxbox_image = cv2.rectangle(contours_image, (x,y), (x+w,y+h), (200,0,200),2)```And to crop the image, select the correct width and height of the image to include.```python Crop using the dimensions of the bounding rectangle (x, y, w, h)cropped_image = image[y: y + h, x: x + w] ``` TODO: Crop the image around a contour ###Code ## TODO: Complete this function so that ## it returns a new, cropped version of the original image def left_hand_crop(image, selected_contour): """ Left hand crop :param image: the original image :param selectec_contour: the contour that will be used for cropping :return: cropped_image, the cropped image around the left hand """ ## TODO: Detect the bounding rectangle of the left hand contour ## TODO: Crop the image using the dimensions of the bounding rectangle # Make a copy of the image to crop cropped_image = np.copy(image) return cropped_image ## TODO: Select the left hand contour from the list ## Replace this value selected_contour = None # ---------------------------------------------------------- # # If you've selected a contour if(selected_contour is not None): # Call the crop function with that contour passed in as a parameter cropped_image = left_hand_crop(image, selected_contour) plt.imshow(cropped_image) ###Output _____no_output_____
docs/source/Basics/S1S2.ipynb
###Markdown S1 S2 function computation ###Code # sphinx_gallery_thumbnail_path = '../images/Basics_S1S2.png' def run(Plot, Save): from PyMieSim.Scatterer import Sphere from PyMieSim.Source import PlaneWave Source = PlaneWave(Wavelength = 450e-9, Polarization = 0, Amplitude = 1) Scat = Sphere(Diameter = 600e-9, Source = Source, Index = 1.4) S1S2 = Scat.S1S2(Num=200) if Plot: S1S2.Plot() if Save: from pathlib import Path dir = f'docs/images/{Path(__file__).stem}' S1S2.SaveFig(Directory=dir) if __name__ == '__main__': run(Plot=True, Save=False) ###Output _____no_output_____
example/Surrogates/PCE/PCE_Example3.ipynb
###Markdown Polynomial Chaos Expansion Example 3 Author: Katiana Kontolati \Date: December 8, 2020 In this example, PCE is used to generate a surrogate model for a given set of 2D data. Six-hump camel function $$ f(\textbf{x}) = \Big(4-2.1x_1^2 + \frac{x_1^4}{3} \Big)x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2$$**Description:** Dimensions: 2**Input Domain:** This function is evaluated on the hypercube $x_1 \in [-3, 3], x_2 \in [-2, 2]$.**Global minimum:** $f(\textbf{x}^*)=-1.0316,$ at $\textbf{x}^* = (0.0898, -0.7126)$ and $(-0.0898, 0.7126)$.**Reference:** Molga, M., & Smutnicki, C. Test functions for optimization needs (2005). Retrieved June 2013, from http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf. Import necessary libraries. ###Code import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from UQpy.Distributions import Uniform, JointInd from matplotlib.ticker import LinearLocator, FormatStrFormatter from UQpy.Surrogates import * ###Output _____no_output_____ ###Markdown Define the function. ###Code def function(x,y): return (4-2.1*x**2 + x**4/3)*x**2 + x*y + (-4+4*y**2)*y**2 ###Output _____no_output_____ ###Markdown Create a distribution object, generate samples and evaluate the function at the samples. ###Code np.random.seed(1) dist_1 = Uniform(loc=-2, scale=4) dist_2 = Uniform(loc=-1, scale=2) marg = [dist_1, dist_2] joint = JointInd(marginals=marg) n_samples = 250 x = joint.rvs(n_samples) y = function(x[:,0], x[:,1]) ###Output _____no_output_____ ###Markdown Visualize the 2D function. ###Code xmin, xmax = -2,2 ymin, ymax = -1,1 X1 = np.linspace(xmin, xmax, 50) X2 = np.linspace(ymin, ymax, 50) X1_, X2_ = np.meshgrid(X1, X2) # grid of points f = function(X1_, X2_) fig = plt.figure(figsize=(10,6)) ax = fig.gca(projection='3d') surf = ax.plot_surface(X1_, X2_, f, rstride=1, cstride=1, cmap='gnuplot2', linewidth=0, antialiased=False) ax.set_title('True function') ax.set_xlabel('$x_1$', fontsize=15) ax.set_ylabel('$x_2$', fontsize=15) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) ax.view_init(20, 50) fig.colorbar(surf, shrink=0.5, aspect=7) plt.show() ###Output _____no_output_____ ###Markdown Visualize training data. ###Code fig = plt.figure(figsize=(10,6)) ax = fig.gca(projection='3d') ax.scatter(x[:,0], x[:,1], y, s=20, c='r') ax.set_title('Training data') ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) ax.view_init(20,50) ax.set_xlabel('$x_1$', fontsize=15) ax.set_ylabel('$x_2$', fontsize=15) #ax.set_xlim(-10,10) #ax.set_ylim(-6,6) #ax.set_zlim(-1,1.5) plt.show() ###Output _____no_output_____ ###Markdown Create an object from the PCE class. ###Code max_degree = 6 polys = Polynomials(dist_object=joint, degree=max_degree) ###Output _____no_output_____ ###Markdown Compute PCE coefficients using least squares regression. ###Code lstsq = PolyChaosLstsq(poly_object=polys) pce = PCE(method=lstsq) pce.fit(x,y) ###Output _____no_output_____ ###Markdown Compute PCE coefficients using LASSO. ###Code lasso = PolyChaosLasso(poly_object=polys, learning_rate=0.1, iterations=1000, penalty=0.1) pce2 = PCE(method=lasso) pce2.fit(x,y) ###Output _____no_output_____ ###Markdown Compute PCE coefficients with Ridge regression. ###Code ridge = PolyChaosRidge(poly_object=polys, learning_rate=0.01, iterations=1000, penalty=0.1) pce3 = PCE(method=ridge) pce3.fit(x,y) ###Output _____no_output_____ ###Markdown PCE surrogate is used to predict the behavior of the function at new samples. ###Code n_test_samples = 20000 x_test = joint.rvs(n_test_samples) y_test = pce.predict(x_test) ###Output _____no_output_____ ###Markdown Plot PCE prediction. ###Code fig = plt.figure(figsize=(10,6)) ax = fig.gca(projection='3d') ax.scatter(x_test[:,0], x_test[:,1], y_test, s=1) ax.set_title('PCE predictor') ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) ax.view_init(20,50) ax.set_xlim(-2,2) ax.set_ylim(-1,1) ax.set_xlabel('$x_1$', fontsize=15) ax.set_ylabel('$x_2$', fontsize=15) #ax.set_zlim(0,136) plt.show() ###Output _____no_output_____ ###Markdown Error Estimation Validation error. ###Code n_samples = 150 x_val = joint.rvs(n_samples) y_val = function(x_val[:,0], x_val[:,1]) error = ErrorEstimation(surr_object=pce) error2 = ErrorEstimation(surr_object=pce2) error3 = ErrorEstimation(surr_object=pce3) print('Error from least squares regression is: ', error.validation(x_val, y_val)) print('Error from LASSO regression is: ', error2.validation(x_val, y_val)) print('Error from Ridge regression is: ', error3.validation(x_val, y_val)) ###Output Error from least squares regression is: 0.0 Error from LASSO regression is: 2e-07 Error from Ridge regression is: 4e-07 ###Markdown Moment Estimation Returns mean and variance of the PCE surrogate. ###Code n_mc = 1000000 x_mc = joint.rvs(n_mc) y_mc = function(x_mc[:,0], x_mc[:,1]) mu = np.mean(y_mc) print('Moments from least squares regression :', MomentEstimation(surr_object=pce).get()) print('Moments from LASSO regression :', MomentEstimation(surr_object=pce2).get()) print('Moments from Ridge regression :', MomentEstimation(surr_object=pce3).get()) print('Moments from Monte Carlo integration: ', (round((1/n_mc)*np.sum(y_mc),6), round((1/n_mc)*np.sum((y_mc-mu)**2),6))) ###Output Moments from least squares regression : (1.1276, 1.3807) Moments from LASSO regression : (1.1275, 1.3796) Moments from Ridge regression : (1.1275, 1.3794) Moments from Monte Carlo integration: (1.127527, 1.380522) ###Markdown Polynomial Chaos Expansion Example 3 Author: Katiana Kontolati \Date: December 8, 2020 In this example, PCE is used to generate a surrogate model for a given set of 2D data. Six-hump camel function $$ f(\textbf{x}) = \Big(4-2.1x_1^2 + \frac{x_1^4}{3} \Big)x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2$$**Description:** Dimensions: 2**Input Domain:** This function is evaluated on the hypercube $x_1 \in [-3, 3], x_2 \in [-2, 2]$.**Global minimum:** $f(\textbf{x}^*)=-1.0316,$ at $\textbf{x}^* = (0.0898, -0.7126)$ and $(-0.0898, 0.7126)$.**Reference:** Molga, M., & Smutnicki, C. Test functions for optimization needs (2005). Retrieved June 2013, from http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf. Import necessary libraries. ###Code import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter from UQpy.Surrogates import * ###Output _____no_output_____ ###Markdown Define the function. ###Code def function(x,y): return (4-2.1*x**2 + x**4/3)*x**2 + x*y + (-4+4*y**2)*y**2 ###Output _____no_output_____ ###Markdown Create a distribution object, generate samples and evaluate the function at the samples. ###Code np.random.seed(1) dist_1 = Uniform(loc=-2, scale=4) dist_2 = Uniform(loc=-1, scale=2) marg = [dist_1, dist_2] joint = JointInd(marginals=marg) n_samples = 250 x = joint.rvs(n_samples) y = function(x[:,0], x[:,1]) ###Output _____no_output_____ ###Markdown Visualize the 2D function. ###Code xmin, xmax = -2,2 ymin, ymax = -1,1 X1 = np.linspace(xmin, xmax, 50) X2 = np.linspace(ymin, ymax, 50) X1_, X2_ = np.meshgrid(X1, X2) # grid of points f = function(X1_, X2_) fig = plt.figure(figsize=(10,6)) ax = fig.gca(projection='3d') surf = ax.plot_surface(X1_, X2_, f, rstride=1, cstride=1, cmap='gnuplot2', linewidth=0, antialiased=False) ax.set_title('True function') ax.set_xlabel('$x_1$', fontsize=15) ax.set_ylabel('$x_2$', fontsize=15) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) ax.view_init(20, 50) fig.colorbar(surf, shrink=0.5, aspect=7) plt.show() ###Output _____no_output_____ ###Markdown Visualize training data. ###Code fig = plt.figure(figsize=(10,6)) ax = fig.gca(projection='3d') ax.scatter(x[:,0], x[:,1], y, s=20, c='r') ax.set_title('Training data') ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) ax.view_init(20,50) ax.set_xlabel('$x_1$', fontsize=15) ax.set_ylabel('$x_2$', fontsize=15) #ax.set_xlim(-10,10) #ax.set_ylim(-6,6) #ax.set_zlim(-1,1.5) plt.show() ###Output _____no_output_____ ###Markdown Create an object from the PCE class. ###Code max_degree = 6 polys = Polynomials(dist_object=joint, degree=max_degree) ###Output _____no_output_____ ###Markdown Compute PCE coefficients using least squares regression. ###Code lstsq = PolyChaosLstsq(poly_object=polys) pce = PCE(method=lstsq) pce.fit(x,y) ###Output _____no_output_____ ###Markdown Compute PCE coefficients using LASSO. ###Code lasso = PolyChaosLasso(poly_object=polys, learning_rate=0.1, iterations=1000, penalty=0.1) pce2 = PCE(method=lasso) pce2.fit(x,y) ###Output _____no_output_____ ###Markdown Compute PCE coefficients with Ridge regression. ###Code ridge = PolyChaosRidge(poly_object=polys, learning_rate=0.01, iterations=1000, penalty=0.1) pce3 = PCE(method=ridge) pce3.fit(x,y) ###Output _____no_output_____ ###Markdown PCE surrogate is used to predict the behavior of the function at new samples. ###Code n_test_samples = 20000 x_test = joint.rvs(n_test_samples) y_test = pce.predict(x_test) ###Output _____no_output_____ ###Markdown Plot PCE prediction. ###Code fig = plt.figure(figsize=(10,6)) ax = fig.gca(projection='3d') ax.scatter(x_test[:,0], x_test[:,1], y_test, s=1) ax.set_title('PCE predictor') ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) ax.view_init(20,50) ax.set_xlim(-2,2) ax.set_ylim(-1,1) ax.set_xlabel('$x_1$', fontsize=15) ax.set_ylabel('$x_2$', fontsize=15) #ax.set_zlim(0,136) plt.show() ###Output _____no_output_____ ###Markdown Error Estimation Validation error. ###Code n_samples = 150 x_val = joint.rvs(n_samples) y_val = function(x_val[:,0], x_val[:,1]) error = ErrorEstimation(surr_object=pce) error2 = ErrorEstimation(surr_object=pce2) error3 = ErrorEstimation(surr_object=pce3) print('Error from least squares regression is: ', error.validation(x_val, y_val)) print('Error from LASSO regression is: ', error2.validation(x_val, y_val)) print('Error from Ridge regression is: ', error3.validation(x_val, y_val)) ###Output Error from least squares regression is: 0.0 Error from LASSO regression is: 3e-07 Error from Ridge regression is: 4e-07 ###Markdown Moment Estimation Returns mean and variance of the PCE surrogate. ###Code n_mc = 1000000 x_mc = joint.rvs(n_mc) y_mc = function(x_mc[:,0], x_mc[:,1]) mu = np.mean(y_mc) print('Moments from least squares regression :', MomentEstimation(surr_object=pce).get()) print('Moments from LASSO regression :', MomentEstimation(surr_object=pce2).get()) print('Moments from Ridge regression :', MomentEstimation(surr_object=pce3).get()) print('Moments from Monte Carlo integration: ', (round((1/n_mc)*np.sum(y_mc),6), round((1/n_mc)*np.sum((y_mc-mu)**2),6))) ###Output Moments from least squares regression : (1.127619, 1.380713) Moments from LASSO regression : (1.127542, 1.380272) Moments from Ridge regression : (1.12751, 1.379393) Moments from Monte Carlo integration: (1.127527, 1.380522)
Python_Notebook_Data_Analysis.ipynb
###Markdown OverviewIn this week's independent project, you will be working as Data Scientist for MTN Cote d'Ivoire, a leading telecom company and you will be solving for the following research question.- Currently MTN Cote d'Ivoire would like to upgrade its technology infrastructure for its mobile users in Ivory Coast. Studying the given dataset, how does MTN Cote d'Ivoire go about the upgrade of its infrastructure strategy within the given cities?Your final deliverable will be a Data Report which will comprise the following sections;1. Business Understanding 2. Data Understanding 3. Data Preparation 4. Analysis 5. Recommendation 6. EvaluationYou can use the CRISP-DM methodology to guide you while working on the Data Report. Your Data Report will also need to have an objective account, with insights majorly coming from the dataset. However, you can refer to external information for supporting information. Below are some questions that can get you started;1. Which ones were the most used city for the three days?2. Which cities were the most used during business and home hours?3. Most used city for the three days?etc. The telecom data provided for this project is only a sample ( i.e. for only three days). The data files that you will need for this project will be as follows:1. cells_geo_description.xlsx [Link] (Links to an external site.)2. cells_geo.csv [Link] (Links to an external site.)3. CDR_description.xlsx [Link] (Links to an external site.)4. CDR 20120507 [http://bit.ly/TelecomDataset1] (Links to an external site.)5. CDR 20120508 [http://bit.ly/TelecomDataset2] (Links to an external site.)6. CDR 20120509 [http://bit.ly/TelecomDataset3] (Links to an external site.)You will use Python for your analysis. Importing Libraries to be used. ###Code import pandas as pd ###Output _____no_output_____ ###Markdown We will need to import the libraries we are going to use. Loading DatasetsWe will load the datasets required for data preparation and analysis. ###Code #Loading first dataset df1 = pd.read_csv("/content/cells_geo.csv", delimiter=";") df1.head() #Loading second dataset df2 = pd.read_csv('/content/Telcom_dataset.csv') df2.head(10) df2.rename(columns={"PRODUTC": "PRODUCT", "DATETIME": "DATE_TIME"}, inplace=True) df2 ###Output _____no_output_____ ###Markdown The lines of code above was used to rename some columns to make the same as all the other datasets. ###Code #Loading third dataset df3 = pd.read_csv('/content/Telcom_dataset2.csv') df3.head(10) df3.rename(columns={"DW_A_NUMBER": "DW_A_NUMBER_INT", "DW_B_NUMBER": "DW_B_NUMBER_INT"}, inplace=True) df3 ###Output _____no_output_____ ###Markdown The lines of code above was used to rename some columns to make the same as all the other datasets. ###Code #Loading fourth dataset df4 = pd.read_csv('/content/Telcom_dataset3.csv') df4.head(10) df4.rename(columns={"CELLID": "CELL_ID", "SIET_ID": "SITE_ID"}, inplace=True) df4 ###Output _____no_output_____ ###Markdown The lines of code above was used to rename some columns to make the same as all the other datasets. Merging Datasets The following lines of code combine the Telecom datasets together. ###Code df_mer = pd.concat([df2,df3,df4]) df_mer ###Output _____no_output_____ ###Markdown The following line of code merge the dataframe created after combining the Telecom datasets and the cells geo dataset together. ###Code merged = df_mer.merge(df1,left_index=True, right_index=True, how = 'outer') merged ###Output _____no_output_____ ###Markdown The following line of code shows the sum of null values. ###Code merged.isna().sum() ###Output _____no_output_____ ###Markdown The following line of code shows the sum of duplicated items in the merged datasets. ###Code merged.duplicated().sum() ###Output _____no_output_____ ###Markdown The following lines of code drops duplicates in the merged datasets. ###Code merged.dropna(inplace=True) merged.drop_duplicates(inplace=True) merged #The following lines of code show which ones were the most used city for the three days? cities_used=merged.groupby(['VILLES','DATE_TIME']).sum() cities_used.sort_values('VILLES', ascending=True) #The following lines of code show which cities were the most used during business and home hours? cities_used=merged.groupby(['VILLES','DATE_TIME']).sum() cities_used.sort_values('DATE_TIME') #The following lines of code show the cities with the most value of products. cities_product=merged.groupby(['VILLES','VALUE']).sum() cities_product.sort_values('VALUE') ###Output _____no_output_____
docs/python/Plots/grid-spec.ipynb
###Markdown ---title: "Subplots using GridSpec"author: "Charles"date: 2020-08-12description: "-"type: technical_notedraft: false--- ###Code import matplotlib.pyplot as plt from matplotlib.pyplot import GridSpec fig2 = plt.figure(constrained_layout=True) spec2 = GridSpec(ncols=2, nrows=2, figure=fig2) f2_ax1 = fig2.add_subplot(spec2[0, 0]) f2_ax2 = fig2.add_subplot(spec2[0, 1]) f2_ax3 = fig2.add_subplot(spec2[1, 0]) f2_ax4 = fig2.add_subplot(spec2[1, 1]) ###Output _____no_output_____
mdmap_totals_by_category.ipynb
###Markdown Summarize total counts of trash by high-level categories for MDMAP dataset ###Code import pandas as pd import numpy as np import json import seaborn as sns ###Output _____no_output_____ ###Markdown Import `category_map.csv` and create a dictionary: ###Code cat_map = pd.read_csv('category_map.csv') catdict = {key:value for key,value in zip(cat_map['Column Name'], cat_map['High-Level Category'])} ###Output _____no_output_____ ###Markdown Import cleaned MDMAP_Accumulation data: ###Code mdmap_all = pd.read_csv('data_processed/mdmap_accumulation_totalarea_zerosremoved.csv') ###Output _____no_output_____ ###Markdown Map MDMAP trash subcategories to their corresponding `High-Level Category`: ###Code # Create a dataframe of the subcategories: mdmap_subset = mdmap_all[['UniqueId', 'Hard Plastic Fragments', 'Foamed Plastic Fragments', 'Filmed Plastic Fragments', 'Food Wrappers', 'Plastic Beverage Bottles', 'Other Jugs/Containers', 'Bottle/Container Caps', 'Cigar Tips', 'Cigarettes', 'Disposable Cigarette Lighters', '6-Pack Rings', 'Bags', 'Plastic Rope/Net', 'Buoys & Floats', 'Fishing Lures & Line', 'Cups', 'Plastic Utensils', 'Straws', 'Balloons Mylar', 'Personal Care Products', 'Plastic Other', 'Metal', 'Aluminum/Tin Cans', 'Aerosol Cans', 'Metal Fragments', 'Metal Other', 'Glass', 'Glass Beverage Bottles', 'Jars', 'Glass Fragments', 'Glass Other', 'Rubber', 'Flip Flops', 'Rubber Gloves', 'Tires', 'Balloons Latex', 'Rubber Fragments', 'Rubber Other', 'Processed Lumber', 'Cardboard Cartons', 'Paper and Cardboard', 'Paper Bags', 'Lumber/Building Material', 'Processed Lumber Other', 'Cloth/Fabric', 'Clothing & Shoes', 'Gloves (non-rubber)', 'Towels/Rags', 'Rope/Net Pieces (non-nylon)', 'Fabric Pieces', 'Cloth/Fabric Other', 'Unclassified']] # Removed Total Debris and Debris Description mdmap_long = pd.melt(mdmap_all, id_vars=['UniqueId'], value_vars=['Hard Plastic Fragments', 'Foamed Plastic Fragments', 'Filmed Plastic Fragments', 'Food Wrappers', 'Plastic Beverage Bottles', 'Other Jugs/Containers', 'Bottle/Container Caps', 'Cigar Tips', 'Cigarettes', 'Disposable Cigarette Lighters', '6-Pack Rings', 'Bags', 'Plastic Rope/Net', 'Buoys & Floats', 'Fishing Lures & Line', 'Cups', 'Plastic Utensils', 'Straws', 'Balloons Mylar', 'Personal Care Products', 'Plastic Other', 'Metal', 'Aluminum/Tin Cans', 'Aerosol Cans', 'Metal Fragments', 'Metal Other', 'Glass', 'Glass Beverage Bottles', 'Jars', 'Glass Fragments', 'Glass Other', 'Rubber', 'Flip Flops', 'Rubber Gloves', 'Tires', 'Balloons Latex', 'Rubber Fragments', 'Rubber Other', 'Processed Lumber', 'Cardboard Cartons', 'Paper and Cardboard', 'Paper Bags', 'Lumber/Building Material', 'Processed Lumber Other', 'Cloth/Fabric', 'Clothing & Shoes', 'Gloves (non-rubber)', 'Towels/Rags', 'Rope/Net Pieces (non-nylon)', 'Fabric Pieces', 'Cloth/Fabric Other', 'Unclassified'], var_name='Subcategory', value_name='Count') mdmap_long['Category'] = mdmap_long['Subcategory'].map(catdict) # Remove non-numerical values under Count mdmap_int = mdmap_long[mdmap_long.applymap(np.isreal).Count] mdmap_int.info() mdmap_int = mdmap_int.dropna() mdmap_int.info() mdmap_int.Count = mdmap_int.Count.astype('int64') # Calculate the total counts by the High-Level Category: mdmap_group = mdmap_int.groupby(['UniqueId','Category'], as_index=False).sum() mdmap_group.head() mdmap_totals = mdmap_group.pivot(index='UniqueId', columns='Category', values='Count') ###Output _____no_output_____ ###Markdown Merge the key location and survey stats with the trash totals: ###Code # Store the key location and survey stats in a dataframe: mdmap_orig = mdmap_all[['UniqueId', 'Organization', 'Date', 'Survey Year', 'Survey ID', 'Latitude Start', 'Longitude Start', 'Latitude End', 'Longitude End', 'Width', 'Length', 'TotalArea', 'Total Debris', 'Plastic']] mdmap_orig.columns = ['UniqueId', 'Organization', 'Date', 'Survey Year', 'Survey ID', 'Latitude Start', 'Longitude Start', 'Latitude End', 'Longitude End', 'Width', 'Length', 'TotalArea', 'Total Debris', 'Plastic Count'] # Merge with map_totals: # Test: mdmap_final = pd.merge(mdmap_orig, mdmap_totals, how='outer', on='UniqueId', indicator=True) mdmap_final.groupby('_merge').count() mdmap_final = mdmap_final.drop('_merge', 1) # Calculate debris relative to beach size mdmap_final['Cloth Per Sq Meter'] = mdmap_final['Cloth']/mdmap_final['TotalArea'] mdmap_final['Fishing Gear Per Sq Meter'] = mdmap_final['Fishing Gear']/mdmap_final['TotalArea'] mdmap_final['Glass Per Sq Meter'] = mdmap_final['Glass']/mdmap_final['TotalArea'] mdmap_final['Metal Per Sq Meter'] = mdmap_final['Metal']/mdmap_final['TotalArea'] mdmap_final['Other Per Sq Meter'] = mdmap_final['Other']/mdmap_final['TotalArea'] mdmap_final['Plastic Per Sq Meter'] = mdmap_final['Plastic']/mdmap_final['TotalArea'] mdmap_final['Processed Lumber Per Sq Meter'] = mdmap_final['Processed Lumber']/mdmap_final['TotalArea'] mdmap_final['Rubber Per Sq Meter'] = mdmap_final['Rubber']/mdmap_final['TotalArea'] mdmap_final['Total Debris Per Sq Meter'] = mdmap_final['Total Debris']/mdmap_final['TotalArea'] mdmap_final.head() ###Output _____no_output_____ ###Markdown How well does the computed plastic count align with the recorded plastic count? ###Code sns.regplot(x=mdmap_final["Plastic Count"], y=mdmap_final["Plastic"]) ###Output _____no_output_____ ###Markdown Save to file. ###Code mdmap_final.to_csv('data_processed/mdmap_totals_by_category.csv', index=False) ###Output _____no_output_____
015_pca_dim_reduction_sol.ipynb
###Markdown PCA - Principal Component AnalysisWhen dealing with text we looked at the truncated SVD algorithm that could reduce the massive datasets generated from encoding text down to a subset of features. PCA is a similar concept, we can take high dimension feature sets and reduce them down to a subset of features used for prediction. PCA is a very common method for dimensionality reduction. PCA Concepts PCA reduces dimensionality by breaking down the variance in the data into its "principal components", then keeping only those components that do the best job in explaining said variance. We can understand this well with an example, in 2D. We'll create something that looks like an example from simple linear regression type of data - we have a bunch of points, each point is located by its X and Y values. ###Code #make some random numbers plt.rcParams['figure.figsize'] = 12,6 fig, ax = plt.subplots(1, 2) X = np.dot(np.random.rand(2, 2), np.random.randn(2, 200)).T sns.regplot(data=X, x=X[:,0], y=X[:,1], ci=0, ax=ax[0]) ax[0].set_ylabel('Y') ax[0].set_xlabel('X') tmpPCA = PCA(2) tmpData = tmpPCA.fit_transform(X) sns.regplot(data=tmpData, x=tmpData[:,0], y=tmpData[:,1], ci=0, ax=ax[1]) ax[1].set_ylabel('PC 2') ax[1].set_xlabel('PC 1') plt.show() ###Output _____no_output_____ ###Markdown Principal ComponentsIn normal analysis, each of these points is defined by their X and Y values: X - how far left and right the point is. Y - how far up and down the point is. Together these points explain all of the position data of the points. Once we look at PCA, we can also think of these points being defined by two components: Along the regression line. The majority of the variance in Y is explained by the position along this line. Perpindicular to the regression line. Some smaller part of the variance in Y is explained by how "far off" it is from the regession line.In essence, we can explain the position of our points mostly by examining where it is along the regression line (component 1), along with a little info on how far off it is from that line. These two components can explain our data - "A" amount "up and down" the line, along with "B" amount "off the line". This also explains the position of the points, but does so with different values than X and Y. If we look at the plot of the PCA components, PC1 (plotted as X) has a wide range, or lots of variance. PC2 (plotted as Y) has a small range, or a small amount of variance. Animated ExampleSee: https://setosa.io/ev/principal-component-analysis/ PCA and EigenvectorsThe components generated by the PCA are called eigenvectors. We don't need to worry about much of the math, but this PCA can be calculated by hand with some linear math. We can skip that, computers are good at math. PCA and Dimensionality ReductionOnce we've established the components, reducing the dimensions of our feature set is simple - just reduce the components that matter least to 0. In our example, we'd ignore the "off the line" component that is responsible for only a little bit of the position of our points, and keep the "up the line" component that explains the majority of the position of our points. In the XY system, both X and Y are very important in specifying where a point is, X somewhat more important than Y. In our component system, the "up the line" component provides the majority of the information on our points, with the "off the line" component only adding a little bit of info. This is the key to the dimensionality reduction - if we feature selected away the Y value, we would lose substantial information on the location of the points. If we PCA-away the "off the line" component, we only lose a small amount of information! So we can describe this data "pretty well" with only 1/2 the number of features if we describe the data with the components over the original features. When dealing with large numbers of features, this can allow us to reduce them down to a much smaller number of components, without missing out on too much information describing the real data. The true benefit of PCA is if there are a lot of features. We can do something like the example here to grab the "best" components, drop the rest, and have a smaller feature set with a comparable level of accuracy. Colinearity and Multi-colinearityOne of the other benefits of PCA is that it reduces colinearity between features. The components that PCA generates are orthogonal of each other - the colinearity is reduced to effectively 0. Dimension Reduction in Multiple DimensionsThis 2D example is simple to picture. The same concept applies when we have data with lots of dimensions. We can break the data down into components, remove the least impactful, and end up with a feature set that captures most of the variance in our target with fewer inputs. Example with Real DataThis dataset is one of the sklearn samples, containing measurements from people with and without breast cancer. The classification of cancer/no cancer is the target. ###Code def sklearn_to_df(sklearn_dataset): df = pd.DataFrame(sklearn_dataset.data, columns=sklearn_dataset.feature_names) df['target'] = pd.Series(sklearn_dataset.target) return df df = sklearn_to_df(load_breast_cancer()) y1 = df["target"] X1 = df.drop(columns="target") df.head() ###Output _____no_output_____ ###Markdown Pre PCA TestWe can run a test to approximate the accuracy without doing PCA. We don't want accuracy to drop too much after the PCA process. This is our baseline. ###Code pre_model = LogisticRegression() pre_scale = MinMaxScaler() pre_pipe = Pipeline([("scale", pre_scale), ("model", pre_model)]) print("Estimated Initial Accuracy:", np.mean(cross_val_score(pre_pipe, X1, y1))) ###Output Estimated Initial Accuracy: 0.9613414066138798 ###Markdown Original Dimensionality and CorrelationOne classfication target, along with 30 features. We can look for correlation between those features. ###Code # Check Original Correlation plt.rcParams['figure.figsize'] = 15,5 sns.heatmap(X1.corr(), cmap="BuPu") # Calculate VIF for Multicolinearity from statsmodels.stats.outliers_influence import variance_inflation_factor vif = pd.DataFrame() vif["VIF Factor"] = [variance_inflation_factor(X1.values, i) for i in range(X1.shape[1])] vif["features"] = X1.columns vif.sort_values("VIF Factor", ascending=False).head(10) ###Output _____no_output_____ ###Markdown Colinearity ResultsLooks like there is a lot of correlation going on. The heatmap shows many values that are pretty correlated, and the VIF shows some really high values. Recall, values for a VIF over about 10 are really large. For the model, we'll be sure to use a logistic regression, that is very impacted by the colinearity. Feel free to play with the number of components and observe results. ###Code #Check accuracy X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1) can_pca = PCA() can_model = LogisticRegression() can_steps = [ ("scale", MinMaxScaler()), ("pca", can_pca), ("can_model", can_model) ] can_pipe = Pipeline(steps=can_steps) can_params = { "pca__n_components":[15] } clf1 = GridSearchCV(estimator=can_pipe, param_grid=can_params, cv=5, n_jobs=-1) clf1.fit(X_train1, y_train1.ravel()) print(clf1.score(X_test1, y_test1)) best1 = clf1.best_estimator_ print(best1) ###Output 0.9790209790209791 Pipeline(steps=[('scale', MinMaxScaler()), ('pca', PCA(n_components=15)), ('can_model', LogisticRegression())]) ###Markdown Results - We Have Accuracy!Accuracy looks pretty good, even though we've reduced the number of features. How is the information on our target (the variance) distributed amongst our components? ###Code # Get PCA Info comps1 = best1.named_steps['pca'].components_ ev1 = best1.named_steps['pca'].explained_variance_ratio_ plt.rcParams['figure.figsize'] = 6,6 plt.plot(np.cumsum(ev1)) plt.xlabel('number of components') plt.ylabel('cumulative explained variance') ###Output _____no_output_____ ###Markdown What is in the PCA Components?We can also reconstruct the importance of the contributions of the different features to the components. ###Code labels = [] for i in range(len(comps1)): label = "PC-"+str(i) labels.append(label) PCA1_res_comps = pd.DataFrame(comps1,columns=X1.columns, index = labels) PCA1_res_comps.head() ###Output _____no_output_____ ###Markdown Results of PCAPCA allows us to reduce down the original 30 feature set to a much smaller number, while still making accurate predictions. In this case, it looks like we can get about 90% of the explained varaiance in the data by using around 6 or so components. Yay, that's cool! PCA and Feature SelectionPCA is not a feature selection technique. PCA does do a similar thing to feature selection in reducing the size of our feature set that goes into a model, but it is technically different. Feature selection removes features. PCA removes components, that are created from features, but that are not, themselves, features. In PCA, the features are being transformed for the components to be created, and each component includes portions of multiple features - for example, in the scatter plot above, both the "up the line" and "off the line" components contain parts of the X and Y features. If we drop the "off the line" feature when doing PCA we aren't really eliminating any features - we still need X and Y to calculate each of our components. In the breast cancer example, each of those features still contributes to the components, but the actual predictors are far reduced. ExamplePredict if people have diabetes (Outcome) using PCA to help. ###Code df = pd.read_csv("data/diabetes.csv") df.head() #Get data y = df["Outcome"] X = df.drop(columns={"Outcome"}) X_train, X_test, y_train, y_test = train_test_split(X, y) #Model and grid search of components. scaler = MinMaxScaler() logistic = LogisticRegression(max_iter=10000, tol=0.1) pca_dia = PCA() pipe = Pipeline(steps=[("scaler", scaler), ("pca", pca_dia), ("logistic", logistic)]) param_grid = { "pca__n_components": [8] } grid = GridSearchCV(pipe, param_grid, n_jobs=4) grid.fit(X_train, y_train) best2 = grid.best_estimator_ print("Best parameter (CV score=%0.3f):" % grid.best_score_) print(grid.best_params_) ###Output Best parameter (CV score=0.759): {'pca__n_components': 8} ###Markdown Plot Component ImportanceWe can plot the effectiveness with different numbers of components. ###Code comps2 = best2.named_steps['pca'].components_ ev2 = best2.named_steps['pca'].explained_variance_ratio_ plt.rcParams['figure.figsize'] = 6,6 plt.plot(np.cumsum(ev2)) plt.xlabel('number of components') plt.ylabel('cumulative explained variance') ###Output _____no_output_____ ###Markdown PCA with Images - Big Dimensions!One common example of something with a large feature set is images - even our simple set of handwritten numbers had 784 features for each digit. Generating models from all 70,000 of those simple images could take forever, and those are about the most simple images we can imagine!Reducing the dimensions of very large images can be highly beneficial, especially if we can keep the useful bits that we need to do identification. Faces, PCA, and YouThis dataset is a more complex set of images than the digits we used previously. It is a set of a bunch of faces of past world leaders, our goal being to make a model that will recognize each person from their picture. ###Code from sklearn.datasets import fetch_lfw_people faces = fetch_lfw_people(min_faces_per_person=60) print(faces.target_names) print(faces.images.shape) ###Output ['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush' 'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair'] (1348, 62, 47) ###Markdown Starting Dimensions and PCA DimensionsWe start with ~1350 images, each 62 x 47 pixels, color depth of 1 - resulting in a feature set that is around 3000 columns wide. We can fit the data to a PCA transformation, and chop the feature set down to a much smaller number of components. ###Code # Generate PCA and inversed face-sets pca150 = PCA(150).fit(faces.data) components150 = pca150.transform(faces.data) projected150 = pca150.inverse_transform(components150) pca15 = PCA(15).fit(faces.data) components15 = pca15.transform(faces.data) projected15 = pca15.inverse_transform(components15) ###Output _____no_output_____ ###Markdown Picture Some PicturesWe can look at what the pictures look like in their original state, and after the PCA process has reduced their dimensions by various amounts. ###Code # Plot faces and PCA faces fig, ax = plt.subplots(3, 12, figsize=(12, 6), subplot_kw={'xticks':[], 'yticks':[]}, gridspec_kw=dict(hspace=0.1, wspace=0.1)) for i in range(12): ax[0,i].imshow(faces.data[i].reshape(62, 47), cmap='bone') ax[1,i].imshow(projected150[i].reshape(62, 47), cmap='bone') ax[2,i].imshow(projected15[i].reshape(62, 47), cmap='bone') ax[0, 0].set_ylabel('Original') ax[1, 0].set_ylabel('150-dim') ax[2, 0].set_ylabel('15-dim') ###Output _____no_output_____ ###Markdown Amount of Variance Captured in ComponentsWe can look at our PCA'd data and see that while the images are much less clear and defined, they are pretty similar on the whole! We can probably still do a good job of IDing the people, even though we have roughly 1/20 (or 1/200) the number of features as we started with. Cool. Even with the 15 component set, the images are still somewhat able to be recognized. The PCA allows us to call up the details on how much of the variance was captured in each component. The first few contain lots of the useful info, once we reach 20 components we have about ~75% or so of the original varaince. ###Code plt.plot(np.cumsum(pca150.explained_variance_ratio_)) plt.xlabel('number of components') plt.ylabel('cumulative explained variance') ###Output _____no_output_____ ###Markdown Scree Plot and Number of ComponentsOne question we're left with is how many components should we keep? This answer varies, common suggestions are enough to capture somewhere around 80% to 95% of the explained variance. These metrics are somewhat arbitrary - testing different numbers of components will likely make sense in many cases. One method to choose the number of features is a scree plot. This is a plot that shows the contribution of each component. The scree plot shows the same information as the graph above, but formatted differently. The idea of a scree plot is to find the "elbow", or where the plot levels out. This flattening point is approximately where you should cut off the number of components - the idea being that you capture all the components that make a substantial difference, and let the ones that make a small difference go. Personally, I think the cumulative plot above is easier to view, but scree plots are pretty common. ###Code #Scree Plot PC_values = np.arange(pca150.n_components_) + 1 plt.plot(PC_values, pca150.explained_variance_ratio_, 'o-', linewidth=2, color='blue') plt.title('Scree Plot') plt.xlabel('Principal Component') plt.ylabel('Variance Explained') plt.show() ###Output _____no_output_____ ###Markdown Predictions with PCAWe can try to make some predictions and see what the results are with PCA'd data. We'll use a multinomial HP to tell our regression to directly predict multiple classes with our friend the softmax. ###Code #Get data y = faces.target X = faces.data X_train, X_test, y_train, y_test = train_test_split(X, y) #Model and grid search of components. scaler = MinMaxScaler() logistic = LogisticRegression(max_iter=10000, tol=0.1, multi_class="multinomial") pca_dia = PCA() pipe = Pipeline(steps=[("scaler", scaler), ("pca", pca_dia), ("logistic", logistic)]) param_grid = { "pca__n_components": [130] } grid = GridSearchCV(pipe, param_grid, n_jobs=-1) grid.fit(X_train, y_train.ravel()) print("Best parameter (CV score=%0.3f):" % grid.best_score_) print(grid.best_params_) print("Test Score:", grid.score(X_test, y_test)) ###Output Best parameter (CV score=0.821): {'pca__n_components': 130} Test Score: 0.8308605341246291 ###Markdown Kernel PCASimilarly to support vector machines, we can use a kernel transformation to make PCA better suit data with non-linear relationships. The concept is the same as with the SVMs - we can provide a kernel that does a transformation, then the linear algebra of PCA can be executed on the transformed data. The implementation is very simple - we replace PCA with KernelPCA, and provide the kernel we want to use. We can see if a different kernel is better than the original... Try with a grid search of the different kernels other than linear. Also, for the polynomial kernel, try with multiple values in the grid search. Documentation is: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html ###Code # Use Kernel PCA from sklearn.decomposition import KernelPCA #Get data y = faces.target X = faces.data X_train, X_test, y_train, y_test = train_test_split(X, y) #Model and grid search of components. scaler = MinMaxScaler() logistic = LogisticRegression(max_iter=10000, tol=0.1, multi_class="multinomial") pca_dia = KernelPCA() pipe = Pipeline(steps=[("scaler", scaler), ("pca", pca_dia), ("logistic", logistic)]) param_grid = { "pca__n_components": [150], "pca__kernel": ["poly", "rbf", "sigmoid", "cosine"], "pca__degree": [2,3,4,5,6,7,8,9,10,11,12,13,14,15] } grid = GridSearchCV(pipe, param_grid, n_jobs=-1) grid.fit(X_train, y_train.ravel()) print("Best parameter (CV score=%0.3f):" % grid.best_score_) print(grid.best_params_) print("Test Score:", grid.score(X_test, y_test)) ###Output Best parameter (CV score=0.790): {'pca__degree': 14, 'pca__kernel': 'poly', 'pca__n_components': 150} Test Score: 0.7863501483679525 ###Markdown Sparse PCASparse PCA is another implementation of PCA that includes L1 regularization - resulting in some of the values being regularized down to 0. The end result of this is that you end up with a subset of the features being used to construct the components. The others are feature selected out just like Lasso rregression. ###Code from sklearn.decomposition import SparsePCA sPCA = SparsePCA(15) sparse = sPCA.fit_transform(X1) comps3 = sPCA.components_ labels = [] for i in range(len(comps3)): label = "PC-"+str(i) labels.append(label) PCA3_res_comps = pd.DataFrame(comps3, columns=X1.columns, index = labels) PCA3_res_comps.head() PCA3_res_comps.describe().T.sort_values("mean") ###Output _____no_output_____ ###Markdown PCA - Principal Component AnalysisWhen dealing with text we looked at the truncated SVD algorithm that could reduce the massive datasets generated from encoding text down to a subset of features. PCA is a similar concept, we can take high dimension feature sets and reduce them down to a subset of features used for prediction. PCA is a very common method for dimensionality reduction. PCA Concepts PCA reduces dimensionality by breaking down the variance in the data into its "principal components", then keeping only those components that do the best job in explaining said variance. We can understand this well with an example, in 2D. We'll create something that looks like an example from simple linear regression type of data - we have a bunch of points, each point is located by its X and Y values. ###Code #make some random numbers plt.rcParams['figure.figsize'] = 12,6 fig, ax = plt.subplots(1, 2) X = np.dot(np.random.rand(2, 2), np.random.randn(2, 200)).T sns.regplot(data=X, x=X[:,0], y=X[:,1], ci=0, ax=ax[0]) ax[0].set_ylabel('Y') ax[0].set_xlabel('X') tmpPCA = PCA(2) tmpData = tmpPCA.fit_transform(X) sns.regplot(data=tmpData, x=tmpData[:,0], y=tmpData[:,1], ci=0, ax=ax[1]) ax[1].set_ylabel('PC 2') ax[1].set_xlabel('PC 1') plt.show() ###Output _____no_output_____ ###Markdown Principal ComponentsIn normal analysis, each of these points is defined by their X and Y values: X - how far left and right the point is. Y - how far up and down the point is. Together these points explain all of the position data of the points. Once we look at PCA, we can also think of these points being defined by two components: Along the regression line. The majority of the variance in Y is explained by the position along this line. Perpindicular to the regression line. Some smaller part of the variance in Y is explained by how "far off" it is from the regession line.In essence, we can explain the position of our points mostly by examining where it is along the regression line (component 1), along with a little info on how far off it is from that line. These two components can explain our data - "A" amount "up and down" the line, along with "B" amount "off the line". This also explains the position of the points, but does so with different values than X and Y. If we look at the plot of the PCA components, PC1 (plotted as X) has a wide range, or lots of variance. PC2 (plotted as Y) has a small range, or a small amount of variance. Animated ExampleSee: https://setosa.io/ev/principal-component-analysis/ PCA and EigenvectorsThe components generated by the PCA are called eigenvectors. We don't need to worry about much of the math, but this PCA can be calculated by hand with some linear math. We can skip that, computers are good at math. PCA and Dimensionality ReductionOnce we've established the components, reducing the dimensions of our feature set is simple - just reduce the components that matter least to 0. In our example, we'd ignore the "off the line" component that is responsible for only a little bit of the position of our points, and keep the "up the line" component that explains the majority of the position of our points. In the XY system, both X and Y are very important in specifying where a point is, X somewhat more important than Y. In our component system, the "up the line" component provides the majority of the information on our points, with the "off the line" component only adding a little bit of info. This is the key to the dimensionality reduction - if we feature selected away the Y value, we would lose substantial information on the location of the points. If we PCA-away the "off the line" component, we only lose a small amount of information! So we can describe this data "pretty well" with only 1/2 the number of features if we describe the data with the components over the original features. When dealing with large numbers of features, this can allow us to reduce them down to a much smaller number of components, without missing out on too much information describing the real data. The true benefit of PCA is if there are a lot of features. We can do something like the example here to grab the "best" components, drop the rest, and have a smaller feature set with a comparable level of accuracy. Colinearity and Multi-colinearityOne of the other benefits of PCA is that it reduces colinearity between features. The components that PCA generates are orthogonal of each other - the colinearity is reduced to effectively 0. Dimension Reduction in Multiple DimensionsThis 2D example is simple to picture. The same concept applies when we have data with lots of dimensions. We can break the data down into components, remove the least impactful, and end up with a feature set that captures most of the variance in our target with fewer inputs. Example with Real DataThis dataset is one of the sklearn samples, containing measurements from people with and without breast cancer. The classification of cancer/no cancer is the target. ###Code def sklearn_to_df(sklearn_dataset): df = pd.DataFrame(sklearn_dataset.data, columns=sklearn_dataset.feature_names) df['target'] = pd.Series(sklearn_dataset.target) return df df = sklearn_to_df(load_breast_cancer()) y1 = df["target"] X1 = df.drop(columns="target") df.head() ###Output _____no_output_____ ###Markdown Pre PCA TestWe can run a test to approximate the accuracy without doing PCA. We don't want accuracy to drop too much after the PCA process. This is our baseline. ###Code pre_model = LogisticRegression() pre_scale = MinMaxScaler() pre_pipe = Pipeline([("scale", pre_scale), ("model", pre_model)]) print("Estimated Initial Accuracy:", np.mean(cross_val_score(pre_pipe, X1, y1))) ###Output Estimated Initial Accuracy: 0.9613414066138798 ###Markdown Original Dimensionality and CorrelationOne classfication target, along with 30 features. We can look for correlation between those features. ###Code # Check Original Correlation plt.rcParams['figure.figsize'] = 15,5 sns.heatmap(X1.corr(), cmap="BuPu") # Calculate VIF for Multicolinearity from statsmodels.stats.outliers_influence import variance_inflation_factor vif = pd.DataFrame() vif["VIF Factor"] = [variance_inflation_factor(X1.values, i) for i in range(X1.shape[1])] vif["features"] = X1.columns vif.sort_values("VIF Factor", ascending=False).head(10) ###Output _____no_output_____ ###Markdown Colinearity ResultsLooks like there is a lot of correlation going on. The heatmap shows many values that are pretty correlated, and the VIF shows some really high values. Recall, values for a VIF over about 10 are really large. For the model, we'll be sure to use a logistic regression, that is very impacted by the colinearity. Feel free to play with the number of components and observe results. ###Code #Check accuracy X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1) can_pca = PCA() can_model = LogisticRegression() can_steps = [ ("scale", MinMaxScaler()), ("pca", can_pca), ("can_model", can_model) ] can_pipe = Pipeline(steps=can_steps) can_params = { "pca__n_components":[15] } clf1 = GridSearchCV(estimator=can_pipe, param_grid=can_params, cv=5, n_jobs=-1) clf1.fit(X_train1, y_train1.ravel()) print(clf1.score(X_test1, y_test1)) best1 = clf1.best_estimator_ print(best1) ###Output 0.965034965034965 Pipeline(steps=[('scale', MinMaxScaler()), ('pca', PCA(n_components=15)), ('can_model', LogisticRegression())]) ###Markdown Results - We Have Accuracy!Accuracy looks pretty good, even though we've reduced the number of features. How is the information on our target (the variance) distributed amongst our components? ###Code # Get PCA Info comps1 = best1.named_steps['pca'].components_ ev1 = best1.named_steps['pca'].explained_variance_ratio_ plt.rcParams['figure.figsize'] = 6,6 plt.plot(np.cumsum(ev1)) plt.xlabel('number of components') plt.ylabel('cumulative explained variance') ###Output _____no_output_____ ###Markdown What is in the PCA Components?We can also reconstruct the importance of the contributions of the different features to the components. ###Code labels = [] for i in range(len(comps1)): label = "PC-"+str(i) labels.append(label) PCA1_res_comps = pd.DataFrame(comps1,columns=X1.columns, index = labels) PCA1_res_comps.head() ###Output _____no_output_____ ###Markdown Results of PCAPCA allows us to reduce down the original 30 feature set to a much smaller number, while still making accurate predictions. In this case, it looks like we can get about 90% of the explained varaiance in the data by using around 6 or so components. Yay, that's cool! PCA and Feature SelectionPCA is not a feature selection technique. PCA does do a similar thing to feature selection in reducing the size of our feature set that goes into a model, but it is technically different. Feature selection removes features. PCA removes components, that are created from features, but that are not, themselves, features. In PCA, the features are being transformed for the components to be created, and each component includes portions of multiple features - for example, in the scatter plot above, both the "up the line" and "off the line" components contain parts of the X and Y features. If we drop the "off the line" feature when doing PCA we aren't really eliminating any features - we still need X and Y to calculate each of our components. In the breast cancer example, each of those features still contributes to the components, but the actual predictors are far reduced. ExamplePredict if people have diabetes (Outcome) using PCA to help. ###Code df = pd.read_csv("data/diabetes.csv") df.head() #Get data y = df["Outcome"] X = df.drop(columns={"Outcome"}) X_train, X_test, y_train, y_test = train_test_split(X, y) #Model and grid search of components. scaler = MinMaxScaler() logistic = LogisticRegression(max_iter=10000, tol=0.1) pca_dia = PCA() pipe = Pipeline(steps=[("scaler", scaler), ("pca", pca_dia), ("logistic", logistic)]) param_grid = { "pca__n_components": [8] } grid = GridSearchCV(pipe, param_grid, n_jobs=4) grid.fit(X_train, y_train) best2 = grid.best_estimator_ print("Best parameter (CV score=%0.3f):" % grid.best_score_) print(grid.best_params_) ###Output Best parameter (CV score=0.750): {'pca__n_components': 8} ###Markdown Plot Component ImportanceWe can plot the effectiveness with different numbers of components. ###Code comps2 = best2.named_steps['pca'].components_ ev2 = best2.named_steps['pca'].explained_variance_ratio_ plt.rcParams['figure.figsize'] = 6,6 plt.plot(np.cumsum(ev2)) plt.xlabel('number of components') plt.ylabel('cumulative explained variance') ###Output _____no_output_____ ###Markdown PCA with Images - Big Dimensions!One common example of something with a large feature set is images - even our simple set of handwritten numbers had 784 features for each digit. Generating models from all 70,000 of those simple images could take forever, and those are about the most simple images we can imagine!Reducing the dimensions of very large images can be highly beneficial, especially if we can keep the useful bits that we need to do identification. Faces, PCA, and YouThis dataset is a more complex set of images than the digits we used previously. It is a set of a bunch of faces of past world leaders, our goal being to make a model that will recognize each person from their picture. ###Code from sklearn.datasets import fetch_lfw_people faces = fetch_lfw_people(min_faces_per_person=60) print(faces.target_names) print(faces.images.shape) ###Output ['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush' 'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair'] (1348, 62, 47) ###Markdown Starting Dimensions and PCA DimensionsWe start with ~1350 images, each 62 x 47 pixels, color depth of 1 - resulting in a feature set that is around 3000 columns wide. We can fit the data to a PCA transformation, and chop the feature set down to a much smaller number of components. ###Code # Generate PCA and inversed face-sets pca150 = PCA(150).fit(faces.data) components150 = pca150.transform(faces.data) projected150 = pca150.inverse_transform(components150) pca15 = PCA(15).fit(faces.data) components15 = pca15.transform(faces.data) projected15 = pca15.inverse_transform(components15) ###Output _____no_output_____ ###Markdown Picture Some PicturesWe can look at what the pictures look like in their original state, and after the PCA process has reduced their dimensions by various amounts. ###Code # Plot faces and PCA faces fig, ax = plt.subplots(3, 12, figsize=(12, 6), subplot_kw={'xticks':[], 'yticks':[]}, gridspec_kw=dict(hspace=0.1, wspace=0.1)) for i in range(12): ax[0,i].imshow(faces.data[i].reshape(62, 47), cmap='bone') ax[1,i].imshow(projected150[i].reshape(62, 47), cmap='bone') ax[2,i].imshow(projected15[i].reshape(62, 47), cmap='bone') ax[0, 0].set_ylabel('Original') ax[1, 0].set_ylabel('150-dim') ax[2, 0].set_ylabel('15-dim') ###Output _____no_output_____ ###Markdown Amount of Variance Captured in ComponentsWe can look at our PCA'd data and see that while the images are much less clear and defined, they are pretty similar on the whole! We can probably still do a good job of IDing the people, even though we have roughly 1/20 (or 1/200) the number of features as we started with. Cool. Even with the 15 component set, the images are still somewhat able to be recognized. The PCA allows us to call up the details on how much of the variance was captured in each component. The first few contain lots of the useful info, once we reach 20 components we have about ~75% or so of the original varaince. ###Code plt.plot(np.cumsum(pca150.explained_variance_ratio_)) plt.xlabel('number of components') plt.ylabel('cumulative explained variance') ###Output _____no_output_____ ###Markdown Scree Plot and Number of ComponentsOne question we're left with is how many components should we keep? This answer varies, common suggestions are enough to capture somewhere around 80% to 95% of the explained variance. These metrics are somewhat arbitrary - testing different numbers of components will likely make sense in many cases. One method to choose the number of features is a scree plot. This is a plot that shows the contribution of each component. The scree plot shows the same information as the graph above, but formatted differently. The idea of a scree plot is to find the "elbow", or where the plot levels out. This flattening point is approximately where you should cut off the number of components - the idea being that you capture all the components that make a substantial difference, and let the ones that make a small difference go. Personally, I think the cumulative plot above is easier to view, but scree plots are pretty common. ###Code #Scree Plot PC_values = np.arange(pca150.n_components_) + 1 plt.plot(PC_values, pca150.explained_variance_ratio_, 'o-', linewidth=2, color='blue') plt.title('Scree Plot') plt.xlabel('Principal Component') plt.ylabel('Variance Explained') plt.show() ###Output _____no_output_____ ###Markdown Predictions with PCAWe can try to make some predictions and see what the results are with PCA'd data. We'll use a multinomial HP to tell our regression to directly predict multiple classes with our friend the softmax. ###Code #Get data y = faces.target X = faces.data X_train, X_test, y_train, y_test = train_test_split(X, y) #Model and grid search of components. scaler = MinMaxScaler() logistic = LogisticRegression(max_iter=10000, tol=0.1, multi_class="multinomial") pca_dia = PCA() pipe = Pipeline(steps=[("scaler", scaler), ("pca", pca_dia), ("logistic", logistic)]) param_grid = { "pca__n_components": [130] } grid = GridSearchCV(pipe, param_grid, n_jobs=-1) grid.fit(X_train, y_train.ravel()) print("Best parameter (CV score=%0.3f):" % grid.best_score_) print(grid.best_params_) print("Test Score:", grid.score(X_test, y_test)) ###Output Best parameter (CV score=0.807): {'pca__n_components': 130} Test Score: 0.8338278931750742 ###Markdown Kernel PCASimilarly to support vector machines, we can use a kernel transformation to make PCA better suit data with non-linear relationships. The concept is the same as with the SVMs - we can provide a kernel that does a transformation, then the linear algebra of PCA can be executed on the transformed data. The implementation is very simple - we replace PCA with KernelPCA, and provide the kernel we want to use. We can see if a different kernel is better than the original... Try with a grid search of the different kernels other than linear. Also, for the polynomial kernel, try with multiple values in the grid search. Documentation is: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html ###Code # Use Kernel PCA from sklearn.decomposition import KernelPCA #Get data y = faces.target X = faces.data X_train, X_test, y_train, y_test = train_test_split(X, y) #Model and grid search of components. scaler = MinMaxScaler() logistic = LogisticRegression(max_iter=10000, tol=0.1, multi_class="multinomial") pca_dia = KernelPCA() pipe = Pipeline(steps=[("scaler", scaler), ("pca", pca_dia), ("logistic", logistic)]) param_grid = { "pca__n_components": [150], "pca__kernel": ["poly", "rbf", "sigmoid", "cosine"], "pca__degree": [2,3,4,5,6,7,8,9,10,11,12,13,14,15] } grid = GridSearchCV(pipe, param_grid, n_jobs=-1) grid.fit(X_train, y_train.ravel()) print("Best parameter (CV score=%0.3f):" % grid.best_score_) print(grid.best_params_) print("Test Score:", grid.score(X_test, y_test)) ###Output Best parameter (CV score=0.778): {'pca__degree': 14, 'pca__kernel': 'poly', 'pca__n_components': 150} Test Score: 0.827893175074184 ###Markdown Sparse PCASparse PCA is another implementation of PCA that includes L1 regularization - resulting in some of the values being regularized down to 0. The end result of this is that you end up with a subset of the features being used to construct the components. The others are feature selected out just like Lasso rregression. ###Code from sklearn.decomposition import SparsePCA sPCA = SparsePCA(15) sparse = sPCA.fit_transform(X1) comps3 = sPCA.components_ labels = [] for i in range(len(comps3)): label = "PC-"+str(i) labels.append(label) PCA3_res_comps = pd.DataFrame(comps3, columns=X1.columns, index = labels) PCA3_res_comps.head() PCA3_res_comps.describe().T.sort_values("mean") ###Output _____no_output_____
DeepLearning/ipython(guide)/0_Best_Result_classification_1_just_accuracy_CNN.ipynb
###Markdown A neural network consist of cnn layer (Yoon Kim,2014) and 4 fully connected layers. Source: https://github.com/jojonki/cnn-for-sentence-classification ###Code from google.colab import drive drive.mount('/content/drive') import os os.chdir('/content/drive/MyDrive/sharif/DeepLearning/ipython(guide)') import numpy as np import codecs import os import random import pandas from keras import backend as K from keras.models import Model from keras.layers.embeddings import Embedding from keras.layers import Input, Dense, Lambda, Permute, Dropout from keras.layers import Conv2D, MaxPooling1D from keras.optimizers import SGD import ast import re from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import train_test_split import gensim from keras.models import load_model from keras.callbacks import EarlyStopping, ModelCheckpoint limit_number = 750 data = pandas.read_csv('../Data/limited_to_'+str(limit_number)+'.csv',index_col=0) data = data.dropna().reset_index(drop=True) X = data["body"].values.tolist() y = pandas.read_csv('../Data/limited_to_'+str(limit_number)+'.csv') labels = [] tag=[] for item in y['tag']: labels += [i for i in re.sub('\"|\[|\]|\'| |=','',item.lower()).split(",") if i!='' and i!=' '] tag.append([i for i in re.sub('\"|\[|\]|\'| |=','',item.lower()).split(",") if i!='' and i!=' ']) labels = list(set(labels)) mlb = MultiLabelBinarizer() Y=mlb.fit_transform(tag) len(labels) sentence_maxlen = max(map(len, (d for d in X))) print('sentence maxlen', sentence_maxlen) freq_dist = pandas.read_csv('../Data/FreqDist_sorted.csv',index_col=False) vocab=[] for item in freq_dist["word"]: try: word=re.sub(r"[\u200c-\u200f]","",item.replace(" ","")) vocab.append(word) except: pass print(vocab[10]) vocab = sorted(vocab) vocab_size = len(vocab) print('vocab size', len(vocab)) w2i = {w:i for i,w in enumerate(vocab)} # i2w = {i:w for i,w in enumerate(vocab)} print(w2i["زبان"]) def vectorize(data, sentence_maxlen, w2i): vec_data = [] for d in data: vec = [w2i[w] for w in d if w in w2i] pad_len = max(0, sentence_maxlen - len(vec)) vec += [0] * pad_len vec_data.append(vec) # print(d) vec_data = np.array(vec_data) return vec_data vecX = vectorize(X, sentence_maxlen, w2i) vecY=Y X_train, X_test, y_train, y_test = train_test_split(vecX, vecY, test_size=0.2) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25) print('train: ', X_train.shape , '\ntest: ', X_test.shape , '\nval: ', X_val.shape ,"\ny_tain:",y_train.shape ) # print(vecX[0]) embd_dim = 300 ###Output _____no_output_____ ###Markdown ***If the word2vec model is not generated before, we should run the next block.*** ###Code # embed_model = gensim.models.Word2Vec(X, size=embd_dim, window=5, min_count=5) # embed_model.save('word2vec_model') ###Output _____no_output_____ ###Markdown ***Otherwise, we can run the next block.*** ###Code embed_model=gensim.models.Word2Vec.load('word2vec_model') word2vec_embd_w = np.zeros((vocab_size, embd_dim)) for word, i in w2i.items(): if word in embed_model.wv.vocab: embedding_vector =embed_model[word] # words not found in embedding index will be all-zeros. word2vec_embd_w[i] = embedding_vector from keras.layers import LSTM def Net(vocab_size, embd_size, sentence_maxlen, glove_embd_w): sentence = Input((sentence_maxlen,), name='SentenceInput') # embedding embd_layer = Embedding(input_dim=vocab_size, output_dim=embd_size, weights=[word2vec_embd_w], trainable=False, name='shared_embd') embd_sentence = embd_layer(sentence) embd_sentence = Permute((2,1))(embd_sentence) embd_sentence = Lambda(lambda x: K.expand_dims(x, -1))(embd_sentence) # cnn cnn = Conv2D(1, kernel_size=(5, sentence_maxlen), activation='relu')(embd_sentence) cnn = Lambda(lambda x: K.sum(x, axis=3))(cnn) cnn = MaxPooling1D(3)(cnn) cnn = Lambda(lambda x: K.sum(x, axis=2))(cnn) hidden1=Dense(400,activation="relu")(cnn) hidden2=Dense(300,activation="relu")(hidden1) hidden3=Dense(200,activation="relu")(hidden2) hidden4=Dense(150,activation="relu")(hidden3) out = Dense(len(labels), activation='sigmoid')(hidden4) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model = Model(inputs=sentence, outputs=out, name='sentence_claccification') model.compile(optimizer=sgd, loss='binary_crossentropy',metrics=["accuracy"]) return model model = Net(vocab_size, embd_dim, sentence_maxlen,word2vec_embd_w) print(model.summary()) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=50) # Model stop training after 50 epoch where validation loss didnt decrease mc = ModelCheckpoint('best_cnn_4fc.h5', monitor='val_loss', mode='min', verbose=1, save_best_only=True) #You save model weight at the epoch where validation loss is minimal model.fit(X_train, y_train, batch_size=32,epochs=50,verbose=1,validation_data=(X_val, y_val),callbacks=[es,mc])#you can run for 1000 epoch btw model will stop after 50 epoch without better validation loss ###Output Epoch 1/50 403/403 [==============================] - 675s 2s/step - loss: 0.6377 - accuracy: 0.0230 - val_loss: 0.5882 - val_accuracy: 0.0263 Epoch 00001: val_loss improved from inf to 0.58824, saving model to best_cnn_4fc.h5 Epoch 2/50 403/403 [==============================] - 670s 2s/step - loss: 0.5466 - accuracy: 0.0285 - val_loss: 0.5083 - val_accuracy: 0.0263 Epoch 00002: val_loss improved from 0.58824 to 0.50832, saving model to best_cnn_4fc.h5 Epoch 3/50 403/403 [==============================] - 667s 2s/step - loss: 0.4757 - accuracy: 0.0312 - val_loss: 0.4459 - val_accuracy: 0.0263 Epoch 00003: val_loss improved from 0.50832 to 0.44592, saving model to best_cnn_4fc.h5 Epoch 4/50 403/403 [==============================] - 665s 2s/step - loss: 0.4201 - accuracy: 0.0278 - val_loss: 0.3966 - val_accuracy: 0.0263 Epoch 00004: val_loss improved from 0.44592 to 0.39665, saving model to best_cnn_4fc.h5 Epoch 5/50 403/403 [==============================] - 661s 2s/step - loss: 0.3759 - accuracy: 0.0288 - val_loss: 0.3573 - val_accuracy: 0.0263 Epoch 00005: val_loss improved from 0.39665 to 0.35726, saving model to best_cnn_4fc.h5 Epoch 6/50 403/403 [==============================] - 659s 2s/step - loss: 0.3404 - accuracy: 0.0288 - val_loss: 0.3254 - val_accuracy: 0.0263 Epoch 00006: val_loss improved from 0.35726 to 0.32538, saving model to best_cnn_4fc.h5 Epoch 7/50 403/403 [==============================] - 663s 2s/step - loss: 0.3115 - accuracy: 0.0288 - val_loss: 0.2993 - val_accuracy: 0.0263 Epoch 00007: val_loss improved from 0.32538 to 0.29927, saving model to best_cnn_4fc.h5 Epoch 8/50 97/403 [======>.......................] - ETA: 7:49 - loss: 0.2965 - accuracy: 0.0290 ###Markdown ***If the model is generated before:*** ###Code # model = load_model('CNN_1_just_accuracy.h5') # model.save('CNN_1_just_accuracy.h5') model.save('CNN_1_just_accuracy.h5') X_test.shape , X_train.shape pred=model.predict(X_test) # For evaluation: If the probability > 0.5 you can say that it belong to the class. print(pred[0])#example y_pred=[] measure = .23#9*(np.mean(pred[0]) + .5*np.sqrt(np.var(pred[0]))) for l in pred: temp=[] for value in l: if value >= measure: temp.append(1) else: temp.append(0) y_pred.append(temp) 3*(np.mean(pred[0]) + .5*np.sqrt(np.var(pred[0]))) from sklearn.metrics import classification_report,accuracy_score print("accuracy=",accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown ROC Curve ###Code from sklearn.metrics import roc_curve,auc import matplotlib.pyplot as plt fpr = dict() tpr = dict() roc_auc = dict() for i in range(Y[0].shape[0]): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], pred[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) for i in range(Y[0].shape[0]): plt.figure() plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ###Output _____no_output_____
PolyRegression/Polynomial_Regression.ipynb
###Markdown USING POLYNOMIAL REGRESSION ###Code # Training for Polynomial Regression from sklearn.preprocessing import PolynomialFeatures poly_reg= PolynomialFeatures(degree=4) X_poly=poly_reg.fit_transform(X) from sklearn.linear_model import LinearRegression lin_reg=LinearRegression() lin_reg.fit(X_poly,Y) # Visualization of Polynomial Regression Results plt.scatter(X, Y, color='red') plt.plot(X, lin_reg.predict(poly_reg.fit_transform(X)), color='blue') plt.title('TRUTH OR BLUFF (Polynomial Regression)') plt.xlabel('Position Level') plt.ylabel('Salary') plt.show() #Predicting results with polynomial regression n= float(input("Enter the level of position:")) lin_reg.predict(poly_reg.fit_transform([[n]])) ###Output Enter the level of position:6.5 ###Markdown USING LINEAR REGRESSION ###Code # Training dataset for linear regression from sklearn.linear_model import LinearRegression lin_reg_2=LinearRegression() lin_reg_2.fit(X,Y) # Visualization of Regression Results plt.scatter(X, Y, color='red') plt.plot(X, lin_reg_2.predict(X), color='blue') plt.title('TRUTH OR BLUFF (Linear Regression)') plt.xlabel('Position Level') plt.ylabel('Salary') plt.show() #Predicting results with Linear regression m= float(input("Enter the level of position:")) lin_reg_2.predict([[n]]) ###Output Enter the level of position:6.5
Shareable_HRC_ML_Task_Model_Hamdan.ipynb
###Markdown Author: Chaudhary Hamdan- Error (RMSE) around 10, very less ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn import preprocessing from sklearn.linear_model import LinearRegression df = pd.read_csv('https://raw.githubusercontent.com/hamdan-codes/none-but-some/main/dataset.csv') df.head() df.corr() train_val_data = df[df['clear_date'].notnull()] test_data = df[df['clear_date'].isnull()] le_business_code = preprocessing.LabelEncoder() le_business_code.fit(df['business_code'].unique()) le_cust_number = preprocessing.LabelEncoder() le_cust_number.fit(df['cust_number'].unique()) le_name_customer = preprocessing.LabelEncoder() le_name_customer.fit(df['name_customer'].unique()) le_document_type = preprocessing.LabelEncoder() le_document_type.fit(df['document_type'].unique()) le_cust_payment_terms = preprocessing.LabelEncoder() le_cust_payment_terms.fit(df['cust_payment_terms'].unique()) def transform(df): # To transform object datatype into numeric data df['business_code'] = le_business_code.transform(df['business_code']) df['cust_number'] = le_cust_number.transform(df['cust_number']) df['name_customer'] = le_name_customer.transform(df['name_customer']) df['document_type'] = le_document_type.transform(df['document_type']) df['cust_payment_terms'] = le_cust_payment_terms.transform(df['cust_payment_terms']) def preprocessToFeed(df): # Preprocess Data to feed to model rep = {'USD' : 1.0, 'CAD' : 0.79} df.replace(to_replace=rep, inplace=True) df['total_open_amount'] *= df['invoice_currency'] df.drop(axis=1, columns=[ 'area_business', 'posting_id', 'invoice_id', 'invoice_currency', 'document_create_date', 'document_create_date.1', 'baseline_create_date', 'buisness_year', 'posting_date', 'isOpen' ], inplace=True ) df['clear_date'] = pd.to_datetime(df['clear_date'], format='%d-%m-%Y 00:00') df['due_in_date'] = df.due_in_date.astype('int64') df['due_in_date'] = pd.to_datetime(df['due_in_date'], format='%Y%m%d') transform(df) def preprocessTestData(df): # To preprocess Test Data to feed directly to model prediction preprocessToFeed(df) df.drop(columns=['clear_date'], inplace=True) train_val_data.head() preprocessToFeed(train_val_data) train_val_data.head() train_val_data['delay'] = (train_val_data.clear_date - train_val_data.due_in_date) train_val_data.drop(columns=['clear_date'], inplace=True) train_val_data.info() train_val_data['delay'] = (train_val_data['delay'] / np.timedelta64(1,'D')).astype(int) train_val_data.corr() x_train, x_val, y_train, y_val = train_test_split( train_val_data.drop(columns=['due_in_date', 'delay']), train_val_data['delay'], test_size=0.2, random_state=0 ) x_train.shape, y_train.shape, x_val.shape, y_val.shape model = LinearRegression() model.fit(x_train, y_train) y_val_pred = model.predict(x_val) y_val_pred = y_val_pred + 0.5 y_val_pred = y_val_pred.astype('int') x = y_val - y_val_pred error = (x.dot(x) / len(x)) ** 0.5 print('Error (Root mean squared error):', error) def predToOutput(y): # Function to convert predicted output in desired format y = y + 0.5 y = y.astype('int') y = pd.to_timedelta(y, unit='D') + test_data['due_in_date'] y = y.dt.strftime("%d-%m-%Y 00:00") return y preprocessTestData(test_data) # Preprocess and feed data to predict y_pred = model.predict(test_data.drop(columns=['due_in_date'])) y_pred = predToOutput(y_pred) y_pred print('Output:') print(y_pred) ###Output _____no_output_____ ###Markdown Author: Chaudhary Hamdan- Error (RMSE) around 10, very less ###Code ###Output _____no_output_____
tensor2tensor/visualization/TransformerVisualization.ipynb
###Markdown Create Your Own Visualizations!Instructions:1. Install tensor2tensor and train up a Transformer model following the instruction in the repository https://github.com/tensorflow/tensor2tensor.2. Update cell 3 to point to your checkpoint, it is currently set up to read from the default checkpoint location that would be created from following the instructions above.3. If you used custom hyper parameters then update cell 4.4. Run the notebook! ###Code import os import tensorflow as tf from tensor2tensor import problems from tensor2tensor.bin import t2t_decoder # To register the hparams set from tensor2tensor.utils import registry from tensor2tensor.utils import trainer_lib from tensor2tensor.visualization import attention from tensor2tensor.visualization import visualization %%javascript require.config({ paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.8/d3.min' } }); ###Output _____no_output_____ ###Markdown HParams ###Code # PUT THE MODEL YOU WANT TO LOAD HERE! CHECKPOINT = os.path.expanduser('~/t2t_train/translate_ende_wmt32k/transformer-transformer_base_single_gpu') # HParams problem_name = 'translate_ende_wmt32k' data_dir = os.path.expanduser('~/t2t_data/') model_name = "transformer" hparams_set = "transformer_base_single_gpu" ###Output _____no_output_____ ###Markdown Visualization ###Code visualizer = visualization.AttentionVisualizer(hparams_set, model_name, data_dir, problem_name, beam_size=1) tf.Variable(0, dtype=tf.int64, trainable=False, name='global_step') sess = tf.train.MonitoredTrainingSession( checkpoint_dir=CHECKPOINT, save_summaries_secs=0, ) input_sentence = "I have two dogs." output_string, inp_text, out_text, att_mats = visualizer.get_vis_data_from_string(sess, input_sentence) print(output_string) ###Output INFO:tensorflow:Saving checkpoints for 1 into /usr/local/google/home/llion/t2t_train/translate_ende_wmt32k/transformer-transformer_base_single_gpu/model.ckpt. ###Markdown Interpreting the Visualizations- The layers drop down allow you to view the different Transformer layers, 0-indexed of course. - Tip: The first layer, last layer and 2nd to last layer are usually the most interpretable.- The attention dropdown allows you to select different pairs of encoder-decoder attentions: - All: Shows all types of attentions together. NOTE: There is no relation between heads of the same color - between the decoder self attention and decoder-encoder attention since they do not share parameters. - Input - Input: Shows only the encoder self-attention. - Input - Output: Shows the decoder’s attention on the encoder. NOTE: Every decoder layer attends to the final layer of encoder so the visualization will show the attention on the final encoder layer regardless of what layer is selected in the drop down. - Output - Output: Shows only the decoder self-attention. NOTE: The visualization might be slightly misleading in the first layer since the text shown is the target of the decoder, the input to the decoder at layer 0 is this text with a GO symbol prepreded.- The colored squares represent the different attention heads. - You can hide or show a given head by clicking on it’s color. - Double clicking a color will hide all other colors, double clicking on a color when it’s the only head showing will show all the heads again.- You can hover over a word to see the individual attention weights for just that position. - Hovering over the words on the left will show what that position attended to. - Hovering over the words on the right will show what positions attended to it. ###Code attention.show(inp_text, out_text, *att_mats) ###Output _____no_output_____ ###Markdown Create Your Own Visualizations!Instructions:1. Install tensor2tensor and train up a Transformer model following the instruction in the repository https://github.com/tensorflow/tensor2tensor.2. Update cell 3 to point to your checkpoint, it is currently set up to read from the default checkpoint location that would be created from following the instructions above.3. If you used custom hyper parameters then update cell 4.4. Run the notebook! ###Code import os import tensorflow as tf from tensor2tensor import problems from tensor2tensor.bin import t2t_decoder # To register the hparams set from tensor2tensor.utils import registry from tensor2tensor.utils import trainer_lib from tensor2tensor.visualization import attention from tensor2tensor.visualization import visualization %%javascript require.config({ paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.8/d3.min' } }); ###Output _____no_output_____ ###Markdown HParams ###Code # PUT THE MODEL YOU WANT TO LOAD HERE! CHECKPOINT = os.path.expanduser('~/t2t_train/translate_ende_wmt32k/transformer-transformer_base_single_gpu') # HParams problem_name = 'translate_ende_wmt32k' data_dir = os.path.expanduser('~/t2t_data/') model_name = "transformer" hparams_set = "transformer_base_single_gpu" ###Output _____no_output_____ ###Markdown Visualization ###Code visualizer = visualization.AttentionVisualizer(hparams_set, model_name, data_dir, problem_name, beam_size=1) tf.Variable(0, dtype=tf.int64, trainable=False, name='global_step') sess = tf.train.MonitoredTrainingSession( checkpoint_dir=CHECKPOINT, save_summaries_secs=0, ) input_sentence = "I have two dogs." output_string, inp_text, out_text, att_mats = visualizer.get_vis_data_from_string(sess, input_sentence) print(output_string) ###Output INFO:tensorflow:Saving checkpoints for 1 into /usr/local/google/home/llion/t2t_train/translate_ende_wmt32k/transformer-transformer_base_single_gpu/model.ckpt. ###Markdown Interpreting the Visualizations- The layers drop down allow you to view the different Transformer layers, 0-indexed of course. - Tip: The first layer, last layer and 2nd to last layer are usually the most interpretable.- The attention dropdown allows you to select different pairs of encoder-decoder attentions: - All: Shows all types of attentions together. NOTE: There is no relation between heads of the same color - between the decoder self attention and decoder-encoder attention since they do not share parameters. - Input - Input: Shows only the encoder self-attention. - Input - Output: Shows the decoder’s attention on the encoder. NOTE: Every decoder layer attends to the final layer of encoder so the visualization will show the attention on the final encoder layer regardless of what layer is selected in the drop down. - Output - Output: Shows only the decoder self-attention. NOTE: The visualization might be slightly misleading in the first layer since the text shown is the target of the decoder, the input to the decoder at layer 0 is this text with a GO symbol prepreded.- The colored squares represent the different attention heads. - You can hide or show a given head by clicking on it’s color. - Double clicking a color will hide all other colors, double clicking on a color when it’s the only head showing will show all the heads again.- You can hover over a word to see the individual attention weights for just that position. - Hovering over the words on the left will show what that position attended to. - Hovering over the words on the right will show what positions attended to it. ###Code attention.show(inp_text, out_text, *att_mats) ###Output _____no_output_____ ###Markdown Create Your Own Visualizations!Instructions:1. Install tensor2tensor and train up a Transformer model following the instruction in the repository https://github.com/tensorflow/tensor2tensor.2. Update cell 3 to point to your checkpoint, it is currently set up to read from the default checkpoint location that would be created from following the instructions above.3. If you used custom hyper parameters then update cell 4.4. Run the notebook! ###Code from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import tensorflow as tf import numpy as np from tensor2tensor.utils import trainer_utils as utils from tensor2tensor.visualization import attention from tensor2tensor.utils import decoding %%javascript require.config({ paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.8/d3.min' } }); ###Output _____no_output_____ ###Markdown Data ###Code import os # PUT THE MODEL YOU WANT TO LOAD HERE! PROBLEM = 'translate_ende_wmt32k' MODEL = 'transformer' HPARAMS = 'transformer_base_single_gpu' DATA_DIR=os.path.expanduser('~/t2t_data') TRAIN_DIR=os.path.expanduser('~/t2t_train/%s/%s-%s' % (PROBLEM, MODEL, HPARAMS)) print(TRAIN_DIR) FLAGS = tf.flags.FLAGS FLAGS.problems = PROBLEM FLAGS.hparams_set = HPARAMS FLAGS.data_dir = DATA_DIR FLAGS.model = MODEL FLAGS.schedule = 'train_and_evaluate' hparams = utils.create_hparams(FLAGS.hparams_set, FLAGS.data_dir) # SET EXTRA HYPER PARAMS HERE! #hparams.null_slot = True utils.add_problem_hparams(hparams, PROBLEM) num_datashards = utils.devices.data_parallelism().n mode = tf.estimator.ModeKeys.EVAL input_fn = utils.input_fn_builder.build_input_fn( mode=mode, hparams=hparams, data_dir=DATA_DIR, num_datashards=num_datashards, worker_replicas=FLAGS.worker_replicas, worker_id=FLAGS.worker_id, batch_size=1) inputs, target = input_fn() features = inputs features['targets'] = target def encode(string): subtokenizer = hparams.problems[0].vocabulary['inputs'] return [subtokenizer.encode(string) + [1] + [0]] def decode(ids): return hparams.problems[0].vocabulary['targets'].decode(np.squeeze(ids)) def to_tokens(ids): ids = np.squeeze(ids) subtokenizer = hparams.problems[0].vocabulary['targets'] tokens = [] for _id in ids: if _id == 0: tokens.append('<PAD>') elif _id == 1: tokens.append('<EOS>') else: tokens.append(subtokenizer._subtoken_id_to_subtoken_string(_id)) return tokens ###Output _____no_output_____ ###Markdown Model ###Code model_fn=utils.model_builder.build_model_fn( MODEL, problem_names=[PROBLEM], train_steps=FLAGS.train_steps, worker_id=FLAGS.worker_id, worker_replicas=FLAGS.worker_replicas, eval_run_autoregressive=FLAGS.eval_run_autoregressive, decode_hparams=decoding.decode_hparams(FLAGS.decode_hparams)) est_spec = model_fn(features, target, mode, hparams) with tf.variable_scope(tf.get_variable_scope(), reuse=True): beam_out = model_fn(features, target, tf.contrib.learn.ModeKeys.INFER, hparams) ###Output INFO:tensorflow:datashard_devices: ['gpu:0'] INFO:tensorflow:caching_devices: None INFO:tensorflow:Beam Decoding with beam size 4 INFO:tensorflow:Doing model_fn_body took 1.393 sec. INFO:tensorflow:This model_fn took 1.504 sec. ###Markdown Session ###Code sv = tf.train.Supervisor( logdir=TRAIN_DIR, global_step=tf.Variable(0, dtype=tf.int64, trainable=False, name='global_step')) sess = sv.PrepareSession(config=tf.ConfigProto(allow_soft_placement=True)) sv.StartQueueRunners( sess, tf.get_default_graph().get_collection(tf.GraphKeys.QUEUE_RUNNERS)) ###Output INFO:tensorflow:Restoring parameters from /usr/local/google/home/llion/t2t_train/translate_ende_wmt32k/transformer-transformer_base_single_gpu/model.ckpt-1 INFO:tensorflow:Starting standard services. INFO:tensorflow:Starting queue runners. INFO:tensorflow:Saving checkpoint to path /usr/local/google/home/llion/t2t_train/translate_ende_wmt32k/transformer-transformer_base_single_gpu/model.ckpt ###Markdown Visualization ###Code # Get the attention tensors from the graph. # This need to be done using the training graph since the inference uses a tf.while_loop # and you cant fetch tensors from inside a while_loop. enc_atts = [] dec_atts = [] encdec_atts = [] for i in range(hparams.num_hidden_layers): enc_att = tf.get_default_graph().get_operation_by_name( "body/model/parallel_0/body/encoder/layer_%i/self_attention/multihead_attention/dot_product_attention/attention_weights" % i).values()[0] dec_att = tf.get_default_graph().get_operation_by_name( "body/model/parallel_0/body/decoder/layer_%i/self_attention/multihead_attention/dot_product_attention/attention_weights" % i).values()[0] encdec_att = tf.get_default_graph().get_operation_by_name( "body/model/parallel_0/body/decoder/layer_%i/encdec_attention/multihead_attention/dot_product_attention/attention_weights" % i).values()[0] enc_atts.append(enc_att) dec_atts.append(dec_att) encdec_atts.append(encdec_att) ###Output _____no_output_____ ###Markdown Test translation from the dataset ###Code inp, out, logits = sess.run([inputs['inputs'], target, est_spec.predictions['predictions']]) print("Input: ", decode(inp[0])) print("Gold: ", decode(out[0])) logits = np.squeeze(logits[0]) tokens = np.argmax(logits, axis=1) print("Gold out: ", decode(tokens)) ###Output INFO:tensorflow:global_step/sec: 0 Input: For example, during the 2008 general election in Florida, 33% of early voters were African-Americans, who accounted however for only 13% of voters in the State. Gold: Beispielsweise waren bei den allgemeinen Wahlen 2008 in Florida 33% der Wähler, die im Voraus gewählt haben, Afro-Amerikaner, obwohl sie nur 13% der Wähler des Bundesstaates ausmachen. Gold out: So waren 33 den allgemeinen Wahlen im in der a 33 % der Frühjungdie nur Land die wurden, die ro- Amerikaner, die sie nur 13 % der Wähler im Staates staats betra. INFO:tensorflow:Recording summary at step 250000. ###Markdown Visualize Custom Sentence ###Code eng = "I have three dogs." inp_ids = encode(eng) beam_decode = sess.run(beam_out.predictions['outputs'], { inputs['inputs']: np.expand_dims(np.expand_dims(inp_ids, axis=2), axis=3), }) trans = decode(beam_decode[0]) print(trans) output_ids = beam_decode # Get attentions np_enc_atts, np_dec_atts, np_encdec_atts = sess.run([enc_atts, dec_atts, encdec_atts], { inputs['inputs']: np.expand_dims(np.expand_dims(inp_ids, axis=2), axis=3), target: np.expand_dims(np.expand_dims(output_ids, axis=2), axis=3), }) %%javascript IPython.OutputArea.prototype._should_scroll = function(lines) { return false; } ###Output _____no_output_____ ###Markdown Interpreting the Visualizations- The layers drop down allow you to view the different Transformer layers, 0-indexed of course. - Tip: The first layer, last layer and 2nd to last layer are usually the most interpretable.- The attention dropdown allows you to select different pairs of encoder-decoder attentions: - All: Shows all types of attentions together. NOTE: There is no relation between heads of the same color - between the decoder self attention and decoder-encoder attention since they do not share parameters. - Input - Input: Shows only the encoder self-attention. - Input - Output: Shows the decoder’s attention on the encoder. NOTE: Every decoder layer attends to the final layer of encoder so the visualization will show the attention on the final encoder layer regardless of what layer is selected in the drop down. - Output - Output: Shows only the decoder self-attention. NOTE: The visualization might be slightly misleading in the first layer since the text shown is the target of the decoder, the input to the decoder at layer 0 is this text with a GO symbol prepreded.- The colored squares represent the different attention heads. - You can hide or show a given head by clicking on it’s color. - Double clicking a color will hide all other colors, double clicking on a color when it’s the only head showing will show all the heads again.- You can hover over a word to see the individual attention weights for just that position. - Hovering over the words on the left will show what that position attended to. - Hovering over the words on the right will show what positions attended to it. ###Code inp_text = to_tokens(inp_ids) out_text = to_tokens(output_ids) attention.show(inp_text, out_text, np_enc_atts, np_dec_atts, np_encdec_atts) ###Output _____no_output_____ ###Markdown Create Your Own Visualizations!Instructions:1. Install tensor2tensor and train up a Transformer model following the instruction in the repository https://github.com/tensorflow/tensor2tensor.2. Update cell 3 to point to your checkpoint, it is currently set up to read from the default checkpoint location that would be created from following the instructions above.3. If you used custom hyper parameters then update cell 4.4. Run the notebook! ###Code from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import tensorflow as tf import numpy as np from tensor2tensor.utils import t2t_model from tensor2tensor.utils import decoding from tensor2tensor.utils import devices from tensor2tensor.utils import trainer_lib from tensor2tensor.visualization import attention %%javascript require.config({ paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.8/d3.min' } }); ###Output _____no_output_____ ###Markdown Data ###Code import os # PUT THE MODEL YOU WANT TO LOAD HERE! PROBLEM = 'translate_ende_wmt32k' MODEL = 'transformer' HPARAMS = 'transformer_base_single_gpu' DATA_DIR=os.path.expanduser('~/t2t_data') TRAIN_DIR=os.path.expanduser('~/t2t_train/%s/%s-%s' % (PROBLEM, MODEL, HPARAMS)) print(TRAIN_DIR) FLAGS = tf.flags.FLAGS FLAGS.problems = PROBLEM FLAGS.hparams_set = HPARAMS FLAGS.data_dir = DATA_DIR FLAGS.model = MODEL FLAGS.schedule = 'train_and_evaluate' hparams = trainer_lib.create_hparams(FLAGS.hparams_set, data_dir=FLAGS.data_dir, problem_name=PROBLEM) hparams.use_fixed_batch_size = True hparams.batch_size = 1 # SET EXTRA HYPER PARAMS HERE! #hparams.null_slot = True mode = tf.estimator.ModeKeys.EVAL problem = hparams.problem_instances[0] inputs, target = problem.input_fn( mode=mode, hparams=hparams, data_dir=DATA_DIR) features = inputs features['targets'] = target def encode(string): subtokenizer = hparams.problems[0].vocabulary['inputs'] return [subtokenizer.encode(string) + [1] + [0]] def decode(ids): return hparams.problems[0].vocabulary['targets'].decode(np.squeeze(ids)) def to_tokens(ids): ids = np.squeeze(ids) subtokenizer = hparams.problems[0].vocabulary['targets'] tokens = [] for _id in ids: if _id == 0: tokens.append('<PAD>') elif _id == 1: tokens.append('<EOS>') else: tokens.append(subtokenizer._subtoken_id_to_subtoken_string(_id)) return tokens ###Output _____no_output_____ ###Markdown Model ###Code decode_hparams = decoding.decode_hparams(FLAGS.decode_hparams) model_fn = t2t_model.T2TModel.make_estimator_model_fn( MODEL, hparams, decode_hparams=decode_hparams) est_spec = model_fn(features, target, mode) with tf.variable_scope(tf.get_variable_scope(), reuse=True): beam_out = model_fn(features, target, tf.contrib.learn.ModeKeys.INFER) ###Output INFO:tensorflow:datashard_devices: ['gpu:0'] INFO:tensorflow:caching_devices: None INFO:tensorflow:Beam Decoding with beam size 4 INFO:tensorflow:Doing model_fn_body took 1.393 sec. INFO:tensorflow:This model_fn took 1.504 sec. ###Markdown Session ###Code sv = tf.train.Supervisor( logdir=TRAIN_DIR, global_step=tf.Variable(0, dtype=tf.int64, trainable=False, name='global_step')) sess = sv.PrepareSession(config=tf.ConfigProto(allow_soft_placement=True)) sv.StartQueueRunners( sess, tf.get_default_graph().get_collection(tf.GraphKeys.QUEUE_RUNNERS)) ###Output INFO:tensorflow:Restoring parameters from /usr/local/google/home/llion/t2t_train/translate_ende_wmt32k/transformer-transformer_base_single_gpu/model.ckpt-1 INFO:tensorflow:Starting standard services. INFO:tensorflow:Starting queue runners. INFO:tensorflow:Saving checkpoint to path /usr/local/google/home/llion/t2t_train/translate_ende_wmt32k/transformer-transformer_base_single_gpu/model.ckpt ###Markdown Visualization ###Code # Get the attention tensors from the graph. # This need to be done using the training graph since the inference uses a tf.while_loop # and you cant fetch tensors from inside a while_loop. enc_atts = [] dec_atts = [] encdec_atts = [] for i in range(hparams.num_hidden_layers): enc_att = tf.get_default_graph().get_operation_by_name( "body/model/parallel_0/body/encoder/layer_%i/self_attention/multihead_attention/dot_product_attention/attention_weights" % i).values()[0] dec_att = tf.get_default_graph().get_operation_by_name( "body/model/parallel_0/body/decoder/layer_%i/self_attention/multihead_attention/dot_product_attention/attention_weights" % i).values()[0] encdec_att = tf.get_default_graph().get_operation_by_name( "body/model/parallel_0/body/decoder/layer_%i/encdec_attention/multihead_attention/dot_product_attention/attention_weights" % i).values()[0] enc_atts.append(enc_att) dec_atts.append(dec_att) encdec_atts.append(encdec_att) ###Output _____no_output_____ ###Markdown Test translation from the dataset ###Code inp, out, logits = sess.run([inputs['inputs'], target, est_spec.predictions['predictions']]) print("Input: ", decode(inp[0])) print("Gold: ", decode(out[0])) logits = np.squeeze(logits[0]) tokens = np.argmax(logits, axis=1) print("Gold out: ", decode(tokens)) ###Output INFO:tensorflow:global_step/sec: 0 Input: For example, during the 2008 general election in Florida, 33% of early voters were African-Americans, who accounted however for only 13% of voters in the State. Gold: Beispielsweise waren bei den allgemeinen Wahlen 2008 in Florida 33% der Wähler, die im Voraus gewählt haben, Afro-Amerikaner, obwohl sie nur 13% der Wähler des Bundesstaates ausmachen. Gold out: So waren 33 den allgemeinen Wahlen im in der a 33 % der Frühjungdie nur Land die wurden, die ro- Amerikaner, die sie nur 13 % der Wähler im Staates staats betra. INFO:tensorflow:Recording summary at step 250000. ###Markdown Visualize Custom Sentence ###Code eng = "I have three dogs." inp_ids = encode(eng) beam_decode = sess.run(beam_out.predictions['outputs'], { inputs['inputs']: np.expand_dims(np.expand_dims(inp_ids, axis=2), axis=3), }) trans = decode(beam_decode[0]) print(trans) output_ids = beam_decode # Get attentions np_enc_atts, np_dec_atts, np_encdec_atts = sess.run([enc_atts, dec_atts, encdec_atts], { inputs['inputs']: np.expand_dims(np.expand_dims(inp_ids, axis=2), axis=3), target: np.expand_dims(np.expand_dims(output_ids, axis=2), axis=3), }) %%javascript IPython.OutputArea.prototype._should_scroll = function(lines) { return false; } ###Output _____no_output_____ ###Markdown Interpreting the Visualizations- The layers drop down allow you to view the different Transformer layers, 0-indexed of course. - Tip: The first layer, last layer and 2nd to last layer are usually the most interpretable.- The attention dropdown allows you to select different pairs of encoder-decoder attentions: - All: Shows all types of attentions together. NOTE: There is no relation between heads of the same color - between the decoder self attention and decoder-encoder attention since they do not share parameters. - Input - Input: Shows only the encoder self-attention. - Input - Output: Shows the decoder’s attention on the encoder. NOTE: Every decoder layer attends to the final layer of encoder so the visualization will show the attention on the final encoder layer regardless of what layer is selected in the drop down. - Output - Output: Shows only the decoder self-attention. NOTE: The visualization might be slightly misleading in the first layer since the text shown is the target of the decoder, the input to the decoder at layer 0 is this text with a GO symbol prepreded.- The colored squares represent the different attention heads. - You can hide or show a given head by clicking on it’s color. - Double clicking a color will hide all other colors, double clicking on a color when it’s the only head showing will show all the heads again.- You can hover over a word to see the individual attention weights for just that position. - Hovering over the words on the left will show what that position attended to. - Hovering over the words on the right will show what positions attended to it. ###Code inp_text = to_tokens(inp_ids) out_text = to_tokens(output_ids) attention.show(inp_text, out_text, np_enc_atts, np_dec_atts, np_encdec_atts) ###Output _____no_output_____ ###Markdown Create Your Own Visualizations!Instructions:1. Install tensor2tensor and train up a Transformer model following the instruction in the repository https://github.com/tensorflow/tensor2tensor.2. Update cell 3 to point to your checkpoint, it is currently set up to read from the default checkpoint location that would be created from following the instructions above.3. If you used custom hyper parameters then update cell 4.4. Run the notebook! ###Code from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import tensorflow as tf import numpy as np from tensor2tensor.tpu import tpu_trainer_lib from tensor2tensor.utils import t2t_model from tensor2tensor.utils import decoding from tensor2tensor.utils import devices from tensor2tensor.visualization import attention %%javascript require.config({ paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.8/d3.min' } }); ###Output _____no_output_____ ###Markdown Data ###Code import os # PUT THE MODEL YOU WANT TO LOAD HERE! PROBLEM = 'translate_ende_wmt32k' MODEL = 'transformer' HPARAMS = 'transformer_base_single_gpu' DATA_DIR=os.path.expanduser('~/t2t_data') TRAIN_DIR=os.path.expanduser('~/t2t_train/%s/%s-%s' % (PROBLEM, MODEL, HPARAMS)) print(TRAIN_DIR) FLAGS = tf.flags.FLAGS FLAGS.problems = PROBLEM FLAGS.hparams_set = HPARAMS FLAGS.data_dir = DATA_DIR FLAGS.model = MODEL FLAGS.schedule = 'train_and_evaluate' hparams = tpu_trainer_lib.create_hparams(FLAGS.hparams_set, data_dir=FLAGS.data_dir, problem_name=PROBLEM) hparams.use_fixed_batch_size = True hparams.batch_size = 1 # SET EXTRA HYPER PARAMS HERE! #hparams.null_slot = True mode = tf.estimator.ModeKeys.EVAL problem = hparams.problem_instances[0] inputs, target = problem.input_fn( mode=mode, hparams=hparams, data_dir=DATA_DIR) features = inputs features['targets'] = target def encode(string): subtokenizer = hparams.problems[0].vocabulary['inputs'] return [subtokenizer.encode(string) + [1] + [0]] def decode(ids): return hparams.problems[0].vocabulary['targets'].decode(np.squeeze(ids)) def to_tokens(ids): ids = np.squeeze(ids) subtokenizer = hparams.problems[0].vocabulary['targets'] tokens = [] for _id in ids: if _id == 0: tokens.append('<PAD>') elif _id == 1: tokens.append('<EOS>') else: tokens.append(subtokenizer._subtoken_id_to_subtoken_string(_id)) return tokens ###Output _____no_output_____ ###Markdown Model ###Code decode_hparams = decoding.decode_hparams(FLAGS.decode_hparams) model_fn = t2t_model.T2TModel.make_estimator_model_fn( MODEL, hparams, decode_hparams=decode_hparams) est_spec = model_fn(features, target, mode) with tf.variable_scope(tf.get_variable_scope(), reuse=True): beam_out = model_fn(features, target, tf.contrib.learn.ModeKeys.INFER) ###Output INFO:tensorflow:datashard_devices: ['gpu:0'] INFO:tensorflow:caching_devices: None INFO:tensorflow:Beam Decoding with beam size 4 INFO:tensorflow:Doing model_fn_body took 1.393 sec. INFO:tensorflow:This model_fn took 1.504 sec. ###Markdown Session ###Code sv = tf.train.Supervisor( logdir=TRAIN_DIR, global_step=tf.Variable(0, dtype=tf.int64, trainable=False, name='global_step')) sess = sv.PrepareSession(config=tf.ConfigProto(allow_soft_placement=True)) sv.StartQueueRunners( sess, tf.get_default_graph().get_collection(tf.GraphKeys.QUEUE_RUNNERS)) ###Output INFO:tensorflow:Restoring parameters from /usr/local/google/home/llion/t2t_train/translate_ende_wmt32k/transformer-transformer_base_single_gpu/model.ckpt-1 INFO:tensorflow:Starting standard services. INFO:tensorflow:Starting queue runners. INFO:tensorflow:Saving checkpoint to path /usr/local/google/home/llion/t2t_train/translate_ende_wmt32k/transformer-transformer_base_single_gpu/model.ckpt ###Markdown Visualization ###Code # Get the attention tensors from the graph. # This need to be done using the training graph since the inference uses a tf.while_loop # and you cant fetch tensors from inside a while_loop. enc_atts = [] dec_atts = [] encdec_atts = [] for i in range(hparams.num_hidden_layers): enc_att = tf.get_default_graph().get_operation_by_name( "body/model/parallel_0/body/encoder/layer_%i/self_attention/multihead_attention/dot_product_attention/attention_weights" % i).values()[0] dec_att = tf.get_default_graph().get_operation_by_name( "body/model/parallel_0/body/decoder/layer_%i/self_attention/multihead_attention/dot_product_attention/attention_weights" % i).values()[0] encdec_att = tf.get_default_graph().get_operation_by_name( "body/model/parallel_0/body/decoder/layer_%i/encdec_attention/multihead_attention/dot_product_attention/attention_weights" % i).values()[0] enc_atts.append(enc_att) dec_atts.append(dec_att) encdec_atts.append(encdec_att) ###Output _____no_output_____ ###Markdown Test translation from the dataset ###Code inp, out, logits = sess.run([inputs['inputs'], target, est_spec.predictions['predictions']]) print("Input: ", decode(inp[0])) print("Gold: ", decode(out[0])) logits = np.squeeze(logits[0]) tokens = np.argmax(logits, axis=1) print("Gold out: ", decode(tokens)) ###Output INFO:tensorflow:global_step/sec: 0 Input: For example, during the 2008 general election in Florida, 33% of early voters were African-Americans, who accounted however for only 13% of voters in the State. Gold: Beispielsweise waren bei den allgemeinen Wahlen 2008 in Florida 33% der Wähler, die im Voraus gewählt haben, Afro-Amerikaner, obwohl sie nur 13% der Wähler des Bundesstaates ausmachen. Gold out: So waren 33 den allgemeinen Wahlen im in der a 33 % der Frühjungdie nur Land die wurden, die ro- Amerikaner, die sie nur 13 % der Wähler im Staates staats betra. INFO:tensorflow:Recording summary at step 250000. ###Markdown Visualize Custom Sentence ###Code eng = "I have three dogs." inp_ids = encode(eng) beam_decode = sess.run(beam_out.predictions['outputs'], { inputs['inputs']: np.expand_dims(np.expand_dims(inp_ids, axis=2), axis=3), }) trans = decode(beam_decode[0]) print(trans) output_ids = beam_decode # Get attentions np_enc_atts, np_dec_atts, np_encdec_atts = sess.run([enc_atts, dec_atts, encdec_atts], { inputs['inputs']: np.expand_dims(np.expand_dims(inp_ids, axis=2), axis=3), target: np.expand_dims(np.expand_dims(output_ids, axis=2), axis=3), }) %%javascript IPython.OutputArea.prototype._should_scroll = function(lines) { return false; } ###Output _____no_output_____ ###Markdown Interpreting the Visualizations- The layers drop down allow you to view the different Transformer layers, 0-indexed of course. - Tip: The first layer, last layer and 2nd to last layer are usually the most interpretable.- The attention dropdown allows you to select different pairs of encoder-decoder attentions: - All: Shows all types of attentions together. NOTE: There is no relation between heads of the same color - between the decoder self attention and decoder-encoder attention since they do not share parameters. - Input - Input: Shows only the encoder self-attention. - Input - Output: Shows the decoder’s attention on the encoder. NOTE: Every decoder layer attends to the final layer of encoder so the visualization will show the attention on the final encoder layer regardless of what layer is selected in the drop down. - Output - Output: Shows only the decoder self-attention. NOTE: The visualization might be slightly misleading in the first layer since the text shown is the target of the decoder, the input to the decoder at layer 0 is this text with a GO symbol prepreded.- The colored squares represent the different attention heads. - You can hide or show a given head by clicking on it’s color. - Double clicking a color will hide all other colors, double clicking on a color when it’s the only head showing will show all the heads again.- You can hover over a word to see the individual attention weights for just that position. - Hovering over the words on the left will show what that position attended to. - Hovering over the words on the right will show what positions attended to it. ###Code inp_text = to_tokens(inp_ids) out_text = to_tokens(output_ids) attention.show(inp_text, out_text, np_enc_atts, np_dec_atts, np_encdec_atts) ###Output _____no_output_____
docs/larq/tutorials/binarynet_cifar10.ipynb
###Markdown BinaryNet on CIFAR10Run on Colab View on GitHubIn this example we demonstrate how to use Larq to build and train BinaryNet on the CIFAR10 dataset to achieve a validation accuracy approximately 83% on laptop hardware.On a Nvidia GTX 1050 Ti Max-Q it takes approximately 200 minutes to train. For simplicity, compared to the original papers [BinaryConnect: Training Deep Neural Networks with binary weights during propagations](https://arxiv.org/abs/1511.00363), and [Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1](https://arxiv.org/abs/1602.02830), we do not impliment learning rate scaling, or image whitening. ###Code pip install larq import tensorflow as tf import larq as lq import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Import CIFAR10 DatasetWe download and normalize the CIFAR10 dataset. ###Code num_classes = 10 (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.cifar10.load_data() train_images = train_images.reshape((50000, 32, 32, 3)).astype("float32") test_images = test_images.reshape((10000, 32, 32, 3)).astype("float32") # Normalize pixel values to be between -1 and 1 train_images, test_images = train_images / 127.5 - 1, test_images / 127.5 - 1 train_labels = tf.keras.utils.to_categorical(train_labels, num_classes) test_labels = tf.keras.utils.to_categorical(test_labels, num_classes) ###Output Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz 170500096/170498071 [==============================] - 38s 0us/step ###Markdown Build BinaryNetHere we build the BinaryNet model layer by layer using the [Keras Sequential API](https://www.tensorflow.org/guide/keras). ###Code # All quantized layers except the first will use the same options kwargs = dict(input_quantizer="ste_sign", kernel_quantizer="ste_sign", kernel_constraint="weight_clip", use_bias=False) model = tf.keras.models.Sequential([ # In the first layer we only quantize the weights and not the input lq.layers.QuantConv2D(128, 3, kernel_quantizer="ste_sign", kernel_constraint="weight_clip", use_bias=False, input_shape=(32, 32, 3)), tf.keras.layers.BatchNormalization(momentum=0.999, scale=False), lq.layers.QuantConv2D(128, 3, padding="same", **kwargs), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.BatchNormalization(momentum=0.999, scale=False), lq.layers.QuantConv2D(256, 3, padding="same", **kwargs), tf.keras.layers.BatchNormalization(momentum=0.999, scale=False), lq.layers.QuantConv2D(256, 3, padding="same", **kwargs), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.BatchNormalization(momentum=0.999, scale=False), lq.layers.QuantConv2D(512, 3, padding="same", **kwargs), tf.keras.layers.BatchNormalization(momentum=0.999, scale=False), lq.layers.QuantConv2D(512, 3, padding="same", **kwargs), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.BatchNormalization(momentum=0.999, scale=False), tf.keras.layers.Flatten(), lq.layers.QuantDense(1024, **kwargs), tf.keras.layers.BatchNormalization(momentum=0.999, scale=False), lq.layers.QuantDense(1024, **kwargs), tf.keras.layers.BatchNormalization(momentum=0.999, scale=False), lq.layers.QuantDense(10, **kwargs), tf.keras.layers.BatchNormalization(momentum=0.999, scale=False), tf.keras.layers.Activation("softmax") ]) ###Output _____no_output_____ ###Markdown One can output a summary of the model: ###Code lq.models.summary(model) ###Output +sequential stats---------------------------------------------------------------------------------------------+ | Layer Input prec. Outputs # 1-bit # 32-bit Memory 1-bit MACs 32-bit MACs | | (bit) x 1 x 1 (kB) | +-------------------------------------------------------------------------------------------------------------+ | quant_conv2d - (-1, 30, 30, 128) 3456 0 0.42 0 3110400 | | batch_normalization - (-1, 30, 30, 128) 0 256 1.00 0 0 | | quant_conv2d_1 1 (-1, 30, 30, 128) 147456 0 18.00 132710400 0 | | max_pooling2d - (-1, 15, 15, 128) 0 0 0 0 0 | | batch_normalization_1 - (-1, 15, 15, 128) 0 256 1.00 0 0 | | quant_conv2d_2 1 (-1, 15, 15, 256) 294912 0 36.00 66355200 0 | | batch_normalization_2 - (-1, 15, 15, 256) 0 512 2.00 0 0 | | quant_conv2d_3 1 (-1, 15, 15, 256) 589824 0 72.00 132710400 0 | | max_pooling2d_1 - (-1, 7, 7, 256) 0 0 0 0 0 | | batch_normalization_3 - (-1, 7, 7, 256) 0 512 2.00 0 0 | | quant_conv2d_4 1 (-1, 7, 7, 512) 1179648 0 144.00 57802752 0 | | batch_normalization_4 - (-1, 7, 7, 512) 0 1024 4.00 0 0 | | quant_conv2d_5 1 (-1, 7, 7, 512) 2359296 0 288.00 115605504 0 | | max_pooling2d_2 - (-1, 3, 3, 512) 0 0 0 0 0 | | batch_normalization_5 - (-1, 3, 3, 512) 0 1024 4.00 0 0 | | flatten - (-1, 4608) 0 0 0 0 0 | | quant_dense 1 (-1, 1024) 4718592 0 576.00 4718592 0 | | batch_normalization_6 - (-1, 1024) 0 2048 8.00 0 0 | | quant_dense_1 1 (-1, 1024) 1048576 0 128.00 1048576 0 | | batch_normalization_7 - (-1, 1024) 0 2048 8.00 0 0 | | quant_dense_2 1 (-1, 10) 10240 0 1.25 10240 0 | | batch_normalization_8 - (-1, 10) 0 20 0.08 0 0 | | activation - (-1, 10) 0 0 0 ? ? | +-------------------------------------------------------------------------------------------------------------+ | Total 10352000 7700 1293.75 510961664 3110400 | +-------------------------------------------------------------------------------------------------------------+ +sequential summary---------------------------+ | Total params 10.4 M | | Trainable params 10.4 M | | Non-trainable params 7.7 k | | Model size 1.26 MiB | | Model size (8-bit FP weights) 1.24 MiB | | Float-32 Equivalent 39.52 MiB | | Compression Ratio of Memory 0.03 | | Number of MACs 514 M | | Ratio of MACs that are binarized 0.9939 | +---------------------------------------------+ ###Markdown Model TrainingCompile the model and train the model ###Code model.compile( tf.keras.optimizers.Adam(lr=0.01, decay=0.0001), loss="categorical_crossentropy", metrics=["accuracy"], ) trained_model = model.fit( train_images, train_labels, batch_size=50, epochs=100, validation_data=(test_images, test_labels), shuffle=True ) ###Output Train on 50000 samples, validate on 10000 samples Epoch 1/100 50000/50000 [==============================] - 131s 3ms/step - loss: 1.5733 - acc: 0.4533 - val_loss: 1.6368 - val_acc: 0.4244 Epoch 2/100 50000/50000 [==============================] - 125s 3ms/step - loss: 1.1485 - acc: 0.6387 - val_loss: 1.8497 - val_acc: 0.3764 Epoch 3/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.9641 - acc: 0.7207 - val_loss: 1.5696 - val_acc: 0.4794 Epoch 4/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.8452 - acc: 0.7728 - val_loss: 1.5765 - val_acc: 0.4669 Epoch 5/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.7553 - acc: 0.8114 - val_loss: 1.0653 - val_acc: 0.6928 Epoch 6/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.6841 - acc: 0.8447 - val_loss: 1.0944 - val_acc: 0.6880 Epoch 7/100 50000/50000 [==============================] - 125s 3ms/step - loss: 0.6356 - acc: 0.8685 - val_loss: 0.9909 - val_acc: 0.7317 Epoch 8/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.5907 - acc: 0.8910 - val_loss: 0.9453 - val_acc: 0.7446 Epoch 9/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.5610 - acc: 0.9043 - val_loss: 0.9441 - val_acc: 0.7460 Epoch 10/100 50000/50000 [==============================] - 125s 3ms/step - loss: 0.5295 - acc: 0.9201 - val_loss: 0.8892 - val_acc: 0.7679 Epoch 11/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.5100 - acc: 0.9309 - val_loss: 0.8808 - val_acc: 0.7818 Epoch 12/100 50000/50000 [==============================] - 126s 3ms/step - loss: 0.4926 - acc: 0.9397 - val_loss: 0.8404 - val_acc: 0.7894 Epoch 13/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.4807 - acc: 0.9470 - val_loss: 0.8600 - val_acc: 0.7928 Epoch 14/100 50000/50000 [==============================] - 126s 3ms/step - loss: 0.4661 - acc: 0.9529 - val_loss: 0.9046 - val_acc: 0.7732 Epoch 15/100 50000/50000 [==============================] - 125s 3ms/step - loss: 0.4588 - acc: 0.9571 - val_loss: 0.8505 - val_acc: 0.7965 Epoch 16/100 50000/50000 [==============================] - 126s 3ms/step - loss: 0.4558 - acc: 0.9593 - val_loss: 0.8748 - val_acc: 0.7859 Epoch 17/100 50000/50000 [==============================] - 126s 3ms/step - loss: 0.4434 - acc: 0.9649 - val_loss: 0.9109 - val_acc: 0.7656 Epoch 18/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.4449 - acc: 0.9643 - val_loss: 0.8532 - val_acc: 0.7971 Epoch 19/100 50000/50000 [==============================] - 126s 3ms/step - loss: 0.4349 - acc: 0.9701 - val_loss: 0.8677 - val_acc: 0.7951 Epoch 20/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.4351 - acc: 0.9698 - val_loss: 0.9145 - val_acc: 0.7740 Epoch 21/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.4268 - acc: 0.9740 - val_loss: 0.8308 - val_acc: 0.8065 Epoch 22/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.4243 - acc: 0.9741 - val_loss: 0.8229 - val_acc: 0.8075 Epoch 23/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.4201 - acc: 0.9764 - val_loss: 0.8411 - val_acc: 0.8062 Epoch 24/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.4190 - acc: 0.9769 - val_loss: 0.8649 - val_acc: 0.7951 Epoch 25/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.4139 - acc: 0.9787 - val_loss: 0.8257 - val_acc: 0.8071 Epoch 26/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.4154 - acc: 0.9779 - val_loss: 0.8041 - val_acc: 0.8205 Epoch 27/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.4128 - acc: 0.9798 - val_loss: 0.8296 - val_acc: 0.8115 Epoch 28/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.4121 - acc: 0.9798 - val_loss: 0.8241 - val_acc: 0.8074 Epoch 29/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.4093 - acc: 0.9807 - val_loss: 0.8575 - val_acc: 0.7913 Epoch 30/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.4048 - acc: 0.9826 - val_loss: 0.8118 - val_acc: 0.8166 Epoch 31/100 50000/50000 [==============================] - 126s 3ms/step - loss: 0.4041 - acc: 0.9837 - val_loss: 0.8375 - val_acc: 0.8082 Epoch 32/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.4045 - acc: 0.9831 - val_loss: 0.8604 - val_acc: 0.8091 Epoch 33/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.4047 - acc: 0.9823 - val_loss: 0.8797 - val_acc: 0.7931 Epoch 34/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.4023 - acc: 0.9842 - val_loss: 0.8694 - val_acc: 0.8020 Epoch 35/100 50000/50000 [==============================] - 125s 3ms/step - loss: 0.3995 - acc: 0.9858 - val_loss: 0.8161 - val_acc: 0.8186 Epoch 36/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3976 - acc: 0.9859 - val_loss: 0.8495 - val_acc: 0.7988 Epoch 37/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.4021 - acc: 0.9847 - val_loss: 0.8542 - val_acc: 0.8062 Epoch 38/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.3939 - acc: 0.9869 - val_loss: 0.8347 - val_acc: 0.8122 Epoch 39/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.3955 - acc: 0.9856 - val_loss: 0.8521 - val_acc: 0.7993 Epoch 40/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.3907 - acc: 0.9885 - val_loss: 0.9023 - val_acc: 0.7992 Epoch 41/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3911 - acc: 0.9873 - val_loss: 0.8597 - val_acc: 0.8010 Epoch 42/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.3917 - acc: 0.9885 - val_loss: 0.8968 - val_acc: 0.7936 Epoch 43/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.3931 - acc: 0.9874 - val_loss: 0.8318 - val_acc: 0.8169 Epoch 44/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3897 - acc: 0.9893 - val_loss: 0.8811 - val_acc: 0.7988 Epoch 45/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3876 - acc: 0.9888 - val_loss: 0.8453 - val_acc: 0.8094 Epoch 46/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3876 - acc: 0.9889 - val_loss: 0.8195 - val_acc: 0.8179 Epoch 47/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3891 - acc: 0.9890 - val_loss: 0.8373 - val_acc: 0.8137 Epoch 48/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3902 - acc: 0.9888 - val_loss: 0.8457 - val_acc: 0.8120 Epoch 49/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3864 - acc: 0.9903 - val_loss: 0.9012 - val_acc: 0.7907 Epoch 50/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3859 - acc: 0.9903 - val_loss: 0.8291 - val_acc: 0.8053 Epoch 51/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3830 - acc: 0.9915 - val_loss: 0.8494 - val_acc: 0.8139 Epoch 52/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3828 - acc: 0.9907 - val_loss: 0.8447 - val_acc: 0.8135 Epoch 53/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3823 - acc: 0.9910 - val_loss: 0.8539 - val_acc: 0.8120 Epoch 54/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3832 - acc: 0.9905 - val_loss: 0.8592 - val_acc: 0.8098 Epoch 55/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3823 - acc: 0.9908 - val_loss: 0.8585 - val_acc: 0.8087 Epoch 56/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3817 - acc: 0.9911 - val_loss: 0.8840 - val_acc: 0.7889 Epoch 57/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3827 - acc: 0.9914 - val_loss: 0.8205 - val_acc: 0.8250 Epoch 58/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3818 - acc: 0.9912 - val_loss: 0.8571 - val_acc: 0.8051 Epoch 59/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3811 - acc: 0.9919 - val_loss: 0.8155 - val_acc: 0.8254 Epoch 60/100 50000/50000 [==============================] - 125s 3ms/step - loss: 0.3803 - acc: 0.9919 - val_loss: 0.8617 - val_acc: 0.8040 Epoch 61/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.3793 - acc: 0.9926 - val_loss: 0.8212 - val_acc: 0.8192 Epoch 62/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.3825 - acc: 0.9912 - val_loss: 0.8139 - val_acc: 0.8277 Epoch 63/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.3784 - acc: 0.9923 - val_loss: 0.8304 - val_acc: 0.8121 Epoch 64/100 50000/50000 [==============================] - 125s 2ms/step - loss: 0.3809 - acc: 0.9918 - val_loss: 0.7961 - val_acc: 0.8289 Epoch 65/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3750 - acc: 0.9930 - val_loss: 0.8676 - val_acc: 0.8110 Epoch 66/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3789 - acc: 0.9928 - val_loss: 0.8308 - val_acc: 0.8148 Epoch 67/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3783 - acc: 0.9929 - val_loss: 0.8595 - val_acc: 0.8097 Epoch 68/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3758 - acc: 0.9935 - val_loss: 0.8359 - val_acc: 0.8065 Epoch 69/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3784 - acc: 0.9927 - val_loss: 0.8189 - val_acc: 0.8255 Epoch 70/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3786 - acc: 0.9924 - val_loss: 0.8754 - val_acc: 0.8001 Epoch 71/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3749 - acc: 0.9936 - val_loss: 0.8188 - val_acc: 0.8262 Epoch 72/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3758 - acc: 0.9932 - val_loss: 0.8540 - val_acc: 0.8169 Epoch 73/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3740 - acc: 0.9934 - val_loss: 0.8127 - val_acc: 0.8258 Epoch 74/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3749 - acc: 0.9932 - val_loss: 0.8662 - val_acc: 0.8018 Epoch 75/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3721 - acc: 0.9941 - val_loss: 0.8359 - val_acc: 0.8213 Epoch 76/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3746 - acc: 0.9937 - val_loss: 0.8462 - val_acc: 0.8178 Epoch 77/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3741 - acc: 0.9936 - val_loss: 0.8983 - val_acc: 0.7972 Epoch 78/100 50000/50000 [==============================] - 122s 2ms/step - loss: 0.3751 - acc: 0.9933 - val_loss: 0.8525 - val_acc: 0.8173 Epoch 79/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.3762 - acc: 0.9931 - val_loss: 0.8190 - val_acc: 0.8201 Epoch 80/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3737 - acc: 0.9940 - val_loss: 0.8441 - val_acc: 0.8196 Epoch 81/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3729 - acc: 0.9935 - val_loss: 0.8151 - val_acc: 0.8267 Epoch 82/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3735 - acc: 0.9938 - val_loss: 0.8405 - val_acc: 0.8163 Epoch 83/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3723 - acc: 0.9939 - val_loss: 0.8225 - val_acc: 0.8243 Epoch 84/100 50000/50000 [==============================] - 123s 2ms/step - loss: 0.3738 - acc: 0.9938 - val_loss: 0.8413 - val_acc: 0.8115 Epoch 85/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.3714 - acc: 0.9947 - val_loss: 0.9080 - val_acc: 0.7932 Epoch 86/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.3744 - acc: 0.9942 - val_loss: 0.8467 - val_acc: 0.8135 Epoch 87/100 50000/50000 [==============================] - 124s 2ms/step - loss: 0.3705 - acc: 0.9948 - val_loss: 0.8491 - val_acc: 0.8163 Epoch 88/100 50000/50000 [==============================] - 128s 3ms/step - loss: 0.3733 - acc: 0.9944 - val_loss: 0.8005 - val_acc: 0.8214 Epoch 89/100 50000/50000 [==============================] - 134s 3ms/step - loss: 0.3693 - acc: 0.9949 - val_loss: 0.7791 - val_acc: 0.8321 Epoch 90/100 50000/50000 [==============================] - 135s 3ms/step - loss: 0.3724 - acc: 0.9942 - val_loss: 0.8458 - val_acc: 0.8124 Epoch 91/100 50000/50000 [==============================] - 128s 3ms/step - loss: 0.3732 - acc: 0.9947 - val_loss: 0.8315 - val_acc: 0.8164 Epoch 92/100 50000/50000 [==============================] - 127s 3ms/step - loss: 0.3699 - acc: 0.9950 - val_loss: 0.8140 - val_acc: 0.8226 Epoch 93/100 50000/50000 [==============================] - 131s 3ms/step - loss: 0.3694 - acc: 0.9950 - val_loss: 0.8342 - val_acc: 0.8210 Epoch 94/100 50000/50000 [==============================] - 134s 3ms/step - loss: 0.3698 - acc: 0.9946 - val_loss: 0.8938 - val_acc: 0.8019 Epoch 95/100 50000/50000 [==============================] - 133s 3ms/step - loss: 0.3698 - acc: 0.9946 - val_loss: 0.8771 - val_acc: 0.8066 Epoch 96/100 50000/50000 [==============================] - 164s 3ms/step - loss: 0.3712 - acc: 0.9946 - val_loss: 0.8396 - val_acc: 0.8211 Epoch 97/100 50000/50000 [==============================] - 155s 3ms/step - loss: 0.3689 - acc: 0.9949 - val_loss: 0.8728 - val_acc: 0.8112 Epoch 98/100 50000/50000 [==============================] - 133s 3ms/step - loss: 0.3663 - acc: 0.9953 - val_loss: 0.9615 - val_acc: 0.7902 Epoch 99/100 50000/50000 [==============================] - 133s 3ms/step - loss: 0.3714 - acc: 0.9944 - val_loss: 0.8414 - val_acc: 0.8188 Epoch 100/100 50000/50000 [==============================] - 138s 3ms/step - loss: 0.3682 - acc: 0.9956 - val_loss: 0.8055 - val_acc: 0.8266 ###Markdown Model OutputWe can now plot the final validation accuracy and loss: ###Code plt.plot(trained_model.history['acc']) plt.plot(trained_model.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') print(np.max(trained_model.history['acc'])) print(np.max(trained_model.history['val_acc'])) plt.plot(trained_model.history['loss']) plt.plot(trained_model.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') print(np.min(trained_model.history['loss'])) print(np.min(trained_model.history['val_loss'])) ###Output 0.3663262344896793 0.7790719392895699
dashboard_DEMO.ipynb
###Markdown Electricity Capacity Capacity in all regions ###Code df = dh.get('o_capa') df = df.loc[[i for i in df.index.levels[0] if i != 'shed']] alltec = get_table(dh.scenarios,next(iter(dh.scenarios)),'alltec',use_name = True)['alltec'].values plot_by_tec( df.groupby(['alltec']).sum(), alltec, ylabel='Capacity (GW)', figsize = (10, 5)) plt.title('Capacity in all modeled regions'); ###Output _____no_output_____ ###Markdown Capacity in focus region ###Code df = dh.get('o_capa') df = df.loc[[i for i in df.index.levels[0] if i != 'shed']] alltec = get_table(dh.scenarios,next(iter(dh.scenarios)),'alltec',use_name = True)['alltec'].values plot_by_tec( df.groupby(['alltec', 'r']).sum().xs(focus_region, level='r'), alltec, ylabel='Capacity (GW)', figsize = (10, 5)) plt.title('Capacity in {}'.format(focus_region)); ###Output _____no_output_____ ###Markdown Balance Electricity balance in all regions ###Code plot_energy_balance(dh,figsize = (10, 5),show_data=False); ###Output _____no_output_____ ###Markdown Electricity balance in focus region ###Code plot_energy_balance(dh,focus_region,figsize = (10, 5),show_data=False); ###Output _____no_output_____ ###Markdown Electricity Prices Baseload Prices of all regions ###Code dh.get('o_prices').groupby('r').mean().transpose().T.plot.bar(xlabel = '', ylabel = 'Baseload Price (Euro/MWh)', rot = 0,figsize = (10, 5)) plt.legend(loc='center', bbox_to_anchor=(1.1, 0.5)) plt.grid(axis='y') plt.title('Baseload Price'); ###Output _____no_output_____ ###Markdown Price duration curve of focus region ###Code pdc_pivot(dh.get('o_prices'), region=focus_region).plot(xlabel='Hour', ylabel= 'Price (Euro/MWh)',figsize = (10, 5)) plt.grid(axis='y') plt.legend(loc='center', bbox_to_anchor=(1.1, 0.5)) plt.title('Price Duration Curve of {}'.format(focus_region)); ###Output _____no_output_____ ###Markdown Market value ###Code plot_mv(dh,['solar','wion','wiof'],show_data=False); ###Output _____no_output_____ ###Markdown Hydrogen Hydrogen balance of all regions ###Code plot_hydrogen_balance(dh,figsize = (10, 5),show_data=False); ###Output _____no_output_____ ###Markdown Hydrogen balance of focus region ###Code plot_hydrogen_balance(dh,focus_region,figsize = (10, 5),show_data=False); ###Output _____no_output_____ ###Markdown Hydrogen Prices ###Code dh.get('o_h2price_buy').transpose().T.plot.bar(xlabel = '', ylabel = 'H2 Price (Euro/MWht)', rot = 0,figsize = (10, 5)) plt.legend(loc='center', bbox_to_anchor=(1.1, 0.5)) plt.grid(axis='y') plt.title('H2 Price Buy'); ###Output _____no_output_____ ###Markdown CO2 Emissions ###Code plot_co2_emissions(dh,figsize = (10, 5),show_data=False); ###Output _____no_output_____ ###Markdown Transmissions ###Code dh.get('o_flow').groupby('r').sum().div(1000).transpose().T.plot.bar(xlabel = '', ylabel = 'Electricity Exports (TWh)', rot = 0,figsize = (10, 5)) plt.legend(loc='center', bbox_to_anchor=(1.1, 0.5)) plt.grid(axis='y') plt.title('Yearly electricity transmissions'); ###Output _____no_output_____
quickstarts/reading-tabular-data.ipynb
###Markdown Reading Tabular DataThe Planetary Computer provides tabular data in the [Apache Parquet](https://parquet.apache.org/) file format. Small datasets can be read using [pandas](https://pandas.pydata.org/). For example, we can read the boundary table from the [Forest Inventory and Analysis](https://aka.ms/ai4edata-fia) dataset, which has about 190,000 rows of information about forest health and location in the US. ###Code import pandas as pd df = pd.read_parquet( "az://cpdata/raw/fia/boundary.parquet/part.0.parquet", storage_options={"account_name": "cpdataeuwest"}, columns=["CN", "AZMLEFT", "AZMCORN"], ) df ###Output _____no_output_____ ###Markdown Larger datasets can be read using [Dask](https://dask.org/). For example, the `cpdata/raw/fia/tree.parquet` folder contains about 160 individual Parquet files, totalling about 22 million rows. In this case, pass the path to the directory to `dask.dataframe.read_parquet`. ###Code import dask.dataframe as dd df = dd.read_parquet( "az://cpdata/raw/fia/tree.parquet", storage_options={"account_name": "cpdataeuwest"} ) df[["SPCD", "CARBON_BG", "CARBON_AG"]] ###Output _____no_output_____ ###Markdown That lazily loads the data into a Dask DataFrame. We can operate on the DataFrame with pandas-like methods, and call `.compute()` to get the result. In this case, we'll compute the average amount of carbon sequestered above and below ground for each tree, grouped by species type. To cut down on execution time we'll select just the first partition. ###Code result = ( df[["SPCD", "CARBON_BG", "CARBON_AG"]] .get_partition(0) .groupby("SPCD") # group by species .mean() .compute() ) result ###Output _____no_output_____ ###Markdown Reading Tabular DataThe Planetary Computer provides tabular data in the [Apache Parquet](https://parquet.apache.org/) file format. Small datasets can be read using [pandas](https://pandas.pydata.org/). For example, we can read the boundary table from the [Forest Inventory and Analysis](https://aka.ms/ai4edata-fia) dataset, which has about 190,000 rows of information about forest health and location in the US. ###Code import pandas as pd df = pd.read_parquet( "az://cpdata/raw/fia/boundary.parquet/part.0.parquet", storage_options={"account_name": "cpdataeuwest"}, columns=["CN", "AZMLEFT", "AZMCORN"], ) df ###Output _____no_output_____ ###Markdown Larger datasets can be read using [Dask](https://dask.org/). For example, the `cpdata/raw/fia/tree.parquet` folder contains about 160 individual Parquet files, totalling about 22 million rows. In this case, pass the path to the directory to `dask.dataframe.read_parquet`. ###Code import dask.dataframe as dd df = dd.read_parquet( "az://cpdata/raw/fia/tree.parquet", storage_options={"account_name": "cpdataeuwest"} ) df[["SPCD", "CARBON_BG", "CARBON_AG"]] ###Output _____no_output_____ ###Markdown That lazily loads the data into a Dask DataFrame. We can operate on the DataFrame with pandas-like methods, and call `.compute()` to get the result. In this case, we'll compute the average amount of carbon sequestered above and below ground for each tree, grouped by species type. To cut down on execution time we'll select just the first partition. ###Code result = ( df[["SPCD", "CARBON_BG", "CARBON_AG"]] .get_partition(0) .groupby("SPCD") # group by species .mean() .compute() ) result ###Output _____no_output_____ ###Markdown Reading Tabular DataThe Planetary Computer provides tabular data in the [Apache Parquet](https://parquet.apache.org/) file format, which provides a standarized high-performance columnar storage format.When working from Python, there are several options for reading parquet datasets. The right choice depends on the size and kind of the data you're reading. When reading geospatial data, with one or more columns containing vector geometries, we recommend using [geopandas](https://geopandas.org/) for small datasets and [dask-geopandas](https://github.com/geopandas/dask-geopandas) for large datasets. For non-geospatial tabular data, we recommend [pandas](https://pandas.pydata.org/) for small datasets and [Dask](https://dask.org/) for large datasets.Regardless of which library you're using to read the data, we recommend using [STAC](https://stacspec.org/) to discover which datasets are available, and which options should be provided when reading the data.In this example we'll work with data from the US Forest Service's [Forest Inventory and Analysis](https://planetarycomputer.microsoft.com/dataset/fia) dataset. This includes a collection of tables providing information about forest health and location in the United States. ###Code import pystac_client catalog = pystac_client.Client.open( "https://planetarycomputer.microsoft.com/api/stac/v1" ) fia = catalog.get_collection("fia") fia ###Output _____no_output_____ ###Markdown The FIA Collection has a number of items, each of which represents a different table stored in Parquet format. ###Code list(fia.get_all_items()) ###Output _____no_output_____ ###Markdown To load a single table, get it's item and extract the `href` from the `data` asset. The "boundary" table, which provides information about subplots, is relatively small and doesn't contain a geospatial geometry column, so it can be read with pandas. ###Code import pandas as pd import planetary_computer boundary = fia.get_item(id="boundary") boundary = planetary_computer.sign(boundary) asset = boundary.assets["data"] df = pd.read_parquet( asset.href, storage_options=asset.extra_fields["table:storage_options"], columns=["CN", "AZMLEFT", "AZMCORN"], ) df.head() ###Output _____no_output_____ ###Markdown There are a few imporant pieces to highlight1. As usual with the Planetary Computer, we signed the STAC item so that we could access the data. See [Using tokens for data access](https://planetarycomputer.microsoft.com/docs/concepts/sas/) for more.2. We relied on the asset to provide all the information necessary to load the data like the `href` and the `storage_options`. All we needed to know was the ID of the Collection and Item3. We used pandas' and parquet's ability to select subsets of the data with the `columns` keyword. Larger datasets can be read using [Dask](https://dask.org/). For example, the `cpdata/raw/fia/tree.parquet` folder contains about 160 individual Parquet files, totalling about 22 million rows. In this case, pass the path to the directory to `dask.dataframe.read_parquet`. ###Code import dask.dataframe as dd tree = planetary_computer.sign(fia.get_item(id="tree")) asset = tree.assets["data"] df = dd.read_parquet( asset.href, storage_options=asset.extra_fields["table:storage_options"], columns=["SPCD", "CARBON_BG", "CARBON_AG"], engine="pyarrow", ) df ###Output _____no_output_____ ###Markdown That lazily loads the data into a Dask DataFrame. We can operate on the DataFrame with pandas-like methods, and call `.compute()` to get the result. In this case, we'll compute the average amount of carbon sequestered above and below ground for each tree, grouped by species type. To cut down on execution time we'll select just the first partition. ###Code result = df.get_partition(0).groupby("SPCD").mean().compute() # group by species result ###Output _____no_output_____
scotch_reviews.ipynb
###Markdown Scotch Reviews Created by Chris Ceder - 12/30/12 ###Code import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Activation scotch_df = pd.read_csv('scotch_review.csv') scotch_df ranked_scotch = scotch_df[['name', 'review.point', 'description']].sort_values(by='review.point', ascending=False) ranked_scotch def create_sentiment(int): if int >= 60 and int < 85: return 0 if int >= 85 and int < 91: return 1 if int >= 91 and int <= 100: return 2 sentiment = [] ranked_scotch['Sentiment'] = ranked_scotch['review.point'].apply(create_sentiment) tokenizer = keras.preprocessing.text.Tokenizer() tokenizer.fit_on_texts(ranked_scotch.description) tokenizer.get_config() ranked_scotch = tokenizer.texts_to_sequences(ranked_scotch.description) ranked_scotch ranked_scotch = tokenizer.sequences_to_matrix(ranked_scotch) ranked_scotch model = Sequential() model.add(Dense(677, activation='sigmoid')) ###Output _____no_output_____
fpc_methods/SFC_HAE/SFC_HAE ipynbs/HAE_16II_I4.ipynb
###Markdown Mounting your google driveYou can use google drive to store and access files e.g. storing and loading data from numpy or CSV files. Use the following command to mount your GDrive and access your files. ###Code from google.colab import drive drive.mount('/content/gdrive/') !pip install ffmpeg !pip install vtk import os # change the current path. The user can adjust the path depend on the requirement os.chdir("/content/gdrive/MyDrive/Cola-Notebooks/FYP/YF") import vtktools ! /opt/bin/nvidia-smi # !unzip csv_data.zip %matplotlib inline import numpy as np import pandas as pd import scipy import numpy.linalg as la import scipy.linalg as sl import scipy.sparse.linalg as spl import matplotlib.pyplot as plt import torch.nn as nn # Neural network module import scipy.sparse as sp import scipy.optimize as sop import progressbar # making slopes import torch from torch.utils.data import TensorDataset import torch.nn.functional as F from matplotlib.pyplot import LinearLocator import matplotlib as mpl import matplotlib.colors as colors # create an animation from matplotlib import animation from IPython.display import HTML from matplotlib import animation import math import ffmpeg !pip install pycm livelossplot %pylab inline from livelossplot import PlotLosses from torch.utils.data import DataLoader import torch.utils.data as Data import time import platform print('python version', platform.python_version()) print('torch version', torch.__version__) print('numpy version', np.version.version) def set_seed(seed): """ Use this to set ALL the random seeds to a fixed value and take out any randomness from cuda kernels """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.benchmark = True ##uses the inbuilt cudnn auto-tuner to find the fastest convolution algorithms. - torch.backends.cudnn.enabled = True return True device = 'cuda' # Set out device to GPU print('Cuda installed, running on GPU!') # print sentence # These functions are saved in function.py and the note are also added to that file def saveIndex(path_train, path_valid, path_test,train_index, valid_index, test_index): # save training and validation loss np.savetxt(path_train,train_index, delimiter=',') np.savetxt(path_valid,valid_index, delimiter=',') np.savetxt(path_test,test_index, delimiter=',') def getIndex(path_train,path_valid,path_test): train_index = np.loadtxt(path_train,delimiter=",") valid_index = np.loadtxt(path_valid,delimiter=",") test_index = np.loadtxt(path_test,delimiter=",") return train_index,valid_index,test_index def saveMode(path_train, path_valid, path_test,mode_train, mode_valid, mode_test): # save training and validation loss np.savetxt(path_train,mode_train.cpu().data.numpy(), delimiter=',') np.savetxt(path_valid,mode_valid.cpu().data.numpy(), delimiter=',') np.savetxt(path_test,mode_test.cpu().data.numpy(), delimiter=',') def getMode(path_train,path_valid,path_test): mode_train = np.loadtxt(path_train,delimiter=",") mode_valid = np.loadtxt(path_valid,delimiter=",") mode_test = np.loadtxt(path_test,delimiter=",") return mode_train,mode_valid,mode_test def saveCsv(pathcsv,EPOCH): # save training and validation loss losses_combined = np.zeros((EPOCH,3)) losses_combined[:,0] = np.asarray(epoch_list) losses_combined[:,1] = np.asarray(loss_list) losses_combined[:,2] = np.asarray(loss_valid) np.savetxt(pathcsv, losses_combined , delimiter=',') def PlotMSELoss(pathName,name): epoch = pd.read_csv(pathName,usecols=[0]).values train_loss = pd.read_csv(pathName,usecols=[1]).values val_loss = pd.read_csv(pathName,usecols=[2]).values fig = plt.figure(figsize=(10,7)) axe1 = plt.subplot(111) axe1.semilogy(epoch,train_loss,label = "train") axe1.plot(epoch,val_loss,label = "valid") axe1.legend(loc = "best",fontsize=14) axe1.set_xlabel("$epoch$",fontsize=14) axe1.set_ylabel("$MSE loss$",fontsize=14) axe1.set_title(name,fontsize=14) def getTotal_decoded(training_decoded,valid_decoded,test_decoded,train_index,valid_index,test_index): total_decoded = np.zeros((nTotal,nNodes,2)) for i in range(len(train_index)): total_decoded[int(train_index[i]),:,0] = training_decoded.cpu().detach().numpy()[i,:,0] total_decoded[int(train_index[i]),:,1] = training_decoded.cpu().detach().numpy()[i,:,1] for i in range(len(valid_index)): total_decoded[int(valid_index[i]),:,0] = valid_decoded.cpu().detach().numpy()[i,:,0] total_decoded[int(valid_index[i]),:,1] = valid_decoded.cpu().detach().numpy()[i,:,1] for i in range(len(test_index)): total_decoded[int(test_index[i]),:,0] = test_decoded.cpu().detach().numpy()[i,:,0] total_decoded[int(test_index[i]),:,1] = test_decoded.cpu().detach().numpy()[i,:,1] return total_decoded def getMSELoss(pathName): epoch = pd.read_csv(pathName,usecols=[0]).values train_loss = pd.read_csv(pathName,usecols=[1]).values val_loss = pd.read_csv(pathName,usecols=[2]).values return train_loss,val_loss,epoch # def get_clean_vtu(filename): # "Removes fields and arrays from a vtk file, leaving the coordinates/connectivity information." # vtu_data = vtktools.vtu(filename) # clean_vtu = vtktools.vtu() # clean_vtu.ugrid.DeepCopy(vtu_data.ugrid) # fieldNames = clean_vtu.GetFieldNames() # # remove all fields and arrays from this vtu # for field in fieldNames: # clean_vtu.RemoveField(field) # fieldNames = clean_vtu.GetFieldNames() # vtkdata=clean_vtu.ugrid.GetCellData() # arrayNames = [vtkdata.GetArrayName(i) for i in range(vtkdata.GetNumberOfArrays())] # for array in arrayNames: # vtkdata.RemoveArray(array) # return clean_vtu def index_split(train_ratio, valid_ratio, test_ratio, total_num): if train_ratio + valid_ratio + test_ratio != 1: raise ValueError("Three input ratio should sum to be 1!") total_index = np.arange(total_num) rng = np.random.default_rng() total_index = rng.permutation(total_index) knot_1 = int(total_num * train_ratio) knot_2 = int(total_num * valid_ratio) + knot_1 train_index, valid_index, test_index = np.split(total_index, [knot_1, knot_2]) return train_index, valid_index, test_index def saveNumpy(path,mode): np.savetxt(path,mode, delimiter=',') def get1Mode(path): mode = np.loadtxt(path,delimiter=",") return mode def oneMSE(error_autoencoder): N = error_autoencoder.shape[0] MSE_list = np.zeros([N,1]) for i in range(N): MSE_list[i,0] = (error_autoencoder[i,:,:]**2).mean() return MSE_list path_train = "/content/gdrive/MyDrive/Cola-Notebooks/FYP/YF/"+"new_FPC_train_index.csv" path_valid = "/content/gdrive/MyDrive/Cola-Notebooks/FYP/YF/"+"new_FPC_valid_index.csv" path_test = "/content/gdrive/MyDrive/Cola-Notebooks/FYP/YF/"+"new_FPC_test_index.csv" # saveIndex(path_train, path_valid, path_test,train_index, valid_index, test_index) # Load the train_index, valid_index and test_index train_index,valid_index,test_index= getIndex(path_train,path_valid,path_test) print(test_index) ###Output [ 133. 490. 1480. 730. 481. 1382. 440. 750. 1502. 1451. 692. 1094. 1679. 510. 1241. 1101. 543. 1312. 1432. 1988. 1148. 1801. 1519. 367. 1858. 1043. 1175. 1218. 1479. 103. 1363. 800. 258. 1851. 267. 999. 611. 1824. 318. 753. 1413. 727. 1273. 1358. 1090. 838. 250. 1763. 1038. 439. 1199. 334. 1848. 1924. 1013. 271. 936. 600. 1553. 423. 1467. 1658. 929. 1748. 783. 329. 303. 1067. 868. 374. 1102. 1843. 683. 449. 855. 1142. 1393. 194. 1112. 636. 1617. 1910. 1722. 536. 1149. 1765. 468. 1922. 1703. 1311. 341. 110. 1258. 1257. 1711. 93. 1969. 396. 1259. 199. 962. 1704. 462. 1407. 634. 535. 1505. 537. 612. 1707. 1565. 1963. 1955. 3. 1058. 1946. 372. 1653. 1077. 414. 469. 680. 1430. 649. 215. 234. 1692. 653. 1455. 582. 1169. 1138. 411. 518. 865. 1977. 1688. 822. 397. 1388. 1221. 239. 249. 1781. 1751. 915. 278. 1970. 907. 477. 1552. 703. 870. 916. 1650. 561. 1401. 129. 1123. 1804. 1871. 1527. 308. 94. 1911. 1425. 1574. 72. 399. 1410. 1818. 926. 897. 1238. 1628. 498. 1066. 1908. 36. 550. 1010. 524. 996. 732. 1048. 1041. 1474. 1339. 1889. 1289. 1795. 869. 1935. 1837. 684. 380. 967. 1445. 1729. 160.] ###Markdown Hierarchical autoencoder First subnetwork load data ###Code os.chdir('/content/gdrive/MyDrive/Cola-Notebooks/FYP/YF') print(os.getcwd()) # read in the data (1000 csv files) nTrain = 1600 nValid = 200 nTest = 200 nTotal = nTrain + nValid + nTest nNodes = 20550 # should really work this out # The below method to load data is too slow. Therefore, we use load pt file # [:, :, 2] is speed, [:, :, 3] is u, [:, :, 4] is v # (speed not really needed) # [:, :, 0] and [:, :, 1] are the SFC orderings # training_data = np.zeros((nTrain,nNodes,5)) # for i in range(nTrain): # data = np.loadtxt('csv_data/data_' +str(int(train_index[i]))+ '.csv', delimiter=',') # training_data[i,:,:] = data # training_data = np.array(training_data) # print('size training data', training_data.shape) # valid_data = np.zeros((nValid,nNodes,5)) # for i in range(nValid): # data = np.loadtxt('csv_data/data_' +str(int(valid_index[i]))+ '.csv', delimiter=',') # valid_data[i,:,:] = data # valid_data = np.array(valid_data) # print('size validation data', valid_data.shape) # test_data = np.zeros((nTest,nNodes,5)) # for i in range(nTest): # data = np.loadtxt('csv_data/data_' +str(int(test_index[i]))+ '.csv', delimiter=',') # test_data[i,:,:] = data # test_data = np.array(test_data) # print('size test data', test_data.shape) # total_data = np.zeros((nTotal,nNodes,5)) # for i in range(len(train_index)): # total_data[int(train_index[i]),:,:] = training_data[i,:,:] # for i in range(len(valid_index)): # total_data[int(valid_index[i]),:,:] = valid_data[i,:,:] # for i in range(len(test_index)): # total_data[int(test_index[i]),:,:] = test_data[i,:,:] # print('size total data', total_data.shape) # Before we save the pt file, we must load the data according to the above method # torch.save(training_data, '/content/gdrive/MyDrive/FPC_new_random_train.pt') # torch.save(valid_data, '/content/gdrive/MyDrive/FPC_new_random_valid.pt') # torch.save(test_data, '/content/gdrive/MyDrive/FPC_new_random_test.pt') # torch.save(total_data, '/content/gdrive/MyDrive/FPC_new_random_total.pt') # load the data, this method save the time training_data = torch.load('/content/gdrive/MyDrive/FPC_new_random_train.pt') valid_data = torch.load('/content/gdrive/MyDrive/FPC_new_random_valid.pt') test_data = torch.load('/content/gdrive/MyDrive/FPC_new_random_test.pt') total_data = torch.load('/content/gdrive/MyDrive/FPC_new_random_total.pt') print(training_data.shape) print(valid_data.shape) print(test_data.shape) print(total_data.shape) # rescale the data so that u and v data lies in the range [-1,1] (and speed in [0,1]) ma = np.max(training_data[:, :, 2]) mi = np.min(training_data[:, :, 2]) k = 1./(ma - mi) b = 1 - k*ma #k*mi training_data[:, :, 2] = k * training_data[:, :, 2] + b #- b # this won't be used ma = np.max(training_data[:, :, 3]) mi = np.min(training_data[:, :, 3]) ku = 2./(ma - mi) bu = 1 - ku*ma training_data[:, :, 3] = ku * training_data[:, :, 3] + bu valid_data[:, :, 3] = ku * valid_data[:, :, 3] + bu test_data[:, :, 3] = ku * test_data[:, :, 3] + bu total_data[:, :, 3] = ku * total_data[:, :, 3] + bu ma = np.max(training_data[:, :, 4]) mi = np.min(training_data[:, :, 4]) kv = 2./(ma - mi) bv = 1 - kv*ma training_data[:, :, 4] = kv * training_data[:, :, 4] + bv valid_data[:, :, 4] = kv * valid_data[:, :, 4] + bv test_data[:, :, 4] = kv * test_data[:, :, 4] + bv total_data[:, :, 4] = kv * total_data[:, :, 4] + bv ###Output _____no_output_____ ###Markdown Network architetcure ###Code # SFC-CAE: one curve with nearest neighbour smoothing and compressing to 2 latent variables print("compress to 2") Latent_num = 2 torch.manual_seed(42) # Hyper-parameters EPOCH = 3001 BATCH_SIZE = 16 LR = 0.0001 k = nNodes # number of nodes - this has to match training_data.shape[0] print(training_data.shape) # nTrain by number of nodes by 5 # Data Loader for easy mini-batch return in training train_loader = Data.DataLoader(dataset = training_data, batch_size = BATCH_SIZE, shuffle = True) # Standard class CNN_1(nn.Module): def __init__(self): super(CNN_1, self).__init__() self.encoder_h1 = nn.Sequential( # input shape (16,4,20550) # The first 16 is the batch size nn.Tanh(), nn.Conv1d(4, 8, 16, 4, 9), # output shape (16, 8, 5139) nn.Tanh(), nn.Conv1d(8, 8, 16, 4, 9), # output shape (16, 8,1286) nn.Tanh(), nn.Conv1d(8, 16, 16, 4, 9), # output shape (16,16,323) nn.Tanh(), nn.Conv1d(16, 16, 16, 4, 9), # output shape (16, 16, 82) nn.Tanh(), ) self.fc1 = nn.Sequential( nn.Linear(16*82, 2), nn.Tanh(), ) self.fc2 = nn.Sequential( nn.Linear(2, 16*82), nn.Tanh(), ) self.decoder_h1 = nn.Sequential( # (16, 16, 82) nn.Tanh(), nn.ConvTranspose1d(16, 16, 17, 4, 9), # (16, 16, 323) nn.Tanh(), nn.ConvTranspose1d(16, 8, 16, 4, 9), # (16, 8, 1286) nn.Tanh(), nn.ConvTranspose1d(8, 8, 17, 4, 9), # (16, 8, 5139) nn.Tanh(), nn.ConvTranspose1d(8, 4, 16, 4, 9), # (16, 4, 20550) nn.Tanh(), ) # input sparse layers, initialize weight as 0.33, bias as 0 self.weight1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight1_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight1_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias1 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) self.weight11 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight11_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight11_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias11 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) self.weight2 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight2_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight2_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias2 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) self.weight22 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight22_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight22_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias22 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) self.weight3 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight3_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight3_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias3 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.zeros(k)),requires_grad = True) self.weight33 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight33_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight33_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias33 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.zeros(k)),requires_grad = True) self.weight4 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight4_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight4_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias4 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.zeros(k)),requires_grad = True) self.weight44 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight44_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight44_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias44 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.zeros(k)),requires_grad = True) # output sparse layers, initialize weight as 0.083, bias as 0 self.weight_out1 = torch.nn.Parameter(torch.FloatTensor(0.083 *torch.ones(k)),requires_grad = True) self.weight_out1_0 = torch.nn.Parameter(torch.FloatTensor(0.083* torch.ones(k)),requires_grad = True) self.weight_out1_1 = torch.nn.Parameter(torch.FloatTensor(0.083* torch.ones(k)),requires_grad = True) self.weight_out11 = torch.nn.Parameter(torch.FloatTensor(0.083 *torch.ones(k)),requires_grad = True) self.weight_out11_0 = torch.nn.Parameter(torch.FloatTensor(0.083* torch.ones(k)),requires_grad = True) self.weight_out11_1 = torch.nn.Parameter(torch.FloatTensor(0.083* torch.ones(k)),requires_grad = True) self.weight_out2 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out2_0 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out2_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out22 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out22_0 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out22_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out3 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out3_0 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out3_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out33 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out33_0 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out33_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out4 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out4_0= torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out4_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out44 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out44_0= torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out44_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.bias_out1 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) self.bias_out2 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) def forward(self, x): # print("X_size",x.size()) # first curve ToSFC1 = x[:, :, 0] # The first column is the first SFC ordering ToSFC1Up = torch.zeros_like(ToSFC1) ToSFC1Down = torch.zeros_like(ToSFC1) ToSFC1Up[:-1] = ToSFC1[1:] ToSFC1Up[-1] = ToSFC1[-1] ToSFC1Down[1:] = ToSFC1[:-1] ToSFC1Down[0] = ToSFC1[0] batch_num = ToSFC1.shape[0] x1 = x[:, :, 3:5] # The fourth column and fifth column are velocities u and v respectively #print("x1", x1.shape) # # (16, 20550, 2) x1_1d = torch.zeros((batch_num, 4, k)).to(device) # first input sparse layer, then transform to sfc order1 for j in range(batch_num): x1_1d[j, 0, :] = x1[j, :, 0][ToSFC1[j].long()] * self.weight1 + \ x1[j, :, 0][ToSFC1Up[j].long()] * self.weight1_0 + \ x1[j, :, 0][ToSFC1Down[j].long()] * self.weight1_1 + self.bias1 x1_1d[j, 1, :] = x1[j, :, 0][ToSFC1[j].long()] * self.weight11 + \ x1[j, :, 0][ToSFC1Up[j].long()] * self.weight11_0 + \ x1[j, :, 0][ToSFC1Down[j].long()] * self.weight11_1 + self.bias11 x1_1d[j, 2, :] = x1[j, :, 1][ToSFC1[j].long()] * self.weight2 + \ x1[j, :, 1][ToSFC1Up[j].long()] * self.weight2_0 + \ x1[j, :, 1][ToSFC1Down[j].long()] * self.weight2_1 + self.bias2 x1_1d[j, 3, :] = x1[j, :, 1][ToSFC1[j].long()] * self.weight22 + \ x1[j, :, 1][ToSFC1Up[j].long()] * self.weight22_0 + \ x1[j, :, 1][ToSFC1Down[j].long()] * self.weight22_1 + self.bias22 # first cnn encoder encoded_1 = self.encoder_h1(x1_1d.view(-1, 4, k)) #(16,4,20550) # print("encoded", encoded_1.shape) # flatten and concatenate encoded_3 = encoded_1.view(-1,16*82) # print("Before FC", encoded_3.shape) # fully connection encoded = self.fc1(encoded_3) # (b,64) # print("After encoder FC,the output of encoder",encoded.shape) decoded_3 = self.decoder_h1(self.fc2(encoded).view(-1, 16, 82)) # print("The output of decoder: ", decoded_3.shape) BackSFC1 = torch.argsort(ToSFC1) BackSFC1Up = torch.argsort(ToSFC1Up) BackSFC1Down = torch.argsort(ToSFC1Down) decoded_sp = torch.zeros((batch_num, k, 2)).to(device) # output sparse layer, resort according to sfc transform for j in range(batch_num): decoded_sp[j, :, 0] = decoded_3[j, 0, :][BackSFC1[j].long()]* self.weight_out1 + \ decoded_3[j, 0, :][BackSFC1Up[j].long()] * self.weight_out1_0 + \ decoded_3[j, 0, :][BackSFC1Down[j].long()] * self.weight_out1_1 + \ decoded_3[j, 1, :][BackSFC1[j].long()]* self.weight_out11 + \ decoded_3[j, 1, :][BackSFC1Up[j].long()] * self.weight_out11_0 + \ decoded_3[j, 1, :][BackSFC1Down[j].long()] * self.weight_out11_1 + self.bias_out1 decoded_sp[j, :, 1] = decoded_3[j, 2, :][BackSFC1[j].long()] * self.weight_out3 + \ decoded_3[j, 2, :][BackSFC1Up[j].long()] * self.weight_out3_0 + \ decoded_3[j, 2, :][BackSFC1Down[j].long()] * self.weight_out3_1 + \ decoded_3[j, 3, :][BackSFC1[j].long()] * self.weight_out33 + \ decoded_3[j, 3, :][BackSFC1Up[j].long()] * self.weight_out33_0 + \ decoded_3[j, 3, :][BackSFC1Down[j].long()] * self.weight_out33_1 + self.bias_out2 # resort 1D to 2D decoded = F.tanh(decoded_sp) # both are BATCH_SIZE by nNodes by 2 return encoded, decoded ###Output _____no_output_____ ###Markdown Train ###Code # The first network has been trained at SFC-CAE. Therefore, the mode we can load directly # autoencoder = torch.load("./SFC_CAE/pkl/II_Eran3000_LV2_B16_n1600_L0.0001.pkl") # pass training, validation and test data through the autoencoder # t_predict_0 = time.time() # mode_1train, training_decoded = autoencoder.to(device)(torch.tensor(training_data).to(device)) # error_autoencoder = (training_decoded.cpu().detach().numpy() - training_data[:,:,3:5]) # print("MSE_err of training data", (error_autoencoder**2).mean()) # mode_1valid, valid_decoded = autoencoder.to(device)(torch.tensor(valid_data).to(device)) # error_autoencoder = (valid_decoded.cpu().detach().numpy() - valid_data[:, :, 3:5]) # print("Mse_err of validation data", (error_autoencoder**2).mean()) # mode_1test, test_decoded = autoencoder.to(device)(torch.tensor(test_data).to(device)) # error_autoencoder = (test_decoded.cpu().detach().numpy() - test_data[:, :, 3:5]) # print("Mse_err of test data", (error_autoencoder**2).mean()) # t_predict_1 = time.time() # total_decoded = getTotal_decoded(training_decoded,valid_decoded,test_decoded,train_index,valid_index,test_index) # error_autoencoder = (total_decoded - total_data[:, :, 3:5]) # print("Mse_err of total data", (error_autoencoder**2).mean()) # print(mode_1train.shape) # print(mode_1valid.shape) # print(mode_1test.shape) # print('Predict time:',t_predict_1-t_predict_0) ###Output _____no_output_____ ###Markdown Save and Plot loss ###Code pathName = "./SFC_CAE/csv/II_Eran3000_LV2_B16_n1600_L0.0001.csv" name = "SFC-CAE MSE loss of 2 compression variables" PlotMSELoss(pathName,name) ###Output _____no_output_____ ###Markdown Get mode ###Code Latent_num = 2 torch.manual_seed(42) BATCH_SIZE = 16 LR = 0.0001 nTrain = 1600 path_train = "./HAE/mode_new/II_mode1_LV"+str(Latent_num)+"_Eran"+str(3000) + "_B"+str(BATCH_SIZE)+"_n"+ str(nTrain)+"_L"+str(LR)+"_train.csv" path_valid = "./HAE/mode_new/II_mode1_LV"+str(Latent_num)+"_Eran"+str(3000) + "_B"+str(BATCH_SIZE)+"_n"+ str(nTrain)+"_L"+str(LR)+"_valid.csv" path_test = "./HAE/mode_new/II_mode1_LV"+str(Latent_num)+"_Eran"+str(3000) + "_B"+str(BATCH_SIZE)+"_n"+ str(nTrain)+"_L"+str(LR)+"_test.csv" print(path_train) # saveMode(path_train,path_valid,path_test,mode_1train,mode_1valid,mode_1test) mode_1train,mode_1valid,mode_1test = getMode(path_train,path_valid,path_test) mode_1train = torch.from_numpy(mode_1train).to(device) mode_1valid = torch.from_numpy(mode_1valid).to(device) mode_1test = torch.from_numpy(mode_1test).to(device) print(mode_1train.shape) print(mode_1test.shape) print(mode_1valid.shape) print(mode_1valid) ###Output torch.Size([1600, 2]) torch.Size([200, 2]) torch.Size([200, 2]) tensor([[-1.6067e-01, -6.0914e-01], [-6.7483e-01, -1.3558e-01], [ 5.6826e-01, -2.5459e-01], [-5.1274e-01, 4.0481e-01], [ 5.5193e-01, -4.1480e-01], [ 5.1502e-01, -3.2300e-02], [-7.0195e-01, 2.4039e-02], [-9.6313e-01, 2.5269e-01], [-1.6802e-01, -6.1879e-01], [ 1.3573e-02, -1.3445e-01], [-1.2965e-02, -1.3394e-01], [-3.0778e-01, -9.2148e-01], [ 8.5247e-01, -7.3854e-01], [ 6.7126e-01, -4.4685e-01], [-8.8079e-01, -2.1218e-01], [-3.8233e-02, -1.5102e-01], [ 3.7645e-01, 2.1929e-01], [ 3.3710e-01, -5.2522e-01], [-7.3544e-01, -6.6473e-01], [-6.4132e-01, 5.6740e-01], [-5.8853e-01, -3.4657e-01], [-3.8374e-01, 7.0756e-01], [-1.2801e-01, -6.1552e-01], [-9.5243e-01, 3.3528e-01], [-6.3002e-01, -7.5842e-01], [ 1.3645e-01, 1.0243e-01], [ 4.9770e-01, -5.4784e-01], [-4.0562e-01, -7.4432e-01], [-3.0172e-01, -8.6753e-01], [-2.5700e-02, -1.3625e-01], [-1.0756e-02, -1.3325e-01], [-8.0016e-01, -4.8827e-01], [ 7.9833e-01, -6.0391e-01], [ 8.2153e-01, -3.5402e-01], [-3.2293e-01, 4.6698e-01], [-9.6494e-01, 8.6302e-02], [-3.1883e-01, 4.7087e-01], [-7.5930e-01, -4.7540e-01], [-2.2399e-01, -5.2497e-01], [-9.7025e-01, 7.0327e-02], [-9.0261e-02, -6.4030e-01], [-6.1310e-01, 6.8782e-01], [ 6.0632e-02, -6.6193e-01], [-2.3229e-01, 5.1994e-01], [ 8.1705e-01, -8.0925e-01], [-9.5073e-04, -1.3105e-01], [ 2.8826e-01, 3.7372e-01], [ 8.8725e-01, -1.0399e-01], [-9.5391e-01, 3.2673e-01], [ 1.5141e-02, -1.3863e-01], [ 8.7408e-01, -7.0220e-01], [ 6.2016e-01, -1.4862e-01], [-8.6308e-01, 5.4508e-01], [-4.6024e-01, 4.9740e-01], [-4.9620e-02, 6.0094e-01], [ 1.2572e-01, 3.7247e-01], [-5.3104e-01, -6.5892e-01], [ 8.5630e-01, -7.2903e-01], [ 1.6501e-01, -4.9241e-01], [ 8.9578e-01, -6.9957e-01], [-3.3123e-02, -1.4578e-01], [ 8.4265e-01, -1.4138e-02], [ 6.0917e-01, -4.2997e-01], [ 3.2017e-02, -6.4756e-01], [-6.2615e-01, -9.8961e-02], [-6.0298e-01, 6.9417e-01], [-2.4154e-01, -8.0081e-01], [-7.3134e-01, 6.3471e-01], [ 1.5478e-01, 3.7448e-01], [-9.5691e-01, 2.5985e-01], [ 2.3923e-01, -5.8800e-02], [ 3.7933e-01, -5.9122e-01], [-6.1449e-02, -8.1711e-01], [ 1.2292e-01, 5.0035e-01], [-9.5889e-01, 2.3324e-01], [-1.6617e-01, 5.9632e-01], [ 5.0793e-01, -7.3014e-01], [ 4.7622e-02, 4.1166e-01], [ 5.6872e-01, -3.1311e-01], [ 5.6085e-01, -4.6075e-01], [-6.9620e-02, 1.1523e-01], [-6.7561e-01, -4.8201e-01], [ 1.6385e-01, 3.6668e-01], [ 2.1029e-01, 2.7996e-01], [ 8.1117e-01, -8.1412e-01], [-2.6087e-01, -5.8505e-01], [-8.2214e-01, -5.5413e-01], [ 1.0091e-01, -6.4847e-01], [-5.4335e-01, 6.1284e-01], [ 1.8223e-01, -7.3013e-01], [ 8.8920e-01, -1.4935e-01], [ 1.6763e-01, -6.4419e-01], [ 4.4452e-01, 1.1852e-01], [ 7.3987e-01, 7.1536e-02], [ 2.5596e-01, 4.1835e-01], [-9.6403e-01, 1.5448e-01], [ 6.3057e-01, -7.9943e-01], [-4.3272e-01, 4.4192e-01], [ 6.1031e-01, -6.7628e-01], [ 7.8401e-01, 6.9054e-02], [ 8.1149e-01, 3.6830e-03], [ 3.5122e-01, 2.7184e-01], [ 4.1859e-01, 2.2061e-01], [ 6.1381e-01, -5.6305e-01], [ 1.6185e-01, -6.5975e-01], [ 5.3869e-01, -1.0166e-01], [-6.5426e-01, -3.1142e-01], [ 7.1002e-01, 6.1435e-02], [ 2.4002e-01, -6.5376e-01], [-3.1981e-01, -9.1899e-01], [ 1.4153e-01, -6.4662e-01], [-3.0789e-01, -5.5596e-01], [-5.3471e-01, 6.0174e-01], [ 9.4405e-01, -3.8412e-01], [-3.9303e-02, -1.5598e-01], [-6.0758e-01, 1.7649e-01], [-1.5562e-01, -9.2917e-01], [ 6.8870e-02, 4.4360e-01], [ 3.4789e-01, 3.0404e-01], [-5.9847e-01, 2.9386e-01], [ 1.7426e-01, 3.5957e-01], [-7.7926e-01, 6.0112e-01], [ 5.6627e-01, -2.2685e-01], [-4.0806e-01, 3.2683e-01], [-6.1778e-01, -2.7157e-01], [-2.9336e-01, 4.6965e-01], [-9.1791e-01, 4.2473e-01], [-6.1300e-01, -1.7112e-01], [-9.0806e-01, 4.3110e-01], [-6.9916e-01, -2.6045e-02], [-8.7655e-01, -5.0848e-01], [-9.6973e-01, 1.6627e-02], [ 6.7525e-01, -3.5808e-01], [ 3.9278e-01, -5.8830e-01], [ 5.8689e-01, -3.6265e-01], [ 9.1865e-01, -2.7594e-01], [-3.3084e-01, -5.0889e-01], [-5.7668e-01, -6.7955e-01], [-4.3657e-01, 4.4005e-01], [-6.7762e-01, 6.6165e-01], [-6.8883e-01, 3.0077e-01], [-6.2191e-01, 2.6004e-01], [ 9.6481e-02, 3.8998e-01], [-2.4110e-02, -1.3306e-01], [ 9.3469e-01, -5.8318e-01], [-5.1758e-01, 3.8991e-01], [-8.8389e-01, 5.1722e-01], [-5.8712e-01, 3.2249e-01], [-6.2805e-01, 2.2029e-01], [ 1.9273e-02, 4.2134e-01], [-6.2000e-01, -8.0570e-01], [ 5.7576e-01, 1.1533e-01], [-3.0782e-01, 4.2206e-01], [-1.1492e-01, -1.3049e-01], [ 2.0825e-01, -6.5768e-01], [ 7.0103e-01, -3.3153e-01], [ 5.5039e-01, -1.7839e-01], [ 5.8695e-01, -2.4742e-01], [ 1.6704e-01, -9.5915e-01], [-5.6155e-01, 3.0939e-01], [ 4.7356e-01, -9.5397e-01], [ 5.2163e-01, -5.2162e-01], [ 2.8600e-01, -6.4604e-01], [ 4.8966e-01, 4.1140e-02], [ 5.2059e-01, 2.5238e-01], [ 6.7368e-01, -4.1768e-01], [ 1.3215e-02, 4.2344e-01], [ 5.2750e-01, -8.3227e-02], [-6.3877e-01, 1.7302e-01], [-3.2818e-01, 4.6731e-01], [-5.1544e-02, -1.6405e-01], [ 6.8391e-01, 1.4485e-01], [-3.7518e-01, -5.1995e-01], [ 5.2136e-01, -8.1631e-02], [-1.3430e-01, 6.4343e-01], [ 9.0494e-01, -5.7514e-01], [-6.5605e-01, 4.0178e-01], [-1.5349e-01, 6.4620e-01], [-1.6063e-01, -2.0841e-02], [-9.6131e-01, -4.0573e-02], [-9.6411e-01, 1.2663e-01], [ 5.8162e-01, -2.4927e-01], [ 2.3146e-02, -9.4542e-01], [ 9.0846e-01, -6.7051e-01], [ 5.2004e-01, 2.4024e-01], [-9.0095e-01, -5.5061e-02], [-2.9964e-01, -4.6193e-01], [ 9.2176e-01, -4.6568e-01], [ 8.5012e-01, -2.9281e-01], [-6.1496e-01, 9.8138e-02], [ 3.7472e-01, -6.1952e-01], [-8.5847e-01, 5.5058e-01], [ 6.6163e-01, -4.3064e-01], [ 2.4736e-01, -9.4699e-01], [ 7.0158e-01, -8.8146e-01], [-2.1489e-02, 3.6318e-01], [-4.8272e-02, -1.6243e-01], [ 5.7745e-02, 4.0628e-01], [ 9.3572e-01, -3.1791e-01], [-8.7965e-01, 5.2355e-01]], device='cuda:0', dtype=torch.float64) ###Markdown Second network Network architecture ###Code # SFC-HAE: one curve with nearest neighbour smoothing and compressing to 4 latent variables print("compress to 4") torch.manual_seed(42) # Hyper-parameters Latent_num = 4 EPOCH = 3001 BATCH_SIZE = 16 LR = 0.0001 k = nNodes # number of nodes - this has to match training_data.shape[0] print(training_data.shape) # nTrain by number of nodes by 5 # Combing the input data and the mode train_set = TensorDataset(torch.from_numpy(training_data), mode_1train) # Data Loader for easy mini-batch return in training train_loader = Data.DataLoader(dataset = train_set, batch_size =BATCH_SIZE , shuffle = True) class CNN_2(nn.Module): def __init__(self): super(CNN_2, self).__init__() self.encoder_h1 = nn.Sequential( # input shape (16,4,20550) # The first 16 is the batch size nn.Tanh(), nn.Conv1d(4, 16, 32, 4, 16), # output shape (16, 16, 5138) nn.Tanh(), nn.Conv1d(16, 16, 32, 4, 16), # output shape (16, 16,1285) nn.Tanh(), nn.Conv1d(16, 16, 32, 4, 16), # output shape (16,16,322) nn.Tanh(), nn.Conv1d(16, 16, 32, 4, 16), # output shape (16,16,81) nn.Tanh(), ) self.fc1 = nn.Sequential( nn.Linear(1296, 2), nn.Tanh(), ) self.fc2 = nn.Sequential( nn.Linear(2*2, 16*81), nn.Tanh(), ) self.decoder_h1 = nn.Sequential( # (b, 16, 81) nn.Tanh(), nn.ConvTranspose1d(16, 16, 32, 4, 15), # (16, 16, 322) nn.Tanh(), nn.ConvTranspose1d(16, 16, 32, 4, 15), # (16, 16, 1286) nn.Tanh(), nn.ConvTranspose1d(16, 16, 32, 4, 16), # (16, 16, 5140) nn.Tanh(), nn.ConvTranspose1d(16, 4, 32, 4, 19), # (16, 4, 20550) nn.Tanh(), ) # input sparse layers, initialize weight as 0.33, bias as 0 self.weight1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight1_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight1_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias1 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) self.weight11 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight11_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight11_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias11 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) self.weight2 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight2_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight2_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias2 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) self.weight22 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight22_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight22_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias22 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) self.weight3 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight3_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight3_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias3 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.zeros(k)),requires_grad = True) self.weight33 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight33_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight33_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias33 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.zeros(k)),requires_grad = True) self.weight4 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight4_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight4_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias4 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.zeros(k)),requires_grad = True) self.weight44 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight44_0 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.weight44_1 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.ones(k)),requires_grad = True) self.bias44 = torch.nn.Parameter(torch.FloatTensor(0.33 * torch.zeros(k)),requires_grad = True) # output sparse layers, initialize weight as 0.083, bias as 0 self.weight_out1 = torch.nn.Parameter(torch.FloatTensor(0.083 *torch.ones(k)),requires_grad = True) self.weight_out1_0 = torch.nn.Parameter(torch.FloatTensor(0.083* torch.ones(k)),requires_grad = True) self.weight_out1_1 = torch.nn.Parameter(torch.FloatTensor(0.083* torch.ones(k)),requires_grad = True) self.weight_out11 = torch.nn.Parameter(torch.FloatTensor(0.083 *torch.ones(k)),requires_grad = True) self.weight_out11_0 = torch.nn.Parameter(torch.FloatTensor(0.083* torch.ones(k)),requires_grad = True) self.weight_out11_1 = torch.nn.Parameter(torch.FloatTensor(0.083* torch.ones(k)),requires_grad = True) self.weight_out2 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out2_0 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out2_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out22 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out22_0 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out22_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out3 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out3_0 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out3_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out33 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out33_0 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out33_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out4 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out4_0= torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out4_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out44 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out44_0= torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.weight_out44_1 = torch.nn.Parameter(torch.FloatTensor(0.083 * torch.ones(k)),requires_grad = True) self.bias_out1 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) self.bias_out2 = torch.nn.Parameter(torch.FloatTensor(torch.zeros(k)),requires_grad = True) def forward(self, x, mode): # print("X_size",x.size()) # first curve ToSFC1 = x[:, :, 0] # # The first column is the first SFC ordering ToSFC1Up = torch.zeros_like(ToSFC1) ToSFC1Down = torch.zeros_like(ToSFC1) ToSFC1Up[:-1] = ToSFC1[1:] ToSFC1Up[-1] = ToSFC1[-1] ToSFC1Down[1:] = ToSFC1[:-1] ToSFC1Down[0] = ToSFC1[0] batch_num = ToSFC1.shape[0] #print("ToSFC1",ToSFC1.shape) # (16, 20550) x1 = x[:, :, 3:5] # The fourth column and fifth column are velocities u and v respectively #print("x1", x1.shape) # # (16, 20550, 2) x1_1d = torch.zeros((batch_num, 4, k)).to(device) # first input sparse layer, then transform to sfc order1 for j in range(batch_num): x1_1d[j, 0, :] = x1[j, :, 0][ToSFC1[j].long()] * self.weight1 + \ x1[j, :, 0][ToSFC1Up[j].long()] * self.weight1_0 + \ x1[j, :, 0][ToSFC1Down[j].long()] * self.weight1_1 + self.bias1 x1_1d[j, 1, :] = x1[j, :, 0][ToSFC1[j].long()] * self.weight11 + \ x1[j, :, 0][ToSFC1Up[j].long()] * self.weight11_0 + \ x1[j, :, 0][ToSFC1Down[j].long()] * self.weight11_1 + self.bias11 x1_1d[j, 2, :] = x1[j, :, 1][ToSFC1[j].long()] * self.weight2 + \ x1[j, :, 1][ToSFC1Up[j].long()] * self.weight2_0 + \ x1[j, :, 1][ToSFC1Down[j].long()] * self.weight2_1 + self.bias2 x1_1d[j, 3, :] = x1[j, :, 1][ToSFC1[j].long()] * self.weight22 + \ x1[j, :, 1][ToSFC1Up[j].long()] * self.weight22_0 + \ x1[j, :, 1][ToSFC1Down[j].long()] * self.weight22_1 + self.bias22 # first cnn encoder encoded_1 = self.encoder_h1(x1_1d.view(-1, 4, k)) #(16,4,20550) # print("encoded", encoded_1.shape) # flatten and concatenate encoded_3 = encoded_1.view(-1,16*81) # print("Before FC", encoded_3.shape) # fully connection encoded = self.fc1(encoded_3) # (b,128) # print("After encoder FC,the output of encoder",encoded.shape) encoded = torch.cat((encoded, mode),axis = 1) # Combine the mode_1 to the x1 # print("encoded_combine",encoded.shape) decoded_3 = self.decoder_h1(self.fc2(encoded).view(-1, 16, 81)) # print("The output of decoder: ", decoded_3.shape) # (16, 2, 20550) BackSFC1 = torch.argsort(ToSFC1) BackSFC1Up = torch.argsort(ToSFC1Up) BackSFC1Down = torch.argsort(ToSFC1Down) # k = 20550 # batch_num = ToSFC1.shape[0] decoded_sp = torch.zeros((batch_num, k, 2)).to(device) # output sparse layer, resort according to sfc transform for j in range(batch_num): decoded_sp[j, :, 0] = decoded_3[j, 0, :][BackSFC1[j].long()]* self.weight_out1 + \ decoded_3[j, 0, :][BackSFC1Up[j].long()] * self.weight_out1_0 + \ decoded_3[j, 0, :][BackSFC1Down[j].long()] * self.weight_out1_1 + \ decoded_3[j, 1, :][BackSFC1[j].long()]* self.weight_out11 + \ decoded_3[j, 1, :][BackSFC1Up[j].long()] * self.weight_out11_0 + \ decoded_3[j, 1, :][BackSFC1Down[j].long()] * self.weight_out11_1 + self.bias_out1 decoded_sp[j, :, 1] = decoded_3[j, 2, :][BackSFC1[j].long()] * self.weight_out3 + \ decoded_3[j, 2, :][BackSFC1Up[j].long()] * self.weight_out3_0 + \ decoded_3[j, 2, :][BackSFC1Down[j].long()] * self.weight_out3_1 + \ decoded_3[j, 3, :][BackSFC1[j].long()] * self.weight_out33 + \ decoded_3[j, 3, :][BackSFC1Up[j].long()] * self.weight_out33_0 + \ decoded_3[j, 3, :][BackSFC1Down[j].long()] * self.weight_out33_1 + self.bias_out2 # resort 1D to 2D decoded = F.tanh(decoded_sp) # both are BATCH_SIZE by nNodes by 2 return encoded, decoded ###Output _____no_output_____ ###Markdown Train ###Code # train the autoencoder t_train_0 = time.time() autoencoder_2 = CNN_2().to(device) optimizer = torch.optim.Adam(autoencoder_2.parameters(), lr=LR) loss_func = nn.MSELoss() loss_list = [] loss_valid = [] epoch_list=[] for epoch in range(EPOCH): for x, mode in train_loader: # Use the detach to copy the value of mode but set requires_grad = false detach_mode = mode.detach() b_y = x[:, :, 3:5].to(device) # b_y= False b_x = x.to(device) # b_x: False b_mode = detach_mode.to(device) # print("b_mode",b_mode.requires_grad) encoded, decoded = autoencoder_2(b_x.float(),b_mode.float()) #decoded true # decoded.detach_() # decoded = decoded.detach() loss = loss_func(decoded, b_y.float()) # Loss: True # mean square error optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients loss_list.append(loss) encoded, decoded = autoencoder_2(torch.tensor(valid_data).to(device),mode_1valid.float().to(device)) error_autoencoder_2 = (decoded.detach() - torch.tensor(valid_data[:,:, 3:5]).to(device)) MSE_valid = (error_autoencoder_2**2).mean() loss_valid.append(MSE_valid) epoch_list.append(epoch) print('Epoch: ', epoch, '| train loss: %.6f' % loss.cpu().data.numpy(), '| valid loss: %.6f' % MSE_valid) #save the weights every 500 epochs if (epoch%500 == 0): torch.save(autoencoder_2, "./HAE/pkl/II_I_Eran"+str(epoch) +"_LV"+str(Latent_num)+ "_B"+str(BATCH_SIZE)+"_n"+ str(nTrain)+"_L"+str(LR)+".pkl") pathcsv= "./HAE/csv/II_I_Eran"+str(epoch)+"_LV"+str(Latent_num) + "_B"+str(BATCH_SIZE)+"_n"+ str(nTrain)+"_L"+str(LR)+".csv" saveCsv(pathcsv,epoch+1) t_train_1 = time.time() # torch.save(autoencoder_2, path) print(t_train_1-t_train_0) # 3000 epoch ###Output 38702.73992228508 ###Markdown Save loss and plot ###Code pathName = "./HAE/csv/II_I_Eran3000_LV4_B16_n1600_L0.0001.csv" name = "SFC-HAE MSE loss of 4 compression variables" PlotMSELoss(pathName,name) autoencoder_2 = torch.load("./HAE/pkl/II_I_Eran3000_LV4_B16_n1600_L0.0001.pkl") ###Output _____no_output_____ ###Markdown Get mode ###Code # pass training, validation and test data through the autoencoder t_predict_0 = time.time() mode_2train, training_decoded_2 = autoencoder_2.to(device)(torch.tensor(training_data).to(device),mode_1train.float().to(device)) error_autoencoder = (training_decoded_2.cpu().detach().numpy() - training_data[:,:,3:5]) print("MSE_err of training data", (error_autoencoder**2).mean()) mode_2valid, valid_decoded_2 = autoencoder_2.to(device)(torch.tensor(valid_data).to(device),mode_1valid.float().to(device)) error_autoencoder = (valid_decoded_2.cpu().detach().numpy() - valid_data[:, :, 3:5]) print("Mse_err of validation data", (error_autoencoder**2).mean()) mode_2test, test_decoded_2 = autoencoder_2.to(device)(torch.tensor(test_data).to(device),mode_1test.float().to(device)) error_autoencoder = (test_decoded_2.cpu().detach().numpy() - test_data[:, :, 3:5]) print("Mse_err of test data", (error_autoencoder**2).mean()) t_predict_1 = time.time() total_decoded_2 = getTotal_decoded(training_decoded_2,valid_decoded_2,test_decoded_2,train_index,valid_index,test_index) error_autoencoder = (total_decoded_2 - total_data[:, :, 3:5]) print("Mse_err of total data", (error_autoencoder**2).mean()) print(mode_2train.shape) print(mode_2valid.shape) print(mode_2test.shape) print('Predict time:',t_predict_1-t_predict_0) ###Output /usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:1794: UserWarning: nn.functional.tanh is deprecated. Use torch.tanh instead. warnings.warn("nn.functional.tanh is deprecated. Use torch.tanh instead.") ###Markdown Convert csv to vtu ###Code # Before convert csv file to vtu file, the range of data must be recovered training_decoded_2[:, :, 0] = (training_decoded_2[:, :, 0] - bu)/ku valid_decoded_2[:, :, 0] = (valid_decoded_2[:, :, 0] - bu)/ku test_decoded_2[:, :, 0] = (test_decoded_2[:, :, 0] - bu)/ku total_decoded_2[:, :, 0] = (total_decoded_2[:, :, 0] - bu)/ku training_decoded_2[:, :, 1] = (training_decoded_2[:, :, 1] - bv)/kv valid_decoded_2[:, :, 1] = (valid_decoded_2[:, :, 1] - bv)/kv test_decoded_2[:, :, 1] = (test_decoded_2[:, :, 1] - bv)/kv total_decoded_2[:, :, 1] = (total_decoded_2[:, :, 1] - bv)/kv training_data[:, :, 3] = (training_data[:, :, 3] - bu)/ku valid_data[:, :, 3] = (valid_data[:, :, 3] - bu)/ku test_data[:, :, 3] = (test_data[:, :, 3] - bu)/ku total_data[:, :, 3] = (total_data[:, :, 3] - bu)/ku training_data[:, :, 4] = (training_data[:, :, 4] - bv)/kv valid_data[:, :, 4] = (valid_data[:, :, 4] - bv)/kv test_data[:, :, 4] = (test_data[:, :, 4] - bv)/kv total_data[:, :, 4] = (total_data[:, :, 4] - bv)/kv # results = np.concatenate((training_decoded_2.cpu().data.numpy(), valid_decoded_2.cpu().data.numpy(), test_decoded_2.cpu().data.numpy())) results = total_decoded_2 print('results shape', results.shape) N = results.shape[1] * results.shape[2] results = results.reshape((results.shape[0],N), order='F') print('results shape', results.shape, type(results)) # The path can be defined by user depending on the requirements path = "./HAE/All_results/HII_I"+"_LV"+str(Latent_num) + "_B"+str(BATCH_SIZE)+'E_'+str(3000)+"_result.csv" ## write results to file np.savetxt(path, results , delimiter=',') ###Output results shape (2000, 20550, 2) results shape (2000, 41100) <class 'numpy.ndarray'>
anomaly-detection-algorithm/code/model3-1.ipynb
###Markdown Import ###Code name = "swinLp4img384_cv10_lr0002_batch16" import warnings warnings.filterwarnings('ignore') from glob import glob import pandas as pd import numpy as np from tqdm.auto import tqdm import cv2 import pickle import os import timm import random from efficientnet_pytorch import EfficientNet import torch from torch.utils.data import Dataset, DataLoader import torch.nn as nn import torchvision.transforms as transforms from sklearn.metrics import f1_score, accuracy_score import time from sklearn.model_selection import StratifiedKFold device = torch.device('cuda:2') train_png = sorted(glob('../data/train/*.png')) test_png = sorted(glob('../data/test/*.png')) train_y = pd.read_csv("../data/train_df.csv") train_labels = train_y["label"] label_unique = sorted(np.unique(train_labels)) label_unique = {key:value for key,value in zip(label_unique, range(len(label_unique)))} train_labels = [label_unique[k] for k in train_labels] # def img_load(path): # img = cv2.imread(path)[:,:,::-1] # img = cv2.resize(img, (384-8, 384-8),interpolation = cv2.INTER_AREA) # return img # train_imgs = [img_load(m) for m in tqdm(train_png)] # test_imgs = [img_load(n) for n in tqdm(test_png)] # np.save('../data/train_imgs_384', np.array(train_imgs)) # np.save('../data/test_imgs_384', np.array(test_imgs)) train_imgs = np.load('../data/train_imgs_384.npy') test_imgs = np.load('../data/test_imgs_384.npy') # meanRGB = [np.mean(x, axis=(0,1)) for x in train_imgs] # stdRGB = [np.std(x, axis=(0,1)) for x in train_imgs] # meanR = np.mean([m[0] for m in meanRGB])/255 # meanG = np.mean([m[1] for m in meanRGB])/255 # meanB = np.mean([m[2] for m in meanRGB])/255 # stdR = np.mean([s[0] for s in stdRGB])/255 # stdG = np.mean([s[1] for s in stdRGB])/255 # stdB = np.mean([s[2] for s in stdRGB])/255 # print("train 평균",meanR, meanG, meanB) # print("train 표준편차",stdR, stdG, stdB) # meanRGB = [np.mean(x, axis=(0,1)) for x in test_imgs] # stdRGB = [np.std(x, axis=(0,1)) for x in test_imgs] # meanR = np.mean([m[0] for m in meanRGB])/255 # meanG = np.mean([m[1] for m in meanRGB])/255 # meanB = np.mean([m[2] for m in meanRGB])/255 # stdR = np.mean([s[0] for s in stdRGB])/255 # stdG = np.mean([s[1] for s in stdRGB])/255 # stdB = np.mean([s[2] for s in stdRGB])/255 # print("test 평균",meanR, meanG, meanB) # print("test 표준편차",stdR, stdG, stdB) class Custom_dataset(Dataset): def __init__(self, img_paths, labels, mode='train'): self.img_paths = img_paths self.labels = labels self.mode=mode def __len__(self): return len(self.img_paths) def __getitem__(self, idx): img = self.img_paths[idx] if self.mode == 'train': train_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean = [0.433038, 0.403458, 0.394151], std = [0.181572, 0.174035, 0.163234]), transforms.RandomAffine((-45, 45)), ]) img = train_transform(img) if self.mode == 'test': test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean = [0.418256, 0.393101, 0.386632], std = [0.195055, 0.190053, 0.185323]) ]) img = test_transform(img) label = self.labels[idx] return img, label class Network(nn.Module): def __init__(self,mode = 'train'): super(Network, self).__init__() self.mode = mode if self.mode == 'train': self.model = timm.create_model('swin_large_patch4_window12_384', pretrained=True, num_classes=88, drop_path_rate = 0.2) if self.mode == 'test': self.model = timm.create_model('swin_large_patch4_window12_384', pretrained=True, num_classes=88, drop_path_rate = 0) def forward(self, x): x = self.model(x) return x def score_function(real, pred): score = f1_score(real, pred, average="macro") return score def main(seed = 2022): os.environ['PYTHONHASHSEED'] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.benchmark = True main(2022) pred_train_dict = {} pred_test_dict = {} import gc cv = StratifiedKFold(n_splits = 10, random_state = 2022, shuffle=True) batch_size = 16 epochs = 80 pred_ensemble = [] for idx, (train_idx, val_idx) in enumerate(cv.split(train_imgs, np.array(train_labels))): # print("----------fold_{} start!----------".format(idx)) t_imgs, val_imgs = train_imgs[train_idx], train_imgs[val_idx] t_labels, val_labels = np.array(train_labels)[train_idx], np.array(train_labels)[val_idx] # Train train_dataset = Custom_dataset(np.array(t_imgs), np.array(t_labels), mode='train') train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) # Val val_dataset = Custom_dataset(np.array(val_imgs), np.array(val_labels), mode='test') val_loader = DataLoader(val_dataset, shuffle=True, batch_size=batch_size) gc.collect() torch.cuda.empty_cache() best=0 model = Network().to(device) optimizer = torch.optim.AdamW(model.parameters(), lr=2e-4, weight_decay = 2e-2) criterion = nn.CrossEntropyLoss() scaler = torch.cuda.amp.GradScaler() best_f1 = 0 early_stopping = 0 for epoch in range(epochs): start=time.time() train_loss = 0 train_pred=[] train_y=[] model.train() for batch in (train_loader): optimizer.zero_grad() x = torch.tensor(batch[0], dtype=torch.float32, device=device) y = torch.tensor(batch[1], dtype=torch.long, device=device) with torch.cuda.amp.autocast(): pred = model(x) loss = criterion(pred, y) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() train_loss += loss.item()/len(train_loader) train_pred += pred.argmax(1).detach().cpu().numpy().tolist() train_y += y.detach().cpu().numpy().tolist() train_f1 = score_function(train_y, train_pred) state_dict= model.state_dict() model.eval() with torch.no_grad(): val_loss = 0 val_pred = [] val_y = [] for batch in (val_loader): x_val = torch.tensor(batch[0], dtype = torch.float32, device = device) y_val = torch.tensor(batch[1], dtype=torch.long, device=device) with torch.cuda.amp.autocast(): pred_val = model(x_val) loss_val = criterion(pred_val, y_val) val_loss += loss_val.item()/len(val_loader) val_pred += pred_val.argmax(1).detach().cpu().numpy().tolist() val_y += y_val.detach().cpu().numpy().tolist() val_f1 = score_function(val_y, val_pred) print(f'fold{idx+1} epoch{epoch} score: {val_f1:.5f}') if val_f1 > best_f1: best_epoch = epoch best_loss = val_loss best_f1 = val_f1 early_stopping = 0 torch.save({'epoch':epoch, 'state_dict':state_dict, 'optimizer': optimizer.state_dict(), 'scaler': scaler.state_dict(), }, f'../model/{name}_best_model_{idx+1}.pth') # print('-----------------SAVE:{} epoch----------------'.format(best_epoch+1)) else: early_stopping += 1 # Early Stopping if early_stopping == 20: TIME = time.time() - start print(f'epoch : {epoch+1}/{epochs} time : {TIME:.0f}s/{TIME*(epochs-epoch-1):.0f}s') print(f'TRAIN loss : {train_loss:.5f} f1 : {train_f1:.5f}') print(f'Val loss : {val_loss:.5f} f1 : {val_f1:.5f}') break TIME = time.time() - start print(f'epoch : {epoch+1}/{epochs} time : {TIME:.0f}s/{TIME*(epochs-epoch-1):.0f}s') print(f'TRAIN loss : {train_loss:.5f} f1 : {train_f1:.5f}') print(f'Val loss : {val_loss:.5f} f1 : {val_f1:.5f}') pred_train = np.zeros((len(train_imgs), 88)) pred_test = np.zeros((len(test_imgs), 88)) test_dataset = Custom_dataset(np.array(test_imgs), np.array(["tmp"]*len(test_imgs)), mode='test') test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) for idx, (train_idx, val_idx) in enumerate(cv.split(train_imgs, np.array(train_labels))): print("----------fold_{} predict start!----------".format(idx+1)) t_imgs, val_imgs = train_imgs[train_idx], train_imgs[val_idx] t_labels, val_labels = np.array(train_labels)[train_idx], np.array(train_labels)[val_idx] # Val val_dataset = Custom_dataset(np.array(val_imgs), np.array(val_labels), mode='test') val_loader = DataLoader(val_dataset, shuffle=False, batch_size=batch_size) gc.collect() torch.cuda.empty_cache() model_test = Network(mode = 'test').to(device) model_test.load_state_dict(torch.load((f'../model/{name}_best_model_{idx+1}.pth'))['state_dict']) model_test.eval() pred_train_list = [] with torch.no_grad(): for batch in (val_loader): x = torch.tensor(batch[0], dtype = torch.float32, device = device) with torch.cuda.amp.autocast(): pred_train_local = model_test(x) pred_train_list.extend(pred_train_local.detach().cpu().numpy()) gc.collect() torch.cuda.empty_cache() model_test = Network(mode = 'test').to(device) model_test.load_state_dict(torch.load((f'../model/{name}_best_model_{idx+1}.pth'))['state_dict']) model_test.eval() pred_test_list = [] with torch.no_grad(): for batch in (test_loader): x = torch.tensor(batch[0], dtype = torch.float32, device = device) with torch.cuda.amp.autocast(): pred_test_local = model_test(x) pred_test_list.extend(pred_test_local.detach().cpu().numpy()) pred_train[val_idx, :] = pred_train_list pred_test += np.array(pred_test_list) / 10 pred_train_dict[f'{name}_seed{str(2022)}'] = pred_train pred_test_dict[f'{name}_seed{str(2022)}'] = pred_test def sort_dict(model, pred_dict, pred_test_dict): pred_dict_local = {} for key, value in pred_dict.items(): if model in key: pred_dict_local[key]=value pred_test_dict_local = {} for key, value in pred_test_dict.items(): if model in key: pred_test_dict_local[key]=value pred_dict_new_local = dict(sorted( pred_dict_local.items(), key=lambda x:score_function((train_labels), np.argmax(list(x[1]), axis=1)), reverse=False)[:5]) pred_test_dict_new_local = {} for key, value in pred_dict_new_local.items(): pred_test_dict_new_local[key]=pred_test_dict_local[key] return pred_dict_new_local, pred_test_dict_new_local def save_dict(model, pred_dict, pred_test_dict): with open('../pickle/pred_train_dict_'+model+'.pickle', 'wb') as fw: pickle.dump(pred_dict, fw) with open('../pickle/pred_test_dict_'+model+'.pickle', 'wb') as fw: pickle.dump(pred_test_dict, fw) pred_train_dict_global, pred_test_dict_global = sort_dict(name, pred_train_dict, pred_test_dict) save_dict(name, pred_train_dict_global, pred_test_dict_global) ###Output _____no_output_____
24_alpha_factor_library/01_sample_selection.ipynb
###Markdown Data Prep ###Code import warnings warnings.filterwarnings('ignore') %matplotlib inline from pathlib import Path import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_style('whitegrid') idx = pd.IndexSlice deciles = np.arange(.1, 1, .1).round(1) ###Output _____no_output_____ ###Markdown Load Data ###Code DATA_STORE = Path('..', 'data', 'assets.h5') with pd.HDFStore(DATA_STORE) as store: data = (store['quandl/wiki/prices'] .loc[idx['2007':'2016', :], ['adj_open', 'adj_high', 'adj_low', 'adj_close', 'adj_volume']] .dropna() .swaplevel() .sort_index() .rename(columns=lambda x: x.replace('adj_', ''))) metadata = store['us_equities/stocks'].loc[:, ['marketcap', 'sector']] data.info(null_counts=True) metadata.sector = pd.factorize(metadata.sector)[0] metadata.info() data = data.join(metadata).dropna(subset=['sector']) data.info(null_counts=True) print(f"# Tickers: {len(data.index.unique('ticker')):,.0f} | # Dates: {len(data.index.unique('date')):,.0f}") ###Output # Tickers: 2,399 | # Dates: 2,547 ###Markdown Select 500 most-traded stocks ###Code dv = data.close.mul(data.volume) top500 = (dv.groupby(level='date') .rank(ascending=False) .unstack('ticker') .dropna(thresh=8*252, axis=1) .mean() .nsmallest(500)) ###Output _____no_output_____ ###Markdown Visualize the 200 most liquid stocks ###Code top200 = (data.close .mul(data.volume) .unstack('ticker') .dropna(thresh=8*252, axis=1) .mean() .div(1e6) .nlargest(200)) cutoffs = [0, 50, 100, 150, 200] fig, axes = plt.subplots(ncols=4, figsize=(20, 10), sharex=True) axes = axes.flatten() for i, cutoff in enumerate(cutoffs[1:], 1): top200.iloc[cutoffs[i-1]:cutoffs[i] ].sort_values().plot.barh(logx=True, ax=axes[i-1]) fig.tight_layout() to_drop = data.index.unique('ticker').difference(top500.index) len(to_drop) data = data.drop(to_drop, level='ticker') data.info(null_counts=True) print(f"# Tickers: {len(data.index.unique('ticker')):,.0f} | # Dates: {len(data.index.unique('date')):,.0f}") ###Output # Tickers: 500 | # Dates: 2,518 ###Markdown Remove outlier observations based on daily returns ###Code before = len(data) data['ret'] = data.groupby('ticker').close.pct_change() data = data[data.ret.between(-1, 1)].drop('ret', axis=1) print(f'Dropped {before-len(data):,.0f}') tickers = data.index.unique('ticker') print(f"# Tickers: {len(tickers):,.0f} | # Dates: {len(data.index.unique('date')):,.0f}") ###Output # Tickers: 500 | # Dates: 2,517 ###Markdown Sample price data for illustration ###Code ticker = 'AAPL' # alternative # ticker = np.random.choice(tickers) price_sample = data.loc[idx[ticker, :], :].reset_index('ticker', drop=True) price_sample.info() price_sample.to_hdf('data.h5', 'data/sample') ###Output _____no_output_____ ###Markdown Compute returns Group data by ticker ###Code by_ticker = data.groupby(level='ticker') ###Output _____no_output_____ ###Markdown Historical returns ###Code T = [1, 2, 3, 4, 5, 10, 21, 42, 63, 126, 252] for t in T: data[f'ret_{t:02}'] = by_ticker.close.pct_change(t) ###Output _____no_output_____ ###Markdown Forward returns ###Code data['ret_fwd'] = by_ticker.ret_01.shift(-1) data = data.dropna(subset=['ret_fwd']) ###Output _____no_output_____ ###Markdown Persist results ###Code data.info(null_counts=True) data.to_hdf('data.h5', 'data/top500') ###Output _____no_output_____
Olist.ipynb
###Markdown ###Code import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown **Carregando os Dados** Tabela de Pedidos ###Code df_orders = pd.read_csv('/content/drive/MyDrive/datasets/olist/olist_orders_dataset.csv', parse_dates=['order_approved_at']) df_orders.head() ###Output _____no_output_____ ###Markdown Tabela de Item-Pedidos ###Code df_order_items = pd.read_csv('/content/drive/MyDrive/datasets/olist/olist_order_items_dataset.csv') df_order_items.head() ###Output _____no_output_____ ###Markdown Tabela de Cadastro de Sellers ###Code df_sellers = pd.read_csv('/content/drive/MyDrive/datasets/olist/olist_sellers_dataset.csv') df_sellers.head() ###Output _____no_output_____ ###Markdown Criando a ABT de Classificação ###Code # criando histórico da abt de trino df_historico_abt_train = ( df_order_items .merge(df_orders, on='order_id', how='left') .query('order_status == "delivered"') .query('order_approved_at >= "2017-01-01" & order_approved_at < "2018-07-01"') .merge(df_sellers, on='seller_id', how='left') ) df_historico_abt_train.head() # criando as features df_features_train = ( df_historico_abt_train .query('order_approved_at < "2018-01-01"') .groupby('seller_id') .agg(uf = ('seller_state', 'first'), tot_orders_12m = ('order_id', 'nunique'), tot_items_12m = ('product_id', 'count'), tot_items_dist_12m = ('product_id', 'nunique'), receita_12m = ('price', 'sum'), data_ult_vnd = ('order_approved_at', 'max')) .reset_index() .assign(data_ref = pd.to_datetime('2018-01-01 00:00:00')) .assign(recencia = lambda df: (df['data_ref'] - df['data_ult_vnd']).dt.days) ) df_features_train.head() # df_orders = pd.read_csv('/content/drive/MyDrive/datasets/olist/olist_orders_dataset.csv', parse_dates=['order_approved_at']) # Declarar nuevamente para hacer la operacion de la resta de los dias. Recordar que una vez hecho esto correr todo de nuevo. df_features_train.sort_values('recencia', ascending=False).head() # criando o target ( df_historico_abt_train .query('order_approved_at >= "2018-01-01" & order_approved_at < "2018-07-01"') .filter(['seller_id']) .drop_duplicates() ) # criando o target ( df_historico_abt_train .query('order_approved_at >= "2018-01-01" & order_approved_at < "2018-07-01"') .filter(['seller_id']) .drop_duplicates() .query('seller_id == "c9a06ece156bb057372c68718ec8909b"') ) # criando o target df_target_train = ( df_historico_abt_train .query('order_approved_at >= "2018-01-01" & order_approved_at < "2018-07-01"') .filter(['seller_id']) .drop_duplicates() ) df_target_train.head() # criando a abt de fato ( df_features_train .merge(df_target_train, on='seller_id', how='left', indicator=True) ).head() # criando a abt de fato ( df_features_train .merge(df_target_train, on='seller_id', how='left', indicator=True) .assign(churn_6m = lambda df: np.where(df['_merge'] == "left_only", 1, 0)) ).head() # criando a abt de fato df_abt_churn_train = ( df_features_train .merge(df_target_train, on='seller_id', how='left', indicator=True) # left_only = churn (1), both = não churn (0) .assign(churn_6m = lambda df: np.where(df['_merge'] == "left_only", 1, 0)) .filter(['data_ref', 'seller_id', 'uf', 'tot_orders_12m', 'tot_items_12m', 'tot_items_dist_12m', 'receita_12m', 'recencia', 'churn_6m']) ) df_abt_churn_train.head() ###Output _____no_output_____ ###Markdown Criando a ABT Out of Time (Validação ou Teste) ###Code # criando histórico da abt de treino df_historico_abt_oot = ( df_order_items .merge(df_orders, on='order_id', how='left') .query('order_status == "delivered"') .query('order_approved_at >= "2017-02-01" & order_approved_at < "2018-08-01"') .merge(df_sellers, on='seller_id', how='left') ) df_historico_abt_train.head() df_historico_abt_oot.agg({'order_approved_at': ['min', 'max']}) # criando as features df_features_oot = ( df_historico_abt_oot .query('order_approved_at < "2018-02-01"') .groupby('seller_id') .agg(uf = ('seller_state', 'first'), tot_orders_12m = ('order_id', 'nunique'), tot_items_12m = ('product_id', 'count'), tot_items_dist_12m = ('product_id', 'nunique'), receita_12m = ('price', 'sum'), data_ult_vnd = ('order_approved_at', 'max')) .reset_index() .assign(data_ref = pd.to_datetime('2018-02-01 00:00:00')) .assign(recencia = lambda df: (df['data_ref'] - df['data_ult_vnd']).dt.days) ) df_features_oot.head() # criando o target df_target_oot = ( df_historico_abt_oot .query('order_approved_at >= "2018-02-01" & order_approved_at < "2018-08-01"') .filter(['seller_id']) .drop_duplicates() ) df_target_oot.head() # criando a abt out of time df_abt_churn_oot = ( df_features_oot .merge(df_target_oot, on='seller_id', how='left', indicator=True) # left_only = churn (1), both = não churn (0) .assign(churn_6m = lambda df: np.where(df['_merge'] == "left_only", 1, 0)) .filter(['data_ref', 'seller_id', 'uf', 'tot_orders_12m', 'tot_items_12m', 'tot_items_dist_12m', 'receita_12m', 'recencia', 'churn_6m']) ) df_abt_churn_oot.head() ###Output _____no_output_____ ###Markdown Verificando as Distribuições da Variável Target ###Code df_abt_churn_train['churn_6m'].value_counts(normalize=True) df_abt_churn_oot['churn_6m'].value_counts(normalize=True) df_abt_churn_oot['churn_6m'].value_counts() df_abt_churn_train['churn_6m'].value_counts() ###Output _____no_output_____ ###Markdown Salvando as ABTs ###Code import joblib joblib.dump(df_abt_churn_train, '/content/drive/MyDrive/datasets/olist/abt_classificacao_churn_train.pkl') joblib.load('/content/drive/MyDrive/datasets/olist/abt_classificacao_churn_train.pkl') df_abt_churn_train.to_csv('/content/drive/MyDrive/datasets/olist/abt_classificacao_churn_train.csv', index=False) df_abt_churn_oot.to_csv('/content/drive/MyDrive/datasets/olist/abt_classificacao_churn_oot.csv', index=False) ###Output _____no_output_____
2020-Tencent-Advertisement-Algorithm-Competition-Rank19/3_LSTM_v10_win30_300size_10folds.ipynb
###Markdown 读取数据 ###Code df = pd.read_pickle(os.path.join(data_path, 'processed_data_numerical.pkl')) df['age'] = df['age'] - 1 df['gender'] = df['gender'] - 1 df.head(1) ###Output _____no_output_____ ###Markdown 读取预训练好的Word Embedding ###Code os.listdir(embedding_path) embedding = np.load(os.path.join(embedding_path, 'embedding_w2v_sg1_hs0_win30_size300.npz')) creative = embedding['creative_w2v'] ad= embedding['ad_w2v'] advertiser = embedding['advertiser_w2v'] product = embedding['product_w2v'] industry = embedding['industry_w2v'] product_cate = embedding['product_cate_w2v'] del embedding gc.collect() ###Output _____no_output_____ ###Markdown 需要使用的embedding特征以及对应的序列编号 ###Code # 这里将需要使用到的特征列直接拼接成一个向量,后面直接split即可 data_seq = df[['creative_id', 'ad_id', 'advertiser_id', 'product_id', 'industry', 'click_times']].progress_apply(lambda s: np.hstack(s.values), axis=1).values # embedding_list = [creative_embed, ad_embed, advertiser_embed, product_embed] # embedding_list = [creative_glove, ad_glove, advertiser_glove, product_glove] embedding_list = [creative, ad, advertiser, product, industry] ###Output 100%|██████████| 4000000/4000000 [08:10<00:00, 8150.43it/s] ###Markdown 建立PyTorch Dataset 和 Dataloader ###Code class CustomDataset(Dataset): def __init__(self, seqs, labels, input_num, shuffle=False): self.seqs = seqs self.labels = labels self.input_num = input_num self.shuffle = shuffle def __len__(self): return len(self.seqs) def __getitem__(self, idx): length = int(self.seqs[idx].shape[0]/self.input_num) seq_list = list(torch.LongTensor(self.seqs[idx]).split(length, dim=0)) label = torch.LongTensor(self.labels[idx]) # 对数据进行随机shuffle if self.shuffle and torch.rand(1) < 0.4: random_pos = torch.randperm(length) for i in range(len(seq_list)): seq_list[i] = seq_list[i][random_pos] return seq_list + [length, label] def pad_truncate(Batch): *seqs, lengths, labels = list(zip(*Batch)) # 长度截取到99%的大小,可以缩短pad长度,大大节省显存 trun_len = torch.topk(torch.tensor(lengths), max(int(0.01*len(lengths)), 1))[0][-1] # 保险起见,再设置一个最大长度 max_len = min(trun_len, 150) seq_list = list(pad_sequence(seq, batch_first=True)[:, :max_len] for seq in seqs) return seq_list, torch.tensor(lengths).clamp_max(max_len), torch.stack(labels) input_num = 6 BATCH_SIZE_TRAIN = 1024 BATCH_SIZE_VAL = 2048 BATCH_SIZE_TEST = 2048 kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=0) data_folds = [] valid_indexs = [] # 用于后面保存五折的验证集结果时,按照1到900000对应顺序 for idx, (train_index, valid_index) in enumerate(kf.split(X=df.iloc[:3000000], y=df.iloc[:3000000]['age'])): valid_indexs.append(valid_index) X_train, X_val, X_test = data_seq[train_index], data_seq[valid_index], data_seq[3000000:] y_train, y_val = np.array(df.iloc[train_index, -2:]), np.array(df.iloc[valid_index, -2:]) y_test = np.random.rand(X_test.shape[0], 2) train_dataset = CustomDataset(X_train, y_train, input_num, shuffle=True) val_dataset = CustomDataset(X_val, y_val, input_num, shuffle=False) test_dataset = CustomDataset(X_test, y_test, input_num, shuffle=False) train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE_TRAIN, shuffle=True, collate_fn=pad_truncate, num_workers=0, worker_init_fn=worker_init_fn) valid_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE_VAL, sampler=SequentialSampler(val_dataset), shuffle=False, collate_fn=pad_truncate, num_workers=0, worker_init_fn=worker_init_fn) test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE_TEST, sampler=SequentialSampler(test_dataset), shuffle=False, collate_fn=pad_truncate, num_workers=0, worker_init_fn=worker_init_fn) data_folds.append((train_dataloader, valid_dataloader, test_dataloader)) del data_seq, creative, ad, advertiser, product, industry, product_cate gc.collect() ###Output _____no_output_____ ###Markdown 搭建模型 ###Code class BiLSTM(nn.Module): def __init__(self, embedding_list, embedding_freeze, lstm_size, fc1, fc2, num_layers=1, rnn_dropout=0.2, embedding_dropout=0.2, fc_dropout=0.2): super().__init__() self.embedding_layers = nn.ModuleList([nn.Embedding.from_pretrained(torch.HalfTensor(embedding).cuda(), freeze=freeze) for embedding, freeze in zip(embedding_list, embedding_freeze)]) self.input_dim = int(np.sum([embedding.shape[1] for embedding in embedding_list])) self.lstm = nn.LSTM(input_size = self.input_dim, hidden_size = lstm_size, num_layers = num_layers, bidirectional = True, batch_first = True, dropout = rnn_dropout) self.fc1 = nn.Linear(2*lstm_size, fc1) self.fc2 = nn.Linear(fc1, fc2) self.fc3 = nn.Linear(fc2, 12) self.rnn_dropout = nn.Dropout(rnn_dropout) self.embedding_dropout = nn.Dropout(embedding_dropout) self.fc_dropout = nn.Dropout(fc_dropout) def forward(self, seq_list, lengths): batch_size, total_length= seq_list[0].size() lstm_outputs = [] click_time = seq_list[-1] embeddings = [] for idx, seq in enumerate(seq_list[:-1]): embedding = self.embedding_layers[idx](seq).to(torch.float32) embedding = self.embedding_dropout(embedding) embeddings.append(embedding) packed = pack_padded_sequence(torch.cat(embeddings, dim=-1), lengths, batch_first=True, enforce_sorted=False) packed_output, (h_n, c_n) = self.lstm(packed) lstm_output, _ = pad_packed_sequence(packed_output, batch_first=True, total_length=total_length, padding_value=-float('inf')) lstm_output = self.rnn_dropout(lstm_output) # lstm_output shape: (batchsize, total_length, 2*lstm_size) max_output = F.max_pool2d(lstm_output, (total_length, 1), stride=(1, 1)).squeeze() # output shape: (batchsize, 2*lstm_size) fc_out = F.relu(self.fc1(max_output)) fc_out = self.fc_dropout(fc_out) fc_out = F.relu(self.fc2(fc_out)) pred = self.fc3(fc_out) age_pred = pred[:, :10] gender_pred = pred[:, -2:] return age_pred, gender_pred ###Output _____no_output_____ ###Markdown 训练模型 ###Code def validate(model, val_dataloader, criterion, history, n_iters): model.eval() global best_acc, best_model, validate_history costs = [] age_accs = [] gender_accs = [] with torch.no_grad(): for idx, batch in enumerate(val_dataloader): seq_list, lengths, labels = batch seq_list_device = [seq.cuda() for seq in seq_list] lengths_device = lengths.cuda() labels = labels.cuda() age_output, gender_output = model(seq_list_device, lengths_device) loss = criterion(age_output, gender_output, labels) costs.append(loss.item()) _, age_preds = torch.max(age_output, 1) _, gender_preds = torch.max(gender_output, 1) age_accs.append((age_preds == labels[:, 0]).float().mean().item()) gender_accs.append((gender_preds == labels[:, 1]).float().mean().item()) torch.cuda.empty_cache() mean_accs = np.mean(age_accs) + np.mean(gender_accs) mean_costs = np.mean(costs) writer.add_scalar('gender/validate_accuracy', np.mean(gender_accs), n_iters) writer.add_scalar('gender/validate_loss', mean_costs, n_iters) writer.add_scalar('age/validate_accuracy',np.mean(age_accs), n_iters) writer.add_scalar('age/validate_loss', mean_costs, n_iters) if mean_accs > history['best_model'][0][0]: save_dict = copy.deepcopy(model.state_dict()) embedding_keys = [] for key in save_dict.keys(): if key.startswith('embedding'): embedding_keys.append(key) for key in embedding_keys: save_dict.pop(key) heapq.heapify(history['best_model']) checkpoint_pth = history['best_model'][0][1] heapq.heappushpop(history['best_model'], (mean_accs, checkpoint_pth)) torch.save(save_dict, checkpoint_pth) del save_dict gc.collect() torch.cuda.empty_cache() return mean_costs, mean_accs def train(model, train_dataloader, val_dataloader, criterion, optimizer, epoch, history, validate_points, scheduler, step=True): model.train() costs = [] age_accs = [] gender_accs = [] val_loss, val_acc = 0, 0 with tqdm(total=len(train_dataloader.dataset), desc='Epoch{}'.format(epoch)) as pbar: for idx, batch in enumerate(train_dataloader): seq_list, lengths, labels = batch seq_list_device = [seq.cuda() for seq in seq_list] lengths_device = lengths.cuda() labels = labels.cuda() age_output, gender_output = model(seq_list_device, lengths_device) loss = criterion(age_output, gender_output, labels) optimizer.zero_grad() loss.backward() optimizer.step() if step: scheduler.step() with torch.no_grad(): costs.append(loss.item()) _, age_preds = torch.max(age_output, 1) _, gender_preds = torch.max(gender_output, 1) age_accs.append((age_preds == labels[:, 0]).float().mean().item()) gender_accs.append((gender_preds == labels[:, 1]).float().mean().item()) pbar.update(labels.size(0)) n_iters = idx + len(train_dataloader)*(epoch-1) if idx in validate_points: val_loss, val_acc = validate(model, val_dataloader, criterion, history, n_iters) model.train() writer.add_scalar('gender/train_accuracy', gender_accs[-1], n_iters) writer.add_scalar('gender/train_loss', costs[-1], n_iters) writer.add_scalar('age/train_accuracy', age_accs[-1], n_iters) writer.add_scalar('age/train_loss', costs[-1], n_iters) writer.add_scalar('age/learning_rate', scheduler.get_lr()[0], n_iters) pbar.set_postfix_str('loss:{:.4f}, acc:{:.4f}, val-loss:{:.4f}, val-acc:{:.4f}'.format(np.mean(costs[-10:]), np.mean(age_accs[-10:])+np.mean(gender_accs[-10:]), val_loss, val_acc)) torch.cuda.empty_cache() def test(oof_train_test, model, test_dataloader, val_dataloader, valid_index, weight=1): # 这里测试的时候对验证集也进行计算,以便于后续模型融合和search weight等提高 model.eval() y_val = [] age_pred = [] gender_pred = [] age_pred_val = [] gender_pred_val = [] with torch.no_grad(): for idx, batch in enumerate(test_dataloader): seq_list, lengths, labels = batch seq_list_device = [seq.cuda() for seq in seq_list] lengths_device = lengths.cuda() age_output, gender_output = model(seq_list_device, lengths_device) age_pred.append(age_output.cpu()) gender_pred.append(gender_output.cpu()) torch.cuda.empty_cache() for idx, batch in enumerate(val_dataloader): seq_list, lengths, labels = batch seq_list_device = [seq.cuda() for seq in seq_list] lengths_device = lengths.cuda() age_output, gender_output = model(seq_list_device, lengths_device) age_pred_val.append(age_output.cpu()) gender_pred_val.append(gender_output.cpu()) y_val.append(labels) torch.cuda.empty_cache() # 0到9列存储age的预测概率分布,10列到11列存储gender的预测概率分布,12、13列分别存储age和gender的真实标签 oof_train_test[valid_index, :10] += F.softmax(torch.cat(age_pred_val)).numpy() * weight oof_train_test[valid_index, 10:12] += F.softmax(torch.cat(gender_pred_val)).numpy() * weight oof_train_test[valid_index, 12:] = torch.cat(y_val).numpy() oof_train_test[3000000:, :10] += F.softmax(torch.cat(age_pred)).numpy() * (1/5) * weight oof_train_test[3000000:, 10:12] += F.softmax(torch.cat(gender_pred)).numpy() * (1/5) * weight # 定义联合损失函数 def criterion(age_output, gender_output, labels): age_loss = nn.CrossEntropyLoss()(age_output, labels[:, 0]) gender_loss = nn.CrossEntropyLoss()(gender_output, labels[:, 1]) return age_loss*0.6 + gender_loss*0.4 # 0到9列存储age的预测概率分布,10列到11列存储gender的预测概率分布,12、13列分别存储age和gender的真实标签 oof_train_test = np.zeros((4000000, 14)) # oof_train_test = np.load(os.path.join(model_save, "lstm_v10_300size_win30_fold_1.npy")) acc_folds = [] model_name = 'lstm_v10_300size_win30' best_checkpoint_num = 3 for idx, (train_dataloader, val_dataloader, test_dataloader) in enumerate(data_folds): # if idx in [0, 1]: # continue history = {'best_model': []} for i in range(best_checkpoint_num): history['best_model'].append((0, os.path.join(model_save, '{}_checkpoint_{}.pth'.format(model_name, i)))) # 对应顺序: creative_w2v, ad_w2v, advertiser_w2v, product_w2v, industry_w2v embedding_freeze = [True, True, True, True, True] validate_points = list(np.linspace(0, len(train_dataloader)-1, 2).astype(int))[1:] model = BiLSTM(embedding_list, embedding_freeze, lstm_size=1500, fc1=1500, fc2=800, num_layers=2, rnn_dropout=0.0, fc_dropout=0.0, embedding_dropout=0.0) model = model.cuda() model = nn.parallel.DistributedDataParallel(model, find_unused_parameters=True) optimizer = torch.optim.Adam(model.parameters(), betas=(0.9, 0.999), lr=1e-3) epochs = 5 # scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.7) scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=1e-5, max_lr=2e-3, step_size_up=int(len(train_dataloader)/2), cycle_momentum=False, mode='triangular') # scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=3e-3, epochs=epochs, steps_per_epoch=len(train_dataloader), pct_start=0.2, anneal_strategy='linear', div_factor=30, final_div_factor=1e4) for epoch in range(1, epochs+1): writer = SummaryWriter(log_dir='./runs/{}_fold_{}'.format(model_name, idx)) train(model, train_dataloader, val_dataloader, criterion, optimizer, epoch, history, validate_points, scheduler, step=True) # scheduler.step() gc.collect() for (acc, checkpoint_pth), weight in zip(sorted(history['best_model'], reverse=True), [0.5, 0.3, 0.2]): model.load_state_dict(torch.load(checkpoint_pth, map_location=torch.device('cpu')), strict=False) test(oof_train_test, model, test_dataloader, val_dataloader, valid_indexs[idx], weight=weight) acc_folds.append(sorted(history['best_model'], reverse=True)[0][0]) np.save(os.path.join(model_save, "{}_fold_{}.npy".format(model_name, idx)), oof_train_test) del model, history gc.collect() torch.cuda.empty_cache() acc_folds np.save(os.path.join(res_path, "{}_10folds_{:.4f}.npy".format(model_name, np.mean(acc_folds))), oof_train_test) y_pred_age = (oof_train_test[3000000:, :10]).argmax(axis=1) y_pred_gender = oof_train_test[3000000:, 10:12].argmax(axis=1) df_submit = df.iloc[3000000:, -2:].rename({'age': 'predicted_age', 'gender':'predicted_gender'}, axis=1) df_submit['predicted_age'] = y_pred_age + 1 df_submit['predicted_gender'] = y_pred_gender + 1 df_submit.to_csv(os.path.join(res_path, "submission.csv")) ###Output _____no_output_____
Example Notebooks/.ipynb_checkpoints/K-means Clustering-checkpoint.ipynb
###Markdown K-means Clustering in GenePattern NotebookCluster genes and/or samples into a specified number of clusters. The result is k clusters, each centered around a randomly selected data point. Before you begin* Sign in to GenePattern by entering your username and password into the form below. If you are seeing a block of code instead of the login form, go to the menu above and select Cell > Run All.* Gene expression data must be in a [GCT or RES file](https://genepattern.broadinstitute.org/gp/pages/protocols/GctResFiles.html). * Example file: [all_aml_test.gct](https://software.broadinstitute.org/cancer/software/genepattern/data/all_aml/all_aml_test.gct).* Learn more by reading about [file formats](http://www.broadinstitute.org/cancer/software/genepattern/file-formats-guideGCT). ###Code # Requires GenePattern Notebook: pip install genepattern-notebook import gp import genepattern # Username and password removed for security reasons. genepattern.GPAuthWidget(genepattern.register_session("https://genepattern.broadinstitute.org/gp", "", "")) ###Output _____no_output_____ ###Markdown Step 1: PreprocessDatasetPreprocess gene expression data to remove platform noise and genes that have little variation. Although researchers generally preprocess data before clustering if doing so removes relevant biological information, skip this step. Considerations* PreprocessDataset can preprocess the data in one or more ways (in this order): 1. Set threshold and ceiling values. Any value lower/higher than the threshold/ceiling value is reset to the threshold/ceiling value. 2. Convert each expression value to the log base 2 of the value. 3. Remove genes (rows) if a given number of its sample values are less than a given threshold. 4. Remove genes (rows) that do not have a minimum fold change or expression variation. 5. Discretize or normalize the data.* When using ratios to compare gene expression between samples, convert values to log base 2 of the value to bring up- and down-regulated genes to the same scale. For example, ratios of 2 and .5 indicating two-fold changes for up- and down-regulated expression, respectively, are converted to +1 and -1. * If you did not generate the expression data, check whether preprocessing steps have already been taken before running the PreprocessDataset module. * Learn more by reading about the [PreprocessDataset](https://genepattern.broadinstitute.org/gp/getTaskDoc.jsp?name=PreprocessDataset) module. ###Code preprocessdataset_task = gp.GPTask(genepattern.get_session(0), 'urn:lsid:broad.mit.edu:cancer.software.genepattern.module.analysis:00020') preprocessdataset_job_spec = preprocessdataset_task.make_job_spec() preprocessdataset_job_spec.set_parameter("input.filename", "https://software.broadinstitute.org/cancer/software/genepattern/data/all_aml/all_aml_test.gct") preprocessdataset_job_spec.set_parameter("threshold.and.filter", "1") preprocessdataset_job_spec.set_parameter("floor", "20") preprocessdataset_job_spec.set_parameter("ceiling", "20000") preprocessdataset_job_spec.set_parameter("min.fold.change", "3") preprocessdataset_job_spec.set_parameter("min.delta", "100") preprocessdataset_job_spec.set_parameter("num.outliers.to.exclude", "0") preprocessdataset_job_spec.set_parameter("row.normalization", "0") preprocessdataset_job_spec.set_parameter("row.sampling.rate", "1") preprocessdataset_job_spec.set_parameter("threshold.for.removing.rows", "") preprocessdataset_job_spec.set_parameter("number.of.columns.above.threshold", "") preprocessdataset_job_spec.set_parameter("log2.transform", "0") preprocessdataset_job_spec.set_parameter("output.file.format", "3") preprocessdataset_job_spec.set_parameter("output.file", "<input.filename_basename>.preprocessed") genepattern.GPTaskWidget(preprocessdataset_task) ###Output _____no_output_____ ###Markdown Step 2: KMeansClusteringRun k-means clustering on genes (rows) or samples (columns). The module creates a GCT file for each cluster and a GCT file that organizes all of the expression data by cluster. ###Code kmeansclustering_task = gp.GPTask(genepattern.get_session(0), 'urn:lsid:broad.mit.edu:cancer.software.genepattern.module.analysis:00081') kmeansclustering_job_spec = kmeansclustering_task.make_job_spec() kmeansclustering_job_spec.set_parameter("input.filename", "https://software.broadinstitute.org/cancer/software/genepattern/data/protocols/all_aml_test.preprocessed.gct") kmeansclustering_job_spec.set_parameter("output.base.name", "<input.filename_basename>_KMcluster_output") kmeansclustering_job_spec.set_parameter("number.of.clusters", "2") kmeansclustering_job_spec.set_parameter("seed.value", "12345") kmeansclustering_job_spec.set_parameter("cluster.by", "0") kmeansclustering_job_spec.set_parameter("distance.metric", "0") genepattern.GPTaskWidget(kmeansclustering_task) ###Output _____no_output_____ ###Markdown Step 2: HeatMapViewerFor an overview of the results, use a heatmap to display the expression data organized by cluster. Considerations* The HeatMapViewer displays gene expression data as a heat map, which makes it easier to see patterns in the numeric data. Gene names are row labels and sample names are column labels. * Learn more by reading about the [HeatMapViewer](https://genepattern.broadinstitute.org/gp/getTaskDoc.jsp?name=HeatMapViewer) module. ###Code heatmapviewer_task = gp.GPTask(genepattern.get_session(0), 'urn:lsid:broad.mit.edu:cancer.software.genepattern.module.visualizer:00010') heatmapviewer_job_spec = heatmapviewer_task.make_job_spec() heatmapviewer_job_spec.set_parameter("dataset", "") genepattern.GPTaskWidget(heatmapviewer_task) ###Output _____no_output_____
notebooks/04-more-tokens-and-context.ipynb
###Markdown The previous two notebooks might have gotten your attention but usually we get the response; > But what about BERT-embeddings? Let's explain how to get there, but first ... we should explain languages. ###Code %load_ext autoreload %autoreload 2 from whatlies import Embedding, EmbeddingSet import spacy import matplotlib.pylab as plt ###Output _____no_output_____ ###Markdown Multi-Token EmbeddingsWe can also have embeddings that represent more than one token. If we'd do this via spacy, we'd have a an average of all the word embeddings. ###Code from whatlies.language import SpacyLanguage from whatlies.transformers import Pca lang = SpacyLanguage("en_core_web_sm") contexts = ["i am super duper happy", "happy happy joy joy", "programming is super fun!", "i am going crazy i hate it", "boo and hiss",] emb = lang[contexts] emb.transform(Pca(2)).plot_interactive('pca_0', 'pca_1').properties(width=400, height=400) nlp = spacy.load("en_core_web_sm") contexts = ("this snake is a python", "i like to program in python", "programming is super fun!", "i go to the supermarket", "i like to code", "i love animals") emb = EmbeddingSet({k: Embedding(k, nlp(k).vector) for k in contexts}) x_str, y_str = "python is for programming", "snakes are slimy creatures" x_axis = Embedding(x_str, nlp(x_str).vector) y_axis = Embedding(y_str, nlp(y_str).vector) emb.plot_interactive(x_axis=x_axis, y_axis=y_axis) ###Output _____no_output_____ ###Markdown Embeddings of Tokens with ContextBut maybe we'd like to have BERT-style models. These models work differently. Luckily ... spaCy also supports this these days. Note that you'll need to download and install this model first. You can do that by running;```pip install spacy-transformerspython -m spacy download en_trf_robertabase_lg``` ###Code nlp = spacy.load("en_trf_robertabase_lg") contexts = ("this snake is a python", "i like to program in python", "programming is super fun!", "i go to the supermarket", "i like to code", "i love animals") t = EmbeddingSet({k: Embedding(k, nlp(k).vector) for k in contexts}) x_str, y_str = "python is for programming", "dogs are cool" x_axis = Embedding(x_str, nlp(x_str).vector) y_axis = Embedding(y_str, nlp(y_str).vector) t.plot_interactive(x_axis=x_axis, y_axis=y_axis) ###Output _____no_output_____ ###Markdown We can go a step further too. If we have the sentence `this snake is a python` then an algorithm like Bert will not apply seperate word embeddings for each token. Rather, the entire document will first learn it's representation before assigning it to seperate tokens. If you are interested in a Bert representation of a word given the context that it is in ... you can get them with a special syntax. ###Code contexts = ("i put my money on the [bank]", "i put my money on the bank", "the water flows on the river [bank]", "the water flows on the river bank", "i really like [to swim] in water", "i want to be so rich that i am [drowning] in money", "i have plenty of [cash] on me", "money is important to my [cash] flow", "a beach is next to the ocean", "google gives me a wealth of information", "that banker person is very wealthy", "i like cats and dogs") ###Output _____no_output_____ ###Markdown But to make use of this syntax we need a new object; the `Language` object. This is a tool for `whatlies` to grab the appropriate word embeddings on your behalf. It will handle the context but can also be seen as a lazy `EmbeddingSet`. ###Code import numpy as np from whatlies.language import SpacyLanguage lang = SpacyLanguage("en_trf_robertabase_lg") lang['red'].vector[:10] ###Output _____no_output_____ ###Markdown Note that these embeddings are kind of special, they depend on the context around the token of interest! ###Code np.array_equal(lang['Going to the [store]'].vector, lang['[store] this in the drawer please.'].vector) ###Output _____no_output_____ ###Markdown But we can also use the `EmbeddingSet` again. ###Code from whatlies.transformers import Umap t = EmbeddingSet({k: lang[k] for k in contexts}).transform(Umap(2)) p1 = t.plot_interactive("i like cats and dogs", "i put my money on the [bank]") p2 = t.plot_interactive("i like cats and dogs", "i put my money on the bank") p1 | p2 ###Output _____no_output_____
Week-06/3_Challenge_Stock_Prediction.ipynb
###Markdown Challenge - Stock Prediction ![](https://miro.medium.com/max/9216/1*NG0bzk0wtQcBdMYAnXKeBQ.jpeg) Background Information Get data ###Code import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from datetime import datetime from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" data = pd.read_csv('TSLA.csv') # explore data ###Output _____no_output_____ ###Markdown Preprocessing ###Code # data visualization # standardization ###Output _____no_output_____ ###Markdown Splitting Data ###Code train,test = ###Output _____no_output_____ ###Markdown Model ###Code from tensorflow.keras.layers import LSTM from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Activation, Dropout import time # transform price array to (X,y) dataset def create_dataset(dataset, look_back=1, forward_days=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1-forward_days): a = dataset.iloc[i:(i+look_back)] dataX.append(a) dataY.append(dataset.iloc[i + look_back:i + look_back + forward_days]) return np.array(dataX), np.array(dataY) look_back = 40 forward_days = 10 trainX, trainY = create_dataset() testX, testY = create_dataset() # The LSTM network expects the input data to be provided with a specific array structure in the form of: [samples, time steps, features]. trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) #build model model = Sequential() model.add() ###Output _____no_output_____ ###Markdown Training and Predicting ###Code history = model.fit() results = model.predict(testX[:4]) ###Output _____no_output_____
homework-10.30/01-What-is-Polynomial-Regression.ipynb
###Markdown 什么是多项式回归 ###Code import numpy as np import matplotlib.pyplot as plt x = np.random.uniform(-3, 3, size=100) X = x.reshape(-1, 1) y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, 100) plt.scatter(x, y) plt.show() ###Output _____no_output_____ ###Markdown 线性回归? ###Code from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) y_predict = lin_reg.predict(X) plt.scatter(x, y) plt.plot(x, y_predict, color='r') plt.show() ###Output _____no_output_____ ###Markdown 解决方案, 添加一个特征 ###Code X2 = np.hstack([X, X**2]) X2.shape lin_reg2 = LinearRegression() lin_reg2.fit(X2, y) y_predict2 = lin_reg2.predict(X2) plt.scatter(x, y) plt.plot(np.sort(x), y_predict2[np.argsort(x)], color='r') plt.show() lin_reg2.coef_ lin_reg2.intercept_ ###Output _____no_output_____
scripts/reproducibility/figures/Manuscript-Figure AP n20.ipynb
###Markdown DSB2018 n20: AP scores on validation data ###Code alpha0_5_n20 = read_Noise2Seg_results('alpha0.5', 'dsb_n20', measure='AP', runs=[1,2,3,4,5], fractions=[0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 100.0], score_type = '') baseline_dsb_n20 = read_Noise2Seg_results('fin', 'dsb_n20', measure='AP', runs=[1,2,3,4,5], fractions=[0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 100.0], score_type = '') sequential_dsb_n20 = read_Noise2Seg_results('finSeq', 'dsb_n20', measure='AP', runs=[1,2,3,4,5], fractions=[0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 100.0], score_type = '') plt.rc('font', family = 'serif', size = 16) fig = plt.figure(figsize=cm2inch(12.2/2,3)) # 12.2cm is the text-widht of the MICCAI template plt.rcParams['axes.axisbelow'] = True plt.plot(fraction_to_abs(alpha0_5_n20[:, 0], max_num_imgs = 3800), alpha0_5_n20[:, 1], color = '#8F89B4', alpha = 1, linewidth=2, label = r'\textsc{DenoiSeg} ($\alpha = 0.5$)') plt.fill_between(fraction_to_abs(alpha0_5_n20[:, 0], max_num_imgs = 3800), y1 = alpha0_5_n20[:, 1] + alpha0_5_n20[:, 2], y2 = alpha0_5_n20[:, 1] - alpha0_5_n20[:, 2], color = '#8F89B4', alpha = 0.5) plt.plot(fraction_to_abs(sequential_dsb_n20[:, 0], max_num_imgs = 3800), sequential_dsb_n20[:, 1], color = '#526B34', alpha = 1, linewidth=2, label = r'Sequential Baseline') plt.fill_between(fraction_to_abs(sequential_dsb_n20[:, 0], max_num_imgs = 3800), y1 = sequential_dsb_n20[:, 1] + sequential_dsb_n20[:, 2], y2 = sequential_dsb_n20[:, 1] - sequential_dsb_n20[:, 2], color = '#526B34', alpha = 0.5) plt.plot(fraction_to_abs(baseline_dsb_n20[:, 0], max_num_imgs = 3800), baseline_dsb_n20[:, 1], color = '#6D3B2B', alpha = 1, linewidth=2, label = r'Baseline') plt.fill_between(fraction_to_abs(baseline_dsb_n20[:, 0], max_num_imgs = 3800), y1 = baseline_dsb_n20[:, 1] + baseline_dsb_n20[:, 2], y2 = baseline_dsb_n20[:, 1] - baseline_dsb_n20[:, 2], color = '#6D3B2B', alpha = 0.25) plt.semilogx() leg = plt.legend(loc = 'lower right') for legobj in leg.legendHandles: legobj.set_linewidth(3.0) plt.ylabel(r'\textbf{AP}') plt.xlabel(r'\textbf{Number of Annotated Training Images}') plt.grid(axis='y') plt.xticks(ticks=fraction_to_abs(baseline_dsb_n20[:, 0], max_num_imgs = 3800), labels=fraction_to_abs(baseline_dsb_n20[:, 0], max_num_imgs = 3800).astype(np.int), rotation=45) plt.minorticks_off() plt.yticks(rotation=45) plt.xlim([8.5, 4500]) plt.tight_layout(); plt.savefig('AP_n20_area.pdf', pad_inches=0.0); plt.savefig('AP_n20_area.svg', pad_inches=0.0); ###Output _____no_output_____
01_Churn_Modelling_ANN/ann.ipynb
###Markdown Importing the database ###Code file = glob.iglob('*.csv') dataset = pd.read_csv(*file) dataset.head(10) print(f'The length of the Dataset is - {len(dataset)}') ###Output The length of the Dataset is - 10000 ###Markdown Splitting the dataset into Independent and Dependent variable ###Code X = dataset.iloc[:, 3:-1].values y = dataset.iloc[:, -1].values X y ###Output _____no_output_____ ###Markdown Label - Encoding the Male/Female ###Code le = LabelEncoder() X[:, 2] = le.fit_transform(X[:, 2]) print(X) ###Output [[619 'France' 0 ... 1 1 101348.88] [608 'Spain' 0 ... 0 1 112542.58] [502 'France' 0 ... 1 0 113931.57] ... [709 'France' 0 ... 0 1 42085.58] [772 'Germany' 1 ... 1 0 92888.52] [792 'France' 0 ... 1 0 38190.78]] ###Markdown OneHotEncoding the Country Name ###Code ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough') X = np.array(ct.fit_transform(X)) print(X) ###Output [[1.0 0.0 0.0 ... 1 1 101348.88] [0.0 0.0 1.0 ... 0 1 112542.58] [1.0 0.0 0.0 ... 1 0 113931.57] ... [1.0 0.0 0.0 ... 0 1 42085.58] [0.0 1.0 0.0 ... 1 0 92888.52] [1.0 0.0 0.0 ... 1 0 38190.78]] ###Markdown Splitting The dataset into Training and Test Set ###Code X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) print(f"The Dimenstion of X_train - {X_train.shape}") print(f"The Dimenstion of X_test - {X_test.shape}") print(f"The Dimenstion of Y_train - {Y_train.shape}") print(f"The Dimenstion of Y_test - {Y_test.shape}") ###Output The Dimenstion of X_train - (8000, 12) The Dimenstion of X_test - (2000, 12) The Dimenstion of Y_train - (8000,) The Dimenstion of Y_test - (2000,) ###Markdown Feature Scaling the Dataset ###Code sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) print("Training Set\n",X_train) print("-------------------") print("Testing Set\n",X_test) ###Output Training Set [[-1.01460667 -0.5698444 1.74309049 ... 0.64259497 -1.03227043 1.10643166] [-1.01460667 1.75486502 -0.57369368 ... 0.64259497 0.9687384 -0.74866447] [ 0.98560362 -0.5698444 -0.57369368 ... 0.64259497 -1.03227043 1.48533467] ... [ 0.98560362 -0.5698444 -0.57369368 ... 0.64259497 -1.03227043 1.41231994] [-1.01460667 -0.5698444 1.74309049 ... 0.64259497 0.9687384 0.84432121] [-1.01460667 1.75486502 -0.57369368 ... 0.64259497 -1.03227043 0.32472465]] ------------------- Testing Set [[-1.01460667 1.75486502 -0.57369368 ... 0.64259497 0.9687384 1.61085707] [ 0.98560362 -0.5698444 -0.57369368 ... 0.64259497 -1.03227043 0.49587037] [-1.01460667 -0.5698444 1.74309049 ... 0.64259497 0.9687384 -0.42478674] ... [-1.01460667 -0.5698444 1.74309049 ... 0.64259497 -1.03227043 0.71888467] [-1.01460667 1.75486502 -0.57369368 ... 0.64259497 0.9687384 -1.54507805] [-1.01460667 1.75486502 -0.57369368 ... 0.64259497 -1.03227043 1.61255917]] ###Markdown Building the ANN Steps1. Initializing the ANN2. Adding Input Layer and the first hidden Layer3. Adding the Second hidder Layer4. Adding the output Layer ###Code #1 ann = tf.keras.models.Sequential() #2 - Shallow Neural Network (If only one hidden layer) ann.add(tf.keras.layers.Dense(units = 6, activation = 'relu')) #3. ann.add(tf.keras.layers.Dense(units = 6, activation = 'relu')) #4. ann.add(tf.keras.layers.Dense(units = 1, activation = 'sigmoid')) ###Output _____no_output_____ ###Markdown Compiling the ANN1. optimizer2. loss function3. metrics ###Code # For non binary classification # We need to enter categorical_crossentropy and softmax activation function ann.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'] ) ###Output _____no_output_____ ###Markdown Training the ANN ###Code start = time.time() ann.fit(X_train, Y_train, batch_size = 32, epochs = 100 ) end = time.time() print(f"Total Time Taken - {end-start}") print(ann.summary()) ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (32, 6) 78 _________________________________________________________________ dense_1 (Dense) (32, 6) 42 _________________________________________________________________ dense_2 (Dense) (32, 1) 7 ================================================================= Total params: 127 Trainable params: 127 Non-trainable params: 0 _________________________________________________________________ None ###Markdown Predicting the Results ###Code res = ann.predict(sc.transform([[1, 0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]])) > 0.5 if res == False: print("Not Gonna Leave") else: print("Gonna Leave") ###Output Not Gonna Leave ###Markdown Vector of Predictions ###Code y_pred = ann.predict(X_test) y_pred = (y_pred > 0.5) print(np.concatenate((y_pred.reshape(len(y_pred), 1), Y_test.reshape(len(Y_test), 1) ), 1) ) ###Output [[0 0] [0 1] [0 0] ... [0 0] [0 0] [0 0]] ###Markdown Confusion Matrix ###Code cm = confusion_matrix(Y_test, y_pred) print(cm) skplot.metrics.plot_confusion_matrix(Y_test, y_pred) plt.show() print(f"The accuracy of the Model is - {accuracy_score(Y_test, y_pred)*100}%") ###Output The accuracy of the Model is - 86.05000000000001%
4.1 MNIST-Datenbank.ipynb
###Markdown Die Kategorisierung der Handschrift dient sehr gut als Klassifizerungsaufgabe für unser Neuronales Netz. Es ist genügend unscharf und nicht zu schwierig. Ausserdem kann gezeigt werden, dass das NN auch mit großen Knotenmengen und Datenmengen umgehen kann. Das es hin und wieder auch für Menschen schwierig sein kann, die Klasse zuzuordnen zeigt obiges Bsp. Ist das nun eine 4 oder eine 9? Wir nutzen dafür nun eine Datenbank mit Bildern handschriftlich geschriebener Ziffern, die gerne für diese Zwecke genutzt wird. Es handelt sich dabei um die MNIST-Datenbank von Yann LeCun. WIr haben für unsere Zwecke einen Trainingsdatensatz mit 60.000 gekennzeichneten Beispielen und einen Testdatensatz mit 10.000 Beispielen (und Kennungen) zusammengestellt. Am Besten man öffnet dafür mal die Datei mnist_test.csv in Excel.Was steht darin: 1. Wert des Labels. Also wie heißt die tatsächliche Ziffer, die das handgeschriebene Zeichen darstellen soll. 2. Werte der Pixelwerte. Ein Ziffernbild besteht aus 28X28 Pixel, daher stehen 784 Werte nach der Kennung. Laden wir in unserem Fall einen etwas kleineren Datensatz erst mal ein. ###Code data_file = open("data/mnist_dataset/mnist_train_100.csv", 'r') data_list = data_file.readlines() data_file.close() #Anzeige der Länge der Liste len(data_list) #Inhalt der Liste ausgeben data_list[0] #Import von diversen Bibliotheken unter anderem um die Inhalte grafisch darzustellen import numpy import matplotlib.pyplot %matplotlib inline all_values = data_list[0].split(',') image_array = numpy.asfarray(all_values[1:]).reshape((28,28)) matplotlib.pyplot.imshow(image_array, cmap='Greys', interpolation='None') ###Output _____no_output_____ ###Markdown Oben wird nun der erste Datensatz (eine 5) aufgrund der pixelinformationen grafisch angezeigt. Dies kann gerne auch mal für den 66.Datensatz getestet werden. ###Code all_values = data_list[65].split(',') image_array = numpy.asfarray(all_values[1:]).reshape((28,28)) matplotlib.pyplot.imshow(image_array, cmap='Greys', interpolation='None') ###Output _____no_output_____ ###Markdown Um die Eingabewerte des Eingangsdatensatzes in unserem üblichen Format der Gewichte zwischen -1 und 1 zu haben, müssen wir zunächst die Daten der Pixelinformationen entsprechend skalieren. Dies ist ein wichtiger Schritt, da dies für zukünftige Netze entsprechend angepasst werden muss.Folgende Schritte sind bei der Skalierung der Inhalte zu beachten: (Output ist eine Liste mit skalierten Werten zwischen 0 und 1)1. Die Werte in den Features liegen zwischen 0 und 255 -->Daher müssen alle Werte durch 255 geteilt werden. Jetzt sind diese Werte im Bereich 0 bis 12. Um die Werte aus 1. auf 0,0 bis 0,99 zu bekommen müssen diese Werte mit 0,99 multipliziert werden.3. Anschließend werden die Werte mit 0,01 addiert, sodass wir keine reinen 0-Werte bekommen.Zu beachten sind folgende Begriffe 1. all_values[1:] -->das heißt das jeweils alle Werte nach der ersten Spalte betroffen sind. In der ersten Spalte sind unsere Prüfwerte für unseren jeweiligen Datensatz (also das Label)2. numpy.asfarray --> gibt einen Array zurück in dem die Werte Fließkommazahlen (Float) sein können ###Code scaled_input = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 print(scaled_input) ###Output [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03329412 0.15364706 0.15364706 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04105882 0.208 0.43705882 0.63117647 0.81364706 0.99223529 0.99223529 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.21576471 0.538 0.83305882 0.99223529 0.99611765 0.99223529 0.99223529 0.99223529 0.73988235 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.25458824 0.32058824 0.76705882 1. 0.99611765 0.99611765 0.87188235 0.71270588 0.71658824 0.71270588 0.53411765 0.21188235 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07211765 0.87576471 0.98058824 0.99223529 0.99223529 0.99611765 0.71658824 0.07988235 0.04882353 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02164706 0.52635294 0.89517647 0.99223529 0.96894118 0.84858824 0.59623529 0.27788235 0.07211765 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.23517647 0.99223529 0.99611765 0.99223529 0.46035294 0.02552941 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.15752941 0.89129412 0.99611765 0.99223529 0.89129412 0.34776471 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.13811765 0.71658824 0.97670588 0.99611765 0.79811765 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.27011765 0.99223529 0.84470588 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.274 0.99223529 0.61952941 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.53411765 0.36717647 0.01 0.01 0.01 0.01 0.72435294 0.99223529 0.49529412 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.99611765 0.85635294 0.18858824 0.01 0.01 0.11482353 0.94952941 0.99223529 0.21964706 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.67 0.99611765 0.99611765 0.84470588 0.89517647 1. 0.99611765 0.52635294 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.13035294 0.63117647 0.80976471 0.99223529 0.84082353 0.55352941 0.42929412 0.07211765 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03329412 0.14976471 0.05270588 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ] ###Markdown Wie sollten unsere Ausgabeknoten aussehen? Benötigen wir 728 Knoten? Nein. Es sind 10. also von 0 bis 9. Da wir auch nur 10 Ziffern haben. Er soll feuern wenn es die richtige Kennung getroffen hat. In folgendem Beispiel ist in derletzten Spalte zu 86% die Ziffer 9 zu erkennen. Das ist was wir haben wollen. ###Code #output nodes is 10 (example) onodes = 10 targets = numpy.zeros(onodes) + 0.01 targets[int(all_values[0])] = 0.99 ###Output _____no_output_____ ###Markdown Was passiert nun in Zeile 10:1. Die Anzahl an Ausgabeknoten wird auf 10 gesetzt.2. numpy.zeros() erzeugt ein mit Nullen gefülltes Array. Größe und Gestalt des Arrays mit der Länge "onodes" wird als Parameter übergeben. HInzuaddiert wird 0,01 um reine Nullwerte zu vermeiden.3. Zunächst wird hier die Kennung des MNIST-Datensatzes übernommen. Diese Kennung wird ein eine Ganzzahl gewandelt und mit dem array-index verbunden. 9 ist dann targets[9] ###Code print(targets) ###Output [0.01 0.01 0.01 0.01 0.01 0.99 0.01 0.01 0.01 0.01] ###Markdown Daraus ergibt sich dann vorerst folgender Code: ###Code ####################################################################################### ##################### 1. Import der benötigten Bibs ################################### import numpy # scipy.special for the sigmoid function expit() import scipy.special # library for plotting arrays import matplotlib.pyplot # ensure the plots are inside this notebook, not an external window %matplotlib inline ####################################################################################### ##################### 2. Anpassung der Variablen ###################################### # number of input, hidden and output nodes input_nodes = 784 hidden_nodes = 100 output_nodes = 10 # learning rate learning_rate = 0.3 # epochs is the number of times the training data set is used for training epochs = 3 # load the mnist training data CSV file into a list training_data_file = open("data/mnist_dataset/mnist_train_100.csv", 'r') training_data_list = training_data_file.readlines() training_data_file.close() # load the mnist test data CSV file into a list test_data_file = open("data/mnist_dataset/mnist_test_10.csv", 'r') test_data_list = test_data_file.readlines() test_data_file.close() ####################################################################################### ##################### 3. Klasse des Neuronalen Netzes ################################# # neural network class definition class neuralNetwork: # initialise the neural network def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate): # set number of nodes in each input, hidden, output layer self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes # link weight matrices, wih and who # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer # w11 w21 # w12 w22 etc self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes)) self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes)) # learning rate self.lr = learningrate # activation function is the sigmoid function self.activation_function = lambda x: scipy.special.expit(x) pass # train the neural network def train(self, inputs_list, targets_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T targets = numpy.array(targets_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) # output layer error is the (target - actual) output_errors = targets - final_outputs # hidden layer error is the output_errors, split by weights, recombined at hidden nodes hidden_errors = numpy.dot(self.who.T, output_errors) # update the weights for the links between the hidden and output layers self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs)) # update the weights for the links between the input and hidden layers self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) pass # query the neural network def query(self, inputs_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) return final_outputs ####################################################################################### ##################### 4. Erstellen eines Objekts der obigen Klasse #################### # create instance of neural network n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate) ####################################################################################### ##################### 5. Das Netz basierend auf den Epochen trainieren ################ # train the neural network for e in range(epochs): # go through all records in the training data set for record in training_data_list: # split the record by the ',' commas all_values = record.split(',') # scale and shift the inputs inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 # create the target output values (all 0.01, except the desired label which is 0.99) targets = numpy.zeros(output_nodes) + 0.01 # all_values[0] is the target label for this record targets[int(all_values[0])] = 0.99 n.train(inputs, targets) pass pass ####################################################################################### ##################### 6. Das Netz auf Basis der Testdaten prüfen ###################### # test the neural network # scorecard for how well the network performs, initially empty scorecard = [] # go through all the records in the test data set for record in test_data_list: # split the record by the ',' commas all_values = record.split(',') # correct answer is first value correct_label = int(all_values[0]) # scale and shift the inputs inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 # query the network outputs = n.query(inputs) # the index of the highest value corresponds to the label label = numpy.argmax(outputs) # append correct or incorrect to list if (label == correct_label): # network's answer matches correct answer, add 1 to scorecard scorecard.append(1) else: # network's answer doesn't match correct answer, add 0 to scorecard scorecard.append(0) pass pass ####################################################################################### ##################### 7. Ausgabe der Genauigkeit des Netzes (Performance) ############# # calculate the performance score, the fraction of correct answers scorecard_array = numpy.asarray(scorecard) print ("performance = ", scorecard_array.sum() / scorecard_array.size) ####################################################################################### ####################################################################################### ###Output performance = 0.6 ###Markdown 1. 784 Eingabeknoten entsprechen den 784 Pixelinformationen2. 100 Knoten der verdeckten Schicht sind quasi der Prüfstandard. Hintergrund ist, dass NN Features oder Muster erkennen sollen, die sich in kürzerer Form als der Anzahl Eingabedaten finden lässt.3. 10 Ausgabeknoten entsprechen den 10 Ziffern.HINWEIS: Es gibt keine perfekte Methode die Anzahl Knoten vorab mathematisch zu bestimmen. Hier gilt experimentieren.Nebenden Trainingsdaten haben wir auch die Testdaten eingebunden. Wir wollen nun mal schauen wie gut unser Training war. Dafür beziehen wir den ersten Datensatz aus dem Testdatensatz und lassen diesen uns grafisch wie auch per NN ermitteln. ###Code # Ersten Datensatz auslesen all_values=test_data_list[0].split(',') # Ausgabe des Labels print(all_values[0]) all_values = test_data_list[0].split(',') image_array = numpy.asfarray(all_values[1:]).reshape((28,28)) matplotlib.pyplot.imshow(image_array, cmap='Greys', interpolation='None') n.query((numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01) ###Output _____no_output_____ ###Markdown Was ist hier passiert:1. In Zeile 16 lesen wir das Label (also die Kennung des ersten Datensatzes aus der Testreihe aus)2. In Zeile 17 geben wir das grafische Abbild der Pixel dieses Datensatzes aus3. In Zeile 18 lassen wir uns die Ausgabeknotenwerte anzeigen. Auch hier wird der siebte Knoten mit 85% am höchsten bewertet. Das Ganze wird schlußendlich mittels einer For-Schleife für alle Datensätze getestet. Der entsprechende Quellcode zeigt sich in Zeile 19.1. scorecard: Dies ist eine leere Trefferliste, welche nach jedem Datensatz aktualisiert wird. Dies dient dem späteren Messen der Performance. ###Code print(scorecard) # calculate the performance score, the fraction of correct answers scorecard_array = numpy.asarray(scorecard) print ("performance = ", scorecard_array.sum() / scorecard_array.size) ###Output performance = 0.6 ###Markdown Sollte die Antwort des Netzes mit der Antwort des Labels übereinstimmen, so wird für den Datensatz eine 1 ausgegeben, andernfalls eine 0. In Zeile 19 haben wir noch 4 Fehltreffer. Dies zeigt sich dann auch in der Performancemessung in Zeile 20.Mit zunehmender Datenmenge wird dies genauer. Daher kann hier nun auch der größere Datensatz eingelesen werden. 4.1.1 Optimierungsmöglichkeiten **Lernrate**: Unter Umständen muß die Lernrate zu einem späteren Zeitpunkt angepasst werden. Diese Lernrate wird notwendig um den Sprung im Gradientenverfahren nicht zu klein oder zu groß werden zu lassen. **Trainingswiederholungen**: Mit weiteren Anzahl Epochen wird derselbe Trainingsdatensatz erneut durchlaufen. Dies dient dazu den Gradientenabstieg zu verbessern. **Mehr Daten**: Je größer die Datenmengen für das Training, desto genauer werden die Ergebnisse. **Netzstruktur ändern**: Anzahl der Knoten der versteckten Schicht anpassen. ###Code ####################################################################################### ##################### 1. Import der benötigten Bibs ################################### import numpy # scipy.special for the sigmoid function expit() import scipy.special # library for plotting arrays import matplotlib.pyplot # ensure the plots are inside this notebook, not an external window %matplotlib inline ####################################################################################### ##################### 2. Anpassung der Variablen ###################################### # number of input, hidden and output nodes input_nodes = 784 hidden_nodes = 100 output_nodes = 10 # learning rate learning_rate = 0.01 # epochs is the number of times the training data set is used for training epochs = 10 # load the mnist training data CSV file into a list training_data_file = open("data/mnist_dataset/mnist_train_100.csv", 'r') training_data_list = training_data_file.readlines() training_data_file.close() # load the mnist test data CSV file into a list test_data_file = open("data/mnist_dataset/mnist_test_10.csv", 'r') test_data_list = test_data_file.readlines() test_data_file.close() ####################################################################################### ##################### 3. Klasse des Neuronalen Netzes ################################# # neural network class definition class neuralNetwork: # initialise the neural network def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate): # set number of nodes in each input, hidden, output layer self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes # link weight matrices, wih and who # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer # w11 w21 # w12 w22 etc self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes)) self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes)) # learning rate self.lr = learningrate # activation function is the sigmoid function self.activation_function = lambda x: scipy.special.expit(x) pass # train the neural network def train(self, inputs_list, targets_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T targets = numpy.array(targets_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) # output layer error is the (target - actual) output_errors = targets - final_outputs # hidden layer error is the output_errors, split by weights, recombined at hidden nodes hidden_errors = numpy.dot(self.who.T, output_errors) # update the weights for the links between the hidden and output layers self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs)) # update the weights for the links between the input and hidden layers self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) pass # query the neural network def query(self, inputs_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) return final_outputs ####################################################################################### ##################### 4. Erstellen eines Objekts der obigen Klasse #################### # create instance of neural network n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate) ####################################################################################### ##################### 5. Das Netz basierend auf den Epochen trainieren ################ # train the neural network for e in range(epochs): # go through all records in the training data set for record in training_data_list: # split the record by the ',' commas all_values = record.split(',') # scale and shift the inputs inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 # create the target output values (all 0.01, except the desired label which is 0.99) targets = numpy.zeros(output_nodes) + 0.01 # all_values[0] is the target label for this record targets[int(all_values[0])] = 0.99 n.train(inputs, targets) pass pass ####################################################################################### ##################### 6. Das Netz auf Basis der Testdaten prüfen ###################### # test the neural network # scorecard for how well the network performs, initially empty scorecard = [] # go through all the records in the test data set for record in test_data_list: # split the record by the ',' commas all_values = record.split(',') # correct answer is first value correct_label = int(all_values[0]) # scale and shift the inputs inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 # query the network outputs = n.query(inputs) # the index of the highest value corresponds to the label label = numpy.argmax(outputs) # append correct or incorrect to list if (label == correct_label): # network's answer matches correct answer, add 1 to scorecard scorecard.append(1) else: # network's answer doesn't match correct answer, add 0 to scorecard scorecard.append(0) pass pass ####################################################################################### ##################### 7. Ausgabe der Genauigkeit des Netzes (Performance) ############# # calculate the performance score, the fraction of correct answers scorecard_array = numpy.asarray(scorecard) print ("performance = ", scorecard_array.sum() / scorecard_array.size) ####################################################################################### ####################################################################################### ###Output performance = 0.6
site/en/guide/eager.ipynb
###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(): for epoch in range(3): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train() import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class CustomLayer(tf.keras.layers.Layer): def __init__(self): super(CustomLayer, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = CustomLayer() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith TF 1.x graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.config.experimental.list_physical_devices("GPU"): with tf.device("gpu:0"): print("GPU enabled") v = tf.Variable(tf.random.normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based savingThis section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb).`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(1000): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(): for epoch in range(3): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train() import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](../keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(1000): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `warch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager essentials View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(): for epoch in range(3): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train() import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith TF 1.x graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.config.experimental.list_physical_devices("GPU"): with tf.device("gpu:0"): print("GPU enabled") v = tf.Variable(tf.random.normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based savingThis section is an abbreviated version of the [guide to training checkpoints](./checkpoints.ipynb).`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoints.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(): for epoch in range(3): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train() import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith TF 1.x graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.config.experimental.list_physical_devices("GPU"): with tf.device("gpu:0"): print("GPU enabled") v = tf.Variable(tf.random.normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based savingThis section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb).`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](../keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(): for epoch in range(3): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train() import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](../keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(1000): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager Execution View on TensorFlow.org Run in Google Colab View source on GitHub TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration. For acollection of examples running in eager execution, see:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples).Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage To start eager execution, add `tf.enable_eager_execution()` to the beginning ofthe program or console session. Do not add this operation to other modules thatthe program calls. ###Code from __future__ import absolute_import, division, print_function import tensorflow as tf tf.enable_eager_execution() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code tf.executing_eagerly() x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown The `tf.contrib.eager` module contains symbols available to both eager and graph executionenvironments and is useful for writing code to [work with graphs](work_with_graphs): ###Code tfe = tf.contrib.eager ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Build a modelMany machine learning models are represented by composing layers. Whenusing TensorFlow with eager execution you can either write your own layers oruse a layer provided in the `tf.keras.layers` package.While you can use any Python object to represent a layer,TensorFlow has `tf.keras.layers.Layer` as a convenient base class. Inherit fromit to implement your own layer: ###Code class MySimpleLayer(tf.keras.layers.Layer): def __init__(self, output_units): super(MySimpleLayer, self).__init__() self.output_units = output_units def build(self, input_shape): # The build method gets called the first time your layer is used. # Creating variables on build() allows you to make their shape depend # on the input shape and hence removes the need for the user to specify # full shapes. It is possible to create variables during __init__() if # you already know their full shapes. self.kernel = self.add_variable( "kernel", [input_shape[-1], self.output_units]) def call(self, input): # Override call() instead of __call__ so we can perform some bookkeeping. return tf.matmul(input, self.kernel) ###Output _____no_output_____ ###Markdown Use `tf.keras.layers.Dense` layer instead of `MySimpleLayer` above as it hasa superset of its functionality (it can also add a bias).When composing layers into models you can use `tf.keras.Sequential` to representmodels which are a linear stack of layers. It is easy to use for basic models: ###Code model = tf.keras.Sequential([ tf.keras.layers.Dense(10, input_shape=(784,)), # must declare input shape tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Alternatively, organize models in classes by inheriting from `tf.keras.Model`.This is a container for layers that is a layer itself, allowing `tf.keras.Model`objects to contain other `tf.keras.Model` objects. ###Code class MNISTModel(tf.keras.Model): def __init__(self): super(MNISTModel, self).__init__() self.dense1 = tf.keras.layers.Dense(units=10) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, input): """Run the model.""" result = self.dense1(input) result = self.dense2(result) result = self.dense2(result) # reuse variables from dense2 layer return result model = MNISTModel() ###Output _____no_output_____ ###Markdown It's not required to set an input shape for the `tf.keras.Model` class sincethe parameters are set the first time input is passed to the layer.`tf.keras.layers` classes create and contain their own model variables thatare tied to the lifetime of their layer objects. To share layer variables, sharetheir objects. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.`tf.GradientTape` is an opt-in feature to provide maximal performance whennot tracing. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.train.AdamOptimizer() loss_history = [] for (batch, (images, labels)) in enumerate(dataset.take(400)): if batch % 80 == 0: print() print('.', end='') with tf.GradientTape() as tape: logits = mnist_model(images, training=True) loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits) loss_history.append(loss_value.numpy()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables), global_step=tf.train.get_or_create_global_step()) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random_normal([NUM_EXAMPLES]) noise = tf.random_normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B]), global_step=tf.train.get_or_create_global_step()) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): v = tf.Variable(tf.random_normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based saving`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os import tempfile model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = tempfile.mkdtemp() checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Object-oriented metrics`tfe.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tfe.metrics.result` method,for example: ###Code m = tfe.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](../guide/summaries_and_tensorboard.md) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.`tf.contrib.summary` is compatible with both eager and graph executionenvironments. Summary operations, such as `tf.contrib.summary.scalar`, areinserted during model construction. For example, to record summaries once every100 global steps: ###Code global_step = tf.train.get_or_create_global_step() logdir = "./tb/" writer = tf.contrib.summary.create_file_writer(logdir) writer.set_as_default() for _ in range(10): global_step.assign_add(1) # Must include a record_summaries method with tf.contrib.summary.record_summaries_every_n_global_steps(100): # your model code goes here tf.contrib.summary.scalar('global_step', global_step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Additional functions to compute gradients`tf.GradientTape` is a powerful interface for computing gradients, but thereis another [Autograd](https://github.com/HIPS/autograd)-style API available forautomatic differentiation. These functions are useful if writing math code withonly tensors and gradient functions, and without `tf.variables`:* `tfe.gradients_function` —Returns a function that computes the derivatives of its input function parameter with respect to its arguments. The input function parameter must return a scalar value. When the returned function is invoked, it returns a list of `tf.Tensor` objects: one element for each argument of the input function. Since anything of interest must be passed as a function parameter, this becomes unwieldy if there's a dependency on many trainable parameters.* `tfe.value_and_gradients_function` —Similar to `tfe.gradients_function`, but when the returned function is invoked, it returns the value from the input function in addition to the list of derivatives of the input function with respect to its arguments.In the following example, `tfe.gradients_function` takes the `square`function as an argument and returns a function that computes the partialderivatives of `square` with respect to its inputs. To calculate the derivativeof `square` at `3`, `grad(3.0)` returns `6`. ###Code def square(x): return tf.multiply(x, x) grad = tfe.gradients_function(square) square(3.).numpy() grad(3.)[0].numpy() # The second-order derivative of square: gradgrad = tfe.gradients_function(lambda x: grad(x)[0]) gradgrad(3.)[0].numpy() # The third-order derivative is None: gradgradgrad = tfe.gradients_function(lambda x: gradgrad(x)[0]) gradgradgrad(3.) # With flow control: def abs(x): return x if x > 0. else -x grad = tfe.gradients_function(abs) grad(3.)[0].numpy() grad(-3.)[0].numpy() ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients in eager and graphexecution. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.log(1 + tf.exp(x)) grad_log1pexp = tfe.gradients_function(log1pexp) # The gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.log(1 + e), grad grad_log1pexp = tfe.gradients_function(log1pexp) # As before, the gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # And the gradient computation also works at x = 100. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random_normal(shape), steps))) # Run on GPU, if available: if tfe.num_gpus() > 0: with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random_normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random_normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 if tfe.num_gpus() > 1: x_gpu1 = x.gpu(1) _ = tf.matmul(x_gpu1, x_gpu1) # Runs on GPU:1 ###Output _____no_output_____ ###Markdown BenchmarksFor compute-heavy models, such as[ResNet50](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/resnet50)training on a GPU, eager execution performance is comparable to graph execution.But this gap grows larger for models with less computation and there is work tobe done for optimizing hot code paths for models with lots of small operations. Work with graphsWhile eager execution makes development and debugging more interactive,TensorFlow graph execution has advantages for distributed training, performanceoptimizations, and production deployment. However, writing graph code can feeldifferent than writing regular Python code and more difficult to debug.For building and training graph-constructed models, the Python program firstbuilds a graph representing the computation, then invokes `Session.run` to sendthe graph for execution on the C++-based runtime. This provides:* Automatic differentiation using static autodiff.* Simple deployment to a platform independent server.* Graph-based optimizations (common subexpression elimination, constant-folding, etc.).* Compilation and kernel fusion.* Automatic distribution and replication (placing nodes on the distributed system).Deploying code written for eager execution is more difficult: either generate agraph from the model, or run the Python runtime and code directly on the server. Write compatible codeThe same code written for eager execution will also build a graph during graphexecution. Do this by simply running the same code in a new Python session whereeager execution is not enabled.Most TensorFlow operations work during eager execution, but there are some thingsto keep in mind:* Use `tf.data` for input processing instead of queues. It's faster and easier.* Use object-oriented layer APIs—like `tf.keras.layers` and `tf.keras.Model`—since they have explicit storage for variables.* Most model code works the same during eager and graph execution, but there are exceptions. (For example, dynamic models using Python control flow to change the computation based on inputs.)* Once eager execution is enabled with `tf.enable_eager_execution`, it cannot be turned off. Start a new Python session to return to graph execution.It's best to write code for both eager execution *and* graph execution. Thisgives you eager's interactive experimentation and debuggability with thedistributed performance benefits of graph execution.Write, debug, and iterate in eager execution, then import the model graph forproduction deployment. Use `tf.train.Checkpoint` to save and restore modelvariables, this allows movement between eager and graph execution environments.See the examples in:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples). Use eager execution in a graph environmentSelectively enable eager execution in a TensorFlow graph environment using`tfe.py_func`. This is used when `tf.enable_eager_execution()` has *not*been called. ###Code def my_py_func(x): x = tf.matmul(x, x) # You can use tf ops print(x) # but it's eager! return x with tf.Session() as sess: x = tf.placeholder(dtype=tf.float32) # Call eager function in graph! pf = tfe.py_func(my_py_func, [x], tf.float32) sess.run(pf, feed_dict={x: [[2.0]]}) # [[4.0]] ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager Execution View on TensorFlow.org Run in Google Colab View source on GitHub TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration. For acollection of examples running in eager execution, see:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples).Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage To start eager execution, add `tf.enable_eager_execution()` to the beginning ofthe program or console session. Do not add this operation to other modules thatthe program calls. ###Code from __future__ import absolute_import, division, print_function import tensorflow as tf tf.enable_eager_execution() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code tf.executing_eagerly() x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown The `tf.contrib.eager` module contains symbols available to both eager and graph executionenvironments and is useful for writing code to [work with graphs](work_with_graphs): ###Code tfe = tf.contrib.eager ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Build a modelMany machine learning models are represented by composing layers. Whenusing TensorFlow with eager execution you can either write your own layers oruse a layer provided in the `tf.keras.layers` package.While you can use any Python object to represent a layer,TensorFlow has `tf.keras.layers.Layer` as a convenient base class. Inherit fromit to implement your own layer: ###Code class MySimpleLayer(tf.keras.layers.Layer): def __init__(self, output_units): super(MySimpleLayer, self).__init__() self.output_units = output_units def build(self, input_shape): # The build method gets called the first time your layer is used. # Creating variables on build() allows you to make their shape depend # on the input shape and hence removes the need for the user to specify # full shapes. It is possible to create variables during __init__() if # you already know their full shapes. self.kernel = self.add_variable( "kernel", [input_shape[-1], self.output_units]) def call(self, input): # Override call() instead of __call__ so we can perform some bookkeeping. return tf.matmul(input, self.kernel) ###Output _____no_output_____ ###Markdown Use `tf.keras.layers.Dense` layer instead of `MySimpleLayer` above as it hasa superset of its functionality (it can also add a bias).When composing layers into models you can use `tf.keras.Sequential` to representmodels which are a linear stack of layers. It is easy to use for basic models: ###Code model = tf.keras.Sequential([ tf.keras.layers.Dense(10, input_shape=(784,)), # must declare input shape tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Alternatively, organize models in classes by inheriting from `tf.keras.Model`.This is a container for layers that is a layer itself, allowing `tf.keras.Model`objects to contain other `tf.keras.Model` objects. ###Code class MNISTModel(tf.keras.Model): def __init__(self): super(MNISTModel, self).__init__() self.dense1 = tf.keras.layers.Dense(units=10) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, input): """Run the model.""" result = self.dense1(input) result = self.dense2(result) result = self.dense2(result) # reuse variables from dense2 layer return result model = MNISTModel() ###Output _____no_output_____ ###Markdown It's not required to set an input shape for the `tf.keras.Model` class sincethe parameters are set the first time input is passed to the layer.`tf.keras.layers` classes create and contain their own model variables thatare tied to the lifetime of their layer objects. To share layer variables, sharetheir objects. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.`tf.GradientTape` is an opt-in feature to provide maximal performance whennot tracing. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.train.AdamOptimizer() loss_history = [] for (batch, (images, labels)) in enumerate(dataset.take(400)): if batch % 80 == 0: print() print('.', end='') with tf.GradientTape() as tape: logits = mnist_model(images, training=True) loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits) loss_history.append(loss_value.numpy()) grads = tape.gradient(loss_value, mnist_model.variables) optimizer.apply_gradients(zip(grads, mnist_model.variables), global_step=tf.train.get_or_create_global_step()) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random_normal([NUM_EXAMPLES]) noise = tf.random_normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B]), global_step=tf.train.get_or_create_global_step()) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): v = tf.Variable(tf.random_normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based saving`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os import tempfile model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = tempfile.mkdtemp() checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Object-oriented metrics`tfe.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tfe.metrics.result` method,for example: ###Code m = tfe.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](../guide/summaries_and_tensorboard.md) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.`tf.contrib.summary` is compatible with both eager and graph executionenvironments. Summary operations, such as `tf.contrib.summary.scalar`, areinserted during model construction. For example, to record summaries once every100 global steps: ###Code global_step = tf.train.get_or_create_global_step() logdir = "./tb/" writer = tf.contrib.summary.create_file_writer(logdir) writer.set_as_default() for _ in range(10): global_step.assign_add(1) # Must include a record_summaries method with tf.contrib.summary.record_summaries_every_n_global_steps(100): # your model code goes here tf.contrib.summary.scalar('global_step', global_step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Additional functions to compute gradients`tf.GradientTape` is a powerful interface for computing gradients, but thereis another [Autograd](https://github.com/HIPS/autograd)-style API available forautomatic differentiation. These functions are useful if writing math code withonly tensors and gradient functions, and without `tf.Variables`:* `tfe.gradients_function` —Returns a function that computes the derivatives of its input function parameter with respect to its arguments. The input function parameter must return a scalar value. When the returned function is invoked, it returns a list of `tf.Tensor` objects: one element for each argument of the input function. Since anything of interest must be passed as a function parameter, this becomes unwieldy if there's a dependency on many trainable parameters.* `tfe.value_and_gradients_function` —Similar to `tfe.gradients_function`, but when the returned function is invoked, it returns the value from the input function in addition to the list of derivatives of the input function with respect to its arguments.In the following example, `tfe.gradients_function` takes the `square`function as an argument and returns a function that computes the partialderivatives of `square` with respect to its inputs. To calculate the derivativeof `square` at `3`, `grad(3.0)` returns `6`. ###Code def square(x): return tf.multiply(x, x) grad = tfe.gradients_function(square) square(3.).numpy() grad(3.)[0].numpy() # The second-order derivative of square: gradgrad = tfe.gradients_function(lambda x: grad(x)[0]) gradgrad(3.)[0].numpy() # The third-order derivative is None: gradgradgrad = tfe.gradients_function(lambda x: gradgrad(x)[0]) gradgradgrad(3.) # With flow control: def abs(x): return x if x > 0. else -x grad = tfe.gradients_function(abs) grad(3.)[0].numpy() grad(-3.)[0].numpy() ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients in eager and graphexecution. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.log(1 + tf.exp(x)) grad_log1pexp = tfe.gradients_function(log1pexp) # The gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.log(1 + e), grad grad_log1pexp = tfe.gradients_function(log1pexp) # As before, the gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # And the gradient computation also works at x = 100. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random_normal(shape), steps))) # Run on GPU, if available: if tfe.num_gpus() > 0: with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random_normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random_normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 if tfe.num_gpus() > 1: x_gpu1 = x.gpu(1) _ = tf.matmul(x_gpu1, x_gpu1) # Runs on GPU:1 ###Output _____no_output_____ ###Markdown BenchmarksFor compute-heavy models, such as[ResNet50](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/resnet50)training on a GPU, eager execution performance is comparable to graph execution.But this gap grows larger for models with less computation and there is work tobe done for optimizing hot code paths for models with lots of small operations. Work with graphsWhile eager execution makes development and debugging more interactive,TensorFlow graph execution has advantages for distributed training, performanceoptimizations, and production deployment. However, writing graph code can feeldifferent than writing regular Python code and more difficult to debug.For building and training graph-constructed models, the Python program firstbuilds a graph representing the computation, then invokes `Session.run` to sendthe graph for execution on the C++-based runtime. This provides:* Automatic differentiation using static autodiff.* Simple deployment to a platform independent server.* Graph-based optimizations (common subexpression elimination, constant-folding, etc.).* Compilation and kernel fusion.* Automatic distribution and replication (placing nodes on the distributed system).Deploying code written for eager execution is more difficult: either generate agraph from the model, or run the Python runtime and code directly on the server. Write compatible codeThe same code written for eager execution will also build a graph during graphexecution. Do this by simply running the same code in a new Python session whereeager execution is not enabled.Most TensorFlow operations work during eager execution, but there are some thingsto keep in mind:* Use `tf.data` for input processing instead of queues. It's faster and easier.* Use object-oriented layer APIs—like `tf.keras.layers` and `tf.keras.Model`—since they have explicit storage for variables.* Most model code works the same during eager and graph execution, but there are exceptions. (For example, dynamic models using Python control flow to change the computation based on inputs.)* Once eager execution is enabled with `tf.enable_eager_execution`, it cannot be turned off. Start a new Python session to return to graph execution.It's best to write code for both eager execution *and* graph execution. Thisgives you eager's interactive experimentation and debuggability with thedistributed performance benefits of graph execution.Write, debug, and iterate in eager execution, then import the model graph forproduction deployment. Use `tf.train.Checkpoint` to save and restore modelvariables, this allows movement between eager and graph execution environments.See the examples in:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples). Use eager execution in a graph environmentSelectively enable eager execution in a TensorFlow graph environment using`tfe.py_func`. This is used when `tf.enable_eager_execution()` has *not*been called. ###Code def my_py_func(x): x = tf.matmul(x, x) # You can use tf ops print(x) # but it's eager! return x with tf.Session() as sess: x = tf.placeholder(dtype=tf.float32) # Call eager function in graph! pf = tfe.py_func(my_py_func, [x], tf.float32) sess.run(pf, feed_dict={x: [[2.0]]}) # [[4.0]] ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager essentials View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. import tensorflow.compat.v2 as tf #gpu except Exception: pass tf.enable_v2_behavior() import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(): for epoch in range(3): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train() import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith TF 1.x graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): print("GPU enabled") v = tf.Variable(tf.random.normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based savingThis section is an abbreviated version of the [guide to training checkpoints](./checkpoints.ipynb).`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoints.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.test.is_gpu_available(): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager Execution View on TensorFlow.org Run in Google Colab View source on GitHub TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration. For acollection of examples running in eager execution, see:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples).Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usageUpgrade to the latest version of TensorFlow: ###Code !pip install --upgrade tensorflow==1.11 ###Output _____no_output_____ ###Markdown To start eager execution, add `tf.enable_eager_execution()` to the beginning ofthe program or console session. Do not add this operation to other modules thatthe program calls. ###Code from __future__ import absolute_import, division, print_function import tensorflow as tf tf.enable_eager_execution() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code tf.executing_eagerly() x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown The `tf.contrib.eager` module contains symbols available to both eager and graph executionenvironments and is useful for writing code to [work with graphs](work_with_graphs): ###Code tfe = tf.contrib.eager ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Build a modelMany machine learning models are represented by composing layers. Whenusing TensorFlow with eager execution you can either write your own layers oruse a layer provided in the `tf.keras.layers` package.While you can use any Python object to represent a layer,TensorFlow has `tf.keras.layers.Layer` as a convenient base class. Inherit fromit to implement your own layer: ###Code class MySimpleLayer(tf.keras.layers.Layer): def __init__(self, output_units): super(MySimpleLayer, self).__init__() self.output_units = output_units def build(self, input_shape): # The build method gets called the first time your layer is used. # Creating variables on build() allows you to make their shape depend # on the input shape and hence removes the need for the user to specify # full shapes. It is possible to create variables during __init__() if # you already know their full shapes. self.kernel = self.add_variable( "kernel", [input_shape[-1], self.output_units]) def call(self, input): # Override call() instead of __call__ so we can perform some bookkeeping. return tf.matmul(input, self.kernel) ###Output _____no_output_____ ###Markdown Use `tf.keras.layers.Dense` layer instead of `MySimpleLayer` above as it hasa superset of its functionality (it can also add a bias).When composing layers into models you can use `tf.keras.Sequential` to representmodels which are a linear stack of layers. It is easy to use for basic models: ###Code model = tf.keras.Sequential([ tf.keras.layers.Dense(10, input_shape=(784,)), # must declare input shape tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Alternatively, organize models in classes by inheriting from `tf.keras.Model`.This is a container for layers that is a layer itself, allowing `tf.keras.Model`objects to contain other `tf.keras.Model` objects. ###Code class MNISTModel(tf.keras.Model): def __init__(self): super(MNISTModel, self).__init__() self.dense1 = tf.keras.layers.Dense(units=10) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, input): """Run the model.""" result = self.dense1(input) result = self.dense2(result) result = self.dense2(result) # reuse variables from dense2 layer return result model = MNISTModel() ###Output _____no_output_____ ###Markdown It's not required to set an input shape for the `tf.keras.Model` class sincethe parameters are set the first time input is passed to the layer.`tf.keras.layers` classes create and contain their own model variables thatare tied to the lifetime of their layer objects. To share layer variables, sharetheir objects. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.`tf.GradientTape` is an opt-in feature to provide maximal performance whennot tracing. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.train.AdamOptimizer() loss_history = [] for (batch, (images, labels)) in enumerate(dataset.take(400)): if batch % 80 == 0: print() print('.', end='') with tf.GradientTape() as tape: logits = mnist_model(images, training=True) loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits) loss_history.append(loss_value.numpy()) grads = tape.gradient(loss_value, mnist_model.variables) optimizer.apply_gradients(zip(grads, mnist_model.variables), global_step=tf.train.get_or_create_global_step()) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown This example uses the[dataset.py module](https://github.com/tensorflow/models/blob/master/official/mnist/dataset.py)from the[TensorFlow MNIST example](https://github.com/tensorflow/models/tree/master/official/mnist);download this file to your local directory. Run the following to download theMNIST data files to your working directory and prepare a `tf.data.Dataset`for training: Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random_normal([NUM_EXAMPLES]) noise = tf.random_normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B]), global_step=tf.train.get_or_create_global_step()) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): v = tf.Variable(tf.random_normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based saving`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = '/path/to/model_dir' os.makedirs(checkpoint_dir, exist_ok=True) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Object-oriented metrics`tfe.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tfe.metrics.result` method,for example: ###Code m = tfe.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](../guide/summaries_and_tensorboard.md) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.`tf.contrib.summary` is compatible with both eager and graph executionenvironments. Summary operations, such as `tf.contrib.summary.scalar`, areinserted during model construction. For example, to record summaries once every100 global steps: ###Code global_step = tf.train.get_or_create_global_step() logdir = "./tb/" writer = tf.contrib.summary.create_file_writer(logdir) writer.set_as_default() for _ in range(10): global_step.assign_add(1) # Must include a record_summaries method with tf.contrib.summary.record_summaries_every_n_global_steps(100): # your model code goes here tf.contrib.summary.scalar('global_step', global_step) ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Additional functions to compute gradients`tf.GradientTape` is a powerful interface for computing gradients, but thereis another [Autograd](https://github.com/HIPS/autograd)-style API available forautomatic differentiation. These functions are useful if writing math code withonly tensors and gradient functions, and without `tf.Variables`:* `tfe.gradients_function` —Returns a function that computes the derivatives of its input function parameter with respect to its arguments. The input function parameter must return a scalar value. When the returned function is invoked, it returns a list of `tf.Tensor` objects: one element for each argument of the input function. Since anything of interest must be passed as a function parameter, this becomes unwieldy if there's a dependency on many trainable parameters.* `tfe.value_and_gradients_function` —Similar to `tfe.gradients_function`, but when the returned function is invoked, it returns the value from the input function in addition to the list of derivatives of the input function with respect to its arguments.In the following example, `tfe.gradients_function` takes the `square`function as an argument and returns a function that computes the partialderivatives of `square` with respect to its inputs. To calculate the derivativeof `square` at `3`, `grad(3.0)` returns `6`. ###Code def square(x): return tf.multiply(x, x) grad = tfe.gradients_function(square) square(3.).numpy() grad(3.)[0].numpy() # The second-order derivative of square: gradgrad = tfe.gradients_function(lambda x: grad(x)[0]) gradgrad(3.)[0].numpy() # The third-order derivative is None: gradgradgrad = tfe.gradients_function(lambda x: gradgrad(x)[0]) gradgradgrad(3.) # With flow control: def abs(x): return x if x > 0. else -x grad = tfe.gradients_function(abs) grad(3.)[0].numpy() grad(-3.)[0].numpy() ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients in eager and graphexecution. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.log(1 + tf.exp(x)) grad_log1pexp = tfe.gradients_function(log1pexp) # The gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.log(1 + e), grad grad_log1pexp = tfe.gradients_function(log1pexp) # As before, the gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # And the gradient computation also works at x = 100. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random_normal(shape), steps))) # Run on GPU, if available: if tfe.num_gpus() > 0: with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random_normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random_normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 if tfe.num_gpus() > 1: x_gpu1 = x.gpu(1) _ = tf.matmul(x_gpu1, x_gpu1) # Runs on GPU:1 ###Output _____no_output_____ ###Markdown BenchmarksFor compute-heavy models, such as[ResNet50](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/resnet50)training on a GPU, eager execution performance is comparable to graph execution.But this gap grows larger for models with less computation and there is work tobe done for optimizing hot code paths for models with lots of small operations. Work with graphsWhile eager execution makes development and debugging more interactive,TensorFlow graph execution has advantages for distributed training, performanceoptimizations, and production deployment. However, writing graph code can feeldifferent than writing regular Python code and more difficult to debug.For building and training graph-constructed models, the Python program firstbuilds a graph representing the computation, then invokes `Session.run` to sendthe graph for execution on the C++-based runtime. This provides:* Automatic differentiation using static autodiff.* Simple deployment to a platform independent server.* Graph-based optimizations (common subexpression elimination, constant-folding, etc.).* Compilation and kernel fusion.* Automatic distribution and replication (placing nodes on the distributed system).Deploying code written for eager execution is more difficult: either generate agraph from the model, or run the Python runtime and code directly on the server. Write compatible codeThe same code written for eager execution will also build a graph during graphexecution. Do this by simply running the same code in a new Python session whereeager execution is not enabled.Most TensorFlow operations work during eager execution, but there are some thingsto keep in mind:* Use `tf.data` for input processing instead of queues. It's faster and easier.* Use object-oriented layer APIs—like `tf.keras.layers` and `tf.keras.Model`—since they have explicit storage for variables.* Most model code works the same during eager and graph execution, but there are exceptions. (For example, dynamic models using Python control flow to change the computation based on inputs.)* Once eager execution is enabled with `tf.enable_eager_execution`, it cannot be turned off. Start a new Python session to return to graph execution.It's best to write code for both eager execution *and* graph execution. Thisgives you eager's interactive experimentation and debuggability with thedistributed performance benefits of graph execution.Write, debug, and iterate in eager execution, then import the model graph forproduction deployment. Use `tf.train.Checkpoint` to save and restore modelvariables, this allows movement between eager and graph execution environments.See the examples in:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples). Use eager execution in a graph environmentSelectively enable eager execution in a TensorFlow graph environment using`tfe.py_func`. This is used when `tf.enable_eager_execution()` has *not*been called. ###Code def my_py_func(x): x = tf.matmul(x, x) # You can use tf ops print(x) # but it's eager! return x with tf.Session() as sess: x = tf.placeholder(dtype=tf.float32) # Call eager function in graph! pf = tfe.py_func(my_py_func, [x], tf.float32) sess.run(pf, feed_dict={x: [[2.0]]}) # [[4.0]] ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager Execution View on TensorFlow.org Run in Google Colab View source on GitHub TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration. For acollection of examples running in eager execution, see:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples).Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage To start eager execution, add `tf.enable_eager_execution()` to the beginning ofthe program or console session. Do not add this operation to other modules thatthe program calls. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf tf.enable_eager_execution() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code tf.executing_eagerly() x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown The `tf.contrib.eager` module contains symbols available to both eager and graph executionenvironments and is useful for writing code to [work with graphs](work_with_graphs): ###Code tfe = tf.contrib.eager ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Build a modelMany machine learning models are represented by composing layers. Whenusing TensorFlow with eager execution you can either write your own layers oruse a layer provided in the `tf.keras.layers` package.While you can use any Python object to represent a layer,TensorFlow has `tf.keras.layers.Layer` as a convenient base class. Inherit fromit to implement your own layer: ###Code class MySimpleLayer(tf.keras.layers.Layer): def __init__(self, output_units): super(MySimpleLayer, self).__init__() self.output_units = output_units def build(self, input_shape): # The build method gets called the first time your layer is used. # Creating variables on build() allows you to make their shape depend # on the input shape and hence removes the need for the user to specify # full shapes. It is possible to create variables during __init__() if # you already know their full shapes. self.kernel = self.add_variable( "kernel", [input_shape[-1], self.output_units]) def call(self, input): # Override call() instead of __call__ so we can perform some bookkeeping. return tf.matmul(input, self.kernel) ###Output _____no_output_____ ###Markdown Use `tf.keras.layers.Dense` layer instead of `MySimpleLayer` above as it hasa superset of its functionality (it can also add a bias).When composing layers into models you can use `tf.keras.Sequential` to representmodels which are a linear stack of layers. It is easy to use for basic models: ###Code model = tf.keras.Sequential([ tf.keras.layers.Dense(10, input_shape=(784,)), # must declare input shape tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Alternatively, organize models in classes by inheriting from `tf.keras.Model`.This is a container for layers that is a layer itself, allowing `tf.keras.Model`objects to contain other `tf.keras.Model` objects. ###Code class MNISTModel(tf.keras.Model): def __init__(self): super(MNISTModel, self).__init__() self.dense1 = tf.keras.layers.Dense(units=10) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, input): """Run the model.""" result = self.dense1(input) result = self.dense2(result) result = self.dense2(result) # reuse variables from dense2 layer return result model = MNISTModel() ###Output _____no_output_____ ###Markdown It's not required to set an input shape for the `tf.keras.Model` class sincethe parameters are set the first time input is passed to the layer.`tf.keras.layers` classes create and contain their own model variables thatare tied to the lifetime of their layer objects. To share layer variables, sharetheir objects. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.`tf.GradientTape` is an opt-in feature to provide maximal performance whennot tracing. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.train.AdamOptimizer() loss_history = [] for (batch, (images, labels)) in enumerate(dataset.take(400)): if batch % 10 == 0: print('.', end='') with tf.GradientTape() as tape: logits = mnist_model(images, training=True) loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits) loss_history.append(loss_value.numpy()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables), global_step=tf.train.get_or_create_global_step()) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random_normal([NUM_EXAMPLES]) noise = tf.random_normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B]), global_step=tf.train.get_or_create_global_step()) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): v = tf.Variable(tf.random_normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based saving`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os import tempfile model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = tempfile.mkdtemp() checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Object-oriented metrics`tfe.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tfe.metrics.result` method,for example: ###Code m = tfe.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](../guide/summaries_and_tensorboard.md) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.`tf.contrib.summary` is compatible with both eager and graph executionenvironments. Summary operations, such as `tf.contrib.summary.scalar`, areinserted during model construction. For example, to record summaries once every100 global steps: ###Code global_step = tf.train.get_or_create_global_step() logdir = "./tb/" writer = tf.contrib.summary.create_file_writer(logdir) writer.set_as_default() for _ in range(10): global_step.assign_add(1) # Must include a record_summaries method with tf.contrib.summary.record_summaries_every_n_global_steps(100): # your model code goes here tf.contrib.summary.scalar('global_step', global_step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Additional functions to compute gradients`tf.GradientTape` is a powerful interface for computing gradients, but thereis another [Autograd](https://github.com/HIPS/autograd)-style API available forautomatic differentiation. These functions are useful if writing math code withonly tensors and gradient functions, and without `tf.variables`:* `tfe.gradients_function` —Returns a function that computes the derivatives of its input function parameter with respect to its arguments. The input function parameter must return a scalar value. When the returned function is invoked, it returns a list of `tf.Tensor` objects: one element for each argument of the input function. Since anything of interest must be passed as a function parameter, this becomes unwieldy if there's a dependency on many trainable parameters.* `tfe.value_and_gradients_function` —Similar to `tfe.gradients_function`, but when the returned function is invoked, it returns the value from the input function in addition to the list of derivatives of the input function with respect to its arguments.In the following example, `tfe.gradients_function` takes the `square`function as an argument and returns a function that computes the partialderivatives of `square` with respect to its inputs. To calculate the derivativeof `square` at `3`, `grad(3.0)` returns `6`. ###Code def square(x): return tf.multiply(x, x) grad = tfe.gradients_function(square) square(3.).numpy() grad(3.)[0].numpy() # The second-order derivative of square: gradgrad = tfe.gradients_function(lambda x: grad(x)[0]) gradgrad(3.)[0].numpy() # The third-order derivative is None: gradgradgrad = tfe.gradients_function(lambda x: gradgrad(x)[0]) gradgradgrad(3.) # With flow control: def abs(x): return x if x > 0. else -x grad = tfe.gradients_function(abs) grad(3.)[0].numpy() grad(-3.)[0].numpy() ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients in eager and graphexecution. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.log(1 + tf.exp(x)) grad_log1pexp = tfe.gradients_function(log1pexp) # The gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.log(1 + e), grad grad_log1pexp = tfe.gradients_function(log1pexp) # As before, the gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # And the gradient computation also works at x = 100. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random_normal(shape), steps))) # Run on GPU, if available: if tfe.num_gpus() > 0: with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random_normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random_normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 if tfe.num_gpus() > 1: x_gpu1 = x.gpu(1) _ = tf.matmul(x_gpu1, x_gpu1) # Runs on GPU:1 ###Output _____no_output_____ ###Markdown BenchmarksFor compute-heavy models, such as[ResNet50](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/resnet50)training on a GPU, eager execution performance is comparable to graph execution.But this gap grows larger for models with less computation and there is work tobe done for optimizing hot code paths for models with lots of small operations. Work with graphsWhile eager execution makes development and debugging more interactive,TensorFlow graph execution has advantages for distributed training, performanceoptimizations, and production deployment. However, writing graph code can feeldifferent than writing regular Python code and more difficult to debug.For building and training graph-constructed models, the Python program firstbuilds a graph representing the computation, then invokes `Session.run` to sendthe graph for execution on the C++-based runtime. This provides:* Automatic differentiation using static autodiff.* Simple deployment to a platform independent server.* Graph-based optimizations (common subexpression elimination, constant-folding, etc.).* Compilation and kernel fusion.* Automatic distribution and replication (placing nodes on the distributed system).Deploying code written for eager execution is more difficult: either generate agraph from the model, or run the Python runtime and code directly on the server. Write compatible codeThe same code written for eager execution will also build a graph during graphexecution. Do this by simply running the same code in a new Python session whereeager execution is not enabled.Most TensorFlow operations work during eager execution, but there are some thingsto keep in mind:* Use `tf.data` for input processing instead of queues. It's faster and easier.* Use object-oriented layer APIs—like `tf.keras.layers` and `tf.keras.Model`—since they have explicit storage for variables.* Most model code works the same during eager and graph execution, but there are exceptions. (For example, dynamic models using Python control flow to change the computation based on inputs.)* Once eager execution is enabled with `tf.enable_eager_execution`, it cannot be turned off. Start a new Python session to return to graph execution.It's best to write code for both eager execution *and* graph execution. Thisgives you eager's interactive experimentation and debuggability with thedistributed performance benefits of graph execution.Write, debug, and iterate in eager execution, then import the model graph forproduction deployment. Use `tf.train.Checkpoint` to save and restore modelvariables, this allows movement between eager and graph execution environments.See the examples in:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples). Use eager execution in a graph environmentSelectively enable eager execution in a TensorFlow graph environment using`tfe.py_func`. This is used when `tf.enable_eager_execution()` has *not*been called. ###Code def my_py_func(x): x = tf.matmul(x, x) # You can use tf ops print(x) # but it's eager! return x with tf.Session() as sess: x = tf.placeholder(dtype=tf.float32) # Call eager function in graph! pf = tfe.py_func(my_py_func, [x], tf.float32) sess.run(pf, feed_dict={x: [[2.0]]}) # [[4.0]] ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code import os import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a convenient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code import os import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager Execution View on TensorFlow.org Run in Google Colab View source on GitHub TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration. For acollection of examples running in eager execution, see:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples).Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage To start eager execution, add `tf.enable_eager_execution()` to the beginning ofthe program or console session. Do not add this operation to other modules thatthe program calls. ###Code from __future__ import absolute_import, division, print_function import tensorflow as tf tf.enable_eager_execution() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code tf.executing_eagerly() x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown The `tf.contrib.eager` module contains symbols available to both eager and graph executionenvironments and is useful for writing code to [work with graphs](work_with_graphs): ###Code tfe = tf.contrib.eager ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Build a modelMany machine learning models are represented by composing layers. Whenusing TensorFlow with eager execution you can either write your own layers oruse a layer provided in the `tf.keras.layers` package.While you can use any Python object to represent a layer,TensorFlow has `tf.keras.layers.Layer` as a convenient base class. Inherit fromit to implement your own layer: ###Code class MySimpleLayer(tf.keras.layers.Layer): def __init__(self, output_units): super(MySimpleLayer, self).__init__() self.output_units = output_units def build(self, input_shape): # The build method gets called the first time your layer is used. # Creating variables on build() allows you to make their shape depend # on the input shape and hence removes the need for the user to specify # full shapes. It is possible to create variables during __init__() if # you already know their full shapes. self.kernel = self.add_variable( "kernel", [input_shape[-1], self.output_units]) def call(self, input): # Override call() instead of __call__ so we can perform some bookkeeping. return tf.matmul(input, self.kernel) ###Output _____no_output_____ ###Markdown Use `tf.keras.layers.Dense` layer instead of `MySimpleLayer` above as it hasa superset of its functionality (it can also add a bias).When composing layers into models you can use `tf.keras.Sequential` to representmodels which are a linear stack of layers. It is easy to use for basic models: ###Code model = tf.keras.Sequential([ tf.keras.layers.Dense(10, input_shape=(784,)), # must declare input shape tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Alternatively, organize models in classes by inheriting from `tf.keras.Model`.This is a container for layers that is a layer itself, allowing `tf.keras.Model`objects to contain other `tf.keras.Model` objects. ###Code class MNISTModel(tf.keras.Model): def __init__(self): super(MNISTModel, self).__init__() self.dense1 = tf.keras.layers.Dense(units=10) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, input): """Run the model.""" result = self.dense1(input) result = self.dense2(result) result = self.dense2(result) # reuse variables from dense2 layer return result model = MNISTModel() ###Output _____no_output_____ ###Markdown It's not required to set an input shape for the `tf.keras.Model` class sincethe parameters are set the first time input is passed to the layer.`tf.keras.layers` classes create and contain their own model variables thatare tied to the lifetime of their layer objects. To share layer variables, sharetheir objects. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.`tf.GradientTape` is an opt-in feature to provide maximal performance whennot tracing. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.train.AdamOptimizer() loss_history = [] for (batch, (images, labels)) in enumerate(dataset.take(400)): if batch % 10 == 0: print('.', end='') with tf.GradientTape() as tape: logits = mnist_model(images, training=True) loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits) loss_history.append(loss_value.numpy()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables), global_step=tf.train.get_or_create_global_step()) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random_normal([NUM_EXAMPLES]) noise = tf.random_normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B]), global_step=tf.train.get_or_create_global_step()) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): v = tf.Variable(tf.random_normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based saving`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os import tempfile model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = tempfile.mkdtemp() checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Object-oriented metrics`tfe.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tfe.metrics.result` method,for example: ###Code m = tfe.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](../guide/summaries_and_tensorboard.md) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.`tf.contrib.summary` is compatible with both eager and graph executionenvironments. Summary operations, such as `tf.contrib.summary.scalar`, areinserted during model construction. For example, to record summaries once every100 global steps: ###Code global_step = tf.train.get_or_create_global_step() logdir = "./tb/" writer = tf.contrib.summary.create_file_writer(logdir) writer.set_as_default() for _ in range(10): global_step.assign_add(1) # Must include a record_summaries method with tf.contrib.summary.record_summaries_every_n_global_steps(100): # your model code goes here tf.contrib.summary.scalar('global_step', global_step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Additional functions to compute gradients`tf.GradientTape` is a powerful interface for computing gradients, but thereis another [Autograd](https://github.com/HIPS/autograd)-style API available forautomatic differentiation. These functions are useful if writing math code withonly tensors and gradient functions, and without `tf.variables`:* `tfe.gradients_function` —Returns a function that computes the derivatives of its input function parameter with respect to its arguments. The input function parameter must return a scalar value. When the returned function is invoked, it returns a list of `tf.Tensor` objects: one element for each argument of the input function. Since anything of interest must be passed as a function parameter, this becomes unwieldy if there's a dependency on many trainable parameters.* `tfe.value_and_gradients_function` —Similar to `tfe.gradients_function`, but when the returned function is invoked, it returns the value from the input function in addition to the list of derivatives of the input function with respect to its arguments.In the following example, `tfe.gradients_function` takes the `square`function as an argument and returns a function that computes the partialderivatives of `square` with respect to its inputs. To calculate the derivativeof `square` at `3`, `grad(3.0)` returns `6`. ###Code def square(x): return tf.multiply(x, x) grad = tfe.gradients_function(square) square(3.).numpy() grad(3.)[0].numpy() # The second-order derivative of square: gradgrad = tfe.gradients_function(lambda x: grad(x)[0]) gradgrad(3.)[0].numpy() # The third-order derivative is None: gradgradgrad = tfe.gradients_function(lambda x: gradgrad(x)[0]) gradgradgrad(3.) # With flow control: def abs(x): return x if x > 0. else -x grad = tfe.gradients_function(abs) grad(3.)[0].numpy() grad(-3.)[0].numpy() ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients in eager and graphexecution. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.log(1 + tf.exp(x)) grad_log1pexp = tfe.gradients_function(log1pexp) # The gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.log(1 + e), grad grad_log1pexp = tfe.gradients_function(log1pexp) # As before, the gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # And the gradient computation also works at x = 100. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random_normal(shape), steps))) # Run on GPU, if available: if tfe.num_gpus() > 0: with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random_normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random_normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 if tfe.num_gpus() > 1: x_gpu1 = x.gpu(1) _ = tf.matmul(x_gpu1, x_gpu1) # Runs on GPU:1 ###Output _____no_output_____ ###Markdown BenchmarksFor compute-heavy models, such as[ResNet50](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/resnet50)training on a GPU, eager execution performance is comparable to graph execution.But this gap grows larger for models with less computation and there is work tobe done for optimizing hot code paths for models with lots of small operations. Work with graphsWhile eager execution makes development and debugging more interactive,TensorFlow graph execution has advantages for distributed training, performanceoptimizations, and production deployment. However, writing graph code can feeldifferent than writing regular Python code and more difficult to debug.For building and training graph-constructed models, the Python program firstbuilds a graph representing the computation, then invokes `Session.run` to sendthe graph for execution on the C++-based runtime. This provides:* Automatic differentiation using static autodiff.* Simple deployment to a platform independent server.* Graph-based optimizations (common subexpression elimination, constant-folding, etc.).* Compilation and kernel fusion.* Automatic distribution and replication (placing nodes on the distributed system).Deploying code written for eager execution is more difficult: either generate agraph from the model, or run the Python runtime and code directly on the server. Write compatible codeThe same code written for eager execution will also build a graph during graphexecution. Do this by simply running the same code in a new Python session whereeager execution is not enabled.Most TensorFlow operations work during eager execution, but there are some thingsto keep in mind:* Use `tf.data` for input processing instead of queues. It's faster and easier.* Use object-oriented layer APIs—like `tf.keras.layers` and `tf.keras.Model`—since they have explicit storage for variables.* Most model code works the same during eager and graph execution, but there are exceptions. (For example, dynamic models using Python control flow to change the computation based on inputs.)* Once eager execution is enabled with `tf.enable_eager_execution`, it cannot be turned off. Start a new Python session to return to graph execution.It's best to write code for both eager execution *and* graph execution. Thisgives you eager's interactive experimentation and debuggability with thedistributed performance benefits of graph execution.Write, debug, and iterate in eager execution, then import the model graph forproduction deployment. Use `tf.train.Checkpoint` to save and restore modelvariables, this allows movement between eager and graph execution environments.See the examples in:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples). Use eager execution in a graph environmentSelectively enable eager execution in a TensorFlow graph environment using`tfe.py_func`. This is used when `tf.enable_eager_execution()` has *not*been called. ###Code def my_py_func(x): x = tf.matmul(x, x) # You can use tf ops print(x) # but it's eager! return x with tf.Session() as sess: x = tf.placeholder(dtype=tf.float32) # Call eager function in graph! pf = tfe.py_func(my_py_func, [x], tf.float32) sess.run(pf, feed_dict={x: [[2.0]]}) # [[4.0]] ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager essentials View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(): for epoch in range(3): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train() import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith TF 1.x graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): print("GPU enabled") v = tf.Variable(tf.random.normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based savingThis section is an abbreviated version of the [guide to training checkpoints](./checkpoints.ipynb).`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoints.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.test.is_gpu_available(): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code import os import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a convenient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save(checkpoint_path) x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code import os import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a convenient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code import os import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a convenient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(): for epoch in range(3): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train() import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith TF 1.x graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.config.experimental.list_physical_devices("GPU"): with tf.device("gpu:0"): print("GPU enabled") v = tf.Variable(tf.random.normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based savingThis section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb).`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(1000): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager Execution View on TensorFlow.org Run in Google Colab View source on GitHub TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration. For acollection of examples running in eager execution, see:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples).Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage To start eager execution, add `tf.enable_eager_execution()` to the beginning ofthe program or console session. Do not add this operation to other modules thatthe program calls. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf tf.enable_eager_execution() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code tf.executing_eagerly() x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown The `tf.contrib.eager` module contains symbols available to both eager and graph executionenvironments and is useful for writing code to [work with graphs](work_with_graphs): ###Code tfe = tf.contrib.eager ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Build a modelMany machine learning models are represented by composing layers. Whenusing TensorFlow with eager execution you can either write your own layers oruse a layer provided in the `tf.keras.layers` package.While you can use any Python object to represent a layer,TensorFlow has `tf.keras.layers.Layer` as a convenient base class. Inherit fromit to implement your own layer: ###Code class MySimpleLayer(tf.keras.layers.Layer): def __init__(self, output_units): super(MySimpleLayer, self).__init__() self.output_units = output_units def build(self, input_shape): # The build method gets called the first time your layer is used. # Creating variables on build() allows you to make their shape depend # on the input shape and hence removes the need for the user to specify # full shapes. It is possible to create variables during __init__() if # you already know their full shapes. self.kernel = self.add_variable( "kernel", [input_shape[-1], self.output_units]) def call(self, input): # Override call() instead of __call__ so we can perform some bookkeeping. return tf.matmul(input, self.kernel) ###Output _____no_output_____ ###Markdown Use `tf.keras.layers.Dense` layer instead of `MySimpleLayer` above as it hasa superset of its functionality (it can also add a bias).When composing layers into models you can use `tf.keras.Sequential` to representmodels which are a linear stack of layers. It is easy to use for basic models: ###Code model = tf.keras.Sequential([ tf.keras.layers.Dense(10, input_shape=(784,)), # must declare input shape tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Alternatively, organize models in classes by inheriting from `tf.keras.Model`.This is a container for layers that is a layer itself, allowing `tf.keras.Model`objects to contain other `tf.keras.Model` objects. ###Code class MNISTModel(tf.keras.Model): def __init__(self): super(MNISTModel, self).__init__() self.dense1 = tf.keras.layers.Dense(units=10) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, input): """Run the model.""" result = self.dense1(input) result = self.dense2(result) result = self.dense2(result) # reuse variables from dense2 layer return result model = MNISTModel() ###Output _____no_output_____ ###Markdown It's not required to set an input shape for the `tf.keras.Model` class sincethe parameters are set the first time input is passed to the layer.`tf.keras.layers` classes create and contain their own model variables thatare tied to the lifetime of their layer objects. To share layer variables, sharetheir objects. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.`tf.GradientTape` is an opt-in feature to provide maximal performance whennot tracing. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.train.AdamOptimizer() loss_history = [] for (batch, (images, labels)) in enumerate(dataset.take(400)): if batch % 10 == 0: print('.', end='') with tf.GradientTape() as tape: logits = mnist_model(images, training=True) loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits) loss_history.append(loss_value.numpy()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables), global_step=tf.train.get_or_create_global_step()) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random_normal([NUM_EXAMPLES]) noise = tf.random_normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B]), global_step=tf.train.get_or_create_global_step()) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): v = tf.Variable(tf.random_normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based saving`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os import tempfile model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = tempfile.mkdtemp() checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Object-oriented metrics`tfe.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tfe.metrics.result` method,for example: ###Code m = tfe.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](../guide/summaries_and_tensorboard.md) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.`tf.contrib.summary` is compatible with both eager and graph executionenvironments. Summary operations, such as `tf.contrib.summary.scalar`, areinserted during model construction. For example, to record summaries once every100 global steps: ###Code global_step = tf.train.get_or_create_global_step() logdir = "./tb/" writer = tf.contrib.summary.create_file_writer(logdir) writer.set_as_default() for _ in range(10): global_step.assign_add(1) # Must include a record_summaries method with tf.contrib.summary.record_summaries_every_n_global_steps(100): # your model code goes here tf.contrib.summary.scalar('global_step', global_step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Additional functions to compute gradients`tf.GradientTape` is a powerful interface for computing gradients, but thereis another [Autograd](https://github.com/HIPS/autograd)-style API available forautomatic differentiation. These functions are useful if writing math code withonly tensors and gradient functions, and without `tf.variables`:* `tfe.gradients_function` —Returns a function that computes the derivatives of its input function parameter with respect to its arguments. The input function parameter must return a scalar value. When the returned function is invoked, it returns a list of `tf.Tensor` objects: one element for each argument of the input function. Since anything of interest must be passed as a function parameter, this becomes unwieldy if there's a dependency on many trainable parameters.* `tfe.value_and_gradients_function` —Similar to `tfe.gradients_function`, but when the returned function is invoked, it returns the value from the input function in addition to the list of derivatives of the input function with respect to its arguments.In the following example, `tfe.gradients_function` takes the `square`function as an argument and returns a function that computes the partialderivatives of `square` with respect to its inputs. To calculate the derivativeof `square` at `3`, `grad(3.0)` returns `6`. ###Code def square(x): return tf.multiply(x, x) grad = tfe.gradients_function(square) square(3.).numpy() grad(3.)[0].numpy() # The second-order derivative of square: gradgrad = tfe.gradients_function(lambda x: grad(x)[0]) gradgrad(3.)[0].numpy() # The third-order derivative is None: gradgradgrad = tfe.gradients_function(lambda x: gradgrad(x)[0]) gradgradgrad(3.) # With flow control: def abs(x): return x if x > 0. else -x grad = tfe.gradients_function(abs) grad(3.)[0].numpy() grad(-3.)[0].numpy() ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients in eager and graphexecution. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.log(1 + tf.exp(x)) grad_log1pexp = tfe.gradients_function(log1pexp) # The gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.log(1 + e), grad grad_log1pexp = tfe.gradients_function(log1pexp) # As before, the gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # And the gradient computation also works at x = 100. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random_normal(shape), steps))) # Run on GPU, if available: if tfe.num_gpus() > 0: with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random_normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random_normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 if tfe.num_gpus() > 1: x_gpu1 = x.gpu(1) _ = tf.matmul(x_gpu1, x_gpu1) # Runs on GPU:1 ###Output _____no_output_____ ###Markdown BenchmarksFor compute-heavy models, such as[ResNet50](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/resnet50)training on a GPU, eager execution performance is comparable to graph execution.But this gap grows larger for models with less computation and there is work tobe done for optimizing hot code paths for models with lots of small operations. Work with graphsWhile eager execution makes development and debugging more interactive,TensorFlow graph execution has advantages for distributed training, performanceoptimizations, and production deployment. However, writing graph code can feeldifferent than writing regular Python code and more difficult to debug.For building and training graph-constructed models, the Python program firstbuilds a graph representing the computation, then invokes `Session.run` to sendthe graph for execution on the C++-based runtime. This provides:* Automatic differentiation using static autodiff.* Simple deployment to a platform independent server.* Graph-based optimizations (common subexpression elimination, constant-folding, etc.).* Compilation and kernel fusion.* Automatic distribution and replication (placing nodes on the distributed system).Deploying code written for eager execution is more difficult: either generate agraph from the model, or run the Python runtime and code directly on the server. Write compatible codeThe same code written for eager execution will also build a graph during graphexecution. Do this by simply running the same code in a new Python session whereeager execution is not enabled.Most TensorFlow operations work during eager execution, but there are some thingsto keep in mind:* Use `tf.data` for input processing instead of queues. It's faster and easier.* Use object-oriented layer APIs—like `tf.keras.layers` and `tf.keras.Model`—since they have explicit storage for variables.* Most model code works the same during eager and graph execution, but there are exceptions. (For example, dynamic models using Python control flow to change the computation based on inputs.)* Once eager execution is enabled with `tf.enable_eager_execution`, it cannot be turned off. Start a new Python session to return to graph execution.It's best to write code for both eager execution *and* graph execution. Thisgives you eager's interactive experimentation and debuggability with thedistributed performance benefits of graph execution.Write, debug, and iterate in eager execution, then import the model graph forproduction deployment. Use `tf.train.Checkpoint` to save and restore modelvariables, this allows movement between eager and graph execution environments.See the examples in:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples). Use eager execution in a graph environmentSelectively enable eager execution in a TensorFlow graph environment using`tfe.py_func`. This is used when `tf.enable_eager_execution()` has *not*been called. ###Code def my_py_func(x): x = tf.matmul(x, x) # You can use tf ops print(x) # but it's eager! return x with tf.Session() as sess: x = tf.placeholder(dtype=tf.float32) # Call eager function in graph! pf = tfe.py_func(my_py_func, [x], tf.float32) sess.run(pf, feed_dict={x: [[2.0]]}) # [[4.0]] ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Eager Execution View on TensorFlow.org Run in Google Colab View source on GitHub TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration. For acollection of examples running in eager execution, see:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples).Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usageUpgrade to the latest version of TensorFlow: ###Code !pip install --upgrade tensorflow ###Output _____no_output_____ ###Markdown To start eager execution, add `tf.enable_eager_execution()` to the beginning ofthe program or console session. Do not add this operation to other modules thatthe program calls. ###Code from __future__ import absolute_import, division, print_function import tensorflow as tf tf.enable_eager_execution() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code tf.executing_eagerly() x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown The `tf.contrib.eager` module contains symbols available to both eager and graph executionenvironments and is useful for writing code to [work with graphs](work_with_graphs): ###Code tfe = tf.contrib.eager ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Build a modelMany machine learning models are represented by composing layers. Whenusing TensorFlow with eager execution you can either write your own layers oruse a layer provided in the `tf.keras.layers` package.While you can use any Python object to represent a layer,TensorFlow has `tf.keras.layers.Layer` as a convenient base class. Inherit fromit to implement your own layer: ###Code class MySimpleLayer(tf.keras.layers.Layer): def __init__(self, output_units): super(MySimpleLayer, self).__init__() self.output_units = output_units def build(self, input_shape): # The build method gets called the first time your layer is used. # Creating variables on build() allows you to make their shape depend # on the input shape and hence removes the need for the user to specify # full shapes. It is possible to create variables during __init__() if # you already know their full shapes. self.kernel = self.add_variable( "kernel", [input_shape[-1], self.output_units]) def call(self, input): # Override call() instead of __call__ so we can perform some bookkeeping. return tf.matmul(input, self.kernel) ###Output _____no_output_____ ###Markdown Use `tf.keras.layers.Dense` layer instead of `MySimpleLayer` above as it hasa superset of its functionality (it can also add a bias).When composing layers into models you can use `tf.keras.Sequential` to representmodels which are a linear stack of layers. It is easy to use for basic models: ###Code model = tf.keras.Sequential([ tf.keras.layers.Dense(10, input_shape=(784,)), # must declare input shape tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Alternatively, organize models in classes by inheriting from `tf.keras.Model`.This is a container for layers that is a layer itself, allowing `tf.keras.Model`objects to contain other `tf.keras.Model` objects. ###Code class MNISTModel(tf.keras.Model): def __init__(self): super(MNISTModel, self).__init__() self.dense1 = tf.keras.layers.Dense(units=10) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, input): """Run the model.""" result = self.dense1(input) result = self.dense2(result) result = self.dense2(result) # reuse variables from dense2 layer return result model = MNISTModel() ###Output _____no_output_____ ###Markdown It's not required to set an input shape for the `tf.keras.Model` class sincethe parameters are set the first time input is passed to the layer.`tf.keras.layers` classes create and contain their own model variables thatare tied to the lifetime of their layer objects. To share layer variables, sharetheir objects. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.`tf.GradientTape` is an opt-in feature to provide maximal performance whennot tracing. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.train.AdamOptimizer() loss_history = [] for (batch, (images, labels)) in enumerate(dataset.take(400)): if batch % 80 == 0: print() print('.', end='') with tf.GradientTape() as tape: logits = mnist_model(images, training=True) loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits) loss_history.append(loss_value.numpy()) grads = tape.gradient(loss_value, model.variables) optimizer.apply_gradients(zip(grads, model.variables), global_step=tf.train.get_or_create_global_step()) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown This example uses the[dataset.py module](https://github.com/tensorflow/models/blob/master/official/mnist/dataset.py)from the[TensorFlow MNIST example](https://github.com/tensorflow/models/tree/master/official/mnist);download this file to your local directory. Run the following to download theMNIST data files to your working directory and prepare a `tf.data.Dataset`for training: Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random_normal([NUM_EXAMPLES]) noise = tf.random_normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B]), global_step=tf.train.get_or_create_global_step()) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): v = tf.Variable(tf.random_normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based saving`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = '/path/to/model_dir' os.makedirs(checkpoint_dir, exist_ok=True) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Object-oriented metrics`tfe.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tfe.metrics.result` method,for example: ###Code m = tfe.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](../guide/summaries_and_tensorboard.md) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.`tf.contrib.summary` is compatible with both eager and graph executionenvironments. Summary operations, such as `tf.contrib.summary.scalar`, areinserted during model construction. For example, to record summaries once every100 global steps: ###Code global_step = tf.train.get_or_create_global_step() logdir = "./tb/" writer = tf.contrib.summary.create_file_writer(logdir) writer.set_as_default() for _ in range(10): global_step.assign_add(1) # Must include a record_summaries method with tf.contrib.summary.record_summaries_every_n_global_steps(100): # your model code goes here tf.contrib.summary.scalar('global_step', global_step) ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Additional functions to compute gradients`tf.GradientTape` is a powerful interface for computing gradients, but thereis another [Autograd](https://github.com/HIPS/autograd)-style API available forautomatic differentiation. These functions are useful if writing math code withonly tensors and gradient functions, and without `tf.Variables`:* `tfe.gradients_function` —Returns a function that computes the derivatives of its input function parameter with respect to its arguments. The input function parameter must return a scalar value. When the returned function is invoked, it returns a list of `tf.Tensor` objects: one element for each argument of the input function. Since anything of interest must be passed as a function parameter, this becomes unwieldy if there's a dependency on many trainable parameters.* `tfe.value_and_gradients_function` —Similar to `tfe.gradients_function`, but when the returned function is invoked, it returns the value from the input function in addition to the list of derivatives of the input function with respect to its arguments.In the following example, `tfe.gradients_function` takes the `square`function as an argument and returns a function that computes the partialderivatives of `square` with respect to its inputs. To calculate the derivativeof `square` at `3`, `grad(3.0)` returns `6`. ###Code def square(x): return tf.multiply(x, x) grad = tfe.gradients_function(square) square(3.).numpy() grad(3.)[0].numpy() # The second-order derivative of square: gradgrad = tfe.gradients_function(lambda x: grad(x)[0]) gradgrad(3.)[0].numpy() # The third-order derivative is None: gradgradgrad = tfe.gradients_function(lambda x: gradgrad(x)[0]) gradgradgrad(3.) # With flow control: def abs(x): return x if x > 0. else -x grad = tfe.gradients_function(abs) grad(3.)[0].numpy() grad(-3.)[0].numpy() ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients in eager and graphexecution. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.log(1 + tf.exp(x)) grad_log1pexp = tfe.gradients_function(log1pexp) # The gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.log(1 + e), grad grad_log1pexp = tfe.gradients_function(log1pexp) # As before, the gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # And the gradient computation also works at x = 100. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random_normal(shape), steps))) # Run on GPU, if available: if tfe.num_gpus() > 0: with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random_normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random_normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 if tfe.num_gpus() > 1: x_gpu1 = x.gpu(1) _ = tf.matmul(x_gpu1, x_gpu1) # Runs on GPU:1 ###Output _____no_output_____ ###Markdown BenchmarksFor compute-heavy models, such as[ResNet50](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/resnet50)training on a GPU, eager execution performance is comparable to graph execution.But this gap grows larger for models with less computation and there is work tobe done for optimizing hot code paths for models with lots of small operations. Work with graphsWhile eager execution makes development and debugging more interactive,TensorFlow graph execution has advantages for distributed training, performanceoptimizations, and production deployment. However, writing graph code can feeldifferent than writing regular Python code and more difficult to debug.For building and training graph-constructed models, the Python program firstbuilds a graph representing the computation, then invokes `Session.run` to sendthe graph for execution on the C++-based runtime. This provides:* Automatic differentiation using static autodiff.* Simple deployment to a platform independent server.* Graph-based optimizations (common subexpression elimination, constant-folding, etc.).* Compilation and kernel fusion.* Automatic distribution and replication (placing nodes on the distributed system).Deploying code written for eager execution is more difficult: either generate agraph from the model, or run the Python runtime and code directly on the server. Write compatible codeThe same code written for eager execution will also build a graph during graphexecution. Do this by simply running the same code in a new Python session whereeager execution is not enabled.Most TensorFlow operations work during eager execution, but there are some thingsto keep in mind:* Use `tf.data` for input processing instead of queues. It's faster and easier.* Use object-oriented layer APIs—like `tf.keras.layers` and `tf.keras.Model`—since they have explicit storage for variables.* Most model code works the same during eager and graph execution, but there are exceptions. (For example, dynamic models using Python control flow to change the computation based on inputs.)* Once eager execution is enabled with `tf.enable_eager_execution`, it cannot be turned off. Start a new Python session to return to graph execution.It's best to write code for both eager execution *and* graph execution. Thisgives you eager's interactive experimentation and debuggability with thedistributed performance benefits of graph execution.Write, debug, and iterate in eager execution, then import the model graph forproduction deployment. Use `tf.train.Checkpoint` to save and restore modelvariables, this allows movement between eager and graph execution environments.See the examples in:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples). Use eager execution in a graph environmentSelectively enable eager execution in a TensorFlow graph environment using`tfe.py_func`. This is used when `tf.enable_eager_execution()` has *not*been called. ###Code def my_py_func(x): x = tf.matmul(x, x) # You can use tf ops print(x) # but it's eager! return x with tf.Session() as sess: x = tf.placeholder(dtype=tf.float32) # Call eager function in graph! pf = tfe.py_func(my_py_func, [x], tf.float32) sess.run(pf, feed_dict={x: [[2.0]]}) # [[4.0]] ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager Execution View on TensorFlow.org Run in Google Colab View source on GitHub TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration. For acollection of examples running in eager execution, see:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples).Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage To start eager execution, add `tf.enable_eager_execution()` to the beginning ofthe program or console session. Do not add this operation to other modules thatthe program calls. ###Code from __future__ import absolute_import, division, print_function import tensorflow as tf tf.enable_eager_execution() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code tf.executing_eagerly() x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown The `tf.contrib.eager` module contains symbols available to both eager and graph executionenvironments and is useful for writing code to [work with graphs](work_with_graphs): ###Code tfe = tf.contrib.eager ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Build a modelMany machine learning models are represented by composing layers. Whenusing TensorFlow with eager execution you can either write your own layers oruse a layer provided in the `tf.keras.layers` package.While you can use any Python object to represent a layer,TensorFlow has `tf.keras.layers.Layer` as a convenient base class. Inherit fromit to implement your own layer: ###Code class MySimpleLayer(tf.keras.layers.Layer): def __init__(self, output_units): super(MySimpleLayer, self).__init__() self.output_units = output_units def build(self, input_shape): # The build method gets called the first time your layer is used. # Creating variables on build() allows you to make their shape depend # on the input shape and hence removes the need for the user to specify # full shapes. It is possible to create variables during __init__() if # you already know their full shapes. self.kernel = self.add_variable( "kernel", [input_shape[-1], self.output_units]) def call(self, input): # Override call() instead of __call__ so we can perform some bookkeeping. return tf.matmul(input, self.kernel) ###Output _____no_output_____ ###Markdown Use `tf.keras.layers.Dense` layer instead of `MySimpleLayer` above as it hasa superset of its functionality (it can also add a bias).When composing layers into models you can use `tf.keras.Sequential` to representmodels which are a linear stack of layers. It is easy to use for basic models: ###Code model = tf.keras.Sequential([ tf.keras.layers.Dense(10, input_shape=(784,)), # must declare input shape tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Alternatively, organize models in classes by inheriting from `tf.keras.Model`.This is a container for layers that is a layer itself, allowing `tf.keras.Model`objects to contain other `tf.keras.Model` objects. ###Code class MNISTModel(tf.keras.Model): def __init__(self): super(MNISTModel, self).__init__() self.dense1 = tf.keras.layers.Dense(units=10) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, input): """Run the model.""" result = self.dense1(input) result = self.dense2(result) result = self.dense2(result) # reuse variables from dense2 layer return result model = MNISTModel() ###Output _____no_output_____ ###Markdown It's not required to set an input shape for the `tf.keras.Model` class sincethe parameters are set the first time input is passed to the layer.`tf.keras.layers` classes create and contain their own model variables thatare tied to the lifetime of their layer objects. To share layer variables, sharetheir objects. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.`tf.GradientTape` is an opt-in feature to provide maximal performance whennot tracing. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.train.AdamOptimizer() loss_history = [] for (batch, (images, labels)) in enumerate(dataset.take(400)): if batch % 80 == 0: print() print('.', end='') with tf.GradientTape() as tape: logits = mnist_model(images, training=True) loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits) loss_history.append(loss_value.numpy()) grads = tape.gradient(loss_value, mnist_model.variables) optimizer.apply_gradients(zip(grads, mnist_model.variables), global_step=tf.train.get_or_create_global_step()) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown This example uses the[dataset.py module](https://github.com/tensorflow/models/blob/master/official/mnist/dataset.py)from the[TensorFlow MNIST example](https://github.com/tensorflow/models/tree/master/official/mnist);download this file to your local directory. Run the following to download theMNIST data files to your working directory and prepare a `tf.data.Dataset`for training: Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random_normal([NUM_EXAMPLES]) noise = tf.random_normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B]), global_step=tf.train.get_or_create_global_step()) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): v = tf.Variable(tf.random_normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based saving`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = '/path/to/model_dir' os.makedirs(checkpoint_dir, exist_ok=True) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Object-oriented metrics`tfe.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tfe.metrics.result` method,for example: ###Code m = tfe.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](../guide/summaries_and_tensorboard.md) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.`tf.contrib.summary` is compatible with both eager and graph executionenvironments. Summary operations, such as `tf.contrib.summary.scalar`, areinserted during model construction. For example, to record summaries once every100 global steps: ###Code global_step = tf.train.get_or_create_global_step() logdir = "./tb/" writer = tf.contrib.summary.create_file_writer(logdir) writer.set_as_default() for _ in range(10): global_step.assign_add(1) # Must include a record_summaries method with tf.contrib.summary.record_summaries_every_n_global_steps(100): # your model code goes here tf.contrib.summary.scalar('global_step', global_step) ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Additional functions to compute gradients`tf.GradientTape` is a powerful interface for computing gradients, but thereis another [Autograd](https://github.com/HIPS/autograd)-style API available forautomatic differentiation. These functions are useful if writing math code withonly tensors and gradient functions, and without `tf.Variables`:* `tfe.gradients_function` —Returns a function that computes the derivatives of its input function parameter with respect to its arguments. The input function parameter must return a scalar value. When the returned function is invoked, it returns a list of `tf.Tensor` objects: one element for each argument of the input function. Since anything of interest must be passed as a function parameter, this becomes unwieldy if there's a dependency on many trainable parameters.* `tfe.value_and_gradients_function` —Similar to `tfe.gradients_function`, but when the returned function is invoked, it returns the value from the input function in addition to the list of derivatives of the input function with respect to its arguments.In the following example, `tfe.gradients_function` takes the `square`function as an argument and returns a function that computes the partialderivatives of `square` with respect to its inputs. To calculate the derivativeof `square` at `3`, `grad(3.0)` returns `6`. ###Code def square(x): return tf.multiply(x, x) grad = tfe.gradients_function(square) square(3.).numpy() grad(3.)[0].numpy() # The second-order derivative of square: gradgrad = tfe.gradients_function(lambda x: grad(x)[0]) gradgrad(3.)[0].numpy() # The third-order derivative is None: gradgradgrad = tfe.gradients_function(lambda x: gradgrad(x)[0]) gradgradgrad(3.) # With flow control: def abs(x): return x if x > 0. else -x grad = tfe.gradients_function(abs) grad(3.)[0].numpy() grad(-3.)[0].numpy() ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients in eager and graphexecution. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.log(1 + tf.exp(x)) grad_log1pexp = tfe.gradients_function(log1pexp) # The gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.log(1 + e), grad grad_log1pexp = tfe.gradients_function(log1pexp) # As before, the gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # And the gradient computation also works at x = 100. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random_normal(shape), steps))) # Run on GPU, if available: if tfe.num_gpus() > 0: with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random_normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random_normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 if tfe.num_gpus() > 1: x_gpu1 = x.gpu(1) _ = tf.matmul(x_gpu1, x_gpu1) # Runs on GPU:1 ###Output _____no_output_____ ###Markdown BenchmarksFor compute-heavy models, such as[ResNet50](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/resnet50)training on a GPU, eager execution performance is comparable to graph execution.But this gap grows larger for models with less computation and there is work tobe done for optimizing hot code paths for models with lots of small operations. Work with graphsWhile eager execution makes development and debugging more interactive,TensorFlow graph execution has advantages for distributed training, performanceoptimizations, and production deployment. However, writing graph code can feeldifferent than writing regular Python code and more difficult to debug.For building and training graph-constructed models, the Python program firstbuilds a graph representing the computation, then invokes `Session.run` to sendthe graph for execution on the C++-based runtime. This provides:* Automatic differentiation using static autodiff.* Simple deployment to a platform independent server.* Graph-based optimizations (common subexpression elimination, constant-folding, etc.).* Compilation and kernel fusion.* Automatic distribution and replication (placing nodes on the distributed system).Deploying code written for eager execution is more difficult: either generate agraph from the model, or run the Python runtime and code directly on the server. Write compatible codeThe same code written for eager execution will also build a graph during graphexecution. Do this by simply running the same code in a new Python session whereeager execution is not enabled.Most TensorFlow operations work during eager execution, but there are some thingsto keep in mind:* Use `tf.data` for input processing instead of queues. It's faster and easier.* Use object-oriented layer APIs—like `tf.keras.layers` and `tf.keras.Model`—since they have explicit storage for variables.* Most model code works the same during eager and graph execution, but there are exceptions. (For example, dynamic models using Python control flow to change the computation based on inputs.)* Once eager execution is enabled with `tf.enable_eager_execution`, it cannot be turned off. Start a new Python session to return to graph execution.It's best to write code for both eager execution *and* graph execution. Thisgives you eager's interactive experimentation and debuggability with thedistributed performance benefits of graph execution.Write, debug, and iterate in eager execution, then import the model graph forproduction deployment. Use `tf.train.Checkpoint` to save and restore modelvariables, this allows movement between eager and graph execution environments.See the examples in:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples). Use eager execution in a graph environmentSelectively enable eager execution in a TensorFlow graph environment using`tfe.py_func`. This is used when `tf.enable_eager_execution()` has *not*been called. ###Code def my_py_func(x): x = tf.matmul(x, x) # You can use tf ops print(x) # but it's eager! return x with tf.Session() as sess: x = tf.placeholder(dtype=tf.float32) # Call eager function in graph! pf = tfe.py_func(my_py_func, [x], tf.float32) sess.run(pf, feed_dict={x: [[2.0]]}) # [[4.0]] ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code import os import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager essentials View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x #gpu except Exception: pass import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(): for epoch in range(3): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train() import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith TF 1.x graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.config.experimental.list_physical_devices("GPU"): with tf.device("gpu:0"): print("GPU enabled") v = tf.Variable(tf.random.normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based savingThis section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb).`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager execution View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration.Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage ###Code import os import tensorflow as tf import cProfile ###Output _____no_output_____ ###Markdown In Tensorflow 2.0, eager execution is enabled by default. ###Code tf.executing_eagerly() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. The TensorFlow`tf.math` operations convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.You can use `tf.GradientTape` to train and/or compute gradients in eager. It is especially useful for complicated training loops. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu', input_shape=(None, None, 1)), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_history = [] ###Output _____no_output_____ ###Markdown Note: Use the assert functions in `tf.debugging` to check if a condition holds up. This works in eager and graph execution. ###Code def train_step(images, labels): with tf.GradientTape() as tape: logits = mnist_model(images, training=True) # Add asserts to check the shape of the output. tf.debugging.assert_equal(logits.shape, (32, 10)) loss_value = loss_object(labels, logits) loss_history.append(loss_value.numpy().mean()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables)) def train(epochs): for epoch in range(epochs): for (batch, (images, labels)) in enumerate(dataset): train_step(images, labels) print ('Epoch {} finished'.format(epoch)) train(epochs = 3) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor`-like values accessed duringtraining to make automatic differentiation easier. The collections of variables can be encapsulated into layers or models, along with methods that operate on them. See [Custom Keras layers and models](./keras/custom_layers_and_models.ipynb) for details. The main difference between layers and models is that models add methods like `Model.fit`, `Model.evaluate`, and `Model.save`.For example, the automatic differentiation example abovecan be rewritten: ###Code class Linear(tf.keras.Model): def __init__(self): super(Linear, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random.normal([NUM_EXAMPLES]) noise = tf.random.normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) ###Output _____no_output_____ ###Markdown Next:1. Create the model.2. The Derivatives of a loss function with respect to model parameters.3. A strategy for updating the variables based on the derivatives. ###Code model = Linear() optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) steps = 300 for i in range(steps): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B])) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Note: Variables persist until the last reference to the python objectis removed, and is the variable is deleted. Object-based saving A `tf.keras.Model` includes a covienient `save_weights` method allowing you to easily create a checkpoint: ###Code model.save_weights('weights') status = model.load_weights('weights') ###Output _____no_output_____ ###Markdown Using `tf.train.Checkpoint` you can take full control over this process.This section is an abbreviated version of the [guide to training checkpoints](./checkpoint.ipynb). ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) checkpoint_dir = 'path/to/model_dir' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Note: In many training loops, variables are created after `tf.train.Checkpoint.restore` is called. These variables will be restored as soon as they are created, and assertions are available to ensure that a checkpoint has been fully loaded. See the [guide to training checkpoints](./checkpoint.ipynb) for details. Object-oriented metrics`tf.keras.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tf.keras.metrics.result` method,for example: ###Code m = tf.keras.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](https://tensorflow.org/tensorboard) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.You can use `tf.summary` to record summaries of variable in eager execution.For example, to record summaries of `loss` once every 100 training steps: ###Code logdir = "./tb/" writer = tf.summary.create_file_writer(logdir) steps = 1000 with writer.as_default(): # or call writer.set_as_default() before the loop. for i in range(steps): step = i + 1 # Calculate loss with your real train function. loss = 1 - 0.001 * step if step % 100 == 0: tf.summary.scalar('loss', loss, step=step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically tracked. # But to calculate a gradient from a tensor, you must `watch` it. tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.math.log(1 + tf.exp(x)) def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # The gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad def grad_log1pexp(x): with tf.GradientTape() as tape: tape.watch(x) value = log1pexp(x) return tape.gradient(value, x) # As before, the gradient computation works fine at x = 0. grad_log1pexp(tf.constant(0.)).numpy() # And the gradient computation also works at x = 100. grad_log1pexp(tf.constant(100.)).numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random.normal(shape), steps))) # Run on GPU, if available: if tf.config.experimental.list_physical_devices("GPU"): with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random.normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.config.experimental.list_physical_devices("GPU"): x = tf.random.normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 ###Output _____no_output_____
assignments/05/10215075/10215075_Ahmad_Nawwaaf_Work_of_Friction.ipynb
###Markdown Kerja Gaya GesekAhmad Nawwaaf1, Tim Pendukung2 Program Studi Sarjana Fisika, Institut Teknologi Bandung Jalan Gensha 10, Bandung 40132, Indonesia [email protected], https://github.com/anawwaaf [email protected], https://github.com/timpendukungKerja yang dilakukan oleh gaya gesek merupakan bentuk kerja yang tidak diharapkan karena energi yang dikeluarkan, biasanya dalam bentuk panas atau bunyi yang dilepas ke lingkungan, tidak dapat dimanfaatkan lagi oleh sistem sehingga energi sistem berkurang. Gerak benda di atas lantai mendatar kasarSistem yang ditinjau adalah suatu benda yang bergerak di atas lantai mendatar kasar. Benda diberi kecepatan awal tertentu dan bergerak melambat sampai berhenti karena adanya gaya gesek kinetis antara benda dan lantai kasar. ParameterBeberapa parameter yang digunakan adalah seperti pada tabel berikut ini.Tabel 1. Simbol beserta satuan dan artinya.|Simbol | Satuan | Arti||:- | :- | :-||$t$ | s | waktu||$v_{0}$ | m/s | kecepatan awal||$x_{0}$ | m | posisi awal||$v$ | m/s | kecepatan saat $t$||$x$ | m | waktu saat $t$||$a$ | m/s2 | percepatan||$\mu_{k}$ | - | koefisien gesek kinetis||$f_{k}$ | N | gaya gesek kinetis||$m$ | kg | massa benda||$F$ | N | total gaya yang bekerja||$N$ | N | gaya normal||$w$ | N | gaya gravitasi|Simbol-simbol pada Tabel [1](tab1) akan diberi nilai kemudian saat diimplementasikan dalam program. PersamaanPersamaan-persamaan yang akan digunakan adalah seperti dicantumkan pada bagian ini. KinematikaHubungan antara kecepatan $v$, kecepatan awal $v_{0}$, percepatan $a$, dan waktu $t$ diberikan oleh\begin{equation}\label{eqn:kinematics-v-a-t}\tag{1}v = v_{0} + at\end{equation} Posisi benda $x$ bergantung pada posisi awal $x_{0}$, kecepatan awal $v_{0}$, percepatan $a$, dan waktu $t$ melalui hubungan\begin{equation}\label{eqn:kinematics-x-v-a-t}\tag{2}x = x_{0} + v_{0} t + \tfrac12 at^{2}\end{equation} Selain kedua persamaan sebelumnya, terdapat pula persamaan berikut\begin{equation}\label{eqn:kinematics-v-x-a}\tag{3}v^2 = v_{0}^{2} + 2a(x - x_{0})\end{equation}yang menghubungkan kecepatan $v$ dengan kecepatan awal $v_{0}$, percepatan $a$, dan jarak yang ditempuh $x - x_{0}$ DinamikaHukum Newton I menyatakan bahwa benda yang semula diam akan tetap diam dan yang semula bergerak dengan kecepatan tetap akan tetap bergerak dengan kecepatan tetap bila tidak ada gaya yang bekerja pada benda atau jumlah gaya-gaya yang bekerja sama dengan nol\begin{equation}\label{eqn:newtons-law-1}\tag{4}\sum F = 0\end{equation} Bila ada gaya yang bekerja pada benda bermassa $m$ atau jumlah gaya-gaya tidak nol\begin{equation}\label{eqn:newtons-law-2}\tag{5}\sum F = ma\end{equation}maka keadaan gerak benda akan berubah melalui percepatan $a$, dengan $m > 0$ dan $a \ne 0$ UsahaUsaha oleh suatu gaya $F$ dengan posisi awal $x_{0}$ dan posisi akhir $x_{0}$ dapat diperoleh melalui\begin{equation}\label{eqn:work-1}\tag{6}W = \int_{x_{0}}^{x} F dx\end{equation}atau dengan\begin{equation}\label{eqn:work-2}\tag{7}W = \Delta K\end{equation}dengan $K$ adalah energi kinetik. Persamaan ([7](eqn7)) akan memberikan gaya oleh semua gaya. Dengan demikian bila $F$ adalah satu-satunya gaya yang bekerja pada benda, maka persamaan ini akan menjadi Persamaan ([6](eqn6)). SistemIlustrasi sistem perlu diberikan agar dapat terbayangan dan memudahkan penyelesaian masalah. Selain itu juga perlu disajikan diagram gaya-gaya yang bekerja pada benda. IlustrasiSistem benda yang bermassa $m$ bergerak di atas lantai kasar dapat digambarkan seperti berikut ini. ###Code %%html <svg width="320" height="140" viewBox="0 0 320 140.00001" id="svg2" version="1.1" inkscape:version="1.1.2 (b8e25be833, 2022-02-05)" sodipodi:docname="mass-horizontal-rough-surface.svg" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/"> <defs id="defs4"> <marker style="overflow:visible" id="TriangleOutM" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479" /> </marker> <marker style="overflow:visible" id="marker11604" refX="0" refY="0" orient="auto" inkscape:stockid="Arrow2Mend" inkscape:isstock="true"> <path transform="scale(-0.6)" d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:0.625;stroke-linejoin:round" id="path11602" /> </marker> <marker style="overflow:visible" id="Arrow2Mend" refX="0" refY="0" orient="auto" inkscape:stockid="Arrow2Mend" inkscape:isstock="true"> <path transform="scale(-0.6)" d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:0.625;stroke-linejoin:round" id="path11361" /> </marker> <marker style="overflow:visible" id="TriangleOutM-3" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-1" /> </marker> <marker style="overflow:visible" id="TriangleOutM-35" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-0" /> </marker> <marker style="overflow:visible" id="TriangleOutM-0" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-4" /> </marker> <marker style="overflow:visible" id="TriangleOutM-37" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-9" /> </marker> </defs> <sodipodi:namedview id="base" pagecolor="#ffffff" bordercolor="#666666" borderopacity="1.0" inkscape:pageopacity="0.0" inkscape:pageshadow="2" inkscape:zoom="1.5" inkscape:cx="173" inkscape:cy="97.333333" inkscape:document-units="px" inkscape:current-layer="layer1" showgrid="false" inkscape:snap-bbox="false" inkscape:snap-global="false" units="px" showborder="true" inkscape:showpageshadow="true" borderlayer="false" inkscape:window-width="1366" inkscape:window-height="705" inkscape:window-x="-8" inkscape:window-y="-8" inkscape:window-maximized="1" inkscape:pagecheckerboard="0"> <inkscape:grid type="xygrid" id="grid970" /> </sodipodi:namedview> <metadata id="metadata7"> <rdf:RDF> <cc:Work rdf:about=""> <dc:format>image/svg+xml</dc:format> <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage" /> </cc:Work> </rdf:RDF> </metadata> <g inkscape:label="Layer 1" inkscape:groupmode="layer" id="layer1" transform="translate(0,-732.36216)"> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="120.0725" y="759.6109" id="text2711-6-2-9"><tspan sodipodi:role="line" id="tspan2709-5-9-2" x="120.0725" y="759.6109" style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '"><tspan style="font-style:italic" id="tspan9923">v</tspan><tspan style="font-size:65%;baseline-shift:sub" id="tspan1668">0</tspan></tspan></text> <path style="fill:none;stroke:#000000;stroke-width:1.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#TriangleOutM)" d="m 84.656156,757.55169 25.738704,1.3e-4" id="path11252" /> <rect style="fill:#ffffff;fill-opacity:1;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-opacity:1" id="rect1007" width="59" height="59" x="56.5" y="772.86218" rx="0" ry="0" /> <path style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" d="m 20,832.86218 280,-2e-5" id="path1386" /> <rect style="fill:#ffffff;fill-opacity:1;stroke:#c8c8c8;stroke-width:0.5;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:2, 2;stroke-dashoffset:0;stroke-opacity:1" id="rect1007-2" width="59" height="59" x="225.16667" y="772.86218" rx="0" ry="0" /> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#c8c8c8;fill-opacity:1;stroke:none" x="236.05922" y="759.6109" id="text2711-6-2-9-9"><tspan sodipodi:role="line" id="tspan2709-5-9-2-8" x="236.05922" y="759.6109" style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, ';fill:#c8c8c8;fill-opacity:1"><tspan style="font-style:italic;fill:#c8c8c8;fill-opacity:1" id="tspan9923-8">v</tspan> = 0</tspan></text> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="149.18359" y="824.54877" id="text2711-6-2-9-96"><tspan sodipodi:role="line" id="tspan2709-5-9-2-6" x="149.18359" y="824.54877" style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '"><tspan style="font-style:italic" id="tspan3028">μ<tspan style="font-size:65%;baseline-shift:sub" id="tspan3074">k</tspan></tspan> &gt; 0</tspan></text> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="79.505844" y="806.37714" id="text2711-6-2-9-2"><tspan sodipodi:role="line" id="tspan2709-5-9-2-84" x="79.505844" y="806.37714" style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '">m</tspan></text> <path style="fill:none;stroke:#000000;stroke-width:1.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#TriangleOutM-37)" d="m 33.785239,770.82609 -1.3e-4,25.7387" id="path11252-5" /> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="29.173132" y="759.45776" id="text2711-6-2-9-8"><tspan sodipodi:role="line" id="tspan2709-5-9-2-2" x="29.173132" y="759.45776" style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '">g</tspan></text> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="79.368446" y="849.21539" id="text2711-6-2-9-23"><tspan sodipodi:role="line" id="tspan2709-5-9-2-3" x="79.368446" y="849.21539" style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '"><tspan style="font-style:italic" id="tspan9923-0">x</tspan><tspan style="font-size:65%;baseline-shift:sub" id="tspan1668-9">0</tspan></tspan></text> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="250.91145" y="849.21539" id="text2711-6-2-9-23-0"><tspan sodipodi:role="line" id="tspan2709-5-9-2-3-0" x="250.91145" y="849.21539" style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '"><tspan style="font-style:italic" id="tspan9923-0-3">x</tspan><tspan style="font-size:65%;baseline-shift:sub" id="tspan1668-9-3" /></tspan></text> </g> </svg> <br/> Gambar <a name='fig1'>1</a>. Sistem benda bermassa $m$ begerak di atas lantai mendatar kasar dengan koefisien gesek kinetis $\mu_{k}$. ###Output _____no_output_____ ###Markdown Keadaan akhir benda, yaitu saat kecepatan $v = 0$ diberikan pada bagian kanan Gambar [1](fig1) dengan warna abu-abu. Diagram gayaDiagram gaya-gaya yang berja pada benda perlu dibuat berdasarkan informasi dari Gambar [1](fig1) dan Tabel [1](tab1), yang diberikan berikut ini. ###Code %%html <svg width="320" height="200" viewBox="0 0 320 200.00001" id="svg2" version="1.1" inkscape:version="1.1.2 (b8e25be833, 2022-02-05)" sodipodi:docname="mass-horizontal-rough-surface-fbd.svg" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/"> <defs id="defs4"> <marker style="overflow:visible" id="TriangleOutM" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479" /> </marker> <marker style="overflow:visible" id="marker11604" refX="0" refY="0" orient="auto" inkscape:stockid="Arrow2Mend" inkscape:isstock="true"> <path transform="scale(-0.6)" d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:0.625;stroke-linejoin:round" id="path11602" /> </marker> <marker style="overflow:visible" id="Arrow2Mend" refX="0" refY="0" orient="auto" inkscape:stockid="Arrow2Mend" inkscape:isstock="true"> <path transform="scale(-0.6)" d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:0.625;stroke-linejoin:round" id="path11361" /> </marker> <marker style="overflow:visible" id="TriangleOutM-3" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-1" /> </marker> <marker style="overflow:visible" id="TriangleOutM-35" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-0" /> </marker> <marker style="overflow:visible" id="TriangleOutM-0" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-4" /> </marker> <marker style="overflow:visible" id="TriangleOutM-37" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-9" /> </marker> <marker style="overflow:visible" id="TriangleOutM-9" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-8" /> </marker> <marker style="overflow:visible" id="TriangleOutM-9-3" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-8-3" /> </marker> <marker style="overflow:visible" id="TriangleOutM-37-5" refX="0" refY="0" orient="auto" inkscape:stockid="TriangleOutM" inkscape:isstock="true"> <path transform="scale(0.4)" style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt" d="M 5.77,0 -2.88,5 V -5 Z" id="path11479-9-9" /> </marker> </defs> <sodipodi:namedview id="base" pagecolor="#ffffff" bordercolor="#666666" borderopacity="1.0" inkscape:pageopacity="0.0" inkscape:pageshadow="2" inkscape:zoom="1.2079428" inkscape:cx="159.36185" inkscape:cy="35.597712" inkscape:document-units="px" inkscape:current-layer="layer1" showgrid="false" inkscape:snap-bbox="false" inkscape:snap-global="false" units="px" showborder="true" inkscape:showpageshadow="true" borderlayer="false" inkscape:window-width="1366" inkscape:window-height="705" inkscape:window-x="-8" inkscape:window-y="-8" inkscape:window-maximized="1" inkscape:pagecheckerboard="0"> <inkscape:grid type="xygrid" id="grid970" /> </sodipodi:namedview> <metadata id="metadata7"> <rdf:RDF> <cc:Work rdf:about=""> <dc:format>image/svg+xml</dc:format> <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage" /> </cc:Work> </rdf:RDF> </metadata> <g inkscape:label="Layer 1" inkscape:groupmode="layer" id="layer1" transform="translate(0,-732.36216)"> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="148.01953" y="766.72156" id="text2711-6-2-9-23"><tspan sodipodi:role="line" id="tspan2709-5-9-2-3" x="148.01953" y="766.72156" style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '">N</tspan></text> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="251.40584" y="806.94421" id="text2711-6-2-9"><tspan sodipodi:role="line" id="tspan2709-5-9-2" x="251.40584" y="806.94421" style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '"><tspan style="font-style:italic" id="tspan9923">v</tspan><tspan style="font-size:65%;baseline-shift:sub" id="tspan1668" /></tspan></text> <path style="fill:none;stroke:#000000;stroke-width:1.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#TriangleOutM)" d="m 215.98949,804.88502 25.7387,1.3e-4" id="path11252" /> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="153.68098" y="915.71051" id="text2711-6-2-9-2"><tspan sodipodi:role="line" id="tspan2709-5-9-2-84" x="153.68098" y="915.71051" style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '">w</tspan></text> <path style="fill:none;stroke:#000000;stroke-width:1.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#TriangleOutM-37)" d="m 31.113403,791.97918 -1.3e-4,25.7387" id="path11252-5" /> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="26.501303" y="780.6109" id="text2711-6-2-9-8"><tspan sodipodi:role="line" id="tspan2709-5-9-2-2" x="26.501303" y="780.6109" style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '">g</tspan></text> <rect style="fill:#ffffff;fill-opacity:1;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-opacity:1" id="rect1007" width="59" height="59" x="130.5" y="792.86218" rx="0" ry="0" /> <g id="g1363" transform="translate(-6,20)"> <path style="fill:none;stroke:#ff0000;stroke-width:1.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#TriangleOutM-9)" d="m 161.00001,831.69534 -45.73871,1.3e-4" id="path11252-4" /> <path style="fill:none;stroke:#0000ff;stroke-width:1.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#TriangleOutM-9-3)" d="m 160.79738,832.36215 -1.3e-4,-75.7387" id="path11252-4-6" /> </g> <path style="fill:none;stroke:#000000;stroke-width:1.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#TriangleOutM-37-5)" d="m 159.99967,822.02879 3.4e-4,75.73871" id="path11252-5-0" /> <text xml:space="preserve" style="font-style:normal;font-weight:normal;font-size:18.6667px;line-height:1.25;font-family:sans-serif;fill:#000000;fill-opacity:1;stroke:none" x="85.624084" y="854.51099" id="text2711-6-2-9-8-4"><tspan sodipodi:role="line" id="tspan2709-5-9-2-2-1" x="85.624084" y="854.51099" style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.6667px;font-family:'Times New Roman';-inkscape-font-specification:'Times New Roman, '">f<tspan style="font-size:65%;baseline-shift:sub" id="tspan2197">k</tspan></tspan></text> </g> </svg> <br> Gambar <a name='fig2'>2</a>. Diagram gaya-gaya yang bekerja pada benda bermassa $m$. ###Output _____no_output_____ ###Markdown Terlihat bahwa pada arah $y$ terdapat gaya normal $N$ dan gaya gravitasi $w$, sedangkan pada arah $x$ hanya terdapat gaya gesek kinetis $f_{k}$ yang melawan arah gerak benda. Arah gerak benda diberikan oleh arah kecepatan $v$. Metode numerikInterasi suatu fungsi $f(x)$ berbentuk\begin{equation}\label{eqn:integral-1}\tag{8}A = \int_a^b f(x) dx\end{equation}dapat didekati dengan\begin{equation}\label{eqn:integral-2}\tag{9}A \approx \sum_{i = 0}^N f\left[ \tfrac12(x_i + x_{i+1}) \right] \Delta x\end{equation}yang dikenal sebagai metode persegi titik tengah, di mana\begin{equation}\label{eqn:integral-3}\tag{10}\Delta x = \frac{b - a}{N}\end{equation}dengan $N$ adalah jumlah partisi. Variabel $x_{i}$ pada Persamaan ([9](eqn9)) diberikan oleh\begin{equation}\label{eqn:integral-4}\tag{11}x_{i} = a + i\Delta x\end{equation}dengan $i = 0, \dots, N$. PenyelesaianPenerapan Persamaan ([1](eqn1)), ([2](eqn2)), ([3](eqn3)), ([4](eqn4)), dan ([5](eqn5)) pada Gambar [2](fig2) akan menghasilkan\begin{equation}\label{eqn:friction}\tag{10}f_k = \mu_k mg\end{equation}dan usahanya adalah\begin{equation}\label{eqn:friction-work}\tag{11}\begin{array}{rcl}W & = & \displaystyle \int_{x_0}^x f_k dx \newline& = & \displaystyle \int_{x_0}^x \mu_k m g dx \newline& = & \displaystyle m g \int_{x_0}^x \mu_k dx\end{array}\end{equation}dengan koefisien gesek statisnya dapat merupakan fungsi dari posisi $\mu_k = \mu_k(x)$. ###Code import numpy as np import matplotlib.pyplot as plt plt.ion() # set integral lower and upper bounds a = 0 b = 1 # generate x x = [1, 2, 3, 4, 5] # generate y from numerical integration y = [1, 2, 3, 5, 6] ## plot results fig, ax = plt.subplots() ax.scatter(x, y) ax.set_xlabel("$x - x_0$") ax.set_ylabel("W") from IPython import display from IPython.core.display import HTML HTML(''' <div> Gambar <a name='fig3'>3</a>. Kurva antara usaha $W$ dan jarak tempuh $x - x_0$. </div> ''') ###Output _____no_output_____
Chapter02/2.10 MNIST digits classification in TensorFlow 2.0.ipynb
###Markdown MNIST digit classification in TensorFlow 2.0 Now, we will see how can we perform the MNIST handwritten digits classification usingtensorflow 2.0. It hardly a few lines of code compared to the tensorflow 1.x. As we learned,tensorflow 2.0 uses as keras as its high-level API, we just need to add tf.keras to the kerascode. Import the libraries: ###Code import warnings warnings.filterwarnings('ignore') import tensorflow as tf print tf.__version__ ###Output 2.0.0-alpha0 ###Markdown Load the dataset: ###Code mnist = tf.keras.datasets.mnist ###Output _____no_output_____ ###Markdown Create a train and test set: ###Code (x_train,y_train), (x_test, y_test) = mnist.load_data() ###Output _____no_output_____ ###Markdown Normalize the x values by diving with maximum value of x which is 255 and convert them to float: ###Code x_train, x_test = tf.cast(x_train/255.0, tf.float32), tf.cast(x_test/255.0, tf.float32) ###Output _____no_output_____ ###Markdown convert y values to int: ###Code y_train, y_test = tf.cast(y_train,tf.int64),tf.cast(y_test,tf.int64) ###Output _____no_output_____ ###Markdown Define the sequential model: ###Code model = tf.keras.models.Sequential() ###Output _____no_output_____ ###Markdown Add the layers - We use a three-layered network. We apply ReLU activation at the first two layers and in the final output layer we apply softmax function: ###Code model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(256, activation="relu")) model.add(tf.keras.layers.Dense(128, activation="relu")) model.add(tf.keras.layers.Dense(10, activation="softmax")) ###Output _____no_output_____ ###Markdown Compile the model with Stochastic Gradient Descent, that is 'sgd' (we will learn about this in the next chapter) as optimizer and sparse_categorical_crossentropy as loss function and with accuracy as a metric: ###Code model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Train the model for 10 epochs with batch_size as 32: ###Code model.fit(x_train, y_train, batch_size=32, epochs=10) ###Output Epoch 1/10 60000/60000 [==============================] - 6s 95us/sample - loss: 1.7537 - accuracy: 0.5562 Epoch 2/10 60000/60000 [==============================] - 5s 85us/sample - loss: 0.8721 - accuracy: 0.8102 Epoch 3/10 60000/60000 [==============================] - 6s 94us/sample - loss: 0.5765 - accuracy: 0.8612 Epoch 4/10 60000/60000 [==============================] - 5s 85us/sample - loss: 0.4684 - accuracy: 0.8796 Epoch 5/10 60000/60000 [==============================] - 5s 91us/sample - loss: 0.4136 - accuracy: 0.8905 Epoch 6/10 60000/60000 [==============================] - 4s 74us/sample - loss: 0.3800 - accuracy: 0.8971 Epoch 7/10 60000/60000 [==============================] - 5s 90us/sample - loss: 0.3566 - accuracy: 0.9018 Epoch 8/10 60000/60000 [==============================] - 4s 71us/sample - loss: 0.3389 - accuracy: 0.9060 Epoch 9/10 60000/60000 [==============================] - 6s 92us/sample - loss: 0.3247 - accuracy: 0.9097 Epoch 10/10 60000/60000 [==============================] - 5s 88us/sample - loss: 0.3129 - accuracy: 0.9120 ###Markdown Evaluate the model on test sets: ###Code model.evaluate(x_test, y_test) ###Output 10000/10000 [==============================] - 0s 43us/sample - loss: 0.2937 - accuracy: 0.9195
NLP_LAB4.ipynb
###Markdown ![TITLE.JPG]() ###Code import nltk import pandas as pd ###Output _____no_output_____ ###Markdown **Importing Data** ###Code para_object = open('lab4_text.txt') input_str = para_object.read() input_str = input_str.lower() # Making all letters lowercase in text. input_str ###Output _____no_output_____ ###Markdown **Tokenization** **Word Tokenization** ###Code nltk.download('punkt') from nltk.tokenize import word_tokenize word_token_reslt = word_tokenize(input_str) print(word_token_reslt) ###Output ['i', 'must', 'be', 'honest', 'with', 'you', '.', 'i', 'was', 'about', 'to', 'go', 'to', 'sleep', 'before', 'i', 'opened', 'my', 'mail', 'and', 'read', 'your', 'letter', '.', 'now', 'i', 'am', 'wide', 'awake', ',', 'sitting', 'upright', ',', 'because', 'you', 'made', 'me', 'question', 'my', 'preferences', 'between', 'shoes', 'and', 'slippers', '.', 'be', 'patient', 'with', 'me', '.', 'i', 'need', 'proper', 'peaceful', 'sleep', 'and', 'let', '’', 's', 'sort', 'this', 'out', '.', 'i', 'am', 'a', 'shoe', 'person', '.', 'correction', ':', 'i', 'am', 'a', 'person', 'obsessed', 'with', 'dry', ',', 'dust-free', 'feet', '.', 'whatever', 'helps', 'me', 'keep', 'a', 'grip', 'on', 'my', 'walk', 'and', 'posture', 'in', 'spite', 'of', 'my', 'profusely', 'sweaty', 'feet', ',', 'i', 'am', 'that', 'person', '.', 'whatever', 'keeps', 'the', 'grainy', ',', 'pokey', 'sensation', 'of', 'soil', 'or', 'sand', 'in', 'parts', 'of', 'my', 'skin', 'away', ',', 'i', 'am', 'that', 'person', '.', 'i', 'guess', ',', 'i', 'am', 'a', 'shoe', 'person', 'because', 'it', 'is', 'loyal', 'to', 'my', 'whole', 'feet', '.', 'not', 'making', 'parts', 'of', 'it', 'lying', 'exposed', 'and', 'parts', 'of', 'it', 'covered', ',', 'without', 'any', 'symmetry', '.', 'i', 'am', 'also', 'cotton', 'sock', 'person', ',', 'preferably', 'red', '.', 'sometimes', ',', 'i', 'am', 'a', 'clean', 'matte', '(', 'anti-slippery', ')', 'floor', 'person', '.', 'basically', ',', 'i', 'am', 'a', 'person', 'with', 'issues', '.', 'i', 'really', 'liked', 'your', 'host-guest', 'theory', 'of', 'travelling', ',', 'how', 'we', 'do', 'not', 'just', 'get', 'out', 'of', 'home', 'when', 'we', 'travel', ',', 'the', 'home', 'expands', 'when', 'we', 'step', 'foot', 'at', 'a', 'place', 'engulfing', 'it', 'into', 'our', 'comfort', 'zone', '.', 'but', 'the', 'thing', 'is', 'i', 'wear', 'socks', 'all', 'the', 'time', 'in', 'my', 'house', ',', 'and', 'open', 'them', 'when', 'i', 'go', 'to', 'bed', ',', 'replacing', 'the', 'sock', 'with', 'a', 'comforter', '.', 'i', 'guess', 'i', 'need', 'that', 'comfort', 'zone', 'close', 'and', 'maybe', ',', 'mine', 'is', 'restricted', 'to', 'my', 'own', 'skin', '.', 'so', 'much', 'so', ',', 'that', 'it', 'doesn', '’', 't', 'even', 'include', 'my', 'own', 'home', '.', 'when', 'i', 'travel', ',', 'i', 'like', 'wearing', 'shoes', ',', 'with', 'a', 'firm', 'grip', 'on', 'myself', ',', 'dust', 'free', ',', 'protected', '.', 'when', 'i', 'face', 'situations', 'where', 'i', 'have', 'to', 'open', 'them', 'and', 'i', 'don', '’', 't', 'want', 'to', ',', 'i', 'usually', 'wrinkle', 'my', 'nose', '.', 'it', 'doesn', '’', 't', 'get', 'better', 'that', 'i', 'can', '’', 't', 'wear', 'those', 'shoes', 'again', 'with', 'a', 'dirty', 'feet', '.', 'i', 'take', 'a', 'handkerchief', '.', 'imagine', 'my', 'situation', 'at', 'the', 'beach', 'or', 'in', 'a', 'hill', 'stream', ',', 'when', 'the', 'water', 'feels', 'soothing', 'to', 'my', 'sweaty', 'feet', 'and', 'removes', 'the', 'dust', ',', 'only', 'to', 'attract', 'more', 'of', 'it', 'when', 'i', 'walk', 'on', 'the', 'sand', '.', 'i', 'let', 'it', 'irritate', 'me', 'those', 'times', ',', 'because', 'i', 'always', 'have', 'the', 'ocean', 'and', 'the', 'river', 'on', 'my', 'side', '.', 'i', 'like', 'my', 'bare', 'feet', 'drowning', 'with', 'no', 'air', 'bubbles', 'left', '.', 'i', 'don', '’', 't', 'like', 'it', 'when', 'droplets', 'of', 'water', 'make', 'only', 'a', 'part', 'of', 'my', 'feet', 'wet', ',', 'only', 'to', 'let', 'me', 'realise', 'and', 'miss', 'the', 'comfort', 'of', 'dry', 'skin', 'and', 'scowl', 'at', 'the', 'linger', 'of', 'irritation', 'due', 'to', 'a', 'little', 'dampness', '.', 'i', 'don', '’', 't', 'like', 'it', 'when', 'i', 'have', 'to', 'keep', 'on', 'brushing', 'my', 'left', 'leg', 'against', 'my', 'right', 'to', 'flatten', 'the', 'spheres', 'of', 'water', '.', 'and', 'repeat', 'it', 'with', 'the', 'right', '.', 'i', 'just', 'realised', 'why', 'i', 'don', '’', 't', 'like', 'drizzling', 'rains', '.', 'eventually', ',', 'when', 'i', 'have', 'to', 'get', 'out', 'of', 'the', 'water', ',', 'i', 'give', 'up', 'my', 'fight', 'with', 'the', 'dirt', 'and', 'wear', 'those', 'damn', 'shoes', 'with', 'muddy', 'feet', '.', 'those', 'are', 'the', 'times', 'i', 'miss', 'my', 'slippery', 'slippers', '.', 'don', '’', 't', 'let', 'my', 'socks', 'or', 'shoes', 'hear', 'me', 'say', 'that', '.', 'they', 'do', 'not', 'know', 'that', 'sometimes', 'i', 'keep', 'a', 'back-up', 'pair', 'of', 'red', 'flip-flops', 'for', 'such', 'scenarios', '.', 'does', 'this', 'make', 'me', 'a', 'slipper', 'person', '?', 'i', 'guess', 'i', 'am', 'a', 'slipper', 'person', 'when', 'my', 'feet', 'are', 'ankle', 'deep', 'in', 'mud', ',', 'so', 'that', 'there', 'is', 'no', 'place', 'for', 'me', 'to', 'complain', '.', 'no', 'alternative', '.', 'no', 'uneasy', 'half-done', 'feeling', '.', 'otherwise', ',', 'not', 'much', 'of', 'a', 'slipper', 'person', '.', 'i', 'am', 'a', 'person', 'who', 'likes', 'symmetry', '.', 'all', 'in', 'or', 'none', 'at', 'all', '.', 'it', '’', 's', 'difficult', 'being', 'me', 'in', 'this', 'world', 'with', 'its', 'shades', 'of', 'grey', '.', 'but', 'then', ',', 'my', 'favourite', 'colour', 'is', 'red', 'and', 'thankfully', 'it', 'covers', 'the', 'entire', 'spectrum', '.', 'all', 'i', 'need', 'is', 'an', 'emotion', ',', 'and', 'the', 'rest', 'is', 'taken', 'care', 'of', '.', 'thank', 'you', 'for', 'being', 'the', 'listener', 'you', 'are', '.', 'this', 'has', 'been', 'a', 'selfish', 'post', '.', 'i', 'used', 'your', 'letter', 'for', 'my', 'sense', 'of', 'clarity', '.', 'you', 'always', 'make', 'me', 'reflect', 'and', 'dig', 'deep', '.', 'i', 'can', 'finally', 'sleep', 'now', '.', 'goodnight', '.'] ###Markdown **Sentence Tokenization** ###Code from nltk.tokenize import sent_tokenize sent_token_reslt = sent_tokenize(input_str) print(sent_token_reslt) ###Output ['i must be honest with you.', 'i was about to go to sleep before i opened my mail and read your letter.', 'now i am wide awake, sitting upright, because you made me question my preferences between shoes and slippers.', 'be patient with me.', 'i need proper peaceful sleep and let’s sort this out.', 'i am a shoe person.', 'correction: i am a person obsessed with dry, dust-free feet.', 'whatever helps me keep a grip on my walk and posture in spite of my profusely sweaty feet, i am that person.', 'whatever keeps the grainy, pokey sensation of soil or sand in parts of my skin away, i am that person.', 'i guess, i am a shoe person because it is loyal to my whole feet.', 'not making parts of it lying exposed and parts of it covered, without any symmetry.', 'i am also cotton sock person, preferably red.', 'sometimes, i am a clean matte (anti-slippery) floor person.', 'basically, i am a person with issues.', 'i really liked your host-guest theory of travelling, how we do not just get out of home when we travel, the home expands when we step foot at a place engulfing it into our comfort zone.', 'but the thing is i wear socks all the time in my house, and open them when i go to bed, replacing the sock with a comforter.', 'i guess i need that comfort zone close and maybe, mine is restricted to my own skin.', 'so much so, that it doesn’t even include my own home.', 'when i travel, i like wearing shoes, with a firm grip on myself, dust free, protected.', 'when i face situations where i have to open them and i don’t want to, i usually wrinkle my nose.', 'it doesn’t get better that i can’t wear those shoes again with a dirty feet.', 'i take a handkerchief.', 'imagine my situation at the beach or in a hill stream, when the water feels soothing to my sweaty feet and removes the dust, only to attract more of it when i walk on the sand.', 'i let it irritate me those times, because i always have the ocean and the river on my side.', 'i like my bare feet drowning with no air bubbles left.', 'i don’t like it when droplets of water make only a part of my feet wet, only to let me realise and miss the comfort of dry skin and scowl at the linger of irritation due to a little dampness.', 'i don’t like it when i have to keep on brushing my left leg against my right to flatten the spheres of water.', 'and repeat it with the right.', 'i just realised why i don’t like drizzling rains.', 'eventually, when i have to get out of the water, i give up my fight with the dirt and wear those damn shoes with muddy feet.', 'those are the times i miss my slippery slippers.', 'don’t let my socks or shoes hear me say that.', 'they do not know that sometimes i keep a back-up pair of red flip-flops for such scenarios.', 'does this make me a slipper person?', 'i guess i am a slipper person when my feet are ankle deep in mud, so that there is no place for me to complain.', 'no alternative.', 'no uneasy half-done feeling.', 'otherwise, not much of a slipper person.', 'i am a person who likes symmetry.', 'all in or none at all.', 'it’s difficult being me in this world with its shades of grey.', 'but then, my favourite colour is red and thankfully it covers the entire spectrum.', 'all i need is an emotion, and the rest is taken care of.', 'thank you for being the listener you are.', 'this has been a selfish post.', 'i used your letter for my sense of clarity.', 'you always make me reflect and dig deep.', 'i can finally sleep now.', 'goodnight.'] ###Markdown **Tokenize using Regular Expression** ###Code from nltk.tokenize import RegexpTokenizer t = RegexpTokenizer(r'\w+') tokens = t.tokenize(input_str) print(tokens) ###Output ['i', 'must', 'be', 'honest', 'with', 'you', 'i', 'was', 'about', 'to', 'go', 'to', 'sleep', 'before', 'i', 'opened', 'my', 'mail', 'and', 'read', 'your', 'letter', 'now', 'i', 'am', 'wide', 'awake', 'sitting', 'upright', 'because', 'you', 'made', 'me', 'question', 'my', 'preferences', 'between', 'shoes', 'and', 'slippers', 'be', 'patient', 'with', 'me', 'i', 'need', 'proper', 'peaceful', 'sleep', 'and', 'let', 's', 'sort', 'this', 'out', 'i', 'am', 'a', 'shoe', 'person', 'correction', 'i', 'am', 'a', 'person', 'obsessed', 'with', 'dry', 'dust', 'free', 'feet', 'whatever', 'helps', 'me', 'keep', 'a', 'grip', 'on', 'my', 'walk', 'and', 'posture', 'in', 'spite', 'of', 'my', 'profusely', 'sweaty', 'feet', 'i', 'am', 'that', 'person', 'whatever', 'keeps', 'the', 'grainy', 'pokey', 'sensation', 'of', 'soil', 'or', 'sand', 'in', 'parts', 'of', 'my', 'skin', 'away', 'i', 'am', 'that', 'person', 'i', 'guess', 'i', 'am', 'a', 'shoe', 'person', 'because', 'it', 'is', 'loyal', 'to', 'my', 'whole', 'feet', 'not', 'making', 'parts', 'of', 'it', 'lying', 'exposed', 'and', 'parts', 'of', 'it', 'covered', 'without', 'any', 'symmetry', 'i', 'am', 'also', 'cotton', 'sock', 'person', 'preferably', 'red', 'sometimes', 'i', 'am', 'a', 'clean', 'matte', 'anti', 'slippery', 'floor', 'person', 'basically', 'i', 'am', 'a', 'person', 'with', 'issues', 'i', 'really', 'liked', 'your', 'host', 'guest', 'theory', 'of', 'travelling', 'how', 'we', 'do', 'not', 'just', 'get', 'out', 'of', 'home', 'when', 'we', 'travel', 'the', 'home', 'expands', 'when', 'we', 'step', 'foot', 'at', 'a', 'place', 'engulfing', 'it', 'into', 'our', 'comfort', 'zone', 'but', 'the', 'thing', 'is', 'i', 'wear', 'socks', 'all', 'the', 'time', 'in', 'my', 'house', 'and', 'open', 'them', 'when', 'i', 'go', 'to', 'bed', 'replacing', 'the', 'sock', 'with', 'a', 'comforter', 'i', 'guess', 'i', 'need', 'that', 'comfort', 'zone', 'close', 'and', 'maybe', 'mine', 'is', 'restricted', 'to', 'my', 'own', 'skin', 'so', 'much', 'so', 'that', 'it', 'doesn', 't', 'even', 'include', 'my', 'own', 'home', 'when', 'i', 'travel', 'i', 'like', 'wearing', 'shoes', 'with', 'a', 'firm', 'grip', 'on', 'myself', 'dust', 'free', 'protected', 'when', 'i', 'face', 'situations', 'where', 'i', 'have', 'to', 'open', 'them', 'and', 'i', 'don', 't', 'want', 'to', 'i', 'usually', 'wrinkle', 'my', 'nose', 'it', 'doesn', 't', 'get', 'better', 'that', 'i', 'can', 't', 'wear', 'those', 'shoes', 'again', 'with', 'a', 'dirty', 'feet', 'i', 'take', 'a', 'handkerchief', 'imagine', 'my', 'situation', 'at', 'the', 'beach', 'or', 'in', 'a', 'hill', 'stream', 'when', 'the', 'water', 'feels', 'soothing', 'to', 'my', 'sweaty', 'feet', 'and', 'removes', 'the', 'dust', 'only', 'to', 'attract', 'more', 'of', 'it', 'when', 'i', 'walk', 'on', 'the', 'sand', 'i', 'let', 'it', 'irritate', 'me', 'those', 'times', 'because', 'i', 'always', 'have', 'the', 'ocean', 'and', 'the', 'river', 'on', 'my', 'side', 'i', 'like', 'my', 'bare', 'feet', 'drowning', 'with', 'no', 'air', 'bubbles', 'left', 'i', 'don', 't', 'like', 'it', 'when', 'droplets', 'of', 'water', 'make', 'only', 'a', 'part', 'of', 'my', 'feet', 'wet', 'only', 'to', 'let', 'me', 'realise', 'and', 'miss', 'the', 'comfort', 'of', 'dry', 'skin', 'and', 'scowl', 'at', 'the', 'linger', 'of', 'irritation', 'due', 'to', 'a', 'little', 'dampness', 'i', 'don', 't', 'like', 'it', 'when', 'i', 'have', 'to', 'keep', 'on', 'brushing', 'my', 'left', 'leg', 'against', 'my', 'right', 'to', 'flatten', 'the', 'spheres', 'of', 'water', 'and', 'repeat', 'it', 'with', 'the', 'right', 'i', 'just', 'realised', 'why', 'i', 'don', 't', 'like', 'drizzling', 'rains', 'eventually', 'when', 'i', 'have', 'to', 'get', 'out', 'of', 'the', 'water', 'i', 'give', 'up', 'my', 'fight', 'with', 'the', 'dirt', 'and', 'wear', 'those', 'damn', 'shoes', 'with', 'muddy', 'feet', 'those', 'are', 'the', 'times', 'i', 'miss', 'my', 'slippery', 'slippers', 'don', 't', 'let', 'my', 'socks', 'or', 'shoes', 'hear', 'me', 'say', 'that', 'they', 'do', 'not', 'know', 'that', 'sometimes', 'i', 'keep', 'a', 'back', 'up', 'pair', 'of', 'red', 'flip', 'flops', 'for', 'such', 'scenarios', 'does', 'this', 'make', 'me', 'a', 'slipper', 'person', 'i', 'guess', 'i', 'am', 'a', 'slipper', 'person', 'when', 'my', 'feet', 'are', 'ankle', 'deep', 'in', 'mud', 'so', 'that', 'there', 'is', 'no', 'place', 'for', 'me', 'to', 'complain', 'no', 'alternative', 'no', 'uneasy', 'half', 'done', 'feeling', 'otherwise', 'not', 'much', 'of', 'a', 'slipper', 'person', 'i', 'am', 'a', 'person', 'who', 'likes', 'symmetry', 'all', 'in', 'or', 'none', 'at', 'all', 'it', 's', 'difficult', 'being', 'me', 'in', 'this', 'world', 'with', 'its', 'shades', 'of', 'grey', 'but', 'then', 'my', 'favourite', 'colour', 'is', 'red', 'and', 'thankfully', 'it', 'covers', 'the', 'entire', 'spectrum', 'all', 'i', 'need', 'is', 'an', 'emotion', 'and', 'the', 'rest', 'is', 'taken', 'care', 'of', 'thank', 'you', 'for', 'being', 'the', 'listener', 'you', 'are', 'this', 'has', 'been', 'a', 'selfish', 'post', 'i', 'used', 'your', 'letter', 'for', 'my', 'sense', 'of', 'clarity', 'you', 'always', 'make', 'me', 'reflect', 'and', 'dig', 'deep', 'i', 'can', 'finally', 'sleep', 'now', 'goodnight'] ###Markdown **Importing StopWords** ###Code nltk.download('stopwords') from nltk.corpus import stopwords stop_words = stopwords.words('english') ###Output _____no_output_____ ###Markdown **Remove StopWords from given tokens** ###Code for i in tokens: if i in stop_words: tokens.remove(i) print("After removing Stop Words: ",tokens) ###Output After removing Stop Words: ['must', 'honest', 'was', 'go', 'sleep', 'opened', 'mail', 'read', 'letter', 'wide', 'awake', 'sitting', 'upright', 'made', 'question', 'preferences', 'shoes', 'slippers', 'patient', 'need', 'proper', 'peaceful', 'sleep', 'let', 'sort', 'am', 'shoe', 'person', 'correction', 'am', 'person', 'obsessed', 'dry', 'dust', 'free', 'feet', 'whatever', 'helps', 'keep', 'grip', 'walk', 'posture', 'spite', 'profusely', 'sweaty', 'feet', 'am', 'person', 'whatever', 'keeps', 'grainy', 'pokey', 'sensation', 'soil', 'sand', 'parts', 'skin', 'away', 'am', 'person', 'guess', 'am', 'shoe', 'person', 'loyal', 'whole', 'feet', 'making', 'parts', 'lying', 'exposed', 'parts', 'covered', 'without', 'symmetry', 'am', 'also', 'cotton', 'sock', 'person', 'preferably', 'red', 'sometimes', 'am', 'clean', 'matte', 'anti', 'slippery', 'floor', 'person', 'basically', 'am', 'person', 'issues', 'really', 'liked', 'host', 'guest', 'theory', 'travelling', 'we', 'get', 'home', 'we', 'travel', 'home', 'expands', 'we', 'step', 'foot', 'place', 'engulfing', 'into', 'comfort', 'zone', 'thing', 'wear', 'socks', 'time', 'house', 'open', 'go', 'bed', 'replacing', 'sock', 'comforter', 'guess', 'need', 'comfort', 'zone', 'close', 'maybe', 'mine', 'restricted', 'skin', 'much', 'doesn', 'even', 'include', 'own', 'home', 'travel', 'like', 'wearing', 'shoes', 'firm', 'grip', 'myself', 'dust', 'free', 'protected', 'face', 'situations', 'open', 'want', 'usually', 'wrinkle', 'nose', 'doesn', 'get', 'better', 'wear', 'shoes', 'dirty', 'feet', 'take', 'handkerchief', 'imagine', 'my', 'situation', 'beach', 'hill', 'stream', 'water', 'feels', 'soothing', 'my', 'sweaty', 'feet', 'removes', 'dust', 'attract', 'walk', 'sand', 'let', 'irritate', 'times', 'always', 'ocean', 'the', 'river', 'my', 'side', 'like', 'my', 'bare', 'feet', 'drowning', 'air', 'bubbles', 'left', 'like', 'when', 'droplets', 'water', 'make', 'a', 'part', 'my', 'feet', 'wet', 'let', 'realise', 'miss', 'the', 'comfort', 'dry', 'skin', 'scowl', 'the', 'linger', 'irritation', 'due', 'to', 'a', 'little', 'dampness', 'don', 't', 'like', 'when', 'to', 'keep', 'brushing', 'my', 'left', 'leg', 'my', 'right', 'to', 'flatten', 'the', 'spheres', 'water', 'repeat', 'it', 'the', 'right', 'i', 'just', 'realised', 'i', 'don', 't', 'like', 'drizzling', 'rains', 'eventually', 'when', 'i', 'have', 'to', 'get', 'out', 'the', 'water', 'i', 'give', 'my', 'fight', 'the', 'dirt', 'wear', 'damn', 'shoes', 'with', 'muddy', 'feet', 'those', 'the', 'times', 'i', 'miss', 'my', 'slippery', 'slippers', 'don', 't', 'let', 'my', 'socks', 'shoes', 'hear', 'say', 'they', 'not', 'know', 'that', 'sometimes', 'i', 'keep', 'a', 'back', 'pair', 'red', 'flip', 'flops', 'such', 'scenarios', 'make', 'a', 'slipper', 'person', 'i', 'guess', 'i', 'am', 'a', 'slipper', 'person', 'when', 'my', 'feet', 'are', 'ankle', 'deep', 'mud', 'that', 'place', 'me', 'to', 'complain', 'alternative', 'no', 'uneasy', 'half', 'done', 'feeling', 'otherwise', 'not', 'much', 'a', 'slipper', 'person', 'i', 'am', 'a', 'person', 'likes', 'symmetry', 'in', 'none', 'it', 's', 'difficult', 'me', 'in', 'this', 'world', 'with', 'its', 'shades', 'of', 'grey', 'then', 'my', 'favourite', 'colour', 'red', 'thankfully', 'it', 'covers', 'the', 'entire', 'spectrum', 'all', 'i', 'need', 'an', 'emotion', 'the', 'rest', 'is', 'taken', 'care', 'of', 'thank', 'the', 'listener', 'you', 'are', 'this', 'has', 'a', 'selfish', 'post', 'i', 'used', 'letter', 'for', 'my', 'sense', 'of', 'clarity', 'you', 'always', 'make', 'me', 'reflect', 'and', 'dig', 'deep', 'i', 'can', 'finally', 'sleep', 'goodnight'] ###Markdown **Count word frequency** ###Code f = nltk.FreqDist(tokens) for key,val in f.items(): print (str(key) + ':' + str(val)) ###Output must:1 honest:1 was:1 go:2 sleep:3 opened:1 mail:1 read:1 letter:2 wide:1 awake:1 sitting:1 upright:1 made:1 question:1 preferences:1 shoes:5 slippers:2 patient:1 need:3 proper:1 peaceful:1 let:4 sort:1 am:10 shoe:2 person:12 correction:1 obsessed:1 dry:2 dust:3 free:2 feet:9 whatever:2 helps:1 keep:3 grip:2 walk:2 posture:1 spite:1 profusely:1 sweaty:2 keeps:1 grainy:1 pokey:1 sensation:1 soil:1 sand:2 parts:3 skin:3 away:1 guess:3 loyal:1 whole:1 making:1 lying:1 exposed:1 covered:1 without:1 symmetry:2 also:1 cotton:1 sock:2 preferably:1 red:3 sometimes:2 clean:1 matte:1 anti:1 slippery:2 floor:1 basically:1 issues:1 really:1 liked:1 host:1 guest:1 theory:1 travelling:1 we:3 get:3 home:3 travel:2 expands:1 step:1 foot:1 place:2 engulfing:1 into:1 comfort:3 zone:2 thing:1 wear:3 socks:2 time:1 house:1 open:2 bed:1 replacing:1 comforter:1 close:1 maybe:1 mine:1 restricted:1 much:2 doesn:2 even:1 include:1 own:1 like:5 wearing:1 firm:1 myself:1 protected:1 face:1 situations:1 want:1 usually:1 wrinkle:1 nose:1 better:1 dirty:1 take:1 handkerchief:1 imagine:1 my:13 situation:1 beach:1 hill:1 stream:1 water:4 feels:1 soothing:1 removes:1 attract:1 irritate:1 times:2 always:2 ocean:1 the:11 river:1 side:1 bare:1 drowning:1 air:1 bubbles:1 left:2 when:4 droplets:1 make:3 a:8 part:1 wet:1 realise:1 miss:2 scowl:1 linger:1 irritation:1 due:1 to:5 little:1 dampness:1 don:3 t:3 brushing:1 leg:1 right:2 flatten:1 spheres:1 repeat:1 it:3 i:12 just:1 realised:1 drizzling:1 rains:1 eventually:1 have:1 out:1 give:1 fight:1 dirt:1 damn:1 with:2 muddy:1 those:1 hear:1 say:1 they:1 not:2 know:1 that:2 back:1 pair:1 flip:1 flops:1 such:1 scenarios:1 slipper:3 are:2 ankle:1 deep:2 mud:1 me:3 complain:1 alternative:1 no:1 uneasy:1 half:1 done:1 feeling:1 otherwise:1 likes:1 in:2 none:1 s:1 difficult:1 this:2 world:1 its:1 shades:1 of:3 grey:1 then:1 favourite:1 colour:1 thankfully:1 covers:1 entire:1 spectrum:1 all:1 an:1 emotion:1 rest:1 is:1 taken:1 care:1 thank:1 listener:1 you:2 has:1 selfish:1 post:1 used:1 for:1 sense:1 clarity:1 reflect:1 and:1 dig:1 can:1 finally:1 goodnight:1 ###Markdown **Stemming** ###Code from nltk.stem import PorterStemmer p = PorterStemmer() for i in tokens: print( i , " : ",p.stem(i)) ###Output must : must honest : honest was : wa go : go sleep : sleep opened : open mail : mail read : read letter : letter wide : wide awake : awak sitting : sit upright : upright made : made question : question preferences : prefer shoes : shoe slippers : slipper patient : patient need : need proper : proper peaceful : peac sleep : sleep let : let sort : sort am : am shoe : shoe person : person correction : correct am : am person : person obsessed : obsess dry : dri dust : dust free : free feet : feet whatever : whatev helps : help keep : keep grip : grip walk : walk posture : postur spite : spite profusely : profus sweaty : sweati feet : feet am : am person : person whatever : whatev keeps : keep grainy : graini pokey : pokey sensation : sensat soil : soil sand : sand parts : part skin : skin away : away am : am person : person guess : guess am : am shoe : shoe person : person loyal : loyal whole : whole feet : feet making : make parts : part lying : lie exposed : expos parts : part covered : cover without : without symmetry : symmetri am : am also : also cotton : cotton sock : sock person : person preferably : prefer red : red sometimes : sometim am : am clean : clean matte : matt anti : anti slippery : slipperi floor : floor person : person basically : basic am : am person : person issues : issu really : realli liked : like host : host guest : guest theory : theori travelling : travel we : we get : get home : home we : we travel : travel home : home expands : expand we : we step : step foot : foot place : place engulfing : engulf into : into comfort : comfort zone : zone thing : thing wear : wear socks : sock time : time house : hous open : open go : go bed : bed replacing : replac sock : sock comforter : comfort guess : guess need : need comfort : comfort zone : zone close : close maybe : mayb mine : mine restricted : restrict skin : skin much : much doesn : doesn even : even include : includ own : own home : home travel : travel like : like wearing : wear shoes : shoe firm : firm grip : grip myself : myself dust : dust free : free protected : protect face : face situations : situat open : open want : want usually : usual wrinkle : wrinkl nose : nose doesn : doesn get : get better : better wear : wear shoes : shoe dirty : dirti feet : feet take : take handkerchief : handkerchief imagine : imagin my : my situation : situat beach : beach hill : hill stream : stream water : water feels : feel soothing : sooth my : my sweaty : sweati feet : feet removes : remov dust : dust attract : attract walk : walk sand : sand let : let irritate : irrit times : time always : alway ocean : ocean the : the river : river my : my side : side like : like my : my bare : bare feet : feet drowning : drown air : air bubbles : bubbl left : left like : like when : when droplets : droplet water : water make : make a : a part : part my : my feet : feet wet : wet let : let realise : realis miss : miss the : the comfort : comfort dry : dri skin : skin scowl : scowl the : the linger : linger irritation : irrit due : due to : to a : a little : littl dampness : damp don : don t : t like : like when : when to : to keep : keep brushing : brush my : my left : left leg : leg my : my right : right to : to flatten : flatten the : the spheres : sphere water : water repeat : repeat it : it the : the right : right i : i just : just realised : realis i : i don : don t : t like : like drizzling : drizzl rains : rain eventually : eventu when : when i : i have : have to : to get : get out : out the : the water : water i : i give : give my : my fight : fight the : the dirt : dirt wear : wear damn : damn shoes : shoe with : with muddy : muddi feet : feet those : those the : the times : time i : i miss : miss my : my slippery : slipperi slippers : slipper don : don t : t let : let my : my socks : sock shoes : shoe hear : hear say : say they : they not : not know : know that : that sometimes : sometim i : i keep : keep a : a back : back pair : pair red : red flip : flip flops : flop such : such scenarios : scenario make : make a : a slipper : slipper person : person i : i guess : guess i : i am : am a : a slipper : slipper person : person when : when my : my feet : feet are : are ankle : ankl deep : deep mud : mud that : that place : place me : me to : to complain : complain alternative : altern no : no uneasy : uneasi half : half done : done feeling : feel otherwise : otherwis not : not much : much a : a slipper : slipper person : person i : i am : am a : a person : person likes : like symmetry : symmetri in : in none : none it : it s : s difficult : difficult me : me in : in this : thi world : world with : with its : it shades : shade of : of grey : grey then : then my : my favourite : favourit colour : colour red : red thankfully : thank it : it covers : cover the : the entire : entir spectrum : spectrum all : all i : i need : need an : an emotion : emot the : the rest : rest is : is taken : taken care : care of : of thank : thank the : the listener : listen you : you are : are this : thi has : ha a : a selfish : selfish post : post i : i used : use letter : letter for : for my : my sense : sens of : of clarity : clariti you : you always : alway make : make me : me reflect : reflect and : and dig : dig deep : deep i : i can : can finally : final sleep : sleep goodnight : goodnight ###Markdown **Lemmatization** ###Code nltk.download('wordnet') from nltk.stem import WordNetLemmatizer wordnet_lemma = WordNetLemmatizer() for i in tokens: print("Lemma for {} is {}".format(i,wordnet_lemma.lemmatize(i))) ###Output Lemma for must is must Lemma for honest is honest Lemma for was is wa Lemma for go is go Lemma for sleep is sleep Lemma for opened is opened Lemma for mail is mail Lemma for read is read Lemma for letter is letter Lemma for wide is wide Lemma for awake is awake Lemma for sitting is sitting Lemma for upright is upright Lemma for made is made Lemma for question is question Lemma for preferences is preference Lemma for shoes is shoe Lemma for slippers is slipper Lemma for patient is patient Lemma for need is need Lemma for proper is proper Lemma for peaceful is peaceful Lemma for sleep is sleep Lemma for let is let Lemma for sort is sort Lemma for am is am Lemma for shoe is shoe Lemma for person is person Lemma for correction is correction Lemma for am is am Lemma for person is person Lemma for obsessed is obsessed Lemma for dry is dry Lemma for dust is dust Lemma for free is free Lemma for feet is foot Lemma for whatever is whatever Lemma for helps is help Lemma for keep is keep Lemma for grip is grip Lemma for walk is walk Lemma for posture is posture Lemma for spite is spite Lemma for profusely is profusely Lemma for sweaty is sweaty Lemma for feet is foot Lemma for am is am Lemma for person is person Lemma for whatever is whatever Lemma for keeps is keep Lemma for grainy is grainy Lemma for pokey is pokey Lemma for sensation is sensation Lemma for soil is soil Lemma for sand is sand Lemma for parts is part Lemma for skin is skin Lemma for away is away Lemma for am is am Lemma for person is person Lemma for guess is guess Lemma for am is am Lemma for shoe is shoe Lemma for person is person Lemma for loyal is loyal Lemma for whole is whole Lemma for feet is foot Lemma for making is making Lemma for parts is part Lemma for lying is lying Lemma for exposed is exposed Lemma for parts is part Lemma for covered is covered Lemma for without is without Lemma for symmetry is symmetry Lemma for am is am Lemma for also is also Lemma for cotton is cotton Lemma for sock is sock Lemma for person is person Lemma for preferably is preferably Lemma for red is red Lemma for sometimes is sometimes Lemma for am is am Lemma for clean is clean Lemma for matte is matte Lemma for anti is anti Lemma for slippery is slippery Lemma for floor is floor Lemma for person is person Lemma for basically is basically Lemma for am is am Lemma for person is person Lemma for issues is issue Lemma for really is really Lemma for liked is liked Lemma for host is host Lemma for guest is guest Lemma for theory is theory Lemma for travelling is travelling Lemma for we is we Lemma for get is get Lemma for home is home Lemma for we is we Lemma for travel is travel Lemma for home is home Lemma for expands is expands Lemma for we is we Lemma for step is step Lemma for foot is foot Lemma for place is place Lemma for engulfing is engulfing Lemma for into is into Lemma for comfort is comfort Lemma for zone is zone Lemma for thing is thing Lemma for wear is wear Lemma for socks is sock Lemma for time is time Lemma for house is house Lemma for open is open Lemma for go is go Lemma for bed is bed Lemma for replacing is replacing Lemma for sock is sock Lemma for comforter is comforter Lemma for guess is guess Lemma for need is need Lemma for comfort is comfort Lemma for zone is zone Lemma for close is close Lemma for maybe is maybe Lemma for mine is mine Lemma for restricted is restricted Lemma for skin is skin Lemma for much is much Lemma for doesn is doesn Lemma for even is even Lemma for include is include Lemma for own is own Lemma for home is home Lemma for travel is travel Lemma for like is like Lemma for wearing is wearing Lemma for shoes is shoe Lemma for firm is firm Lemma for grip is grip Lemma for myself is myself Lemma for dust is dust Lemma for free is free Lemma for protected is protected Lemma for face is face Lemma for situations is situation Lemma for open is open Lemma for want is want Lemma for usually is usually Lemma for wrinkle is wrinkle Lemma for nose is nose Lemma for doesn is doesn Lemma for get is get Lemma for better is better Lemma for wear is wear Lemma for shoes is shoe Lemma for dirty is dirty Lemma for feet is foot Lemma for take is take Lemma for handkerchief is handkerchief Lemma for imagine is imagine Lemma for my is my Lemma for situation is situation Lemma for beach is beach Lemma for hill is hill Lemma for stream is stream Lemma for water is water Lemma for feels is feel Lemma for soothing is soothing Lemma for my is my Lemma for sweaty is sweaty Lemma for feet is foot Lemma for removes is remove Lemma for dust is dust Lemma for attract is attract Lemma for walk is walk Lemma for sand is sand Lemma for let is let Lemma for irritate is irritate Lemma for times is time Lemma for always is always Lemma for ocean is ocean Lemma for the is the Lemma for river is river Lemma for my is my Lemma for side is side Lemma for like is like Lemma for my is my Lemma for bare is bare Lemma for feet is foot Lemma for drowning is drowning Lemma for air is air Lemma for bubbles is bubble Lemma for left is left Lemma for like is like Lemma for when is when Lemma for droplets is droplet Lemma for water is water Lemma for make is make Lemma for a is a Lemma for part is part Lemma for my is my Lemma for feet is foot Lemma for wet is wet Lemma for let is let Lemma for realise is realise Lemma for miss is miss Lemma for the is the Lemma for comfort is comfort Lemma for dry is dry Lemma for skin is skin Lemma for scowl is scowl Lemma for the is the Lemma for linger is linger Lemma for irritation is irritation Lemma for due is due Lemma for to is to Lemma for a is a Lemma for little is little Lemma for dampness is dampness Lemma for don is don Lemma for t is t Lemma for like is like Lemma for when is when Lemma for to is to Lemma for keep is keep Lemma for brushing is brushing Lemma for my is my Lemma for left is left Lemma for leg is leg Lemma for my is my Lemma for right is right Lemma for to is to Lemma for flatten is flatten Lemma for the is the Lemma for spheres is sphere Lemma for water is water Lemma for repeat is repeat Lemma for it is it Lemma for the is the Lemma for right is right Lemma for i is i Lemma for just is just Lemma for realised is realised Lemma for i is i Lemma for don is don Lemma for t is t Lemma for like is like Lemma for drizzling is drizzling Lemma for rains is rain Lemma for eventually is eventually Lemma for when is when Lemma for i is i Lemma for have is have Lemma for to is to Lemma for get is get Lemma for out is out Lemma for the is the Lemma for water is water Lemma for i is i Lemma for give is give Lemma for my is my Lemma for fight is fight Lemma for the is the Lemma for dirt is dirt Lemma for wear is wear Lemma for damn is damn Lemma for shoes is shoe Lemma for with is with Lemma for muddy is muddy Lemma for feet is foot Lemma for those is those Lemma for the is the Lemma for times is time Lemma for i is i Lemma for miss is miss Lemma for my is my Lemma for slippery is slippery Lemma for slippers is slipper Lemma for don is don Lemma for t is t Lemma for let is let Lemma for my is my Lemma for socks is sock Lemma for shoes is shoe Lemma for hear is hear Lemma for say is say Lemma for they is they Lemma for not is not Lemma for know is know Lemma for that is that Lemma for sometimes is sometimes Lemma for i is i Lemma for keep is keep Lemma for a is a Lemma for back is back Lemma for pair is pair Lemma for red is red Lemma for flip is flip Lemma for flops is flop Lemma for such is such Lemma for scenarios is scenario Lemma for make is make Lemma for a is a Lemma for slipper is slipper Lemma for person is person Lemma for i is i Lemma for guess is guess Lemma for i is i Lemma for am is am Lemma for a is a Lemma for slipper is slipper Lemma for person is person Lemma for when is when Lemma for my is my Lemma for feet is foot Lemma for are is are Lemma for ankle is ankle Lemma for deep is deep Lemma for mud is mud Lemma for that is that Lemma for place is place Lemma for me is me Lemma for to is to Lemma for complain is complain Lemma for alternative is alternative Lemma for no is no Lemma for uneasy is uneasy Lemma for half is half Lemma for done is done Lemma for feeling is feeling Lemma for otherwise is otherwise Lemma for not is not Lemma for much is much Lemma for a is a Lemma for slipper is slipper Lemma for person is person Lemma for i is i Lemma for am is am Lemma for a is a Lemma for person is person Lemma for likes is like Lemma for symmetry is symmetry Lemma for in is in Lemma for none is none Lemma for it is it Lemma for s is s Lemma for difficult is difficult Lemma for me is me Lemma for in is in Lemma for this is this Lemma for world is world Lemma for with is with Lemma for its is it Lemma for shades is shade Lemma for of is of Lemma for grey is grey Lemma for then is then Lemma for my is my Lemma for favourite is favourite Lemma for colour is colour Lemma for red is red Lemma for thankfully is thankfully Lemma for it is it Lemma for covers is cover Lemma for the is the Lemma for entire is entire Lemma for spectrum is spectrum Lemma for all is all Lemma for i is i Lemma for need is need Lemma for an is an Lemma for emotion is emotion Lemma for the is the Lemma for rest is rest Lemma for is is is Lemma for taken is taken Lemma for care is care Lemma for of is of Lemma for thank is thank Lemma for the is the Lemma for listener is listener Lemma for you is you Lemma for are is are Lemma for this is this Lemma for has is ha Lemma for a is a Lemma for selfish is selfish Lemma for post is post Lemma for i is i Lemma for used is used Lemma for letter is letter Lemma for for is for Lemma for my is my Lemma for sense is sense Lemma for of is of Lemma for clarity is clarity Lemma for you is you Lemma for always is always Lemma for make is make Lemma for me is me Lemma for reflect is reflect Lemma for and is and Lemma for dig is dig Lemma for deep is deep Lemma for i is i Lemma for can is can Lemma for finally is finally Lemma for sleep is sleep Lemma for goodnight is goodnight ###Markdown **Implementation of a Sentence Segmentation Algorithm** ###Code def look_sentences(a_str, sub): start = 0 while True: start = a_str.find(sub, start) if start == -1: return yield start start += len(sub) def sentence_end(para): poss_end = [] sentence_enders = sentence_enders_list + [z + w for w in sentence_containers_list for z in sentence_enders_list] for p in sentence_enders: e_Indexs = list(look_sentences(para, p)) poss_end.extend(([] if not len(e_Indexs) else [[i, len(p)] for i in e_Indexs])) if len(para) in [pe[0] + pe[1] for pe in poss_end]: max_end_start = max([pe[0] for pe in poss_end]) poss_end = [pe for pe in poss_end if pe[0] != max_end_start] poss_end = [pe[0] + pe[1] for pe in poss_end if sum(pe) > len(para) or (sum(pe) < len(para) and para[sum(pe)] == ' ')] end = (-1 if not len(poss_end) else max(poss_end)) return end def sentences(para): end = True sentences_list = [] while end > -1: end = sentence_end(para) if end > -1: sentences_list.append(para[end:].strip()) para = para[:end] sentences_list.append(para) sentences_list.reverse() while('' in sentences_list): sentences_list.remove("") return sentences_list sentence_enders_list = ['.', '.\n', '!', '!\n', '?', '?\n','\n'] sentence_containers_list = ['}', ')', '"', ']', "'"] sentences(input_str) ###Output _____no_output_____
01_wisconsin/02_SMOTE_log_regression.ipynb
###Markdown Creation of synthetic data for Wisoncsin Breat Cancer data set using SMOTE. Tested using a logistic regression model. AimTo test a statistic method (principal component analysis) for synthesising data that can be used to train a logistic regression machine learning model. DataRaw data is avilable at: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data Basic methods description* Create synthetic data by sampling from distributions based on SMOTE* Train logistic regression model on synthetic data and test against held-back raw dataLemaitre, G., Nogueira, F. and Aridas, C. (2016), Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. arXiv:1609.06570 [cs] Code & results ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA # Turn warnings off for notebook publication import warnings warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown Import Data ###Code def load_data(): """" Load Wisconsin Breast Cancer Data Set Inputs ------ None Returns ------- X: NumPy array of X y: Numpy array of y col_names: column names for X """ # Load data and drop 'id' column data = pd.read_csv('./wisconsin.csv') data.drop('id', axis=1, inplace=True) # Change 'diagnosis' column to 'label', and put in last column place data['label'] = data['diagnosis'] == 'M' data.drop('diagnosis', axis=1, inplace=True) # Split data in X and y X = data.drop(['label'], axis=1) y = data['label'] * 1.0 # convert to 0/1 # Get col names and convert to NumPy arrays X_col_names = list(X) X = X.values y = y.values return data, X, y, X_col_names ###Output _____no_output_____ ###Markdown Data processing Split X and y into training and test sets ###Code def split_into_train_test(X, y, test_proportion=0.25): """" Randomly split X and y numpy arrays into training and test data sets Inputs ------ X and y NumPy arrays Returns ------- X_test, X_train, y_test, y_train Numpy arrays """ X_train, X_test, y_train, y_test = \ train_test_split(X, y, shuffle=True, test_size=test_proportion) return X_train, X_test, y_train, y_test ###Output _____no_output_____ ###Markdown Standardise data ###Code def standardise_data(X_train, X_test): """" Standardise training and tets data sets according to mean and standard deviation of test set Inputs ------ X_train, X_test NumPy arrays Returns ------- X_train_std, X_test_std """ mu = X_train.mean(axis=0) std = X_train.std(axis=0) X_train_std = (X_train - mu) / std X_test_std = (X_test - mu) /std return X_train_std, X_test_std ###Output _____no_output_____ ###Markdown Calculate accuracy measures ###Code def calculate_diagnostic_performance(actual, predicted): """ Calculate sensitivty and specificty. Inputs ------ actual, predted numpy arrays (1 = +ve, 0 = -ve) Returns ------- A dictionary of results: 1) accuracy: proportion of test results that are correct 2) sensitivity: proportion of true +ve identified 3) specificity: proportion of true -ve identified 4) positive likelihood: increased probability of true +ve if test +ve 5) negative likelihood: reduced probability of true +ve if test -ve 6) false positive rate: proportion of false +ves in true -ve patients 7) false negative rate: proportion of false -ves in true +ve patients 8) positive predictive value: chance of true +ve if test +ve 9) negative predictive value: chance of true -ve if test -ve 10) actual positive rate: proportion of actual values that are +ve 11) predicted positive rate: proportion of predicted vales that are +ve 12) recall: same as sensitivity 13) precision: the proportion of predicted +ve that are true +ve 14) f1 = 2 * ((precision * recall) / (precision + recall)) *false positive rate is the percentage of healthy individuals who incorrectly receive a positive test result * alse neagtive rate is the percentage of diseased individuals who incorrectly receive a negative test result """ # Calculate results actual_positives = actual == 1 actual_negatives = actual == 0 test_positives = predicted == 1 test_negatives = predicted == 0 test_correct = actual == predicted accuracy = test_correct.mean() true_positives = actual_positives & test_positives false_positives = actual_negatives & test_positives true_negatives = actual_negatives & test_negatives sensitivity = true_positives.sum() / actual_positives.sum() specificity = np.sum(true_negatives) / np.sum(actual_negatives) positive_likelihood = sensitivity / (1 - specificity) negative_likelihood = (1 - sensitivity) / specificity false_postive_rate = 1 - specificity false_negative_rate = 1 - sensitivity positive_predictive_value = true_positives.sum() / test_positives.sum() negative_predicitive_value = true_negatives.sum() / test_negatives.sum() actual_positive_rate = actual.mean() predicted_positive_rate = predicted.mean() recall = sensitivity precision = \ true_positives.sum() / (true_positives.sum() + false_positives.sum()) f1 = 2 * ((precision * recall) / (precision + recall)) # Add results to dictionary results = dict() results['accuracy'] = accuracy results['sensitivity'] = sensitivity results['specificity'] = specificity results['positive_likelihood'] = positive_likelihood results['negative_likelihood'] = negative_likelihood results['false_postive_rate'] = false_postive_rate results['false_postive_rate'] = false_postive_rate results['false_negative_rate'] = false_negative_rate results['positive_predictive_value'] = positive_predictive_value results['negative_predicitive_value'] = negative_predicitive_value results['actual_positive_rate'] = actual_positive_rate results['predicted_positive_rate'] = predicted_positive_rate results['recall'] = recall results['precision'] = precision results['f1'] = f1 return results ###Output _____no_output_____ ###Markdown Logistic Regression Model ###Code def fit_and_test_logistic_regression_model(X_train, X_test, y_train, y_test): """" Fit and test logistic regression model. Return a dictionary of accuracy measures. Calls on `calculate_diagnostic_performance` to calculate results Inputs ------ X_train, X_test NumPy arrays Returns ------- A dictionary of accuracy results. """ # Fit logistic regression model lr = LogisticRegression(C=0.1) lr.fit(X_train,y_train) # Predict tets set labels y_pred = lr.predict(X_test_std) # Get accuracy results accuracy_results = calculate_diagnostic_performance(y_test, y_pred) return accuracy_results ###Output _____no_output_____ ###Markdown Synthetic Data Method - SMOTE ###Code def make_synthetic_data_smote(X, y, number_of_samples=1000): """ Synthetic data generation. Inputs ------ original_data: X, y numpy arrays number_of_samples: number of synthetic samples to generate n_components: number of principal components to use for data synthesis Returns ------- X_synthetic: NumPy array y_synthetic: NumPy array """ from imblearn.over_sampling import SMOTE count_label_0 = np.sum(y==0) count_label_1 = np.sum(y==1) n_class_0 = number_of_samples + count_label_0 n_class_1 = number_of_samples + count_label_1 X_resampled, y_resampled = SMOTE( sampling_strategy = {0:n_class_0, 1:n_class_1}).fit_resample(X, y) X_synthetic = X_resampled[len(X):] y_synthetic = y_resampled[len(y):] return X_synthetic, y_synthetic ###Output _____no_output_____ ###Markdown Main code ###Code # Load data original_data, X, y, X_col_names = load_data() # Set up results DataFrame results = pd.DataFrame() ###Output _____no_output_____ ###Markdown Fitting classification model to raw data ###Code # Set number of replicate runs number_of_runs = 5 # Set up lists for results accuracy_measure_names = [] accuracy_measure_data = [] for run in range(number_of_runs): # Print progress print (run + 1, end=' ') # Split training and test set X_train, X_test, y_train, y_test = split_into_train_test(X, y) # Standardise data X_train_std, X_test_std = standardise_data(X_train, X_test) # Get accuracy of fitted model accuracy = fit_and_test_logistic_regression_model( X_train_std, X_test_std, y_train, y_test) # Get accuracy measure names if not previously done if len(accuracy_measure_names) == 0: for key, value in accuracy.items(): accuracy_measure_names.append(key) # Get accuracy values run_accuracy_results = [] for key, value in accuracy.items(): run_accuracy_results.append(value) # Add results to results list accuracy_measure_data.append(run_accuracy_results) # Strore mean and sem in results DataFrame accuracy_array = np.array(accuracy_measure_data) results['raw_mean'] = accuracy_array.mean(axis=0) results['raw_sem'] = accuracy_array.std(axis=0)/np.sqrt(number_of_runs) results.index = accuracy_measure_names ###Output 1 2 3 4 5 ###Markdown Fitting classification model to synthetic data ###Code # Set number of replicate runs number_of_runs = 5 # Set up lists for results accuracy_measure_names = [] accuracy_measure_data = [] synthetic_data = [] for run in range(number_of_runs): # Get synthetic data X_synthetic, y_synthetic = make_synthetic_data_smote( X, y, number_of_samples=1000) # Print progress print (run + 1, end=' ') # Split training and test set X_train, X_test, y_train, y_test = split_into_train_test(X, y) # Standardise data (using synthetic data) X_train_std, X_test_std = standardise_data(X_synthetic, X_test) # Get accuracy of fitted model accuracy = fit_and_test_logistic_regression_model( X_train_std, X_test_std, y_synthetic, y_test) # Get accuracy measure names if not previously done if len(accuracy_measure_names) == 0: for key, value in accuracy.items(): accuracy_measure_names.append(key) # Get accuracy values run_accuracy_results = [] for key, value in accuracy.items(): run_accuracy_results.append(value) # Add results to results list accuracy_measure_data.append(run_accuracy_results) # Save synthetic data set # ----------------------- # Create a data frame with id synth_df = pd.DataFrame() # Transfer X values to DataFrame synth_df=pd.concat([synth_df, pd.DataFrame(X_synthetic, columns=X_col_names)], axis=1) # Add a label y_list = list(y_synthetic) synth_df['label'] = y_list # Shuffle data synth_df = synth_df.sample(frac=1.0) # Add to synthetic data results list synthetic_data.append(synth_df) # Strore mean and sem in results DataFrame accuracy_array = np.array(accuracy_measure_data) results['smote_mean'] = accuracy_array.mean(axis=0) results['smote_sem'] = accuracy_array.std(axis=0)/np.sqrt(number_of_runs) ###Output 1 2 3 4 5 ###Markdown Show results ###Code results ###Output _____no_output_____ ###Markdown Compare raw and synthetic data means and standard deviations ###Code descriptive_stats_all_runs = [] for run in range(number_of_runs): synth_df = synthetic_data[run] descriptive_stats = pd.DataFrame() descriptive_stats['Original pos_label mean'] = \ original_data[original_data['label'] == 1].mean() descriptive_stats['Synthetic pos_label mean'] = \ synth_df[synth_df['label'] == 1].mean() descriptive_stats['Original neg_label mean'] = \ original_data[original_data['label'] == 0].mean() descriptive_stats['Synthetic neg_label mean'] = \ synth_df[synth_df['label'] == 0].mean() descriptive_stats['Original pos_label std'] = \ original_data[original_data['label'] == 1].std() descriptive_stats['Synthetic pos_label std'] = \ synth_df[synth_df['label'] == 1].std() descriptive_stats['Original neg_label std'] = \ original_data[original_data['label'] == 0].std() descriptive_stats['Synthetic neg_label std'] = \ synth_df[synth_df['label'] == 0].std() descriptive_stats_all_runs.append(descriptive_stats) colours = ['k', 'b', 'g', 'r', 'y', 'c', 'm'] fig = plt.figure(figsize=(10,10)) # Negative label mean ax1 = fig.add_subplot(221) for run in range(number_of_runs): x = descriptive_stats_all_runs[0]['Original neg_label mean'].copy() y = descriptive_stats_all_runs[run]['Synthetic neg_label mean'].copy() x.drop(labels ='label', inplace=True) y.drop(labels ='label', inplace=True) colour = colours[run % 7] # Cycle through 7 colours ax1.scatter(x,y, color=colour, alpha=0.5) ax1.set_xlabel('Original data') ax1.set_ylabel('Synthetic data') ax1.set_title('Negative label samples mean') ax1.set_xscale('log') ax1.set_yscale('log') ax1.grid() # Positive label mean ax2 = fig.add_subplot(222) for run in range(number_of_runs): x = descriptive_stats_all_runs[0]['Original pos_label mean'].copy() y = descriptive_stats_all_runs[run]['Synthetic pos_label mean'].copy() x.drop(labels ='label', inplace=True) y.drop(labels ='label', inplace=True) colour = colours[run % 7] # Cycle through 7 colours ax2.scatter(x,y, color=colour, alpha=0.5) ax2.set_xlabel('Original data') ax2.set_ylabel('Synthetic data') ax2.set_title('Positive label samples mean') ax2.set_xscale('log') ax2.set_yscale('log') ax2.grid() # Negative label standard deviation ax3 = fig.add_subplot(223) for run in range(number_of_runs): x = descriptive_stats_all_runs[0]['Original neg_label std'].copy() y = descriptive_stats_all_runs[run]['Synthetic neg_label std'].copy() x.drop(labels ='label', inplace=True) y.drop(labels ='label', inplace=True) colour = colours[run % 7] # Cycle through 7 colours ax3.scatter(x,y, color=colour, alpha=0.5) ax3.set_xlabel('Original data') ax3.set_ylabel('Synthetic data') ax3.set_title('Negative label standard deviation') ax3.set_xscale('log') ax3.set_yscale('log') ax3.grid() # Positive label standard deviation ax4 = fig.add_subplot(224) for run in range(number_of_runs): x = descriptive_stats_all_runs[0]['Original pos_label std'].copy() y = descriptive_stats_all_runs[run]['Synthetic pos_label std'].copy() x.drop(labels ='label', inplace=True) y.drop(labels ='label', inplace=True) colour = colours[run % 7] # Cycle through 7 colours ax4.scatter(x,y, color=colour, alpha=0.5) ax4.set_xlabel('Original data') ax4.set_ylabel('Synthetic data') ax4.set_title('Positive label standard deviation') ax4.set_xscale('log') ax4.set_yscale('log') ax4.grid() plt.tight_layout(pad=2) plt.savefig('Output/smote_correls.png', facecolor='w', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Calculate correlations between means and standard deviations for negative and positive classes. ###Code correl_mean_neg = [] correl_std_neg = [] correl_mean_pos = [] correl_std_pos = [] for run in range(number_of_runs): # Get correlation of means x = descriptive_stats_all_runs[run]['Original neg_label mean'] y = descriptive_stats_all_runs[run]['Synthetic neg_label mean'] correl_mean_neg.append(np.corrcoef(x,y)[0,1]) x = descriptive_stats_all_runs[run]['Original pos_label mean'] y = descriptive_stats_all_runs[run]['Synthetic pos_label mean'] correl_mean_pos.append(np.corrcoef(x,y)[0,1]) # Get correlation of standard deviations x = descriptive_stats_all_runs[run]['Original neg_label std'] y = descriptive_stats_all_runs[run]['Synthetic neg_label std'] correl_std_neg.append(np.corrcoef(x,y)[0,1]) x = descriptive_stats_all_runs[run]['Original pos_label std'] y = descriptive_stats_all_runs[run]['Synthetic pos_label std'] correl_std_pos.append(np.corrcoef(x,y)[0,1]) # Get correlation of means mean_r_square_mean_neg = np.mean(np.square(correl_mean_neg)) mean_r_square_mean_pos = np.mean(np.square(correl_mean_pos)) sem_square_mean_neg = np.std(np.square(correl_mean_neg))/np.sqrt(number_of_runs) sem_square_mean_pos = np.std(np.square(correl_mean_pos))/np.sqrt(number_of_runs) print ('R-square of means (negative), mean (std): ', end='') print (f'{mean_r_square_mean_neg:0.3f} ({sem_square_mean_neg:0.3f})') print ('R-square of means (positive), mean (std): ', end='') print (f'{mean_r_square_mean_pos:0.3f} ({sem_square_mean_pos:0.3f})') # Get correlation of standard deviations mean_r_square_sd_neg = np.mean(np.square(correl_std_neg)) mean_r_square_sd_pos = np.mean(np.square(correl_std_pos)) sem_square_sd_neg = np.std(np.square(correl_std_neg))/np.sqrt(number_of_runs) sem_square_sd_pos = np.std(np.square(correl_std_pos))/np.sqrt(number_of_runs) print ('R-square of standard deviations (negative), mean (sem): ', end='') print (f'{mean_r_square_sd_neg:0.3f} ({sem_square_sd_neg:0.3f})') print ('R-square of standard deviations (positive), mean (sem): ', end='') print (f'{mean_r_square_sd_pos:0.3f} ({sem_square_sd_pos:0.3f})') ###Output R-square of means (negative), mean (std): 1.000 (0.000) R-square of means (positive), mean (std): 1.000 (0.000) R-square of standard deviations (negative), mean (sem): 1.000 (0.000) R-square of standard deviations (positive), mean (sem): 1.000 (0.000) ###Markdown Single run example ###Code descriptive_stats_all_runs[0] ###Output _____no_output_____ ###Markdown Correlation between featuresHere we calculate a correlation matric between all features for original and synthetic data. ###Code neg_correlation_original = [] neg_correlation_synthetic = [] pos_correlation_original = [] pos_correlation_synthetic = [] correl_coeff_neg = [] correl_coeff_pos= [] # Original data mask = original_data['label'] == 0 neg_o = original_data[mask].copy() neg_o.drop('label', axis=1, inplace=True) neg_correlation_original = neg_o.corr().values.flatten() mask = original_data['label'] == 1 pos_o = original_data[mask].copy() pos_o.drop('label', axis=1, inplace=True) pos_correlation_original = pos_o.corr().values.flatten() # Synthetic data for i in range (number_of_runs): data_s = synthetic_data[i] mask = data_s['label'] == 0 neg_s = data_s[mask].copy() neg_s.drop('label', axis=1, inplace=True) corr_neg_s = neg_s.corr().values.flatten() neg_correlation_synthetic.append(corr_neg_s) mask = data_s['label'] == 1 pos_s = data_s[mask].copy() pos_s.drop('label', axis=1, inplace=True) corr_pos_s = pos_s.corr().values.flatten() pos_correlation_synthetic.append(corr_pos_s) # Get correlation coefficients correl_coeff_neg.append(np.corrcoef( neg_correlation_original, corr_neg_s)[0,1]) correl_coeff_pos.append(np.corrcoef( pos_correlation_original, corr_pos_s)[0,1]) colours = ['k', 'b', 'g', 'r', 'y', 'c', 'm'] fig = plt.figure(figsize=(10,5)) ax1 = fig.add_subplot(121) for run in range(number_of_runs): colour = colours[run % 7] # Cycle through 7 colours ax1.scatter( neg_correlation_original, neg_correlation_synthetic[run], color=colour, alpha=0.25) ax1.grid() ax1.set_xlabel('Original data correlation') ax1.set_ylabel('Synthetic data correlation') ax1.set_title('Negative label samples correlation of features') ax2 = fig.add_subplot(122) for run in range(number_of_runs): colour = colours[run % 7] # Cycle through 7 colours ax2.scatter( pos_correlation_original, pos_correlation_synthetic[run], color=colour, alpha=0.25) ax2.grid() ax2.set_xlabel('Original data correlation') ax2.set_ylabel('Synthetic data correlation') ax2.set_title('Positive label samples correlation of features') plt.tight_layout(pad=2) plt.savefig('Output/smote_cov.png', facecolor='w', dpi=300) plt.show() r_square_neg_mean = np.mean(np.square(correl_coeff_neg)) r_square_pos_mean = np.mean(np.square(correl_coeff_pos)) r_square_neg_sem = np.std(np.square(correl_coeff_neg))/np.sqrt(number_of_runs) r_square_pos_sem = np.std(np.square(correl_coeff_pos))/np.sqrt(number_of_runs) print ('Corrleation of correlations (negative), mean (sem): ', end='') print (f'{r_square_neg_mean:0.3f} ({r_square_neg_sem:0.3f})') print ('Corrleation of correlations (positive), mean (sem): ', end = '') print (f'{r_square_pos_mean:0.3f} ({r_square_pos_sem:0.3f})') ###Output Corrleation of correlations (negative), mean (sem): 0.984 (0.002) Corrleation of correlations (positive), mean (sem): 0.981 (0.002)
doc/source/visualizing/Volume_Rendering_Tutorial.ipynb
###Markdown Volume Rendering Tutorial This notebook shows how to use the new (in version 3.3) Scene interface to create custom volume renderings. The tutorial proceeds in the following steps: 1. [Creating the Scene](1.-Creating-the-Scene)2. [Displaying the Scene](2.-Displaying-the-Scene)3. [Adjusting Transfer Functions](3.-Adjusting-Transfer-Functions)4. [Saving an Image](4.-Saving-an-Image)5. [Adding Annotations](5.-Adding-Annotations) 1. Creating the Scene To begin, we load up a dataset and use the `yt.create_scene` method to set up a basic Scene. We store the Scene in a variable called `sc` and render the default `('gas', 'density')` field. ###Code import yt import numpy as np from yt.visualization.volume_rendering.transfer_function_helper import TransferFunctionHelper from yt.visualization.volume_rendering.api import Scene, VolumeSource ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") sc = yt.create_scene(ds) ###Output _____no_output_____ ###Markdown Note that to render a different field, we would use pass the field name to `yt.create_scene` using the `field` argument. Now we can look at some information about the Scene we just created using the python print keyword: ###Code print (sc) ###Output _____no_output_____ ###Markdown This prints out information about the Sources, Camera, and Lens associated with this Scene. Each of these can also be printed individually. For example, to print only the information about the first (and currently, only) Source, we can do: ###Code print (sc.get_source()) ###Output _____no_output_____ ###Markdown 2. Displaying the Scene We can see that the `yt.create_source` method has created a `VolumeSource` with default values for the center, bounds, and transfer function. Now, let's see what this Scene looks like. In the notebook, we can do this by calling `sc.show()`. ###Code sc.show() ###Output _____no_output_____ ###Markdown That looks okay, but it's a little too zoomed-out. To fix this, let's modify the Camera associated with our Scene. This next bit of code will zoom in the camera (i.e. decrease the width of the view) by a factor of 3. ###Code sc.camera.zoom(3.0) ###Output _____no_output_____ ###Markdown Now when we print the Scene, we see that the Camera width has decreased by a factor of 3: ###Code print (sc) ###Output _____no_output_____ ###Markdown To see what this looks like, we re-render the image and display the scene again. Note that we don't actually have to call `sc.show()` here - we can just have Ipython evaluate the Scene and that will display it automatically. ###Code sc.render() sc ###Output _____no_output_____ ###Markdown That's better! The image looks a little washed-out though, so we use the `sigma_clip` argument to `sc.show()` to improve the contrast: ###Code sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Applying different values of `sigma_clip` with `sc.show()` is a relatively fast process because `sc.show()` will pull the most recently rendered image and apply the contrast adjustment without rendering the scene again. While this is useful for quickly testing the affect of different values of `sigma_clip`, it can lead to confusion if we don't remember to render after making changes to the camera. For example, if we zoom in again and simply call `sc.show()`, then we get the same image as before: ###Code sc.camera.zoom(3.0) sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown For the change to the camera to take affect, we have to explictly render again: ###Code sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown As a general rule, any changes to the scene itself such as adjusting the camera or changing transfer functions requires rendering again. Before moving on, let's undo the last zoom: ###Code sc.camera.zoom(1./3.0) ###Output _____no_output_____ ###Markdown 3. Adjusting Transfer FunctionsNext, we demonstrate how to change the mapping between the field values and the colors in the image. We use the TransferFunctionHelper to create a new transfer function using the `gist_rainbow` colormap, and then re-create the image as follows: ###Code # Set up a custom transfer function using the TransferFunctionHelper. # We use 10 Gaussians evenly spaced logarithmically between the min and max # field values. tfh = TransferFunctionHelper(ds) tfh.set_field('density') tfh.set_log(True) tfh.set_bounds() tfh.build_transfer_function() tfh.tf.add_layers(10, colormap='gist_rainbow') # Grab the first render source and set it to use the new transfer function render_source = sc.get_source() render_source.transfer_function = tfh.tf sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Now, let's try using a different lens type. We can give a sense of depth to the image by using the perspective lens. To do, we create a new Camera below. We also demonstrate how to switch the camera to a new position and orientation. ###Code cam = sc.add_camera(ds, lens_type='perspective') # Standing at (x=0.05, y=0.5, z=0.5), we look at the area of x>0.05 (with some open angle # specified by camera width) along the positive x direction. cam.position = ds.arr([0.05, 0.5, 0.5], 'code_length') normal_vector = [1., 0., 0.] north_vector = [0., 0., 1.] cam.switch_orientation(normal_vector=normal_vector, north_vector=north_vector) # The width determines the opening angle cam.set_width(ds.domain_width * 0.5) print (sc.camera) ###Output _____no_output_____ ###Markdown The resulting image looks like: ###Code sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown 4. Saving an ImageTo save a volume rendering to an image file at any point, we can use `sc.save` as follows: ###Code sc.save('volume_render.png',render=False) ###Output _____no_output_____ ###Markdown Including the keyword argument `render=False` indicates that the most recently rendered image will be saved (otherwise, `sc.save()` will trigger a call to `sc.render()`). This behavior differs from `sc.show()`, which always uses the most recently rendered image. An additional caveat is that if we used `sigma_clip` in our call to `sc.show()`, then we must **also** pass it to `sc.save()` as sigma clipping is applied on top of a rendered image array. In that case, we would do the following: ###Code sc.save('volume_render_clip4.png',sigma_clip=4.0,render=False) ###Output _____no_output_____ ###Markdown 5. Adding AnnotationsFinally, the next cell restores the lens and the transfer function to the defaults, moves the camera, and adds an opaque source that shows the axes of the simulation coordinate system. ###Code # set the lens type back to plane-parallel sc.camera.set_lens('plane-parallel') # move the camera to the left edge of the domain sc.camera.set_position(ds.domain_left_edge) sc.camera.switch_orientation() # add an opaque source to the scene sc.annotate_axes() sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown This notebook shows how to use the new (in version 3.3) Scene interface to create custom volume renderings. To begin, we load up a dataset and use the yt.create_scene method to set up a basic Scene. We store the Scene in a variable called 'sc' and render the default ('gas', 'density') field. ###Code import yt import numpy as np from yt.visualization.volume_rendering.transfer_function_helper import TransferFunctionHelper from yt.visualization.volume_rendering.api import Scene, VolumeSource ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") sc = yt.create_scene(ds) ###Output _____no_output_____ ###Markdown Now we can look at some information about the Scene we just created using the python print keyword: ###Code print (sc) ###Output _____no_output_____ ###Markdown This prints out information about the Sources, Camera, and Lens associated with this Scene. Each of these can also be printed individually. For example, to print only the information about the first (and currently, only) Source, we can do: ###Code print (sc.get_source(0)) ###Output _____no_output_____ ###Markdown We can see that the yt.create_source has created a VolumeSource with default values for the center, bounds, and transfer function. Now, let's see what this Scene looks like. In the notebook, we can do this by calling sc.show(). ###Code sc.show() ###Output _____no_output_____ ###Markdown That looks okay, but it's a little too zoomed-out. To fix this, let's modify the Camera associated with our Scene. This next bit of code will zoom in the camera (i.e. decrease the width of the view) by a factor of 3. ###Code sc.camera.zoom(3.0) ###Output _____no_output_____ ###Markdown Now when we print the Scene, we see that the Camera width has decreased by a factor of 3: ###Code print (sc) ###Output _____no_output_____ ###Markdown To see what this looks like, we re-render the image and display the scene again. Note that we don't actually have to call sc.show() here - we can just have Ipython evaluate the Scene and that will display it automatically. ###Code sc.render() sc ###Output _____no_output_____ ###Markdown That's better! The image looks a little washed-out though, so we use the sigma_clip argument to sc.show() to improve the contrast: ###Code sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Next, we demonstrate how to change the mapping between the field values and the colors in the image. We use the TransferFunctionHelper to create a new transfer function using the "gist_rainbow" colormap, and then re-create the image as follows: ###Code # Set up a custom transfer function using the TransferFunctionHelper. # We use 10 Gaussians evenly spaced logarithmically between the min and max # field values. tfh = TransferFunctionHelper(ds) tfh.set_field('density') tfh.set_log(True) tfh.set_bounds() tfh.build_transfer_function() tfh.tf.add_layers(10, colormap='gist_rainbow') # Grab the first render source and set it to use the new transfer function render_source = sc.get_source(0) render_source.transfer_function = tfh.tf sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Now, let's try using a different lens type. We can give a sense of depth to the image by using the perspective lens. To do, we create a new Camera below. We also demonstrate how to switch the camera to a new position and orientation. ###Code cam = sc.add_camera(ds, lens_type='perspective') # Standing at (x=0.05, y=0.5, z=0.5), we look at the area of x>0.05 (with some open angle # specified by camera width) along the positive x direction. cam.position = ds.arr([0.05, 0.5, 0.5], 'code_length') normal_vector = [1., 0., 0.] north_vector = [0., 0., 1.] cam.switch_orientation(normal_vector=normal_vector, north_vector=north_vector) # The width determines the opening angle cam.set_width(ds.domain_width * 0.5) print (sc.camera) ###Output _____no_output_____ ###Markdown The resulting image looks like: ###Code sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Finally, the next cell restores the lens and the transfer function to the defaults, moves the camera, and adds an opaque source that shows the axes of the simulation coordinate system. ###Code # set the lens type back to plane-parallel sc.camera.set_lens('plane-parallel') # move the camera to the left edge of the domain sc.camera.set_position(ds.domain_left_edge) sc.camera.switch_orientation() # add an opaque source to the scene sc.annotate_axes() sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Volume Rendering Tutorial This notebook shows how to use the new (in version 3.3) Scene interface to create custom volume renderings. The tutorial proceeds in the following steps: 1. [Creating the Scene](1.-Creating-the-Scene)2. [Displaying the Scene](2.-Displaying-the-Scene)3. [Adjusting Transfer Functions](3.-Adjusting-Transfer-Functions)4. [Saving an Image](4.-Saving-an-Image)5. [Adding Annotations](5.-Adding-Annotations) 1. Creating the Scene To begin, we load up a dataset and use the `yt.create_scene` method to set up a basic Scene. We store the Scene in a variable called `sc` and render the default `('gas', 'density')` field. ###Code import yt import numpy as np from yt.visualization.volume_rendering.transfer_function_helper import TransferFunctionHelper ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") sc = yt.create_scene(ds) ###Output _____no_output_____ ###Markdown Note that to render a different field, we would use pass the field name to `yt.create_scene` using the `field` argument. Now we can look at some information about the Scene we just created using the python print keyword: ###Code print (sc) ###Output _____no_output_____ ###Markdown This prints out information about the Sources, Camera, and Lens associated with this Scene. Each of these can also be printed individually. For example, to print only the information about the first (and currently, only) Source, we can do: ###Code print (sc.get_source()) ###Output _____no_output_____ ###Markdown 2. Displaying the Scene We can see that the `yt.create_source` method has created a `VolumeSource` with default values for the center, bounds, and transfer function. Now, let's see what this Scene looks like. In the notebook, we can do this by calling `sc.show()`. ###Code sc.show() ###Output _____no_output_____ ###Markdown That looks okay, but it's a little too zoomed-out. To fix this, let's modify the Camera associated with our Scene. This next bit of code will zoom in the camera (i.e. decrease the width of the view) by a factor of 3. ###Code sc.camera.zoom(3.0) ###Output _____no_output_____ ###Markdown Now when we print the Scene, we see that the Camera width has decreased by a factor of 3: ###Code print (sc) ###Output _____no_output_____ ###Markdown To see what this looks like, we re-render the image and display the scene again. Note that we don't actually have to call `sc.show()` here - we can just have Ipython evaluate the Scene and that will display it automatically. ###Code sc.render() sc ###Output _____no_output_____ ###Markdown That's better! The image looks a little washed-out though, so we use the `sigma_clip` argument to `sc.show()` to improve the contrast: ###Code sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Applying different values of `sigma_clip` with `sc.show()` is a relatively fast process because `sc.show()` will pull the most recently rendered image and apply the contrast adjustment without rendering the scene again. While this is useful for quickly testing the affect of different values of `sigma_clip`, it can lead to confusion if we don't remember to render after making changes to the camera. For example, if we zoom in again and simply call `sc.show()`, then we get the same image as before: ###Code sc.camera.zoom(3.0) sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown For the change to the camera to take affect, we have to explictly render again: ###Code sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown As a general rule, any changes to the scene itself such as adjusting the camera or changing transfer functions requires rendering again. Before moving on, let's undo the last zoom: ###Code sc.camera.zoom(1./3.0) ###Output _____no_output_____ ###Markdown 3. Adjusting Transfer FunctionsNext, we demonstrate how to change the mapping between the field values and the colors in the image. We use the TransferFunctionHelper to create a new transfer function using the `gist_rainbow` colormap, and then re-create the image as follows: ###Code # Set up a custom transfer function using the TransferFunctionHelper. # We use 10 Gaussians evenly spaced logarithmically between the min and max # field values. tfh = TransferFunctionHelper(ds) tfh.set_field('density') tfh.set_log(True) tfh.set_bounds() tfh.build_transfer_function() tfh.tf.add_layers(10, colormap='gist_rainbow') # Grab the first render source and set it to use the new transfer function render_source = sc.get_source() render_source.transfer_function = tfh.tf sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Now, let's try using a different lens type. We can give a sense of depth to the image by using the perspective lens. To do, we create a new Camera below. We also demonstrate how to switch the camera to a new position and orientation. ###Code cam = sc.add_camera(ds, lens_type='perspective') # Standing at (x=0.05, y=0.5, z=0.5), we look at the area of x>0.05 (with some open angle # specified by camera width) along the positive x direction. cam.position = ds.arr([0.05, 0.5, 0.5], 'code_length') normal_vector = [1., 0., 0.] north_vector = [0., 0., 1.] cam.switch_orientation(normal_vector=normal_vector, north_vector=north_vector) # The width determines the opening angle cam.set_width(ds.domain_width * 0.5) print (sc.camera) ###Output _____no_output_____ ###Markdown The resulting image looks like: ###Code sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown 4. Saving an ImageTo save a volume rendering to an image file at any point, we can use `sc.save` as follows: ###Code sc.save('volume_render.png',render=False) ###Output _____no_output_____ ###Markdown Including the keyword argument `render=False` indicates that the most recently rendered image will be saved (otherwise, `sc.save()` will trigger a call to `sc.render()`). This behavior differs from `sc.show()`, which always uses the most recently rendered image. An additional caveat is that if we used `sigma_clip` in our call to `sc.show()`, then we must **also** pass it to `sc.save()` as sigma clipping is applied on top of a rendered image array. In that case, we would do the following: ###Code sc.save('volume_render_clip4.png',sigma_clip=4.0,render=False) ###Output _____no_output_____ ###Markdown 5. Adding AnnotationsFinally, the next cell restores the lens and the transfer function to the defaults, moves the camera, and adds an opaque source that shows the axes of the simulation coordinate system. ###Code # set the lens type back to plane-parallel sc.camera.set_lens('plane-parallel') # move the camera to the left edge of the domain sc.camera.set_position(ds.domain_left_edge) sc.camera.switch_orientation() # add an opaque source to the scene sc.annotate_axes() sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown This notebook shows how to use the new (in version 3.3) Scene interface to create custom volume renderings. To begin, we load up a dataset and use the yt.create_scene method to set up a basic Scene. We store the Scene in a variable called 'sc' and render the default ('gas', 'density') field. ###Code import yt import numpy as np from yt.visualization.volume_rendering.transfer_function_helper import TransferFunctionHelper from yt.visualization.volume_rendering.api import Scene, VolumeSource ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") sc = yt.create_scene(ds) ###Output _____no_output_____ ###Markdown Now we can look at some information about the Scene we just created using the python print keyword: ###Code print (sc) ###Output _____no_output_____ ###Markdown This prints out information about the Sources, Camera, and Lens associated with this Scene. Each of these can also be printed individually. For example, to print only the information about the first (and currently, only) Source, we can do: ###Code print (sc.get_source()) ###Output _____no_output_____ ###Markdown We can see that the yt.create_source has created a VolumeSource with default values for the center, bounds, and transfer function. Now, let's see what this Scene looks like. In the notebook, we can do this by calling sc.show(). ###Code sc.show() ###Output _____no_output_____ ###Markdown That looks okay, but it's a little too zoomed-out. To fix this, let's modify the Camera associated with our Scene. This next bit of code will zoom in the camera (i.e. decrease the width of the view) by a factor of 3. ###Code sc.camera.zoom(3.0) ###Output _____no_output_____ ###Markdown Now when we print the Scene, we see that the Camera width has decreased by a factor of 3: ###Code print (sc) ###Output _____no_output_____ ###Markdown To see what this looks like, we re-render the image and display the scene again. Note that we don't actually have to call sc.show() here - we can just have Ipython evaluate the Scene and that will display it automatically. ###Code sc.render() sc ###Output _____no_output_____ ###Markdown That's better! The image looks a little washed-out though, so we use the sigma_clip argument to sc.show() to improve the contrast: ###Code sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Next, we demonstrate how to change the mapping between the field values and the colors in the image. We use the TransferFunctionHelper to create a new transfer function using the "gist_rainbow" colormap, and then re-create the image as follows: ###Code # Set up a custom transfer function using the TransferFunctionHelper. # We use 10 Gaussians evenly spaced logarithmically between the min and max # field values. tfh = TransferFunctionHelper(ds) tfh.set_field('density') tfh.set_log(True) tfh.set_bounds() tfh.build_transfer_function() tfh.tf.add_layers(10, colormap='gist_rainbow') # Grab the first render source and set it to use the new transfer function render_source = sc.get_source() render_source.transfer_function = tfh.tf sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Now, let's try using a different lens type. We can give a sense of depth to the image by using the perspective lens. To do, we create a new Camera below. We also demonstrate how to switch the camera to a new position and orientation. ###Code cam = sc.add_camera(ds, lens_type='perspective') # Standing at (x=0.05, y=0.5, z=0.5), we look at the area of x>0.05 (with some open angle # specified by camera width) along the positive x direction. cam.position = ds.arr([0.05, 0.5, 0.5], 'code_length') normal_vector = [1., 0., 0.] north_vector = [0., 0., 1.] cam.switch_orientation(normal_vector=normal_vector, north_vector=north_vector) # The width determines the opening angle cam.set_width(ds.domain_width * 0.5) print (sc.camera) ###Output _____no_output_____ ###Markdown The resulting image looks like: ###Code sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Finally, the next cell restores the lens and the transfer function to the defaults, moves the camera, and adds an opaque source that shows the axes of the simulation coordinate system. ###Code # set the lens type back to plane-parallel sc.camera.set_lens('plane-parallel') # move the camera to the left edge of the domain sc.camera.set_position(ds.domain_left_edge) sc.camera.switch_orientation() # add an opaque source to the scene sc.annotate_axes() sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Volume Rendering Tutorial This notebook shows how to use the new (in version 3.3) Scene interface to create custom volume renderings. The tutorial proceeds in the following steps: 1. [Creating the Scene](1.-Creating-the-Scene)2. [Displaying the Scene](2.-Displaying-the-Scene)3. [Adjusting Transfer Functions](3.-Adjusting-Transfer-Functions)4. [Saving an Image](4.-Saving-an-Image)5. [Adding Annotations](5.-Adding-Annotations) 1. Creating the Scene To begin, we load up a dataset and use the `yt.create_scene` method to set up a basic Scene. We store the Scene in a variable called `sc` and render the default `('gas', 'density')` field. ###Code import yt import numpy as np from yt.visualization.volume_rendering.transfer_function_helper import TransferFunctionHelper ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") sc = yt.create_scene(ds) ###Output _____no_output_____ ###Markdown Note that to render a different field, we would use pass the field name to `yt.create_scene` using the `field` argument. Now we can look at some information about the Scene we just created using the python print keyword: ###Code print (sc) ###Output _____no_output_____ ###Markdown This prints out information about the Sources, Camera, and Lens associated with this Scene. Each of these can also be printed individually. For example, to print only the information about the first (and currently, only) Source, we can do: ###Code print (sc.get_source()) ###Output _____no_output_____ ###Markdown 2. Displaying the Scene We can see that the `yt.create_source` method has created a `VolumeSource` with default values for the center, bounds, and transfer function. Now, let's see what this Scene looks like. In the notebook, we can do this by calling `sc.show()`. ###Code sc.show() ###Output _____no_output_____ ###Markdown That looks okay, but it's a little too zoomed-out. To fix this, let's modify the Camera associated with our Scene. This next bit of code will zoom in the camera (i.e. decrease the width of the view) by a factor of 3. ###Code sc.camera.zoom(3.0) ###Output _____no_output_____ ###Markdown Now when we print the Scene, we see that the Camera width has decreased by a factor of 3: ###Code print (sc) ###Output _____no_output_____ ###Markdown To see what this looks like, we re-render the image and display the scene again. Note that we don't actually have to call `sc.show()` here - we can just have Ipython evaluate the Scene and that will display it automatically. ###Code sc.render() sc ###Output _____no_output_____ ###Markdown That's better! The image looks a little washed-out though, so we use the `sigma_clip` argument to `sc.show()` to improve the contrast: ###Code sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Applying different values of `sigma_clip` with `sc.show()` is a relatively fast process because `sc.show()` will pull the most recently rendered image and apply the contrast adjustment without rendering the scene again. While this is useful for quickly testing the affect of different values of `sigma_clip`, it can lead to confusion if we don't remember to render after making changes to the camera. For example, if we zoom in again and simply call `sc.show()`, then we get the same image as before: ###Code sc.camera.zoom(3.0) sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown For the change to the camera to take affect, we have to explicitly render again: ###Code sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown As a general rule, any changes to the scene itself such as adjusting the camera or changing transfer functions requires rendering again. Before moving on, let's undo the last zoom: ###Code sc.camera.zoom(1./3.0) ###Output _____no_output_____ ###Markdown 3. Adjusting Transfer FunctionsNext, we demonstrate how to change the mapping between the field values and the colors in the image. We use the TransferFunctionHelper to create a new transfer function using the `gist_rainbow` colormap, and then re-create the image as follows: ###Code # Set up a custom transfer function using the TransferFunctionHelper. # We use 10 Gaussians evenly spaced logarithmically between the min and max # field values. tfh = TransferFunctionHelper(ds) tfh.set_field('density') tfh.set_log(True) tfh.set_bounds() tfh.build_transfer_function() tfh.tf.add_layers(10, colormap='gist_rainbow') # Grab the first render source and set it to use the new transfer function render_source = sc.get_source() render_source.transfer_function = tfh.tf sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Now, let's try using a different lens type. We can give a sense of depth to the image by using the perspective lens. To do, we create a new Camera below. We also demonstrate how to switch the camera to a new position and orientation. ###Code cam = sc.add_camera(ds, lens_type='perspective') # Standing at (x=0.05, y=0.5, z=0.5), we look at the area of x>0.05 (with some open angle # specified by camera width) along the positive x direction. cam.position = ds.arr([0.05, 0.5, 0.5], 'code_length') normal_vector = [1., 0., 0.] north_vector = [0., 0., 1.] cam.switch_orientation(normal_vector=normal_vector, north_vector=north_vector) # The width determines the opening angle cam.set_width(ds.domain_width * 0.5) print (sc.camera) ###Output _____no_output_____ ###Markdown The resulting image looks like: ###Code sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown 4. Saving an ImageTo save a volume rendering to an image file at any point, we can use `sc.save` as follows: ###Code sc.save('volume_render.png',render=False) ###Output _____no_output_____ ###Markdown Including the keyword argument `render=False` indicates that the most recently rendered image will be saved (otherwise, `sc.save()` will trigger a call to `sc.render()`). This behavior differs from `sc.show()`, which always uses the most recently rendered image. An additional caveat is that if we used `sigma_clip` in our call to `sc.show()`, then we must **also** pass it to `sc.save()` as sigma clipping is applied on top of a rendered image array. In that case, we would do the following: ###Code sc.save('volume_render_clip4.png',sigma_clip=4.0,render=False) ###Output _____no_output_____ ###Markdown 5. Adding AnnotationsFinally, the next cell restores the lens and the transfer function to the defaults, moves the camera, and adds an opaque source that shows the axes of the simulation coordinate system. ###Code # set the lens type back to plane-parallel sc.camera.set_lens('plane-parallel') # move the camera to the left edge of the domain sc.camera.set_position(ds.domain_left_edge) sc.camera.switch_orientation() # add an opaque source to the scene sc.annotate_axes() sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Volume Rendering Tutorial This notebook shows how to use the new (in version 3.3) Scene interface to create custom volume renderings. The tutorial proceeds in the following steps: 1. [Creating the Scene](1.-Creating-the-Scene)2. [Displaying the Scene](2.-Displaying-the-Scene)3. [Adjusting Transfer Functions](3.-Adjusting-Transfer-Functions)4. [Saving an Image](4.-Saving-an-Image)5. [Adding Annotations](5.-Adding-Annotations) 1. Creating the Scene To begin, we load up a dataset and use the `yt.create_scene` method to set up a basic Scene. We store the Scene in a variable called `sc` and render the default `('gas', 'density')` field. ###Code import yt from yt.visualization.volume_rendering.transfer_function_helper import ( TransferFunctionHelper, ) ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") sc = yt.create_scene(ds) ###Output _____no_output_____ ###Markdown Note that to render a different field, we would use pass the field name to `yt.create_scene` using the `field` argument. Now we can look at some information about the Scene we just created using the python print keyword: ###Code print(sc) ###Output _____no_output_____ ###Markdown This prints out information about the Sources, Camera, and Lens associated with this Scene. Each of these can also be printed individually. For example, to print only the information about the first (and currently, only) Source, we can do: ###Code print(sc.get_source()) ###Output _____no_output_____ ###Markdown 2. Displaying the Scene We can see that the `yt.create_source` method has created a `VolumeSource` with default values for the center, bounds, and transfer function. Now, let's see what this Scene looks like. In the notebook, we can do this by calling `sc.show()`. ###Code sc.show() ###Output _____no_output_____ ###Markdown That looks okay, but it's a little too zoomed-out. To fix this, let's modify the Camera associated with our Scene. This next bit of code will zoom in the camera (i.e. decrease the width of the view) by a factor of 3. ###Code sc.camera.zoom(3.0) ###Output _____no_output_____ ###Markdown Now when we print the Scene, we see that the Camera width has decreased by a factor of 3: ###Code print(sc) ###Output _____no_output_____ ###Markdown To see what this looks like, we re-render the image and display the scene again. Note that we don't actually have to call `sc.show()` here - we can just have Ipython evaluate the Scene and that will display it automatically. ###Code sc.render() sc ###Output _____no_output_____ ###Markdown That's better! The image looks a little washed-out though, so we use the `sigma_clip` argument to `sc.show()` to improve the contrast: ###Code sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Applying different values of `sigma_clip` with `sc.show()` is a relatively fast process because `sc.show()` will pull the most recently rendered image and apply the contrast adjustment without rendering the scene again. While this is useful for quickly testing the affect of different values of `sigma_clip`, it can lead to confusion if we don't remember to render after making changes to the camera. For example, if we zoom in again and simply call `sc.show()`, then we get the same image as before: ###Code sc.camera.zoom(3.0) sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown For the change to the camera to take affect, we have to explicitly render again: ###Code sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown As a general rule, any changes to the scene itself such as adjusting the camera or changing transfer functions requires rendering again. Before moving on, let's undo the last zoom: ###Code sc.camera.zoom(1.0 / 3.0) ###Output _____no_output_____ ###Markdown 3. Adjusting Transfer FunctionsNext, we demonstrate how to change the mapping between the field values and the colors in the image. We use the TransferFunctionHelper to create a new transfer function using the `gist_rainbow` colormap, and then re-create the image as follows: ###Code # Set up a custom transfer function using the TransferFunctionHelper. # We use 10 Gaussians evenly spaced logarithmically between the min and max # field values. tfh = TransferFunctionHelper(ds) tfh.set_field("density") tfh.set_log(True) tfh.set_bounds() tfh.build_transfer_function() tfh.tf.add_layers(10, colormap="gist_rainbow") # Grab the first render source and set it to use the new transfer function render_source = sc.get_source() render_source.transfer_function = tfh.tf sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown Now, let's try using a different lens type. We can give a sense of depth to the image by using the perspective lens. To do, we create a new Camera below. We also demonstrate how to switch the camera to a new position and orientation. ###Code cam = sc.add_camera(ds, lens_type="perspective") # Standing at (x=0.05, y=0.5, z=0.5), we look at the area of x>0.05 (with some open angle # specified by camera width) along the positive x direction. cam.position = ds.arr([0.05, 0.5, 0.5], "code_length") normal_vector = [1.0, 0.0, 0.0] north_vector = [0.0, 0.0, 1.0] cam.switch_orientation(normal_vector=normal_vector, north_vector=north_vector) # The width determines the opening angle cam.set_width(ds.domain_width * 0.5) print(sc.camera) ###Output _____no_output_____ ###Markdown The resulting image looks like: ###Code sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____ ###Markdown 4. Saving an ImageTo save a volume rendering to an image file at any point, we can use `sc.save` as follows: ###Code sc.save("volume_render.png", render=False) ###Output _____no_output_____ ###Markdown Including the keyword argument `render=False` indicates that the most recently rendered image will be saved (otherwise, `sc.save()` will trigger a call to `sc.render()`). This behavior differs from `sc.show()`, which always uses the most recently rendered image. An additional caveat is that if we used `sigma_clip` in our call to `sc.show()`, then we must **also** pass it to `sc.save()` as sigma clipping is applied on top of a rendered image array. In that case, we would do the following: ###Code sc.save("volume_render_clip4.png", sigma_clip=4.0, render=False) ###Output _____no_output_____ ###Markdown 5. Adding AnnotationsFinally, the next cell restores the lens and the transfer function to the defaults, moves the camera, and adds an opaque source that shows the axes of the simulation coordinate system. ###Code # set the lens type back to plane-parallel sc.camera.set_lens("plane-parallel") # move the camera to the left edge of the domain sc.camera.set_position(ds.domain_left_edge) sc.camera.switch_orientation() # add an opaque source to the scene sc.annotate_axes() sc.render() sc.show(sigma_clip=4.0) ###Output _____no_output_____
RecSys-Content-Based-movies-py-v1.ipynb
###Markdown CONTENT-BASED FILTERING Recommendation systems are a collection of algorithms used to recommend items to users based on information taken from the user. These systems have become ubiquitous, and can be commonly seen in online stores, movies databases and job finders. In this notebook, we will explore Content-based recommendation systems and implement a simple version of one using Python and the Pandas library. Table of contents Acquiring the Data Preprocessing Content-Based Filtering Acquiring the Data To acquire and extract the data, simply run the following Bash scripts: Dataset acquired from [GroupLens](http://grouplens.org/datasets/movielens/). Lets download the dataset. To download the data, we will use **`!wget`** to download it from IBM Object Storage. __Did you know?__ When it comes to Machine Learning, you will likely be working with large datasets. As a business, where can you host your data? IBM is offering a unique opportunity for businesses, with 10 Tb of IBM Cloud Object Storage: [Sign up now for free](http://cocl.us/ML0101EN-IBM-Offer-CC) ###Code !wget -O moviedataset.zip https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/moviedataset.zip print('unziping ...') !unzip -o -j moviedataset.zip ###Output --2019-05-19 16:24:24-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/moviedataset.zip Resolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)... 67.228.254.193 Connecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)|67.228.254.193|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 160301210 (153M) [application/zip] Saving to: ‘moviedataset.zip’ moviedataset.zip 100%[===================>] 152.88M 28.8MB/s in 5.0s 2019-05-19 16:24:30 (30.5 MB/s) - ‘moviedataset.zip’ saved [160301210/160301210] unziping ... Archive: moviedataset.zip inflating: links.csv inflating: movies.csv inflating: ratings.csv inflating: README.txt inflating: tags.csv ###Markdown Now you're ready to start working with the data! Preprocessing First, let's get all of the imports out of the way: ###Code #Dataframe manipulation library import pandas as pd #Math functions, we'll only need the sqrt function so let's import only that from math import sqrt import numpy as np import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Now let's read each file into their Dataframes: ###Code #Storing the movie information into a pandas dataframe movies_df = pd.read_csv('movies.csv') #Storing the user information into a pandas dataframe ratings_df = pd.read_csv('ratings.csv') #Head is a function that gets the first N rows of a dataframe. N's default is 5. movies_df.head() ###Output _____no_output_____ ###Markdown Let's also remove the year from the __title__ column by using pandas' replace function and store in a new __year__ column. ###Code #Using regular expressions to find a year stored between parentheses #We specify the parantheses so we don't conflict with movies that have years in their titles movies_df['year'] = movies_df.title.str.extract('(\(\d\d\d\d\))',expand=False) #Removing the parentheses movies_df['year'] = movies_df.year.str.extract('(\d\d\d\d)',expand=False) #Removing the years from the 'title' column movies_df['title'] = movies_df.title.str.replace('(\(\d\d\d\d\))', '') #Applying the strip function to get rid of any ending whitespace characters that may have appeared movies_df['title'] = movies_df['title'].apply(lambda x: x.strip()) movies_df.head() ###Output _____no_output_____ ###Markdown With that, let's also split the values in the __Genres__ column into a __list of Genres__ to simplify future use. This can be achieved by applying Python's split string function on the correct column. ###Code #Every genre is separated by a | so we simply have to call the split function on | movies_df['genres'] = movies_df.genres.str.split('|') movies_df.head() ###Output _____no_output_____ ###Markdown Since keeping genres in a list format isn't optimal for the content-based recommendation system technique, we will use the One Hot Encoding technique to convert the list of genres to a vector where each column corresponds to one possible value of the feature. This encoding is needed for feeding categorical data. In this case, we store every different genre in columns that contain either 1 or 0. 1 shows that a movie has that genre and 0 shows that it doesn't. Let's also store this dataframe in another variable since genres won't be important for our first recommendation system. ###Code #Copying the movie dataframe into a new one since we won't need to use the genre information in our first case. moviesWithGenres_df = movies_df.copy() #For every row in the dataframe, iterate through the list of genres and place a 1 into the corresponding column for index, row in movies_df.iterrows(): for genre in row['genres']: moviesWithGenres_df.at[index, genre] = 1 #Filling in the NaN values with 0 to show that a movie doesn't have that column's genre moviesWithGenres_df = moviesWithGenres_df.fillna(0) moviesWithGenres_df.head() ###Output _____no_output_____ ###Markdown Next, let's look at the ratings dataframe. ###Code ratings_df.head() ###Output _____no_output_____ ###Markdown Every row in the ratings dataframe has a user id associated with at least one movie, a rating and a timestamp showing when they reviewed it. We won't be needing the timestamp column, so let's drop it to save on memory. ###Code #Drop removes a specified row or column from a dataframe ratings_df = ratings_df.drop('timestamp', 1) ratings_df.head() ###Output _____no_output_____ ###Markdown Content-Based recommendation system Now, let's take a look at how to implement __Content-Based__ or __Item-Item recommendation systems__. This technique attempts to figure out what a user's favourite aspects of an item is, and then recommends items that present those aspects. In our case, we're going to try to figure out the input's favorite genres from the movies and ratings given.Let's begin by creating an input user to recommend movies to:Notice: To add more movies, simply increase the amount of elements in the __userInput__. Feel free to add more in! Just be sure to write it in with capital letters and if a movie starts with a "The", like "The Matrix" then write it in like this: 'Matrix, The' . ###Code userInput = [ {'title':'Breakfast Club, The', 'rating':5}, {'title':'Toy Story', 'rating':3.5}, {'title':'Jumanji', 'rating':2}, {'title':"Pulp Fiction", 'rating':5}, {'title':'Akira', 'rating':4.5} ] inputMovies = pd.DataFrame(userInput) inputMovies ###Output _____no_output_____ ###Markdown Add movieId to input userWith the input complete, let's extract the input movie's ID's from the movies dataframe and add them into it.We can achieve this by first filtering out the rows that contain the input movie's title and then merging this subset with the input dataframe. We also drop unnecessary columns for the input to save memory space. ###Code #Filtering out the movies by title inputId = movies_df[movies_df['title'].isin(inputMovies['title'].tolist())] #Then merging it so we can get the movieId. It's implicitly merging it by title. inputMovies = pd.merge(inputId, inputMovies) #Dropping information we won't use from the input dataframe inputMovies = inputMovies.drop('genres', 1).drop('year', 1) #Final input dataframe #If a movie you added in above isn't here, then it might not be in the original #dataframe or it might spelled differently, please check capitalisation. inputMovies ###Output _____no_output_____ ###Markdown We're going to start by learning the input's preferences, so let's get the subset of movies that the input has watched from the Dataframe containing genres defined with binary values. ###Code #Filtering out the movies from the input userMovies = moviesWithGenres_df[moviesWithGenres_df['movieId'].isin(inputMovies['movieId'].tolist())] userMovies ###Output _____no_output_____ ###Markdown We'll only need the actual genre table, so let's clean this up a bit by resetting the index and dropping the movieId, title, genres and year columns. ###Code #Resetting the index to avoid future issues userMovies = userMovies.reset_index(drop=True) #Dropping unnecessary issues due to save memory and to avoid issues userGenreTable = userMovies.drop('movieId', 1).drop('title', 1).drop('genres', 1).drop('year', 1) userGenreTable ###Output _____no_output_____ ###Markdown Now we're ready to start learning the input's preferences!To do this, we're going to turn each genre into weights. We can do this by using the input's reviews and multiplying them into the input's genre table and then summing up the resulting table by column. This operation is actually a dot product between a matrix and a vector, so we can simply accomplish by calling Pandas's "dot" function. ###Code inputMovies['rating'] #Dot produt to get weights userProfile = userGenreTable.transpose().dot(inputMovies['rating']) #The user profile userProfile ###Output _____no_output_____ ###Markdown Now, we have the weights for every of the user's preferences. This is known as the User Profile. Using this, we can recommend movies that satisfy the user's preferences. Let's start by extracting the genre table from the original dataframe: ###Code #Now let's get the genres of every movie in our original dataframe genreTable = moviesWithGenres_df.set_index(moviesWithGenres_df['movieId']) #And drop the unnecessary information genreTable = genreTable.drop('movieId', 1).drop('title', 1).drop('genres', 1).drop('year', 1) genreTable.head() genreTable.shape ###Output _____no_output_____ ###Markdown With the input's profile and the complete list of movies and their genres in hand, we're going to take the weighted average of every movie based on the input profile and recommend the top twenty movies that most satisfy it. ###Code #Multiply the genres by the weights and then take the weighted average recommendationTable_df = ((genreTable*userProfile).sum(axis=1))/(userProfile.sum()) recommendationTable_df.head() #Sort our recommendations in descending order recommendationTable_df = recommendationTable_df.sort_values(ascending=False) #Just a peek at the values recommendationTable_df.head() ###Output _____no_output_____ ###Markdown Now here's the recommendation table! ###Code #The final recommendation table movies_df.loc[movies_df['movieId'].isin(recommendationTable_df.head(20).keys())] ###Output _____no_output_____
Notebooks/.ipynb_checkpoints/spotifyGenreReport-checkpoint.ipynb
###Markdown 1. Normalizing the Data - During EDA we did not find any particularly stand out relationships between different track feature data. - For the best results in model construction it may be best to simplify our data and reduce the dimensionality. - First we must standardize our data on a standard normal scale ###Code from sklearn.preprocessing import StandardScaler std_scaler = StandardScaler() spotify_features = spotify_df[["acousticness","danceability","duration_ms","energy","instrumentalness","key","liveness","loudness","mode","speechiness","tempo","time_signature","valence","popularity"]] spotify_lables = spotify_df['category_id'].values std_scaler.fit(spotify_features) spotify_features_scaled = std_scaler.fit_transform(spotify_features) from sklearn.decomposition import PCA pca = PCA().fit(spotify_features_scaled) plt.plot(np.cumsum(pca.explained_variance_ratio_)) plt.axhline(y=0.9, linestyle='--') plt.xlabel('number of components') plt.ylabel('cumulative explained variance'); n = 10 pca = PCA(n, random_state=10) pca.fit(spotify_features_scaled) spotify_df_pca = pca.transform(spotify_features_scaled) seed = 58143581 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(spotify_df_pca, spotify_lables, test_size = 0.2, random_state = seed) from sklearn.linear_model import LogisticRegression # Fit the Logistic regression model logreg = LogisticRegression(penalty = 'none', random_state=seed,max_iter=3000) logreg.fit(X_train, y_train) logreg.score(X_test,y_test) ## use train-test split seed = 58143581 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(spotify_features_scaled,spotify_lables, test_size = 0.2, random_state = seed) from sklearn.linear_model import LogisticRegression # Fit the Logistic regression model logreg = LogisticRegression(penalty = 'none', random_state=seed,max_iter=3000) logreg.fit(X_train, y_train) logreg.score(X_test,y_test) train_set.shape test_set.shape ## Standardization from sklearn.preprocessing import StandardScaler std_scaler = StandardScaler() #Define Features track_feature_list = ["acousticness","danceability","duration_ms","energy","instrumentalness","key","liveness","loudness","mode","speechiness","tempo","time_signature","valence","popularity"] traing_features = train_set[track_feature_list].values testing_features = test_set[track_feature_list].values traing_target = train_set['category_id'].values testing_target = test_set['category_id'].values ##Standard scale (mean = 0, variance = 1) std_scaler.fit(traing_features) scaled_traing_features = std_scaler.transform(traing_features) scaled_testing_features = std_scaler.transform(testing_features) #Creating new Features from sklearn.linear_model import LogisticRegression # Fit the Logistic regression model logreg = LogisticRegression(penalty = 'none', random_state=seed,max_iter=3000) logreg.fit(scaled_traing_features, traing_target) logreg_prediction = logreg.predict(scaled_testing_features) logreg.score(scaled_testing_features,testing_target) from sklearn.metrics import plot_confusion_matrix plt.figure(figsize=(15,8)) cm = plot_confusion_matrix(logreg, scaled_testing_features, testing_target) fig, ax = plt.subplots(figsize=(15, 15)) plot_confusion_matrix(logreg, scaled_testing_features, testing_target, cmap=plt.cm.Blues, ax=ax) ax.set_title("LogisticRegression Confusion Matrix") #Support Vector Machine - Linear from sklearn.svm import SVC svm = SVC(kernel='linear') svm.fit(scaled_traing_features, traing_target) svm.score(scaled_testing_features, testing_target) #Decision Tree from sklearn.tree import DecisionTreeClassifier tree = DecisionTreeClassifier() tree.fit(scaled_traing_features, traing_target) tree.score(scaled_testing_features, testing_target) #Neural Network from sklearn.neural_network import MLPClassifier nn = MLPClassifier(500) nn.fit(scaled_traing_features, traing_target) nn.score(scaled_testing_features, testing_target) ###Output /home/seanr/anaconda3/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:582: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet. warnings.warn(
notebooks/Classification_Models.ipynb
###Markdown Classification Models ###Code import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import pickle import seaborn as sns import statsmodels.api as sm from sklearn.linear_model import LogisticRegressionCV from sklearn.linear_model import LogisticRegression import sklearn.metrics as metrics from sklearn.tree import DecisionTreeClassifier, DecisionTreeClassifier from matplotlib.ticker import FuncFormatter from sklearn.model_selection import cross_val_score import collections from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier import sklearn.tree as tree import collections %matplotlib inline ###Output _____no_output_____ ###Markdown Data Imputation and Dummy Creation ###Code '''Read in our cleaned, aggregated data''' plt.style.use('seaborn') with open('aggregate_data.p', 'rb') as f: data = pickle.load(f) #Impute missings with mean by category. Missings occur because the Million Songs Database only goes up until 2010. category_means = data.groupby('category').mean() tmp = data.join(category_means, rsuffix = '_category_mean', on = 'category') means = tmp[[x+'_category_mean' for x in data.columns if x not in ['category', 'featured','num_tracks','num_followers']]] means.columns = [x.split('_category_mean')[0] for x in means.columns] #fill with mean by category and replace with overall mean if no mean by category data = data.fillna(means) data = data.fillna(data.mean()) # create dummies for category variable def create_categorical_vars(data): categorical = ['category'] dummies = {} for var in categorical: dummies[var] = pd.get_dummies(data[var], prefix = var) cols_to_keep = dummies[var].columns[0:len(dummies[var].columns)-1] data = data.join(dummies[var][cols_to_keep]) data = data.drop(var, 1) return data raw_data = data data = create_categorical_vars(data) #split into train / test to avoid cheating np.random.seed(1234) train_pct = .5 msk = np.random.uniform(0,1,len(data)) < train_pct train = data.loc[msk, :] test = data.loc[~msk, :] '''We take a peek at our new training dataset''' train.head() ###Output _____no_output_____ ###Markdown Create Classification Quintiles ###Code '''We split our dependent var into quantiles for classification. We chose to use quintiles.''' data['num_followers_quantile'] = pd.qcut(data['num_followers'], 5, labels=False) quantiles = data['num_followers_quantile'] y_train = train['num_followers'].astype(float) y_test = test['num_followers'].astype(float) y_train_class = pd.concat([y_train, quantiles], axis=1, join_axes=[y_train.index]).drop('num_followers', axis = 1).values.ravel() y_test_class = pd.concat([y_test, quantiles], axis=1, join_axes=[y_test.index]).drop('num_followers', axis = 1).values.ravel() y_train_class_by_cat = raw_data.groupby('category')['num_followers'].apply(lambda x: pd.qcut(x, 3, labels = False)).loc[msk] y_test_class_by_cat = raw_data.groupby('category')['num_followers'].apply(lambda x: pd.qcut(x, 3, labels = False)).loc[~msk] ###Output _____no_output_____ ###Markdown Standardize ###Code '''Standardize numeric features''' to_x_train = train[[x for x in train.columns if x != 'num_followers']] to_x_test = test[[x for x in test.columns if x != 'num_followers']] #Define continuous vars continuous_variables = [x for x in to_x_train.columns if 'category' not in x and x != 'available_markets_max' and x != 'featured'] non_continuous_variables = [x for x in to_x_train.columns if 'category' in x] #standardize data def standardize_data(data, train): return (data - train.mean()) / train.std() x_train_cont = standardize_data(to_x_train[continuous_variables], to_x_train[continuous_variables]) x_test_cont = standardize_data(to_x_test[continuous_variables], to_x_train[continuous_variables]) #merge back on non-continuous variables x_train_std = x_train_cont.join(to_x_train[non_continuous_variables]) x_test_std = x_test_cont.join(to_x_test[non_continuous_variables]) x_train_std2 = x_train_std.join(to_x_train['available_markets_max']) x_test_std2 = x_test_std.join(to_x_test['available_markets_max']) x_train_std3 = x_train_std2.join(to_x_train['featured']) x_test_std3 = x_test_std2.join(to_x_test['featured']) x_train_class = sm.tools.add_constant(x_train_std3, has_constant = 'add') x_test_class = sm.tools.add_constant(x_test_std3, has_constant = 'add') '''calculate classification accuracy''' def calculate_cr(classifications, y): correct = classifications == y cr = correct.sum()/len(correct) return cr ###Output _____no_output_____ ###Markdown Baseline Model ###Code '''Begin with logistic models as baseline Multinomial Logistic''' logistic_regression_mn = LogisticRegressionCV(Cs=10, multi_class='multinomial').fit(x_train_class, y_train_class) logistic_classifications_train_mn = logistic_regression_mn.predict(x_train_class) logistic_classifications_test_mn = logistic_regression_mn.predict(x_test_class) print("Multinomial Logistic Regression") print("\tTrain CR:", str(calculate_cr(logistic_classifications_train_mn, y_train_class))) print("\tTest CR:", str(calculate_cr(logistic_classifications_test_mn, y_test_class))) #OvR Logistic Reg logistic_regression_ovr = LogisticRegressionCV(Cs=10, multi_class='ovr').fit(x_train_class, y_train_class) logistic_classifications_train_ovr = logistic_regression_ovr.predict(x_train_class) logistic_classifications_test_ovr = logistic_regression_ovr.predict(x_test_class) print("OvR Logistic Regression") print("\tTrain CR:", str(calculate_cr(logistic_classifications_train_ovr, y_train_class))) print("\tTest CR:", str(calculate_cr(logistic_classifications_test_ovr, y_test_class))) ###Output Multinomial Logistic Regression Train CR: 0.706586826347 Test CR: 0.355555555556 OvR Logistic Regression Train CR: 0.494011976048 Test CR: 0.363888888889 ###Markdown Additional Models - Across Categories Decision Tree ###Code '''Decision Tree with CV to pick max depth''' param_grid = {'max_depth' : range(1,30)} clf = GridSearchCV(DecisionTreeClassifier(), param_grid = param_grid, cv = 5, refit = True) clf.fit(x_train_class, y_train_class) print('Cross-Validated Max Depth: {x}'.format(x = clf.best_params_['max_depth'])) print('Avg Cross-Validation Accuracy at Max: {x}%'.format(x = str(clf.best_score_*100)[0:5])) print('Test Accuracy: {x}%'.format(x = str(clf.score(x_test_class,y_test_class)*100)[0:5])) ###Output Cross-Validated Max Depth: 4 Avg Cross-Validation Accuracy at Max: 33.53% Test Accuracy: 34.72% ###Markdown Random Forest ###Code '''Random Forest with CV to pick max depth and Number of Trees''' param_grid = {'n_estimators' : [2**i for i in [1,2,3,4,5,6,7,8, 9, 10]], 'max_depth' : [1,2,3,4,5,6,7,8]} clf = GridSearchCV(RandomForestClassifier(), param_grid = param_grid, cv = 5, refit = True, n_jobs = 4) clf.fit(x_train_class, y_train_class) print('Cross-Validated Max Depth: {x}'.format(x = clf.best_params_['max_depth'])) print('Cross-Validated Num Trees: {x}'.format(x = clf.best_params_['n_estimators'])) print('Avg Cross-Validation Accuracy at Max: {x}%'.format(x = str(clf.best_score_*100)[0:5])) print('Test Accuracy: {x}%'.format(x = str(clf.score(x_test_class,y_test_class)*100)[0:5])) ''' Top 10 most important features based on RF (as expected, popularity is important)''' feature_importance = pd.Series(clf.best_estimator_.feature_importances_, index = x_train_class.columns) feature_importance.sort_values(ascending = False).head(10).sort_values(ascending = True).plot('barh') ###Output _____no_output_____ ###Markdown AdaBoosted Decision Trees ###Code '''AdaBoost with CV to pick max depth and number of trees''' learning_rate = .05 param_grid = {'n_estimators' : [2**i for i in [1,2,3,4,5,6,7,8]], 'base_estimator__max_depth' : [1,2,3,4,5,6,7,8, 9, 10, 11, 12]} clf = GridSearchCV(AdaBoostClassifier(DecisionTreeClassifier(), learning_rate = learning_rate), param_grid = param_grid, cv = 5, refit = True, n_jobs = 4) clf.fit(x_train_class, y_train_class) print('Cross-Validated Max Depth: {x}'.format(x = clf.best_params_['base_estimator__max_depth'])) print('Cross-Validated Num Trees: {x}'.format(x = clf.best_params_['n_estimators'])) print('Avg Cross-Validation Accuracy at Max: {x}%'.format(x = str(clf.best_score_*100)[0:5])) print('Test Accuracy: {x}%'.format(x = str(clf.score(x_test_class,y_test_class)*100)[0:5])) '''This shows similar results for popularity being important''' feature_importance = pd.Series(clf.best_estimator_.feature_importances_, index = x_train_class.columns) feature_importance.sort_values(ascending = False).head(10).sort_values(ascending = True).plot('barh') ###Output _____no_output_____ ###Markdown Classification Within Categories Decision Tree ###Code '''Decision Tree with CV to pick max depth''' param_grid = {'max_depth' : range(1,30)} clf = GridSearchCV(DecisionTreeClassifier(), param_grid = param_grid, cv = 5, refit = True) clf.fit(x_train_class, y_train_class_by_cat) print('Cross-Validated Max Depth: {x}'.format(x = clf.best_params_['max_depth'])) print('Avg Cross-Validation Accuracy at Max: {x}%'.format(x = str(clf.best_score_*100)[0:5])) print('Test Accuracy: {x}%'.format(x = str(clf.score(x_test_class,y_test_class_by_cat)*100)[0:5])) ###Output Cross-Validated Max Depth: 2 Avg Cross-Validation Accuracy at Max: 46.10% Test Accuracy: 46.94% ###Markdown Random Forest ###Code '''Random Forest with CV to pick max depth and number of trees''' param_grid = {'n_estimators' : [2**i for i in [1,2,3,4,5,6,7,8, 9, 10]], 'max_depth' : [1,2,3,4,5,6,7,8]} clf = GridSearchCV(RandomForestClassifier(), param_grid = param_grid, cv = 5, refit = True, n_jobs = 4) clf.fit(x_train_class, y_train_class_by_cat) print('Cross-Validated Max Depth: {x}'.format(x = clf.best_params_['max_depth'])) print('Cross-Validated Num Trees: {x}'.format(x = clf.best_params_['n_estimators'])) print('Avg Cross-Validation Accuracy at Max: {x}%'.format(x = str(clf.best_score_*100)[0:5])) print('Test Accuracy: {x}%'.format(x = str(clf.score(x_test_class,y_test_class_by_cat)*100)[0:5])) ###Output Cross-Validated Max Depth: 4 Cross-Validated Num Trees: 32 Avg Cross-Validation Accuracy at Max: 48.20% Test Accuracy: 45.27% ###Markdown AdaBoosted Decision Tree ###Code '''AdaBoost with CV to pick max depth and number of trees''' learning_rate = .05 param_grid = {'n_estimators' : [2**i for i in [1,2,3,4,5,6,7,8]], 'base_estimator__max_depth' : [1,2,3,4,5,6,7,8, 9, 10, 11, 12]} clf = GridSearchCV(AdaBoostClassifier(DecisionTreeClassifier(), learning_rate = learning_rate), param_grid = param_grid, cv = 5, refit = True, n_jobs = 4) clf.fit(x_train_class, y_train_class_by_cat) print('Cross-Validated Max Depth: {x}'.format(x = clf.best_params_['base_estimator__max_depth'])) print('Cross-Validated Num Trees: {x}'.format(x = clf.best_params_['n_estimators'])) print('Avg Cross-Validation Accuracy at Max: {x}%'.format(x = str(clf.best_score_*100)[0:5])) print('Test Accuracy: {x}%'.format(x = str(clf.score(x_test_class,y_test_class_by_cat)*100)[0:5])) ###Output Cross-Validated Max Depth: 1 Cross-Validated Num Trees: 64 Avg Cross-Validation Accuracy at Max: 48.20% Test Accuracy: 47.77%
content/lessons/04/Class-Coding-Lab/CCL-Conditionals.ipynb
###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number=input("Enter a number: ") if int(number)>0: print("That's a positive number ") elif int(number)==0: print("So uncreative, that's a 0 ") else: print("yo why art thou pesstimistic, that's a negative number ") ###Output Enter a number: 0 So uncreative, that's a 0 ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: pizza You chose pizza and the computer chose paper ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you=="rock" or you== "paper" or you=="scissors"): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: pizza You didn't enter 'rock', 'paper' or 'scissors'!!! ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("Haha! Paper covers rock!") elif (you == 'paper' and computer == 'scissors'): print("Lolololol you got cut") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose rock Haha! Paper covers rock! ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("Yeeters you covered rock") elif (you == 'paper' and computer == 'scissors'): print("Boohoo you got cut") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose scissors It's a tie! ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 2 2 is even ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code number = int(input("Enter an integer: ")) if number>=0: print("%d is positive" % (number)) else: print("%d is negative" % (number)) ###Output Enter an integer: 8 8 is positive ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: pizza You chose pizza and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you == 'rock' or you == 'paper' or you == 'scissors'): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: paper You chose paper and the computer chose scissors ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You Get Nothing You lose! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You Get Nothing You Lose! scissor beats paper") elif ( you == 'paper' and computer == 'rock'): print("You Win! paper beats rock") elif (you == 'scissors' and computer == 'rock'): print("You Get Nothing You Lose! rock beats scissors") elif (you == 'scissors' and computer == 'paper'): print("You Win! scissors beats paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock It's a tie! ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You Win! paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("You Lose! scissors cuts paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose scissors You Lose! scissors cuts paper ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! scissors cuts paper") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: paper You chose paper and the computer chose scissors You lose! scissors cuts paper ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code number = int(input("Enter an integer: ")) if number >= 0: print("%d is Zero or Positive" % (number)) else: print("%d is Negative" % (number)) ###Output Enter an integer: -20 -20 is Negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you == "rock"): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose scissors ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer == 'paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer == 'rock') print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors') print("You lose! Scissors cuts paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts paper.") elif (you == 'scissors' and computer =='rock'): print("You lose! Rock smashes scissors.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cuts paper.") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 32 32 is even ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter an integer: ")) if number > 0: print("%d is Positive" % (number)) elif number == 0: print("%d is Zero" % (number)) else: print("%d is Negative" % (number)) ###Output Enter an integer: -2 -2 is Negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in computer: # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: pizza You didn't enter 'rock', 'paper' or 'scissors'!!! ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") #case sensitive if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose scissors You win! Rock smashes scissors. ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") #case sensitive if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 2 2 is even ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code num = int(input("Enter an integer: ")) if num > 0: print("Positive number") elif num == 0: print("Zero") else: print("Negative number") ###Output Enter an integer: -2 Negative number ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in choices: print("You chose %s and the computer chose %s" %(you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose scissors ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose paper It's a tie! ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors') print("You lose! Sc") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 7 7 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code number = int(input("Enter an interger: ")) if number>=0: print("%d is positive or zero" %(number)) else: print ("%d is negative" %(number)) ###Output Enter an interger: 8 8 is positive or zero ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in choices : # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("You win! paper covers rock") elif (you == 'paper' and computer == 'scissors') print("You lose! scissors cuts paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("You win! paper covers rock") elif (you == 'paper' and computer == 'scissors') print("You lose! scissors cuts paper") elif (you == 'scissors' and computer == 'rock') print ("You lose! rock smashes scissors") elif (you == 'scissors' and computer == 'paper') print ("You win! scissors cuts paper") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code number = int(input("Enter an integer: ")) if number >= 0: print('Zero or Positive') else: print('Negative') ###Output Enter an integer: -6 Negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in choices: # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose paper ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer == 'rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose rock You win! Paper covers rock. ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") elif (you == 'scisscors' and computer == 'paper'): print('You win! Scissors cut paper.') elif (you == 'scissors' and computer == 'rock'): print('You lose! Rock smashes scissors.') # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock It's a tie! ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code num = int(input("Enter an integer: ")) if num > 0: print("Positive number") elif num == 0: print("Zero") else: print("Negative number") ###Output Enter an integer: 0 Zero ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in choices: print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") else: (you == 'rock' and computer == 'rock') print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose rock TODO It's a tie! ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cut paper.") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose rock You lose! Rock smashes scissors. ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code num = int(input("Enter an integer:")) if num > 0: print("Positive number") elif num == 0: print("Zero") else print("Negative number") ###Output _____no_output_____ ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in choices: print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you =='paper' and computer =='rock') print("You win! paper covers rock.") elif (you == 'paper' and computer == 'scissors') print("You lose! Scissors cut paper.") else: (you == 'rock' and computer == 'rock') print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("You win! paper covers rock.") elif (you == 'paper' and computer == 'scissors') print("You lose! Scissors cuts paper.") else: (yoiu == 'rock' and computer =='rock') print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("You win! Paper covers rock") elif (you == 'paper' and computer == 'scissors') print("You Lose! scissors cut paper") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code number = int(input("Enter an integer: ")) if number%1>=0: print("%d is Zero or Positive" % (number)) else: print("%d is Negative" % (number)) ###Output Enter an integer: 7 7 is Zero or Positive ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose paper ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: paper You chose paper and the computer chose paper ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose scissors You win! Rock smashes scissors. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose rock You win! Paper covers rock. ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer== 'paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer == 'rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts paper.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cuts paper.") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 77 77 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter an integer:")) if number >=0: print("%d is zero or positive" % (number)) else: print("%d is negative" % (number)) ###Output Enter an integer:300 300 is zero or positive ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors') print("You lose! Scissors cut paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cut paper.") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: paper You chose paper and the computer chose rock You win! Paper covers rock. ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output _____no_output_____ ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter an integer: ")) if number > 0: print("%d is positive" % (number)) elif number == 0: print("%d is zero" % (number)) else: print("%d is negative" % (number)) ###Output Enter an integer: -6 -6 is negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: pizza You chose pizza and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (TODO): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer =='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock..") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose scissors You lose! Scissors cuts paper ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock..") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts paper") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cuts paper") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissorsr") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose paper You win! Scissors cuts paper ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output 100000 is even ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Please enter an integer: ")) if number > 0: print("%d is Zero or Positive" % (number)) else: print("%d is negative" % (number)) ###Output 13 is Zero or Positive ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose scissors ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose scissors You lose! Scissors cut paper. ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cut paper.") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose scissors You win! Rock smashes scissors. ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 22 22 is even ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter Integer ")) if number >= 0: print('Zero or Positive') else: print('Negative') # TODO write your program here: number = int(input("Enter Integer ")) if number >= 0: print('Zero or Positive') else: print('Negative') ###Output Enter Integer 6 Zero or Positive ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: pizza You chose pizza and the computer chose scissors ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (choices): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (choices): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (choices): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose scissors ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose rock You win! Paper covers rock ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") # TODO add logic for you == 'scissors' similar to the paper logic elif (you == 'scissors' and computer == 'paper'): print("You Win! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print('You lose! Rock crushes scissors.') else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") # TODO add logic for you == 'scissors' similar to the paper logic elif (you == 'scissors' and computer == 'paper'): print("You Win! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print('You lose! Rock crushes scissors.') else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") # TODO add logic for you == 'scissors' similar to the paper logic elif (you == 'scissors' and computer == 'paper'): print("You Win! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print('You lose! Rock crushes scissors.') else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose scissors It's a tie! ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: ###Output _____no_output_____ ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (TODO): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("TODO") elif (you == 'paper' and computer == 'scissors') print("TODO") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("TODO") elif (you == 'paper' and computer == 'scissors') print("TODO") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: ###Output _____no_output_____ ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (TODO): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("TODO") elif (you == 'paper' and computer == 'scissors') print("TODO") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("TODO") elif (you == 'paper' and computer == 'scissors') print("TODO") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 0 0 is even ###Markdown Make sure to run the cell more than once, inputting both odd and even integers to try it out. After all, we don't know if the code really works until we test out both options!On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input an integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter an integer: ")) if number >= 0: print ("%d is Zero or Positive" % (number)) else: print ("%d is negative" % (number)) ###Output Enter an integer: -21 -21 is negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent selects one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: pizza You chose pizza and the computer chose paper ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: 21 You didn't enter 'rock', 'paper' or 'scissors'!!! ###Markdown Playing the gameWith the input figured out, it's time to work on the final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cut paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose rock It's a tie! ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose rock You win! Paper covers rock. ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave this part to you as your final exercise. Similar to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("TODO - What should this say?") elif (you == 'paper' and computer == 'scissors'): print("TODO - What should this say?") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cuts paper.") elif (you == 'scissors' and computer == 'rock'): print ("You lose! Rock smashes scissors.") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose scissors You win! Rock smashes scissors. ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: value = int(input("enter value")) if value > 0: print("value %d is greater than zero therefore it is positive" % (value)) elif value == 0: print("the value is zero") else: print("the value %d is less thatn zero therefore it is negative" % (value)) ###Output enter value-5 the value -5 is less thatn zero therefore it is negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: pie You chose pie and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you == "rock" or you == "paper" or you == "scissors"): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: pizza You didn't enter 'rock', 'paper' or 'scissors'!!! ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("you win paper consumes rock") elif (you == 'paper' and computer == 'scissors'): print("you lose scissors cuts paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose scissors you lose scissors cuts paper ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you == "rock" or you == "paper" or you == "scissors"): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("you win paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("you lose scissors cut paper") elif (you == "scissors" and computer == "paper"): print("you win scissors cut paper") elif (you == "scissors" and computer == "rock"): print("you lose rock breaks scissors") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose rock you lose rock breaks scissors ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 5 5 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter an integer: ")) if number >=0: print("%d is greater than or equal to zero" % (number)) else: print("%d is not greater than or equal to zero" % (number)) ###Output Enter an integer: 5 5 is greater than or equal to zero ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose scissors You win! Rock smashes scissors. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose paper It's a tie! ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer == 'rock'): print("TODO") elif (you == 'paper' and computer == 'scissors'): print("TODO") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cut paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("enter an integer: ")) if number >0: print("The Number is Positive") elif number ==0: print("The Number is 0") else: print("The Number Negative") ###Output enter an integer: -4 The Number Negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose paper ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if ('rock','paper','scissors'): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: paper You chose paper and the computer chose paper ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("You lose! scissors cut paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose paper It's a tie! ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("You lose! scissors cut paper") # TODO add logic for you == 'scissors' similar to the paper logic elif (you=='scissors' and computer=='paper'): print("You win! scissors cut paper") elif (you=='scissors' and computer=='rock'): print("You lose! rock smashes scissors") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: paper You chose paper and the computer chose rock You win! paper covers rock ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter an integer: ")) if number >= 0: print("Zero or Positive") else: print("Negative") ###Output Enter an integer: -4 Negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose scissors ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in choices: print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: thanos You didn't enter 'rock', 'paper' or 'scissors'!!! ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose rock It's a tie! ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose: Scissors cut paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose scissors You lose: Scissors cut paper. ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win: Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cut paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code num = int(input("Enter an integer: ")) if num > 0: print("Positive number") elif num == 0: print("Zero") else: print("negative number") ###Output Enter an integer: 6 Positive number ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("TODO") elif (you == 'paper' and computer == 'scissors') print("TODO") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("TODO") elif (you == 'paper' and computer == 'scissors') print("TODO") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 34 34 is even ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter an integer: ")) if number %2==0: print ("%d is zero or positive" % number ) else: print("%d is negative" % number) ###Output Enter an integer: -3 -3 is negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in choices: # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose rock It's a tie! ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose rock You win! Paper covers rock. ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") # TODO add logic for you == 'scissors' similar to the paper logic elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock It's a tie! ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code number = int(input('Enter a number')) if number >= 0: print(number,'is even') else: print(number,'is odd') ###Output Enter a number-5 -5 is odd ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: pizza You chose pizza and the computer chose paper ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in choices: # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose paper ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose rock It's a tie! ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose rock You win! Paper covers rock. ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose scissors It's a tie! ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number=int(input("input a number")) if number>=0: print("the number is positive") else: print("the number is negative") ###Output input a number-2 the number is negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in choices: print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors') print("You lose! Scissors cut paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code import random choices = ['rock','paper','scissors'] plchoices = ['rock', 'paper', 'scissors', 'gun'] computer = random.choice(choices) you = input("Enter your choice: rock, paper, or scissors: ") if (you in plchoices): print("You chose %s and the computer chose %s" % (you,computer)) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") elif (you== 'scissors' and computer == 'paper'): print("You win! Scissors cut paper.") elif (you=="scissors" and computer=="rock"): print("You lose! Rock smashes scissors") elif (you=="gun"): print("You win! You shot the computer.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: gun You chose gun and the computer chose paper You win! You shot the computer. ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter an integer: ")) if number>0: print("%d is Positive" % (number)) elif number==0: print("%d is Zero" % (number)) else: print("Invalid value.") ###Output Enter an integer: 0 0 is Zero ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose scissors ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers Rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts Paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose rock You win! Paper covers Rock. ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similar to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers Rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts Paper.") # TODO add logic for you == 'scissors' similar to the paper logic elif (you == 'scissors' and computer =='paper'): print("You win! Scissors cuts Paper.") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes Scissors.") elif (you == 'rock' and computer == 'paper'): print("You lose! Paper covers Rock .") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 35 35 is odd ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter an integer: ")) if number >0: print("Positive") elif number ==0: print("Zero") else: print("Negative") ###Output Enter an integer: -2 Negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose paper ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose paper You lose! Paper covers rock. ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer == 'rock'): print("You win! Paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts paper") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose scissors You lose! Scissors cuts paper ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cuts paper") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cuts paper") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 654 654 is even ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number=float(input("enter an integer: ")) if number >0: print("your number is positive") if number==0: print("your number is equal to zero") else: print ("your number is negative") ###Output enter an integer: -543 your number is negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: pizza You chose pizza and the computer chose paper ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if you in choices: print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: meh You didn't enter 'rock', 'paper' or 'scissors'!!! ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = str(input("Enter your choice: rock, paper, or scissors: ")) #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("you win!") elif (you == 'paper' and computer == 'scissors'): print("you lose! ") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: paper You chose paper and the computer chose rock you win! ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("YOU WIN YAY!") elif (you == 'paper' and computer == 'scissors'): print("oH NO u lose. good luck next time!") elif (you=='scissors'and computer == 'rock'): print('oh no u lose. good luck next time!') elif(you=='scissors'and computer =='paper'): print("yay u win!") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose paper yay u win! ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output Enter an integer: 24 24 is even ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code number = int(input("Enter an integer: ")) if number >= 0: print("%d is positive" % (number)) else: print("%d is negative" % (number)) ###Output Enter an integer: -6 -6 is negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: pizza You chose pizza and the computer chose paper ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: papir You didn't enter 'rock', 'paper' or 'scissors'!!! ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose rock and the computer chose rock It's a tie! ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("Paper covers rock, you win!") elif (you == 'paper' and computer == 'scissors'): print("Scissor cut paper, you lose!") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose scissors Scissor cut paper, you lose! ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("Paper covers rock, you win!") elif (you == 'paper' and computer == 'scissors'): print("Scissors cut paper, you lose!") elif (you == 'scissors' and computer =='paper'): print("Scissors cut paper, you win!") elif (you == 'scissors' and computer == 'rock'): print("Rock crushes scissors, you lose!") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: paper You chose paper and the computer chose rock Paper covers rock, you win! ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output _____no_output_____ ###Markdown Make sure to run the cell more than once, inputting both odd and even integers to try it out. After all, we don't know if the code really works until we test out both options!On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input an integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: ###Output _____no_output_____ ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent selects one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output _____no_output_____ ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (TODO): # replace TODO on this line print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Playing the gameWith the input figured out, it's time to work on the final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cut paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("TODO - What should this say?") elif (you == 'paper' and computer == 'scissors') print("TODO - What should this say?") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave this part to you as your final exercise. Similar to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock') print("TODO - What should this say?") elif (you == 'paper' and computer == 'scissors') print("TODO - What should this say?") # TODO add logic for you == 'scissors' similar to the paper logic else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown In-Class Coding Lab: ConditionalsThe goals of this lab are to help you to understand:- Relational and Logical Operators - Boolean Expressions- The if statement- Try / Except statement- How to create a program from a complex idea. Understanding ConditionalsConditional statements permit the non-linear execution of code. Take the following example, which detects whether the input integer is odd or even: ###Code number = int(input("Enter an integer: ")) if number %2==0: print("%d is even" % (number)) else: print("%d is odd" % (number)) ###Output _____no_output_____ ###Markdown Make sure to run the cell more than once, inputting both an odd and even integers to try it out. After all, we don't know if the code really works until we test out both options. On line 2, you see `number %2 == 0` this is a Boolean expression at the center of the logic of this program. The expression says **number when divided by 2 has a reminder (%) equal to (==) zero**. The key to deciphering this is knowing how the `%` and `==` operators work. Understanding the basics, such as these, areessential to problem solving with programming, for once you understand the basics programming becomes an exercise in assembling them together into a workable solution.The `if` statement evaluates this Boolean expression and when the expression is `True`, Python executes all of the code indented underneath the `if`. In the event the Boolean expression is `False`, Python executes the code indented under the `else`. Now Try ItWrite a similar program to input a integer and print "Zero or Positive" when the number is greater than or equal to zero, and "Negative" otherwise.To accomplish this you **must** write a Boolean expression for **number greater than or equal to zero**, which is left up to the reader. ###Code # TODO write your program here: number = int(input("Enter an integer: ")) if number>=0: print("Zero or Positive") else: print("Negative") ###Output Enter an integer: -9 Negative ###Markdown Rock, Paper ScissorsIn this part of the lab we'll build out a game of Rock, Paper, Scissors. If you're not familiar with the game, I suggest reading this: [https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissor](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) Knowledge of the game will help you understand the lab much better.The objective of the lab is to teach you how to use conditionals but also get you thinking of how to solve problems with programming. We've said before its non-linear, with several attempts before you reach the final solution. You'll experience this first-hand in this lab as we figure things out one piece at a time and add them to our program. ###Code ## Here's our initial To-Do list, we've still got lots to figure out. # 1. computer opponent select one of "rock", "paper" or "scissors" at random # 2. you input one of "rock", "paper" or "scissors" # 3. play the game and determine a winnner... (not sure how to do this yet.) ###Output _____no_output_____ ###Markdown Randomizing the Computer's Selection Let's start by coding the TO-DO list. First we need to make the computer select from "rock", "paper" or "scissors" at random.To accomplish this, we need to use python's `random` library, which is documented here: [https://docs.python.org/3/library/random.html](https://docs.python.org/3/library/random.html) It would appear we need to use the `choice()` function, which takes a sequence of choices and returns one at random. Let's try it out. ###Code import random choices = ['rock','paper','scissors'] computer = random.choice(choices) computer ###Output _____no_output_____ ###Markdown Run the cell a couple of times. It should make a random selection from `choices` each time you run it.How did I figure this out? Well I started with a web search and then narrowed it down from the Python documentation. You're not there yet, but at some point in the course you will be. When you get there you will be able to teach yourself just about anything! Getting input and guarding against stupidityWith step one out of the way, its time to move on to step 2. Getting input from the user. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") print("You chose %s and the computer chose %s" % (you,computer)) ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown This is taking shape, but if you re-run the example and enter `pizza` you'll notice a problem. We should guard against the situation when someone enters something other than 'rock', 'paper' or 'scissors' This is where our first conditional comes in to play. In operatorThe `in` operator returns a Boolean based on whether a value is in a list of values. Let's try it: ###Code # TODO Try these: 'rock' in choices, 'mike' in choices ###Output _____no_output_____ ###Markdown You Do It!Now modify the code below to only print your and the computer's selections when your input is one of the valid choices. Replace `TODO` on line `8` with a correct Boolean expression to verify what you entered is one of the valid choices. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner... (not sure how to do this yet.) else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: rock You chose rock and the computer chose rock ###Markdown Playing the gameWith the input figured out, it's time to work our final step, playing the game. The game itself has some simple rules:- rock beats scissors (rock smashes scissors)- scissors beats paper (scissors cuts paper)- paper beats rock (paper covers rock)So for example:- If you choose rock and the computer chooses paper, you lose because paper covers rock. - Likewise if you select rock and the computer choose scissors, you win because rock smashes scissors.- If you both choose rock, it's a tie. It's too complicated!It still might seem too complicated to program this game, so let's use a process called **problem simplification** where we solve an easier version of the problem, then as our understanding grows, we increase the complexity until we solve the entire problem.One common way we simplify a problem is to constrain our input. If we force us to always choose 'rock', the program becomes a little easier to write. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'rock' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming rock only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output _____no_output_____ ###Markdown Run the code in the cell above enough times to verify it works. (You win, you lose and you tie.) That will ensure the code you have works as intended. Paper: Making the program a bit more complex.With the rock logic out of the way, its time to focus on paper. We will assume you always type `paper` and then add the conditional logic to our existing code handle it.At this point you might be wondering should I make a separate `if` statement or should I chain the conditions off the current if with `elif` ? Since this is part of the same input, it should be an extension of the existing `if` statement. You should **only** introduce an additional conditional if you're making a separate decision, for example asking the user if they want to play again. Since this is part of the same decision (did you enter 'rock', 'paper' or 'scissors' it should be in the same `if...elif` ladder. You Do ItIn the code below, I've added the logic to address your input of 'paper' You only have to replace the `TODO` in the `print()` statements with the appropriate message. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = 'paper' #input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner (assuming paper only for user) if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output You chose paper and the computer chose paper It's a tie! ###Markdown The final programWith the 'rock' and 'paper' cases out of the way, we only need to add 'scissors' logic. We leave part to you as your final exercise. Similat to the 'paper' example you will need to add two `elif` statements to handle winning and losing when you select 'paper' and should also include the appropriate output messages. ###Code # 1. computer opponent select one of "rock", "paper" or "scissors" at random import random choices = ['rock','paper','scissors'] computer = random.choice(choices) # 2. you input one of "rock", "paper" or "scissors" # for now, make this 'rock' you = input("Enter your choice: rock, paper, or scissors: ") if (you in choices): print("You chose %s and the computer chose %s" % (you,computer)) # 3. play the game and determine a winnner if (you == 'rock' and computer == 'scissors'): print("You win! Rock smashes scissors.") elif (you == 'rock' and computer=='paper'): print("You lose! Paper covers rock.") elif (you == 'paper' and computer =='rock'): print("You win! Paper covers rock.") elif (you == 'paper' and computer == 'scissors'): print("You lose! Scissors cut paper.") elif (you == 'scissors' and computer == 'paper'): print("You win! Scissors cut paper.") elif (you == 'scissors' and computer == 'rock'): print("You lose! Rock smashes scissors.") else: print("It's a tie!") else: print("You didn't enter 'rock', 'paper' or 'scissors'!!!") ###Output Enter your choice: rock, paper, or scissors: scissors You chose scissors and the computer chose rock You lose! Rock smashes scissors.
change_tenses.ipynb
###Markdown Here 'thought' was not changed. Let's check if it was labeled as a noun. ###Code sentences = parse(text).split() [x for x in sentences[0] if x[0] == 'thought'] ###Output _____no_output_____ ###Markdown Yup, it's labeled as a noun phrase (NP). Let's try the spaCy parser. ###Code nlp = English() doc=nlp(text) [x for x in list(doc.sents)[0] if x.text == 'thought'][0].tag_ ###Output _____no_output_____ ###Markdown Well that's good, spaCy got it right! Let's build the same parser, but using spaCy instead of pattern. ###Code def change_tense_spaCy(text, to_tense): doc = nlp(unicode(text)) out = [] out.append(doc[0].text) for word_pair in pairwise(doc): if (word_pair[0].string == 'will' and word_pair[1].pos_ == u'VERB') \ or word_pair[1].tag_ == u'VBD' or word_pair[1].tag_ == u'VBP': if to_tense == 'present': out.append(conjugate(word_pair[1].text, PRESENT)) elif to_tense == 'past': out.append(conjugate(word_pair[1].text, PAST)) elif to_tense == 'future': out.append('will') out.append(conjugate(word_pair[1].text, 'inf')) elif word_pair[1].text == 'will' and word_pair[1].tag_ == 'MD': pass else: out.append(word_pair[1].text) text_out = ' '.join(out) for char in string.punctuation: if char in """(<['‘""": text_out = text_out.replace(char+' ',char) else: text_out = text_out.replace(' '+char,char) text_out = text_out.replace(" 's","'s") #fix posessive 's return text_out print(change_tense_spaCy(text, 'present')) print(change_tense_spaCy(text,"future")) ###Output Alice will be beginning to get very tired of sitting by her sister on the bank and of having nothing to do: once or twice she will have peeped into the book her sister will be reading, but it will have no pictures or conversations in it, ‘ and what is the use of a book,’ will think Alice ‘ without pictures or conversations?’ So she will be considering in her own mind (as well as she could, for the hot day will make her feel very sleepy and stupid), whether the pleasure of making a daisy- chain would be worth the trouble of getting up and picking the daisies, when suddenly White Rabbit with pink eyes will run close by her. ###Markdown Looking good! However, it will fail if we make the following change to the last sentence: ###Code text = "White rabbits with pink eyes ran close by her." change_tense_spaCy(text, 'present') ###Output _____no_output_____ ###Markdown This fails because the verb "ran" confujates to "runs" if the subject is singular, but conjugates to "run" if the subject is plural. To fix this, we'll have to figure out a way to tell the verb the number of its subject. ###Code from spacy.symbols import NOUN SUBJ_DEPS = {'agent', 'csubj', 'csubjpass', 'expl', 'nsubj', 'nsubjpass'} def _get_conjuncts(tok): """ Return conjunct dependents of the leftmost conjunct in a coordinated phrase, e.g. "Burton, [Dan], and [Josh] ...". """ return [right for right in tok.rights if right.dep_ == 'conj'] def is_plural_noun(token): """ Returns True if token is a plural noun, False otherwise. Args: token (``spacy.Token``): parent document must have POS information Returns: bool """ if token.doc.is_tagged is False: raise ValueError('token is not POS-tagged') return True if token.pos == NOUN and token.lemma != token.lower else False def get_subjects_of_verb(verb): """Return all subjects of a verb according to the dependency parse.""" subjs = [tok for tok in verb.lefts if tok.dep_ in SUBJ_DEPS] # get additional conjunct subjects subjs.extend(tok for subj in subjs for tok in _get_conjuncts(subj)) return subjs def is_plural_verb(token): if token.doc.is_tagged is False: raise ValueError('token is not POS-tagged') subjects = get_subjects_of_verb(token) plural_score = sum([is_plural_noun(x) for x in subjects])/len(subjects) return plural_score > .5 conjugate?? def change_tense_spaCy(text, to_tense): doc = nlp(unicode(text)) out = [] out.append(doc[0].text) for word_pair in pairwise(doc): if (word_pair[0].string == 'will' and word_pair[1].pos_ == u'VERB') \ or word_pair[1].tag_ == u'VBD' or word_pair[1].tag_ == u'VBP': if to_tense == 'present': if is_plural_verb(word_pair[1]): out.append(conjugate(word_pair[1].text, PRESENT, None, PLURAL)) else: out.append(conjugate(word_pair[1].text, PRESENT)) elif to_tense == 'past': out.append(conjugate(word_pair[1].text, PAST)) elif to_tense == 'future': out.append('will') out.append(conjugate(word_pair[1].text, 'inf')) elif word_pair[1].text == 'will' and word_pair[1].tag_ == 'MD': pass else: out.append(word_pair[1].text) text_out = ' '.join(out) for char in string.punctuation: if char in """(<['‘""": text_out = text_out.replace(char+' ',char) else: text_out = text_out.replace(' '+char,char) text_out = text_out.replace(" 's","'s") #fix posessive 's return text_out text_plural_check = "Rabbits with white fur ran close by her." change_tense_spaCy(text_plural_check, 'present') nlp = English() sent = u"I was shooting an elephant" doc=nlp(sent) sub_toks = [tok for tok in doc if (tok.dep_ == "nsubj") ] print(sub_toks) # Finding a verb with a subject from below — good verbs = set() for possible_subject in doc: if possible_subject.dep == nsubj and possible_subject.head.pos == VERB: verbs.add((possible_subject, possible_subject.head)) verbs text2 = "We will see about that" sentences = parse(text2).split() sentences pprint(parsetree("I walk to the store")) pairwise(sentences[0])[0] parse("I will walk").split() text2 = """Dr. Dichter's interest in community psychiatry began as a fourth year resident when he and a co-resident ran a psychiatric inpatient and outpatient program at Fort McCoy Wisconsin treating formally institutionalized chronically mentally ill Cuban refugees from the Mariel Boatlift. He came to Philadelphia to provide short-term inpatient treatment, alleviating emergency room congestion. There he first encountered the problems of homelessness and was particularly interested in the relationship between the homeless and their families. Dr. Dichter has been the Director of an outpatient department and inpatient unit, as well as the Director of Family Therapy at AEMC. His work with families focused on the impact of chronic mental illness on the family system. He was the first Medical Director for a Medicaid Managed Care Organization and has consulted with SAMHSA, CMS and several states assisting them to monitor access and quality of care for their public patients. He currently is the Medical Director for Pathways to Housing PA, where he has assists chronically homeless to maintain stable housing and recover from the ravages of mental illness and substance abuse.""" text2 change_tense_spaCy(text2,'future') s = parsetree(text2,relations=True)[0] ' '.join([chunk.string for chunk in s.chunks]) s.string conjugate('focussed','inf',parse=False) tenses('focused') from stat_parser import Parser parser = Parser() text = "He came to Philadelphia to provide short-term inpatient treatment, alleviating emergency room congestion." text = "I will be there." result = parser.parse(text) result sentence = result LABELS = [x._label for x in sentence[0]] vps = [x for x in sentence[0] if x._label == 'VP'] #verbs = x for x in vps WORDS,POS = zip(*result.pos()) vps[0].pos() vps[0] doc #fix formatting import string ##TODO: fix spacing around single and double quotes ###Output _____no_output_____
notebooks/TickMarks_Part2.ipynb
###Markdown Part 2 of Tick Marks, Grids and Labels: Tick Marks - MarginsThis page is primarily based on the following page at the Circos documentation site:- [2. Tick Marks - Margins](????????????)That page is found as part number 4 of the ??? part ['Tick Marks, Grids and Labels' section](http://circos.ca/documentation/tutorials/quick_start/) of [the larger set of Circos tutorials](http://circos.ca/documentation/tutorials/).Go back to Part 1 by clicking [here &8592;](TickMarks_Part1.ipynb).----4 --- Tick Marks, Grids and Labels==================================2. Tick Marks - Margins-----------------------::: {menu4}[[Lesson](/documentation/tutorials/ticks_and_labels/margins/lesson){.clean}]{.active}[Images](/documentation/tutorials/ticks_and_labels/margins/images){.normal}[Configuration](/documentation/tutorials/ticks_and_labels/margins/configuration){.normal}:::If your ticks are densely spaced, they may overlap and form dreaded tickblobs. Likewise, tick labels can start to overlap and lose theirlegibility. To mitigate this problem, you can insist that adjacent ticks(or labels) are separated by a minimum distance.Here I show how to manage spacing between tick marks. The next tutorialdiscusses label spacing. minimum tick mark separationThe tick\_separation parameter controls the minimum distance between twoticks marks. Note that this parameter applies to tick marks only, not tolabels. Labels have their own minimum distance parameter, covered in thenext session. Of course, if a tick mark is not drawn, neither will itslabel. ```ini define minimum separation for all tickstick_separation = 3p...``` ```ini define minimum separation for a specific tick grouptick_separation = 2p...``` ```ini...``` ```ini``` The primary purpose of the tick\_separation parameter is to allowautomatic supression of ticks if you shrink the image size, change theideogram position radius, change the ideogram scale or, in general,perform any adjustment to the image that changes the base/pixelresolution.Since Circos supports local scale adjustments (at the level of ideogram,or region of ideogram), the the tick separation parameter is used todynamically show/hide ticks across the image. You should keep this valueat 2-3 pixels at all times, so that your tick marks do not run into eachother.Tick marks are suppressed on a group-by-group basis. In other words,tick separation is checked separately for each \ block. Forexample, if you define 1u, 5u and 10u ticks, these will be checked foroverlap independently (Circos does not check if the 10u tick overlapswith a tick from another group, such as the 1u tick).This approach is slightly different than the method that was initiallyimplemented, which compared inter-tick distances across tick groups.The tick mark thickness plays no role in determining the distancebetween ticks. The tick-to-tick distance is calculated based on thepositions of the ticks.In the first example image in this tutorial, three ideograms are drawn,each at a different scale. Depending on the magnification, ticks aresuppressed for some ideograms because they are closer than thetick\_separation parameter. For example, 0.25u and 0.5u ticks do notappear on hs1 and 0.25u ticks do not appear on hs2.In the second example image, only one chromosome is shown but its scaleis smoothly expanded. Region 100-110 Mb is magnified at 10x and with thescale in the neighbourhood decreasing smoothly from 10x to 1x. All tickmarks are shown within the magnified area and away from it, as the scalereturns to 1x, some ticks disappear. minimum tick distance to ideogram edgeTo suppress ticks near the edge of the ideogram, usemin\_distance\_to\_edge. This parameter can be used globally in the\ block to affect all ticks, or locally with a \ block toaffect an individual tick group. ```inimin_distance_to_edge = 10p...min_distance_to_edge = 5p......``` The corresponding parameter to suppress labels near an ideogram edge ismin\_label\_distance\_to\_edge.---- Generating the plot produced by this example codeThe following two cells will generate the plot. The first cell adjusts the current working directory. ###Code %cd ../circos-tutorials-0.67/tutorials/4/2/ %%bash ../../../../circos-0.69-6/bin/circos -conf circos.conf ###Output debuggroup summary 0.43s welcome to circos v0.69-6 31 July 2017 on Perl 5.022000 debuggroup summary 0.44s current working directory /home/jovyan/circos-tutorials-0.67/tutorials/4/2 debuggroup summary 0.44s command ../../../../circos-0.69-6/bin/circos -conf circos.conf debuggroup summary 0.44s loading configuration from file circos.conf debuggroup summary 0.44s found conf file circos.conf debuggroup summary 0.62s debug will appear for these features: output,summary debuggroup summary 0.62s bitmap output image ./circos.png debuggroup summary 0.62s SVG output image ./circos.svg debuggroup summary 0.62s parsing karyotype and organizing ideograms debuggroup summary 0.73s karyotype has 24 chromosomes of total size 3,095,677,436 debuggroup summary 0.73s applying global and local scaling debuggroup summary 0.74s allocating image, colors and brushes debuggroup summary 2.91s drawing 1 ideograms of total size 249,250,622 debuggroup summary 2.91s drawing highlights and ideograms debuggroup output 3.55s generating output debuggroup output 4.35s created PNG image ./circos.png (158 kb) debuggroup output 4.35s created SVG image ./circos.svg (58 kb) ###Markdown View the plot in this page using the following cell. ###Code from IPython.display import Image Image("circos.png") ###Output _____no_output_____
Seaborn - Loading Dataset.ipynb
###Markdown Seaborn | Part-1: Loading Datasets: When working with Seaborn, we can either use one of the [built-in datasets](https://github.com/mwaskom/seaborn-data) that Seaborn offers or we can load a Pandas DataFrame. Seaborn is part of the [PyData](https://pydata.org/) stack hence accepts Pandas’ data structures.Let us begin by importing few built-in datasets but before that we shall import few other libraries as well that our Seaborn would depend upon: ###Code # Importing intrinsic libraries: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Once we have imported the required libraries, now it is time to load built-in dataset. The dataset we would be dealing with in this illustration is [Iris Flower Dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set). ###Code # Loading built-in Datasets: iris = sns.load_dataset("iris") ###Output _____no_output_____ ###Markdown Similarly we may load other dataset as well and for illustration sake, I shall code few of them down here (though won't be referencing to): ###Code # Refer to 'Dataset Source Reference' for list of all built-in Seaborn datasets. tips = sns.load_dataset("tips") exercise = sns.load_dataset("exercise") titanic = sns.load_dataset("titanic") flights = sns.load_dataset("flights") ###Output _____no_output_____ ###Markdown Let us take a sneak peek as to how this Iris dataset looks like and we shall be using Pandas to do so: ###Code iris.head(10) ###Output _____no_output_____ ###Markdown Iris dataset actually has 50 samples from each of three species of Iris flower (Setosa, Virginica and Versicolor). Four features were measured (in centimetres) from each sample: Length and Width of the Sepals and Petals. Let us try to have a summarized view of this dataset: ###Code iris.describe() ###Output _____no_output_____ ###Markdown `.describe()` is a very useful method in Pandas as it generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values. Without getting in-depth into analysis here, let us try to plot something simple from this dataset: ###Code sns.set() %matplotlib inline # Later in the course I shall explain why above 2 lines of code have been added. sns.swarmplot(x="species", y="petal_length", data=iris) ###Output _____no_output_____ ###Markdown This beautiful representation of data we see above is known as a `Swarm Plot` with minimal parameters. I shall be covering this in detail later on but for now I just wanted you to have a feel of serenity we're getting into. Let us now try to load a random dataset and the one I've picked for this illustration is [PoliceKillingsUS](https://github.com/washingtonpost/data-police-shootings) dataset. This dataset has been prepared by The Washington Post (they keep updating it on runtime) with every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015. ###Code # Loading Pandas DataFrame: df = pd.read_csv("C:/Users/Alok/Downloads/PoliceKillingsUS.csv", encoding="windows-1252") ###Output _____no_output_____ ###Markdown Just the way we looked into Iris Data set, let us know have a preview of this dataset as well. We won't be getting into deep analysis of this dataset because our agenda is only to visualize the content within. So, let's do this: ###Code df.head(10) ###Output _____no_output_____ ###Markdown This dataset is pretty self-descriptive and has limited number of features (may read as columns).`race`:`W`: White, non-Hispanic`B`: Black, non-Hispanic`A`: Asian`N`: Native American`H`: Hispanic`O`: Other`None`: unknownAnd, `gender` indicates:`M`: Male`F`: Female`None`: unknownThe threat_level column include incidents where officers or others were shot at, threatened with a gun, attacked with other weapons or physical force, etc. The attack category is meant to flag the highest level of threat. The `other` and `undetermined` categories represent all remaining cases. `Other` includes many incidents where officers or others faced significant threats.The `threat column` and the `fleeing column` are not necessarily related. Also, `attacks` represent a status immediately before fatal shots by police; while `fleeing` could begin slightly earlier and involve a chase. Latly, `body_camera` indicates if an officer was wearing a body camera and it may have recorded some portion of the incident.Let us now look into the descriptive statistics: ###Code df.describe() ###Output _____no_output_____ ###Markdown These stats in particular do not really make much sense. Instead let us try to visualize age of people who were claimed to be armed as per this dataset.Quick Note: Two special lines of code that we added earlier won't be required again. As promised, I shall reason that in upcoming lectures. ###Code sns.stripplot(x="armed", y="age", data=df) ###Output _____no_output_____ ###Markdown Seaborn | Part-1: Loading Datasets: When working with Seaborn, we can either use one of the [built-in datasets](https://github.com/mwaskom/seaborn-data) that Seaborn offers or we can load a Pandas DataFrame. Seaborn is part of the [PyData](https://pydata.org/) stack hence accepts Pandas’ data structures.Let us begin by importing few built-in datasets but before that we shall import few other libraries as well that our Seaborn would depend upon: ###Code # Importing intrinsic libraries: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Once we have imported the required libraries, now it is time to load built-in dataset. The dataset we would be dealing with in this illustration is [Iris Flower Dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set). ###Code # Loading built-in Datasets: iris = sns.load_dataset("iris") ###Output _____no_output_____ ###Markdown Similarly we may load other dataset as well and for illustration sake, I shall code few of them down here (though won't be referencing to): ###Code # Refer to 'Dataset Source Reference' for list of all built-in Seaborn datasets. tips = sns.load_dataset("tips") exercise = sns.load_dataset("exercise") titanic = sns.load_dataset("titanic") flights = sns.load_dataset("flights") ###Output _____no_output_____ ###Markdown Let us take a sneak peek as to how this Iris dataset looks like and we shall be using Pandas to do so: ###Code iris.head(10) ###Output _____no_output_____ ###Markdown Iris dataset actually has 50 samples from each of three species of Iris flower (Setosa, Virginica and Versicolor). Four features were measured (in centimetres) from each sample: Length and Width of the Sepals and Petals. Let us try to have a summarized view of this dataset: ###Code iris.describe() ###Output _____no_output_____ ###Markdown `.describe()` is a very useful method in Pandas as it generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values. Without getting in-depth into analysis here, let us try to plot something simple from this dataset: ###Code sns.set() %matplotlib inline # Later in the course I shall explain why above 2 lines of code have been added. sns.swarmplot(x="species", y="petal_length", data=iris) ###Output _____no_output_____ ###Markdown This beautiful representation of data we see above is known as a `Swarm Plot` with minimal parameters. I shall be covering this in detail later on but for now I just wanted you to have a feel of serenity we're getting into. Let us now try to load a random dataset and the one I've picked for this illustration is [PoliceKillingsUS](https://github.com/washingtonpost/data-police-shootings) dataset. This dataset has been prepared by The Washington Post (they keep updating it on runtime) with every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015. ###Code # Loading Pandas DataFrame: df = pd.read_csv("C:/Users/Alok/Downloads/PoliceKillingsUS.csv", encoding="windows-1252") ###Output _____no_output_____ ###Markdown Just the way we looked into Iris Data set, let us know have a preview of this dataset as well. We won't be getting into deep analysis of this dataset because our agenda is only to visualize the content within. So, let's do this: ###Code df.head(10) ###Output _____no_output_____ ###Markdown This dataset is pretty self-descriptive and has limited number of features (may read as columns).`race`:`W`: White, non-Hispanic`B`: Black, non-Hispanic`A`: Asian`N`: Native American`H`: Hispanic`O`: Other`None`: unknownAnd, `gender` indicates:`M`: Male`F`: Female`None`: unknownThe threat_level column include incidents where officers or others were shot at, threatened with a gun, attacked with other weapons or physical force, etc. The attack category is meant to flag the highest level of threat. The `other` and `undetermined` categories represent all remaining cases. `Other` includes many incidents where officers or others faced significant threats.The `threat column` and the `fleeing column` are not necessarily related. Also, `attacks` represent a status immediately before fatal shots by police; while `fleeing` could begin slightly earlier and involve a chase. Latly, `body_camera` indicates if an officer was wearing a body camera and it may have recorded some portion of the incident.Let us now look into the descriptive statistics: ###Code df.describe() ###Output _____no_output_____ ###Markdown These stats in particular do not really make much sense. Instead let us try to visualize age of people who were claimed to be armed as per this dataset.Quick Note: Two special lines of code that we added earlier won't be required again. As promised, I shall reason that in upcoming lectures. ###Code sns.stripplot(x="armed", y="age", data=df) ###Output _____no_output_____ ###Markdown Seaborn | Part-1: Loading Datasets: When working with Seaborn, we can either use one of the [built-in datasets](https://github.com/mwaskom/seaborn-data) that Seaborn offers or we can load a Pandas DataFrame. Seaborn is part of the [PyData](https://pydata.org/) stack hence accepts Pandas’ data structures.Let us begin by importing few built-in datasets but before that we shall import few other libraries as well that our Seaborn would depend upon: ###Code # Importing intrinsic libraries: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Once we have imported the required libraries, now it is time to load built-in dataset. The dataset we would be dealing with in this illustration is [Iris Flower Dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set). ###Code # Loading built-in Datasets: iris = sns.load_dataset("iris") ###Output _____no_output_____ ###Markdown Similarly we may load other dataset as well and for illustration sake, I shall code few of them down here (though won't be referencing to): ###Code # Refer to 'Dataset Source Reference' for list of all built-in Seaborn datasets. tips = sns.load_dataset("tips") exercise = sns.load_dataset("exercise") titanic = sns.load_dataset("titanic") flights = sns.load_dataset("flights") ###Output _____no_output_____ ###Markdown Let us take a sneak peek as to how this Iris dataset looks like and we shall be using Pandas to do so: ###Code iris.head(10) ###Output _____no_output_____ ###Markdown Iris dataset actually has 50 samples from each of three species of Iris flower (Setosa, Virginica and Versicolor). Four features were measured (in centimetres) from each sample: Length and Width of the Sepals and Petals. Let us try to have a summarized view of this dataset: ###Code iris.describe() ###Output _____no_output_____ ###Markdown `.describe()` is a very useful method in Pandas as it generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values. Without getting in-depth into analysis here, let us try to plot something simple from this dataset: ###Code sns.set() %matplotlib inline # Later in the course I shall explain why above 2 lines of code have been added. sns.swarmplot(x="species", y="petal_length", data=iris) ###Output _____no_output_____ ###Markdown This beautiful representation of data we see above is known as a `Swarm Plot` with minimal parameters. I shall be covering this in detail later on but for now I just wanted you to have a feel of serenity we're getting into. Let us now try to load a random dataset and the one I've picked for this illustration is [PoliceKillingsUS](https://github.com/washingtonpost/data-police-shootings) dataset. This dataset has been prepared by The Washington Post (they keep updating it on runtime) with every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015. ###Code # Loading Pandas DataFrame: df = pd.read_csv("C:/Users/Alok/Downloads/PoliceKillingsUS.csv", encoding="windows-1252") ###Output _____no_output_____ ###Markdown Just the way we looked into Iris Data set, let us know have a preview of this dataset as well. We won't be getting into deep analysis of this dataset because our agenda is only to visualize the content within. So, let's do this: ###Code df.head(10) ###Output _____no_output_____ ###Markdown This dataset is pretty self-descriptive and has limited number of features (may read as columns).`race`:`W`: White, non-Hispanic`B`: Black, non-Hispanic`A`: Asian`N`: Native American`H`: Hispanic`O`: Other`None`: unknownAnd, `gender` indicates:`M`: Male`F`: Female`None`: unknownThe threat_level column include incidents where officers or others were shot at, threatened with a gun, attacked with other weapons or physical force, etc. The attack category is meant to flag the highest level of threat. The `other` and `undetermined` categories represent all remaining cases. `Other` includes many incidents where officers or others faced significant threats.The `threat column` and the `fleeing column` are not necessarily related. Also, `attacks` represent a status immediately before fatal shots by police; while `fleeing` could begin slightly earlier and involve a chase. Latly, `body_camera` indicates if an officer was wearing a body camera and it may have recorded some portion of the incident.Let us now look into the descriptive statistics: ###Code df.describe() ###Output _____no_output_____ ###Markdown These stats in particular do not really make much sense. Instead let us try to visualize age of people who were claimed to be armed as per this dataset.Quick Note: Two special lines of code that we added earlier won't be required again. As promised, I shall reason that in upcoming lectures. ###Code sns.stripplot(x="armed", y="age", data=df) ###Output _____no_output_____
Student_model_with _KD(BBC_news_dataset).ipynb
###Markdown Data--- ###Code news_df = pd.read_csv("/content/drive/MyDrive/Data/A4/TrainData.csv") news_df['Category'].value_counts() from sklearn.preprocessing import OneHotEncoder enc = OneHotEncoder(handle_unknown = 'ignore') enc.fit(np.array(news_df["Category"]).reshape(-1,1)) y_train = enc.transform(np.array(news_df["Category"]).reshape(-1,1)).toarray() y_train[0] !pip install contractions import contractions # Data Cleaning def clean_text(text): clean_texts = "" expanded_words = "" # remove everything except alphabets # text = re.sub("[^a-zA-Z]", " ", text) words = text.split(" ") for word in words: word = contractions.fix(word) tokens = word.split(" ") for token in tokens: if(len(token) > 1): expanded_words = expanded_words + ' ' + token clean_texts = clean_texts + ' ' + expanded_words # remove whitespaces clean_texts = ' '.join(clean_texts.split()) clean_texts = clean_texts.lower() return clean_texts # creating clean text feature news_df['clean_text'] = news_df['Text'].apply(clean_text) X = news_df.loc[:,'clean_text'] max_seq_length = max([len(text.split(" ")) for text in X]) avg_seq_length = np.mean([len(text.split(" ")) for text in X]) print("max_seq_length = " , max_seq_length) print("avg_seq_length = " , avg_seq_length) print(X[0]) from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences max_words = 1000 #3000 tokenizer = Tokenizer(oov_token = "OOV") tokenizer.fit_on_texts(X) sequence_train = tokenizer.texts_to_sequences(X) sequence_train = pad_sequences(sequence_train,padding='post', maxlen=max_words) x_train = np.asarray(sequence_train) # Inspect the dimenstions of our training and test data (this is helpful to debug) print('x_train shape:', x_train.shape) print('y_train shape:', y_train.shape) news_test_df = pd.read_csv("/content/drive/MyDrive/Data/A4/TestData_Inputs.csv") news_test_df2 = pd.read_excel("/content/drive/MyDrive/Data/A4/Assignment4_TestLabels.xlsx") # creating clean text feature news_test_df['clean_text'] = news_test_df['Text'].apply(clean_text) # news_test_df['clean_text'] = news_test_df['clean_text'].apply(lambda x: remove_stopwords(x)) X_test = news_test_df.loc[:,'clean_text'] y_test = enc.transform(np.array(news_test_df2['Label - (business, tech, politics, sport, entertainment)']).reshape(-1,1)).toarray() sequence_test = tokenizer.texts_to_sequences(X_test) sequence_test = pad_sequences(sequence_test,padding='post', maxlen=max_words) X_test = np.asarray(sequence_test) # Inspect the dimenstions of our training and test data (this is helpful to debug) print('x_test shape:', X_test.shape) print('y_test shape:', y_test.shape) news_test_df.head() dict(list((tokenizer.word_index).items())[0:10]) # embedding_matrix_w2v = np.load("/content/drive/MyDrive/Data/A4/A4_matrix_w2v2.npy") # embedding_matrix_ft = np.load("/content/drive/MyDrive/Data/A4/A4_matrix_ft2.npy") # embedding_matrix_glove = np.load("/content/drive/MyDrive/Data/A4/A4_matrix_glove2.npy") ###Output _____no_output_____ ###Markdown Positional EncodingA vector added to the embedding to encode positional informationhttps://www.tensorflow.org/tutorials/text/transformerpositional_encoding ###Code def get_angles(pos, i, d_model): angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model)) return pos * angle_rates def positional_encoding(position, d_model): angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model) # apply sin to even indices in the array; 2i angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) # apply cos to odd indices in the array; 2i+1 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) pos_encoding = angle_rads[np.newaxis, ...] return tf.cast(pos_encoding, dtype=tf.float32) ###Output _____no_output_____ ###Markdown Multi Headed Attention Test of multi-headed Attention Shape = (batch_size , num_heads, seq_length, depth) For each of [query, value, key] we reshape from (batch_size , seq_length, depth) -> (batch_size , seq_length, num_heads, multi_headed_depth) then permute -> (batch_size , num_heads, seq_length, multi_headed_depth) where multi-headed_depth = depth / num_headsThe dot-product attention is scaled by a factor of square root of the depth. This is done because for large values of depth, the dot product grows large in magnitude pushing the softmax function where it has small gradients resulting in a very hard softmax. ###Code class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model = 512, num_heads = 8, causal=False, dropout=0.0): super(MultiHeadAttention, self).__init__() assert d_model % num_heads == 0 depth = d_model // num_heads self.w_query = tf.keras.layers.Dense(d_model) self.split_reshape_query = tf.keras.layers.Reshape((-1,num_heads,depth)) self.split_permute_query = tf.keras.layers.Permute((2,1,3)) self.w_value = tf.keras.layers.Dense(d_model) self.split_reshape_value = tf.keras.layers.Reshape((-1,num_heads,depth)) self.split_permute_value = tf.keras.layers.Permute((2,1,3)) self.w_key = tf.keras.layers.Dense(d_model) self.split_reshape_key = tf.keras.layers.Reshape((-1,num_heads,depth)) self.split_permute_key = tf.keras.layers.Permute((2,1,3)) self.attention = tf.keras.layers.Attention(causal=causal, dropout=dropout) self.join_permute_attention = tf.keras.layers.Permute((2,1,3)) self.join_reshape_attention = tf.keras.layers.Reshape((-1,d_model)) self.dense = tf.keras.layers.Dense(d_model) def call(self, inputs, mask=None, training=None): q = inputs[0] v = inputs[1] k = inputs[2] if len(inputs) > 2 else v query = self.w_query(q) query = self.split_reshape_query(query) query = self.split_permute_query(query) value = self.w_value(v) value = self.split_reshape_value(value) value = self.split_permute_value(value) key = self.w_key(k) key = self.split_reshape_key(key) key = self.split_permute_key(key) if mask is not None: if mask[0] is not None: mask[0] = tf.keras.layers.Reshape((-1,1))(mask[0]) mask[0] = tf.keras.layers.Permute((2,1))(mask[0]) if mask[1] is not None: mask[1] = tf.keras.layers.Reshape((-1,1))(mask[1]) mask[1] = tf.keras.layers.Permute((2,1))(mask[1]) attention = self.attention([query, value, key], mask=mask) attention = self.join_permute_attention(attention) attention = self.join_reshape_attention(attention) x = self.dense(attention) return x ###Output _____no_output_____ ###Markdown Encoder Layers ###Code class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model = 512, num_heads = 8, dff = 2048, dropout = 0.0): super(EncoderLayer, self).__init__() self.multi_head_attention = MultiHeadAttention(d_model, num_heads) self.dropout_attention = tf.keras.layers.Dropout(dropout) self.add_attention = tf.keras.layers.Add() self.layer_norm_attention = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dense1 = tf.keras.layers.Dense(dff, activation='relu') self.dense2 = tf.keras.layers.Dense(d_model) self.dropout_dense = tf.keras.layers.Dropout(dropout) self.add_dense = tf.keras.layers.Add() self.layer_norm_dense = tf.keras.layers.LayerNormalization(epsilon=1e-6) def call(self, inputs, mask=None, training=None): # print(mask) attention = self.multi_head_attention([inputs,inputs,inputs], mask = [mask,mask]) attention = self.dropout_attention(attention, training = training) x = self.add_attention([inputs , attention]) x = self.layer_norm_attention(x) # x = inputs ## Feed Forward dense = self.dense1(x) dense = self.dense2(dense) dense = self.dropout_dense(dense, training = training) x = self.add_dense([x , dense]) x = self.layer_norm_dense(x) return x ###Output _____no_output_____ ###Markdown the causal = True argument for multi_head_attention1 automatically masks future tokens in the sequence Encoder Blocks ###Code class Encoder(tf.keras.layers.Layer): def __init__(self, input_vocab_size, num_layers = 4, d_model = 512, num_heads = 8, dff = 2048, maximum_position_encoding = 10000, dropout = 0.0): super(Encoder, self).__init__() self.d_model = d_model self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model, mask_zero=True) self.pos = positional_encoding(maximum_position_encoding, d_model) self.encoder_layers = [ EncoderLayer(d_model = d_model, num_heads = num_heads, dff = dff, dropout = dropout) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(dropout) def call(self, inputs, mask=None, training=None): x = self.embedding(inputs) # positional encoding x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) # scaling by the sqrt of d_model, not sure why or if needed?? x += self.pos[: , :tf.shape(x)[1], :] x = self.dropout(x, training=training) #Encoder layer embedding_mask = self.embedding.compute_mask(inputs) for encoder_layer in self.encoder_layers: x = encoder_layer(x, mask = embedding_mask) return x def compute_mask(self, inputs, mask=None): return self.embedding.compute_mask(inputs) ###Output _____no_output_____ ###Markdown Transformer model ###Code num_layers = 1 d_model = 64 dff = 128 num_heads = 4 dropout_rate = 0.4 MAX_LENGTH = max_words alpha = 0.2 input_vocab_size = len(tokenizer.index_word) + 1 input = tf.keras.layers.Input(shape=(MAX_LENGTH,)) encoder = Encoder(input_vocab_size, num_layers = num_layers, d_model = d_model, num_heads = num_heads, dff = dff, dropout = dropout_rate) x = encoder(input) x = Bidirectional(GRU(64, dropout=0.2))(x) output = Dense(5, activation='sigmoid')(x) # flatten = Flatten()(x) # dense1 = Dense(256, activation="relu")(flatten) # dropout = Dropout(0.2)(dense1) # output = Dense(5, activation="sigmoid")(dropout) model = Model(input, output) teacher_model = tf.keras.models.load_model("/content/drive/MyDrive/Data/Teacher_model") teacher_y_pred = teacher_model.predict(x_train, verbose=1) T_y_pred = K.constant(teacher_y_pred) def custom_loss_function(y_true, y_pred): student_loss = - y_true * tf.math.log(y_pred) - (1 - y_true) * tf.math.log(1 - y_pred) distil_loss = - T_y_pred * tf.math.log(y_pred) - (1 - T_y_pred) * tf.math.log(1 - y_pred) loss = alpha * student_loss + (1-alpha) * distil_loss print(tf.reduce_mean(loss, axis=-1)) return tf.reduce_mean(loss, axis=-1) model.compile(loss = custom_loss_function, optimizer='adam', metrics=['accuracy']) model.summary() print(teacher_y_pred.shape) type(teacher_y_pred) ###Output (1490, 5) ###Markdown Training ###Code callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode = 'min' ,patience=6) history = model.fit(x_train , y_train, batch_size=16, epochs=15, verbose=2, callbacks=[callback], validation_split=0.2) score, acc = model.evaluate(X_test, y_test) ###Output 23/23 [==============================] - 3s 143ms/step - loss: 0.0708 - accuracy: 0.9537
Python_Stock/Apply_Mathematics_Trading_Investment/Manhattan_Distance_Stock.ipynb
###Markdown Manhattan Distance Manhattan distance between two vectors, A and B Formula: Σ|Ai – Bi| where i is the ith element in each vector. Manhattan distance is calculated as the sum of the absolute differences between the two vectors. The Manhattan distance is related to the L1 vector norm and the sum absolute error and mean absolute error metric This distance is used to measure the dissimilarity between two vectors and is commonly used in machine learning algorithms. ###Code import numpy as np import warnings warnings.filterwarnings("ignore") # yfinance is used to fetch data import yfinance as yf yf.pdr_override() symbol = 'AMD' start = '2018-01-01' end = '2019-01-01' # Read data dataset = yf.download(symbol,start,end) # View Columns dataset.head() Open = np.array(dataset['Open']) Close = np.array(dataset['Adj Close']) Open Close def manhattan_distance(a, b): manhattan = sum(abs(value1-value2) for value1, value2 in zip(a,b)) return manhattan manhattan_distance(Open, Close) ###Output _____no_output_____
Clustering_&_Retrieval/Week4/Assignment2/.ipynb_checkpoints/4_em-with-text-data_blank-checkpoint.ipynb
###Markdown Fitting a diagonal covariance Gaussian mixture model to text dataIn a previous assignment, we explored k-means clustering for a high-dimensional Wikipedia dataset. We can also model this data with a mixture of Gaussians, though with increasing dimension we run into two important issues associated with using a full covariance matrix for each component. * Computational cost becomes prohibitive in high dimensions: score calculations have complexity cubic in the number of dimensions M if the Gaussian has a full covariance matrix. * A model with many parameters require more data: bserve that a full covariance matrix for an M-dimensional Gaussian will have M(M+1)/2 parameters to fit. With the number of parameters growing roughly as the square of the dimension, it may quickly become impossible to find a sufficient amount of data to make good inferences.Both of these issues are avoided if we require the covariance matrix of each component to be diagonal, as then it has only M parameters to fit and the score computation decomposes into M univariate score calculations. Recall from the lecture that the M-step for the full covariance is:\begin{align*}\hat{\Sigma}_k &= \frac{1}{N_k^{soft}} \sum_{i=1}^N r_{ik} (x_i-\hat{\mu}_k)(x_i - \hat{\mu}_k)^T\end{align*}Note that this is a square matrix with M rows and M columns, and the above equation implies that the (v, w) element is computed by\begin{align*}\hat{\Sigma}_{k, v, w} &= \frac{1}{N_k^{soft}} \sum_{i=1}^N r_{ik} (x_{iv}-\hat{\mu}_{kv})(x_{iw} - \hat{\mu}_{kw})\end{align*}When we assume that this is a diagonal matrix, then non-diagonal elements are assumed to be zero and we only need to compute each of the M elements along the diagonal independently using the following equation. \begin{align*}\hat{\sigma}^2_{k, v} &= \hat{\Sigma}_{k, v, v} \\&= \frac{1}{N_k^{soft}} \sum_{i=1}^N r_{ik} (x_{iv}-\hat{\mu}_{kv})^2\end{align*}In this section, we will use an EM implementation to fit a Gaussian mixture model with **diagonal** covariances to a subset of the Wikipedia dataset. The implementation uses the above equation to compute each variance term. We'll begin by importing the dataset and coming up with a useful representation for each article. After running our algorithm on the data, we will explore the output to see whether we can give a meaningful interpretation to the fitted parameters in our model. **Note to Amazon EC2 users**: To conserve memory, make sure to stop all the other notebooks before running this notebook. Import necessary packages ###Code import graphlab ###Output _____no_output_____ ###Markdown We also have a Python file containing implementations for several functions that will be used during the course of this assignment. ###Code from em_utilities import * ###Output _____no_output_____ ###Markdown Load Wikipedia data and extract TF-IDF features Load Wikipedia data and transform each of the first 5000 document into a TF-IDF representation. ###Code wiki = graphlab.SFrame('people_wiki.gl/').head(5000) wiki['tf_idf'] = graphlab.text_analytics.tf_idf(wiki['text']) ###Output _____no_output_____ ###Markdown Using a utility we provide, we will create a sparse matrix representation of the documents. This is the same utility function you used during the previous assignment on k-means with text data. ###Code tf_idf, map_index_to_word = sframe_to_scipy(wiki, 'tf_idf') ###Output _____no_output_____ ###Markdown As in the previous assignment, we will normalize each document's TF-IDF vector to be a unit vector. ###Code tf_idf = normalize(tf_idf) ###Output _____no_output_____ ###Markdown We can check that the length (Euclidean norm) of each row is now 1.0, as expected. ###Code for i in range(5): doc = tf_idf[i] print(np.linalg.norm(doc.todense())) ###Output _____no_output_____ ###Markdown EM in high dimensionsEM for high-dimensional data requires some special treatment: * E step and M step must be vectorized as much as possible, as explicit loops are dreadfully slow in Python. * All operations must be cast in terms of sparse matrix operations, to take advantage of computational savings enabled by sparsity of data. * Initially, some words may be entirely absent from a cluster, causing the M step to produce zero mean and variance for those words. This means any data point with one of those words will have 0 probability of being assigned to that cluster since the cluster allows for no variability (0 variance) around that count being 0 (0 mean). Since there is a small chance for those words to later appear in the cluster, we instead assign a small positive variance (~1e-10). Doing so also prevents numerical overflow. We provide the complete implementation for you in the file `em_utilities.py`. For those who are interested, you can read through the code to see how the sparse matrix implementation differs from the previous assignment. You are expected to answer some quiz questions using the results of clustering. **Initializing mean parameters using k-means**Recall from the lectures that EM for Gaussian mixtures is very sensitive to the choice of initial means. With a bad initial set of means, EM may produce clusters that span a large area and are mostly overlapping. To eliminate such bad outcomes, we first produce a suitable set of initial means by using the cluster centers from running k-means. That is, we first run k-means and then take the final set of means from the converged solution as the initial means in our EM algorithm. ###Code from sklearn.cluster import KMeans np.random.seed(5) num_clusters = 25 # Use scikit-learn's k-means to simplify workflow kmeans_model = KMeans(n_clusters=num_clusters, n_init=5, max_iter=400, random_state=1, n_jobs=-1) kmeans_model.fit(tf_idf) centroids, cluster_assignment = kmeans_model.cluster_centers_, kmeans_model.labels_ means = [centroid for centroid in centroids] ###Output _____no_output_____ ###Markdown **Initializing cluster weights**We will initialize each cluster weight to be the proportion of documents assigned to that cluster by k-means above. ###Code num_docs = tf_idf.shape[0] weights = [] for i in xrange(num_clusters): # Compute the number of data points assigned to cluster i: num_assigned = ... # YOUR CODE HERE w = float(num_assigned) / num_docs weights.append(w) ###Output _____no_output_____ ###Markdown **Initializing covariances**To initialize our covariance parameters, we compute $\hat{\sigma}_{k, j}^2 = \sum_{i=1}^{N}(x_{i,j} - \hat{\mu}_{k, j})^2$ for each feature $j$. For features with really tiny variances, we assign 1e-8 instead to prevent numerical instability. We do this computation in a vectorized fashion in the following code block. ###Code covs = [] for i in xrange(num_clusters): member_rows = tf_idf[cluster_assignment==i] cov = (member_rows.power(2) - 2*member_rows.dot(diag(means[i]))).sum(axis=0).A1 / member_rows.shape[0] \ + means[i]**2 cov[cov < 1e-8] = 1e-8 covs.append(cov) ###Output _____no_output_____ ###Markdown **Running EM**Now that we have initialized all of our parameters, run EM. ###Code out = EM_for_high_dimension(tf_idf, means, covs, weights, cov_smoothing=1e-10) out['loglik'] ###Output _____no_output_____ ###Markdown Interpret clustering results In contrast to k-means, EM is able to explicitly model clusters of varying sizes and proportions. The relative magnitude of variances in the word dimensions tell us much about the nature of the clusters.Write yourself a cluster visualizer as follows. Examining each cluster's mean vector, list the 5 words with the largest mean values (5 most common words in the cluster). For each word, also include the associated variance parameter (diagonal element of the covariance matrix). A sample output may be:```==========================================================Cluster 0: Largest mean parameters in cluster Word Mean Variance football 1.08e-01 8.64e-03season 5.80e-02 2.93e-03club 4.48e-02 1.99e-03league 3.94e-02 1.08e-03played 3.83e-02 8.45e-04...``` ###Code # Fill in the blanks def visualize_EM_clusters(tf_idf, means, covs, map_index_to_word): print('') print('==========================================================') num_clusters = len(means) for c in xrange(num_clusters): print('Cluster {0:d}: Largest mean parameters in cluster '.format(c)) print('\n{0: <12}{1: <12}{2: <12}'.format('Word', 'Mean', 'Variance')) # The k'th element of sorted_word_ids should be the index of the word # that has the k'th-largest value in the cluster mean. Hint: Use np.argsort(). sorted_word_ids = ... # YOUR CODE HERE for i in sorted_word_ids[:5]: print '{0: <12}{1:<10.2e}{2:10.2e}'.format(map_index_to_word['category'][i], means[c][i], covs[c][i]) print '\n==========================================================' '''By EM''' visualize_EM_clusters(tf_idf, out['means'], out['covs'], map_index_to_word) ###Output _____no_output_____ ###Markdown **Quiz Question**. Select all the topics that have a cluster in the model created above. [multiple choice] Comparing to random initialization Create variables for randomly initializing the EM algorithm. Complete the following code block. ###Code np.random.seed(5) num_clusters = len(means) num_docs, num_words = tf_idf.shape random_means = [] random_covs = [] random_weights = [] for k in range(num_clusters): # Create a numpy array of length num_words with random normally distributed values. # Use the standard univariate normal distribution (mean 0, variance 1). # YOUR CODE HERE mean = ... # Create a numpy array of length num_words with random values uniformly distributed between 1 and 5. # YOUR CODE HERE cov = ... # Initially give each cluster equal weight. # YOUR CODE HERE weight = ... random_means.append(mean) random_covs.append(cov) random_weights.append(weight) ###Output _____no_output_____ ###Markdown **Quiz Question**: Try fitting EM with the random initial parameters you created above. (Use `cov_smoothing=1e-5`.) Store the result to `out_random_init`. What is the final loglikelihood that the algorithm converges to? **Quiz Question:** Is the final loglikelihood larger or smaller than the final loglikelihood we obtained above when initializing EM with the results from running k-means? **Quiz Question**: For the above model, `out_random_init`, use the `visualize_EM_clusters` method you created above. Are the clusters more or less interpretable than the ones found after initializing using k-means? ###Code # YOUR CODE HERE. Use visualize_EM_clusters, which will require you to pass in tf_idf and map_index_to_word. ... ###Output _____no_output_____
notebooks/ensemble_ex_02.ipynb
###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_names = ["Flipper Length (mm)"] target_name = "Body Mass (g)" data, target = penguins[feature_names], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the statistical performance on the testing set in terms of meanabsolute error. ###Code # Write your code here. from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error rf = RandomForestRegressor(n_estimators=3) rf.fit(data_train, target_train) y_pred = rf.predict(data_test) print(f'MAE: {mean_absolute_error(y_pred, target_test):0.02f} g') ###Output MAE: 366.03 g ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. import matplotlib.pyplot as plt import seaborn as sns sub_penguins = penguins[(penguins["Flipper Length (mm)"]>=170) & (penguins["Flipper Length (mm)"]<=230)] sub_penguins.sort_values(by='Flipper Length (mm)', inplace=True) sns.scatterplot(x="Flipper Length (mm)", y="Body Mass (g)", data=sub_penguins, color='black', alpha=0.5) sub_penguins['rf_predict']=rf.predict(sub_penguins["Flipper Length (mm)"].to_numpy().reshape(-1,1)) for idx, estimator in enumerate(rf.estimators_): print('estimator'+str(idx)) sub_penguins['estimator'+str(idx)] = estimator.predict(sub_penguins["Flipper Length (mm)"].to_numpy().reshape(-1,1)) plt.plot(sub_penguins["Flipper Length (mm)"], sub_penguins['estimator'+str(idx)], label='estimator'+str(idx)) plt.plot(sub_penguins["Flipper Length (mm)"], sub_penguins["rf_predict"], label='RF prediction', color= 'orange') plt.legend() plt.show(); ###Output estimator0 estimator1 estimator2 ###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn's random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_name = "Flipper Length (mm)" target_name = "Body Mass (g)" data, target = penguins[[feature_name]], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the generalization performance on the testing set in terms of meanabsolute error. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn's random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_name = "Flipper Length (mm)" target_name = "Body Mass (g)" data, target = penguins[[feature_name]], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the generalization performance on the testing set in terms of meanabsolute error. ###Code # Write your code here. from sklearn.ensemble import RandomForestRegressor forest = RandomForestRegressor(n_estimators=3,n_jobs=2) forest.fit(data_train, target_train) from sklearn.metrics import mean_absolute_error target_predicted = forest.predict(data_test) error = mean_absolute_error(target_test, target_predicted) print(f"Mean absolute error is: {error:.3f}") ###Output Mean absolute error is: 349.940 ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. penguins.describe() penguins_min = penguins[penguins[feature_name]>=170.0] penguins_min_max = penguins_min[penguins_min[feature_name]<=230.0] penguins_min_max.min() data, target = penguins_min_max[[feature_name]], penguins_min_max[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) import matplotlib.pyplot as plt import seaborn as sns sns.scatterplot(x=data_train[feature_name], y=target_train, color="black", alpha=0.5) _ = plt.title(f"Training data for the Penguins dataset with {feature_name} between 170.0 and 203.0") forest.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_names = ["Flipper Length (mm)"] target_name = "Body Mass (g)" data, target = penguins[feature_names], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the statistical performance on the testing set in terms of meanabsolute error. ###Code # Write your code here. from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import mean_absolute_error random_forest = RandomForestClassifier(n_estimators=3) random_forest.fit(data_train, target_train) target_predicted = random_forest.predict(data_test) mean_absolute_error(target_test, target_predicted) ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. import numpy as np data_ranges = pd.DataFrame(np.linspace(170, 235, num=300), columns=data.columns) tree_predictions = [] for tree in random_forest.estimators_: tree_predictions.append(tree.predict(data_ranges)) forest_predictions = random_forest.predict(data_ranges) import matplotlib.pyplot as plt import seaborn as sns sns.scatterplot(data=penguins, x=feature_names[0], y=target_name, color="black", alpha=0.5) # plot tree predictions for tree_idx, predictions in enumerate(tree_predictions): plt.plot(data_ranges, predictions, label=f"Tree #{tree_idx}", linestyle="--", alpha=0.8) plt.plot(data_ranges, forest_predictions, label=f"Random forest") _ = plt.legend() ###Output _____no_output_____ ###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn's random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_name = "Flipper Length (mm)" target_name = "Body Mass (g)" data, target = penguins[[feature_name]], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the generalization performance on the testing set in terms of meanabsolute error. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn's random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_name = "Flipper Length (mm)" target_name = "Body Mass (g)" data, target = penguins[[feature_name]], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the generalization performance on the testing set in terms of meanabsolute error. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise 02The aim of this exercise it to explore some attributes available inscikit-learn random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_names = ["Flipper Length (mm)"] target_name = "Body Mass (g)" data, target = penguins[feature_names], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the statistical performance on the testing set. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise 02The aim of this exercise it to explore some attributes available inscikit-learn random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_names = ["Flipper Length (mm)"] target_name = "Body Mass (g)" data, target = penguins[feature_names], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the statistical performance on the testing set. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn's random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_name = "Flipper Length (mm)" target_name = "Body Mass (g)" data, target = penguins[[feature_name]], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the generalization performance on the testing set in terms of meanabsolute error. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_names = ["Flipper Length (mm)"] target_name = "Body Mass (g)" data, target = penguins[feature_names], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the generalization performance on the testing set in terms of meanabsolute error. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn's random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_names = ["Flipper Length (mm)"] target_name = "Body Mass (g)" data, target = penguins[feature_names], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the generalization performance on the testing set in terms of meanabsolute error. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_names = ["Flipper Length (mm)"] target_name = "Body Mass (g)" data, target = penguins[feature_names], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the statistical performance on the testing set. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M6.02The aim of this exercise it to explore some attributes available inscikit-learn random forest.First, we will fit the penguins regression dataset. ###Code import pandas as pd from sklearn.model_selection import train_test_split penguins = pd.read_csv("../datasets/penguins_regression.csv") feature_names = ["Flipper Length (mm)"] target_name = "Body Mass (g)" data, target = penguins[feature_names], penguins[target_name] data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0) ###Output _____no_output_____ ###Markdown NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a random forest containing three trees. Train the forest andcheck the statistical performance on the testing set in terms of meanabsolute error. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown The next steps of this exercise are to:- create a new dataset containing the penguins with a flipper length between 170 mm and 230 mm;- plot the training data using a scatter plot;- plot the decision of each individual tree by predicting on the newly created dataset;- plot the decision of the random forest using this newly created dataset.TipThe trees contained in the forest that you created can be accessedwith the attribute estimators_. ###Code # Write your code here. ###Output _____no_output_____
python-numpy-basics/Dictionary.ipynb
###Markdown Dictionaries in Python* A dictionary is a collection which is ordered, changeable and does not allow duplicates.* Dictionaries are written with curly brackets, and have keys and values pairs. Example : ###Code student = { "id": "191022987", "branch": "IT", "grad_year":2024 } print(student) #if I add a duplicate value, the duplicate value will overwrite existing value student = { "id": "191022987", "branch": "IT", "grad_year":2024, "grad_year":2023 } print('Dictionary after adding duplicates') print(student) #The new value of grad_year is overwritten ###Output {'id': '191022987', 'branch': 'IT', 'grad_year': 2024} Dictionary after adding duplicates {'id': '191022987', 'branch': 'IT', 'grad_year': 2023} ###Markdown Accessing ItemsYou can access the items of a dictionary by referring to its key name, inside square brackets or also by a method called `get()`: ###Code student = { "id": "191022987", "branch": "IT", "grad_year":2024 } #get the value of 'id' key student_id=student["id"] print(student_id) # now by get() method student_id=student.get("id") print(student_id) ###Output 191022987 191022987 ###Markdown Adding and updating a Dictionary* Adding an item to the dictionary is done by using a new index key and assigning a value to it * The update() method will update the dictionary with the items from a given argument. If the item does not exist, the item will be added. ###Code student = { "id": "191022987", "branch": "IT", "grad_year":2024 } student["grade"]="BB" print(student) #The branch key already exists after updating it changes to "EXTC" student.update({"branch":"EXTC"}) print(student) #The address key doesn't exist so after updating address key is added student.update({"address":"Mumbai"}) print(student) ###Output {'id': '191022987', 'branch': 'IT', 'grad_year': 2024, 'grade': 'BB'} {'id': '191022987', 'branch': 'EXTC', 'grad_year': 2024, 'grade': 'BB'} {'id': '191022987', 'branch': 'EXTC', 'grad_year': 2024, 'grade': 'BB', 'address': 'Mumbai'} ###Markdown Removing Items * The **pop()** method removes the item with the specified key name.* The **popitem()** method removes the last inserted item (in versions before 3.7, a random item is removed instead)* The **del** keyword removes the item with the specified key name.The **del** keyword can also delete the dictionary completely.* The **clear()** method empties the dictionary. ###Code student = { "id": "191022987", "branch": "IT", "grad_year":2024 } student.pop("branch") print(student) student = { "id": "191022987", "branch": "IT", "grad_year":2024 } student.popitem() print(student) student = { "id": "191022987", "branch": "IT", "grad_year":2024 } del student["branch"] print(student) student = { "id": "191022987", "branch": "IT", "grad_year":2024 } student.clear() print(student) student = { "id": "191022987", "branch": "IT", "grad_year":2024 } del student #this will give an error as the dictionary itself is deleted print(student) ###Output {'id': '191022987', 'grad_year': 2024} {'id': '191022987', 'branch': 'IT'} {'id': '191022987', 'grad_year': 2024} {} ###Markdown Dictionary key() methodThe **keys()** method returns a view object. The view object contains the keys of the dictionary, as a list.The view object will reflect any changes done to the dictionary, see example below. ###Code # When an item is added in the dictionary, the view object also gets updated: student = { "id": "191022987", "branch": "IT", "grad_year":2024 } x = student.keys() print("x before adding item in the dictionary") print(x) student["grade"] = "BB" print("x after adding item in the dictionary") print(x) ###Output x before adding item in the dictionary dict_keys(['id', 'branch', 'grad_year']) x after adding item in the dictionary dict_keys(['id', 'branch', 'grad_year', 'grade']) ###Markdown Dictionary values() methodThe **values()** method returns a view object. The view object contains the values of the dictionary, as a list.The view object will reflect any changes done to the dictionary, see example below. ###Code # When a values is changed in the dictionary, the view object also gets updated: student = { "id": "191022987", "branch": "IT", "grad_year":2024 } x = student.values() print("x before changing an item in the dictionary") print(x) student["branch"] = "EXTC" print("x after changing an item in the dictionary") print(x) ###Output x before changing an item in the dictionary dict_values(['191022987', 'IT', 2024]) x after changing an item in the dictionary dict_values(['191022987', 'EXTC', 2024]) ###Markdown Looping through a dictionaryYou can loop through a dictionary by using a `for` loop.When looping through a dictionary, the return value are the keys of the dictionary, but there are methods to return the values as well. ###Code student = { "id": "191022987", "branch": "IT", "grad_year":2024 } #Print all key names in the dictionary, one by one: for x in student: print(x) print("\n")#line break #Print all values in the dictionary, one by one: for x in student: print(student[x]) print("\n")#line break #You can also use the values() method to return values of a dictionary: for x in student.values(): print(x) print("\n")#line break #You can use the keys() method to return the keys of a dictionary: for x in student.keys(): print(x) print("\n")#line break #Loop through both keys and values, by using the items() method: for x, y in student.items(): print(x, y) ###Output id branch grad_year 191022987 IT 2024 191022987 IT 2024 id branch grad_year id 191022987 branch IT grad_year 2024 ###Markdown Copying a Dictionary You cannot copy a dictionary simply by typing `dict2` = `dict1`, because: `dict2` will only be a reference to `dict1`, and changes made in `dict1` will automatically also be made in `dict2`.There are ways to make a copy, one way is to use the built-in Dictionary method **copy()** ###Code student = { "id": "191022987", "branch": "IT", "grad_year":2024 } st = student.copy() print(st) student["branch"]="CS" print("student",student) """In the output below you can see that updating branch key in student dictionary, st dictionary has not changed""" print("st",st) ###Output {'id': '191022987', 'branch': 'IT', 'grad_year': 2024} student {'id': '191022987', 'branch': 'CS', 'grad_year': 2024} st {'id': '191022987', 'branch': 'IT', 'grad_year': 2024} ###Markdown Another way to make a copy is to use the built-in function **dict()**. ###Code student = { "id": "191022987", "branch": "IT", "grad_year":2024 } st = dict(student) print(st) student["branch"]="CS" print("student",student) """In the output below you can see that updating branch key in student dictionary, st dictionary has not changed""" print("st",st) ###Output {'id': '191022987', 'branch': 'IT', 'grad_year': 2024} student {'id': '191022987', 'branch': 'CS', 'grad_year': 2024} st {'id': '191022987', 'branch': 'IT', 'grad_year': 2024} ###Markdown Nested DictionariesA dictionary can contain dictionaries, this is called nested dictionaries. ###Code student = { "student1":{ "id": "191022987", "branch": "IT", "grad_year":2024 }, "student2":{ "id": "191022100", "branch": "EXTC", "grad_year":2023 } } print("student1 :",student["student1"]) ###Output student1 : {'id': '191022987', 'branch': 'IT', 'grad_year': 2024}
src/shl-traditional-features.ipynb
###Markdown Using traditional models and feature engineering to classify SHL timeseries ###Code import zipfile import tempfile import pathlib import pandas as pd import numpy as np shl_dataset_label_order = [ 'Null', 'Still', 'Walking', 'Run', 'Bike', 'Car', 'Bus', 'Train', 'Subway', ] class SHLDataset: def __init__( self, acc_x, acc_y, acc_z, acc_mag, mag_x, mag_y, mag_z, mag_mag, gyr_x, gyr_y, gyr_z, gyr_mag, labels ): self.acc_x = acc_x self.acc_y = acc_y self.acc_z = acc_z self.acc_mag = acc_mag self.mag_x = mag_x self.mag_y = mag_y self.mag_z = mag_z self.mag_mag = mag_mag self.gyr_x = gyr_x self.gyr_y = gyr_y self.gyr_z = gyr_z self.gyr_mag = gyr_mag self.labels = labels def concat_inplace(self, other): self.acc_x = np.concatenate((self.acc_x, other.acc_x), axis=0) self.acc_y = np.concatenate((self.acc_y, other.acc_y), axis=0) self.acc_z = np.concatenate((self.acc_z, other.acc_z), axis=0) self.acc_mag = np.concatenate((self.acc_mag, other.acc_mag), axis=0) self.mag_x = np.concatenate((self.mag_x, other.mag_x), axis=0) self.mag_y = np.concatenate((self.mag_y, other.mag_y), axis=0) self.mag_z = np.concatenate((self.mag_z, other.mag_z), axis=0) self.mag_mag = np.concatenate((self.mag_mag, other.mag_mag), axis=0) self.gyr_x = np.concatenate((self.gyr_x, other.gyr_x), axis=0) self.gyr_y = np.concatenate((self.gyr_y, other.gyr_y), axis=0) self.gyr_z = np.concatenate((self.gyr_z, other.gyr_z), axis=0) self.gyr_mag = np.concatenate((self.gyr_mag, other.gyr_mag), axis=0) self.labels = np.concatenate((self.labels, other.labels), axis=0) def load_shl_dataset(dataset_dir: pathlib.Path, nrows=None): acc_x = np.nan_to_num(pd.read_csv(dataset_dir / 'Acc_x.txt', header=None, sep=' ', nrows=nrows).to_numpy()) print('Acc_x Import Done') acc_y = np.nan_to_num(pd.read_csv(dataset_dir / 'Acc_y.txt', header=None, sep=' ', nrows=nrows).to_numpy()) print('Acc_y Import Done') acc_z = np.nan_to_num(pd.read_csv(dataset_dir / 'Acc_z.txt', header=None, sep=' ', nrows=nrows).to_numpy()) print('Acc_z Import Done') acc_mag = np.sqrt(acc_x**2 + acc_y**2 + acc_z**2) print('Acc_mag Import Done') mag_x = np.nan_to_num(pd.read_csv(dataset_dir / 'Mag_x.txt', header=None, sep=' ', nrows=nrows).to_numpy()) print('Mag_x Import Done') mag_y = np.nan_to_num(pd.read_csv(dataset_dir / 'Mag_y.txt', header=None, sep=' ', nrows=nrows).to_numpy()) print('Mag_y Import Done') mag_z = np.nan_to_num(pd.read_csv(dataset_dir / 'Mag_z.txt', header=None, sep=' ', nrows=nrows).to_numpy()) print('Mag_z Import Done') mag_mag = np.sqrt(mag_x**2 + mag_y**2 + mag_z**2) print('Mag_mag Import Done') gyr_x = np.nan_to_num(pd.read_csv(dataset_dir / 'Gyr_x.txt', header=None, sep=' ', nrows=nrows).to_numpy()) print('Gyr_x Import Done') gyr_y = np.nan_to_num(pd.read_csv(dataset_dir / 'Gyr_y.txt', header=None, sep=' ', nrows=nrows).to_numpy()) print('Gyr_y Import Done') gyr_z = np.nan_to_num(pd.read_csv(dataset_dir / 'Gyr_z.txt', header=None, sep=' ', nrows=nrows).to_numpy()) print('Gyr_z Import Done') gyr_mag = np.sqrt(gyr_x**2 + gyr_y**2 + gyr_z**2) print('Gyr_mag Import Done') labels = np.nan_to_num(pd.read_csv(dataset_dir / 'Label.txt', header=None, sep=' ', nrows=nrows).mode(axis=1).to_numpy().flatten()) print('Labels Import Done') return SHLDataset( acc_x, acc_y, acc_z, acc_mag, mag_x, mag_y, mag_z, mag_mag, gyr_x, gyr_y, gyr_z, gyr_mag, labels ) def load_zipped_shl_dataset(zip_dir: pathlib.Path, tqdm=None, nrows=None, subdir_in_zip='train'): with tempfile.TemporaryDirectory() as unzip_dir: with zipfile.ZipFile(zip_dir, 'r') as zip_ref: if tqdm: for member in tqdm(zip_ref.infolist(), desc=f'Extracting {zip_dir}'): zip_ref.extract(member, unzip_dir) else: zip_ref.extractall(unzip_dir) train_dir = pathlib.Path(unzip_dir) / subdir_in_zip sub_dirs = [x for x in train_dir.iterdir() if train_dir.is_dir()] result_dataset = None for sub_dir in sub_dirs: sub_dataset = load_shl_dataset(train_dir / sub_dir, nrows=nrows) if result_dataset is None: result_dataset = sub_dataset else: result_dataset.concat_inplace(sub_dataset) del sub_dataset return result_dataset from pathlib import Path # We are going to train the models on a small subsample of the whole dataset # The assumption behind this is that traditional models require significantly # less amount of training data DATASET_DIRS = [ Path('shl-dataset/challenge-2019-train_torso.zip'), Path('shl-dataset/challenge-2019-train_bag.zip'), Path('shl-dataset/challenge-2019-train_hips.zip'), Path('shl-dataset/challenge-2020-train_hand.zip'), ] NROWS_PER_DATASET = 5000 import numpy as np from tqdm import tqdm from sklearn.utils.class_weight import compute_class_weight # Join all datasets acc_mag_conc = None mag_mag_conc = None gyr_mag_conc = None y_conc = None for dataset_dir in DATASET_DIRS: # Load dataset from zip file into temporary directory dataset = load_zipped_shl_dataset(dataset_dir, tqdm=tqdm, nrows=NROWS_PER_DATASET) if acc_mag_conc is None: acc_mag_conc = dataset.acc_mag else: acc_mag_conc = np.concatenate((acc_mag_conc, dataset.acc_mag), axis=0) if mag_mag_conc is None: mag_mag_conc = dataset.mag_mag else: mag_mag_conc = np.concatenate((mag_mag_conc, dataset.mag_mag), axis=0) if gyr_mag_conc is None: gyr_mag_conc = dataset.gyr_mag else: gyr_mag_conc = np.concatenate((gyr_mag_conc, dataset.gyr_mag), axis=0) if y_conc is None: y_conc = dataset.labels else: y_conc = np.concatenate((y_conc, dataset.labels), axis=0) del dataset # Check that we don't have NaNs in our dataset assert not np.isnan(acc_mag_conc).any() assert not np.isnan(mag_mag_conc).any() assert not np.isnan(gyr_mag_conc).any() import joblib from sklearn.preprocessing import PowerTransformer acc_scaler = joblib.load('models/acc-scaler.joblib') mag_scaler = joblib.load('models/mag-scaler.joblib') gyr_scaler = joblib.load('models/gyr-scaler.joblib') # Fit and export scalers acc_mag_scaled = acc_scaler.fit_transform(acc_mag_conc) del acc_mag_conc mag_mag_scaled = mag_scaler.fit_transform(mag_mag_conc) del mag_mag_conc gyr_mag_scaled = gyr_scaler.fit_transform(gyr_mag_conc) del gyr_mag_conc import numpy as np from scipy import signal from scipy.special import entr def magnitude(x,y,z): return np.sqrt(x**2 + y**2 + z**2) def entrop(pk,axis=0): pk = pk / np.sum(pk, axis=axis, keepdims=True) vec = entr(pk) S = np.sum(vec, axis=axis) return S def autocorr(x,axis=0): result = np.correlate(x, x, mode='full') return result[result.size // 2:] # Statistical Feature Calculation acc_mean = np.mean(acc_mag_scaled,axis=1) acc_std = np.std(acc_mag_scaled,axis=1) acc_max = np.max(acc_mag_scaled,axis=1) acc_min = np.min(acc_mag_scaled,axis=1) mag_mean = np.mean(mag_mag_scaled,axis=1) mag_std = np.std(mag_mag_scaled,axis=1) mag_max = np.max(mag_mag_scaled,axis=1) mag_min = np.min(mag_mag_scaled,axis=1) gyr_mean = np.mean(gyr_mag_scaled,axis=1) gyr_std = np.std(gyr_mag_scaled,axis=1) gyr_max = np.max(gyr_mag_scaled,axis=1) gyr_min = np.min(gyr_mag_scaled,axis=1) # Frequency Domain Feature Calculation fs = 100 acc_FREQ,acc_PSD = signal.welch(acc_mag_scaled,fs,nperseg=500,axis=1) mag_FREQ,mag_PSD = signal.welch(mag_mag_scaled,fs,nperseg=500,axis=1) gyr_FREQ,gyr_PSD = signal.welch(gyr_mag_scaled,fs,nperseg=500,axis=1) # Max PSD value acc_PSDmax = np.max(acc_PSD,axis=1) mag_PSDmax = np.max(mag_PSD,axis=1) gyr_PSDmax = np.max(gyr_PSD,axis=1) acc_PSDmin = np.min(acc_PSD,axis=1) mag_PSDmin = np.min(mag_PSD,axis=1) gyr_PSDmin = np.min(gyr_PSD,axis=1) # Frequency Entropy acc_entropy = entrop(acc_PSD,axis=1) mag_entropy = entrop(mag_PSD,axis=1) gyr_entropy = entrop(gyr_PSD,axis=1) # Frequency Center acc_fc = np.sum((acc_FREQ*acc_PSD),axis=1) / np.sum(acc_PSD,axis=1) mag_fc = np.sum((mag_FREQ*mag_PSD),axis=1) / np.sum(mag_PSD,axis=1) gyr_fc = np.sum((gyr_FREQ*gyr_PSD),axis=1) / np.sum(gyr_PSD,axis=1) # Autocorrelation Calculation acc_acr = np.apply_along_axis(autocorr,1,acc_mag_scaled) mag_acr = np.apply_along_axis(autocorr,1,mag_mag_scaled) gyr_acr = np.apply_along_axis(autocorr,1,gyr_mag_scaled) acc_features = np.stack((acc_mean,acc_std,acc_max,acc_min,acc_PSDmax,acc_PSDmin,acc_entropy,acc_fc),axis=1) mag_features = np.stack((mag_mean,mag_std,mag_max,mag_min,mag_PSDmax,mag_PSDmin,mag_entropy,mag_fc),axis=1) gyr_features = np.stack((gyr_mean,gyr_std,gyr_max,gyr_min,gyr_PSDmax,gyr_PSDmin,gyr_entropy,gyr_fc),axis=1) X = np.concatenate([acc_features,mag_features,gyr_features],axis=1) print("X shape: ",X.shape) print("y shape: ",y_conc.shape) print("Feature Extraction Done") # Install imblearn, a package with functionalities to balance our dataset import sys !{sys.executable} -m pip install imbalanced-learn from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_conc, test_size=0.33, random_state=1337) # Weight train dataset classes using SMOTE from imblearn.over_sampling import SMOTE oversampler = SMOTE() X_train, y_train = oversampler.fit_resample(X_train, y_train) # Check that classes are now balanced print(compute_class_weight('balanced', classes=np.unique(y_train), y=y_train)) from sklearn.metrics import accuracy_score, f1_score from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier names = [ "KNN", "SVM", "DT", "RF", "MLP", ] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), MLPClassifier(alpha=1, max_iter=1000), ] import tempfile import os from joblib import dump accuracies = [] f1scores = [] model_sizes = [] for model_name, model in zip(names, classifiers): model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) accuracies.append(accuracy) print(f'Acc of {model_name}: {accuracy}') f1 = f1_score(y_test, y_pred, average='weighted') f1scores.append(f1) print(f'F1 of {model_name}: {f1}') with tempfile.TemporaryDirectory() as tmp_dir: filename = f"{tmp_dir}/model.joblib" dump(model, filename) model_size = os.path.getsize(filename) model_sizes.append(model_size) print(f'Size of {model_name} in Bytes: {model_size}') import matplotlib.pyplot as plt fig, axs = plt.subplots(1, 3) fig.set_size_inches(6 * 3, 4) bar0 = axs[0].barh(names, [a * 100 for a in accuracies], color='grey') axs[0].set_xlabel('Accuracy in %') axs[0].set_xlim(0, 100) for rect in bar0: width = rect.get_width() axs[0].text(1.15*rect.get_width(), rect.get_y()+0.5*rect.get_height(), '{0:.2f}%'.format(width), ha='center', va='center') bar1 = axs[1].barh(names, [f1 * 100 for f1 in f1scores], color='grey') axs[1].set_xlabel('F1-Score in %') axs[1].set_xlim(0, 100) for rect in bar1: width = rect.get_width() axs[1].text(1.15*rect.get_width(), rect.get_y()+0.5*rect.get_height(), '{0:.2f}%'.format(width), ha='center', va='center') bar2 = axs[2].barh(names, [s / 1_000 for s in model_sizes], color='grey') axs[2].set_xlim(0, 10000) axs[2].set_xlabel('Größe in kB') for rect in bar2: width = rect.get_width() axs[2].text(max(750, 1.15*rect.get_width()), rect.get_y()+0.5*rect.get_height(), '{}kB'.format(int(width)), ha='center', va='center') for i in range(3): axs[i].grid( b = True, color ='grey', linestyle ='-.', linewidth = 0.5, alpha = 0.2 ) plt.savefig( f'../images/shl/traditional-models.pdf', dpi=1200, bbox_inches='tight' ) plt.show() ###Output _____no_output_____
notebooks/01-census-api-scraper.ipynb
###Markdown Compiling census data This script downloads 2016 ACS census data into a `.csv` file. ###Code import pandas as pd import requests from census import Census from us import states # To reproduce the data below, you'll need to save your # Census API key to `../data/census-api-key.txt`. # You can obtain a key here: https://api.census.gov/data/key_signup.html api_key = open("../data/census-api-key.txt").read().strip() c = Census(api_key) ###Output _____no_output_____ ###Markdown The counties of the New York-Newark-Jersey City, NY-NJ-PA Metropolitan Statistical Area, sourced [from here](https://www.bea.gov/regional/docs/msalist.cfm?mlist=45):* 34003 — "Bergen, NJ"* 34013 — "Essex, NJ"* 34017 — "Hudson, NJ"* 34019 — "Hunterdon, NJ"* 34023 — "Middlesex, NJ"* 34025 — "Monmouth, NJ"* 34027 — "Morris, NJ"* 34029 — "Ocean, NJ"* 34031 — "Passaic, NJ"* 34035 — "Somerset, NJ"* 34037 — "Sussex, NJ"* 34039 — "Union, NJ"* 36005 — "Bronx, NY"* 36027 — "Dutchess, NY"* 36047 — "Kings, NY"* 36059 — "Nassau, NY"* 36061 — "New York, NY"* 36071 — "Orange, NY"* 36079 — "Putnam, NY"* 36081 — "Queens, NY"* 36085 — "Richmond, NY"* 36087 — "Rockland, NY"* 36103 — "Suffolk, NY"* 36119 — "Westchester, NY"* 42103 — "Pike, PA" ###Code nyc_met_area = [ {"state_code":"34", "county_code": "003", "county_name": "Bergen, NJ"}, {"state_code":"34", "county_code": "013", "county_name": "Essex, NJ"}, {"state_code":"34", "county_code": "017", "county_name": "Hudson, NJ"}, {"state_code":"34", "county_code": "019", "county_name": "Hunterdon, NJ"}, {"state_code":"34", "county_code": "023", "county_name": "Middlesex, NJ"}, {"state_code":"34", "county_code": "025", "county_name": "Monmouth, NJ"}, {"state_code":"34", "county_code": "027", "county_name": "Morris, NJ"}, {"state_code":"34", "county_code": "029", "county_name": "Ocean, NJ"}, {"state_code":"34", "county_code": "031", "county_name": "Passaic, NJ"}, {"state_code":"34", "county_code": "035", "county_name": "Somerset, NJ"}, {"state_code":"34", "county_code": "037", "county_name": "Sussex, NJ"}, {"state_code":"34", "county_code": "039", "county_name": "Union, NJ"}, {"state_code":"36", "county_code": "005", "county_name": "Bronx, NY"}, {"state_code":"36", "county_code": "027", "county_name": "Dutchess, NY"}, {"state_code":"36", "county_code": "047", "county_name": "Kings, NY"}, {"state_code":"36", "county_code": "059", "county_name": "Nassau, NY"}, {"state_code":"36", "county_code": "061", "county_name": "New York, NY"}, {"state_code":"36", "county_code": "071", "county_name": "Orange, NY"}, {"state_code":"36", "county_code": "079", "county_name": "Putnam, NY"}, {"state_code":"36", "county_code": "081", "county_name": "Queens, NY"}, {"state_code":"36", "county_code": "085", "county_name": "Richmond, NY"}, {"state_code":"36", "county_code": "087", "county_name": "Rockland, NY"}, {"state_code":"36", "county_code": "103", "county_name": "Suffolk, NY"}, {"state_code":"36", "county_code": "119", "county_name": "Westchester, NY"}, {"state_code":"42", "county_code": "103", "county_name": "Pike, PA"} ] # Full API variable list available here https://api.census.gov/data/2016/acs/acs5/variables/ categories = [ 'NAME', # county name 'B01001_001E', # Total population 'B19013_001E', # Median income 'B25077_001E', # Median home value 'B15011_001E', # Total population age 25+ years with a bachelor's degree or higher 'B03002_003E', # Not Hispanic or Latino!!White alone 'B03002_004E', # Not Hispanic or Latino!!Black or African American alone 'B02001_004E', # American Indian and Alaska Native Alone 'B03002_006E', # Not Hispanic or Latino!!Asian alone 'B03002_007E', # Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone 'B03002_008E', # Not Hispanic or Latino!!Some other race alone 'B03002_009E', # Not Hispanic or Latino!!Two or more races 'B03002_012E', # Hispanic or Latino ] def get_acs_data(state_code, county_code): results = c.acs5.state_county_tract( categories, state_code, county_code, Census.ALL, year = 2016 ) return [ { 'geoid': res['state'] + res['county'] + res['tract'], 'name': res['NAME'], 'total_population': res['B01001_001E'], 'median_income': res['B19013_001E'], 'median_home_value': res['B25077_001E'], 'educational_attainment': res['B15011_001E'], 'white_alone': res['B03002_003E'], 'black_alone': res['B03002_004E'], 'native': res['B02001_004E'], 'asian': res['B03002_006E'], 'native_hawaiian_pacific_islander': res['B03002_007E'], 'some_other_race_alone': res['B03002_008E'], 'two_or_more': res['B03002_009E'], 'hispanic_or_latino': res['B03002_012E'] } for res in results ] census_data = [] for county in nyc_met_area: print(county["county_name"]) census_data += get_acs_data(county["state_code"], county["county_code"]) census_data = pd.DataFrame(census_data)[[ 'geoid', 'name', 'total_population', 'median_income', 'median_home_value', 'educational_attainment', 'white_alone', 'black_alone', 'native', 'asian', 'native_hawaiian_pacific_islander', 'some_other_race_alone', 'two_or_more', 'hispanic_or_latino', ]] census_data.head() len(census_data) census_data.to_csv( "../output/2016_census_data.csv", index = False ) ###Output _____no_output_____ ###Markdown Tract counts by county: ###Code ( census_data .assign( state_code = lambda df: df["geoid"].str.slice(0, 2), county_code = lambda df: df["geoid"].str.slice(2, 5) ) .groupby([ "state_code", "county_code" ]) .size() .to_frame("tracts") .reset_index() .merge( pd.DataFrame(nyc_met_area), how = "outer", on = [ "state_code", "county_code" ] ) .sort_values("tracts", ascending = False) ) ###Output _____no_output_____
2_Curso/Laboratorio/SAGE-noteb/IPYNB/PROGR/COMPL/56-COMPL-cython.ipynb
###Markdown Sin CythonEste programa genera $N$ enteros aleatorios entre $1$ y $M$, y una vez obtenidos los&nbsp; eleva al cuadrado y devuelve la suma de los cuadrados. Por tanto, calcula el cuadrado de la longitud&nbsp; de un vector aleatorio con coordenadas enteros en el intervalo $[1,M]$. ###Code def cuadrados(N,M): res = 0 for muda in xrange(N): x = randint(1,M) res += x*x return res for n in srange(3,8): %time A = cuadrados(10^n,10^6) ###Output CPU times: user 12 ms, sys: 4 ms, total: 16 ms Wall time: 11.7 ms CPU times: user 56 ms, sys: 36 ms, total: 92 ms Wall time: 70.5 ms CPU times: user 644 ms, sys: 76 ms, total: 720 ms Wall time: 539 ms CPU times: user 3.58 s, sys: 212 ms, total: 3.79 s Wall time: 3.54 s CPU times: user 33.1 s, sys: 392 ms, total: 33.5 s Wall time: 33.1 s ###Markdown Con CythonEsta sección debe usar el núcleo de Python2. Efectuamos el mismo cálculo: ###Code %load_ext cython %%cython -a import math import random def cuadrados_cy(long long N, long long M): cdef long long res = 0 cdef long long muda cdef long long x for muda in xrange(N): x = random.randint(1,M) res += math.pow(x,2) return res for n in range(3,8): %time A = cuadrados_cy(10^n,10^6) ###Output CPU times: user 4 ms, sys: 0 ns, total: 4 ms Wall time: 2.1 ms CPU times: user 16 ms, sys: 16 ms, total: 32 ms Wall time: 20.2 ms CPU times: user 220 ms, sys: 76 ms, total: 296 ms Wall time: 202 ms CPU times: user 1.7 s, sys: 144 ms, total: 1.84 s Wall time: 1.66 s CPU times: user 15.6 s, sys: 140 ms, total: 15.7 s Wall time: 15.6 s ###Markdown Optimizando el c&aacute;lculo de n&uacute;meros aleatorios: Esta sección debe utilizar el núcleo de Sage. No funciona la opción *-a* al llamar a cython y no vemos la dependencia de Python del código. La primera parte de la celda, hasta *def main():*, genera enteros aleatorios entre $1$ y $10^6$ usando librerías externas compilables en C. Este trozo se puede reutilizar. ###Code %%cython cdef extern from "gsl/gsl_rng.h": ctypedef struct gsl_rng_type: pass ctypedef struct gsl_rng: pass gsl_rng_type *gsl_rng_mt19937 gsl_rng *gsl_rng_alloc(gsl_rng_type * T) cdef gsl_rng * r = gsl_rng_alloc(gsl_rng_mt19937) cdef extern from "gsl/gsl_randist.h": long int uniform "gsl_rng_uniform_int"(gsl_rng * r, unsigned long int n) def main(): cdef int n n = uniform(r,1000000) return n cdef long f(long x): return x**2 import random def cuadrados_cy2(int N): cdef long res = 0 cdef int muda for muda in range(N): res += f(main()) return res for n in srange(3,8): %time A = cuadrados_cy2(10^n) ###Output CPU times: user 0 ns, sys: 0 ns, total: 0 ns Wall time: 175 µs CPU times: user 0 ns, sys: 0 ns, total: 0 ns Wall time: 1.2 ms CPU times: user 12 ms, sys: 0 ns, total: 12 ms Wall time: 10.5 ms CPU times: user 80 ms, sys: 0 ns, total: 80 ms Wall time: 80 ms CPU times: user 540 ms, sys: 0 ns, total: 540 ms Wall time: 540 ms ###Markdown Problema similar sin n&uacute;meros aleatorios: ###Code %%cython def cuadrados_cy3(long long int N): cdef long long int res = 0 cdef long long int k for k in range(N): res += k**2 return res for n in srange(3,8): %time A = cuadrados_cy3(10^n) def cuadrados5(N): res = 0 for k in range(N): res += k**2 return res for n in srange(3,8): %time A = cuadrados5(10^n) ###Output CPU times: user 0 ns, sys: 0 ns, total: 0 ns Wall time: 932 µs CPU times: user 8 ms, sys: 0 ns, total: 8 ms Wall time: 6.77 ms CPU times: user 56 ms, sys: 0 ns, total: 56 ms Wall time: 55.3 ms CPU times: user 364 ms, sys: 24 ms, total: 388 ms Wall time: 385 ms CPU times: user 3.12 s, sys: 136 ms, total: 3.26 s Wall time: 3.26 s
Extra-Day-14/target-encoding.ipynb
###Markdown Introduction Most of the techniques we've seen in this course have been for numerical features. The technique we'll look at in this lesson, *target encoding*, is instead meant for categorical features. It's a method of encoding categories as numbers, like one-hot or label encoding, with the difference that it also uses the *target* to create the encoding. This makes it what we call a **supervised** feature engineering technique. ###Code import pandas as pd autos = pd.read_csv("data/autos.csv") ###Output _____no_output_____ ###Markdown Target Encoding A **target encoding** is any kind of encoding that replaces a feature's categories with some number derived from the target.A simple and effective version is to apply a group aggregation from Lesson 3, like the mean. Using the *Automobiles* dataset, this computes the average price of each vehicle's make: ###Code autos.head() autos["make_encoded"] = autos.groupby("make")["price"].transform("mean") autos[["make", "price", "make_encoded"]].head(10) ###Output _____no_output_____ ###Markdown This kind of target encoding is sometimes called a **mean encoding**. Applied to a binary target, it's also called **bin counting**. (Other names you might come across include: likelihood encoding, impact encoding, and leave-one-out encoding.) Smoothing An encoding like this presents a couple of problems, however. First are *unknown categories*. Target encodings create a special risk of overfitting, which means they need to be trained on an independent "encoding" split. When you join the encoding to future splits, Pandas will fill in missing values for any categories not present in the encoding split. These missing values you would have to impute somehow.Second are *rare categories*. When a category only occurs a few times in the dataset, any statistics calculated on its group are unlikely to be very accurate. In the *Automobiles* dataset, the `mercurcy` make only occurs once. The "mean" price we calculated is just the price of that one vehicle, which might not be very representative of any Mercuries we might see in the future. Target encoding rare categories can make overfitting more likely.A solution to these problems is to add **smoothing**. The idea is to blend the *in-category* average with the *overall* average. Rare categories get less weight on their category average, while missing categories just get the overall average.In pseudocode:```encoding = weight * in_category + (1 - weight) * overall```where `weight` is a value between 0 and 1 calculated from the category frequency.An easy way to determine the value for `weight` is to compute an **m-estimate**:```weight = n / (n + m)```where `n` is the total number of times that category occurs in the data. The parameter `m` determines the "smoothing factor". Larger values of `m` put more weight on the overall estimate.In the *Automobiles* dataset there are three cars with the make `chevrolet`. If you chose `m=2.0`, then the `chevrolet` category would be encoded with 60% of the average Chevrolet price plus 40% of the overall average price. ###Code print(f"autos shape: {autos.shape}") print(f"Chevrolet shape: {autos[autos.make == 'chevrolet'].shape}") print(f"Average price of all vehicles: {autos.price.mean()}") print(f"Average price of chevrolet: {autos[autos.make == 'chevrolet'].price.mean()}") ###Output autos shape: (193, 26) Chevrolet shape: (3, 26) Average price of all vehicles: 13285.025906735751 Average price of chevrolet: 6007.0 ###Markdown ```weight = n / (n + m) = 3 / (3 + 2) = 3 / 5 = 0.6chevrolet = 0.6 * 6000.00 + 0.4 * 13285.03```When choosing a value for `m`, consider how noisy you expect the categories to be. Does the price of a vehicle vary a great deal within each make? Would you need a lot of data to get good estimates? If so, it could be better to choose a larger value for `m`; if the average price for each make were relatively stable, a smaller value could be okay.Use Cases for Target EncodingTarget encoding is great for:High-cardinality features: A feature with a large number of categories can be troublesome to encode: a one-hot encoding would generate too many features and alternatives, like a label encoding, might not be appropriate for that feature. A target encoding derives numbers for the categories using the feature's most important property: its relationship with the target.Domain-motivated features: From prior experience, you might suspect that a categorical feature should be important even if it scored poorly with a feature metric. A target encoding can help reveal a feature's true informativeness. Example - MovieLens1M The [*MovieLens1M*](https://www.kaggle.com/grouplens/movielens-20m-dataset) dataset contains one-million movie ratings by users of the MovieLens website, with features describing each user and movie. This hidden cell sets everything up: ###Code import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import warnings plt.style.use("seaborn-whitegrid") plt.rc("figure", autolayout=True) plt.rc( "axes", labelweight="bold", labelsize="large", titleweight="bold", titlesize=14, titlepad=10, ) warnings.filterwarnings('ignore') df = pd.read_csv("data/movielens1m.csv") df = df.astype(np.uint8, errors='ignore') # reduce memory footprint print("Number of Unique Zipcodes: {}".format(df["Zipcode"].nunique())) ###Output Number of Unique Zipcodes: 3439 ###Markdown With over 3000 categories, the `Zipcode` feature makes a good candidate for target encoding, and the size of this dataset (over one-million rows) means we can spare some data to create the encoding.We'll start by creating a 25% split to train the target encoder. ###Code X = df.copy() y = X.pop('Rating') # Encoding split X_encode = X.sample(frac=0.25) y_encode = y[X_encode.index] # Training split X_pretrain = X.drop(X_encode.index) y_train = y[X_pretrain.index] ###Output _____no_output_____ ###Markdown The `category_encoders` package in `scikit-learn-contrib` implements an m-estimate encoder, which we'll use to encode our `Zipcode` feature. ###Code from category_encoders import MEstimateEncoder # Create the encoder instance. Choose m to control noise. encoder = MEstimateEncoder(cols=["Zipcode"], m=5.0) # Fit the encoder on the encoding split. encoder.fit(X_encode, y_encode) # Encode the Zipcode column to create the final training data X_train = encoder.transform(X_pretrain) ###Output _____no_output_____ ###Markdown Let's compare the encoded values to the target to see how informative our encoding might be. ###Code plt.figure(dpi=90) ax = sns.distplot(y, kde=False, norm_hist=True) ax = sns.kdeplot(X_train.Zipcode, color='r', ax=ax) ax.set_xlabel("Rating") ax.legend(labels=['Zipcode', 'Rating']); ###Output _____no_output_____
5.5.4- Challenge What test to use.ipynb
###Markdown Were people more trusting in 2012, or 2014? ###Code for country in countries: fig, ax1 = plt.subplots(1, 2, figsize=(5, 2)) ax1[0].hist(df['ppltrst'][(df['cntry'] == country) & (df['year']==6)]) ax1[1].hist(df['ppltrst'][(df['cntry'] == country) & (df['year']==7)]) fig.text(0.5, 1, country) ax1[0].set_title('2012') ax1[1].set_title('2014') plt.show() for country in countries: print(country) print('2012 mean: ' + str(df['ppltrst'][(df['cntry'] == country) & (df['year']==6)].mean())) print('2014 mean: ' + str(df['ppltrst'][(df['cntry'] == country) & (df['year']==7)].mean())) print(stats.ttest_rel(df['ppltrst'][(df['cntry'] == country) & (df['year']==6)], df['ppltrst'][(df['cntry'] == country) & (df['year']==7)], nan_policy='omit' )) ###Output CH 2012 mean: 5.677878395860285 2014 mean: 5.751617076326003 Ttest_relResult(statistic=-0.6586851756725737, pvalue=0.5102943511301135) CZ 2012 mean: 4.362519201228879 2014 mean: 4.424657534246576 Ttest_relResult(statistic=-0.5001638336887216, pvalue=0.617129268240474) DE 2012 mean: 5.214285714285714 2014 mean: 5.357142857142857 Ttest_relResult(statistic=-0.18399501804849683, pvalue=0.8568563797095805) ES 2012 mean: 5.114591920857379 2014 mean: 4.895127993393889 Ttest_relResult(statistic=2.4561906976601646, pvalue=0.014181580725320284) NO 2012 mean: 6.64931506849315 2014 mean: 6.598630136986301 Ttest_relResult(statistic=0.5073077081124404, pvalue=0.61209257015177) SE 2012 mean: 6.058498896247241 2014 mean: 6.257709251101321 Ttest_relResult(statistic=-2.0671082026033982, pvalue=0.03900781670958545) ###Markdown It seems that only Norway and Spain decreased in trust. However, Norway's decrease was slight. It does seem that Norway had a much smaller sample here, so the mean would be more sensitive that Spain's, and may have not experienced such a large decrease at all. Were people happier in 2012, or, 2014? ###Code for country in countries: fig, ax1 = plt.subplots(1, 2, figsize=(5, 2)) ax1[0].hist(df['happy'][(df['cntry'] == country) & (df['year']==6)]) ax1[1].hist(df['happy'][(df['cntry'] == country) & (df['year']==7)]) fig.text(0.5, 1, country) ax1[0].set_title('2012') ax1[1].set_title('2014') plt.show() for country in countries: print(country) print('2012 mean: ' + str(df['happy'][(df['cntry'] == country) & (df['year']==6)].mean())) print('2014 mean: ' + str(df['happy'][(df['cntry'] == country) & (df['year']==7)].mean())) print(stats.ttest_rel(df['happy'][(df['cntry'] == country) & (df['year']==6)], df['happy'][(df['cntry'] == country) & (df['year']==7)], nan_policy='omit' )) ###Output CH 2012 mean: 8.088311688311688 2014 mean: 8.116429495472186 Ttest_relResult(statistic=-0.319412957862232, pvalue=0.7495001355429063) CZ 2012 mean: 6.7708978328173375 2014 mean: 6.914110429447852 Ttest_relResult(statistic=-1.4561384833039597, pvalue=0.1458454843389451) DE 2012 mean: 7.428571428571429 2014 mean: 7.857142857142857 Ttest_relResult(statistic=-0.8062257748298549, pvalue=0.4346138707734991) ES 2012 mean: 7.548679867986799 2014 mean: 7.41996699669967 Ttest_relResult(statistic=1.613832417735418, pvalue=0.10682451556479494) NO 2012 mean: 8.25171939477304 2014 mean: 7.9151846785225715 Ttest_relResult(statistic=4.2856826576235925, pvalue=2.067453013405473e-05) SE 2012 mean: 7.907386990077177 2014 mean: 7.946961325966851 Ttest_relResult(statistic=-0.5581637086030012, pvalue=0.5768709591233714) ###Markdown It seems that all countries, other than Spain and Norway again decreased in their mean here. other than that, all countries appeared happier. I used the Wilcoxn ranked test, since all histograms were non-normal. ###Code male = df['tvtot'][(df['gndr'] == 1.0) & (df['year']==6)] female = df['tvtot'][(df['gndr'] == 2.0) & (df['year']==6)] fig, ax1 = plt.subplots(1, 2, figsize=(7, 4)) ax1[0].hist(male) ax1[1].hist(female) fig.text(0.5, 1, 'TV') ax1[0].set_title('Male') ax1[1].set_title('Female') plt.show() print('Male mean: ' + str( male.mean())) print('Male sample count:', male.count()) print('Male variance:', male.var()) print('Female variance:', female.var()) print('Female mean: ' + str(female.mean())) print('female sample count:', female.count()) print(stats.ttest_ind(male, female, nan_policy='omit' )) ###Output Male mean: 3.901906090190609 Male sample count: 2151 female sample count: 2140 Male variance: 3.9350242721070847 Female variance: 4.2002724218234535 Female mean: 3.944392523364486 Ttest_indResult(statistic=-0.6899928109209502, pvalue=0.49023604027095813) ###Markdown There is not much of a difference in the means for these samples. I used the t-test measure, because the samples and variances were similar. Who was more likely to believe people were fair in 2012, people living with a partner or people living alone? ###Code partner = df['pplfair'][(df['partner'] == 1.0)] no_partner = df['pplfair'][(df['partner'] == 2.0)] fig, ax1 = plt.subplots(1, 2, figsize=(7, 4)) ax1[0].hist(partner) ax1[1].hist(no_partner) fig.text(0.5, 1, 'Are People Fair?') ax1[0].set_title('Partner') ax1[1].set_title('No Partner') plt.show() print('Partner mean: ' + str(partner.mean())) print('Partner sample count:', partner.count()) print('Partner variance:', partner.var()) print('Partner Standard Deviation:', partner.std()) print('No Partner variance:', no_partner.var()) print('No Partner mean: ' + str(no_partner.mean())) print('No Partner sample count:', no_partner.count()) print('No Partner Standard Deviation', no_partner.std()) print(stats.ttest_ind(partner, no_partner, nan_policy='omit')) ###Output Partner mean: 6.063890473474045 Partner sample count: 5259 Partner variance: 4.451223431135867 Partner Standard Deviation: 2.1097922720343507 No Partner variance: 4.665807447987503 No Partner mean: 5.911280487804878 No Partner sample count: 3280 No Partner Standard Deviation 2.1600480198337033 Ttest_indResult(statistic=3.221397103615396, pvalue=0.001280455731833167) ###Markdown After looking at this, it would be reasonable to say that the data supports that people with partners find others more fair. I used a t-test because the means looked relatively normal (a small negative skewness) and the standard deviations were almost the same. So, it would be reasonable to conclude that with the partner mean more than two above the no partner mean, they are different. However, the sample sizes are a bit off. However, they are both over 3000. Pick three or four of the countries in the sample and compare how often people met socially in 2014. Are there differences, and if so, which countries stand out? ###Code czech = df['sclmeet'][(df['cntry'] == 'CZ') & (df['year'] == 7)].dropna() norway = df['sclmeet'][(df['cntry'] == 'NO') & (df['year'] == 7)].dropna() spain = df['sclmeet'][(df['cntry'] == 'ES')& (df['year'] == 7)].dropna() fig, axs = plt.subplots(1, 3, figsize=(8, 6)) axs[0].hist(czech) axs[1].hist(norway) axs[2].hist(spain) fig.text(0.25, 1, '2014 Social Meetings') axs[0].set_title('CZ') axs[1].set_title('NO') axs[2].set_title('SP') plt.tight_layout() plt.show() F, p = stats.f_oneway(czech, norway, spain) print('F score: ' + str(F)) print('P-value: ' + str(p)) print('Czech Republic mean: ' + str(czech.mean())) print('Czech Republic count: ' + str(czech.count())) print('Norway mean: ' + str(norway.mean())) print('Norway count: ' + str(norway.count())) print('Spain mean: ' + str(spain.mean())) print('Spain count: ' + str(spain.count())) print('Norway and Czech Republic: ' + str(stats.ttest_ind(norway, czech))) print('Spain and Norway: ' + str(stats.ttest_ind(spain, norway))) print('Czech Republic and Spain: ' + str(stats.ttest_ind(czech, spain))) ###Output Norway and Czech Republic: Ttest_indResult(statistic=11.269186128577815, pvalue=3.0334022155191707e-28) Spain and Norway: Ttest_indResult(statistic=-0.632916395870007, pvalue=0.5268628350318294) Czech Republic and Spain: Ttest_indResult(statistic=-11.400026538179093, pvalue=3.7676844407353374e-29) ###Markdown The Czech Republic had a much lower mean, but also a much smaller sample. Which made the better comparison between Norway and Spain, which was closer to acheiving significance. Pick three or four of the countries in the sample and compare how often people took part in social activities, relative to others their age, in 2014. Are there differences, and if so, which countries stand out? ###Code czech = df['sclact'][(df['cntry'] == 'CZ') & (df['year'] == 7)].dropna() norway = df['sclact'][(df['cntry'] == 'NO') & (df['year'] == 7)].dropna() spain = df['sclact'][(df['cntry'] == 'ES')& (df['year'] == 7)].dropna() fig, axs = plt.subplots(1, 3, figsize=(8, 6)) axs[0].hist(czech) axs[1].hist(norway) axs[2].hist(spain) fig.text(0.25, 1, '2014 Social Meetings by Age') axs[0].set_title('CZ') axs[1].set_title('NO') axs[2].set_title('SP') plt.tight_layout() plt.show() F, p = stats.f_oneway(czech, norway, spain) print('F score: ' + str(F)) print('P-value: ' + str(p)) ###Output F score: 16.607418390848494 P-value: 6.82063334451585e-08 ###Markdown A low p value indicates a difference in the means. ###Code print('Czech Republic mean: ' + str(czech.mean())) print('Czech Republic count: ' + str(czech.count())) print('Norway mean: ' + str(norway.mean())) print('Norway count: ' + str(norway.count())) print('Spain mean: ' + str(spain.mean())) print('Spain count: ' + str(spain.count())) print('Norway and Czech Republic: ' + str(stats.ttest_ind(norway, czech))) print('Spain and Norway: ' + str(stats.ttest_ind(spain, norway))) print('Czech Republic and Spain: ' + str(stats.ttest_ind(czech, spain))) There is not a large difference in the means, but the pairwise t-tests ###Output _____no_output_____
mh_book/docs/models/rf.ipynb
###Markdown Random Forest Classifier We begin our analysis with randomm forest classifer. Random forest is the meta estimator which fits number of decision tree classifiers on various subsamples of data and uses averaging for improving the model accuracy. ###Code # Load required packages import pandas as pd from imblearn.over_sampling import SMOTE from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import confusion_matrix, classification_report, precision_score, recall_score, f1_score from fairlearn.metrics import MetricFrame from fairlearn.reductions import GridSearch, EqualizedOdds import shap import plotly.express as px import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Modelling Company Employees ###Code # Load data into dataframe df = pd.read_csv('./../../../datasets/preprocessed_ce.csv') ###Output _____no_output_____ ###Markdown Splitting data ###Code tgt_col = 'have you ever sought treatment for a mental health disorder from a mental health professional?' y = df[tgt_col] X = df.drop(tgt_col, axis=1) ###Output _____no_output_____ ###Markdown Let's check if the data is imbalanced or not. ###Code # Split data into trainining and testing set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=42) # Keep copy of original variables X_train_ori = X_train.copy() X_test_ori = X_test.copy() ###Output _____no_output_____ ###Markdown Categorical features encoding Before we move forward to encode categorical features, it is necessary to identify them first. ###Code df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 1225 entries, 0 to 1224 Data columns (total 55 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 are you self-employed? 1225 non-null int64 1 how many employees does your company or organization have? 1225 non-null object 2 is your employer primarily a tech company/organization? 1225 non-null float64 3 is your primary role within your company related to tech/it? 1225 non-null float64 4 does your employer provide mental health benefits as part of healthcare coverage? 1225 non-null object 5 do you know the options for mental health care available under your employer-provided health coverage? 1225 non-null object 6 has your employer ever formally discussed mental health (for example, as part of a wellness campaign or other official communication)? 1225 non-null object 7 does your employer offer resources to learn more about mental health disorders and options for seeking help? 1225 non-null object 8 is your anonymity protected if you choose to take advantage of mental health or substance abuse treatment resources provided by your employer? 1225 non-null object 9 if a mental health issue prompted you to request a medical leave from work, how easy or difficult would it be to ask for that leave? 1225 non-null object 10 would you feel more comfortable talking to your coworkers about your physical health or your mental health? 1225 non-null object 11 would you feel comfortable discussing a mental health issue with your direct supervisor(s)? 1225 non-null object 12 have you ever discussed your mental health with your employer? 1225 non-null float64 13 would you feel comfortable discussing a mental health issue with your coworkers? 1225 non-null object 14 have you ever discussed your mental health with coworkers? 1225 non-null float64 15 have you ever had a coworker discuss their or another coworker's mental health with you? 1225 non-null float64 16 overall, how much importance does your employer place on physical health? 1225 non-null float64 17 overall, how much importance does your employer place on mental health? 1225 non-null float64 18 do you have previous employers? 1225 non-null int64 19 was your employer primarily a tech company/organization? 1225 non-null float64 20 have your previous employers provided mental health benefits? 1225 non-null object 21 were you aware of the options for mental health care provided by your previous employers? 1225 non-null object 22 did your previous employers ever formally discuss mental health (as part of a wellness campaign or other official communication)? 1225 non-null object 23 did your previous employers provide resources to learn more about mental health disorders and how to seek help? 1225 non-null object 24 was your anonymity protected if you chose to take advantage of mental health or substance abuse treatment resources with previous employers? 1225 non-null object 25 would you have felt more comfortable talking to your previous employer about your physical health or your mental health? 1225 non-null object 26 would you have been willing to discuss your mental health with your direct supervisor(s)? 1225 non-null object 27 did you ever discuss your mental health with your previous employer? 1225 non-null float64 28 would you have been willing to discuss your mental health with your coworkers at previous employers? 1225 non-null object 29 did you ever discuss your mental health with a previous coworker(s)? 1225 non-null float64 30 did you ever have a previous coworker discuss their or another coworker's mental health with you? 1225 non-null float64 31 overall, how much importance did your previous employer place on physical health? 1225 non-null float64 32 overall, how much importance did your previous employer place on mental health? 1225 non-null float64 33 do you currently have a mental health disorder? 1225 non-null object 34 have you had a mental health disorder in the past? 1225 non-null object 35 have you ever sought treatment for a mental health disorder from a mental health professional? 1225 non-null int64 36 do you have a family history of mental illness? 1225 non-null object 37 if you have a mental health disorder, how often do you feel that it interferes with your work when being treated effectively? 1225 non-null object 38 if you have a mental health disorder, how often do you feel that it interferes with your work when not being treated effectively (i.e., when you are experiencing symptoms)? 1225 non-null object 39 have your observations of how another individual who discussed a mental health issue made you less likely to reveal a mental health issue yourself in your current workplace? 1225 non-null object 40 how willing would you be to share with friends and family that you have a mental illness? 1225 non-null int64 41 would you be willing to bring up a physical health issue with a potential employer in an interview? 1225 non-null object 42 would you bring up your mental health with a potential employer in an interview? 1225 non-null object 43 are you openly identified at work as a person with a mental health issue? 1225 non-null float64 44 if they knew you suffered from a mental health disorder, how do you think that team members/co-workers would react? 1225 non-null float64 45 have you observed or experienced an unsupportive or badly handled response to a mental health issue in your current or previous workplace? 1225 non-null object 46 have you observed or experienced supportive or well handled response to a mental health issue in your current or previous workplace? 1225 non-null object 47 overall, how well do you think the tech industry supports employees with mental health issues? 1225 non-null float64 48 would you be willing to talk to one of us more extensively about your experiences with mental health issues in the tech industry? (note that all interview responses would be used anonymously and only with your permission.) 1225 non-null float64 49 what is your age? 1225 non-null float64 50 what is your gender? 1225 non-null object 51 what country do you live in? 1225 non-null object 52 what is your race? 1225 non-null object 53 what country do you work in? 1225 non-null object 54 year 1225 non-null int64 dtypes: float64(18), int64(5), object(32) memory usage: 526.5+ KB ###Markdown Looking at the information of dataframe, there are quite a lot of fetuares which has data type as "object". It is not necessary that all the features with data type as "object" be categorical features. There may be certain columns which might binary values which can be represented by booleans. It is better to check column one by one. But for now, I would like to go with the assumption that all the columns with data type as "object" are categorical columns. ###Code cat_cols = df.select_dtypes(include=['object']).columns ###Output _____no_output_____ ###Markdown There are 32 columns out of 55 which are categorical in nature. Out of those, after examining the data manually, we can infer that one of them is ordinal in nature and others can be treated as nominal columns. The column - "how many employees does your company or organization have?" - which gives information regarding the size of the company can be treated as ordinal coulmn. ###Code # Encoding ordinal column for training data X_train['how many employees does your company or organization have?'] = X_train['how many employees does your company or organization have?'].replace({'1-5':1, '6-25':2, '26-100':3, '100-500':4, '500-1000':5, 'More than 1000':6}) # Encoding ordinal column for testing data X_test['how many employees does your company or organization have?'] = X_test['how many employees does your company or organization have?'].replace({'1-5':1, '6-25':2, '26-100':3, '100-500':4, '500-1000':5, 'More than 1000':6}) # Encoding nominal columns for training data for column in cat_cols: dummy = pd.get_dummies(X_train[column], prefix=str(column)) X_train = pd.concat([X_train, dummy], axis=1) X_train.drop(column, axis=1, inplace=True) # Encoding nominal columns for testing data for column in cat_cols: dummy = pd.get_dummies(X_test[column], prefix=str(column)) X_test = pd.concat([X_test, dummy], axis=1) X_test.drop(column, axis=1, inplace=True) # Fill value 0 for mismatched columns mis_cols = list(set(X_train.columns) - set(X_test.columns)) X_test[mis_cols] = 0 ###Output _____no_output_____ ###Markdown Imbalance check ###Code y.value_counts() ###Output _____no_output_____ ###Markdown The data is imbalanced. In order to use any of the machine learning algorithm, we need to either over the minority class or downsample the majority. Considering the fact that we have less number of records in the data set, it is better to oversample. But, only training data needs to be oversample. For oversampling, Sample Minority Oversampling Technique (SMOTE) will be used. ###Code # Oversample the minority class in the target variable oversample = SMOTE() X_train, y_train = oversample.fit_resample(X_train.values, y_train.ravel()) ###Output _____no_output_____ ###Markdown Model training There are various paramters which random forest algorithm uses to train the model. Our aim is to find those paramters, also known as hyperparamters, which yeilds us the model with the best fit. ###Code # Declare parameters for grid search # Declare the classifer clf = RandomForestClassifier(class_weight="balanced", bootstrap=True, oob_score=True) # Declare the paramter grid for searching param_grid = dict( n_estimators = [100, 200, 400], criterion = ['gini', 'entropy'], max_depth = [10, 20, 40, None], max_features = ['sqrt', 'log2', None], max_samples = [0.4, 0.8, None] ) # Train the model rf_clf = GridSearchCV(clf, param_grid, scoring='f1', n_jobs=7, cv=5, verbose=2) rf_clf.fit(X_train, y_train) rf_clf.best_estimator_ # Save and load the model if required import joblib # joblib.dump(rf_clf.best_estimator_, './../../../models/rf_clf.pkl') rf_clf = joblib.load('./../../../models/rf_clf.pkl') # Predict outcomes with test set # y_pred = rf_clf.best_estimator_.predict(X_test) y_pred = rf_clf.predict(X_test) ###Output _____no_output_____ ###Markdown Model Evaluation In order to compute sensitivity and specificity, we need values such as true positives, true negatives, false positives and false neagatives. These values can be easily obtained from confusion matrix. ###Code # Get values from confusion metrix tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() # Compute sensitivity sensitivity = tp/(tp+fn) print(f"Sensitivity: {sensitivity} \n") # Compute specificity specificity = tn/(tn+fp) print(f"Specificity: {specificity} \n") # Compute f1 score f1 = f1_score(y_test, y_pred) print(f"F1 score: {f1} \n") # Compute classicfication report print(classification_report(y_test, y_pred)) ###Output Sensitivity: 0.8662420382165605 Specificity: 0.8068181818181818 F1 score: 0.8774193548387097 precision recall f1-score support 0 0.77 0.81 0.79 88 1 0.89 0.87 0.88 157 accuracy 0.84 245 macro avg 0.83 0.84 0.83 245 weighted avg 0.85 0.84 0.85 245 ###Markdown From the above report, it can inferred that model is finding it difficult to predict people who need to seek help from mental health professional and that can be acceptable. It won't harm any of us to visit a mental health professional even if we need not seek any help for any mental health issue. On the other hand the model is quite good at telling in case we that much needed help from mental health professional. An average F1 score of 0.83 and the overall F1 score of 0.88 is quite good considering the amount of data that we are training with. Though the model is quite better in predicting the individuals who need help than the ones who do not, the values of specificity and sensitivity are not far apart and hence the overall performance of the model is laudable. Fairness evaluation There are certain sensitive columns present in the data for which model should be less likely to be biased. Following are the columns for which we will be expecting that model be fair as much as possible:1. Feature revealing gender of the participant ('what is your gender?')2. Feature revealing race of the participant ('what is your race?') Disparity check with respect to gender ###Code # Create fairness metrics with respect to gender fair_metrics_sex = MetricFrame({'f1': f1_score, 'precision': precision_score, 'recall': recall_score}, y_test, y_pred, sensitive_features=X_test_ori['what is your gender?']) # Display overall metrics fair_metrics_sex.overall ###Output _____no_output_____ ###Markdown The overall metrics remains the same as the ungrouped metrics metrics that are calculated above. The overall precision and recall are close enough, indicating that the most of the people selected by the model for seeking help for mental health issues are relevant and also the most of the relevant people are picked by the model. Though obviously, there is huge scope for model improvement. ###Code # Display metrcis by group fair_metrics_sex.by_group ###Output _____no_output_____ ###Markdown Model is finding it easier to tag more female candidates who need help than the other counterparts. ###Code diff_metrics = pd.DataFrame(fair_metrics_sex.difference(method='between_groups'), columns=['Difference']) diff_metrics['Percentage'] = diff_metrics['Difference']*100 diff_metrics ###Output _____no_output_____ ###Markdown On a positive note, the difference between the minimum and the maximum metric is not huge Disparity check with respect to race ###Code # Create fairness metrics fair_metrics_race = MetricFrame({'f1': f1_score, 'precision': precision_score, 'recall': recall_score}, y_test, y_pred, sensitive_features=X_test_ori['what is your race?']) # Display overall metrics fair_metrics_race.overall # Display metrcis by group fair_metrics_race.by_group ###Output _____no_output_____ ###Markdown The model is working perfectly for black or African Americans but working the worst for asian participants. Moreover, for people belongs to more than one race, people selected by the model for help are all relevant but it could not identify all the those who are relevant. For white participants, model is working quite good and the disparity differences with the highest expected value is quite less. ###Code diff_metrics = pd.DataFrame(fair_metrics_race.difference(method='between_groups'), columns=['Difference']) diff_metrics['Percentage'] = diff_metrics['Difference']*100 diff_metrics ###Output _____no_output_____ ###Markdown The disparity between the scores are huge and it should be mitigated. Mitigated Model Training Here we will be utilizing the best estimator that we trained using grid search. For the constraint, we will be utilizing the equalized odds method.**Equalized Odds Parity** This parity is considered for binary classification. Let $X$ denote the feature vector, $A$ denote a senstive feature, $Y$ be the true labels. Parity constraint defined over the distribution of $(X, A, Y)$ is that a classifier $h$ satisfies equalized odds unders a distribution over $(X, A, Y)$ if its prediction $h(X)$ is conditionally independent of the sensitive feature $A$ given the true label $Y$. Mathematically, it can be expressed as - $ E[h(x) | A=a, Y=y] = E[h(X) | Y=y]$ ###Code # Declare paramters for mitigated model training best_estimator = RandomForestClassifier(class_weight='balanced', criterion='entropy', max_depth=10, max_features='sqrt', max_samples=0.8,oob_score=True, bootstrap=True) # Declare the constraint for training constraint = EqualizedOdds(difference_bound=0.01) # Select sensitive features X_train_rc = pd.DataFrame(X_train, columns=X_test.columns) sensitive_features_columns = [column for index, column in enumerate(X_test.columns) if ('what is your gender?' in column) or ('what is your race?' in column)] # Re-arrange the training data X_train_sf = X_train_rc[sensitive_features_columns] X_train_rc.drop(sensitive_features, axis=1, inplace=True) # Train the model mitigator = GridSearch(best_estimator, constraint, grid_size=100) mitigator.fit(X_train_rc, y_train, sensitive_features=X_train_sf) # Save and load the model if required # import joblib # joblib.dump(mitigator, './../../../models/mitigated_rf_clf.pkl') # mitigated_rf = joblib.load('./../../../models/mitigated_rf_clf.pkl') # Apply the transformations to the testing data X_test_rc = X_test.drop(sensitive_features, axis=1) # Predict using the mitigated models y_pred_mitigated = mitigator.predict(X_test_rc) ###Output _____no_output_____ ###Markdown Mitigated Model Evaluation For mitigated models, the metrics for evaluation remains the same that are sensitivity, specificity, f1 score, precision and recall. ###Code # Get values from confusion metrix tn, fp, fn, tp = confusion_matrix(y_test, y_pred_mitigated).ravel() # Compute sensitivity sensitivity = tp/(tp+fn) print(f"Sensitivity: {sensitivity} \n") # Compute specificity specificity = tn/(tn+fp) print(f"Specificity: {specificity} \n") # Compute f1 score f1 = f1_score(y_test, y_pred) print(f"F1 score: {f1} \n") # Compute classicfication report print(classification_report(y_test, y_pred_mitigated)) ###Output Sensitivity: 0.8598726114649682 Specificity: 0.7727272727272727 F1 score: 0.8774193548387097 precision recall f1-score support 0 0.76 0.77 0.76 88 1 0.87 0.86 0.87 157 accuracy 0.83 245 macro avg 0.81 0.82 0.81 245 weighted avg 0.83 0.83 0.83 245 ###Markdown For mitigated models, there is no huge difference in the evaluations metrics as compared to the unmitigated models. The average f1 score decrease by just 0.02 but the overall f1 did not take a major hit. The difference between sensitivity and specificity has increased significantly. It is necessary to achieve the balance between performance and fairness. Moreover, there is no major hit on the performance of the model. Fairness Evaluation for Mitigated Models Here again, we will be evaluating the model with respect to the selected sensitive features which are related to gender and race of the participants. ###Code # Create fairness metrics with respect to gender fair_metrics_sex = MetricFrame({'f1': f1_score, 'precision': precision_score, 'recall': recall_score}, y_test, y_pred_mitigated, sensitive_features=X_test_ori['what is your gender?']) # Display overall metrics fair_metrics_sex.overall ###Output _____no_output_____ ###Markdown The recall has decreased by just 0.01 which is not at all huge as compared to the increase the fairness of the model. ###Code # Display metrcis by group fair_metrics_sex.by_group ###Output _____no_output_____ ###Markdown The models is struggling with respect to the participants other than binary but the difference in parity has decreased. ```{margin}Research in progress for decreasing the parity.``` ###Code diff_metrics = pd.DataFrame(fair_metrics_sex.difference(method='between_groups'), columns=['Difference']) diff_metrics['Percentage'] = diff_metrics['Difference']*100 diff_metrics ###Output _____no_output_____ ###Markdown There is near about 3% decrease in the parity of the models with regards to gender for all the evaluation metrics. Eventhough, it is not huge but the model could decrease parity without compromising on its performance which is remarkable. ###Code # Create fairness metrics fair_metrics_race = MetricFrame({'f1': f1_score, 'precision': precision_score, 'recall': recall_score}, y_test, y_pred_mitigated, sensitive_features=X_test_ori['what is your race?']) # Display metrcis by group fair_metrics_race.by_group diff_metrics = pd.DataFrame(fair_metrics_race.difference(method='between_groups'), columns=['Difference']) diff_metrics['Percentage'] = diff_metrics['Difference']*100 diff_metrics ###Output _____no_output_____ ###Markdown There is no improvement in the model's parity difference with respect to race of the participants. On the positive note, the model is still performing quite good for all the races except 1. One of the reason I see that model is finding it difficult to make a good call with respect to Asians is that the quality of data available is not up to the mark. The number of data points available for this group is also too less for the model to derive any significant information. Improving the data quality and quantity might help model in better predicting the need to seek help for mental health issues from the professionals. Model Interpretation The fairness models are not supported by shap package to compute the shap values and hence can not be used for interpreting the models. But the unmitigated model is not too different the mitigated model and hence for our analysis we will be utilizing that model.Beginning with the feature importances of the random forest classifier. ###Code # Create a feature importance dataframe feat_imp_data = zip(list(X_test.columns), rf_clf.feature_importances_) feat_imp_df = pd.DataFrame(columns=['column', 'feature_importance'], data=feat_imp_data) # Sort feature importance feat_imp_df.sort_values('feature_importance', ascending=False, inplace=True) fig = px.bar(feat_imp_df[:20], x='feature_importance', y='column', orientation='h') fig.update_layout(width=2400) fig.show() ###Output _____no_output_____ ###Markdown On a glance, having past history of mental health disorder is the most important feature for predicting the need to seek help from mental health professional. This is closely followed by features converying the present mental state condition, how the employee perceives that the mental health disorder affect his/her work, willingness to share the status of mental health disorder to the family member, extent of comfort with discussing the issue with a colleage and the age of the participant. ###Code # Comput shap values explainer = shap.explainers.Tree(rf_clf, X_train, feature_names=X_test.columns) shap_values = explainer.shap_values(X_test, check_additivity=False) shap.summary_plot(shap_values[1], X_test, X_test.columns, title="SHAP summary plot", plot_size=(16.0, 30.0)) ###Output _____no_output_____
labs/Lab6_Classification_PCA/Singular Value Decomposition.ipynb
###Markdown Singular Value Decomposition and Applications References: SVD Image Compression Notebook Introduction The singular value decomposition of a matrix has many applications. Here I'll focus on an introduction to singular value decomposition and an application in clustering articles by topic. In another notebook (link) I show how singular value decomposition can be used in image compression.Any matrix $A$ can be decomposed to three matrices $U$, $\Sigma$, and $V$ such that $A = U \Sigma V$, this is called singular value decomposition. The columns of $U$ and $V$ are orthonormal and $\Sigma$ is diagonal. Most scientific computing packages have a function to compute the singular value decomposition, I won't go into the details of how to find $U$, $\Sigma$ and $V$ here. Some sources write the decomposition as $A = U \Sigma V^T$, so that their $V^T$ is our $V$. The usage in this notebook is consistent with how numpy's singular value decomposition function returns $V$. Example with a small matrix $A$: If $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$ $A$ can be written as $U \Sigma V$ where $U$, $\Sigma$, and $V$ are, rounded to 2 decimal places:$U = \begin{bmatrix} -0.23 & -0.97 \\ -0.97 & 0.23 \end{bmatrix}$ $S = \begin{bmatrix} 2.29 & 0 \\ 0 & 0.87 \end{bmatrix}$ $V = \begin{bmatrix} -0.53 & -0.85 \\ -0.85 & 0.53 \end{bmatrix}$ Interpretation Although the singular value decomposition has interesting properties from a linear algebra standpoint, I'm going to focus here on some of its applications and skip the derivation and geometric interpretations.Let $A$ be a $m \times n$ matrix with column vectors $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$. In the singular value decomposition of $A$, $U$ will be $m \times m$, $\Sigma$ will be $m \times n$ and $V$ will be $n \times n$. We denote the column vectors of $U$ as $\vec{u}_1, \vec{u}_2, ..., \vec{u}_m$ and $V$ as $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$, similarly to $A$. We'll call the values along the diagonal of $\Sigma$ as $\sigma_1, \sigma_2, ...$.We have that $A = U \Sigma V$ where:$U = \begin{bmatrix} \\ \\ \\ \vec{u}_1 & \vec{u}_2 & \dots & \vec{u}_m \\ \\ \\ \end{bmatrix}$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots \\ 0 & \sigma_2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$V = \begin{bmatrix} \\ \\ \\ \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_n \\ \\ \\ \end{bmatrix}$Because $\Sigma$ is diagonal, the columns of $A$ can be written as:$\vec{a}_i = \vec{u}_1 * \sigma_1 * V_{1,i} + \vec{u}_2 * \sigma_2 * V_{2,i} + ... = U * \Sigma * \vec{v}_i$ This is equivalent to creating a vector $\vec{w}_i$, where the elements of $\vec{w}_i$ are the elements of $\vec{v}_i$, weighted by the $\sigma$'s:$\vec{w}_i = \begin{bmatrix} \sigma_1V_{1,i} \\ \sigma_2V_{2,i} \\ \sigma_3V_{3,i} \\ \vdots \end{bmatrix} = \Sigma * \vec{v}_i$ Then $\vec{a}_i = U * \vec{w}_i$. That is to say that every column $\vec{a}_i$ of $A$ is expressed by a sum over all the columns of $U$, weighted by the values in the $i^{th}$ column of $V$, and the $\sigma$'s. By convention the order of the columns in $U$ and rows in $V$ is chosen such that the values in $\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots \\ 0 & \sigma_2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$ obey $\sigma_1 > \sigma_2 > \sigma_3 > ...$. This means that as a whole, the first column of $U$ and the first row of $V$ contribute more to the final values of $A$ than subsequent columns. This has applications in image compression (link to another notebook) and reducing the dimensionality of data by selecting the most import components. Brief discussion of dimensionality This section isn't required to understand how singular value decomposition is useful, but I've included it for completeness.If $A$ is $m \times n$ ($m$ rows and $n$ columns), $U$ will be $m \times m$, $\Sigma$ will be $m \times n$ and $V$ will be $n \times n$. However, there are only $r = rank(A)$ non-zero values in $\Sigma$, i.e. $\sigma_1, ..., \sigma_r \neq 0$; $\sigma_{r+1}, ..., \sigma_n = 0$. Therefore columns of $U$ beyond the $r^{th}$ column and rows of $V$ beyond the $r^{th}$ row do not contribute to $A$ and are usually omitted, leaving $U$ an $m \times r$ matrix, $\Sigma$ an $r \times r$ diagonal matrix and $V$ an $r \times n$ matrix. Example with data: Singular value decomposition can be used to classify similar objects (for example, news articles on a particular topic). Note above that similar $\vec{a_i}$'s will have similar $\vec{v_i}$'s.Imagine four blog posts, two about skiing and two about hockey. I've made up some data about five different words and the number of times they appear in each post: ###Code import pandas as pd c_names = ['post1', 'post2', 'post3', 'post4'] words = ['ice', 'snow', 'tahoe', 'goal', 'puck'] post_words = pd.DataFrame([[4, 4, 6, 2], [6, 1, 0, 5], [3, 0, 0, 5], [0, 6, 5, 1], [0, 4, 5, 0]], index = words, columns = c_names) post_words.index.names = ['word:'] post_words ###Output _____no_output_____ ###Markdown It looks like posts 1 and 4 pertain to skiing, and while posts 2 and 3 are about hockey. Imagine the DataFrame post_words as the matrix $A$, where the entries represent the number of times a given word appears in the post. The singular value decomposition of $A$ can be calculated using numpy. ###Code import numpy as np U, sigma, V = np.linalg.svd(post_words) print ("V = ") print (np.round(V, decimals=2) ) ###Output V = [[-0.4 -0.57 -0.63 -0.35] [-0.6 0.33 0.41 -0.6 ] [ 0.6 -0.41 0.32 -0.61] [-0.34 -0.63 0.58 0.39]] ###Markdown Recall that $\vec{a}_i = U * \Sigma * \vec{v}_i$, that is each column $\vec{v}_i$ of $V$ defines the entries in that column, $\vec{a}_i$, of our data matrix, $A$. Let's label V with the identities of the posts using a DataFrame: ###Code V_df = pd.DataFrame(V, columns=c_names) V_df ###Output _____no_output_____ ###Markdown Note how post1 and post4 agree closely in value in the first two rows of $V$, as do post2 and post3. This indicates that posts 1 and 4 contain similar words (in this case words relating to skiing). However, the agreement is less close in the last two rows, even among related posts. This is because the weights of the last two rows, $\sigma_3$ and $\sigma_4$, are small compared to $\sigma_1$ and $\sigma_2$. Let's look at the values for the $\sigma$'s. ###Code sigma ###Output _____no_output_____ ###Markdown $\sigma_1$ and $\sigma_2$ are about an order of magnitude greater than $\sigma_3$ and $\sigma_4$, indicating that the values in the first two rows of $V$ are much more important than the values in the last two. In fact we could closely reproduce $A$ using just the first two rows of $V$ and first two columns of $U$, with an error of at most 1 word: ###Code A_approx = np.matrix(U[:, :2]) * np.diag(sigma[:2]) * np.matrix(V[:2, :]) print ("A calculated using only the first two components:\n") print (pd.DataFrame(A_approx, index=words, columns=c_names)) print ("\nError from actual value:\n") print (post_words - A_approx) ###Output A calculated using only the first two components: post1 post2 post3 post4 ice 3.197084 4.818556 5.325736 2.792675 snow 5.619793 0.588201 0.384675 5.412204 tahoe 4.043943 0.071665 -0.123639 3.917015 goal 0.682117 5.089628 5.762122 0.336491 puck 0.129398 4.219523 4.799185 -0.143946 Error from actual value: post1 post2 post3 post4 word: ice 0.802916 -0.818556 0.674264 -0.792675 snow 0.380207 0.411799 -0.384675 -0.412204 tahoe -1.043943 -0.071665 0.123639 1.082985 goal -0.682117 0.910372 -0.762122 0.663509 puck -0.129398 -0.219523 0.200815 0.143946 ###Markdown To help visualize the similarity between posts, $V$ can be displayed as an image. Notice how the similar posts (1 and 4, 2 and 3) have similar color values in the first two rows: ###Code %matplotlib inline import matplotlib.pyplot as plt plt.imshow(V, interpolation='none') plt.xticks(xrange(len(c_names))) plt.yticks(xrange(len(words))) plt.ylim([len(words) - 1.5, -.5]) ax = plt.gca() ax.set_xticklabels(c_names) ax.set_yticklabels(xrange(1, len(words) + 1)) plt.title("$V$") plt.colorbar(); ###Output _____no_output_____ ###Markdown Another thing the singular value decomposition tells us is what most defines the different categories of posts. The skiing posts have very different values from the hockey posts in the second row of $V$, i.e. $V_{2,1} \approx V_{2, 4}$ and $V_{2,2} \approx V_{2, 3}$ but $V_{2,1} \neq V_{2, 2}$.Recall from above that:$\vec{a}_i = \vec{u}_1 * \sigma_1 * V_{1,i} + \vec{u}_2 * \sigma_2 * V_{2,i} + ...$ Thus the posts differ very much in how much the values in $\vec{u}_2$ contribute to their final word count. Here is $\vec{u}_2$: ###Code pd.DataFrame(U[:,1], index=words) ###Output _____no_output_____ ###Markdown From this we can conclude that, at least in this small data set, the words 'snow' and 'tahoe' identify a different class of posts from the words 'goal' and 'puck'. Identifying similar research papers using singular value decomposition Moving on from the simple example above, here is an application using singular value decomposition to find similar research papers.I've collect several different papers for analysis. Unfortunately due to the sorry state of open access for scientific papers I can't share the full article text that was used for analysis. Cell, for example, cautions that "you may not copy, display, distribute, modify, publish, reproduce, store, transmit, post, ..." Yikes. However I did chose articles such that you should be able to download the pdf's from the publisher for free.Here are the papers included in analysis (with shortened names in parentheses):Two papers on the molecular motor ClpX, describing very similar experiments:ClpX(P) Generates Mechanical Force to Unfold and Translocate Its Protein Substrates (clpx1)Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine (clpx2)Papers on a very different molecular motor, dynein:Lis1 Acts as a “Clutch” between the ATPase and Microtubule-Binding Domains of the Dynein Motor (dyn-lis1)Single-Molecule Analysis of Dynein Processivity and Stepping Behavior (dyn-steps1)Dynein achieves processive motion using both stochastic and coordinated stepping (dyn-steps2)Insights into dynein motor domain function from a 3.3-A crystal structure (dyn-structure)A paper on T-cell signaling:Biophysical mechanism of T-cell receptor triggering in a reconsistuted system (tcell) Reading in the data To start, we'll need to read in the word counts for each paper. I used python PDFMiner to convert the pdf documents to plain text. I also used a list of "stop words" (link), words such as "the", and "and", that appear in all English documents. ###Code with open('input/stopwords.txt') as f: stopwords = f.read().strip().split(',') stopwords = set(stopwords) # use a set for fast membership testing import collections import os import re def word_count(fname): """Return a collections.Counter instance counting the words in file fname.""" with open(fname) as f: file_content = f.read() words = re.split(r'\W+', file_content.lower()) words = [word for word in words if len(word) > 3 and word not in stopwords] word_count = collections.Counter(words) return word_count file_list = ['input/papers/' + f for f in os.listdir('input/papers/') if f.endswith('.txt')] word_df = pd.DataFrame() for fname in file_list: word_counter = word_count(fname) file_df = pd.DataFrame.from_dict(word_counter, orient='index') file_df.columns = [fname.replace('input/papers/', '').replace('.txt', '')] # normalize word count by the total number of words in the file: file_df.ix[:, 0] = file_df.values.flatten() / float(file_df.values.sum()) word_df = word_df.join(file_df, how='outer', ) word_df = word_df.fillna(0) print "Number of unique words: %s" % len(word_df) ###Output Number of unique words: 5657 ###Markdown Here are the results, sorted by the most common words in the first paper: ###Code word_df.sort(columns=word_df.columns[0], ascending=False).head(10) ###Output _____no_output_____ ###Markdown Now to calculate the singular value decomposition of this data. ###Code U, sigma, V = np.linalg.svd(word_df) ###Output _____no_output_____ ###Markdown Here is a look at $V$, with the column names added: ###Code v_df = pd.DataFrame(V, columns=word_df.columns) v_df.apply(lambda x: np.round(x, decimals=2)) ###Output _____no_output_____ ###Markdown Here are the values of $V$ represented as an image: ###Code plt.imshow(V, interpolation='none') ax = plt.gca() plt.xticks(xrange(len(v_df.columns.values))) plt.yticks(xrange(len(v_df.index.values))) plt.title("$V$") ax.set_xticklabels(v_df.columns.values, rotation=90) plt.colorbar(); ###Output _____no_output_____ ###Markdown Note how in the above image, in the first three rows the similarities between the clpx papers is apparent, as well as between the first three dyn papers. The last dyn paper is somewhat different, but this is to be expected since it is a structure paper and the other three dyn papers involve more microscopy. In terms of comparing the papers, singular value decomposition allowed us to reduce the 5657 different words found in the papers into 6 values that are pre-sorted in order of importance! Quantifying similarity Now we'll look in more detail at how similar each paper is to the others. I've defined a function to calculate the distance between two column vectors of $V$, weighted by the weights in $\Sigma$. For $\vec{v}_i$ and $\vec{v}_j$ the function calculates $\|\Sigma * (\vec{v}_i - \vec{v}_j)\|$. This function is applied to every pairwise combination of $\vec{v}_i$ and $\vec{v}_j$, giving a metric of how similar two papers are (smaller values are more similar). ###Code def dist(col1, col2, sigma=sigma): """Return the norm of (col1 - col2), where the differences in each dimension are wighted by the values in sigma.""" return np.linalg.norm(np.array(col1 - col2) * sigma) dist_df = pd.DataFrame(index=v_df.columns, columns=v_df.columns) for cname in v_df.columns: dist_df[cname] = v_df.apply(lambda x: dist(v_df[cname].values, x.values)) plt.imshow(dist_df.values, interpolation='none') ax = plt.gca() plt.xticks(xrange(len(dist_df.columns.values))) plt.yticks(xrange(len(dist_df.index.values))) ax.set_xticklabels(dist_df.columns.values, rotation=90) ax.set_yticklabels(dist_df.index.values) plt.title("Similarity between papers\nLower value = more similar") plt.colorbar() dist_df ###Output _____no_output_____ ###Markdown The two clpx papers and the two dyn-steps are most similar to each other, as expected, while all the dyn paper do bear some similarity to each other. For a quicker readout, I've grouped the data into three similarity levels (in practice this could be done automatically with a clustering algorithm). ###Code levels = [0.06, 0.075] binned_df = dist_df.copy() binned_df[(dist_df <= levels[0]) & (dist_df > 0)] = 1 binned_df[(dist_df <= levels[1]) & (dist_df > levels[0])] = 2 binned_df[(dist_df < 1) & (dist_df > levels[1])] = 3 plt.imshow(binned_df.values, interpolation='none') ax = plt.gca() plt.xticks(xrange(len(binned_df.columns.values))) plt.yticks(xrange(len(binned_df.index.values))) ax.set_xticklabels(binned_df.columns.values, rotation=90) ax.set_yticklabels(binned_df.index.values) plt.title("Similarity between papers\nLower value = more similar") plt.colorbar(); ###Output _____no_output_____ ###Markdown Finally, let's output a list for each paper of the other papers, sorted in order of decreasing similarity: ###Code for paper in dist_df.columns: sim_papers_df = dist_df.sort(columns=paper)[paper] sim_papers = sim_papers_df.drop([paper]).index print 'Papers most similar to ' + paper + ':' print ', '.join(sim_papers) print '\n' ###Output Papers most similar to clpx1: clpx2, dyn-structure, dyn-steps1, tcell, dyn-steps2, dyn-lis1 Papers most similar to clpx2: clpx1, dyn-structure, dyn-steps1, tcell, dyn-steps2, dyn-lis1 Papers most similar to dyn-lis1: dyn-steps1, dyn-steps2, dyn-structure, clpx2, clpx1, tcell Papers most similar to dyn-steps1: dyn-steps2, dyn-lis1, dyn-structure, clpx2, clpx1, tcell Papers most similar to dyn-steps2: dyn-steps1, dyn-lis1, dyn-structure, clpx2, clpx1, tcell Papers most similar to dyn-structure: dyn-steps1, clpx2, dyn-steps2, clpx1, dyn-lis1, tcell Papers most similar to tcell: clpx2, dyn-structure, clpx1, dyn-steps1, dyn-steps2, dyn-lis1 ###Markdown Singular Value Decomposition and Applications Introduction The singular value decomposition of a matrix has many applications. Here I'll focus on an introduction to singular value decomposition and an application in clustering articles by topic. Any matrix $A$ can be decomposed to three matrices $U$, $\Sigma$, and $V$ such that $A = U \Sigma V$, this is called singular value decomposition. The columns of $U$ and $V$ are orthonormal and $\Sigma$ is diagonal. Most scientific computing packages have a function to compute the singular value decomposition, I won't go into the details of how to find $U$, $\Sigma$ and $V$ here. Some sources write the decomposition as $A = U \Sigma V^T$, so that their $V^T$ is our $V$. The usage in this notebook is consistent with how numpy's singular value decomposition function returns $V$. Example with a small matrix $A$: If $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$ $A$ can be written as $U \Sigma V$ where $U$, $\Sigma$, and $V$ are, rounded to 2 decimal places:$U = \begin{bmatrix} -0.23 & -0.97 \\ -0.97 & 0.23 \end{bmatrix}$ $S = \begin{bmatrix} 2.29 & 0 \\ 0 & 0.87 \end{bmatrix}$ $V = \begin{bmatrix} -0.53 & -0.85 \\ -0.85 & 0.53 \end{bmatrix}$ Interpretation Although the singular value decomposition has interesting properties from a linear algebra standpoint, I'm going to focus here on some of its applications and skip the derivation and geometric interpretations.Let $A$ be a $m \times n$ matrix with column vectors $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$. In the singular value decomposition of $A$, $U$ will be $m \times m$, $\Sigma$ will be $m \times n$ and $V$ will be $n \times n$. We denote the column vectors of $U$ as $\vec{u}_1, \vec{u}_2, ..., \vec{u}_m$ and $V$ as $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$, similarly to $A$. We'll call the values along the diagonal of $\Sigma$ as $\sigma_1, \sigma_2, ...$.We have that $A = U \Sigma V$ where:$U = \begin{bmatrix} \\ \\ \\ \vec{u}_1 & \vec{u}_2 & \dots & \vec{u}_m \\ \\ \\ \end{bmatrix}$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots \\ 0 & \sigma_2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$V = \begin{bmatrix} \\ \\ \\ \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_n \\ \\ \\ \end{bmatrix}$Because $\Sigma$ is diagonal, the columns of $A$ can be written as:$\vec{a}_i = \vec{u}_1 * \sigma_1 * V_{1,i} + \vec{u}_2 * \sigma_2 * V_{2,i} + ... = U * \Sigma * \vec{v}_i$ This is equivalent to creating a vector $\vec{w}_i$, where the elements of $\vec{w}_i$ are the elements of $\vec{v}_i$, weighted by the $\sigma$'s:$\vec{w}_i = \begin{bmatrix} \sigma_1V_{1,i} \\ \sigma_2V_{2,i} \\ \sigma_3V_{3,i} \\ \vdots \end{bmatrix} = \Sigma * \vec{v}_i$ Then $\vec{a}_i = U * \vec{w}_i$. That is to say that every column $\vec{a}_i$ of $A$ is expressed by a sum over all the columns of $U$, weighted by the values in the $i^{th}$ column of $V$, and the $\sigma$'s. By convention the order of the columns in $U$ and rows in $V$ is chosen such that the values in $\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots \\ 0 & \sigma_2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$ obey $\sigma_1 > \sigma_2 > \sigma_3 > ...$. This means that as a whole, the first column of $U$ and the first row of $V$ contribute more to the final values of $A$ than subsequent columns. This has applications in image compression (link to another notebook) and reducing the dimensionality of data by selecting the most import components. Brief discussion of dimensionality This section isn't required to understand how singular value decomposition is useful, but I've included it for completeness.If $A$ is $m \times n$ ($m$ rows and $n$ columns), $U$ will be $m \times m$, $\Sigma$ will be $m \times n$ and $V$ will be $n \times n$. However, there are only $r = rank(A)$ non-zero values in $\Sigma$, i.e. $\sigma_1, ..., \sigma_r \neq 0$; $\sigma_{r+1}, ..., \sigma_n = 0$. Therefore columns of $U$ beyond the $r^{th}$ column and rows of $V$ beyond the $r^{th}$ row do not contribute to $A$ and are usually omitted, leaving $U$ an $m \times r$ matrix, $\Sigma$ an $r \times r$ diagonal matrix and $V$ an $r \times n$ matrix. Example with data: Singular value decomposition can be used to classify similar objects (for example, news articles on a particular topic). Note above that similar $\vec{a_i}$'s will have similar $\vec{v_i}$'s.Imagine four blog posts, two about skiing and two about hockey. I've made up some data about five different words and the number of times they appear in each post: ###Code import pandas as pd c_names = ['post1', 'post2', 'post3', 'post4'] words = ['ice', 'snow', 'tahoe', 'goal', 'puck'] post_words = pd.DataFrame([[4, 4, 6, 2], [6, 1, 0, 5], [3, 0, 0, 5], [0, 6, 5, 1], [0, 4, 5, 0]], index = words, columns = c_names) post_words.index.names = ['word:'] post_words ###Output _____no_output_____ ###Markdown It looks like posts 1 and 4 pertain to skiing, and while posts 2 and 3 are about hockey. Imagine the DataFrame post_words as the matrix $A$, where the entries represent the number of times a given word appears in the post. The singular value decomposition of $A$ can be calculated using numpy. ###Code import numpy as np U, sigma, V = np.linalg.svd(post_words) print ("V = ") print (np.round(V, decimals=2) ) ###Output V = [[-0.4 -0.57 -0.63 -0.35] [-0.6 0.33 0.41 -0.6 ] [ 0.6 -0.41 0.32 -0.61] [-0.34 -0.63 0.58 0.39]] ###Markdown Recall that $\vec{a}_i = U * \Sigma * \vec{v}_i$, that is each column $\vec{v}_i$ of $V$ defines the entries in that column, $\vec{a}_i$, of our data matrix, $A$. Let's label V with the identities of the posts using a DataFrame: ###Code V_df = pd.DataFrame(V, columns=c_names) V_df ###Output _____no_output_____ ###Markdown Note how post1 and post4 agree closely in value in the first two rows of $V$, as do post2 and post3. This indicates that posts 1 and 4 contain similar words (in this case words relating to skiing). However, the agreement is less close in the last two rows, even among related posts. This is because the weights of the last two rows, $\sigma_3$ and $\sigma_4$, are small compared to $\sigma_1$ and $\sigma_2$. Let's look at the values for the $\sigma$'s. ###Code sigma ###Output _____no_output_____ ###Markdown $\sigma_1$ and $\sigma_2$ are about an order of magnitude greater than $\sigma_3$ and $\sigma_4$, indicating that the values in the first two rows of $V$ are much more important than the values in the last two. In fact we could closely reproduce $A$ using just the first two rows of $V$ and first two columns of $U$, with an error of at most 1 word: ###Code A_approx = np.matrix(U[:, :2]) * np.diag(sigma[:2]) * np.matrix(V[:2, :]) print ("A calculated using only the first two components:\n") print (pd.DataFrame(A_approx, index=words, columns=c_names)) print ("\nError from actual value:\n") print (post_words - A_approx) ###Output A calculated using only the first two components: post1 post2 post3 post4 ice 3.197084 4.818556 5.325736 2.792675 snow 5.619793 0.588201 0.384675 5.412204 tahoe 4.043943 0.071665 -0.123639 3.917015 goal 0.682117 5.089628 5.762122 0.336491 puck 0.129398 4.219523 4.799185 -0.143946 Error from actual value: post1 post2 post3 post4 word: ice 0.802916 -0.818556 0.674264 -0.792675 snow 0.380207 0.411799 -0.384675 -0.412204 tahoe -1.043943 -0.071665 0.123639 1.082985 goal -0.682117 0.910372 -0.762122 0.663509 puck -0.129398 -0.219523 0.200815 0.143946 ###Markdown To help visualize the similarity between posts, $V$ can be displayed as an image. Notice how the similar posts (1 and 4, 2 and 3) have similar color values in the first two rows: ###Code %matplotlib inline import matplotlib.pyplot as plt plt.imshow(V, interpolation='none') plt.xticks(xrange(len(c_names))) plt.yticks(xrange(len(words))) plt.ylim([len(words) - 1.5, -.5]) ax = plt.gca() ax.set_xticklabels(c_names) ax.set_yticklabels(xrange(1, len(words) + 1)) plt.title("$V$") plt.colorbar(); ###Output _____no_output_____ ###Markdown Another thing the singular value decomposition tells us is what most defines the different categories of posts. The skiing posts have very different values from the hockey posts in the second row of $V$, i.e. $V_{2,1} \approx V_{2, 4}$ and $V_{2,2} \approx V_{2, 3}$ but $V_{2,1} \neq V_{2, 2}$.Recall from above that:$\vec{a}_i = \vec{u}_1 * \sigma_1 * V_{1,i} + \vec{u}_2 * \sigma_2 * V_{2,i} + ...$ Thus the posts differ very much in how much the values in $\vec{u}_2$ contribute to their final word count. Here is $\vec{u}_2$: ###Code pd.DataFrame(U[:,1], index=words) ###Output _____no_output_____ ###Markdown From this we can conclude that, at least in this small data set, the words 'snow' and 'tahoe' identify a different class of posts from the words 'goal' and 'puck'. Identifying similar research papers using singular value decomposition Moving on from the simple example above, here is an application using singular value decomposition to find similar research papers.I've collect several different papers for analysis. Unfortunately due to the sorry state of open access for scientific papers I can't share the full article text that was used for analysis. Cell, for example, cautions that "you may not copy, display, distribute, modify, publish, reproduce, store, transmit, post, ..." Yikes. However I did chose articles such that you should be able to download the pdf's from the publisher for free.Here are the papers included in analysis (with shortened names in parentheses):Two papers on the molecular motor ClpX, describing very similar experiments:ClpX(P) Generates Mechanical Force to Unfold and Translocate Its Protein Substrates (clpx1)Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine (clpx2)Papers on a very different molecular motor, dynein:Lis1 Acts as a “Clutch” between the ATPase and Microtubule-Binding Domains of the Dynein Motor (dyn-lis1)Single-Molecule Analysis of Dynein Processivity and Stepping Behavior (dyn-steps1)Dynein achieves processive motion using both stochastic and coordinated stepping (dyn-steps2)Insights into dynein motor domain function from a 3.3-A crystal structure (dyn-structure)A paper on T-cell signaling:Biophysical mechanism of T-cell receptor triggering in a reconsistuted system (tcell) Reading in the data To start, we'll need to read in the word counts for each paper. I used python PDFMiner to convert the pdf documents to plain text. I also used a list of "stop words" (link), words such as "the", and "and", that appear in all English documents. ###Code with open('input/stopwords.txt') as f: stopwords = f.read().strip().split(',') stopwords = set(stopwords) # use a set for fast membership testing import collections import os import re def word_count(fname): """Return a collections.Counter instance counting the words in file fname.""" with open(fname) as f: file_content = f.read() words = re.split(r'\W+', file_content.lower()) words = [word for word in words if len(word) > 3 and word not in stopwords] word_count = collections.Counter(words) return word_count file_list = ['input/papers/' + f for f in os.listdir('input/papers/') if f.endswith('.txt')] word_df = pd.DataFrame() for fname in file_list: word_counter = word_count(fname) file_df = pd.DataFrame.from_dict(word_counter, orient='index') file_df.columns = [fname.replace('input/papers/', '').replace('.txt', '')] # normalize word count by the total number of words in the file: file_df.ix[:, 0] = file_df.values.flatten() / float(file_df.values.sum()) word_df = word_df.join(file_df, how='outer', ) word_df = word_df.fillna(0) print "Number of unique words: %s" % len(word_df) ###Output Number of unique words: 5657 ###Markdown Here are the results, sorted by the most common words in the first paper: ###Code word_df.sort(columns=word_df.columns[0], ascending=False).head(10) ###Output _____no_output_____ ###Markdown Now to calculate the singular value decomposition of this data. ###Code U, sigma, V = np.linalg.svd(word_df) ###Output _____no_output_____ ###Markdown Here is a look at $V$, with the column names added: ###Code v_df = pd.DataFrame(V, columns=word_df.columns) v_df.apply(lambda x: np.round(x, decimals=2)) ###Output _____no_output_____ ###Markdown Here are the values of $V$ represented as an image: ###Code plt.imshow(V, interpolation='none') ax = plt.gca() plt.xticks(xrange(len(v_df.columns.values))) plt.yticks(xrange(len(v_df.index.values))) plt.title("$V$") ax.set_xticklabels(v_df.columns.values, rotation=90) plt.colorbar(); ###Output _____no_output_____ ###Markdown Note how in the above image, in the first three rows the similarities between the clpx papers is apparent, as well as between the first three dyn papers. The last dyn paper is somewhat different, but this is to be expected since it is a structure paper and the other three dyn papers involve more microscopy. In terms of comparing the papers, singular value decomposition allowed us to reduce the 5657 different words found in the papers into 6 values that are pre-sorted in order of importance! Quantifying similarity Now we'll look in more detail at how similar each paper is to the others. I've defined a function to calculate the distance between two column vectors of $V$, weighted by the weights in $\Sigma$. For $\vec{v}_i$ and $\vec{v}_j$ the function calculates $\|\Sigma * (\vec{v}_i - \vec{v}_j)\|$. This function is applied to every pairwise combination of $\vec{v}_i$ and $\vec{v}_j$, giving a metric of how similar two papers are (smaller values are more similar). ###Code def dist(col1, col2, sigma=sigma): """Return the norm of (col1 - col2), where the differences in each dimension are wighted by the values in sigma.""" return np.linalg.norm(np.array(col1 - col2) * sigma) dist_df = pd.DataFrame(index=v_df.columns, columns=v_df.columns) for cname in v_df.columns: dist_df[cname] = v_df.apply(lambda x: dist(v_df[cname].values, x.values)) plt.imshow(dist_df.values, interpolation='none') ax = plt.gca() plt.xticks(xrange(len(dist_df.columns.values))) plt.yticks(xrange(len(dist_df.index.values))) ax.set_xticklabels(dist_df.columns.values, rotation=90) ax.set_yticklabels(dist_df.index.values) plt.title("Similarity between papers\nLower value = more similar") plt.colorbar() dist_df ###Output _____no_output_____ ###Markdown The two clpx papers and the two dyn-steps are most similar to each other, as expected, while all the dyn paper do bear some similarity to each other. For a quicker readout, I've grouped the data into three similarity levels (in practice this could be done automatically with a clustering algorithm). ###Code levels = [0.06, 0.075] binned_df = dist_df.copy() binned_df[(dist_df <= levels[0]) & (dist_df > 0)] = 1 binned_df[(dist_df <= levels[1]) & (dist_df > levels[0])] = 2 binned_df[(dist_df < 1) & (dist_df > levels[1])] = 3 plt.imshow(binned_df.values, interpolation='none') ax = plt.gca() plt.xticks(xrange(len(binned_df.columns.values))) plt.yticks(xrange(len(binned_df.index.values))) ax.set_xticklabels(binned_df.columns.values, rotation=90) ax.set_yticklabels(binned_df.index.values) plt.title("Similarity between papers\nLower value = more similar") plt.colorbar(); ###Output _____no_output_____ ###Markdown Finally, let's output a list for each paper of the other papers, sorted in order of decreasing similarity: ###Code for paper in dist_df.columns: sim_papers_df = dist_df.sort(columns=paper)[paper] sim_papers = sim_papers_df.drop([paper]).index print 'Papers most similar to ' + paper + ':' print ', '.join(sim_papers) print '\n' ###Output Papers most similar to clpx1: clpx2, dyn-structure, dyn-steps1, tcell, dyn-steps2, dyn-lis1 Papers most similar to clpx2: clpx1, dyn-structure, dyn-steps1, tcell, dyn-steps2, dyn-lis1 Papers most similar to dyn-lis1: dyn-steps1, dyn-steps2, dyn-structure, clpx2, clpx1, tcell Papers most similar to dyn-steps1: dyn-steps2, dyn-lis1, dyn-structure, clpx2, clpx1, tcell Papers most similar to dyn-steps2: dyn-steps1, dyn-lis1, dyn-structure, clpx2, clpx1, tcell Papers most similar to dyn-structure: dyn-steps1, clpx2, dyn-steps2, clpx1, dyn-lis1, tcell Papers most similar to tcell: clpx2, dyn-structure, clpx1, dyn-steps1, dyn-steps2, dyn-lis1
fastai/nbs/09c_vision.widgets.ipynb
###Markdown Vision widgets> ipywidgets for images ###Code #export @patch def __getitem__(self:Box, i): return self.children[i] #export def widget(im, *args, **layout): "Convert anything that can be `display`ed by IPython into a widget" o = Output(layout=merge(*args, layout)) with o: display(im) return o im = Image.open('images/puppy.jpg').to_thumb(256,512) VBox([widgets.HTML('Puppy'), widget(im, max_width="192px")]) #export def _update_children(change): for o in change['owner'].children: if not o.layout.flex: o.layout.flex = '0 0 auto' #export def carousel(children=(), **layout): "A horizontally scrolling carousel" def_layout = dict(overflow='scroll hidden', flex_flow='row', display='flex') res = Box([], layout=merge(def_layout, layout)) res.observe(_update_children, names='children') res.children = children return res ts = [VBox([widget(im, max_width='192px'), Button(description='click')]) for o in range(3)] carousel(ts, width='450px') #export def _open_thumb(fn, h, w): return Image.open(fn).to_thumb(h, w).convert('RGBA') #export class ImagesCleaner: "A widget that displays all images in `fns` along with a `Dropdown`" def __init__(self, opts=(), height=128, width=256, max_n=30): opts = ('<Keep>', '<Delete>')+tuple(opts) store_attr('opts,height,width,max_n') self.widget = carousel(width='100%') def set_fns(self, fns): self.fns = L(fns)[:self.max_n] ims = parallel(_open_thumb, self.fns, h=self.height, w=self.width, progress=False, n_workers=min(len(self.fns)//10,defaults.cpus)) self.widget.children = [VBox([widget(im, height=f'{self.height}px'), Dropdown( options=self.opts, layout={'width': 'max-content'})]) for im in ims] def _ipython_display_(self): display(self.widget) def values(self): return L(self.widget.children).itemgot(1).attrgot('value') def delete(self): return self.values().argwhere(eq('<Delete>')) def change(self): idxs = self.values().argwhere(not_(in_(['<Delete>','<Keep>']))) return idxs.zipwith(self.values()[idxs]) fns = get_image_files('images') w = ImagesCleaner(('A','B')) w.set_fns(fns) w w.delete(),w.change() #export def _get_iw_info(learn, ds_idx=0): dl = learn.dls[ds_idx].new(shuffle=False, drop_last=False) inp,probs,targs,preds,losses = learn.get_preds(dl=dl, with_input=True, with_loss=True, with_decoded=True) inp,targs = L(zip(*dl.decode_batch((inp,targs), max_n=9999))) return L([dl.dataset.items,targs,losses]).zip() #export @delegates(ImagesCleaner) class ImageClassifierCleaner(GetAttr): "A widget that provides an `ImagesCleaner` with a CNN `Learner`" def __init__(self, learn, **kwargs): vocab = learn.dls.vocab self.default = self.iw = ImagesCleaner(vocab, **kwargs) self.dd_cats = Dropdown(options=vocab) self.dd_ds = Dropdown(options=('Train','Valid')) self.iwis = _get_iw_info(learn,0),_get_iw_info(learn,1) self.dd_ds.observe(self.on_change_ds, 'value') self.dd_cats.observe(self.on_change_ds, 'value') self.on_change_ds() self.widget = VBox([self.dd_cats, self.dd_ds, self.iw.widget]) def _ipython_display_(self): display(self.widget) def on_change_ds(self, change=None): info = L(o for o in self.iwis[self.dd_ds.index] if o[1]==self.dd_cats.value) self.iw.set_fns(info.sorted(2, reverse=True).itemgot(0)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb.
Colab_instruction.ipynb
###Markdown Mount Google Drive ###Code from google.colab import drive drive.mount('/content/drive') ###Output Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). ###Markdown Clone project from Github ###Code !git clone https://github.com/shaobaili3/CS39-EXPLAINABLE-NEURAL-NETWORK.git !pwd ###Output fatal: destination path 'CS39-EXPLAINABLE-NEURAL-NETWORK' already exists and is not an empty directory. /content
04_dataframe.ipynb
###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 02 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [Dask DataFrame documentation](http://dask.pydata.org/en/latest/dataframe.html)* [Pandas documentation](http://pandas.pydata.org/)**Main Take-aways**1. Dask.dataframe should be familiar to Pandas users2. The partitioning of dataframes is important for efficient queries Setup We create artifical data. ###Code from prep import accounts_csvs accounts_csvs(3, 1000000, 500) import os import dask filename = os.path.join('data', 'accounts.*.csv') ###Output _____no_output_____ ###Markdown This works just like `pandas.read_csv`, except on multiple csv files at once. ###Code filename import dask.dataframe as dd df = dd.read_csv(filename) # load and count number of rows df.head() len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and types. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here %load solutions/03-dask-dataframe-rows.py ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled.py ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled-per-airport.py ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.columns %load solutions/03-dask-dataframe-delay-per-airport.py ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here %load solutions/03-dask-dataframe-delay-per-day.py ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory (the difference is caused by using `object` dtype for strings). This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): # TODO departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() %load solutions/03-dask-dataframe-map-partitions.py ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 1 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame` API. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/)**Main Take-aways**1. Dask DataFrame should be familiar to Pandas users2. The partitioning of dataframes is important for efficient execution Create data ###Code %run prep.py -d flights ###Output _____no_output_____ ###Markdown Setup ###Code from dask.distributed import Client client = Client(n_workers=4) ###Output _____no_output_____ ###Markdown We create artifical data. ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') filename ###Output _____no_output_____ ###Markdown Filename includes a glob pattern `*`, so all files in the path matching that pattern will be read into the same Dask DataFrame. ###Code import dask.dataframe as dd df = dd.read_csv(filename) df.head() # load and count number of rows len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and dtypes. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here %load solutions/04_exo1.py ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here %load solutions/04_exo2.py ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here %load solutions/04_exo3.py ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here %load solutions/04_exo4.py ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here %load solutions/04_exo5.py ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But let's try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to save the graph to disk so that we can zoom in more easily): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory. This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): pass # TODO: implement this departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() %load solutions/04_map_partitions.py ###Output _____no_output_____ ###Markdown Limitations What doesn't work? Dask.dataframe only covers a small but well-used portion of the Pandas API.This limitation is for two reasons:1. The Pandas API is *huge*2. Some operations are genuinely hard to do in parallel (e.g. sort)Additionally, some important operations like ``set_index`` work, but are slowerthan in Pandas because they include substantial shuffling of data, and may write out to disk. Learn More* [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 02 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [Dask DataFrame documentation](http://dask.pydata.org/en/latest/dataframe.html)* [Pandas documentation](http://pandas.pydata.org/)**Main Take-aways**1. Dask.dataframe should be familiar to Pandas users2. The partitioning of dataframes is important for efficient queries Setup We create artifical data. ###Code from prep import accounts_csvs accounts_csvs(3, 1000000, 500) import os import dask filename = os.path.join('data', 'accounts.*.csv') ###Output _____no_output_____ ###Markdown This works just like `pandas.read_csv`, except on multiple csv files at once. ###Code filename import dask.dataframe as dd df = dd.read_csv(filename) # load and count number of rows df.head() len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and types. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here %load solutions/03-dask-dataframe-rows.py ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled.py ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled-per-airport.py ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.columns %load solutions/03-dask-dataframe-delay-per-airport.py ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here %load solutions/03-dask-dataframe-delay-per-day.py ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe require to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory (the difference is caused by using `object` dtype for strings). This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](04-schedulers.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](02-dask-arrays.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. We'll cover this in more detail in [Distributed DataFrames](05-distributed-dataframes-and-efficiency.ipynb).For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): # TODO departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() %load solutions/03-dask-dataframe-map-partitions.py ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 02 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [Dask DataFrame documentation](http://dask.pydata.org/en/latest/dataframe.html)* [Pandas documentation](http://pandas.pydata.org/)**Main Take-aways**1. Dask.dataframe should be familiar to Pandas users2. The partitioning of dataframes is important for efficient queries Setup We create artifical data. ###Code from prep import accounts_csvs accounts_csvs(3, 1000000, 500) import os import dask filename = os.path.join('data', 'accounts.*.csv') ###Output _____no_output_____ ###Markdown This works just like `pandas.read_csv`, except on multiple csv files at once. ###Code filename import dask.dataframe as dd df = dd.read_csv(filename) # load and count number of rows df.head() len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grant total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and types. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here %load solutions/03-dask-dataframe-rows.py ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled.py ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled-per-airport.py ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.columns %load solutions/03-dask-dataframe-delay-per-airport.py ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here %load solutions/03-dask-dataframe-delay-per-day.py ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe require to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory (the difference is caused by using `object` dtype for strings). This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](04-schedulers.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](02-dask-arrays.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. We'll cover this in more detail in [Distributed DataFrames](05-distributed-dataframes-and-efficiency.ipynb).For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): # TODO departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() %load solutions/03-dask-dataframe-map-partitions.py ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFrames我们通过使用 dask.delayed 在 CSV 文件目录上构建并行数据帧计算完成了第 1 章。 在本节中,我们使用 `dask.dataframe` 自动构建类似的计算,用于表格计算的常见情况。 Dask DataFrame的外观和感觉与 Pandas 数据帧相似,但Dask DataFrame运行在支持`dask.delayed`的相同基础架构上。在这个笔记本中,我们像以前一样使用相同的航线数据,但是现在我们让`dask.dataframe’`为我们构造计算,而不是写 for循环。函数可以接受`data/nycflights/*`这样的全局字符串,然后在我们所有的数据上建立并行计算。 何时使用 `dask.dataframe`Pandas非常适合存储在内存中的表格数据集。当要分析的数据集大于机器的内存时,Dask 就变得有用了。我们使用的演示数据集大约只有200MB,因此你可以在合理的时间内下载它,但是`dask.dataframe`将扩展到比内存大得多的数据集。 `dask.dataframe` 模块实现了一个分块的并行 `DataFrame` 对象,它模仿了 Pandas `DataFrame` API 的一个大集合。 一个 Dask `DataFrame` 由许多沿索引分隔的内存中的 Pandas `DataFrames` 组成。 Dask `DataFrame` 上的一个操作会以一种注意潜在并行性和内存限制的方式触发对组成 Pandas `DataFrame` 的许多 Pandas 操作。**相关文档*** [DataFrame 文档](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame 屏幕录像](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame 示例](https://examples.dask.org/dataframe.html)* [Pandas 文档](https://pandas.pydata.org/pandas-docs/stable/)**主要知识**1. Dask DataFrame对pandas用户来说应该很熟悉2. 数据流的划分对于有效执行非常重要 创建数据 ###Code %run prep.py -d flights ###Output _____no_output_____ ###Markdown 设置 ###Code from dask.distributed import Client client = Client(n_workers=4) ###Output _____no_output_____ ###Markdown 我们创建了人造数据。 ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') filename ###Output _____no_output_____ ###Markdown 文件名包含一个通配符`*`,因此路径中匹配该通配符的所有文件将被读入同一个的 Dask DataFrame。 ###Code import dask.dataframe as dd df = dd.read_csv(filename) df.head() # 加载并计算行数 len(df) ###Output _____no_output_____ ###Markdown 这里发生了什么?- Dask调查了输入路径,发现有3个匹配的文件- 为每个块智能地创建了一组任务 - 在这种情况下每个原始 CSV 文件对应一个任务- 每个文件都被加载到一个 Pandas 数据帧中,并应用了 `len()`- 小计被合并为您最终的总计。 真实数据让我们以几年来在美国的航班为例来尝试一下。这些数据是专门针对纽约市地区三个机场的航班。 ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown 请注意,DataFrame对象的描述不包含任何数据 —— Dask 刚刚读取了第一个文件的开头,并推断出了列名和 dtype。 ###Code df ###Output _____no_output_____ ###Markdown 我们可以查看数据的首尾 ###Code df.head() df.tail() # 该操作会失败 ###Output _____no_output_____ ###Markdown 刚才发生了什么?与在推断数据类型之前读取整个文件的 `pandas.read_csv` 不同,`dask.dataframe.read_csv` 仅从文件的开头(或第一个文件,如果使用通配)读取样本。然后在读取所有分区时强制执行这些推断的数据类型。在这种情况下,样本中推断的数据类型不正确。前n行中`CRSElapsedTime`没有值(pandas 将其推断为`float`),后来变成字符串(`object` dtype)。请注意,Dask 会提供有关不匹配的信息性错误消息。发生这种情况时,您有几个选择:- 直接使用 `dtype` 关键字指定 dtypes。这是推荐的解决方案,因为它最不容易出错(显式比隐式更好),而且性能最高。- 增加 `sample` 关键字的大小(以字节为单位)- 使用 `assume_missing` 使 `dask` 假定推断为 `int`(不允许缺失值)的列实际上是浮点数(允许缺失值)。在我们的特殊情况下,这不适用。在我们的例子中,我们将使用第一个选项并直接指定报错列的 `dtypes`。 ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # 现在运行成功了 ###Output _____no_output_____ ###Markdown 使用 `dask.dataframe` 计算我们计算`DepDelay`列的最大值。 仅使用pandas的情况下,我们将遍历每个文件以找到各个最大值,然后在所有各个最大值上找到最终最大值```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```我们可以用`dask.delayed`来包装`pd.read_csv`使其并行运行。 无论如何,我们仍然必须考虑循环,中间结果(每个文件一个)和最终减少量(中间最大值的`max`)。这只是围绕真实任务的噪音,pandas用以下代码来解决```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` 让我们编写类似于pandas的代码,该代码可以并行处理大于内存数据集的操作。 ###Code %time df["DepDelay"].max().compute() ###Output _____no_output_____ ###Markdown 这会为我们编写延迟计算,然后运行它。一些注意事项:1.与`dask.delayed`一样,我们需要在完成后调用`.compute()`。 到目前为止,一切都是惰性的。2. Dask 将尽快删除中间结果(如每个文件的完整 Pandas 数据框)。 - 这让我们可以处理大于内存的数据集 - 这意味着每次重复计算都必须加载所有数据(再次运行上面的代码,它是否比您预期的更快或更慢?) 与`delayed`对象一样,您可以使用`.visualize`方法查看底层任务图: ###Code # 注意并行 df["DepDelay"].max().visualize() ###Output _____no_output_____ ###Markdown 练习本节中我们进行了一些 `dask.dataframe` 计算. 如果您对pandas很适应,那么这些应该很熟悉. 您将需要思考何时调用 `compute`. 1.) 数据集有多少行?如果您不熟悉pandas,您将如何检查元组列表中有多少条记录? ###Code # 在这儿输入你的代码 len(df) ###Output _____no_output_____ ###Markdown 2.) 总共有多少非取消(non-canceled)航班?用pandas的话,您需要使用 [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # 在这儿输入你的代码 len(df[~df.Cancelled]) ###Output _____no_output_____ ###Markdown 3.) 每个机场总共有多少非取消(non-canceled)航班?*提示*: 使用 [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # 在这儿输入你的代码 df[~df.Cancelled].groupby('Origin').Origin.count().compute() ###Output _____no_output_____ ###Markdown 4.) 每个机场的平均起飞延误是多少?请注意,这与您在之前的笔记本中所做的计算相同(这种方法是更快还是更慢?) ###Code # 在这儿输入你的代码 df.groupby("Origin").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 5.) 一周中哪一天的平均出发延误最严重? ###Code # 在这儿输入你的代码 df.groupby("DayOfWeek").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 共享中间结果在计算上述所有内容时,我们有时会多次执行相同的操作。 对于大多数操作,`dask.dataframe` 散列参数,允许共享重复计算,并且只计算一次。例如,让我们计算所有未取消航班的出发延迟的平均值和标准偏差。 由于 dask 操作是惰性的,因此这些值还不是最终结果。 它们只是获得结果所需的配方。如果我们通过两次计算调用来计算它们,则中间计算不会共享。 ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown 但是让我们尝试将两者都传递给单个 `compute` 调用。 ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown 使用 `dask.compute` 大约需要 1/2 的时间。 这是因为在调用 `dask.compute` 时合并了两个结果的任务图,允许共享操作只执行一次而不是两次。 特别是,使用 `dask.compute` 只执行以下一次:- 调用 `read_csv`- 过滤器(`df[~df.Cancelled]`)- 一些必要的归约(`sum`,`count`)要查看多个结果之间的合并任务图是什么样的(以及共享的内容),您可以使用 `dask.visualize` 函数(我们可能希望使用 `filename='graph.pdf'` 将图形保存到磁盘,以便我们可以更轻松地放大): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown 这与 Pandas 相比如何? Pandas 比 dask.dataframe 更成熟、功能更齐全。如果您的数据适合内存,那么您应该使用 Pandas。当您对不适合内存的数据集进行操作时,`dask.dataframe` 模块为您提供了有限的 `pandas` 体验。在本教程中,我们提供了一个由几个 CSV 文件组成的小数据集。这个数据集在磁盘上有 45MB,在内存中扩展到大约 400MB。该数据集足够小,您通常可以使用 Pandas。我们选择了这个尺寸,以便练习快速完成。 Dask.dataframe 只有对比这大得多的问题才真正变得有意义,此时,Pandas 打破了可怕的 MemoryError: ... 此外,分布式调度器允许跨集群执行相同的数据帧表达式。为了实现海量“大数据”处理,可以执行数据摄取功能,例如`read_csv`,其中数据保存在每个工作节点(例如亚马逊的 S3)都可以访问的存储中,并且因为大多数操作从仅选择一些列开始,转换和过滤数据,只需要在机器之间通信相对少量的数据。Dask.dataframe 操作在内部使用 `pandas` 操作。除了以下两种情况外,它们通常以大致相同的速度运行:1. Dask 引入了一些开销,每个任务大约 1 毫秒。这通常可以忽略不计。2. 当 Pandas释放GIL 时,`dask.dataframe` 可以在一个进程内并行调用多个 Pandas 操作,提高速度与内核数量成正比。对于不释放 GIL 的操作,需要多个进程才能获得相同的加速。 Dask DataFrame 数据模型在大多数情况下,Dask DataFrame 感觉就像一个 Pandas DataFrame。到目前为止,我们看到的最大区别是 Dask 操作是惰性的; 他们建立了一个任务图而不是立即执行(更多细节见 [调度器](05_distributed.ipynb))。这让 Dask 可以在内核外并行执行操作。在[Dask Arrays](03_array.ipynb)中, 我们看到一个 `dask.array` 由许多 NumPy 数组组成,沿着一个或多个维度分块。在`dask.dataframe`中也是相似的: Dask DataFrame 由许多 Pandas DataFrame 组成。 对于`dask.dataframe`,分块仅沿索引发生。我们称每个块为 *partition*,上限/下限为 *division*。Dask *可以* 存储有关division的信息。 目前,当您编写自定义函数以应用于 Dask DataFrame 时会出现分区。 将 `CRSDepTime` 转化为时间戳该数据集将时间戳存储为`HHMM`,在`read_csv`中作为整数读入: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown 要将这些转换为预定出发时间的时间戳,我们需要将这些整数转换为 `pd.Timedelta` 对象,然后将它们与 `Date` 列组合。在 Pandas 中,我们会使用 `pd.to_timedelta` 函数和一些算术来做到这一点: ###Code import pandas as pd # 获取前 10 个日期来补充我们的 `crs_dep_time` date = df["Date"].head(10) # 以整数形式获取小时数,转换为时间增量(timedelta) hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # 以整数形式获取分钟数,转换为时间增量(timedelta) minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # 应用 timedeltas 以按出发时间偏移日期 departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown 自定义代码和Dask Dataframe我们可以将 `pd.to_timedelta` 换成 `dd.to_timedelta`,并对整个 dask DataFrame 执行相同的操作。 但是假设 Dask 还没有实现适用于 Dask DataFrame 的 `dd.to_timedelta`。 那你会怎么做?`dask.dataframe` 提供了一些方法来更容易地将自定义函数应用于 Dask DataFrames:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)在这里,我们将只讨论 `map_partitions`,我们可以使用它来自己实现 `to_timedelta`: ###Code # 查看`map_partitions`的文档 help(df["CRSDepTime"].map_partitions) ###Output _____no_output_____ ###Markdown 基本思想是将一个对 DataFrame 进行操作的函数应用于每个分区。在这种情况下,我们将应用 `pd.to_timedelta`。 ###Code hours = df["CRSDepTime"] // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df["CRSDepTime"] % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df["Date"] + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown 练习:重写上面的代码以使用对 `map_partitions` 的单个调用这将比两个单独的调用稍微更有效,因为它减少了图中的任务数量。 ###Code def compute_departure_timestamp(df): pass # 目标:完成它 departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() def compute_departure_timestamp(df): hours = df.CRSDepTime // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df.CRSDepTime % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() ###Output _____no_output_____ ###Markdown 局限性 什么不起作用? Dask.dataframe 只涵盖了 Pandas API 中较小,但广泛使用的部分。这种限制有两个原因:1. Pandas API真的*很多*2. 一些操作真的很难并行执行(例如排序)此外,一些重要的操作,如 ``set_index`` 可以用dask.dataframe实现,但与 Pandas 相比,速度会较慢,因为它们包括大量的数据混洗,并且可能会写出到磁盘。 了解更多* [DataFrame 文档](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame 屏幕录像](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame 示例](https://examples.dask.org/dataframe.html)* [Pandas 文档](https://pandas.pydata.org/pandas-docs/stable/) ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask数据框我们使用`dask.delayed`在CSV文件的目录上建立一个并行的数据帧计算,从而结束了第一章。 在本节中,我们使用`dask.dataframe`来自动构建类似的计算,用于常见的表格计算。 Dask数据框看起来和感觉都像Pandas数据框,但它们运行在与`dask.delayed`相同的基础设施上。在这个笔记本中,我们使用了和以前一样的航空公司数据,但现在我们不写for-loops,而是让`dask.dataframe`为我们构造计算。 `dask.dataframe.read_csv`函数可以接受一个像`"data/nycflights/*.csv"`这样的globstring,并一次对我们所有的数据进行并行计算。 何时使用`dask.dataframe`?Pandas对于能在内存中处理的表格数据集是非常优秀的工具。当你要分析的数据集大于你的机器内存时,Dask就变得很有用。我们正在使用的演示数据集只有大约200MB,所以你可以在合理的时间内下载它,但`dask.dataframe`将扩展到比内存大得多的数据集。 `dask.dataframe`模块实现了一个阻塞的并行`DataFrame`对象,它模仿了Pandas`DataFrame`API的一个子集。一个Dask`DataFrame`是由许多内存中的pandas`DataFrame`组成,沿着索引分开。对Dask`DataFrame`的一个操作会触发对组成的pandas`DataFrame`的许多pandas操作,这种方式是注意潜在的并行性和内存限制。**相关文档*** [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/)**主要收获**1. Dask DataFrame应该是Pandas用户所熟悉的了2. 数据框的分区对高效执行很重要。 构建数据 ###Code %run prep.py -d flights ###Output _____no_output_____ ###Markdown Setup ###Code from dask.distributed import Client client = Client(n_workers=4) ###Output _____no_output_____ ###Markdown 创建了人工数据。 ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') filename ###Output _____no_output_____ ###Markdown 文件名包含一个 glob 模式 `*`,因此路径中与该模式匹配的所有文件都将被读入同一个 Dask DataFrame。 ###Code import dask.dataframe as dd df = dd.read_csv(filename) df.head() # 加载计算行数 len(df) ###Output _____no_output_____ ###Markdown 这里发生了什么?- Dask调查了输入路径,发现有三个匹配的文件。- 为每个块智能地创建了一组作业--在这种情况下,每个原始CSV文件都有一个作业。- 每个文件都被加载到一个pandas数据框中,并应用`len()`对其进行处理。- 将小计合并,得出最后的总数。 真实数据让我们用美国几年来的航班摘录来试试。这个数据是针对纽约市地区三个机场的航班的。上市公司财务报表数据 ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown 请注意,数据框对象的respresentation不包含任何数据--Dask只是做了足够的工作来读取第一个文件的开始,并推断出列名和dtypes。 ###Code df ###Output _____no_output_____ ###Markdown 我们可以查看数据的开始和结束。 ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown 发生了什么?与`pandas.read_csv`在推断数据类型之前读取整个文件不同,`dask.dataframe.read_csv`只读取文件开头的样本(如果使用glob,则读取第一个文件)。这些推断的数据类型会在读取所有分区时强制执行。在这种情况下,样本中推断的数据类型是不正确的。前`n`行没有`CRSElapsedTime`的值(pandas推断为`float`),后来变成了字符串(`object`dtype)。请注意,Dask会给出一个关于不匹配的错误信息。当这种情况发生时,你有几个选择。- 直接使用`dtype`关键字指定dtypes。这是推荐的解决方案,因为它是最不容易出错的(显式比隐式好),也是性能最好的。- 增加`sample`关键字的大小(以字节为单位)。- 使用 "assume_missing "使 "dask "假定推断为 "int "的列(不允许缺失值)实际上是floats(允许缺失值)。在我们的特殊情况下,这并不适用。在我们的例子中,我们将使用第一个选项,直接指定违规列的`dtypes`。 ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown 用`dask.dataframe`进行计算我们计算`DepDelay`列的最大值。如果只用pandas,我们会在每个文件上循环找到各个最大值,然后在所有的最大值上找到最后的最大值。```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```我们可以用`dask.delayed`来封装`d.read_csv`,这样它就可以并行运行。无论如何,我们还是要考虑循环、中间结果(每个文件一个)和最终的减少(中间最大值的`max`)。这只是真正的任务周围的噪音,pandas会用```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe`让我们可以编写类似于pandas的代码,对大于内存的数据集进行并行操作。 ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown 这将为我们写入延迟计算,然后运行它。一些需要注意的事情。1. 和`dask.delayed`一样,我们需要在完成后调用`.compute()`。 在这之前,所有的东西都是懒惰的。2. Dask会尽快删除中间结果(比如每个文件的完整pandas数据框架)。 - 这让我们可以处理比内存大的数据集。 - 这意味着重复计算每次都要把所有的数据加载进来(再运行上面的代码,是比你预期的快还是慢?与`Delayed`对象一样,你可以使用`.visualize`方法查看底层任务图。 ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown 练习在本节中,我们将进行一些`dask.dataframe`的计算。如果你对Pandas很熟悉,那么这些应该很熟悉。你将不得不考虑何时调用`compute`。 1.) 我们的数据集中有多少条记录?如果你对pandas不熟悉,你会如何检查一个tuple的列表中有多少记录? ###Code # Your code here len(df) ###Output _____no_output_____ ###Markdown 2.) 总共乘坐了多少个未取消的航班?如果是pandas,你会使用[布尔索引](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing)。 ###Code # Your code here len(df[~df.Cancelled]) ###Output _____no_output_____ ###Markdown 3.) 每个机场总共有多少个未取消的航班?*提示*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here df[~df.Cancelled].groupby('Origin').Origin.count().compute() ###Output _____no_output_____ ###Markdown 4.) 每个机场的平均起飞延误是多少?注意,这和你在上一个笔记本中的计算结果是一样的(这种方法是快了还是慢了? ###Code # Your code here df.groupby("Origin").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 5.) 一周中哪一天的平均出发延误最严重? ###Code # Your code here df.groupby("DayOfWeek").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 分享中间成果在计算上述所有操作时,我们有时会不止一次地进行相同的操作。对于大多数操作,`dask.dataframe`会对参数进行哈希,允许重复的计算被共享,并且只计算一次。例如,让我们计算所有未取消航班的出发延误的平均值和标准差。由于dask操作是懒惰的,这些值还不是最终结果。它们只是得到结果所需的配方。如果我们用两次调用计算来计算它们,就不会出现中间计算的共享。 ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown 但让我们尝试将这两者传递给一个`compute`调用。 ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown 使用`dask.compute`大约需要1/2的时间。这是因为在调用`dask.compute`时,两个结果的任务图都被合并,使得共享操作只做一次而不是两次。特别是,使用`dask.compute`只做一次以下操作。- 调用 "read_csv "和 "dask.compute"。- 过滤器(`df[~df.Cancelled]`)- 一些必要的还原("和"、"数")要查看多个结果之间的合并任务图是什么样子的(以及共享的内容),可以使用`dask.visualize`函数(我们可能想使用`filename='graph.pdf'`将图保存到磁盘上,这样我们就可以更容易地放大)。 ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown 这与pandas相比,如何? Pandas比`dask.dataframe`更成熟,功能更齐全。 如果你的数据适合放在内存中,那么你应该使用Pandas。 当你对不适合在内存中操作的数据集进行操作时,`dask.dataframe`模块给你提供了有限的`pandas`体验。在本教程中,我们提供了一个由几个CSV文件组成的小数据集。 这个数据集在磁盘上是45MB,在内存中可扩展到约400MB。这个数据集足够小,你通常会使用Pandas。我们选择这个大小是为了让练习快速完成。 Dask.dataframe只有在比这个大得多的问题上才真正有意义,当Pandas用可怕的 MemoryError: ...此外,分布式调度器允许相同的数据框架表达式在一个集群中执行。为了实现大规模的 "大数据 "处理,可以执行数据摄取函数,比如`read_csv`,数据存放在每个worker节点都可以访问的存储上(比如amazon的S3),由于大部分操作只从选择一些列开始,对数据进行转换和过滤,所以机器之间只需要进行相对少量的数据通信。Dask.dataframe操作内部使用`pandas`操作。 一般来说,除了以下两种情况,它们的运行速度是差不多的。1. Dask引入了一点开销,每个任务大约1ms。 这通常可以忽略不计。2. 当Pandas释放GIL时,`dask.dataframe`可以在一个进程内并行调用多个pandas操作,速度的提升与核心数成一定比例。对于不释放GIL的操作,需要多个进程才能获得同样的速度提升。 Dask DataFrame 数据模型在大多数情况下,Dask DataFrame感觉就像一个熊猫的DataFrame。到目前为止,我们所看到的最大的区别是Dask的操作是懒惰的;它们会建立一个任务图,而不是立即执行(更多细节将在[Schedulers](05_distributed.ipynb)中介绍)。这让Dask可以在核心之外并行地进行操作。在[Dask数组](03_array.ipynb)中,我们看到一个`dask.array`是由许多NumPy数组组成,沿着一个或多个维度分块。对于`dask.dataframe`来说也是如此:一个Dask DataFrame是由许多pandas DataFrames组成的。对于`dask.dataframe`来说,分块只沿着索引发生。我们把每个分块称为*分区*,上/下界是*分部*。Dask *可以*存储关于分区的信息。现在,当你写自定义函数应用于Dask DataFrames时,分区就会出现。 将 "CRSDepTime "转换为时间戳该数据集存储的时间戳为`HHMM`,在`read_csv`中作为整数读入。 ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown 为了将这些转换为预定出发时间的时间戳,我们需要将这些整数转换为`pd.Timedelta`对象,然后将它们与`Date`列结合起来。在pandas中,我们会使用`pd.to_timedelta`函数,并进行一些运算。 ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown 自定义代码和Dask数据框架我们可以将 "pd.to_timedelta "换成 "dd.to_timedelta",并在整个dask DataFrame上做同样的操作。但是,假设Dask没有实现`dd.to_timedelta`在Dask DataFrames上工作。那么你会怎么做呢?`dask.dataframe`提供了一些方法来使应用自定义函数到Dask DataFrames更容易。- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)这里我们只讨论`map_partitions`,我们可以用它来自己实现`to_timedelta`。 ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown 基本的想法是将一个对DataFrame进行操作的函数应用到每个分区。在本例中,我们将应用`pd.to_timedelta`。 ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown 练习:重写上面的内容,只需调用 "map_partitions这将比两次单独调用的效率略高,因为它减少了图中的任务数量。 ###Code def compute_departure_timestamp(df): pass # TODO: implement this departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() def compute_departure_timestamp(df): hours = df.CRSDepTime // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df.CRSDepTime % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() ###Output _____no_output_____ ###Markdown 限制 哪些地方不能用? Dask.dataframe只涵盖了Pandas API的一小部分,但使用得很好。这种限制有两个原因。1. Pandas API是*大的2. 有些操作确实很难并行完成(如排序)。此外,一些重要的操作,如``set_index``可以工作,但比Pandas慢,因为它们包括大量的数据洗牌,可能会写到磁盘上。 了解更多* [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 1 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame` API. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/)**Main Take-aways**1. Dask DataFrame should be familiar to Pandas users2. The partitioning of dataframes is important for efficient execution Create data ###Code %run prep.py -d flights ###Output _____no_output_____ ###Markdown Setup ###Code from dask.distributed import Client client = Client(n_workers=4) ###Output _____no_output_____ ###Markdown We create artifical data. ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') filename ###Output _____no_output_____ ###Markdown Filename includes a glob pattern `*`, so all files in the path matching that pattern will be read into the same Dask DataFrame. ###Code import dask.dataframe as dd df = dd.read_csv(filename) df.head() # load and count number of rows len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and dtypes. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here len(df) ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here len(df[~df.Cancelled]) ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here df[~df.Cancelled].groupby('Origin').Origin.count().compute() ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.groupby("Origin").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here df.groupby("DayOfWeek").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But let's try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to save the graph to disk so that we can zoom in more easily): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory. This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): pass # TODO: implement this departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() def compute_departure_timestamp(df): hours = df.CRSDepTime // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df.CRSDepTime % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() ###Output _____no_output_____ ###Markdown Limitations What doesn't work? Dask.dataframe only covers a small but well-used portion of the Pandas API.This limitation is for two reasons:1. The Pandas API is *huge*2. Some operations are genuinely hard to do in parallel (e.g. sort)Additionally, some important operations like ``set_index`` work, but are slowerthan in Pandas because they include substantial shuffling of data, and may write out to disk. Learn More* [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 1 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame` API. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/)**Main Take-aways**1. Dask DataFrame should be familiar to Pandas users2. The partitioning of dataframes is important for efficient execution Create data ###Code %run prep.py -d flights ###Output _____no_output_____ ###Markdown Setup ###Code from dask.distributed import Client client = Client(n_workers=4) ###Output _____no_output_____ ###Markdown We create artifical data. ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') filename ###Output _____no_output_____ ###Markdown Filename includes a glob pattern `*`, so all files in the path matching that pattern will be read into the same Dask DataFrame. ###Code import dask.dataframe as dd df = dd.read_csv(filename) df.head() # load and count number of rows len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and dtypes. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here len(df) ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here len(df[~df.Cancelled]) ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here df[~df.Cancelled].groupby('Origin').Origin.count().compute() ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.groupby("Origin").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here df.groupby("DayOfWeek").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But let's try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to save the graph to disk so that we can zoom in more easily): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory. This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): pass # TODO: implement this departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() def compute_departure_timestamp(df): hours = df.CRSDepTime // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df.CRSDepTime % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() ###Output _____no_output_____ ###Markdown Limitations What doesn't work? Dask.dataframe only covers a small but well-used portion of the Pandas API.This limitation is for two reasons:1. The Pandas API is *huge*2. Some operations are genuinely hard to do in parallel (e.g. sort)Additionally, some important operations like ``set_index`` work, but are slowerthan in Pandas because they include substantial shuffling of data, and may write out to disk. Learn More* [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 02 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [Dask DataFrame documentation](http://dask.pydata.org/en/latest/dataframe.html)* [Pandas documentation](http://pandas.pydata.org/)**Main Take-aways**1. Dask.dataframe should be familiar to Pandas users2. The partitioning of dataframes is important for efficient queries Setup We create artifical data. ###Code from prep import accounts_csvs accounts_csvs(3, 1000000, 500) import os import dask filename = os.path.join('data', 'accounts.*.csv') ###Output _____no_output_____ ###Markdown This works just like `pandas.read_csv`, except on multiple csv files at once. ###Code filename import dask.dataframe as dd df = dd.read_csv(filename) # load and count number of rows df.head() len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and types. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here %load solutions/03-dask-dataframe-rows.py ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled.py ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled-per-airport.py ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.columns %load solutions/03-dask-dataframe-delay-per-airport.py ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here %load solutions/03-dask-dataframe-delay-per-day.py ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe require to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory (the difference is caused by using `object` dtype for strings). This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): # TODO departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() %load solutions/03-dask-dataframe-map-partitions.py ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 1 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/)**Main Take-aways**1. Dask DataFrame should be familiar to Pandas users2. The partitioning of dataframes is important for efficient execution Create data ###Code %run prep.py -d flights ###Output - Downloading NYC Flights dataset... done - Extracting flight data... done - Creating json data... done ** Created flights dataset! in 7.80s** ###Markdown Setup ###Code from dask.distributed import Client client = Client(n_workers=16) ###Output /home/robin/.local/lib/python3.6/site-packages/distributed/node.py:155: UserWarning: Port 8787 is already in use. Perhaps you already have a cluster running? Hosting the HTTP server on port 43459 instead http_address["port"], self.http_server.port ###Markdown We create artifical data. ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') filename ###Output _____no_output_____ ###Markdown Filename includes a glob pattern `*`, so all files in the path matching that pattern will be read into the same Dask DataFrame. ###Code import dask.dataframe as dd df = dd.read_csv(filename) df.head() # load and count number of rows len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and dtypes. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output CPU times: user 442 ms, sys: 52.4 ms, total: 495 ms Wall time: 2.6 s ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code len(df) len(df) ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code len(df[~df.Cancelled]) len(df[~df.Cancelled]) ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code df[~df.Cancelled].groupby("Origin").Origin.count().compute() df[~df.Cancelled].groupby('Origin').Origin.count().compute() ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code df.groupby("Origin").DepDelay.mean().compute() df.groupby("Origin").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code df.groupby("DayOfWeek").DepDelay.mean().compute() df.groupby("DayOfWeek").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output CPU times: user 539 ms, sys: 94.7 ms, total: 634 ms Wall time: 3.6 s ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output CPU times: user 302 ms, sys: 68.5 ms, total: 371 ms Wall time: 1.86 s ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory. This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output Help on method map_partitions in module dask.dataframe.core: map_partitions(func, *args, **kwargs) method of dask.dataframe.core.Series instance Apply Python function on each DataFrame partition. Note that the index and divisions are assumed to remain unchanged. Parameters ---------- func : function Function applied to each partition. args, kwargs : Arguments and keywords to pass to the function. The partition will be the first argument, and these will be passed *after*. Arguments and keywords may contain ``Scalar``, ``Delayed`` or regular python objects. DataFrame-like args (both dask and pandas) will be repartitioned to align (if necessary) before applying the function. meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional An empty ``pd.DataFrame`` or ``pd.Series`` that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a ``DataFrame``, a ``dict`` of ``{name: dtype}`` or iterable of ``(name, dtype)`` can be provided (note that the order of the names should match the order of the columns). Instead of a series, a tuple of ``(name, dtype)`` can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing ``meta`` is recommended. For more information, see ``dask.dataframe.utils.make_meta``. Examples -------- Given a DataFrame, Series, or Index, such as: >>> import dask.dataframe as dd >>> df = pd.DataFrame({'x': [1, 2, 3, 4, 5], ... 'y': [1., 2., 3., 4., 5.]}) >>> ddf = dd.from_pandas(df, npartitions=2) One can use ``map_partitions`` to apply a function on each partition. Extra arguments and keywords can optionally be provided, and will be passed to the function after the partition. Here we apply a function with arguments and keywords to a DataFrame, resulting in a Series: >>> def myadd(df, a, b=1): ... return df.x + df.y + a + b >>> res = ddf.map_partitions(myadd, 1, b=2) >>> res.dtype dtype('float64') By default, dask tries to infer the output metadata by running your provided function on some fake data. This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can manually specify the output metadata with the ``meta`` keyword. This can be specified in many forms, for more information see ``dask.dataframe.utils.make_meta``. Here we specify the output is a Series with no name, and dtype ``float64``: >>> res = ddf.map_partitions(myadd, 1, b=2, meta=(None, 'f8')) Here we map a function that takes in a DataFrame, and returns a DataFrame with a new column: >>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y)) >>> res.dtypes x int64 y float64 z float64 dtype: object As before, the output metadata can also be specified manually. This time we pass in a ``dict``, as the output is a DataFrame: >>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y), ... meta={'x': 'i8', 'y': 'f8', 'z': 'f8'}) In the case where the metadata doesn't change, you can also pass in the object itself directly: >>> res = ddf.map_partitions(lambda df: df.head(), meta=ddf) Also note that the index and divisions are assumed to remain unchanged. If the function you're mapping changes the index/divisions, you'll need to clear them afterwards: >>> ddf.map_partitions(func).clear_divisions() # doctest: +SKIP ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): # TODO: implement this hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = pd.to_timedelta minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() def compute_departure_timestamp(df): hours = df.CRSDepTime // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df.CRSDepTime % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() ###Output _____no_output_____ ###Markdown Limitations What doesn't work? Dask.dataframe only covers a small but well-used portion of the Pandas API.This limitation is for two reasons:1. The Pandas API is *huge*2. Some operations are genuinely hard to do in parallel (e.g. sort)Additionally, some important operations like ``set_index`` work, but are slowerthan in Pandas because they include substantial shuffling of data, and may write out to disk. Learn More* [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 1 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/)**Main Take-aways**1. Dask DataFrame should be familiar to Pandas users2. The partitioning of dataframes is important for efficient execution Create data ###Code %run prep.py -d flights ###Output _____no_output_____ ###Markdown Setup ###Code from dask.distributed import Client client = Client(n_workers=4) ###Output _____no_output_____ ###Markdown We create artifical data. ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') filename ###Output _____no_output_____ ###Markdown Filename includes a glob pattern `*`, so all files in the path matching that pattern will be read into the same Dask DataFrame. ###Code import dask.dataframe as dd df = dd.read_csv(filename) df.head() # load and count number of rows len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and dtypes. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output CPU times: user 423 ms, sys: 45.1 ms, total: 468 ms Wall time: 4.57 s ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() stop ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here # df.info() len(df.index) len(df) ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here len(df[df.Cancelled != True]) # df.count(np.where(df.Cancelled == True)) len(df[~df.Cancelled]) ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here df.groupby('Origin')['Cancelled'].value_counts() df[~df.Cancelled].groupby('Origin').Origin.count().compute() ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.groupby("Origin").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here df.groupby("DayOfWeek").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory. This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): pass # TODO: implement this departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() def compute_departure_timestamp(df): hours = df.CRSDepTime // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df.CRSDepTime % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() ###Output _____no_output_____ ###Markdown Limitations What doesn't work? Dask.dataframe only covers a small but well-used portion of the Pandas API.This limitation is for two reasons:1. The Pandas API is *huge*2. Some operations are genuinely hard to do in parallel (e.g. sort)Additionally, some important operations like ``set_index`` work, but are slowerthan in Pandas because they include substantial shuffling of data, and may write out to disk. Learn More* [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 1 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame` API. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/)**Main Take-aways**1. Dask DataFrame should be familiar to Pandas users2. The partitioning of dataframes is important for efficient execution Create data ###Code %run prep.py -d flights ###Output _____no_output_____ ###Markdown Setup ###Code from dask.distributed import Client client = Client(n_workers=4) ###Output _____no_output_____ ###Markdown We create artificial data. ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') filename ###Output _____no_output_____ ###Markdown Filename includes a glob pattern `*`, so all files in the path matching that pattern will be read into the same Dask DataFrame. ###Code import dask.dataframe as dd df = dd.read_csv(filename) df.head() # load and count number of rows len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and dtypes. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here len(df) ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here len(df[~df.Cancelled]) ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here df[~df.Cancelled].groupby('Origin').Origin.count().compute() ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.groupby("Origin").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here df.groupby("DayOfWeek").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But let's try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to save the graph to disk so that we can zoom in more easily): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory. This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): pass # TODO: implement this departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() def compute_departure_timestamp(df): hours = df.CRSDepTime // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df.CRSDepTime % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() ###Output _____no_output_____ ###Markdown Limitations What doesn't work? Dask.dataframe only covers a small but well-used portion of the Pandas API.This limitation is for two reasons:1. The Pandas API is *huge*2. Some operations are genuinely hard to do in parallel (e.g. sort)Additionally, some important operations like ``set_index`` work, but are slowerthan in Pandas because they include substantial shuffling of data, and may write out to disk. Learn More* [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 02 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [Dask DataFrame documentation](http://dask.pydata.org/en/latest/dataframe.html)* [Pandas documentation](http://pandas.pydata.org/)**Main Take-aways**1. Dask.dataframe should be familiar to Pandas users2. The partitioning of dataframes is important for efficient queries Setup ###Code from dask.distributed import Client client = Client() ###Output _____no_output_____ ###Markdown We create artifical data. ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') ###Output _____no_output_____ ###Markdown This works just like `pandas.read_csv`, except on multiple csv files at once. ###Code filename import dask.dataframe as dd df = dd.read_csv(filename) # load and count number of rows df.head() len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and types. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here len(df) ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here len(df[~df.Cancelled]) ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here df[~df.Cancelled].groupby('Origin').Origin.count().compute() ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.groupby("Origin").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here df.groupby("DayOfWeek").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory (the difference is caused by using `object` dtype for strings). This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): pass # TODO: implement this departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() def compute_departure_timestamp(df): hours = df.CRSDepTime // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df.CRSDepTime % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() ###Output _____no_output_____ ###Markdown Limitations What doesn't work? Dask.dataframe only covers a small but well-used portion of the Pandas API.This limitation is for two reasons:1. The Pandas API is *huge*2. Some operations are genuinely hard to do in parallel (e.g. sort)Additionally, some important operations like ``set_index`` work, but are slowerthan in Pandas because they include substantial shuffling of data, and may write out to disk. What definitely works? * Trivially parallelizable operations (fast): * Elementwise operations: ``df.x + df.y`` * Row-wise selections: ``df[df.x > 0]`` * Loc: ``df.loc[4.0:10.5]`` * Common aggregations: ``df.x.max()`` * Is in: ``df[df.x.isin([1, 2, 3])]`` * Datetime/string accessors: ``df.timestamp.month``* Cleverly parallelizable operations (also fast): * groupby-aggregate (with common aggregations): ``df.groupby(df.x).y.max()`` * value_counts: ``df.x.value_counts`` * Drop duplicates: ``df.x.drop_duplicates()`` * Join on index: ``dd.merge(df1, df2, left_index=True, right_index=True)``* Operations requiring a shuffle (slow-ish, unless on index) * Set index: ``df.set_index(df.x)`` * groupby-apply (with anything): ``df.groupby(df.x).apply(myfunc)`` * Join not on the index: ``pd.merge(df1, df2, on='name')``* Ingest operations * Files: ``dd.read_csv, dd.read_parquet, dd.read_json, dd.read_orc``, etc. * Pandas: ``dd.from_pandas`` * Anything supporting numpy slicing: ``dd.from_array`` * From any set of functions creating sub dataframes via ``dd.from_delayed``. * Dask.bag: ``mybag.to_dataframe(columns=[...])`` ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 02 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [Dask DataFrame documentation](http://dask.pydata.org/en/latest/dataframe.html)* [Pandas documentation](http://pandas.pydata.org/)**Main Take-aways**1. Dask.dataframe should be familiar to Pandas users2. The partitioning of dataframes is important for efficient queries Setup ###Code from dask.distributed import Client client = Client() ###Output _____no_output_____ ###Markdown We create artifical data. ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') ###Output _____no_output_____ ###Markdown This works just like `pandas.read_csv`, except on multiple csv files at once. ###Code filename import dask.dataframe as dd df = dd.read_csv(filename) # load and count number of rows df.head() len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and types. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here %load solutions/03-dask-dataframe-rows.py ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled.py ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled-per-airport.py ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.columns %load solutions/03-dask-dataframe-delay-per-airport.py ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here %load solutions/03-dask-dataframe-delay-per-day.py ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory (the difference is caused by using `object` dtype for strings). This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): # TODO departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() %load solutions/03-dask-dataframe-map-partitions.py ###Output _____no_output_____ ###Markdown Limitations What doesn't work? Dask.dataframe only covers a small but well-used portion of the Pandas API.This limitation is for two reasons:1. The Pandas API is *huge*2. Some operations are genuinely hard to do in parallel (e.g. sort)Additionally, some important operations like ``set_index`` work, but are slowerthan in Pandas because they include substantial shuffling of data, and may write out to disk. What definitely works? * Trivially parallelizable operations (fast): * Elementwise operations: ``df.x + df.y`` * Row-wise selections: ``df[df.x > 0]`` * Loc: ``df.loc[4.0:10.5]`` * Common aggregations: ``df.x.max()`` * Is in: ``df[df.x.isin([1, 2, 3])]`` * Datetime/string accessors: ``df.timestamp.month``* Cleverly parallelizable operations (also fast): * groupby-aggregate (with common aggregations): ``df.groupby(df.x).y.max()`` * value_counts: ``df.x.value_counts`` * Drop duplicates: ``df.x.drop_duplicates()`` * Join on index: ``dd.merge(df1, df2, left_index=True, right_index=True)``* Operations requiring a shuffle (slow-ish, unless on index) * Set index: ``df.set_index(df.x)`` * groupby-apply (with anything): ``df.groupby(df.x).apply(myfunc)`` * Join not on the index: ``pd.merge(df1, df2, on='name')``* Ingest operations * Files: ``dd.read_csv, dd.read_parquet, dd.read_json, dd.read_orc``, etc. * Pandas: ``dd.from_pandas`` * Anything supporting numpy slicing: ``dd.from_array`` * From any set of functions creating sub dataframes via ``dd.from_delayed``. * Dask.bag: ``mybag.to_dataframe(columns=[...])`` ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 1 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame` API. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/)**Main Take-aways**1. Dask DataFrame should be familiar to Pandas users2. The partitioning of dataframes is important for efficient execution Create data ###Code %run prep.py -d accounts %run prep.py -d flights ###Output _____no_output_____ ###Markdown Setup ###Code from dask.distributed import Client client = Client(n_workers=4) ###Output _____no_output_____ ###Markdown We load the accounts data. ###Code import os import dask filename = os.path.join('data', 'accounts.*.csv') filename ###Output _____no_output_____ ###Markdown Filename includes a glob pattern `*`, so all files in the path matching that pattern will be read into the same Dask DataFrame. ###Code import dask.dataframe as dd df = dd.read_csv(filename) df.head() # load and count number of rows len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and dtypes. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Let's also read the holidays data which will use in the exercises ###Code holidays = dd.read_parquet(os.path.join('data', "holidays")) holidays.head() ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here len(df) ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here len(df[~df.Cancelled]) ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here df[~df.Cancelled].groupby('Origin').Origin.count().compute() ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.groupby("Origin").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here df.groupby("DayOfWeek").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 6.) What holiday has the worst average departure delay?*Hint*: use [`df.merge`](https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html) to bring holiday information.*Note*: If you have prepared the dataset with `--small` argument or set the `DASK_TUTORIAL_SMALL` environment variable to `True`, you might see only a couple of holidays. This is because the small dataset contains a limited number of rows. ###Code # Your code here df.merge(holidays, on=["Date"], how="left").groupby("holiday").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But let's try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to save the graph to disk so that we can zoom in more easily): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory. This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): pass # TODO: implement this departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() def compute_departure_timestamp(df): hours = df.CRSDepTime // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df.CRSDepTime % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() ###Output _____no_output_____ ###Markdown Limitations What doesn't work? Dask.dataframe only covers a small but well-used portion of the Pandas API.This limitation is for two reasons:1. The Pandas API is *huge*2. Some operations are genuinely hard to do in parallel (e.g. sort)Additionally, some important operations like ``set_index`` work, but are slowerthan in Pandas because they include substantial shuffling of data, and may write out to disk. Learn More* [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 02 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [Dask DataFrame documentation](http://dask.pydata.org/en/latest/dataframe.html)* [Pandas documentation](http://pandas.pydata.org/)**Main Take-aways**1. Dask.dataframe should be familiar to Pandas users2. The partitioning of dataframes is important for efficient queries Setup We create artifical data. ###Code from prep import accounts_csvs accounts_csvs(3, 1000000, 500) import os import dask filename = os.path.join('data', 'accounts.*.csv') ###Output _____no_output_____ ###Markdown This works just like `pandas.read_csv`, except on multiple csv files at once. ###Code filename import dask.dataframe as dd df = dd.read_csv(filename) # load and count number of rows df.head() len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grant total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and types. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here %load solutions/03-dask-dataframe-rows.py ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled.py ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here %load solutions/03-dask-dataframe-non-cancelled-per-airport.py ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.columns %load solutions/03-dask-dataframe-delay-per-airport.py ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here %load solutions/03-dask-dataframe-delay-per-day.py ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe require to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory (the difference is caused by using `object` dtype for strings). This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](04-schedulers.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](02-dask-arrays.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. We'll cover this in more detail in [Distributed DataFrames](05-distributed-dataframes-and-efficiency.ipynb).For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): # TODO departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() %load solutions/03-dask-dataframe-map-partitions.py ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 1 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/)**Main Take-aways**1. Dask DataFrame should be familiar to Pandas users2. The partitioning of dataframes is important for efficient execution Create data ###Code %run prep.py -d flights ###Output _____no_output_____ ###Markdown Setup ###Code from dask.distributed import Client client = Client(n_workers=4) ###Output _____no_output_____ ###Markdown We create artifical data. ###Code from prep import accounts_csvs accounts_csvs() import os import dask filename = os.path.join('data', 'accounts.*.csv') filename ###Output _____no_output_____ ###Markdown Filename includes a glob pattern `*`, so all files in the path matching that pattern will be read into the same Dask DataFrame. ###Code import dask.dataframe as dd df = dd.read_csv(filename) df.head() # load and count number of rows len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and dtypes. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output _____no_output_____ ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here len(df) ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here len(df[~df.Cancelled]) ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here df[~df.Cancelled].groupby('Origin').Origin.count().compute() ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code # Your code here df.groupby("Origin").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here df.groupby("DayOfWeek").DepDelay.mean().compute() ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe required to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output _____no_output_____ ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay) ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory. This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output _____no_output_____ ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp departure_timestamp.head() ###Output _____no_output_____ ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): pass # TODO: implement this departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() def compute_departure_timestamp(df): hours = df.CRSDepTime // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df.CRSDepTime % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') return df.Date + hours_timedelta + minutes_timedelta departure_timestamp = df.map_partitions(compute_departure_timestamp) departure_timestamp.head() ###Output _____no_output_____ ###Markdown Limitations What doesn't work? Dask.dataframe only covers a small but well-used portion of the Pandas API.This limitation is for two reasons:1. The Pandas API is *huge*2. Some operations are genuinely hard to do in parallel (e.g. sort)Additionally, some important operations like ``set_index`` work, but are slowerthan in Pandas because they include substantial shuffling of data, and may write out to disk. Learn More* [DataFrame documentation](https://docs.dask.org/en/latest/dataframe.html)* [DataFrame screencast](https://youtu.be/AT2XtFehFSQ)* [DataFrame API](https://docs.dask.org/en/latest/dataframe-api.html)* [DataFrame examples](https://examples.dask.org/dataframe.html)* [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) ###Code client.shutdown() ###Output _____no_output_____ ###Markdown <img src="http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg" align="right" width="30%" alt="Dask logo\"> Dask DataFramesWe finished Chapter 02 by building a parallel dataframe computation over a directory of CSV files using `dask.delayed`. In this section we use `dask.dataframe` to automatically build similiar computations, for the common case of tabular computations. Dask dataframes look and feel like Pandas dataframes but they run on the same infrastructure that powers `dask.delayed`.In this notebook we use the same airline data as before, but now rather than write for-loops we let `dask.dataframe` construct our computations for us. The `dask.dataframe.read_csv` function can take a globstring like `"data/nycflights/*.csv"` and build parallel computations on all of our data at once. When to use `dask.dataframe`Pandas is great for tabular datasets that fit in memory. Dask becomes useful when the dataset you want to analyze is larger than your machine's RAM. The demo dataset we're working with is only about 200MB, so that you can download it in a reasonable time, but `dask.dataframe` will scale to datasets much larger than memory. The `dask.dataframe` module implements a blocked parallel `DataFrame` object that mimics a large subset of the Pandas `DataFrame`. One Dask `DataFrame` is comprised of many in-memory pandas `DataFrames` separated along the index. One operation on a Dask `DataFrame` triggers many pandas operations on the constituent pandas `DataFrame`s in a way that is mindful of potential parallelism and memory constraints.**Related Documentation*** [Dask DataFrame documentation](http://dask.pydata.org/en/latest/dataframe.html)* [Pandas documentation](http://pandas.pydata.org/)**Main Take-aways**1. Dask.dataframe should be familiar to Pandas users2. The partitioning of dataframes is important for efficient queries Setup We create artifical data. ###Code from prep import accounts_csvs accounts_csvs(3, 1000000, 500) import os import dask filename = os.path.join('data', 'accounts.*.csv') ###Output _____no_output_____ ###Markdown This works just like `pandas.read_csv`, except on multiple csv files at once. ###Code filename import dask.dataframe as dd df = dd.read_csv(filename) # load and count number of rows df.head() len(df) ###Output _____no_output_____ ###Markdown What happened here?- Dask investigated the input path and found that there are three matching files - a set of jobs was intelligently created for each chunk - one per original CSV file in this case- each file was loaded into a pandas dataframe, had `len()` applied to it- the subtotals were combined to give you the final grand total. Real DataLets try this with an extract of flights in the USA across several years. This data is specific to flights out of the three airports in the New York City area. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}) ###Output _____no_output_____ ###Markdown Notice that the respresentation of the dataframe object contains no data - Dask has just done enough to read the start of the first file, and infer the column names and types. ###Code df ###Output _____no_output_____ ###Markdown We can view the start and end of the data ###Code df.head() df.tail() # this fails ###Output _____no_output_____ ###Markdown What just happened?Unlike `pandas.read_csv` which reads in the entire file before inferring datatypes, `dask.dataframe.read_csv` only reads in a sample from the beginning of the file (or first file if using a glob). These inferred datatypes are then enforced when reading all partitions.In this case, the datatypes inferred in the sample are incorrect. The first `n` rows have no value for `CRSElapsedTime` (which pandas infers as a `float`), and later on turn out to be strings (`object` dtype). Note that Dask gives an informative error message about the mismatch. When this happens you have a few options:- Specify dtypes directly using the `dtype` keyword. This is the recommended solution, as it's the least error prone (better to be explicit than implicit) and also the most performant.- Increase the size of the `sample` keyword (in bytes)- Use `assume_missing` to make `dask` assume that columns inferred to be `int` (which don't allow missing values) are actually floats (which do allow missing values). In our particular case this doesn't apply.In our case we'll use the first option and directly specify the `dtypes` of the offending columns. ###Code df = dd.read_csv(os.path.join('data', 'nycflights', '*.csv'), parse_dates={'Date': [0, 1, 2]}, dtype={'TailNum': str, 'CRSElapsedTime': float, 'Cancelled': bool}) df.tail() # now works ###Output _____no_output_____ ###Markdown Computations with `dask.dataframe`We compute the maximum of the `DepDelay` column. With just pandas, we would loop over each file to find the individual maximums, then find the final maximum over all the individual maximums```pythonmaxes = []for fn in filenames: df = pd.read_csv(fn) maxes.append(df.DepDelay.max()) final_max = max(maxes)```We could wrap that `pd.read_csv` with `dask.delayed` so that it runs in parallel. Regardless, we're still having to think about loops, intermediate results (one per file) and the final reduction (`max` of the intermediate maxes). This is just noise around the real task, which pandas solves with```pythondf = pd.read_csv(filename, dtype=dtype)df.DepDelay.max()````dask.dataframe` lets us write pandas-like code, that operates on larger than memory datasets in parallel. ###Code %time df.DepDelay.max().compute() ###Output CPU times: user 8.58 s, sys: 1.92 s, total: 10.5 s Wall time: 5.83 s ###Markdown This writes the delayed computation for us and then runs it. Some things to note:1. As with `dask.delayed`, we need to call `.compute()` when we're done. Up until this point everything is lazy.2. Dask will delete intermediate results (like the full pandas dataframe for each file) as soon as possible. - This lets us handle datasets that are larger than memory - This means that repeated computations will have to load all of the data in each time (run the code above again, is it faster or slower than you would expect?) As with `Delayed` objects, you can view the underlying task graph using the `.visualize` method: ###Code # notice the parallelism df.DepDelay.max().visualize() ###Output _____no_output_____ ###Markdown ExercisesIn this section we do a few `dask.dataframe` computations. If you are comfortable with Pandas then these should be familiar. You will have to think about when to call `compute`. 1.) How many rows are in our dataset?If you aren't familiar with pandas, how would you check how many records are in a list of tuples? ###Code # Your code here len(df) %load solutions/03-dask-dataframe-rows.py ###Output _____no_output_____ ###Markdown 2.) In total, how many non-canceled flights were taken?With pandas, you would use [boolean indexing](https://pandas.pydata.org/pandas-docs/stable/indexing.htmlboolean-indexing). ###Code # Your code here len(df.loc[~df['Cancelled']]) %%timeit (~df['Cancelled']).sum().compute() %%timeit len(df.loc[~df['Cancelled']]) %load solutions/03-dask-dataframe-non-cancelled.py ###Output _____no_output_____ ###Markdown 3.) In total, how many non-cancelled flights were taken from each airport?*Hint*: use [`df.groupby`](https://pandas.pydata.org/pandas-docs/stable/groupby.html). ###Code # Your code here df.loc[~df['Cancelled']].groupby('Origin')['Origin'].count().compute() %load solutions/03-dask-dataframe-non-cancelled-per-airport.py ###Output _____no_output_____ ###Markdown 4.) What was the average departure delay from each airport?Note, this is the same computation you did in the previous notebook (is this approach faster or slower?) ###Code %%time # Your code here df.groupby('Origin')['DepDelay'].mean().compute() ###Output CPU times: user 8.68 s, sys: 1.91 s, total: 10.6 s Wall time: 5.7 s ###Markdown That seems slower.. Expected? ###Code %load solutions/03-dask-dataframe-delay-per-airport.py ###Output CPU times: user 8.85 s, sys: 2.02 s, total: 10.9 s Wall time: 6 s ###Markdown 5.) What day of the week has the worst average departure delay? ###Code # Your code here df.groupby('DayOfWeek')['DepDelay'].mean().idxmax().compute() %load solutions/03-dask-dataframe-delay-per-day.py ###Output _____no_output_____ ###Markdown Sharing Intermediate ResultsWhen computing all of the above, we sometimes did the same operation more than once. For most operations, `dask.dataframe` hashes the arguments, allowing duplicate computations to be shared, and only computed once.For example, lets compute the mean and standard deviation for departure delay of all non-canceled flights. Since dask operations are lazy, those values aren't the final results yet. They're just the recipe require to get the result.If we compute them with two calls to compute, there is no sharing of intermediate computations. ###Code non_cancelled = df[~df.Cancelled] mean_delay = non_cancelled.DepDelay.mean() std_delay = non_cancelled.DepDelay.std() %%time mean_delay_res = mean_delay.compute() std_delay_res = std_delay.compute() ###Output CPU times: user 17.4 s, sys: 4.11 s, total: 21.5 s Wall time: 11.7 s ###Markdown But lets try by passing both to a single `compute` call. ###Code %%time mean_delay_res, std_delay_res = dask.compute(mean_delay, std_delay) ###Output CPU times: user 8.86 s, sys: 2.05 s, total: 10.9 s Wall time: 5.91 s ###Markdown Using `dask.compute` takes roughly 1/2 the time. This is because the task graphs for both results are merged when calling `dask.compute`, allowing shared operations to only be done once instead of twice. In particular, using `dask.compute` only does the following once:- the calls to `read_csv`- the filter (`df[~df.Cancelled]`)- some of the necessary reductions (`sum`, `count`)To see what the merged task graphs between multiple results look like (and what's shared), you can use the `dask.visualize` function (we might want to use `filename='graph.pdf'` to zoom in on the graph better): ###Code dask.visualize(mean_delay, std_delay, filename='graph.pdf') ###Output _____no_output_____ ###Markdown How does this compare to Pandas? Pandas is more mature and fully featured than `dask.dataframe`. If your data fits in memory then you should use Pandas. The `dask.dataframe` module gives you a limited `pandas` experience when you operate on datasets that don't fit comfortably in memory.During this tutorial we provide a small dataset consisting of a few CSV files. This dataset is 45MB on disk that expands to about 400MB in memory (the difference is caused by using `object` dtype for strings). This dataset is small enough that you would normally use Pandas.We've chosen this size so that exercises finish quickly. Dask.dataframe only really becomes meaningful for problems significantly larger than this, when Pandas breaks with the dreaded MemoryError: ... Furthermore, the distributed scheduler allows the same dataframe expressions to be executed across a cluster. To enable massive "big data" processing, one could execute data ingestion functions such as `read_csv`, where the data is held on storage accessible to every worker node (e.g., amazon's S3), and because most operations begin by selecting only some columns, transforming and filtering the data, only relatively small amounts of data need to be communicated between the machines.Dask.dataframe operations use `pandas` operations internally. Generally they run at about the same speed except in the following two cases:1. Dask introduces a bit of overhead, around 1ms per task. This is usually negligible.2. When Pandas releases the GIL (coming to `groupby` in the next version) `dask.dataframe` can call several pandas operations in parallel within a process, increasing speed somewhat proportional to the number of cores. For operations which don't release the GIL, multiple processes would be needed to get the same speedup. Dask DataFrame Data ModelFor the most part, a Dask DataFrame feels like a pandas DataFrame.So far, the biggest difference we've seen is that Dask operations are lazy; they build up a task graph instead of executing immediately (more details coming in [Schedulers](05_distributed.ipynb)).This lets Dask do operations in parallel and out of core.In [Dask Arrays](03_array.ipynb), we saw that a `dask.array` was composed of many NumPy arrays, chunked along one or more dimensions.It's similar for `dask.dataframe`: a Dask DataFrame is composed of many pandas DataFrames. For `dask.dataframe` the chunking happens only along the index.We call each chunk a *partition*, and the upper / lower bounds are *divisions*.Dask *can* store information about the divisions. For now, partitions come up when you write custom functions to apply to Dask DataFrames Converting `CRSDepTime` to a timestampThis dataset stores timestamps as `HHMM`, which are read in as integers in `read_csv`: ###Code crs_dep_time = df.CRSDepTime.head(10) crs_dep_time ###Output _____no_output_____ ###Markdown To convert these to timestamps of scheduled departure time, we need to convert these integers into `pd.Timedelta` objects, and then combine them with the `Date` column.In pandas we'd do this using the `pd.to_timedelta` function, and a bit of arithmetic: ###Code import pandas as pd # Get the first 10 dates to complement our `crs_dep_time` date = df.Date.head(10) # Get hours as an integer, convert to a timedelta hours = crs_dep_time // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') # Get minutes as an integer, convert to a timedelta minutes = crs_dep_time % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') # Apply the timedeltas to offset the dates by the departure time departure_timestamp = date + hours_timedelta + minutes_timedelta departure_timestamp ###Output _____no_output_____ ###Markdown Custom code and Dask DataframeWe could swap out `pd.to_timedelta` for `dd.to_timedelta` and do the same operations on the entire dask DataFrame. But let's say that Dask hadn't implemented a `dd.to_timedelta` that works on Dask DataFrames. What would you do then?`dask.dataframe` provides a few methods to make applying custom functions to Dask DataFrames easier:- [`map_partitions`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_partitions)- [`map_overlap`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.map_overlap)- [`reduction`](http://dask.pydata.org/en/latest/dataframe-api.htmldask.dataframe.DataFrame.reduction)Here we'll just be discussing `map_partitions`, which we can use to implement `to_timedelta` on our own: ###Code # Look at the docs for `map_partitions` help(df.CRSDepTime.map_partitions) ###Output Help on method map_partitions in module dask.dataframe.core: map_partitions(func, *args, **kwargs) method of dask.dataframe.core.Series instance Apply Python function on each DataFrame partition. Note that the index and divisions are assumed to remain unchanged. Parameters ---------- func : function Function applied to each partition. args, kwargs : Arguments and keywords to pass to the function. The partition will be the first argument, and these will be passed *after*. Arguments and keywords may contain ``Scalar``, ``Delayed`` or regular python objects. meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional An empty ``pd.DataFrame`` or ``pd.Series`` that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a ``DataFrame``, a ``dict`` of ``{name: dtype}`` or iterable of ``(name, dtype)`` can be provided. Instead of a series, a tuple of ``(name, dtype)`` can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing ``meta`` is recommended. For more information, see ``dask.dataframe.utils.make_meta``. Examples -------- Given a DataFrame, Series, or Index, such as: >>> import dask.dataframe as dd >>> df = pd.DataFrame({'x': [1, 2, 3, 4, 5], ... 'y': [1., 2., 3., 4., 5.]}) >>> ddf = dd.from_pandas(df, npartitions=2) One can use ``map_partitions`` to apply a function on each partition. Extra arguments and keywords can optionally be provided, and will be passed to the function after the partition. Here we apply a function with arguments and keywords to a DataFrame, resulting in a Series: >>> def myadd(df, a, b=1): ... return df.x + df.y + a + b >>> res = ddf.map_partitions(myadd, 1, b=2) >>> res.dtype dtype('float64') By default, dask tries to infer the output metadata by running your provided function on some fake data. This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can manually specify the output metadata with the ``meta`` keyword. This can be specified in many forms, for more information see ``dask.dataframe.utils.make_meta``. Here we specify the output is a Series with no name, and dtype ``float64``: >>> res = ddf.map_partitions(myadd, 1, b=2, meta=(None, 'f8')) Here we map a function that takes in a DataFrame, and returns a DataFrame with a new column: >>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y)) >>> res.dtypes x int64 y float64 z float64 dtype: object As before, the output metadata can also be specified manually. This time we pass in a ``dict``, as the output is a DataFrame: >>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y), ... meta={'x': 'i8', 'y': 'f8', 'z': 'f8'}) In the case where the metadata doesn't change, you can also pass in the object itself directly: >>> res = ddf.map_partitions(lambda df: df.head(), meta=df) Also note that the index and divisions are assumed to remain unchanged. If the function you're mapping changes the index/divisions, you'll need to clear them afterwards: >>> ddf.map_partitions(func).clear_divisions() # doctest: +SKIP ###Markdown The basic idea is to apply a function that operates on a DataFrame to each partition.In this case, we'll apply `pd.to_timedelta`. ###Code hours = df.CRSDepTime // 100 # hours_timedelta = pd.to_timedelta(hours, unit='h') hours_timedelta = hours.map_partitions(pd.to_timedelta, unit='h') minutes = df.CRSDepTime % 100 # minutes_timedelta = pd.to_timedelta(minutes, unit='m') minutes_timedelta = minutes.map_partitions(pd.to_timedelta, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta departure_timestamp %%time departure_timestamp.head() ###Output CPU times: user 667 ms, sys: 133 ms, total: 799 ms Wall time: 792 ms ###Markdown Exercise: Rewrite above to use a single call to `map_partitions`This will be slightly more efficient than two separate calls, as it reduces the number of tasks in the graph. ###Code def compute_departure_timestamp(df): # TODO hours = df['CRSDepTime'] // 100 hours_timedelta = pd.to_timedelta(hours, unit='h') minutes = df['CRSDepTime'] % 100 minutes_timedelta = pd.to_timedelta(minutes, unit='m') departure_timestamp = df.Date + hours_timedelta + minutes_timedelta return departure_timestamp departure_timestamp = df.map_partitions(compute_departure_timestamp) %%time departure_timestamp.head() %load solutions/03-dask-dataframe-map-partitions.py ###Output _____no_output_____
src/jseg/test/data_test.ipynb
###Markdown Overlapping Circles ###Code # Print all the different overlapping situation shape = (100, 100) fig,axs = plt.subplots(2,len(OVERLAPPING_CIRCLE_TYPES)) fig.set_size_inches(30,6) for i,segmentation_type in enumerate(OVERLAPPING_CIRCLE_TYPES): label, segmentation = overlapping_circles(segmentation_type= segmentation_type, background_label = 0, shape = shape) axs[0,i].imshow(label) axs[1,i].imshow(segmentation) axs[0,i].set_title(segmentation_type) axs[0,i].set_ylabel("Label") axs[1,i].set_ylabel("Segmentation") ###Output _____no_output_____
bs4_PTT_stock .ipynb
###Markdown 以下複習bs4的使用 ###Code num = 3000 PTT_stock_URL = 'https://www.ptt.cc/bbs/Stock/index'+str(num)+'.html' driver = webdriver.PhantomJS(executable_path='/Users/mac/Desktop/Programming/phantomjs-2.1.1-macosx/bin/phantomjs') driver.get(PTT_stock_URL) PTT_page = driver.page_source soup = BeautifulSoup(PTT_page, 'lxml') ###Output _____no_output_____ ###Markdown bs4裡面的method都是針對單一個對象的,不要多目標一起用會出錯 ###Code soup.title soup.title.string print(soup.prettify()) a_tags = soup.find_all('a', string=re.compile('三大')) #只搜尋子字串含有___的人 a_tags article_list = soup.find_all(href=re.compile('/bbs/Stock/M')) #代表真實文章的所有列表 article_list soup.find_all(href=re.compile('/bbs/Stock/M'))[0].string #只有單個品項才可以取出string soup.find_all(href=re.compile('/bbs/Stock/M'))[0].attrs #只有單個品項才可以取出attrs soup.find_all(href=re.compile('/bbs/Stock/M'))[0].attrs['href'] #單個品項先取出attrs再用字典取出href div_tags = soup.find_all('div', class_='r-ent') #注意,是class_ div_tags #日期 div_tags[0].find('div', class_='date').string #作者 div_tags[0].find('div', class_='author').string #推文噓文數目 div_tags[0].find('div', class_='nrec').string #文章名稱、URL div_tags[0].find('a', href=re.compile('/bbs/Stock/M')) #文章URL div_tags[0].find('a', href=re.compile('/bbs/Stock/M')).attrs['href'] #文章名稱 div_tags[0].find('a', href=re.compile('/bbs/Stock/M')).string ###Output _____no_output_____ ###Markdown 總結以上一個文章列表可以獲得的資訊 ###Code dict_page_topic = [] dict_page_topic_URL = [] dict_page_author = [] dict_page_date = [] dict_page_good_boo = [] for topic_content in soup.find_all('div', class_='r-ent'): dict_page_topic.append(topic_content.find('a', href=re.compile('/bbs/Stock/M')).string) dict_page_topic_URL.append('https://www.ptt.cc'+topic_content.find('a', href=re.compile('/bbs/Stock/M')).attrs['href']) dict_page_author.append(topic_content.find('div', class_='author').string) dict_page_date.append(topic_content.find('div', class_='date').string) dict_page_good_boo.append(topic_content.find('div', class_='nrec').string) df = pd.DataFrame({ 'topic': dict_page_topic, 'topic_URL': dict_page_topic_URL, 'author': dict_page_author, 'date': dict_page_date, 'good_boo': dict_page_good_boo, }) df ###Output _____no_output_____ ###Markdown 用for迴圈拓展爬3000-3718頁面的所有文章(近2年),並障礙排除刪除的文章 ###Code dict_page_topic = [] dict_page_topic_URL = [] dict_page_author = [] dict_page_date = [] dict_page_good_boo = [] driver = webdriver.PhantomJS(executable_path='/Users/mac/Desktop/Programming/phantomjs-2.1.1-macosx/bin/phantomjs') for i in range(3000,3718): PTT_stock_URL = 'https://www.ptt.cc/bbs/Stock/index'+str(i)+'.html' driver.get(PTT_stock_URL) PTT_page = driver.page_source soup = BeautifulSoup(PTT_page, 'lxml') for topic_content in soup.find_all('div', class_='r-ent'): try: topic_content.find('a', href=re.compile('/bbs/Stock/M')).string dict_page_topic.append(topic_content.find('a', href=re.compile('/bbs/Stock/M')).string) dict_page_topic_URL.append('https://www.ptt.cc'+topic_content.find('a', href=re.compile('/bbs/Stock/M')).attrs['href']) dict_page_author.append(topic_content.find('div', class_='author').string) dict_page_date.append(topic_content.find('div', class_='date').string) dict_page_good_boo.append(topic_content.find('div', class_='nrec').string) except AttributeError: #若是有人刪除文章,topic找不到會跑出這個錯誤 continue if i%10 == 0: print('finished page:', i) print('Finished PTT scarping!') df = pd.DataFrame({ 'topic': dict_page_topic, 'topic_URL': dict_page_topic_URL, 'author': dict_page_author, 'date': dict_page_date, 'good_boo': dict_page_good_boo, }) df.tail() df.to_csv('PTT_stock_p3000_p3718.csv') df = pd.read_csv('PTT_stock_p3000_p3718.csv', index_col=0) df ###Output _____no_output_____ ###Markdown 近n天盤中閒聊推文內容 ###Code n = 60 #最近n天的盤中推文 df[df['topic'].str.contains('盤中閒聊')][-n:] daychat_URL = df[df['topic'].str.contains('盤中閒聊')]['topic_URL'][-n:].values daychat_URL driver.get(daychat_URL[0]) daychat = driver.page_source soup = BeautifulSoup(daychat, 'lxml') soup.find_all('div', class_='push')[0] soup.find_all('div', class_='push')[0].find('span', class_='f3 push-content').string driver.quit() import time push_type = [] push_ID = [] push_content = [] push_time = [] count = 0 start = time.time() driver = webdriver.PhantomJS(executable_path='/Users/mac/Desktop/Programming/phantomjs-2.1.1-macosx/bin/phantomjs') for url in daychat_URL: driver.get(url) daychat = driver.page_source soup = BeautifulSoup(daychat,'lxml') for topic_content in soup.find_all('div', class_='push'): try: #推文 push_type.append(topic_content.find('span', class_='hl push-tag').string) push_ID.append(topic_content.find('span', class_='f3 hl push-userid').string) push_content.append(topic_content.find('span', class_='f3 push-content').string) push_time.append(topic_content.find('span', class_='push-ipdatetime').string) except AttributeError: #切換到噓文,用identation就可以一層一層處理異常了!! try: push_type.append(topic_content.find('span', class_='f1 hl push-tag').string) push_ID.append(topic_content.find('span', class_='f3 hl push-userid').string) push_content.append(topic_content.find('span', class_='f3 push-content').string) push_time.append(topic_content.find('span', class_='push-ipdatetime').string) except AttributeError: #連噓文都沒辦法,就給大宗師Exception忽略異常吧 print('連噓文都沒辦法,就忽略異常吧 <div class="push center warning-box">檔案過大!部分文章無法顯示</div>') continue count += 1 if count % 10 == 0: print('finished chats:', count, 'time used(sec):', time.time()-start) print('finished chat push scraping') driver.quit() df_daychat_push = pd.DataFrame({ 'type': push_type, 'ID': push_ID, 'content': push_content, 'time': push_time }) df_daychat_push df_daychat_push.to_csv('daychat_push_60d_1006.csv') df_daychat_push = pd.read_csv('daychat_push_60d_1006.csv', index_col=0) df_daychat_push['ID'].value_counts() df_daychat_push['type'].value_counts() len(set(df_daychat_push['ID'].values)) df_daychat_push.dropna(inplace=True) #有Nan會有method不好用 df_daychat_push.to_csv('daychat_push_60d_1006.csv') df_daychat_push.shape df_daychat_push[df_daychat_push['content'].str.contains('崩')] df_daychat_push[df_daychat_push['content'].str.contains('多')] df_daychat_push[df_daychat_push['content'].str.contains('可成')] ###Output _____no_output_____ ###Markdown 對照用^TWII大盤指數: 2015/10~2017/10 ###Code from pandas_datareader import data as web TWII = web.DataReader(name='^TWII', data_source='yahoo', start='2015-10-01') TWII.to_csv('TWII_20151001_20171006.csv') TWII['up_1_down_0'] = np.where(TWII['Close']-TWII['Close'].shift(1)>0 , 1 , 0) TWII['Pct_change'] = TWII['Close'].pct_change()*100 #percentage TWII['Volatility level'] = np.where(np.abs(TWII['Pct_change'])>0.8 , 'high' , 'low') #用變動8%當界定線 TWII TWII.to_csv('TWII_20151001_20171006.csv') ###Output _____no_output_____
scripts/python-scripts/heatmaps/0002_getting-heatmap-effector_new.ipynb
###Markdown Visualizing CNN Layers ###Code from tensorflow.keras.models import load_model from matplotlib import pyplot import numpy as np import pandas as pd from plotnine import * ###Output _____no_output_____ ###Markdown Load model ###Code # Load the model model = load_model("../../results/model_ensemble/models/weights/cnn_lstm_30-0.41.hdf5") model.summary() ###Output Model: "model_1" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 4034, 20)] 0 __________________________________________________________________________________________________ conv1d_1 (Conv1D) (None, 4034, 32) 640 input_1[0][0] __________________________________________________________________________________________________ conv1d_2 (Conv1D) (None, 4032, 32) 1920 input_1[0][0] __________________________________________________________________________________________________ conv1d_3 (Conv1D) (None, 4030, 32) 3200 input_1[0][0] __________________________________________________________________________________________________ batch_normalization_1 (BatchNor (None, 4034, 32) 128 conv1d_1[0][0] __________________________________________________________________________________________________ batch_normalization_2 (BatchNor (None, 4032, 32) 128 conv1d_2[0][0] __________________________________________________________________________________________________ batch_normalization_3 (BatchNor (None, 4030, 32) 128 conv1d_3[0][0] __________________________________________________________________________________________________ activation_1 (Activation) (None, 4034, 32) 0 batch_normalization_1[0][0] __________________________________________________________________________________________________ activation_2 (Activation) (None, 4032, 32) 0 batch_normalization_2[0][0] __________________________________________________________________________________________________ activation_3 (Activation) (None, 4030, 32) 0 batch_normalization_3[0][0] __________________________________________________________________________________________________ concatenate_1 (Concatenate) (None, 12096, 32) 0 activation_1[0][0] activation_2[0][0] activation_3[0][0] __________________________________________________________________________________________________ conv1d_4 (Conv1D) (None, 12094, 64) 6208 concatenate_1[0][0] __________________________________________________________________________________________________ lstm_1 (LSTM) (None, 16) 5184 conv1d_4[0][0] __________________________________________________________________________________________________ lstm_2 (LSTM) (None, 16) 5184 conv1d_4[0][0] __________________________________________________________________________________________________ concatenate_2 (Concatenate) (None, 32) 0 lstm_1[0][0] lstm_2[0][0] __________________________________________________________________________________________________ dense_1 (Dense) (None, 32) 1056 concatenate_2[0][0] __________________________________________________________________________________________________ dropout_1 (Dropout) (None, 32) 0 dense_1[0][0] __________________________________________________________________________________________________ dense_2 (Dense) (None, 1) 33 dropout_1[0][0] ================================================================================================== Total params: 23,809 Trainable params: 23,617 Non-trainable params: 192 __________________________________________________________________________________________________ ###Markdown Transform CNN models layers into data frames ###Code def get_filter_data(layer_num): # retrieve weights from the hidden layer filters = model.layers[layer_num].get_weights() # reshape layers filters = filters[0] # normalize filter values to 0-1 so we can visualize them f_min, f_max = filters.min(), filters.max() filters = (filters - f_min) / (f_max - f_min) # Limits for loop iterations num_x, num_y, num_filters = np.shape(filters) # Create data frame filters_df = pd.DataFrame({ "x" : [], "y" : [], "filter_num" : [], "value" : [] }) # Loop to save filters data into df for x in range(num_x): for y in range(num_y): for filt in range(num_filters): filters_df.loc[len(filters_df)] = np.array([x + 1, y + 1, filt + 1, filters[x,y,filt]]) # Make x, y, filter columns integers filters_df = ( filters_df .astype({ "x": "int64", "y": "int64", "filter_num": "int64" }) ) return(filters_df) ###Output _____no_output_____ ###Markdown Visualize each of CNN models layers ###Code def plot_filters(conv_df, conv_title): filters_fig = ( ggplot(conv_df) + aes(x = "y", y = "x", fill = "value") + geom_tile() + scale_x_continuous(expand = [0,0,0,0], breaks = None) + scale_y_continuous(expand = [0,0,0,0], breaks = None) + facet_wrap("filter_num", ncol = 4) + # scale_fill_manual(limits = [0,1]) + coord_fixed() + labs( title = "Filters for " + conv_title + " layer", x = "x Dimension", y = "y Dimension" ) + theme_light() + theme( figure_size = [10,6], panel_grid_major = element_blank(), panel_grid_minor = element_blank(), strip_text = element_text(colour = 'black', size = 10), strip_background = element_rect(colour = None, fill = "#BDBDBD") ) ) return(filters_fig) ###Output _____no_output_____ ###Markdown Run functions ###Code conv1d_1_df = get_filter_data(1) conv1d_2_df = get_filter_data(2) conv1d_3_df = get_filter_data(3) conv1d_4_df = get_filter_data(11) plot_filters(conv1d_1_df, "Conv1D 1") plot_filters(conv1d_2_df, "Conv1D 2") plot_filters(conv1d_3_df, "Conv1D 3") plot_filters(conv1d_4_df, "Conv1D 4") ###Output _____no_output_____ ###Markdown Visializing predictions on CNN layers ###Code from tensorflow.keras.models import Model from numpy import expand_dims ###Output _____no_output_____ ###Markdown Load data ###Code # Get the reprocessed data from .npy file x_train = np.load('../r-scripts/getting-data-current/data-sets/x_train.npy') y_train = np.load('../r-scripts/getting-data-current/data-sets/y_train.npy') x_train.shape # x_dev = np.load('../r-scripts/getting-data-current/data-sets/x_val.npy') # y_dev = np.load('../r-scripts/getting-data-current/data-sets/y_val.npy') # x_test = np.load('../r-scripts/getting-data-current/data-sets/x_test.npy') # y_test = np.load('../r-scripts/getting-data-current/data-sets/y_test.npy') ###Output _____no_output_____ ###Markdown Apply model and transform data into data frame ###Code def get_partial_output_data(num_layer, sequences, seq_length, show_filters): # Get feature maps data_for_checking = x_train[sequences, :, :] model_partial = Model(inputs = model.inputs, outputs = model.layers[num_layer].output) feature_map = model_partial.predict(data_for_checking) feature_map = feature_map[:, :seq_length, :] # normalize filter values to 0-1 so we can visualize them f_min, f_max = feature_map.min(), feature_map.max() feature_map = (feature_map - f_min) / (f_max - f_min) # Limits for loop iterations num_x, num_y, num_filters = np.shape(feature_map) # Create data frame feature_map_df = pd.DataFrame({ "x" : [], "y" : [], "filter_num" : [], "value" : [] }) # Loop to save filters data into df for x in range(num_x): for y in range(num_y): for filt in range(num_filters): feature_map_df.loc[len(feature_map_df)] = np.array([x + 1, y + 1, filt + 1, feature_map[x, y, filt]]) # Make x, y, filter columns integers feature_map_df = ( feature_map_df .astype({ "x": "int64", "y": "int64", "filter_num": "int64" }) .query("filter_num in @show_filters") ) return(feature_map_df) ###Output _____no_output_____ ###Markdown Visualize layers outpus ###Code def plot_layer_outputs(conv_df, conv_title): outputs_fig = ( ggplot(conv_df) + aes(x = "y", y = "x", fill = "value") + geom_tile() + # scale_x_continuous(expand = [0,0,0,0], breaks = np.arange(0, 4034, 1)) + scale_x_continuous(expand = [0,0,0,0], breaks = None) + scale_y_continuous(expand = [0,0,0,0], breaks = np.arange(0, 462, 1)) + facet_wrap("filter_num", ncol = 4) + # scale_fill_manual(limits = [0,1]) + coord_fixed() + labs( title = "Outputs for " + conv_title + " layer", x = "Sequence length", y = "Sequence" ) + theme_light() + theme( figure_size = [10,6], panel_grid_major = element_blank(), panel_grid_minor = element_blank(), strip_text = element_text(colour = 'black', size = 10), strip_background = element_rect(colour = None, fill = "#BDBDBD") ) ) return(outputs_fig) ###Output _____no_output_____ ###Markdown Run functions ###Code # Getting the visualisation from Conv1d_1 feature_map_conv_layer1 = get_partial_output_data( num_layer = 1, sequences = range(0,1), seq_length = 20, show_filters = range(1, 32 + 1) # +1 so the last one can be shown ) plot_layer_outputs(feature_map_conv_layer1, "Conv1D 1") # Getting the visualisation from concatenation feature_map_conv_layer2 = get_partial_output_data( num_layer = 2, sequences = range(0,1), seq_length = 20, show_filters = range(1, 16 + 1) # +1 so the last one can be shown ) plot_layer_outputs(feature_map_conv_layer2, "Conv1D 2") # Getting the visualisation from concatenation feature_map_concatenation = get_partial_output_data( num_layer = 10, sequences = range(0,1), seq_length = 20, show_filters = range(1, 16 + 1) # +1 so the last one can be shown ) plot_layer_outputs(feature_map_concatenation, "Concatenation layer") # Getting the visualisation from Conv1d_4 feature_map = get_partial_output_data( num_layer = 11, sequences = range(0,1), seq_length = 20, show_filters = range(1, 16 + 1) # +1 so the last one can be shown ) plot_layer_outputs(feature_map, "Conv1D 4") ###Output _____no_output_____
Real Life Data.ipynb
###Markdown ![GMITLOGO](https://www.pchei.ie/images/college_crests/gmit_crest.jpg) Programming for Data Analysis - Project By Simona Vasiliauskaite G00263352**Main Objective**Create a data set by simulating a real-world phenomenon of your choosing.**Tasks:*** Choose a real-world phenomenon that can be measured and collect at least one-hundred data points across at least four different variables.* Investigate the types of variables involved, their likely distributions, and their relationships with each other.* Synthesise/simulate a data set as closely matching their properties as possible.* Detail research and implement the simulation in a Jupyter notebook. 1. Chosen Real Life Phenomenon I have chosen to analyse social media usage across Ireland based on population's age, gender and mobile usage and how it may impact their buying behaviour online.It goes without saying that we live in an age where technology proliferates and prevails. It shapes the way we work and live. And sad as it may be, it also dictates how we think and act too. According to the world at large, we’re a bunch of digital obsessives that live through the lens of our smartphones, addicted to scrolling, refreshing and then scrolling some more. Below are some digital and social media statistics that tell us how Irish people act online in 2018. (1)**What accounts are most popular?*** 65% have a Facebook account, 69% of whom access it daily * 27% have a Linkedin account, 18% of whom access it daily * 32% have an Instagram account, 51% of whom access it daily* 29% have a Twitter account, 37% of whom access it daily* 40% of us now use WhatsApp (2)![Social Media](http://i2.wp.com/communicationshub.ie/wp-content/uploads/2018/02/account-ownership-nov17.jpg)**It also influences our purchasing desicions**Social media is the most influential tool for Irish consumers when finding inspiration for purchases, particularly for younger age groups. Millennials and Generation Z consumers are more likely to make purchases when retailers actively engage on social media with this age grouping. Irish consumers cited social media (38%) as the most influential channel along with individual retailer websites for inspiring purchases. Social media ranked higher than other online media channels, such as blogs and digital press and magazines. With 90% of 18-24 year olds using social media to inspire purchases, this is a key demographic group in terms of encouraging social media engagement.(4)* Finding information about goods and services (86%) was the most common activity carried out on the internet by Irish individuals (CSO, 2017) * Over a quarter of us have purchased online six or more times in the last three months (CSO, 2017)* Ireland is ranked ninth in the EU when it comes to online shopping, up from thirteenth the year before (European Commission, 2017)* 58% of large enterprises in Ireland experienced e-commerce sales in the last year – accounting for 43% of their sales in total (CSO, 2017)* Clothes or sports goods were the most popular online purchase in 2017, purchased by 44% of individuals.**Shopping on Mobiles Phones**The smartphone has become intertwined into our daily lives, with ninety eight percent of smartphone owners using their devices on a daily basis. Smartphone capabilities and utilities are becoming ever greater and usage continues to evolve. Websites must be mobile-enabled as mobile devices are becoming a key purchasing tool when shopping online. Mobile payments are set to double by 2023 so retailers need to ensure that they have smooth, effective mobile payment options in-store.(5) * 90% of Irish adults own a smartphone * The number of +65 year olds with access to an e-reader has increased from 30% to 45%.* Access to tablets among the 65+ market has grown from 57% in 2017 to 70% in 2018.* Irish adults look at their mobile phone 57 times a day.* 16% admit to looking at their phone more than 100 times a day against a European average of 8%.* Just under one in three of us check our phone within five minutes of going to sleep.* More than half of us think we use our phone too much – nearly 60% of us think our partners do* 68% of 18-24 year olds watch live videos or stories on social media on a daily basis. (5)**Age Group**Instagram took the top spot for people aged between 18 and 34. Facebook reclaims the top spot for people aged 35 to 54 where Instagram dropped to third place behind Twitter. (6) ###Code # Import Python libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown 2. Variables involved, their likely distributions, and their relationships with each other. I will investigate 4 variables across a dataset of 3.3 million social media users in Ireland.**Variables:**1. User's Age: 15-65 2. Sex: Female or Male3. Hours spent on a phone per day: 0-24 (hours)4. Apps Downloaded: Facebook, Instagram, Pinterest, Twitter, WhatsAapp (Min 1 - Max 5) 1. Variable - Age DistributionLet's look at the age distribution among 3.3 million social media users in Ireland. Statistics showed that average users age is around 34, minimum age for account creation is 15 and people up to age 65+ were active users. Age is a big factor in mobile usage. Millenials and generation Z consumers are more likely to make purchases when retailers actively engage on social media with this age grouping. ###Code np.random.seed(12345) # I did a seed reset so the numbers stay the same every time age = np.random.triangular(15, 34, 65, 3300000).round(0) # generate values age # Create plot plt.hist(np.random.triangular(15, 34, 65, 3300000), bins=10, normed=True, edgecolor='k') plt.ylabel('Frequency') # Label y axis plt.xlabel('User Age') # Label x axis plt.title('Social Media User Age') # Add title plt.show() # Show Plot ###Output _____no_output_____ ###Markdown 2. Variable - Gender Distribution Gender is also a huge factor to consider when analysing purchasing behaviour. How social media content is consumed heavily depends on the type of person/gender. ###Code # Male = 1 # Female = 2 np.random.seed(12345) # I did a seed reset so the numbers stay the same every time gender = np.random.randint(1, 3, 3300000) # 1 - males, 3 - females but not included, 3.3 million users gender # Plot data in a histrogram plt.hist(gender, bins=3, edgecolor='k') plt.ylabel("Users") # Label y axis plt.xlabel("Gender - Male or Female") # Label x axis plt.show() # Show plot ###Output _____no_output_____ ###Markdown We can see from histogram above that the gender distribution is even. 3. Variable - Phone UsageLet's see the distribution of a user checking their phone every day. Statistics taken from above show that on average a person checks their phone 57 times a day. The hyphotesis here would be to see whether a person who is exposed to more social media content on a daily basis purchases more online than a person who spends less time online. ###Code np.random.seed(12345) # I did a seed reset so the numbers stay the same every time usage = np.random.normal(57,3,3300000). round(0) # generate values usage min(usage) # Check for minimum amount of phone usage per day max(usage) # Check for maximum amount of times a phone is used plt.hist(usage,bins=73, edgecolor='k') # Add sample count, amount of bins, and edgecolour of the bins plt.ylabel('Users') # Label y axis plt.xlabel('Times') # Label x axis plt.title('Times Looked at a Phone Daily') # Add title plt.show() # Show Plot ###Output _____no_output_____ ###Markdown 4. Variable - Social Media AppsI would also like to see possible distribution of the amount of social media platforms a person may use or download. In the above statistics it states that a person has at least one social media app downloaded and most popular ones are Facebook, Instagram, Twitter, WhatsApp and Pinterest so I will say a person on average has a maximum 5 social media accounts on their phone. Online business use different applications to promote their product and service so if a person has more apps downloaded they are exposed to more advertisements and may be influenced to purchase more. ###Code np.random.seed(12345) # I did a seed reset so the numbers stay the same every time social = np.random.uniform(1, 5, 3300000).round(0) # generate values social plt.hist(social,bins=10, edgecolor='k') # Add sample count, amount of bins, and edgecolour of the bins plt.ylabel('Users') # Label y axis plt.xlabel('Social Apps') # Label x axis plt.title('Apps Downloaded') # Add title plt.show() # Show Plot min(social) max(social) # Create data height = [65, 32, 40, 27, 21] bars = ('Facebook', 'Instagram', 'WhatsApp', 'LinkedIn', 'Pinterest') # Create bars y_pos = np.arange(len(bars)) plt.bar(y_pos, height) # Create names on the x-axis plt.xticks(y_pos, bars) plt.xlabel('Social Media Apps', fontweight='bold', color = 'black') plt.ylabel("Percentage") plt.title("Social Media Apps Downloaded") plt.show() ###Output _____no_output_____ ###Markdown 3. Data Simulation ###Code # Creating a database with information gathered np.random.seed(1234) # Added seed reset so the numbers stay the same every time NewData = pd.DataFrame({'Age':age.round(0), 'Gender':np.random.randint(1, 3, 3300000), 'Phone Daily Usage':np.random.normal(57, 3, 3300000).round(0),'Social Media Apps':np.random.uniform(1, 5, 3300000).round()}) NewData['Gender'].replace({1:'Male', 2:'Female'}, inplace=True) # Replacing numbers with strings accordingly NewData # Print new data frame NewData.shape NewData.head() NewData.tail() NewData["Age"].describe().round(0) # check for descriptive statistics of age variable NewData["Phone Daily Usage"].describe().round(0) # check for descriptive statistics of daily phone usage variable # Extact data with Males who have downloaded 5 apps and their daily usage array = ['Male'] Male5 = NewData.loc[(NewData['Social Media Apps'] == 5) & NewData['Gender'].isin(array)] Male5 # Print Data # Extract data with Males who have downloaded 1 app and their daily phone usage array = ['Male'] Male1 = NewData.loc[(NewData['Social Media Apps'] == 1) & NewData['Gender'].isin(array)] Male1 # Print # Extract data with Females who have downloaded 1 application array = ['Female'] Female1 = NewData.loc[(NewData['Social Media Apps'] == 1) & NewData['Gender'].isin(array)] Female1 # Extract data with Females who have downloaded 5 applications array = ['Female'] Female5= NewData.loc[(NewData['Social Media Apps'] == 5) & NewData['Gender'].isin(array)] Female5 sns.distplot( Male5["Phone Daily Usage"] , color="skyblue", label="Male") sns.distplot( Female5["Phone Daily Usage"] , color="red", label="Female") plt.legend() plt.ylabel("Frequency") plt.show() sns.distplot( Male1["Phone Daily Usage"] , color="skyblue", label="Male") sns.distplot( Female1["Phone Daily Usage"] , color="red", label="Female") plt.legend() plt.ylabel("Frequency") plt.show() ###Output _____no_output_____
chapter_optimization/adadelta.ipynb
###Markdown Adadelta除了 RMSProp 以外,另一个常用优化算法 Adadelta 也针对 Adagrad 在迭代后期可能较难找到有用解的问题做了改进 [1]。有意思的是,Adadelta 没有学习率这一超参数。 算法Adadelta 算法也像 RMSProp 一样,使用了小批量随机梯度 $\boldsymbol{g}_t$ 按元素平方的指数加权移动平均变量 $\boldsymbol{s}_t$。在时间步 0,它的所有元素被初始化为 0。给定超参数 $0 \leq \rho 0$,同 RMSProp 一样计算$$\boldsymbol{s}_t \leftarrow \rho \boldsymbol{s}_{t-1} + (1 - \rho) \boldsymbol{g}_t \odot \boldsymbol{g}_t. $$与 RMSProp 不同的是,Adadelta 还维护一个额外的状态变量 $\Delta\boldsymbol{x}_t$,其元素同样在时间步 0 时被初始化为 0。我们使用 $\Delta\boldsymbol{x}_{t-1}$ 来计算自变量的变化量:$$ \boldsymbol{g}_t' \leftarrow \sqrt{\frac{\Delta\boldsymbol{x}_{t-1} + \epsilon}{\boldsymbol{s}_t + \epsilon}} \odot \boldsymbol{g}_t, $$其中 $\epsilon$ 是为了维持数值稳定性而添加的常数,例如 $10^{-5}$。接着更新自变量:$$\boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \boldsymbol{g}'_t. $$最后,我们使用 $\Delta\boldsymbol{x}$ 来记录自变量变化量 $\boldsymbol{g}'$ 按元素平方的指数加权移动平均:$$\Delta\boldsymbol{x}_t \leftarrow \rho \Delta\boldsymbol{x}_{t-1} + (1 - \rho) \boldsymbol{g}'_t \odot \boldsymbol{g}'_t. $$可以看到,如不考虑 $\epsilon$ 的影响,Adadelta 跟 RMSProp 不同之处在于使用 $\sqrt{\Delta\boldsymbol{x}_{t-1}}$ 来替代超参数 $\eta$。 从零开始实现Adadelta 需要对每个自变量维护两个状态变量,$\boldsymbol{s}_t$ 和 $\Delta\boldsymbol{x}_t$。我们按算法中的公式实现 Adadelta。 ###Code %matplotlib inline import d2lzh as d2l from mxnet import nd features, labels = d2l.get_data_ch7() def init_adadelta_states(): s_w, s_b = nd.zeros((features.shape[1], 1)), nd.zeros(1) delta_w, delta_b = nd.zeros((features.shape[1], 1)), nd.zeros(1) return ((s_w, delta_w), (s_b, delta_b)) def adadelta(params, states, hyperparams): rho, eps = hyperparams['rho'], 1e-5 for p, (s, delta) in zip(params, states): s[:] = rho * s + (1 - rho) * p.grad.square() g = ((delta + eps).sqrt() / (s + eps).sqrt()) * p.grad p[:] -= g delta[:] = rho * delta + (1 - rho) * g * g ###Output _____no_output_____ ###Markdown 使用超参数 $\rho=0.9$ 来训练模型。 ###Code d2l.train_ch7(adadelta, init_adadelta_states(), {'rho': 0.9}, features, labels) ###Output loss: 0.243955, 0.501521 sec per epoch ###Markdown 简洁实现通过算法名称为“adadelta”的`Trainer`实例,我们便可在 Gluon 中使用 Adadelta 算法。它的超参数可以通过`rho`来指定。 ###Code d2l.train_gluon_ch7('adadelta', {'rho': 0.9}, features, labels) ###Output loss: 0.243461, 0.403651 sec per epoch ###Markdown AdaDelta算法除了RMSProp算法以外,另一个常用优化算法AdaDelta算法也针对AdaGrad算法在迭代后期可能较难找到有用解的问题做了改进 [1]。有意思的是,AdaDelta算法没有学习率这一超参数。 算法AdaDelta算法也像RMSProp算法一样,使用了小批量随机梯度$\boldsymbol{g}_t$按元素平方的指数加权移动平均变量$\boldsymbol{s}_t$。在时间步0,它的所有元素被初始化为0。给定超参数$0 \leq \rho 0$,同RMSProp算法一样计算$$\boldsymbol{s}_t \leftarrow \rho \boldsymbol{s}_{t-1} + (1 - \rho) \boldsymbol{g}_t \odot \boldsymbol{g}_t. $$与RMSProp算法不同的是,AdaDelta算法还维护一个额外的状态变量$\Delta\boldsymbol{x}_t$,其元素同样在时间步0时被初始化为0。我们使用$\Delta\boldsymbol{x}_{t-1}$来计算自变量的变化量:$$ \boldsymbol{g}_t' \leftarrow \sqrt{\frac{\Delta\boldsymbol{x}_{t-1} + \epsilon}{\boldsymbol{s}_t + \epsilon}} \odot \boldsymbol{g}_t, $$其中$\epsilon$是为了维持数值稳定性而添加的常数,如$10^{-5}$。接着更新自变量:$$\boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \boldsymbol{g}'_t. $$最后,我们使用$\Delta\boldsymbol{x}_t$来记录自变量变化量$\boldsymbol{g}'_t$按元素平方的指数加权移动平均:$$\Delta\boldsymbol{x}_t \leftarrow \rho \Delta\boldsymbol{x}_{t-1} + (1 - \rho) \boldsymbol{g}'_t \odot \boldsymbol{g}'_t. $$可以看到,如不考虑$\epsilon$的影响,AdaDelta算法与RMSProp算法的不同之处在于使用$\sqrt{\Delta\boldsymbol{x}_{t-1}}$来替代超参数$\eta$。 从零开始实现AdaDelta算法需要对每个自变量维护两个状态变量,即$\boldsymbol{s}_t$和$\Delta\boldsymbol{x}_t$。我们按AdaDelta算法中的公式实现该算法。 ###Code %matplotlib inline import d2lzh as d2l from mxnet import nd features, labels = d2l.get_data_ch7() def init_adadelta_states(): s_w, s_b = nd.zeros((features.shape[1], 1)), nd.zeros(1) delta_w, delta_b = nd.zeros((features.shape[1], 1)), nd.zeros(1) return ((s_w, delta_w), (s_b, delta_b)) def adadelta(params, states, hyperparams): rho, eps = hyperparams['rho'], 1e-5 for p, (s, delta) in zip(params, states): s[:] = rho * s + (1 - rho) * p.grad.square() g = ((delta + eps).sqrt() / (s + eps).sqrt()) * p.grad p[:] -= g delta[:] = rho * delta + (1 - rho) * g * g ###Output _____no_output_____ ###Markdown 使用超参数$\rho=0.9$来训练模型。 ###Code d2l.train_ch7(adadelta, init_adadelta_states(), {'rho': 0.9}, features, labels) ###Output loss: 0.242859, 0.365652 sec per epoch ###Markdown 简洁实现通过名称为“adadelta”的`Trainer`实例,我们便可使用Gluon提供的AdaDelta算法。它的超参数可以通过`rho`来指定。 ###Code d2l.train_gluon_ch7('adadelta', {'rho': 0.9}, features, labels) ###Output loss: 0.243492, 0.405834 sec per epoch
python/d2l-en/pytorch/chapter_deep-learning-computation/custom-layer.ipynb
###Markdown Custom LayersOne factor behind deep learning's successis the availability of a wide range of layersthat can be composed in creative waysto design architectures suitablefor a wide variety of tasks.For instance, researchers have invented layersspecifically for handling images, text,looping over sequential data,andperforming dynamic programming.Sooner or later, you will encounter or inventa layer that does not exist yet in the deep learning framework.In these cases, you must build a custom layer.In this section, we show you how. (**Layers without Parameters**)To start, we construct a custom layerthat does not have any parameters of its own.This should look familiar if you recall ourintroduction to block in :numref:`sec_model_construction`.The following `CenteredLayer` class simplysubtracts the mean from its input.To build it, we simply need to inheritfrom the base layer class and implement the forward propagation function. ###Code import torch from torch import nn from torch.nn import functional as F class CenteredLayer(nn.Module): def __init__(self): super().__init__() def forward(self, X): return X - X.mean() ###Output _____no_output_____ ###Markdown Let us verify that our layer works as intended by feeding some data through it. ###Code layer = CenteredLayer() layer(torch.FloatTensor([1, 2, 3, 4, 5])) ###Output _____no_output_____ ###Markdown We can now [**incorporate our layer as a componentin constructing more complex models.**] ###Code net = nn.Sequential(nn.Linear(8, 128), CenteredLayer()) ###Output _____no_output_____ ###Markdown As an extra sanity check, we can send random datathrough the network and check that the mean is in fact 0.Because we are dealing with floating point numbers,we may still see a very small nonzero numberdue to quantization. ###Code Y = net(torch.rand(4, 8)) Y.mean() ###Output _____no_output_____ ###Markdown [**Layers with Parameters**]Now that we know how to define simple layers,let us move on to defining layers with parametersthat can be adjusted through training.We can use built-in functions to create parameters, whichprovide some basic housekeeping functionality.In particular, they govern access, initialization,sharing, saving, and loading model parameters.This way, among other benefits, we will not need to writecustom serialization routines for every custom layer.Now let us implement our own version of the fully-connected layer.Recall that this layer requires two parameters,one to represent the weight and the other for the bias.In this implementation, we bake in the ReLU activation as a default.This layer requires to input arguments: `in_units` and `units`, whichdenote the number of inputs and outputs, respectively. ###Code class MyLinear(nn.Module): def __init__(self, in_units, units): super().__init__() self.weight = nn.Parameter(torch.randn(in_units, units)) self.bias = nn.Parameter(torch.randn(units,)) def forward(self, X): linear = torch.matmul(X, self.weight.data) + self.bias.data return F.relu(linear) ###Output _____no_output_____ ###Markdown Next, we instantiate the `MyLinear` classand access its model parameters. ###Code linear = MyLinear(5, 3) linear.weight ###Output _____no_output_____ ###Markdown We can [**directly carry out forward propagation calculations using custom layers.**] ###Code linear(torch.rand(2, 5)) ###Output _____no_output_____ ###Markdown We can also (**construct models using custom layers.**)Once we have that we can use it just like the built-in fully-connected layer. ###Code net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1)) net(torch.rand(2, 64)) ###Output _____no_output_____
project3/.Trash-0/files/project_3_starter 11.ipynb
###Markdown Project 3: Smart Beta Portfolio and Portfolio Optimization OverviewSmart beta has a broad meaning, but we can say in practice that when we use the universe of stocks from an index, and then apply some weighting scheme other than market cap weighting, it can be considered a type of smart beta fund. By contrast, a purely alpha fund may create a portfolio of specific stocks, not related to an index, or may choose from the global universe of stocks. The other characteristic that makes a smart beta portfolio "beta" is that it gives its investors a diversified broad exposure to a particular market.Imagine you're a portfolio manager, and wish to try out some different portfolio weighting methods.One way to design portfolio is to look at certain accounting measures (fundamentals) that, based on past trends, indicate stocks that produce better results. For instance, you may start with a hypothesis that dividend-issuing stocks tend to perform better than stocks that do not. This may not always be true of all companies; for instance, Apple does not issue dividends, but has had good historical performance. The hypothesis about dividend-paying stocks may go something like this: Companies that regularly issue dividends may also be more prudent in allocating their available cash, and may indicate that they are more conscious of prioritizing shareholder interests. For example, a CEO may decide to reinvest cash into pet projects that produce low returns. Or, the CEO may do some analysis, identify that reinvesting within the company produces lower returns compared to a diversified portfolio, and so decide that shareholders would be better served if they were given the cash (in the form of dividends). So according to this hypothesis, dividends may be both a proxy for how the company is doing (in terms of earnings and cash flow), but also a signal that the company acts in the best interest of its shareholders. Of course, it's important to test whether this works in practice.You may also have another hypothesis, with which you wish to design a portfolio that can then be made into an ETF. You may find that investors may wish to invest in passive beta funds, but wish to have less risk exposure (less volatility) in their investments. The goal of having a low volatility fund that still produces returns similar to an index may be appealing to investors who have a shorter investment time horizon, and so are more risk averse.So the objective of your proposed portfolio is to design a portfolio that closely tracks an index, while also minimizing the portfolio variance. Also, if this portfolio can match the returns of the index with less volatility, then it has a higher risk-adjusted return (same return, lower volatility).Smart Beta ETFs can be designed with both of these two general methods (among others): alternative weighting and minimum volatility ETF. InstructionsEach problem consists of a function to implement and instructions on how to implement the function. The parts of the function that need to be implemented are marked with a ` TODO` comment. After implementing the function, run the cell to test it against the unit tests we've provided. For each problem, we provide one or more unit tests from our `project_tests` package. These unit tests won't tell you if your answer is correct, but will warn you of any major errors. Your code will be checked for the correct solution when you submit it to Udacity. PackagesWhen you implement the functions, you'll only need to you use the packages you've used in the classroom, like [Pandas](https://pandas.pydata.org/) and [Numpy](http://www.numpy.org/). These packages will be imported for you. We recommend you don't add any import statements, otherwise the grader might not be able to run your code.The other packages that we're importing are `helper`, `project_helper`, and `project_tests`. These are custom packages built to help you solve the problems. The `helper` and `project_helper` module contains utility functions and graph functions. The `project_tests` contains the unit tests for all the problems. Install Packages ###Code import sys !{sys.executable} -m pip install -r requirements.txt ###Output _____no_output_____ ###Markdown Load Packages ###Code import pandas as pd import numpy as np import helper import project_helper import project_tests ###Output _____no_output_____ ###Markdown Market Data Load DataFor this universe of stocks, we'll be selecting large dollar volume stocks. We're using this universe, since it is highly liquid. ###Code df = pd.read_csv('../../data/project_3/eod-quotemedia.csv') percent_top_dollar = 0.2 high_volume_symbols = project_helper.large_dollar_volume_stocks(df, 'adj_close', 'adj_volume', percent_top_dollar) df = df[df['ticker'].isin(high_volume_symbols)] close = df.reset_index().pivot(index='date', columns='ticker', values='adj_close') volume = df.reset_index().pivot(index='date', columns='ticker', values='adj_volume') dividends = df.reset_index().pivot(index='date', columns='ticker', values='dividends') ###Output _____no_output_____ ###Markdown View DataTo see what one of these 2-d matrices looks like, let's take a look at the closing prices matrix. ###Code project_helper.print_dataframe(close) ###Output _____no_output_____ ###Markdown Part 1: Smart Beta PortfolioIn Part 1 of this project, you'll build a portfolio using dividend yield to choose the portfolio weights. A portfolio such as this could be incorporated into a smart beta ETF. You'll compare this portfolio to a market cap weighted index to see how well it performs. Note that in practice, you'll probably get the index weights from a data vendor (such as companies that create indices, like MSCI, FTSE, Standard and Poor's), but for this exercise we will simulate a market cap weighted index. Index WeightsThe index we'll be using is based on large dollar volume stocks. Implement `generate_dollar_volume_weights` to generate the weights for this index. For each date, generate the weights based on dollar volume traded for that date. For example, assume the following is close prices and volume data:``` Prices A B ...2013-07-08 2 2 ...2013-07-09 5 6 ...2013-07-10 1 2 ...2013-07-11 6 5 ...... ... ... ... Volume A B ...2013-07-08 100 340 ...2013-07-09 240 220 ...2013-07-10 120 500 ...2013-07-11 10 100 ...... ... ... ...```The weights created from the function `generate_dollar_volume_weights` should be the following:``` A B ...2013-07-08 0.126.. 0.194.. ...2013-07-09 0.759.. 0.377.. ...2013-07-10 0.075.. 0.285.. ...2013-07-11 0.037.. 0.142.. ...... ... ... ...``` ###Code def generate_dollar_volume_weights(close, volume): """ Generate dollar volume weights. Parameters ---------- close : DataFrame Close price for each ticker and date volume : str Volume for each ticker and date Returns ------- dollar_volume_weights : DataFrame The dollar volume weights for each ticker and date """ assert close.index.equals(volume.index) assert close.columns.equals(volume.columns) #TODO: Implement function return None project_tests.test_generate_dollar_volume_weights(generate_dollar_volume_weights) ###Output _____no_output_____ ###Markdown View DataLet's generate the index weights using `generate_dollar_volume_weights` and view them using a heatmap. ###Code index_weights = generate_dollar_volume_weights(close, volume) project_helper.plot_weights(index_weights, 'Index Weights') ###Output _____no_output_____ ###Markdown Portfolio WeightsNow that we have the index weights, let's choose the portfolio weights based on dividends.Implement `calculate_dividend_weights` to returns the weights for each stock based on its total dividend yield over time. This is similar to generating the weight for the index, but it's using dividend data instead.For example, assume the following is `dividends` data:``` Prices A B2013-07-08 0 02013-07-09 0 12013-07-10 0.5 02013-07-11 0 02013-07-12 2 0... ... ...```The weights created from the function `calculate_dividend_weights` should be the following:``` A B2013-07-08 NaN NaN2013-07-09 0 12013-07-10 0.333.. 0.666..2013-07-11 0.333.. 0.666..2013-07-12 0.714.. 0.285..... ... ...``` ###Code def calculate_dividend_weights(dividends): """ Calculate dividend weights. Parameters ---------- ex_dividend : DataFrame Ex-dividend for each stock and date Returns ------- dividend_weights : DataFrame Weights for each stock and date """ #TODO: Implement function return None project_tests.test_calculate_dividend_weights(calculate_dividend_weights) ###Output _____no_output_____ ###Markdown View DataJust like the index weights, let's generate the ETF weights and view them using a heatmap. ###Code etf_weights = calculate_dividend_weights(dividends) project_helper.plot_weights(etf_weights, 'ETF Weights') ###Output _____no_output_____ ###Markdown ReturnsImplement `generate_returns` to generate returns data for all the stocks and dates from price data. You might notice we're implementing returns and not log returns. Since we're not dealing with volatility, we don't have to use log returns. ###Code def generate_returns(prices): """ Generate returns for ticker and date. Parameters ---------- prices : DataFrame Price for each ticker and date Returns ------- returns : Dataframe The returns for each ticker and date """ #TODO: Implement function return None project_tests.test_generate_returns(generate_returns) ###Output _____no_output_____ ###Markdown View DataLet's generate the closing returns using `generate_returns` and view them using a heatmap. ###Code returns = generate_returns(close) project_helper.plot_returns(returns, 'Close Returns') ###Output _____no_output_____ ###Markdown Weighted ReturnsWith the returns of each stock computed, we can use it to compute the returns for an index or ETF. Implement `generate_weighted_returns` to create weighted returns using the returns and weights. ###Code def generate_weighted_returns(returns, weights): """ Generate weighted returns. Parameters ---------- returns : DataFrame Returns for each ticker and date weights : DataFrame Weights for each ticker and date Returns ------- weighted_returns : DataFrame Weighted returns for each ticker and date """ assert returns.index.equals(weights.index) assert returns.columns.equals(weights.columns) #TODO: Implement function return None project_tests.test_generate_weighted_returns(generate_weighted_returns) ###Output _____no_output_____ ###Markdown View DataLet's generate the ETF and index returns using `generate_weighted_returns` and view them using a heatmap. ###Code index_weighted_returns = generate_weighted_returns(returns, index_weights) etf_weighted_returns = generate_weighted_returns(returns, etf_weights) project_helper.plot_returns(index_weighted_returns, 'Index Returns') project_helper.plot_returns(etf_weighted_returns, 'ETF Returns') ###Output _____no_output_____ ###Markdown Cumulative ReturnsTo compare performance between the ETF and Index, we're going to calculate the tracking error. Before we do that, we first need to calculate the index and ETF comulative returns. Implement `calculate_cumulative_returns` to calculate the cumulative returns over time given the returns. ###Code def calculate_cumulative_returns(returns): """ Calculate cumulative returns. Parameters ---------- returns : DataFrame Returns for each ticker and date Returns ------- cumulative_returns : Pandas Series Cumulative returns for each date """ #TODO: Implement function return None project_tests.test_calculate_cumulative_returns(calculate_cumulative_returns) ###Output _____no_output_____ ###Markdown View DataLet's generate the ETF and index cumulative returns using `calculate_cumulative_returns` and compare the two. ###Code index_weighted_cumulative_returns = calculate_cumulative_returns(index_weighted_returns) etf_weighted_cumulative_returns = calculate_cumulative_returns(etf_weighted_returns) project_helper.plot_benchmark_returns(index_weighted_cumulative_returns, etf_weighted_cumulative_returns, 'Smart Beta ETF vs Index') ###Output _____no_output_____ ###Markdown Tracking ErrorIn order to check the performance of the smart beta portfolio, we can calculate the annualized tracking error against the index. Implement `tracking_error` to return the tracking error between the ETF and benchmark.For reference, we'll be using the following annualized tracking error function:$$ TE = \sqrt{252} * SampleStdev(r_p - r_b) $$Where $ r_p $ is the portfolio/ETF returns and $ r_b $ is the benchmark returns. ###Code def tracking_error(benchmark_returns_by_date, etf_returns_by_date): """ Calculate the tracking error. Parameters ---------- benchmark_returns_by_date : Pandas Series The benchmark returns for each date etf_returns_by_date : Pandas Series The ETF returns for each date Returns ------- tracking_error : float The tracking error """ assert benchmark_returns_by_date.index.equals(etf_returns_by_date.index) #TODO: Implement function return None project_tests.test_tracking_error(tracking_error) ###Output _____no_output_____ ###Markdown View DataLet's generate the tracking error using `tracking_error`. ###Code smart_beta_tracking_error = tracking_error(np.sum(index_weighted_returns, 1), np.sum(etf_weighted_returns, 1)) print('Smart Beta Tracking Error: {}'.format(smart_beta_tracking_error)) ###Output _____no_output_____ ###Markdown Part 2: Portfolio OptimizationNow, let's create a second portfolio. We'll still reuse the market cap weighted index, but this will be independent of the dividend-weighted portfolio that we created in part 1.We want to both minimize the portfolio variance and also want to closely track a market cap weighted index. In other words, we're trying to minimize the distance between the weights of our portfolio and the weights of the index.$Minimize \left [ \sigma^2_p + \lambda \sqrt{\sum_{1}^{m}(weight_i - indexWeight_i)^2} \right ]$ where $m$ is the number of stocks in the portfolio, and $\lambda$ is a scaling factor that you can choose.Why are we doing this? One way that investors evaluate a fund is by how well it tracks its index. The fund is still expected to deviate from the index within a certain range in order to improve fund performance. A way for a fund to track the performance of its benchmark is by keeping its asset weights similar to the weights of the index. We’d expect that if the fund has the same stocks as the benchmark, and also the same weights for each stock as the benchmark, the fund would yield about the same returns as the benchmark. By minimizing a linear combination of both the portfolio risk and distance between portfolio and benchmark weights, we attempt to balance the desire to minimize portfolio variance with the goal of tracking the index. CovarianceImplement `get_covariance_returns` to calculate the covariance of the `returns`. We'll use this to calculate the portfolio variance.If we have $m$ stock series, the covariance matrix is an $m \times m$ matrix containing the covariance between each pair of stocks. We can use [numpy.cov](https://docs.scipy.org/doc/numpy/reference/generated/numpy.cov.html) to get the covariance. We give it a 2D array in which each row is a stock series, and each column is an observation at the same period of time.The covariance matrix $\mathbf{P} = \begin{bmatrix}\sigma^2_{1,1} & ... & \sigma^2_{1,m} \\ ... & ... & ...\\\sigma_{m,1} & ... & \sigma^2_{m,m} \\\end{bmatrix}$ ###Code def get_covariance_returns(returns): """ Calculate covariance matrices. Parameters ---------- returns : DataFrame Returns for each ticker and date Returns ------- returns_covariance : 2 dimensional Ndarray The covariance of the returns """ #TODO: Implement function return None project_tests.test_get_covariance_returns(get_covariance_returns) ###Output _____no_output_____ ###Markdown View DataLet's look at the covariance generated from `get_covariance_returns`. ###Code covariance_returns = get_covariance_returns(returns) covariance_returns = pd.DataFrame(covariance_returns, returns.columns, returns.columns) covariance_returns_correlation = np.linalg.inv(np.diag(np.sqrt(np.diag(covariance_returns)))) covariance_returns_correlation = pd.DataFrame( covariance_returns_correlation.dot(covariance_returns).dot(covariance_returns_correlation), covariance_returns.index, covariance_returns.columns) project_helper.plot_covariance_returns_correlation( covariance_returns_correlation, 'Covariance Returns Correlation Matrix') ###Output _____no_output_____ ###Markdown portfolio varianceWe can write the portfolio variance $\sigma^2_p = \mathbf{x^T} \mathbf{P} \mathbf{x}$Recall that the $\mathbf{x^T} \mathbf{P} \mathbf{x}$ is called the quadratic form.We can use the cvxpy function `quad_form(x,P)` to get the quadratic form. Distance from index weightsWe want portfolio weights that track the index closely. So we want to minimize the distance between them.Recall from the Pythagorean theorem that you can get the distance between two points in an x,y plane by adding the square of the x and y distances and taking the square root. Extending this to any number of dimensions is called the L2 norm. So: $\sqrt{\sum_{1}^{n}(weight_i - indexWeight_i)^2}$ Can also be written as $\left \| \mathbf{x} - \mathbf{index} \right \|_2$. There's a cvxpy function called [norm()](https://www.cvxpy.org/api_reference/cvxpy.atoms.other_atoms.htmlnorm)`norm(x, p=2, axis=None)`. The default is already set to find an L2 norm, so you would pass in one argument, which is the difference between your portfolio weights and the index weights. objective functionWe want to minimize both the portfolio variance and the distance of the portfolio weights from the index weights.We also want to choose a `scale` constant, which is $\lambda$ in the expression. $\mathbf{x^T} \mathbf{P} \mathbf{x} + \lambda \left \| \mathbf{x} - \mathbf{index} \right \|_2$This lets us choose how much priority we give to minimizing the difference from the index, relative to minimizing the variance of the portfolio. If you choose a higher value for `scale` ($\lambda$).We can find the objective function using cvxpy `objective = cvx.Minimize()`. Can you guess what to pass into this function? constraintsWe can also define our constraints in a list. For example, you'd want the weights to sum to one. So $\sum_{1}^{n}x = 1$. You may also need to go long only, which means no shorting, so no negative weights. So $x_i >0 $ for all $i$. you could save a variable as `[x >= 0, sum(x) == 1]`, where x was created using `cvx.Variable()`. optimizationSo now that we have our objective function and constraints, we can solve for the values of $\mathbf{x}$.cvxpy has the constructor `Problem(objective, constraints)`, which returns a `Problem` object.The `Problem` object has a function solve(), which returns the minimum of the solution. In this case, this is the minimum variance of the portfolio.It also updates the vector $\mathbf{x}$.We can check out the values of $x_A$ and $x_B$ that gave the minimum portfolio variance by using `x.value` ###Code import cvxpy as cvx def get_optimal_weights(covariance_returns, index_weights, scale=2.0): """ Find the optimal weights. Parameters ---------- covariance_returns : 2 dimensional Ndarray The covariance of the returns index_weights : Pandas Series Index weights for all tickers at a period in time scale : int The penalty factor for weights the deviate from the index Returns ------- x : 1 dimensional Ndarray The solution for x """ assert len(covariance_returns.shape) == 2 assert len(index_weights.shape) == 1 assert covariance_returns.shape[0] == covariance_returns.shape[1] == index_weights.shape[0] #TODO: Implement function return None project_tests.test_get_optimal_weights(get_optimal_weights) ###Output _____no_output_____ ###Markdown Optimized PortfolioUsing the `get_optimal_weights` function, let's generate the optimal ETF weights without rebalanceing. We can do this by feeding in the covariance of the entire history of data. We also need to feed in a set of index weights. We'll go with the average weights of the index over time. ###Code raw_optimal_single_rebalance_etf_weights = get_optimal_weights(covariance_returns.values, index_weights.iloc[-1]) optimal_single_rebalance_etf_weights = pd.DataFrame( np.tile(raw_optimal_single_rebalance_etf_weights, (len(returns.index), 1)), returns.index, returns.columns) ###Output _____no_output_____ ###Markdown With our ETF weights built, let's compare it to the index. Run the next cell to calculate the ETF returns and compare it to the index returns. ###Code optim_etf_returns = generate_weighted_returns(returns, optimal_single_rebalance_etf_weights) optim_etf_cumulative_returns = calculate_cumulative_returns(optim_etf_returns) project_helper.plot_benchmark_returns(index_weighted_cumulative_returns, optim_etf_cumulative_returns, 'Optimized ETF vs Index') optim_etf_tracking_error = tracking_error(np.sum(index_weighted_returns, 1), np.sum(optim_etf_returns, 1)) print('Optimized ETF Tracking Error: {}'.format(optim_etf_tracking_error)) ###Output _____no_output_____ ###Markdown Rebalance Portfolio Over TimeThe single optimized ETF portfolio used the same weights for the entire history. This might not be the optimal weights for the entire period. Let's rebalance the portfolio over the same period instead of using the same weights. Implement `rebalance_portfolio` to rebalance a portfolio.Reblance the portfolio every n number of days, which is given as `shift_size`. When rebalancing, you should look back a certain number of days of data in the past, denoted as `chunk_size`. Using this data, compute the optoimal weights using `get_optimal_weights` and `get_covariance_returns`. ###Code def rebalance_portfolio(returns, index_weights, shift_size, chunk_size): """ Get weights for each rebalancing of the portfolio. Parameters ---------- returns : DataFrame Returns for each ticker and date index_weights : DataFrame Index weight for each ticker and date shift_size : int The number of days between each rebalance chunk_size : int The number of days to look in the past for rebalancing Returns ------- all_rebalance_weights : list of Ndarrays The ETF weights for each point they are rebalanced """ assert returns.index.equals(index_weights.index) assert returns.columns.equals(index_weights.columns) assert shift_size > 0 assert chunk_size >= 0 #TODO: Implement function return None project_tests.test_rebalance_portfolio(rebalance_portfolio) ###Output _____no_output_____ ###Markdown Run the following cell to rebalance the portfolio using `rebalance_portfolio`. ###Code chunk_size = 250 shift_size = 5 all_rebalance_weights = rebalance_portfolio(returns, index_weights, shift_size, chunk_size) ###Output _____no_output_____ ###Markdown Portfolio TurnoverWith the portfolio rebalanced, we need to use a metric to measure the cost of rebalancing the portfolio. Implement `get_portfolio_turnover` to calculate the annual portfolio turnover. We'll be using the formulas used in the classroom:$ AnnualizedTurnover =\frac{SumTotalTurnover}{NumberOfRebalanceEvents} * NumberofRebalanceEventsPerYear $$ SumTotalTurnover =\sum_{t,n}{\left | x_{t,n} - x_{t+1,n} \right |} $ Where $ x_{t,n} $ are the weights at time $ t $ for equity $ n $.$ SumTotalTurnover $ is just a different way of writing $ \sum \left | x_{t_1,n} - x_{t_2,n} \right | $ ###Code def get_portfolio_turnover(all_rebalance_weights, shift_size, rebalance_count, n_trading_days_in_year=252): """ Calculage portfolio turnover. Parameters ---------- all_rebalance_weights : list of Ndarrays The ETF weights for each point they are rebalanced shift_size : int The number of days between each rebalance rebalance_count : int Number of times the portfolio was rebalanced n_trading_days_in_year: int Number of trading days in a year Returns ------- portfolio_turnover : float The portfolio turnover """ assert shift_size > 0 assert rebalance_count > 0 #TODO: Implement function return None project_tests.test_get_portfolio_turnover(get_portfolio_turnover) ###Output _____no_output_____ ###Markdown Run the following cell to get the portfolio turnover from `get_portfolio turnover`. ###Code print(get_portfolio_turnover(all_rebalance_weights, shift_size, returns.shape[1])) ###Output _____no_output_____
table-linker-full-pipeline/table-linker-full-pipeline-model-prediction.ipynb
###Markdown Peak at the input file ###Code pd.read_csv(input_file_path).fillna("") ###Output _____no_output_____ ###Markdown Canonicalize ###Code !tl canonicalize \ -c "$wikify_column_name" \ --add-context \ {input_file_path} > {canonical} pd.read_csv(canonical, nrows = 10) ###Output _____no_output_____ ###Markdown Candidate Generation ###Code %%time !tl clean -c label -o label_clean {canonical} / \ --url $es_url --index $es_index \ get-fuzzy-augmented-matches -c label_clean \ --auxiliary-fields {aux_field} \ --auxiliary-folder $temp_dir / \ --url $es_url --index $es_index \ get-exact-matches -c label_clean \ --auxiliary-fields {aux_field} \ --auxiliary-folder {temp_dir} > {candidates} for field in aux_field.split(','): aux_list = [] for f in glob.glob(f'{temp_dir}/*{aux_field}.tsv'): aux_list.append(pd.read_csv(f, sep='\t', dtype=object)) aux_df = pd.concat(aux_list).drop_duplicates(subset=['qnode']).rename(columns={aux_field: 'embedding'}) aux_df.to_csv(f'{temp_dir}/{aux_field}.tsv', sep='\t', index=False) pd.read_csv(candidates, nrows = 10).fillna("") ###Output _____no_output_____ ###Markdown Feature Voting ###Code %%time !tl smallest-qnode-number {candidates} \ / string-similarity -i --method symmetric_monge_elkan:tokenizer=word -o monge_elkan \ / string-similarity -i --method jaccard:tokenizer=word -c kg_descriptions context -o des_cont_jaccard \ / string-similarity -i --method jaro_winkler -o jaro_winkler \ / feature-voting -c "pagerank,smallest_qnode_number,monge_elkan,des_cont_jaccard" > {feature_votes} pd.read_csv(feature_votes, nrows = 10).fillna("") ###Output _____no_output_____ ###Markdown Compute Embedding Score using Column Vector Strategy ###Code !tl score-using-embedding $feature_votes \ --column-vector-strategy centroid-of-singletons \ -o graph-embedding-score --embedding-file $embedding_file \ > $score_file df = pd.read_csv(score_file).fillna("") df.sort_values(by=['votes'], ascending=False) ###Output _____no_output_____ ###Markdown Generate Additional Features required for Model Prediction ###Code ## TODO: Need to add these features as cli commands in Table Linker def create_singleton_feature(df): d = df[df['method'] == 'exact-match'].groupby(['column','row'])[['kg_id']].count() l = list(d[d['kg_id'] == 1].index) singleton_feat = [] for i,row in df.iterrows(): col_num,row_num = row['column'],row['row'] if (col_num,row_num) in l: singleton_feat.append(1) else: singleton_feat.append(0) df['singleton'] = singleton_feat return df def generate_reciprocal_rank(df): final_list = [] grouped_obj = df.groupby(['row', 'column']) for cell in grouped_obj: reciprocal_rank = list(1/cell[1]['graph-embedding-score'].rank()) cell[1]['reciprocal_rank'] = reciprocal_rank final_list.extend(cell[1].to_dict(orient='records')) odf = pd.DataFrame(final_list) return odf features_df = pd.read_csv(score_file) features_df = create_singleton_feature(features_df) features_df['num_char'] = features_df['kg_labels'].apply(lambda x: len(x) if not(pd.isna(x)) else 0) features_df['num_tokens'] = features_df['kg_labels'].apply(lambda x: len(x.split()) if not(pd.isna(x)) else 0) features_df = generate_reciprocal_rank(features_df) features_df.head().fillna("") ###Output _____no_output_____ ###Markdown Final Ranking Score Predicted by Model ###Code features = ['pagerank','retrieval_score','monge_elkan', 'des_cont_jaccard','jaro_winkler','graph-embedding-score', 'singleton','num_char','num_tokens','reciprocal_rank'] model = pickle.load(open(model_name,'rb')) data = features_df[features] predicted_score = model.predict(data) features_df['model_prediction'] = predicted_score features_df.to_csv(final_score,index=False) pd.read_csv(final_score, nrows=10).fillna("") ###Output _____no_output_____ ###Markdown Get Top5 KG Links ###Code !tl get-kg-links -c model_prediction -l label -k 3 $final_score > $top_k_file pd.read_csv(top_k_file, nrows = 10) ###Output _____no_output_____ ###Markdown Join to Produce final result ###Code !tl join -f $input_file_path --csv -c ranking_score $top_k_file > $final_output pd.read_csv(final_output).fillna("") ###Output _____no_output_____ ###Markdown Clean up temporary files ###Code shutil.rmtree(temp_dir) ###Output _____no_output_____
source/sample_ml/Chapter03/3-6 GMM.ipynb
###Markdown GMM 混合高斯模型 ###Code from sklearn.datasets import load_iris from sklearn.mixture import GaussianMixture import matplotlib.pyplot as plt import numpy as np data = load_iris() X=data.data[:,:3] print(X.shape) n_components = 3 # 高斯分布的数量 model = GaussianMixture(n_components=n_components) model.fit(X) y=model.predict(X) print(model.means_) # 各高斯分布的均值 print(model.covariances_) # 各高斯分布的方差 ###Output (150, 3) [[6.06484109 2.81865029 4.49503422] [5.0060001 3.42800022 1.46200003] [6.6298468 2.97153653 5.67275436]] [[[0.28288871 0.09672907 0.25119586] [0.09672907 0.09603064 0.11237849] [0.25119586 0.11237849 0.37288505]] [[0.12176497 0.09723191 0.01602799] [0.09723191 0.14081678 0.01146397] [0.01602799 0.01146397 0.029557 ]] [[0.51084202 0.10986135 0.38433907] [0.10986135 0.1197479 0.07822918] [0.38433907 0.07822918 0.3349755 ]]] ###Markdown GMM Density Estimation[Density Estimation for a Gaussian mixture — scikit-learn 1.0.2 documentation](https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_pdf.htmlsphx-glr-auto-examples-mixture-plot-gmm-pdf-py) ###Code import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from sklearn import mixture n_samples = 300 # generate random sample, two components np.random.seed(0) # generate spherical data centered on (20, 20) shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20]) # generate zero centered stretched Gaussian data C = np.array([[0.0, -0.7], [3.5, 0.7]]) stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C) # concatenate the two datasets into the final training set X_train = np.vstack([shifted_gaussian, stretched_gaussian]) # fit a Gaussian Mixture Model with two components clf = mixture.GaussianMixture(n_components=2, covariance_type="full") clf.fit(X_train) print(clf.means_) print(clf.covariances_) # display predicted scores by the model as a contour plot x = np.linspace(-20.0, 30.0) y = np.linspace(-20.0, 40.0) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX) Z = Z.reshape(X.shape) CS = plt.contour( X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0), levels=np.logspace(0, 3, 10) ) CB = plt.colorbar(CS, shrink=0.8, extend="both") plt.scatter(X_train[:, 0], X_train[:, 1], 0.8) plt.title("Negative log-likelihood predicted by a GMM") plt.axis("tight") plt.show() ###Output [[19.91453549 19.97556345] [-0.13607006 -0.07059606]] [[[1.02179964e+00 3.28158679e-03] [3.28158679e-03 9.90375215e-01]] [[1.13328040e+01 2.25048269e+00] [2.25048269e+00 8.77009968e-01]]] ###Markdown GMM covariances [GMM covariances — scikit-learn 1.0.2 documentation](https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.htmlsphx-glr-auto-examples-mixture-plot-gmm-covariances-py) ###Code # Author: Ron Weiss <[email protected]>, Gael Varoquaux # Modified by Thierry Guillemot <[email protected]> # License: BSD 3 clause import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.mixture import GaussianMixture from sklearn.model_selection import StratifiedKFold colors = ["navy", "turquoise", "darkorange"] def make_ellipses(gmm, ax): for n, color in enumerate(colors): if gmm.covariance_type == "full": covariances = gmm.covariances_[n][:2, :2] elif gmm.covariance_type == "tied": covariances = gmm.covariances_[:2, :2] elif gmm.covariance_type == "diag": covariances = np.diag(gmm.covariances_[n][:2]) elif gmm.covariance_type == "spherical": covariances = np.eye(gmm.means_.shape[1]) * gmm.covariances_[n] v, w = np.linalg.eigh(covariances) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v = 2.0 * np.sqrt(2.0) * np.sqrt(v) ell = mpl.patches.Ellipse( gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color ) ell.set_clip_box(ax.bbox) ell.set_alpha(0.5) ax.add_artist(ell) ax.set_aspect("equal", "datalim") iris = datasets.load_iris() # Break up the dataset into non-overlapping training (75%) and testing # (25%) sets. skf = StratifiedKFold(n_splits=4) # Only take the first fold. train_index, test_index = next(iter(skf.split(iris.data, iris.target))) X_train = iris.data[train_index] y_train = iris.target[train_index] X_test = iris.data[test_index] y_test = iris.target[test_index] n_classes = len(np.unique(y_train)) # Try GMMs using different types of covariances. estimators = { cov_type: GaussianMixture( n_components=n_classes, covariance_type=cov_type, max_iter=20, random_state=0 ) for cov_type in ["spherical", "diag", "tied", "full"] } n_estimators = len(estimators) plt.figure(figsize=(3 * n_estimators // 2, 6)) plt.subplots_adjust( bottom=0.01, top=0.95, hspace=0.15, wspace=0.05, left=0.01, right=0.99 ) for index, (name, estimator) in enumerate(estimators.items()): # Since we have class labels for the training data, we can # initialize the GMM parameters in a supervised manner. estimator.means_init = np.array( [X_train[y_train == i].mean(axis=0) for i in range(n_classes)] ) # Train the other parameters using the EM algorithm. estimator.fit(X_train) h = plt.subplot(2, n_estimators // 2, index + 1) make_ellipses(estimator, h) for n, color in enumerate(colors): data = iris.data[iris.target == n] plt.scatter( data[:, 0], data[:, 1], s=0.8, color=color, label=iris.target_names[n] ) # Plot the test data with crosses for n, color in enumerate(colors): data = X_test[y_test == n] plt.scatter(data[:, 0], data[:, 1], marker="x", color=color) y_train_pred = estimator.predict(X_train) train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100 plt.text(0.05, 0.9, "Train accuracy: %.1f" % train_accuracy, transform=h.transAxes) y_test_pred = estimator.predict(X_test) test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100 plt.text(0.05, 0.8, "Test accuracy: %.1f" % test_accuracy, transform=h.transAxes) plt.xticks(()) plt.yticks(()) plt.title(name) plt.legend(scatterpoints=1, loc="lower right", prop=dict(size=12)) plt.show() ###Output _____no_output_____
notebooksML101/03_Backprop_Exercise.ipynb
###Markdown Backpropagation ExerciseIn this exercise we will use backpropagation to train a multi-layer perceptron (with a single hidden layer). We will experiment with different patterns and see how quickly or slowly the weights converge. We will see the impact and interplay of different parameters such as learning rate, number of iterations, and number of data points. ###Code #Preliminaries from __future__ import division, print_function import numpy as np import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Fill out the code below so that it creates a multi-layer perceptron with a single hidden layer (with 4 nodes) and trains it via back-propagation. Specifically your code should:1. Initialize the weights to random values between -1 and 11. Perform the feed-forward computation1. Compute the loss function1. Calculate the gradients for all the weights via back-propagation1. Update the weight matrices (using a learning_rate parameter)1. Execute steps 2-5 for a fixed number of iterations1. Plot the accuracies and log loss and observe how they change over timeOnce your code is running, try it for the different patterns below.- Which patterns was the neural network able to learn quickly and which took longer?- What learning rates and numbers of iterations worked well?- If you have time, try varying the size of the hidden layer and experiment with different activation functions (e.g. ReLu) ###Code ## This code below generates two x values and a y value according to different patterns ## It also creates a "bias" term (a vector of 1s) ## The goal is then to learn the mapping from x to y using a neural network via back-propagation num_obs = 500 x_mat_1 = np.random.uniform(-1,1,size = (num_obs,2)) x_mat_bias = np.ones((num_obs,1)) x_mat_full = np.concatenate( (x_mat_1,x_mat_bias), axis=1) # PICK ONE PATTERN BELOW and comment out the rest. # # Circle pattern # y = (np.sqrt(x_mat_full[:,0]**2 + x_mat_full[:,1]**2)<.75).astype(int) # # Diamond Pattern y = ((np.abs(x_mat_full[:,0]) + np.abs(x_mat_full[:,1]))<1).astype(int) # # Centered square # y = ((np.maximum(np.abs(x_mat_full[:,0]), np.abs(x_mat_full[:,1])))<.5).astype(int) # # Thick Right Angle pattern # y = (((np.maximum((x_mat_full[:,0]), (x_mat_full[:,1])))<.5) & ((np.maximum((x_mat_full[:,0]), (x_mat_full[:,1])))>-.5)).astype(int) # # Thin right angle pattern # y = (((np.maximum((x_mat_full[:,0]), (x_mat_full[:,1])))<.5) & ((np.maximum((x_mat_full[:,0]), (x_mat_full[:,1])))>0)).astype(int) print('shape of x_mat_full is {}'.format(x_mat_full.shape)) print('shape of y is {}'.format(y.shape)) fig, ax = plt.subplots(figsize=(5, 5)) ax.plot(x_mat_full[y==1, 0],x_mat_full[y==1, 1], 'ro', label='class 1', color='darkslateblue') ax.plot(x_mat_full[y==0, 0],x_mat_full[y==0, 1], 'bx', label='class 0', color='chocolate') # ax.grid(True) ax.legend(loc='best') ax.axis('equal'); ###Output shape of x_mat_full is (500, 3) shape of y is (500,) ###Markdown Here are some helper functions ###Code def sigmoid(x): """ Sigmoid function """ return 1.0 / (1.0 + np.exp(-x)) def loss_fn(y_true, y_pred, eps=1e-16): """ Loss function we would like to optimize (minimize) We are using Logarithmic Loss http://scikit-learn.org/stable/modules/model_evaluation.html#log-loss """ y_pred = np.maximum(y_pred,eps) y_pred = np.minimum(y_pred,(1-eps)) return -(np.sum(y_true * np.log(y_pred)) + np.sum((1-y_true)*np.log(1-y_pred)))/len(y_true) def forward_pass(W1, W2): """ Does a forward computation of the neural network Takes the input `x_mat` (global variable) and produces the output `y_pred` Also produces the gradient of the log loss function """ global x_mat global y global num_ # First, compute the new predictions `y_pred` z_2 = np.dot(x_mat, W_1) a_2 = sigmoid(z_2) z_3 = np.dot(a_2, W_2) y_pred = sigmoid(z_3).reshape((len(x_mat),)) # Now compute the gradient J_z_3_grad = -y + y_pred J_W_2_grad = np.dot(J_z_3_grad, a_2) a_2_z_2_grad = sigmoid(z_2)*(1-sigmoid(z_2)) J_W_1_grad = (np.dot((J_z_3_grad).reshape(-1,1), W_2.reshape(-1,1).T)*a_2_z_2_grad).T.dot(x_mat).T gradient = (J_W_1_grad, J_W_2_grad) # return return y_pred, gradient def plot_loss_accuracy(loss_vals, accuracies): fig = plt.figure(figsize=(16, 8)) fig.suptitle('Log Loss and Accuracy over iterations') ax = fig.add_subplot(1, 2, 1) ax.plot(loss_vals) ax.grid(True) ax.set(xlabel='iterations', title='Log Loss') ax = fig.add_subplot(1, 2, 2) ax.plot(accuracies) ax.grid(True) ax.set(xlabel='iterations', title='Accuracy'); ###Output _____no_output_____ ###Markdown Complete the pseudocode below ###Code #### Initialize the network parameters np.random.seed(1241) W_1 = W_2 = num_iter = learning_rate = x_mat = x_mat_full loss_vals, accuracies = [], [] for i in range(num_iter): ### Do a forward computation, and get the gradient ## Update the weight matrices ### Compute the loss and accuracy ## Print the loss and accuracy for every 200th iteration plot_loss_accuracy(loss_vals, accuracies) ###Output _____no_output_____ ###Markdown SOLUTION ###Code #### Initialize the network parameters np.random.seed(1241) W_1 = np.random.uniform(-1,1,size=(3,4)) W_2 = np.random.uniform(-1,1,size=(4)) num_iter = 5000 learning_rate = .001 x_mat = x_mat_full loss_vals, accuracies = [], [] for i in range(num_iter): ### Do a forward computation, and get the gradient y_pred, (J_W_1_grad, J_W_2_grad) = forward_pass(W_1, W_2) ## Update the weight matrices W_1 = W_1 - learning_rate*J_W_1_grad W_2 = W_2 - learning_rate*J_W_2_grad ### Compute the loss and accuracy curr_loss = loss_fn(y,y_pred) loss_vals.append(curr_loss) acc = np.sum((y_pred>=.5) == y)/num_obs accuracies.append(acc) ## Print the loss and accuracy for every 200th iteration if((i%200) == 0): print('iteration {}, log loss is {:.4f}, accuracy is {}'.format( i, curr_loss, acc )) plot_loss_accuracy(loss_vals, accuracies) ###Output iteration 0, log loss is 0.7686, accuracy is 0.544 iteration 200, log loss is 0.6821, accuracy is 0.472 iteration 400, log loss is 0.6636, accuracy is 0.572 iteration 600, log loss is 0.5995, accuracy is 0.754 iteration 800, log loss is 0.5252, accuracy is 0.774 iteration 1000, log loss is 0.4993, accuracy is 0.782 iteration 1200, log loss is 0.4922, accuracy is 0.786 iteration 1400, log loss is 0.4855, accuracy is 0.792 iteration 1600, log loss is 0.4628, accuracy is 0.794 iteration 1800, log loss is 0.3892, accuracy is 0.89 iteration 2000, log loss is 0.3316, accuracy is 0.892 iteration 2200, log loss is 0.3015, accuracy is 0.9 iteration 2400, log loss is 0.2790, accuracy is 0.902 iteration 2600, log loss is 0.2594, accuracy is 0.912 iteration 2800, log loss is 0.2443, accuracy is 0.914 iteration 3000, log loss is 0.2331, accuracy is 0.916 iteration 3200, log loss is 0.2231, accuracy is 0.92 iteration 3400, log loss is 0.2109, accuracy is 0.93 iteration 3600, log loss is 0.1992, accuracy is 0.946 iteration 3800, log loss is 0.1903, accuracy is 0.948 iteration 4000, log loss is 0.1837, accuracy is 0.95 iteration 4200, log loss is 0.1785, accuracy is 0.954 iteration 4400, log loss is 0.1743, accuracy is 0.958 iteration 4600, log loss is 0.1706, accuracy is 0.958 iteration 4800, log loss is 0.1675, accuracy is 0.958 ###Markdown Plot the predicted answers, with mistakes in yellow ###Code pred1 = (y_pred>=.5) pred0 = (y_pred<.5) fig, ax = plt.subplots(figsize=(8, 8)) # true predictions ax.plot(x_mat[pred1 & (y==1),0],x_mat[pred1 & (y==1),1], 'ro', label='true positives') ax.plot(x_mat[pred0 & (y==0),0],x_mat[pred0 & (y==0),1], 'bx', label='true negatives') # false predictions ax.plot(x_mat[pred1 & (y==0),0],x_mat[pred1 & (y==0),1], 'yx', label='false positives', markersize=15) ax.plot(x_mat[pred0 & (y==1),0],x_mat[pred0 & (y==1),1], 'yo', label='false negatives', markersize=15, alpha=.6) ax.set(title='Truth vs Prediction') ax.legend(bbox_to_anchor=(1, 0.8), fancybox=True, shadow=True, fontsize='x-large'); ###Output _____no_output_____
01_notebooks/02_EDA_I.ipynb
###Markdown ¿En qué estados es la proporción de duplicados más alta? ###Code dup_data_states = (data .groupby('state') .apply(lambda df: df.duplicated(subset=['lat', 'long'], keep=False).mean()) .reset_index() .rename(columns={0: 'pct_dups'}) .sort_values(by='pct_dups') .reset_index(drop=True) ) fig, ax = plt.subplots(figsize=(15, 10)) dup_data_states.plot(kind='barh', y='pct_dups', x='state',ax=ax) for idx, row in dup_data_states.iterrows(): ax.text(row['pct_dups'], idx, '{0:.1%}'.format(row['pct_dups']), va='center', ) plt.legend(loc='upper left', bbox_to_anchor=(1, 1)) plt.show() ###Output _____no_output_____ ###Markdown Pueden haber decisiones diferentes de analista y modelo, de está manera se buscar homogeneisar la decisión final ###Code data = data.assign(final_decision=lambda x: np.where(x.analyst_decision.isin(['A', 'R']), x.analyst_decision, np.where(x.model_decision.isin(['A', 'R']), x.model_decision, 'undefined'))) agg_dups_data = (data .assign(tag_dup=lambda x: np.where(x.duplicated(subset=['state', 'lat', 'long'], keep=False), 'has_dups', 'no_dups')) .query('tag_dup=="has_dups"') .groupby(['tag_dup','state', 'lat', 'long']) .agg(len_final=('final_decision', lambda x: len(x)), len_unique_final=('final_decision', lambda x: len(x.unique()))) .reset_index() ) data_dups_state = (agg_dups_data[['state', 'len_unique_final']] .groupby('state') .apply(lambda df: df.len_unique_final.value_counts(normalize=True)*100) .reset_index() .pivot_table(values='len_unique_final', index='state', columns='level_1', fill_value=0) .reset_index() .sort_values(by=[1], ascending=True) ) fig, ax = plt.subplots(figsize=(15, 9)) data_dups_state.plot(x='state', kind='barh', stacked=True, ax=ax) plt.legend(loc='upper left', bbox_to_anchor=(1, 1)) plt.show() ###Output _____no_output_____ ###Markdown En los duplicados, hay más de una decisión? Excluyendo duplicados: donde la decisión es unanime se deja la decisión de todas las ubicaciones, de lo contrario se toma la decisión de la mayoría; en los casos de empate. aleatoriamente se selecciona una decisión ###Code np.random.seed(2020) data = (data .assign(uno=1) .groupby(['state','census_code','lat', 'long','final_decision']) .agg(count=('uno', sum)) .reset_index() .assign(random_index=lambda x: np.random.normal(size=x.shape[0])) .sort_values(by=['state', 'lat', 'long','count', 'random_index'], ascending=False) .drop_duplicates(subset=['census_code','state', 'lat', 'long'], keep='first') .drop(columns=['count', 'random_index']) .reset_index(drop=True) ) fig, ax = plt.subplots(figsize=(9, 5)) data.final_decision.value_counts(normalize=True).plot.barh(ax=ax) for idx, text_i in enumerate(data.final_decision.value_counts(normalize=True)[['R', 'A', 'undefined']]): plt.text(text_i, idx, '{0:.1%}'.format(text_i)) plt.show() data ###Output _____no_output_____
contour_visualizations/contours_pipeline.ipynb
###Markdown Contours Visualization Pipeline This is the **pipeline** version of the contours-visualization algorithm. It does not display any visualizations. Its sole purpose is to read heat-events data, run the contours logic, and produce the artifacts (1) metadata, (2) images, and (3) video. After it uploads the files to Azure, it flushes the local disk, to keep the Kubernetes disk space clean. ###Code !pip install opencv-python-headless from typing import List import itertools import os import shutil import uuid from collections import Counter from datetime import datetime, timedelta from pathlib import Path import subprocess import tempfile import time import warnings import numpy as np import pandas as pd import xarray as xr import zarr import fsspec import cv2 from matplotlib import pyplot as plt import matplotlib.dates as mdates from matplotlib.patches import Rectangle from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection from matplotlib.patches import Rectangle %matplotlib inline %config InlineBackend.figure_format = 'retina' plt.rcParams['figure.figsize'] = 12,8 import getpass import azure.storage.blob from azure.storage.blob import BlobClient, BlobServiceClient from azure.core.exceptions import ResourceExistsError, HttpResponseError ###Output _____no_output_____ ###Markdown Please make sure to give "write" permissions when creating the SAS token. Connect to Azure ###Code #################################### # paste the Azure SAS code. #################################### SAS_TOKEN = getpass.getpass() # of the whole "cmip6" folder in Azure. URL_PREFIX = 'https://nasanex30analysis.blob.core.windows.net/cmip6' ###Output ··········································································································································· ###Markdown Configure Contours Constants ###Code #################################### # CONSTANTS #################################### # constants for openCV countour finding SMOOTH_RATIO = 0 MIN_AREA = 10 CONVEX = False # constants for the rolling-window aggregation ROLLING = 4 ###Output _____no_output_____ ###Markdown Utils to read/write Azure ###Code #################################### # Utils #################################### class AzureSource(): """Class to manage interactions with the Azure blobs. The methods are somewhat hardcoded, e.g. the blobnames and path format is fit for our naming conventions for this project.""" def __init__(self, model:str, year:int): fn = f"Ext_max_t__Rgn_1__{year}__Abv_Avg_5_K_for_3_days__CMIP6_{model}_Avg_yrs_1950_79.nc" self.filename = fn abspath = f"extremes_max/{model}/Region_1/Avg_yrs_1950_79/Abv_Avg_5_K_for_3_days/{fn}" self.abspath = abspath def download(self): if not os.path.isfile(self.filename): sas_url = f"{URL_PREFIX}/{self.abspath}?{SAS_TOKEN}" blob_client = BlobClient.from_blob_url(sas_url) with tempfile.TemporaryFile() as f: fp = f"{f.name}.tmp" with open(fp, "wb") as my_blob: download_stream = blob_client.download_blob() my_blob.write(download_stream.readall()) os.rename(fp, self.filename) while os.path.getsize(self.filename)/10**6 < 10: # MB time.sleep(2) class AzureTarget(): """Class to manage download operations from Azure.""" def __init__(self, filename): self.filename = filename def upload(self, upload_folder:str): sas_url = f"{URL_PREFIX}/{upload_folder}/{self.filename}?{SAS_TOKEN}" blob_client = BlobClient.from_blob_url(sas_url) with open(self.filename, "rb") as f: if blob_client.exists(): warnings.warn(f"{self.filename} exists. Overwriting..") blob_client.upload_blob(f, overwrite=True) ###Output _____no_output_____ ###Markdown Setup the Pipeline to Create Contours from Dataset ###Code #################################### # Define Contour obj #################################### """ Bounding-contours algorithm to find the extend of the heat events and produce visualizations. It uses the the heat events y/n dataset which was (supposed to be pre-) produced by the "Heatwave Analysis" algorithm. """ class Contour(object): """A single contour obj. All unit operations are managed here.""" def __init__(self, cnt:np.array, lons, lats): self.contour = cnt self.lons = lons self.lats = lats self.name = uuid.uuid4().hex[:6] self._area = 0.0 self._smoothened = np.array([], dtype=np.int32) self._projected = np.array([], dtype=np.float64) self._center = () def __repr__(self): return self.name @property def area(self): return cv2.contourArea(self.contour) @property def smoothened(self): cnt = self.contour arc = SMOOTH_RATIO*cv2.arcLength(cnt,True) return cv2.approxPolyDP(cnt,arc,True) @property def projected(self): squeezed = self.smoothened.squeeze() proj = [(float(self.lons[x]), float(self.lats[y])) for (x,y) in squeezed] return np.array(proj).reshape((-1,1,2)) @property def center(self): M = cv2.moments(self.contour) cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) return (float(self.lons[cX]), float(self.lats[cY])) def position_to(self, c2:object)->str: """Find the relative position of a Contour obj to another. Return if c1 is inside or outside c2, or they intersect.""" f = cv2.pointPolygonTest c1 = self.contour.squeeze().astype(float) tf = np.array([int((f(c2.contour, x, False))) for x in c1]) if all(tf==-1): return "outside" elif all(tf==1): return "inside" else: return "intersect" def __add__(self, obj2:object): """Fuse two countor objects ('bubbles'). Better do this if they intersect or one is enclosed inside the other.""" c1, c2 = self.contour, obj2.contour fused = cv2.convexHull(np.vstack([c1, c2])) new_obj = self.__class__(fused, self.lons, self.lats) return new_obj class ContourCollection(list): """Essentially just a list, except overloads behavior for "in" operator.""" def __init__(self, items:List[Contour]): self.items = items super(ContourCollection, self).__init__(items) def __contains__(self, x): result = False for c in self.items: if x.name==c.name and x.area==c.area: result = True return result #################################### # Find the independent contours for a given day #################################### def find_daily_contours(ds:xr.Dataset)->List[ContourCollection]: """Give a dataset and it will loop through days and find all contours per day, if any. This function does ~ df['contours'].rolling(window=4).sum() """ def find_contours(arr2d: np.array, convex:bool=False, min_area:int=150) -> List[np.array]: """Encapsulate islands of 1s and return contours, [(i,j),(..),]. input: day-slice of a dataset tasmax dataarray output: list of contours (np.arrays)""" H = arr2d.astype(np.uint8) ret, thresh = cv2.threshold(H, 0, 1, 0, cv2.THRESH_BINARY) kernel = np.ones((10,10), np.uint8) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if convex: contours = [cv2.convexHull(c) for c in contours] contours = [c for c in contours if c.shape[0]>1] # filter single points for c in contours: if c.ndim!=3: print(c.shape) lons = ds.coords['lon'] lats = ds.coords['lat'] contours = [Contour(c, lons, lats) for c in contours] contours = [c for c in contours if c.area>min_area] return ContourCollection(contours) all_contours = [] dr = pd.DatetimeIndex(ds['time'].dt.floor('D').values.astype('str')) days = [] for d in dr: day = d.strftime("%Y-%m-%d") extreme = ds['extreme_yn'].sel(time=day) arr2d = extreme.values[0] all_contours += [find_contours(arr2d, convex=CONVEX, min_area=MIN_AREA)] days += [day] return all_contours, days #################################### # Rolling-window contours summation on time axis #################################### def collapse(contours:List[Contour]) -> List[Contour]: """Recursive func to fuse multiple contour objects, if overlapping.""" if type(contours)==float and pd.isna(contours): return [] conts = contours[:] # prevent mutation for cnt1, cnt2 in itertools.combinations(conts, 2): if cnt1.position_to(cnt2) in ("inside", "intersect"): cnt_new = cnt1+cnt2 conts.remove(cnt1) conts.remove(cnt2) conts.append(cnt_new) return collapse(conts) # recursion return conts def rolling_sum(all_contours:list, window:int=ROLLING)->pd.DataFrame: """Provide df with daily contours calculated, and it will df.rolling(w).sum() The only reason we can't use pandas is that its .rolling method refuses sum(lists).""" if window==1: warnings.warn("window=1 just returns contours as-is.") df = pd.DataFrame(dict(contours=all_contours)) for i in range(1, window): df[f"shift{i}"] = df['contours'].shift(i) df['rolling_append'] = df.filter(regex=r'contours|shift*', axis=1).dropna().sum(axis=1) df['rolling_sum'] = df['rolling_append'].apply(collapse) # drop tmp columns: df = df[[c for c in df.columns if "shift" not in c]] df = df.drop("rolling_append", axis=1) assert len(ds['extreme_yn'])==len(df) return df #################################### # Serialize metadata ready to json #################################### def serialize(df:pd.DataFrame) -> pd.DataFrame: df1 = df.explode('contours')[['days','contours']].reset_index(drop=True) df1['type'] = 'daily' df1 = df1.rename({'contours':'contour'}, axis=1) df2 = df.explode('rolling_sum')[['days','rolling_sum']].reset_index(drop=True) df2['type'] = 'rolling_sum' df2 = df2.rename({'rolling_sum':'contour'}, axis=1) df3 = pd.concat([df1,df2], axis=0)\ .sort_values(by=['days','type'], ascending=True)\ .dropna()\ .reset_index(drop=True) df3['name'] = [x.name for x in df3['contour']] df3['center'] = [x.center for x in df3['contour']] df3['area'] = [x.area for x in df3['contour']] df3['projected'] = [x.projected for x in df3['contour']] df3 = df3.drop('contour', axis=1) return df3 #################################### # Generate figures for each day with contours #################################### def validate(df:pd.DataFrame): assert "contours" in df.columns assert "rolling_sum" in df.columns assert df.index.is_monotonic def create_figures(df:pd.DataFrame, window:int, save=False, folder:str=None): validate(df) def add_patches(column:str, _idx:int, color:str, linewidths:int, alpha=1): contours = df[column][df.index==_idx].values[0] patches = [Polygon(c.projected.squeeze(), True) for c in contours] args = dict(edgecolors=(color,), linewidths=(linewidths,), facecolor="none", alpha=alpha) p = PatchCollection(patches, **args) ax1.add_collection(p) [ax1.scatter(x=c.center[0], y=c.center[1], c=color, s=3) for c in contours] p = PatchCollection(patches, **args) ax2.add_collection(p) [ax2.scatter(x=c.center[0], y=c.center[1], c=color, s=3) for c in contours] for i, idx in enumerate(df.index): dr = pd.DatetimeIndex(ds['time'].dt.floor('D').values.astype('str')) day = dr[idx].strftime("%Y-%m-%d") tasmax = ds['tasmax'].sel(time=day) tdiff = ds['above_threshold'].sel(time=day) extreme = ds['extreme_yn'].sel(time=day) fig, (ax1, ax2) = plt.subplots(1,2, figsize=(24,8)) im1 = extreme.squeeze().plot.imshow(ax=ax1, cmap='cividis') im2 = tdiff.squeeze().plot.imshow(ax=ax2, cmap='coolwarm', vmin=4, vmax=-4, alpha=0.8) colors = 'r b c w m g y'.split()*100 for x in range(i+1): add_patches('contours', idx-x, colors[i-x], 1.5) if x==window: add_patches('rolling_sum', idx, 'g', 4, alpha=0.8) break fig.tight_layout() if save: # save image locally if not os.path.exists(folder): os.mkdir(folder) fig.savefig(f"{folder}/{day}.jpg") fig.clear() plt.close(fig) #################################### # Compile a video from images #################################### def create_video(files:List[str], fn_out:str)->None: h,w,_ = cv2.imread(files[0]).shape with tempfile.TemporaryFile() as f: fp = f"{f.name}.avi" fourcc = cv2.VideoWriter_fourcc(*'XVID') video = cv2.VideoWriter(fp, fourcc, 10, (w,h)) for fn in files: img = cv2.imread(fn) video.write(img) video.release() os.rename(fp, 'out.avi') time.sleep(2) fn_in = 'out.avi' cmd = f"ffmpeg -i '{fn_in}' -ac 2 -b:v 2000k -c:a aac -c:v libx264 -b:a 160k -vprofile high -bf 0 -strict experimental -f mp4 '{fn_out}'" subprocess.run(cmd, shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT) os.remove('out.avi') #################################### # Run the Pipeline #################################### models = ["GISS_E2_1_G_ssp585", "GFDL_ESM4_ssp245", "GFDL_ESM4_ssp585", "GISS_E2_1_G_ssp245"] years = list(range(2026,2030)) for model in models: for year in years: t1 = time.time() # import dataset ################################ at = AzureSource(model, year) at.download() ds = xr.open_mfdataset(at.filename) days_above = ds.attrs['Number of continuous days to be considered extreme'] kelv_above = ds.attrs['threshold'] upload_folder = f"NEWcontours_{days_above}days_{kelv_above}K/{model}" # find contours ################################ dc, days = find_daily_contours(ds) df_daily = rolling_sum(dc) df_daily['days'] = days # create metadata ################################ path_meta = f"{model}_{year}.json" df_meta = serialize(df_daily) df_meta.to_json(path_meta) # create images ################################ img_folder = f"{model}_{year}" create_figures(df_daily, window=ROLLING, save=True, folder=img_folder) figs = sorted([str(p) for p in Path(img_folder).rglob("*.jpg")]) # create video ################################ path_video = f"{model}_{year}.mp4" create_video(figs, path_video) # export all to Azure ################################ AzureTarget(path_meta).upload(upload_folder) [AzureTarget(fn).upload(upload_folder) for fn in figs] AzureTarget(path_video).upload(upload_folder) # delete local files ################################ os.remove(path_meta) shutil.rmtree(img_folder) os.remove(path_video) os.remove(at.filename) print(f"{model}\t{year}\t{round((time.time()-t1)/60,2)} min") ###Output _____no_output_____
notebooks/rnaSeq/Omics_Pipe_GUI_RNAseq_counts_GUI_v2.ipynb
###Markdown Omics Pipe GUI -- RNAseq_Count_Based Pipeline Author: K. FischEmail: [email protected]: May 2016 Note: Before editing this notebook, please make a copy (File --> Make a copy). Table of Contents1. Introduction * Configuration * Parameters * User Input Required 2. Omics Pipe RNAseq Count-based Pipeline3. Omics Pipe Results * Raw Data Quality Control (FastQC) * Alignment (STAR) * Quantification (HTSeq) * Differential Expression Analysis (DEseq2)4. Functional Enrichment Analysis5. Network Analysis IntroductionOmics pipe is an open-source, modular computational platform that automates ‘best practice’ multi-omics data analysis pipelines. This Jupyter notebook wraps the functionality of Omics Pipe into an easy-to-use interactive Jupyter notebook and parsesthe output for genomic interpretation. Read more about Omics Pipe at https://pythonhosted.org/omics_pipe/. ###Code #Omics Pipe Overview from IPython.display import Image Image(filename='/data/core_analysis_pipelines/RNAseq/Omics_Pipe_RNAseq_count_based_pipeline/images/op_diagram.png', width=500, height=100) ###Output _____no_output_____ ###Markdown Set up your Jupyter notebook to enable nbextensions and import Python modules needed ###Code #Activate Jupyter Notebook Extensions import notebook E = notebook.nbextensions.EnableNBExtensionApp() E.enable_nbextension('usability/codefolding/main') E.enable_nbextension('usability/comment-uncomment/main') E.enable_nbextension('usability/datestamper/main') E.enable_nbextension('usability/dragdrop/main') E.enable_nbextension('usability/hide_input/main') #E.enable_nbextension('usability/read-only/main') E.enable_nbextension('usability/runtools/main') E.enable_nbextension('usability/search-replace/main') E.enable_nbextension('usability/toc/main') #disable extension #D = notebook.nbextensions.DisableNBExtensionApp() #D.disable_nbextension('usability/codefolding/main') #Import Omics pipe and module dependencies import yaml from omics_pipe.parameters.default_parameters import default_parameters from ruffus import * import sys import os import time import datetime import drmaa import csv from omics_pipe.utils import * from IPython.display import IFrame import pandas import glob import os import matplotlib.pyplot as plt %matplotlib inline #%matplotlib notebook import qgrid qgrid.nbinstall(overwrite=True) qgrid.set_defaults(remote_js=True, precision=4) from IPython.display import HTML import mygene now = datetime.datetime.now() date = now.strftime("%Y-%m-%d %H:%M") #Change top directory to locate result files os.chdir("/data/core_analysis_pipelines/RNAseq/Omics_Pipe_RNAseq_count_based_pipeline") ###Output _____no_output_____ ###Markdown Customize input parameters for Omics PipeRequired: Sample names, condition for each sampleOptional: genome build, gene annotation, output paths, tool parameters, etc. See full Omics Pipe documentation for a description of the configurable parameters. ###Code #Omics Pipe documentation: Parameters IFrame("https://pythonhosted.org/omics_pipe/parameter_file.html", width=700, height=250) ###Output _____no_output_____ ###Markdown ***User Input Required Here *** ###Code ###Customize parameters: Specify sample names and conditions sample_names = ["468-3_CTRL-2","468-3_LPS-2","468-4_CTRL","468-4_LPS","468-6_CTRL","468-6_LPS","685-1_CTRL","685-1_LPS","685-2_CTRL-3","685-2_LPS-2","685-5_CTRL-3","685-5_LPS-1","685-7_CTRL-3","685-7_LPS-2","697-1_CTRL-3","697-1_LPS-1","697-2_CTRL","697-2_LPS","697-3_CTRL-3","697-3_LPS-2","697-4_CTRL-2","697-4_LPS-2","697-5_CTRL","697-5_LPS"] condition = ["Control","LPS","Control","LPS","Control","LPS","Control","LPS","Control","LPS","Control","LPS","Control","LPS","Control","LPS","Control","LPS","Control","LPS","Control","LPS","Control","LPS"] lib_type = ["single_end"]*len(condition) pair = ["468-3","468-3","468-4","468-4","468-6","468-6","685-1","685-1","685-2","685-2","685-5","685-5","685-7","685-7","697-1","697-1","697-2","697-2","697-3","697-3","697-4","697-4","697-5","697-5"] genotype = ["het","het","wt","wt","mut","mut","mut","mut","wt","wt","het","het","het","het","wt","wt","mut","mut","wt","wt","het","het","mut","mut"] #Update Metadata File meta = {'Sample': pandas.Series(sample_names), 'condition': pandas.Series(condition) , 'libType': pandas.Series(lib_type), 'pair': pandas.Series(pair), 'genotype': pandas.Series(genotype)} meta_df = pandas.DataFrame(data = meta) deseq_meta_new = "/data/mccoy/new_meta.csv" meta_df.to_csv(deseq_meta_new,index=False) print meta_df ###Update parameters, such as GENOME, GTF_FILE, paths, etc parameters = "/root/src/omics-pipe/tests/test_params_RNAseq_counts_AWS.yaml" stream = file(parameters, 'r') params = yaml.load(stream) params.update({"SAMPLE_LIST": sample_names}) params.update({"DESEQ_META": deseq_meta_new}) params.update({"R_VERSION": '3.2.3'}) params.update({"GENOME": '/database/Mus_musculus/Mus_musculus/UCSC/mm10/Sequence/WholeGenomeFasta/genome.fa'}) params.update({"STAR_INDEX": '/database/Mus_musculus/Mus_musculus/STAR_index'}) params.update({"REF_GENES": '/database/Mus_musculus/Mus_musculus/UCSC/mm10/Annotation/Genes/genes.gtf'}) params.update({"RAW_DATA_DIR": '/data/mccoy/fastq'}) params.update({"TEMP_DIR": '/data/tmp'}) params.update({"PIPE_MULTIPROCESS": 100}) params.update({"STAR_VERSION": '2.4.5a'}) params.update({"PARAMS_FILE": '/data/mccoy/Omics_Pipe_RNAseq_params.yaml'}) params.update({"LOG_PATH": ':/data/mccoy/logs'}) params.update({"QC_PATH": "/data/mccoy/QC"}) params.update({"FLAG_PATH": "/data/mccoy/flags"}) params.update({"DESEQ_RESULTS": "/data/mccoy/deseq"}) params.update({"STAR_OPTIONS": '--readFilesCommand cat --runThreadN 8 --outSAMstrandField intronMotif --outFilterIntronMotifs RemoveNoncanonical'}) params.update({"REPORT_RESULTS": "/data/mccoy/report"}) params.update({"STAR_RESULTS": "/data/mccoy/star"}) params.update({"HTSEQ_RESULTS": "/data/mccoy/counts"}) params.update({"DESIGN": '~condition'}) #update params default_parameters.update(params) #write yaml file stream = file('updated_params.yaml', 'w') yaml.dump(params,stream) p = Bunch(default_parameters) #View Parameters print "Run Parameters: \n" + str(params) ###Output _____no_output_____ ###Markdown Omics Pipe RNAseq Count-based PipelineThe following commands execute the Omics Pipe RNAseq Count-based Pipeline which is based on the Nature Methods paper Anders et al. 2013. ###Code ### Omics Pipe Pipelines from IPython.display import Image Image(filename='/data/core_analysis_pipelines/RNAseq/Omics_Pipe_RNAseq_count_based_pipeline/images/op_pipelines.png', width=700, height=150) ###Run Omics Pipe from the command line !omics_pipe RNAseq_count_based /data/mccoy/updated_params.yaml ###Output _____no_output_____ ###Markdown Omics Pipe ResultsOmics Pipe produces output files for each of the steps in the pipeline, as well as log files and run information (for reproducibility). Summarized output for each of the steps is displayed below for biological interpretation. ###Code #Change top directory to locate result files os.chdir("/data/mccoy") #Display Omics Pipe Pipeline Run Status #pipeline = './flags/pipeline_combined_%s.pdf' % date pipeline = './flags/pipeline_combined_2016-05-16 17:41.pdf' IFrame(pipeline, width=700, height=500) ###Output _____no_output_____ ###Markdown Quality Control of Raw Data -- FastQCQuality control of the raw data (fastq files) was assessed using the tool FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The results for all samples are summarized below, and samples are given a PASS/FAIL rating. ###Code ###Summarize FastQC raw data QC results per sample results_dir = './QC/' # Below is the complete list of labels in the summary file summary_labels = ["Basic Statistics", "Per base sequence quality", "Per tile sequence quality", "Per sequence quality scores", "Per base sequence content", "Per sequence GC content", "Per base N content", "Sequence Length Distribution", "Sequence Duplication Levels", "Overrepresented sequences", "Adapter Content", "Kmer Content"] # Below is the list I anticipate caring about; I leave the full list above in case it turns out later # I anticipated wrong and need to update this one. labels_of_interest = ["Basic Statistics", "Per base sequence quality"] # Look for each file named summary.txt in each subdirectory named *_fastqc in the results directory summary_wildpath = os.path.join(results_dir, '*/*_fastqc', "summary.txt") summary_filepaths = [x for x in glob.glob(summary_wildpath)] #print os.getcwd() # Examine each of these files to find lines starting with "FAIL" or "WARN" for curr_summary_path in summary_filepaths: has_error = False #print(divider) with open(curr_summary_path, 'r') as f: for line in f: if line.startswith("FAIL") or line.startswith("WARN"): fields = line.split("\t") if not has_error: print(fields[2].strip() + ": PASS") # the file name has_error = True if fields[1] in labels_of_interest: print(fields[0] + "\t" + fields[1]) #Display QC results for individual samples sample = "468-3_CTRL-2" name = './QC/%s/%s_fastqc/fastqc_report.html' % (sample,sample) IFrame(name, width=1000, height=600) ###Output _____no_output_____ ###Markdown Alignment Summary Statistics -- STARThe samples were aligned to the genome with the STAR aligner (https://github.com/alexdobin/STAR). The alignment statistics for all samples are summarized and displayed below. Samples that do not pass the alignment quality filter (Good quality = aligned reads > 10 million and % aligned > 60%) are excluded from downstream analyses. ###Code ##Summarize Alignment QC Statistics import sys from io import StringIO star_dir = './star/' # Look for each file named summary.txt in each subdirectory named *_fastqc in the results directory summary_wildpath = os.path.join(star_dir, '*/', "Log.final.out") #summary_wildpath = os.path.join(star_dir, "*Log.final.out") summary_filepaths = [x for x in glob.glob(summary_wildpath)] #print summary_filepaths alignment_stats = pandas.DataFrame() for curr_summary_path in summary_filepaths: #with open(curr_summary_path, 'r') as f: filename = curr_summary_path.replace("./star/","") filename2 = filename.replace("/Log.final.out","") df = pandas.read_csv(curr_summary_path, sep="\t", header=None) raw_reads = df.iloc[[4]] y = raw_reads[1].to_frame() aligned_reads = df.iloc[[7]] z = aligned_reads[1].to_frame() percent_aligned = df.iloc[[8]] #print percent_aligned a = percent_aligned[1] b = a.to_string() c = b.replace("%","") c1 = c.replace("8 ","") e = float(c1) d = {"Sample": pandas.Series(filename2), "Raw_Reads": pandas.Series(float(y[1])), "Aligned_Reads": pandas.Series(float(z[1])), "Percent_Uniquely_Aligned": pandas.Series(e)} p = pandas.DataFrame(data=d) alignment_stats = alignment_stats.append(p) #print alignment_stats #View interactive table qgrid.show_grid(alignment_stats, grid_options={'forceFitColumns': False, 'defaultColumnWidth': 200}) #Barplot of number of aligned reads per sample plt.figure(figsize=(10,10)) ax = plt.subplot(111) alignment_stats.plot(ax=ax, kind='barh', title='# of Reads') ax.axis(x='off') ax.axvline(x=10000000, linewidth=2, color='Red', zorder=0) #plt.xlabel('# Aligned Reads',fontsize=16) for i, x in enumerate(alignment_stats.Sample): ax.text(0, i + 0, x, ha='right', va= "bottom", fontsize='medium') plt.savefig('./alignment_stats_%s' %date ,dpi=300) # save figure ###Flag samples with poor alignment or low numbers of reads df = alignment_stats failed_samples = df.loc[(df.Aligned_Reads < 10000000) | (df.Percent_Uniquely_Aligned < 60), ['Sample','Raw_Reads', 'Aligned_Reads', 'Percent_Uniquely_Aligned']] #View interactive table qgrid.show_grid(failed_samples, grid_options={'forceFitColumns': False, 'defaultColumnWidth': 200}) #View Alignment Statistics for failed samples for failed in failed_samples["Sample"]: #fname = "/data/results/star/%s/Log.final.out" % failed fname = "./star/%s/Log.final.out" % failed with open(fname, 'r') as fin: print failed + fin.read() ###Samples that passed QC for alignment passed_samples = df.loc[(df.Aligned_Reads > 10000000) | (df.Percent_Uniquely_Aligned > 60), ['Sample','Raw_Reads', 'Aligned_Reads', 'Percent_Uniquely_Aligned']] print "Number of samples that passed alignment QC = " + str(len(passed_samples)) #View interactive table qgrid.show_grid(passed_samples, grid_options={'forceFitColumns': False, 'defaultColumnWidth': 200}) #View Alignment Statistics for passed samples for passed in passed_samples["Sample"]: #fname = "/data/results/star/%s/Log.final.out" % passed fname = "./star/%s/Log.final.out" % passed with open(fname, 'r') as fin: print passed + fin.read() #Create new metadata file with samples that passed QC for differential expression analyses passed_list = passed_samples["Sample"] meta_df_passed = meta_df.loc[meta_df.Sample.isin(passed_list2)] deseq_meta_new2 = "/data/mccoy/new_meta_QCpassed.csv" meta_df_passed.to_csv(deseq_meta_new2,index=False) print meta_df_passed print passed_list ###Output _____no_output_____ ###Markdown Counts Summary Statistics -- HTSeqThe aligned reads were quantifed using RefSeq mm10 annotation using HTSeq-count (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html). The counts for all samples are summarized and displayed below. Differential Expression Analysis in R Switch to R Kernel at top of screen: Kernel --> Change Kernel --> R ###Code ##Set working directory working_dir <- "/data/mccoy" setwd(working_dir) date <- Sys.Date() #Set R options options(jupyter.plot_mimetypes = 'image/png') options(useHTTPS=FALSE) options(scipen=500) ###Output _____no_output_____ ###Markdown Differential Expression Analysis -- Bioconductor DESeq2Differential expression analysis was performed with DESeq2 in Bioconductor (https://bioconductor.org/packages/release/bioc/html/DESeq2.html). The differentially expressed genes and raw counts for all samples are summarized and displayed below. ###Code #Load custom R scripts source("/data/ccbb_tickets/20160504_McCoy_Prince_RNAseq_pathways/src/rnaSeq/RNA_seq_DE.R") #Load R packages; Execute this twice to clear the log require(limma) require(edgeR) require(DESeq2) require(RColorBrewer) require(cluster) library(gplots) library(SPIA) library(graphite) library(PoiClaClu) library(ggplot2) library(pathview) library(KEGG.db) library(mygene) library(splitstackshape) library(reshape) library(hwriter) library(ReportingTools) library("EnrichmentBrowser") library(IRdisplay) library(repr) ###Output _____no_output_____ ###Markdown Read in gene count files for each sample ###Code #Compile individual count files #====================================================================================================================================== #Specify working directory. Should be the name of your project, and there should be a subfolder within this #directory named "counts" which contains the raw count files in .txt format for all samples (output from htseq in Omics Pipe) ##Set working directory setwd(working_dir) name<- "McCoy_Prince_RNAseq_20160517" #Reads in count files dir <- paste(getwd(), "/counts", sep="") countFiles <- paste(dir, "/", dir(dir), sep='') countNames1 <- gsub('_counts.txt', '', countFiles) countNames <- gsub(sprintf("%s/", dir), '', countNames1) countsDf <- NULL for (i in countFiles) { dat <- read.csv(i, header=F, sep="\t", na.strings="", as.is=T) countsDf <- cbind(countsDf, dat[,2]) } x1 <- dim(countsDf)[1]-4 x2 <- dim(countsDf)[1] countsDf <- countsDf[-c(x1:x2),] # remove the last 5 lines, they hold no genes rownames(countsDf) <- read.csv(i, header=F, sep="\t", na.strings="", as.is=T)$V1[-c(x1:x2)] colnames(countsDf) <- countNames write.csv(countsDf, sprintf("%s/%s_ALL_counts.csv", working_dir, name)) #Creates file with all counts in one file df <- countsDf geneCount <- df rc <- rowSums(geneCount) geneCount <- geneCount[rc > 0,] N <- colSums(geneCount) names <- names(N) print("Top of Raw Counts File:") head(geneCount) ###Output _____no_output_____ ###Markdown Visualize library size distribution for all samples from number of counts ###Code ##Visualize library size distribution (# aligned reads) par(oma=c(5,1,1,1) + 0.1) barplot(N*1e-6, ylab="Library size (millions)", main=c("Library size distribution"), names=names(N), las=2, cex.names=0.75 ) ###Output _____no_output_____ ###Markdown Preprocess count data and read in metadata (design file) ###Code # Preprocess data & read in metadata #===================================================================================================================================== #Read in design file. Example in s3://ucsd-ccb-data-analysis/Katie/RNAseq_scripts #meta <- read.csv(sprintf("%s_design.csv",name), header=T, stringsAsFactor=FALSE) #Read in design file with good quality samples only meta <- read.csv(sprintf("%s/new_meta_QCpassed.csv",working_dir), header=T, stringsAsFactors=FALSE) dds <- DESeqDataSetFromMatrix(countData = geneCount, colData = meta, design = ~condition) #Run differential expression analysis dds <- DESeq(dds) ###Output _____no_output_____ ###Markdown MDS (PCA) plot ###Code #Create MDS plot for all samples rld <- rlog(dds) poisd <- PoissonDistance(t(counts(dds))) samplePoisDistMatrix <- as.matrix( poisd$dd ) rownames(samplePoisDistMatrix) <- paste( dds$dex, dds$cell, sep="-" ) mds <- data.frame(cmdscale(samplePoisDistMatrix)) mds <- cbind(mds, colData(rld)) mds <- as.data.frame(mds) qplot(X1,X2,color=condition,data=mds,size=5, shape=genotype) ##Run all plotting code and save to PDF pdf(sprintf("%s/%s_all_samples_plots_%s.pdf", working_dir, name,date)) par(oma=c(5,1,1,1) + 0.1) barplot(N*1e-6, ylab="Library size (millions)", main=c("Library size distribution"), names=names(N), las=2, cex.names=0.75 ) poisd <- PoissonDistance(t(counts(dds))) samplePoisDistMatrix <- as.matrix( poisd$dd ) rownames(samplePoisDistMatrix) <- paste( dds$dex, dds$cell, sep="-" ) mds <- data.frame(cmdscale(samplePoisDistMatrix)) mds <- cbind(mds, colData(rld)) mds <- as.data.frame(mds) qplot(X1,X2,color=condition,data=mds,size=5, shape=genotype) dev.off() ###Output _____no_output_____ ###Markdown Specify samples for desired comparisons for differential expression analysis Wt Only LPS vs Control ###Code #Read in design file with good quality samples only meta <- read.csv(sprintf("%s/new_meta_QCpassed.csv",working_dir), header=T, stringsAsFactors=FALSE) #Create new meta files with subsets of samples for desired comparisons #Failed samples 468-4-LPS, 468-6_CTRL, 697-4_LPS-2 #wt to wt LPS vs Control desired_samples <- c("468-4_CTRL","685-2_CTRL-3","685-2_LPS-2", "697-1_CTRL-3","697-1_LPS-1","697-3_CTRL-3","697-3_LPS-2") #removed failed sample 468-4 LPS desired_design <- "~condition + pair" name2 <- "WTonly_LPSvsControl" desired_samples desired_design name2 #Reload count files for desired meta file df <- countsDf geneCount <- df rc <- rowSums(geneCount) geneCount <- geneCount[rc > 0,] N <- colSums(geneCount) names <- names(N) #Update meta data file #meta <- meta[match(colnames(geneCount),desired_samples),] meta <- meta[(colnames(geneCount) %in% desired_samples),] meta <- meta[complete.cases(meta),] rownames(meta) <- meta$Sample print("Meta Data File:") meta #Subset geneCounts for desired samples geneCount <- geneCount[,meta$Sample] df<-df[,meta$Sample] check <- cbind(meta$Sample, colnames(geneCount)) group <- meta$condition print("Top of Counts File:") head(geneCount) ###Output _____no_output_____ ###Markdown Normalization & Differential Expression Analysis ###Code #Differential expression #===================================================================================================================================== #Normalization of raw counts using deseq trsLength <- NA if(is.element("length", colnames(df))) trsLength <- df[rc > 0,"length"] norm <- getNormData(df, group, trsLength, addRaw=TRUE) deseq <- log2(norm$DESeq+1) sf_deseq <- getSizeFactor(df, group)$DESeq # save the size factors of the ref cohort write.csv(deseq, sprintf("%s/DEseq_normalized_counts_%s.csv",working_dir,name)) # nonspecic Filtering sds <- apply(deseq,1,sd) use <- (sds > quantile(sds, 0.75)) deseqNsf <- deseq[use,] #Create DEseq dataset from matrix dds <- DESeqDataSetFromMatrix(countData = geneCount, colData = meta, design = formula(desired_design)) #Run differential expression analysis dds <- DESeq(dds) ddsClean <- replaceOutliersWithTrimmedMean(dds) ddsClean <- DESeq(ddsClean) res <- results(ddsClean) #res <- results(ddsClean, contrast=c("condition", "LPS", "Control")) #Specify conditions for DE comparison here if more than two conditions res <- res[order(res$padj),] write.csv(res, sprintf("%s/DE_genes_%s_%s_%s.csv", working_dir, name, name2, date)) #Writes results of differential expression analysis to this file in your working dir ###Output _____no_output_____ ###Markdown Summarize Differentially Expressed Genes ###Code #Differentially expressed genes DE <- subset(res, padj < 0.001) #specify level of DE DE2 <- subset(DE, abs(log2FoldChange) > 1) #specify level of DE gene_list <- row.names(DE2) write.csv(gene_list, sprintf("%s/DE_gene_ID_list_%s_%s_%s.csv", working_dir, name, name2, date)) print("Number of Differentially Expressed Genes padj < 0.001:") nrow(DE) print("Number of Differentially Expressed Genes padj < 0.001 and log2FoldChange > 1:") nrow(DE2) print("Top of Differentially Expressed Genes List:") head(as.data.frame(DE2)) print("List of Differentially Expressed Genes to Cut and Copy for Enrichment Analyses") cat(gene_list) ###Output _____no_output_____ ###Markdown Plots for Differential Expression ###Code ##Set working directory setwd(working_dir) #Create distance matrix heatmap and clustering #pdf(sprintf("%s_%s_plots_%s.pdf", name, name2,date)) #Uncomment this to save all plots to a pdf file #png(sprintf("%s_%s_plots_%s.png", name, name2,date),res=1200, width=4,height=4, units='in') #Uncomment this to save all plots to a pdf file rld <- rlog(dds) distsRL <- dist(t(assay(rld))) mat <- as.matrix(distsRL) rownames(mat) <- colnames(mat) <- with(colData(dds), paste(Sample, genotype, sep=":")) hmcol <- colorRampPalette(brewer.pal(9, "GnBu"))(100) heatmap.2(mat, trace="none", col = rev(hmcol), margin=c(13, 13)) #Create MDS plot for samples in desired comparison poisd <- PoissonDistance(t(counts(dds))) samplePoisDistMatrix <- as.matrix( poisd$dd ) rownames(samplePoisDistMatrix) <- paste( dds$dex, dds$cell, sep="-" ) mds <- data.frame(cmdscale(samplePoisDistMatrix)) mds <- cbind(mds, colData(rld)) mds <- as.data.frame(mds) qplot(X1,X2,color=condition,data=mds,size=5) #Create Heatmap of differentially expressed genes #DE <- subset(res, padj < 0.05) #specify level of DE #DE <- subset(top$table, FDR < 0.05) #specify level of DE DE <- subset(res, padj < 0.001) #specify level of DE DE2 <- subset(DE, abs(log2FoldChange) > 1) #specify level of DE #DE <- subset(res, pvalue < 0.01) useHeat <- row.names(DE2) deseqHeat <- deseq[useHeat,] colnames(deseqHeat) <- with(colData(dds), paste(Sample, genotype, sep=":")) #deseqHeat <-deseqHeat[,] par(oma=c(5,1,1,1) + 0.1) heatmap.2(deseqHeat, Rowv=TRUE, #Colv=hc, col=rev(redgreen(75)), scale="row", #ColSideColors=unlist(sapply(group, mycol)), trace="none", key=TRUE, cexRow=0.35, cexCol=1, dendrogram="both" #labRow=TRUE ) #Create Heatmap of top 100 differentially expressed genes #DE <- subset(res, padj < 0.05) #specify level of DE #DE <- subset(top$table, FDR < 0.05) #specify level of DE DE <- subset(res, padj < 0.001) #specify level of DE DE2 <- subset(DE, abs(log2FoldChange) > 1) #specify level of DE DE_100 <- DE2[1:100,] #DE <- subset(res, pvalue < 0.01) useHeat <- row.names(DE_100) deseqHeat <- deseq[useHeat,] colnames(deseqHeat) <- with(colData(dds), paste(Sample, genotype, sep=":")) #deseqHeat <-deseqHeat[,] par(oma=c(5,1,1,1) + 0.1) heatmap.2(deseqHeat, Rowv=TRUE, #Colv=hc, col=rev(redgreen(75)), scale="row", #ColSideColors=unlist(sapply(group, mycol)), trace="none", key=TRUE, cexRow=0.35, cexCol=1, dendrogram="both" #labRow=TRUE ) ##Run all plotting code and save to PDF ##Set working directory setwd(working_dir) #Create distance matrix heatmap and clustering pdf(sprintf("%s/%s_%s_plots_%s.pdf", working_dir, name, name2,date)) #Uncomment this to save all plots to a pdf file #png(sprintf("%s_%s_plots_%s.png", name, name2,date),res=1200, width=4,height=4, units='in') #Uncomment this to save all plots to a pdf file #Create distance matrix rld <- rlog(dds) distsRL <- dist(t(assay(rld))) mat <- as.matrix(distsRL) rownames(mat) <- colnames(mat) <- with(colData(dds), paste(Sample, genotype, sep=":")) hmcol <- colorRampPalette(brewer.pal(9, "GnBu"))(100) heatmap.2(mat, trace="none", col = rev(hmcol), margin=c(13, 13)) #Create MDS plot for samples in desired comparison poisd <- PoissonDistance(t(counts(dds))) samplePoisDistMatrix <- as.matrix( poisd$dd ) rownames(samplePoisDistMatrix) <- paste( dds$dex, dds$cell, sep="-" ) mds <- data.frame(cmdscale(samplePoisDistMatrix)) mds <- cbind(mds, colData(rld)) mds <- as.data.frame(mds) qplot(X1,X2,color=condition,data=mds,size=5) #Create Heatmap of differentially expressed genes #DE <- subset(res, padj < 0.05) #specify level of DE #DE <- subset(top$table, FDR < 0.05) #specify level of DE DE <- subset(res, padj < 0.001) #specify level of DE DE2 <- subset(DE, abs(log2FoldChange) > 1) #specify level of DE #DE <- subset(res, pvalue < 0.01) useHeat <- row.names(DE2) deseqHeat <- deseq[useHeat,] colnames(deseqHeat) <- with(colData(dds), paste(Sample, genotype, sep=":")) #deseqHeat <-deseqHeat[,] par(oma=c(5,1,1,1) + 0.1) heatmap.2(deseqHeat, Rowv=TRUE, #Colv=hc, col=rev(redgreen(75)), scale="row", #ColSideColors=unlist(sapply(group, mycol)), trace="none", key=TRUE, cexRow=0.35, cexCol=1, dendrogram="both" #labRow=TRUE ) #Create Heatmap of top 100 differentially expressed genes #DE <- subset(res, padj < 0.05) #specify level of DE #DE <- subset(top$table, FDR < 0.05) #specify level of DE DE <- subset(res, padj < 0.001) #specify level of DE DE2 <- subset(DE, abs(log2FoldChange) > 1) #specify level of DE DE_100 <- DE2[1:100,] #DE <- subset(res, pvalue < 0.01) useHeat <- row.names(DE_100) deseqHeat <- deseq[useHeat,] colnames(deseqHeat) <- with(colData(dds), paste(Sample, genotype, sep=":")) #deseqHeat <-deseqHeat[,] par(oma=c(5,1,1,1) + 0.1) heatmap.2(deseqHeat, Rowv=TRUE, #Colv=hc, col=rev(redgreen(75)), scale="row", #ColSideColors=unlist(sapply(group, mycol)), trace="none", key=TRUE, cexRow=0.35, cexCol=1, dendrogram="both" #labRow=TRUE ) dev.off() ###Output _____no_output_____ ###Markdown Run Functional Enrichment Analyses Prepare DE results from above as input to functional enrichment analyses ###Code ##Set working directory setwd(working_dir) ###Annotated differential expression results for all genes all_results <- as.data.frame(res) id_list_all <- row.names(res) out_all<-queryMany(id_list_all, scopes="symbol", fields="entrezgene", species="mouse") ##Merge annotations with original DE results merged_all <- merge(all_results, out_all, by.x="row.names", by.y="query", all.x=TRUE) merged_all_sub <- subset(merged_all, !is.na(merged_all$entrezgene)) head(merged_all_sub) nrow(merged_all_sub) #Prepare Differentially expressed genes and All genes for SPIA input DE <- subset(res, padj < 0.001) #specify level of DE DE2 <- subset(DE, abs(log2FoldChange) > 1) #specify level of DE id_list <- row.names(DE2) out<-queryMany(id_list, scopes="symbol", fields="entrezgene", species="mouse") merged <- merge(data.frame(DE2), out, by.x="row.names", by.y="query", all.x=TRUE) merged_sub <- subset(merged, !is.na(merged$entrezgene)) DE_genes1 <- as.vector(merged_sub$log2FoldChange) DE_genes2 <- gsub("Inf", 5, DE_genes1) DE_genes2 <- as.numeric(DE_genes2) DE_genes <- gsub("-Inf", -5, DE_genes2) DE_genes <-as.numeric(DE_genes) names(DE_genes) <- merged_sub$entrezgene head(DE_genes) ALL_genes <- merged_all_sub$entrezgene head(ALL_genes) ###Output _____no_output_____ ###Markdown Run Signaling Pathway Impact Analysis (SPIA) ###Code ##Set working directory setwd(working_dir) ##Run SPIA res = spia(de=DE_genes, all=ALL_genes, organism="mmu", nB=2000, plots=FALSE, beta=NULL, combine="fisher" ) #MAYBE NEED TO ADD DATADIR write.csv(res, file = sprintf("%s/spia_output__%s_%s_fisher.csv", working_dir, name, date)) #View top of the results table head(res) ###Output _____no_output_____ ###Markdown Run EnrichmentBrowser Tool ###Code ##Set working directory setwd(working_dir) ##Download, run, and prepare mmu databases #setwd(working_dir) kegg.gs.mmu <- get.kegg.genesets("mmu") go.gs.mmu <- get.go.genesets(org="mmu", onto="BP", mode="GO.db") pwys.mmu <- download.kegg.pathways("mmu") mmu.grn <- compile.grn.from.kegg(pwys.mmu) ###Output _____no_output_____ ###Markdown Prepare differential expression result data as Bioconductor ExpressionSet ###Code ##Set working directory setwd(working_dir) gene_ids_from_merged_all <- merged_all_sub$Row.names merged_all_sub_unique <- merged_all_sub[!duplicated(merged_all_sub$Row.names),] unique_genes <- gene_ids_from_merged_all[!duplicated(gene_ids_from_merged_all)] #length(unique_genes) exprs1 <- subset(geneCount, rownames(geneCount) %in% unique_genes) exprs <- as.matrix(exprs1) row.names(exprs) <- NULL colnames(exprs) <- NULL #nrow(exprs) write.table(exprs, sprintf("/data/mccoy/DE_exprs_%s_%s_%s.tab", name, name2, date), sep="\t",row.names = F,col.names = F) pdat1 <- data.frame("names" =colnames(geneCount)) #pdat1 meta_merge <- merge(pdat1, meta, by.x = "names", by.y="Sample") #meta_merge meta_merge$condition_binary <- ifelse(meta_merge$condition == "LPS", 1, 0) pdat2 <- data.frame(meta_merge$names, meta_merge$condition_binary, meta_merge$pair) pdat <- as.matrix(pdat2) row.names(pdat) <- NULL colnames(pdat) <- NULL write.table(pdat, sprintf("/data/mccoy/DE_pdat_%s_%s_%s.tab", name, name2, date), sep="\t",row.names = F,col.names = F) fdat1 <- data.frame("names"= row.names(exprs1)) fdat2 <- merge(fdat1, merged_all_sub_unique, by.x="names", by.y="Row.names") fdat <- data.frame(fdat2$entrezgene) #nrow(fdat) #head(fdat) write.table(fdat, sprintf("/data/mccoy/DE_fdat_%s_%s_%s.tab", name, name2, date), sep="\t",row.names = F,col.names = F) #Create fdat from DE results instead of built in DE function from EnrichmentBrowser fdat_DE <- data.frame("ENTREZID" = merged_all_sub_unique$entrezgene, "FC" = merged_all_sub_unique$log2FoldChange, "ADJ.PVAL" = merged_all_sub_unique$padj, "DESeq.STAT" = merged_all_sub_unique$stat) row.names(fdat_DE) <- fdat_DE$ENTREZID head(fdat_DE) write.table(fdat_DE, sprintf("/data/mccoy/DE_fdat_DEresults_%s_%s_%s.tab", name, name2, date), sep="\t",row.names = F,col.names = F) #Create Expression Set from real data, does not include DE expression results eset_raw <- read.eset(exprs.file=sprintf("/data/mccoy/DE_exprs_%s_%s_%s.tab", name, name2, date), pdat.file=sprintf("/data/mccoy/DE_pdat_%s_%s_%s.tab", name, name2, date), fdat.file=sprintf("/data/mccoy/DE_fdat_%s_%s_%s.tab", name, name2, date), data.type='rseq') #Create ExpressionSet from real data, include DE expression results as fdata eset_DE <- read.eset(exprs.file=sprintf("/data/mccoy/DE_exprs_%s_%s_%s.tab", name, name2, date), pdat.file=sprintf("/data/mccoy/DE_pdat_%s_%s_%s.tab", name, name2, date), fdat.file=sprintf("/data/mccoy/DE_fdat_DEresults_%s_%s_%s.tab", name, name2, date), data.type='rseq') #Fix column names for eset_DE and check colnames(fData(eset_DE)) <- c("ENTREZID", "FC", "ADJ.PVAL", "DESeq.STAT") #Recode pvalues to capture desired significance level fData(eset_DE)$ADJ.PVAL <- as.numeric(fData(eset_DE)$ADJ.PVAL) fData(eset_DE)$FC <- as.numeric(fData(eset_DE)$FC) fData(eset_DE)$ADJ.PVAL[is.na(fData(eset_DE)$ADJ.PVAL)] <- 1 fData(eset_DE)$FC[is.na(fData(eset_DE)$FC)] <- 0 class(fData(eset_DE)$ADJ.PVAL) class(fData(eset_DE)$FC) head(fData(eset_DE)) #View plots of ExpressionSets par(mfrow=c(1,2)) pdistr(fData(eset_DE)$ADJ.PVAL) volcano(fData(eset_DE)$FC, fData(eset_DE)$ADJ.PVAL) ###Output _____no_output_____ ###Markdown Run EnrichmentBrowser for KEGG and GO Gene Sets ###Code ###Run SBEA kegg for original pvalues sbea.res.kegg <- sbea(method="ora", eset=eset_DE, gs=kegg.gs.mmu, perm=0, alpha=0.001, beta = 1, padj.method="BH", out.file=sprintf("%s/SBEA_KEGG_results_%s_%s_%s.txt", working_dir, name, name2, date)) #, out.file="/data/mccoy/SBEA_KEGG_RESULTS_test.txt",beta = 1, sig.stat='&') #This works and gives good concordance with Webgestalt and ToppGene #Basic Overrepresentation Analysis sbea.res.kegg <- sbea(method="ora", eset=eset_DE, gs=kegg.gs.mmu, perm=0, alpha=0.001, beta = 1, padj.method="BH") gs.ranking(sbea.res.kegg,signif.only=TRUE) ###Enrichment Browser functions not being recognized for some reason. Defining them here works. determine.edge.color <- function(edge.cons){ ifelse(edge.cons < 0, rgb(0,0,abs(edge.cons)), rgb(abs(edge.cons),0,0)) } is.consistent <-function (grn.rel) { act.cons <- mean(abs(grn.rel[1:2])) if (length(grn.rel) == 2) return(act.cons) if (sum(sign(grn.rel[1:2])) == 0) act.cons <- -act.cons return(ifelse(grn.rel[3] == 1, act.cons, -act.cons)) } #Create EnrichmentBrowser Html Report with Pathway Viz setwd("/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports") ea.browse(sbea.res.kegg) #Compress and Move html results from default EnrichmentBrowser directory to desired directory dir.create(sprintf("%s/EnrichmentBrowser", working_dir), showWarnings=FALSE) zip(zipfile = sprintf("/data/mccoy/EnrichmentBrowser/SBEA_KEGG_results_%s_%s_%s.zip", name, name2, date), "/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports") ###Run SBEA GO for original pvalues ###sbea.res.go <- sbea(method="ora", eset=eset_DE, gs=go.gs.mmu, perm=0, alpha=0.001, beta = 1, padj.method="BH", # #out.file=sprintf("%s/SBEA_GO_results_%s_%s_%s.txt", working_dir, name, name2, date)) #, out.file="/data/mccoy/SBEA_KEGG_RESULTS_test.txt",beta = 1, sig.stat='&') #This works and gives good concordance with Webgestalt and ToppGene #Basic Overrepresentation Analysis ##sbea.res.go <- sbea(method="ora", eset=eset_DE, gs=go.gs.mmu, perm=0, alpha=0.001, beta = 1, padj.method="BH") ##gs.ranking(sbea.res.go,signif.only=TRUE) #Create EnrichmentBrowser Html Report with Pathway Viz #this works!! #setwd("/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports") ##ea.browse(sbea.res.go) #Compress and Move html results from default EnrichmentBrowser directory to desired directory ##zip(zipfile = sprintf("/data/mccoy/EnrichmentBrowser/SBEA_GO_results_%s_%s_%s.zip", name, name2, date), "/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports") ###Output _____no_output_____ ###Markdown Network Enrichment Analysis using EnrichmentBrowser ###Code #Network based enrichment analysis using EnrichmentBrowser #kegg.gs.mmu <- get.kegg.genesets("mmu") #go.gs.mmu <- get.go.genesets(org="mmu", onto="BP", mode="GO.db") #pwys.mmu <- download.kegg.pathways("mmu") #mmu.grn <- compile.grn.from.kegg(pwys.mmu) # perform GGEA using the compiled KEGG regulatory network nbea.res <- nbea(method="ggea", eset=eset_DE, gs=kegg.gs.mmu, grn=mmu.grn) gs.ranking(nbea.res) #View network par(mfrow=c(1,2)) ggea.graph( gs=kegg.gs.mmu[["mmu04145_Phagosome"]], grn=mmu.grn, eset=eset_DE) ggea.graph.legend() #Combine enrichment results from different analysis methods res.list <- list(sbea.res.kegg, nbea.res) comb.res <- comb.ea.results(res.list) ea.browse(comb.res, graph.view=mmu.grn, nr.show=5) #Compress and Move html results from default EnrichmentBrowser directory to desired directory zip(zipfile = sprintf("%s/EnrichmentBrowser/SBEA_Combined_results_%s_%s_%s.zip", working_dir, name, name2, date), "/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports") ###Output _____no_output_____ ###Markdown Visualize Enrichment results ###Code #Display Pathway Results for KEGG pathway Lysosome display_png(file="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04142_volc.png") display_png(file ="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04142_kpath.png") display_png(file ="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04142_hmap.png") display_png(file ="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04142_hmap2.png") #Display Pathway Results for KEGG pathway Phagosome display_png(file="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04145_volc.png") display_png(file ="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04145_kpath.png") display_png(file ="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04145_hmap.png") display_png(file ="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04145_hmap2.png") #Display Pathway Results for KEGG pathway Leukocyte transendothelial migration display_png(file="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04670_volc.png") display_png(file ="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04670_kpath.png") display_png(file ="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04670_hmap.png") display_png(file ="/root/anaconda3/lib/R/library/EnrichmentBrowser/results/reports/mmu04670_hmap2.png") ###Output _____no_output_____
jupyter_notebooks/Tutorials/objects/ModelParameterization.ipynb
###Markdown Model ParameterizationThe fundamental role of Model objects in pyGSTi is to simulate circuits, that is, to map circuits to outcome probability distributions. This mapping is *parameterized* by some set of real-valued parameters, meaning that the mapping between circuits and outcome distribution depends on the values of a `Model`'s parameters. Model objects have a `num_params` attribute holding its parameter count, and `to_vector` and `from_vector` methods which get or set a model's vector of parameters.`ModelMember` objects such as state prepations, operations, and measurements (POVMs) are also parameterized, and similarly possess a `num_params` attribute and `to_vector` and `from_vector` methods. For models that hold member objects to implement their operations (e.g., both explicit and implicit models), the model's parameterization the result of combining the parameterizations of all its members.In explicit models, the parameterization is properly viewed as a mapping between the model's parameter space and the space of $d^2 \times d^2$ operation matrices and length-$d^2$ SPAM vectors. A `Model`'s contents always correspond to a valid set of parameters, which can be obtained by its `to_vector` method, and can always be initialized from a vector of parameters via its `from_vector` method. The number of parameters (obtained via `num_params`) is independent (and need not equal!) the total number of gate-matrix and SPAM-vector elements comprising the `Model`. For example, in a "TP-parameterized" model, the first row of each operation matrix is fixed at `[1,0,...0]`, regardless to what the `Model`'s underlying parameters are. One of pyGSTi's primary capabilities is model optimization: the optimization of a fit function (often the log-likelihood) over the parameter space of an initial `Model` (often times the "target" model). Thus, specifying a model's parameterization specifies the constraints under which the model is optimized, or equivalently the space of possible circuit-to-outcome-distribution mappings that are searched for a best-fit estimate. In the simplest case, each gate and SPAM vector within a `ExplicitOpModel` have independent paramterizations, so that each `pygsti.modelmembers.ModelMember`-derived object has its own separate parameters accessed by its `to_vector` and `from_vector` methods. The `ExplictOpModel`'s parameter vector, in this case, is just the concatenation of the parameter vectors of its contents, usually in the order: 1) state preparation vectors, 2) measurement vectors, 3) gates. Operation typesOperations on quantum states exist within the `pygsti.modelmembers.operations` subpackage. Most of the classes therein represent a unique combination of a:a. category of operation that can be represented, andb. parameterization of that category of operations.For example, the `FullArbitraryOp` class can represent an arbitrary (Markovian) operation, and "fully" parameterizes the operation by exposing every element of the operation's dense process matrix as a parameter. The `StaticCliffordOp` class can only represent Clifford operations, and is "static", meaning it exposes no parameters and so cannot be changed in an optimization. Here are brief descriptions of several of the most commonly used operation types:- The `FullArbitraryOp` class represents a arbitrary process matrix which has a parameter for every element, and thus optimizations using this gate class allow the operation matrix to be varied completely.- The `StaticArbitraryOp` class also represents an arbitrary process matrix but has no parameters, and thus is not optimized at all.- The `FullTPOp` class represents a process matrix whose first row must be `[1,0,...0]`. This corresponds to a trace-preserving (TP) gate in the Gell-Mann and Pauli-product bases. Each element in the remaining rows is a separate parameter, similar to a fully parameterized gate. Optimizations using this gate type are used to constrain the estimated gate to being trace preserving.- The `LindbladErrorgen` class defines an error generator that takes a particular Lindblad form. This class is fairly flexible, but is predominantly used to constrain optimizations to the set of infinitesimally-generated CPTP maps. To produce a gate or layer operation, error generators must be exponentiated using the `ExpErrorgenOp` class.Similarly, there classes represnting quantum states in `pygsti.modelmembers.states` and those for POVMs and POVM effects in `pygsti.modelmembers.povms`. Many of these classes run parallel to those for operations. For example, there exist `FullState` and `TPState` classes, the latter which fixes its first element to $\sqrt{d}$, where $d^2$ is the vector length, as this is the appropriate value for a unit-trace state preparation.There are other operation types that simply combine or modify other operations. These types don't correspond to a particular category of operations or parameterization, they simply inherit these from the operations they act upon. The are:- The `ComposedOp` class combines zero or more other operations by acting them one after the other. This has the effect of producing a map whose process matrix would be the product of the process matrices of the factor operations. - The `ComposedErrorgen` class combines zero or more error generators by effectively summing them together.- The `EmbeddedOp` class embeds a lower-dimensional operation (e.g. a 1-qubit gate) into a higer-dimensional space (e.g. a 3-qubit space).- The `EmbeddedErrorgen` class embeds a lower-dimensional error generator into a higher-dimensional space.- The `ExpErrorgenOp` class exponentiates an error generator operation, making it into a map on quantum states.- The `RepeatedOp` class simply repeats a single operation $k$ times.These operations act as critical building blocks when constructing complex gate and circuit-layer operations, especially on a many-qubit spaces. Again, there are analogous classes for states, POVMs, etc., within the other sub-packages beneath `pygsti.modelmembers`. Specifying operation types when creating modelsMany of the model construction functions take arguments dictating the type of modelmember objects to create. As described above, by changing the type of a gate you select how that gate is represented (e.g. Clifford gates can be represented more efficiently than arbitrary gates) and how it is parameterized. This in turn dictates how the overall model is paramterized.For a brief overview of the available options, here is an incomplete list of parameterization arguments and their associated `pygsti.modelmember` class. Most types start with either `"full"` or `"static"` - these indicate whether the model members have parameters or not, respectively. Parameterizations without a prefix are "full" by default. See the related [ForwardSimulation tutorial](../algorithms/advanced/ForwardSimulationTypes.ipynb) for how each parameterization relates to the allowed types of forward simulation in PyGSTi.- `gate_type` for `modelmember.operations`: - `"static"` $\rightarrow$ `StaticArbitraryOp` - `"full"` $\rightarrow$ `FullArbitraryOp` - `"static standard"` $\rightarrow$ `StaticStandardOp` - `"static clifford"` $\rightarrow$ `StaticCliffordOp` - `"static unitary"` $\rightarrow$ `StaticUnitaryOp` - `"full unitary"` $\rightarrow$ `FullUnitaryOp` - `"full TP"` $\rightarrow$ `FullTPOp` - `"CPTP"`, `"H+S"`, etc. $\rightarrow$ `ExpErrorgenOp` + `LindbladErrorgen`- `prep_type` for `modelmember.states`: - `"computational"` $\rightarrow$ `ComputationalBasisState` - `"static pure"` $\rightarrow$ `StaticPureState` - `"full pure"` $\rightarrow$ `FullPureState` - `"static"` $\rightarrow$ `StaticState` - `"full"` $\rightarrow$ `FullState` - `"full TP"` $\rightarrow$ `TPState`- `povm_type` for `modelmember.povms`: - `"computational"` $\rightarrow$ `ComputationalBasisPOVM` - `"static pure"` $\rightarrow$ `UnconstrainedPOVM` + `StaticPureEffect` - `"full pure"` $\rightarrow$ `UnconstrainedPOVM` + `FullPureEffect` - `"static"` $\rightarrow$ `UnconstrainedPOVM` + `StaticEffect` - `"full"` $\rightarrow$ `UnconstrainedPOVM` + `FullEffect` - `"full TP"` $\rightarrow$ `TPPOVM` For convenience, the `prep_type` and `povm_type` arguments also accept `"auto"`, which will try to set the parameterization based on the given `gate_type`. An incomplete list of this `gate_type` $\rightarrow$ `prep_type` / `povm_type` mapping is:- `"auto"`, `"static standard"`, `"static clifford"` $\rightarrow$ `"computational"`- `"unitary"` $\rightarrow$ `"pure"`- All others map directly Explicit ModelsWe now illustrate how one may specify the type of paramterization in `create_explicit_model`, and change the object types of all of a `ExplicitOpModel`'s contents using its `set_all_parameterizaions` method. The `create_explicit_model` function builds (layer) operations that are compositions of the ideal operations and added noise (see the [model noise tutorial](ModelNoise.ipynb)). By setting `ideal_gate_type` and similar arguments, the object type used for the initial "ideal" part of the operations is decided. ###Code import pygsti from pygsti.processors import QubitProcessorSpec from pygsti.models import modelconstruction as mc pspec = QubitProcessorSpec(1, ['Gi', 'Gxpi2', 'Gypi2']) # simple single qubit processor model = mc.create_explicit_model(pspec) model.print_modelmembers() print("%d parameters" % model.num_params) ###Output _____no_output_____ ###Markdown By default, an explicit model creates static (zero parameter) operations of types `StaticUnitaryOp`. If we specify an `ideal_gate_type` we can change this: ###Code model = mc.create_explicit_model(pspec, ideal_gate_type="full TP") model.print_modelmembers() print("%d parameters" % model.num_params) ###Output _____no_output_____ ###Markdown Switching the parameterizatio to "CPTP" gates changes the gate type accordingly: ###Code model.set_all_parameterizations('CPTP') model.print_modelmembers() print("%d parameters" % model.num_params) ###Output _____no_output_____ ###Markdown To alter an *individual* gate or SPAM vector's parameterization, one can simply construct a replacement object of the desired type and assign it to the `Model`. ###Code # Turning ComposedOp into a dense matrix for conversion into a dense FullTPOp newOp = pygsti.modelmembers.operations.FullTPOp(model[('Gi', 0)].to_dense()) model['Gi'] = newOp print("model['Gi'] =",model['Gi']) ###Output _____no_output_____ ###Markdown **NOTE:** When a `LinearOperator` or `SPAMVec`-derived object is assigned as an element of an `ExplicitOpModel` (as above), the object *replaces* any existing object with the given key. However, if any other type of object is assigned to an `ExplicitOpModel` element, an attempt is made to initialize or update the existing existing gate using the assigned data (using its `set_matrix` function internally). For example: ###Code import numpy as np numpy_array = np.array( [[1, 0, 0, 0], [0, 0.5, 0, 0], [0, 0, 0.5, 0], [0, 0, 0, 0.5]], 'd') model['Gi'] = numpy_array # after assignment with a numpy array... print("model['Gi'] =",model['Gi']) # this is STILL a FullTPOp object #If you try to assign a gate to something that is either invalid or it doesn't know how # to deal with, it will raise an exception invalid_TP_array = np.array( [[2, 1, 3, 0], [0, 0.5, 0, 0], [0, 0, 0.5, 0], [0, 0, 0, 0.5]], 'd') try: model['Gi'] = invalid_TP_array except ValueError as e: print("ERROR!! " + str(e)) ###Output _____no_output_____ ###Markdown Implicit modelsThe story is similar with implicit models. Operations are built as compositions of ideal operations and noise, and by specifying the `ideal_gate_type` and similar arguments, you can set what type of ideal operation is created. Below we show some examples with a `LocalNoiseModel`. Let's start with the default static operation type: ###Code mdl_locnoise = pygsti.models.create_crosstalk_free_model(pspec) mdl_locnoise.print_modelmembers() ###Output _____no_output_____ ###Markdown Suppose we'd like to modify the gate operations. Then we should make a model with `ideal_gate_type="full"`, so the operations are `FullArbitraryOp` objects: ###Code mdl_locnoise = pygsti.models.create_crosstalk_free_model(pspec, ideal_gate_type='full') mdl_locnoise.print_modelmembers() ###Output _____no_output_____ ###Markdown These can now be modified by matrix assignment, since their parameters allow them to take on any other process matrix. Let's set the process matrix (more accurately, this is the Pauli-transfer-matrix of the gate) of `"Gxpi"` to include some depolarization: ###Code mdl_locnoise.operation_blks['gates']['Gxpi2'] = np.array([[1, 0, 0, 0], [0, 0.9, 0, 0], [0, 0,-0.9, 0], [0, 0, 0,-0.9]],'d') ###Output _____no_output_____
Section08/.ipynb_checkpoints/04_connected-checkpoint.ipynb
###Markdown Computing connected components in an image ###Code import itertools import numpy as np import networkx as nx import matplotlib.colors as col import matplotlib.pyplot as plt %matplotlib inline n = 10 img = np.random.randint(size=(n, n), low=0, high=3) g = nx.grid_2d_graph(n, n) def show_image(img, ax=None, **kwargs): ax.imshow(img, origin='lower', interpolation='none', **kwargs) ax.set_axis_off() def show_graph(g, ax=None, **kwargs): pos = {(i, j): (j, i) for (i, j) in g.nodes()} node_color = [img[i, j] for (i, j) in g.nodes()] nx.draw_networkx(g, ax=ax, pos=pos, node_color='w', linewidths=3, width=2, edge_color='w', with_labels=False, node_size=50, **kwargs) cmap = plt.cm.Blues fig, ax = plt.subplots(1, 1, figsize=(8, 8)) show_image(img, ax=ax, cmap=cmap, vmin=-1) show_graph(g, ax=ax, cmap=cmap, vmin=-1) g2 = g.subgraph(zip(*np.nonzero(img == 2))) fig, ax = plt.subplots(1, 1, figsize=(8, 8)) show_image(img, ax=ax, cmap=cmap, vmin=-1) show_graph(g2, ax=ax, cmap=cmap, vmin=-1) components = [np.array(list(comp)) for comp in nx.connected_components(g2) if len(comp) >= 3] len(components) # We copy the image, and assign a new label # to each found component. img_bis = img.copy() for i, comp in enumerate(components): img_bis[comp[:, 0], comp[:, 1]] = i + 3 # We create a new discrete color map extending # the previous map with new colors. colors = [cmap(.5), cmap(.75), cmap(1.), '#f4f235', '#f4a535', '#f44b35', '#821d10'] cmap2 = col.ListedColormap(colors, 'indexed') fig, ax = plt.subplots(1, 1, figsize=(8, 8)) show_image(img_bis, ax=ax, cmap=cmap2) ###Output _____no_output_____
Fer2013_Model_Train.ipynb
###Markdown ###Code import sys, os import pandas as pd import numpy as np import cv2 from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D, BatchNormalization from keras.losses import categorical_crossentropy from keras.optimizers import Adam from keras.regularizers import l2 from keras.callbacks import ReduceLROnPlateau, TensorBoard, EarlyStopping, ModelCheckpoint from keras.models import load_model from keras.models import Sequential from keras.layers import Dense from keras.models import model_from_json num_features = 64 num_labels = 3 batch_size = 64 epochs = 100 width, height = 48, 48 #Mount your google drive #from google.colab import drive #drive.mount('/content/drive') #emotion_dict = {0: "Angry", 1: "Disgust", 2: "Fear", 3: "Happy", 4: "Sad", 5: "Surprise", 6: "Neutral"} #Following are labels #Calm 6 #Surprise & Fear 5 & 2 #Anger 0 from google.colab import drive drive.mount('/content/drive') #https://drive.google.com/open?id=1OnveSEG0q5CwEQeZOW3QotcL_GK4UZ2l #/content/drive/My Drive/dataset/fer2013.csv root_path = '/content/drive/My Drive/dataset/fer2013.csv' data = pd.read_csv(root_path) data.tail() #Remove parts of the data from the dataset to make small part training. indexNames_1 = data[ data['emotion'] == 1].index indexNames_3 = data[ data['emotion'] == 3].index indexNames_4 = data[ data['emotion'] == 4].index data.drop(indexNames_1 , inplace=True) #data.drop(indexNames_3 , inplace=True) #data.drop(indexNames_4 , inplace=True) data.drop(indexNames_3 , inplace=True) data.drop(indexNames_4 , inplace=True) data.groupby('emotion').size() #update 5 with 2 data.loc[data['emotion'] == 5, 'emotion'] = 2 #print(data['emotion']==1) pixels = data['pixels'].tolist() # 1 faces = [] for pixel_sequence in pixels: face = [int(pixel)/255 for pixel in pixel_sequence.split(' ')] # 2 if (len(face)) < 2304: print("array length less than 2304") continue face = np.asarray(face).reshape(width, height) # 3 # There is an issue for normalizing images. Just comment out 4 and 5 lines until when I found the solution. #face = face / 255.0 # 4 #face = cv2.resize(face.astype('uint8'), (width, height)) # 5 #face = face / 255.0 faces.append(face.astype('float32')) faces = np.asarray(faces) faces = np.expand_dims(faces, -1) # 6 emotions = pd.get_dummies(data['emotion']).as_matrix() # 7 #print( emotions ) X_train, X_test, y_train, y_test = train_test_split(faces, emotions, test_size=0.1, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=41) #print(y_train) #datagen = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=True) # fit parameters from data zca_whitening=False rotation_angle=15 shift_range=0.1 zoom_range=0.1 horizontal_flip=True time_delay=None #datagen.fit(X_train) datagen = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=True, zca_whitening=zca_whitening, rotation_range=15, width_shift_range=shift_range, height_shift_range=shift_range, horizontal_flip=horizontal_flip, fill_mode="nearest", zoom_range=zoom_range) #time_delay=time_delay) datagen.fit(X_train) #data_gen.flow(self.images, self.labels, batch_size=batch_size, target_dimensions=target_dimensions) #self.model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7), loss=categorical_crossentropy, metrics=['accuracy']) #self.model.fit_generator(generator=generator, validation_data=validation_data, epochs=epochs, #callbacks=[ReduceLROnPlateau(), EarlyStopping(patience=3), PlotLosses()]) model = Sequential() model.add(Conv2D(num_features, kernel_size=(3, 3), activation='relu', input_shape=(width, height, 1), data_format='channels_last', kernel_regularizer=l2(0.01))) model.add(Conv2D(num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(2*num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(Conv2D(2*num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(2*2*num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(Conv2D(2*2*num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(2*2*2*num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(Conv2D(2*2*2*num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(2*2*2*num_features, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(2*2*num_features, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(2*num_features, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_labels, activation='softmax')) model.summary() model.compile(loss=categorical_crossentropy, optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7), metrics=['accuracy']) lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=0.9, patience=3, verbose=1) tensorboard = TensorBoard(log_dir='/content/drive/My Drive/dataset') early_stopper = EarlyStopping(monitor='val_loss', min_delta=0, patience=8, verbose=1, mode='auto') MODELPATH = '/content/drive/My Drive/dataset/model_T.h5' checkpointer = ModelCheckpoint(MODELPATH, monitor='val_loss', verbose=1, save_best_only=True) model.fit(np.array(X_train), np.array(y_train), batch_size=batch_size, epochs=60, verbose=1, validation_data=(np.array(X_test), np.array(y_test)), shuffle=True, callbacks=[lr_reducer, tensorboard, checkpointer]) #callbacks=[lr_reducer, tensorboard, early_stopper, checkpointer] #datagen.flow(trainX, trainY, batch_size=batch_size), model.fit_generator(datagen.flow(X_train, y_train, batch_size=batch_size), epochs=1000, verbose=1, validation_data=(np.array(X_val), np.array(y_val)), shuffle=True, callbacks=[tensorboard, tensorboard, checkpointer]) len(X_train) len(y_train) #model.fit_generator(datagen, samples_per_epoch=len(X_train), epochs=100) model_json = model.to_json() with open("/tmp/model.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model.save_weights("/tmp/model.h5") print("Saved model to disk") scores = model.evaluate(np.array(X_test), np.array(y_test), batch_size=batch_size) print("Loss: " + str(scores[0])) print("Accuracy: " + str(scores[1])) ###Output 2028/2028 [==============================] - 1s 637us/step Loss: 1.315742569562246 Accuracy: 0.722879685005963
Section_5/Graph Implementation Using Adjacency Lists.ipynb
###Markdown Graph Implementation Using Adjacency Listsfor an undirected graph. © Joe James, 2019. Vertex ClassThe Vertex class has a constructor that sets the name of the vertex (in our example, just a letter), and creates a new empty set to store neighbors.The add_neighbor method adds the name of a neighboring vertex to the neighbors set. This set automatically eliminates duplicates. ###Code class Vertex: def __init__(self, n): self.name = n self.neighbors = set() def add_neighbor(self, v): self.neighbors.add(v) ###Output _____no_output_____ ###Markdown Graph ClassThe Graph class uses a dictionary to store vertices in the format, vertex_name:vertex_object. Adding a new vertex to the graph, we first check if the object passed in is a vertex object, then we check if it already exists in the graph. If both checks pass, then we add the vertex to the graph's vertices dictionary.When adding an edge, we receive two vertex names, we first check if both vertex names are valid, then we add each to the other's neighbors set.To print the graph, we iterate through the vertices, and print each vertex name (the key) followed by its sorted neighbors list. ###Code class Graph: vertices = {} def add_vertex(self, vertex): if isinstance(vertex, Vertex) and vertex.name not in self.vertices: self.vertices[vertex.name] = vertex return True else: return False def add_edge(self, u, v): if u in self.vertices and v in self.vertices: self.vertices[u].add_neighbor(v) self.vertices[v].add_neighbor(u) return True else: return False def print_graph(self): for key in sorted(list(self.vertices.keys())): print(key, sorted(list(self.vertices[key].neighbors))) ###Output _____no_output_____ ###Markdown Test CodeHere we create a new Graph object. We create a new vertex named A. We add A to the graph. Then we add new vertex B to the graph. Then we iterate from A to K and add a bunch of vertices to the graph. Since the add_vertex method checks for duplicates, A and B are not added twice. ###Code g = Graph() a = Vertex('A') g.add_vertex(a) g.add_vertex(Vertex('B')) for i in range(ord('A'), ord('K')): g.add_vertex(Vertex(chr(i))) ###Output _____no_output_____ ###Markdown An edge consists of two vertex names. Here we iterate through a list of edges and add each to the graph. This print_graph method doesn't give a very good visualization of the graph, but it does show the neighbors for each vertex. ###Code edges = ['AB', 'AE', 'BF', 'CG', 'DE', 'DH', 'EH', 'FG', 'FI', 'FJ', 'GJ', 'HI'] for edge in edges: g.add_edge(edge[0], edge[1]) g.print_graph() ###Output A ['B', 'E'] B ['A', 'F'] C ['G'] D ['E', 'H'] E ['A', 'D', 'H'] F ['B', 'G', 'I', 'J'] G ['C', 'F', 'J'] H ['D', 'E', 'I'] I ['F', 'H'] J ['F', 'G']
docs/examples/general/reinterpret.ipynb
###Markdown Reinterpreting TensorsSometimes the data in tensors needs to be interpreted as if it had different type or shape. For example, reading a binary file into memory produces a flat tensor of byte-valued data, which the application code may want to interpret as an array of data of specific shape and possibly different type.DALI provides the following operations which affect tensor metadata (shape, type, layout):* reshape* reinterpret* squeeze* expand_dimsThsese operations neither modify nor copy the data - the output tensor is just another view of the same region of memory, making these operations very cheap. Fixed Output ShapeThis example demonstrates the simplest use of the `reshape` operation, assigning a new fixed shape to an existing tensor.First, we'll import DALI and other necessary modules, and define a utility for displaying the data, which will be used throughout this tutorial. ###Code import nvidia.dali as dali import nvidia.dali.fn as fn from nvidia.dali import pipeline_def import numpy as np def show_result(outputs, names=["Input", "Output"], formatter=None): if not isinstance(outputs, tuple): return show_result((outputs,)) outputs = [out.as_cpu() if hasattr(out, "as_cpu") else out for out in outputs] for i in range(len(outputs[0])): print(f"---------------- Sample #{i} ----------------") for o, out in enumerate(outputs): a = np.array(out[i]) s = "x".join(str(x) for x in a.shape) title = names[o] if names is not None and o < len(names) else f"Output #{o}" l = out.layout() if l: l += ' ' print(f"{title} ({l}{s})") np.set_printoptions(formatter=formatter) print(a) def rand_shape(dims, lo, hi): return list(np.random.randint(lo, hi, [dims])) ###Output _____no_output_____ ###Markdown Now let's define out pipeline - it takes data from an external source and returns it both in original form and reshaped to a fixed square shape `[5, 5]`. Additionally, output tensors' layout is set to HW ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example1(input_data): np.random.seed(1234) inp = fn.external_source(input_data, batch=False) return inp, fn.reshape(inp, shape=[5, 5], layout="HW") pipe1 = example1(lambda: np.random.randint(0, 10, size=[25], dtype=np.int32)) pipe1.build() show_result(pipe1.run()) ###Output ---------------- Sample #0 ---------------- Input (25) [3 6 5 4 8 9 1 7 9 6 8 0 5 0 9 6 2 0 5 2 6 3 7 0 9] Output (HW 5x5) [[3 6 5 4 8] [9 1 7 9 6] [8 0 5 0 9] [6 2 0 5 2] [6 3 7 0 9]] ---------------- Sample #1 ---------------- Input (25) [0 3 2 3 1 3 1 3 7 1 7 4 0 5 1 5 9 9 4 0 9 8 8 6 8] Output (HW 5x5) [[0 3 2 3 1] [3 1 3 7 1] [7 4 0 5 1] [5 9 9 4 0] [9 8 8 6 8]] ---------------- Sample #2 ---------------- Input (25) [6 3 1 2 5 2 5 6 7 4 3 5 6 4 6 2 4 2 7 9 7 7 2 9 7] Output (HW 5x5) [[6 3 1 2 5] [2 5 6 7 4] [3 5 6 4 6] [2 4 2 7 9] [7 7 2 9 7]] ###Markdown As we can see, the numbers from flat input tensors have been rearranged into 5x5 matrices. Reshape with WildcardsLet's now consider a more advanced use case. Imagine you have some flattened array that represents a fixed number of columns, but the number of rows is free to vary from sample to sample. In that case, you can put a wildcard dimension by specifying its shape as `-1`. Whe using wildcards, the output is resized so that the total number of elements is the same as in the input. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example2(input_data): np.random.seed(12345) inp = fn.external_source(input_data, batch=False) return inp, fn.reshape(inp, shape=[-1, 5]) pipe2 = example2(lambda: np.random.randint(0, 10, size=[5*np.random.randint(3, 10)], dtype=np.int32)) pipe2.build() show_result(pipe2.run()) ###Output ---------------- Sample #0 ---------------- Input (25) [5 1 4 9 5 2 1 6 1 9 7 6 0 2 9 1 2 6 7 7 7 8 7 1 7] Output (5x5) [[5 1 4 9 5] [2 1 6 1 9] [7 6 0 2 9] [1 2 6 7 7] [7 8 7 1 7]] ---------------- Sample #1 ---------------- Input (35) [0 3 5 7 3 1 5 2 5 3 8 5 2 5 3 0 6 8 0 5 6 8 9 2 2 2 9 7 5 7 1 0 9 3 0] Output (7x5) [[0 3 5 7 3] [1 5 2 5 3] [8 5 2 5 3] [0 6 8 0 5] [6 8 9 2 2] [2 9 7 5 7] [1 0 9 3 0]] ---------------- Sample #2 ---------------- Input (30) [0 6 2 1 5 8 6 5 1 0 5 8 2 9 4 7 9 5 2 4 8 2 5 6 5 9 6 1 9 5] Output (6x5) [[0 6 2 1 5] [8 6 5 1 0] [5 8 2 9 4] [7 9 5 2 4] [8 2 5 6 5] [9 6 1 9 5]] ###Markdown Removing and Adding Unit DimensionsThere are two dedicated operators `squeeze` and `expand_dims` which can be used for removing and adding dimensions with unit extent. The following example demonstrates the removal of a redundant dimension as well as adding two new dimensions. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example_squeeze_expand(input_data): np.random.seed(4321) inp = fn.external_source(input_data, batch=False, layout="CHW") squeezed = fn.squeeze(inp, axes=[0]) expanded = fn.expand_dims(squeezed, axes=[0, 3], new_axis_names="FC") return inp, fn.squeeze(inp, axes=[0]), expanded def single_channel_generator(): return np.random.randint(0, 10, size=[1]+rand_shape(2, 1, 7), dtype=np.int32) pipe_squeeze_expand = example_squeeze_expand(single_channel_generator) pipe_squeeze_expand.build() show_result(pipe_squeeze_expand.run()) ###Output ---------------- Sample #0 ---------------- Input (CHW 1x6x3) [[[8 2 1] [7 5 9] [2 4 6] [0 8 6] [5 3 1] [1 6 1]]] Output (HW 6x3) [[8 2 1] [7 5 9] [2 4 6] [0 8 6] [5 3 1] [1 6 1]] Output #2 (FHWC 1x6x3x1) [[[[8] [2] [1]] [[7] [5] [9]] [[2] [4] [6]] [[0] [8] [6]] [[5] [3] [1]] [[1] [6] [1]]]] ---------------- Sample #1 ---------------- Input (CHW 1x2x2) [[[6 9] [0 9]]] Output (HW 2x2) [[6 9] [0 9]] Output #2 (FHWC 1x2x2x1) [[[[6] [9]] [[0] [9]]]] ---------------- Sample #2 ---------------- Input (CHW 1x2x6) [[[4 4 6 6 6 3] [8 2 1 7 9 7]]] Output (HW 2x6) [[4 4 6 6 6 3] [8 2 1 7 9 7]] Output #2 (FHWC 1x2x6x1) [[[[4] [4] [6] [6] [6] [3]] [[8] [2] [1] [7] [9] [7]]]] ###Markdown Rearranging DimensionsReshape allows you to swap, insert or remove dimenions. The argument `src_dims` allows you to specify which source dimension is used for a given output dimension. You can also insert a new dimension by specifying -1 as a source dimension index. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example_reorder(input_data): np.random.seed(4321) inp = fn.external_source(input_data, batch=False) return inp, fn.reshape(inp, src_dims=[1,0]) pipe_reorder = example_reorder(lambda: np.random.randint(0, 10, size=rand_shape(2, 1, 7), dtype=np.int32)) pipe_reorder.build() show_result(pipe_reorder.run()) ###Output ---------------- Sample #0 ---------------- Input (6x3) [[8 2 1] [7 5 9] [2 4 6] [0 8 6] [5 3 1] [1 6 1]] Output (3x6) [[8 2 1 7 5 9] [2 4 6 0 8 6] [5 3 1 1 6 1]] ---------------- Sample #1 ---------------- Input (2x2) [[6 9] [0 9]] Output (2x2) [[6 9] [0 9]] ---------------- Sample #2 ---------------- Input (2x6) [[4 4 6 6 6 3] [8 2 1 7 9 7]] Output (6x2) [[4 4] [6 6] [6 3] [8 2] [1 7] [9 7]] ###Markdown Adding and Removing DimensionsDimensions can be added or removed by specifying `src_dims` argument or by using dedicated `squeeze` and `expand_dims` operators.The following example reinterprets single-channel data from CHW to HWC layout by discarding the leading dimension and adding a new trailing dimension. It also specifies the output layout. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example_remove_add(input_data): np.random.seed(4321) inp = fn.external_source(input_data, batch=False, layout="CHW") return inp, fn.reshape(inp, src_dims=[1,2,-1], # select HW and add a new one at the end layout="HWC") # specify the layout string pipe_remove_add = example_remove_add(lambda: np.random.randint(0, 10, [1,4,3], dtype=np.int32)) pipe_remove_add.build() show_result(pipe_remove_add.run()) ###Output ---------------- Sample #0 ---------------- Input (CHW 1x4x3) [[[2 8 2] [1 7 5] [9 2 4] [6 0 8]]] Output (HWC 4x3x1) [[[2] [8] [2]] [[1] [7] [5]] [[9] [2] [4]] [[6] [0] [8]]] ---------------- Sample #1 ---------------- Input (CHW 1x4x3) [[[6 5 3] [1 1 6] [1 1 9] [6 9 0]]] Output (HWC 4x3x1) [[[6] [5] [3]] [[1] [1] [6]] [[1] [1] [9]] [[6] [9] [0]]] ---------------- Sample #2 ---------------- Input (CHW 1x4x3) [[[9 9 5] [4 4 6] [6 6 3] [8 2 1]]] Output (HWC 4x3x1) [[[9] [9] [5]] [[4] [4] [6]] [[6] [6] [3]] [[8] [2] [1]]] ###Markdown Relative ShapeThe output shape may be calculated in relative terms, with a new extent being a multiple of a source extent.For example, you may want to combine two subsequent rows into one - doubling the number of columns and halving the number of rows. The use of relative shape can be combined with dimension rearranging, in which case the new output extent is a multiple of a _different_ source extent.The example below reinterprets the input as having twice as many _columns_ as the input had _rows_. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example_rel_shape(input_data): np.random.seed(1234) inp = fn.external_source(input_data, batch=False) return inp, fn.reshape(inp, rel_shape=[0.5, 2], src_dims=[1,0]) pipe_rel_shape = example_rel_shape( lambda: np.random.randint(0, 10, [np.random.randint(1,7), 2*np.random.randint(1,5)], dtype=np.int32)) pipe_rel_shape.build() show_result(pipe_rel_shape.run()) ###Output ---------------- Sample #0 ---------------- Input (4x6) [[5 4 8 9 1 7] [9 6 8 0 5 0] [9 6 2 0 5 2] [6 3 7 0 9 0]] Output (3x8) [[5 4 8 9 1 7 9 6] [8 0 5 0 9 6 2 0] [5 2 6 3 7 0 9 0]] ---------------- Sample #1 ---------------- Input (4x6) [[3 1 3 1 3 7] [1 7 4 0 5 1] [5 9 9 4 0 9] [8 8 6 8 6 3]] Output (3x8) [[3 1 3 1 3 7 1 7] [4 0 5 1 5 9 9 4] [0 9 8 8 6 8 6 3]] ---------------- Sample #2 ---------------- Input (2x6) [[5 2 5 6 7 4] [3 5 6 4 6 2]] Output (3x4) [[5 2 5 6] [7 4 3 5] [6 4 6 2]] ###Markdown Reinterpreting Data TypeThe `reinterpret` operation can view the data as if it was of different type. When a new shape is not specified, the innermost dimension is resized accordingly. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example_reinterpret(input_data): np.random.seed(1234) inp = fn.external_source(input_data, batch=False) return inp, fn.reinterpret(inp, dtype=dali.types.UINT32) pipe_reinterpret = example_reinterpret( lambda: np.random.randint(0, 255, [np.random.randint(1,7), 4*np.random.randint(1,5)], dtype=np.uint8)) pipe_reinterpret.build() def hex_bytes(x): f = f"0x{{:0{2*x.nbytes}x}}" return f.format(x) show_result(pipe_reinterpret.run(), formatter={'int':hex_bytes}) ###Output ---------------- Sample #0 ---------------- Input (4x12) [[0x35 0xdc 0x5d 0xd1 0xcc 0xec 0x0e 0x70 0x74 0x5d 0xb3 0x9c] [0x98 0x42 0x0d 0xc9 0xf9 0xd7 0x77 0xc5 0x8f 0x7e 0xac 0xc7] [0xb1 0xda 0x54 0xdc 0x17 0xa1 0xc8 0x45 0xe9 0x24 0x90 0x26] [0x9a 0x5c 0xc6 0x46 0x1e 0x20 0xd2 0x32 0xab 0x7e 0x47 0xcd]] Output (4x3) [[0xd15ddc35 0x700eeccc 0x9cb35d74] [0xc90d4298 0xc577d7f9 0xc7ac7e8f] [0xdc54dab1 0x45c8a117 0x269024e9] [0x46c65c9a 0x32d2201e 0xcd477eab]] ---------------- Sample #1 ---------------- Input (5x4) [[0x1a 0x1f 0x3d 0xe0] [0x76 0x35 0xbb 0x1d] [0xba 0xe9 0x99 0x5b] [0x78 0xe8 0x4d 0x03] [0x70 0x37 0x41 0x80]] Output (5x1) [[0xe03d1f1a] [0x1dbb3576] [0x5b99e9ba] [0x034de878] [0x80413770]] ---------------- Sample #2 ---------------- Input (5x8) [[0x50 0x6d 0xbd 0x54 0xc9 0xa3 0x73 0xb6] [0x7f 0xc9 0x79 0xcd 0xf6 0xc0 0xc8 0x5e] [0xfe 0x09 0x27 0x19 0xaf 0x8d 0xaa 0x8f] [0x32 0x96 0x55 0x0e 0xf0 0x0e 0xca 0x80] [0xfb 0x56 0x52 0x71 0x4c 0x54 0x86 0x03]] Output (5x2) [[0x54bd6d50 0xb673a3c9] [0xcd79c97f 0x5ec8c0f6] [0x192709fe 0x8faa8daf] [0x0e559632 0x80ca0ef0] [0x715256fb 0x0386544c]] ###Markdown Reinterpreting TensorsSometimes the data in tensors needs to be interpreted as if it had different type or shape. For example, reading a binary file into memory produces a flat tensor of byte-valued data, which the application code may want to interpret as an array of data of specific shape and possibly different type.DALI provides the following operations which affect tensor metadata (shape, type, layout):* reshape* reinterpret* squeeze* expand_dimsThsese operations neither modify nor copy the data - the output tensor is just another view of the same region of memory, making these operations very cheap. Fixed Output ShapeThis example demonstrates the simplest use of the `reshape` operation, assigning a new fixed shape to an existing tensor.First, we'll import DALI and other necessary modules, and define a utility for displaying the data, which will be used throughout this tutorial. ###Code import nvidia.dali as dali import nvidia.dali.fn as fn from nvidia.dali import pipeline_def import nvidia.dali.types as types import numpy as np def show_result(outputs, names=["Input", "Output"], formatter=None): if not isinstance(outputs, tuple): return show_result((outputs,)) outputs = [out.as_cpu() if hasattr(out, "as_cpu") else out for out in outputs] for i in range(len(outputs[0])): print(f"---------------- Sample #{i} ----------------") for o, out in enumerate(outputs): a = np.array(out[i]) s = "x".join(str(x) for x in a.shape) title = names[o] if names is not None and o < len(names) else f"Output #{o}" l = out.layout() if l: l += ' ' print(f"{title} ({l}{s})") np.set_printoptions(formatter=formatter) print(a) def rand_shape(dims, lo, hi): return list(np.random.randint(lo, hi, [dims])) ###Output _____no_output_____ ###Markdown Now let's define out pipeline - it takes data from an external source and returns it both in original form and reshaped to a fixed square shape `[5, 5]`. Additionally, output tensors' layout is set to HW ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example1(input_data): np.random.seed(1234) inp = fn.external_source(input_data, batch=False, dtype=types.INT32) return inp, fn.reshape(inp, shape=[5, 5], layout="HW") pipe1 = example1(lambda: np.random.randint(0, 10, size=[25], dtype=np.int32)) pipe1.build() show_result(pipe1.run()) ###Output ---------------- Sample #0 ---------------- Input (25) [3 6 5 4 8 9 1 7 9 6 8 0 5 0 9 6 2 0 5 2 6 3 7 0 9] Output (HW 5x5) [[3 6 5 4 8] [9 1 7 9 6] [8 0 5 0 9] [6 2 0 5 2] [6 3 7 0 9]] ---------------- Sample #1 ---------------- Input (25) [0 3 2 3 1 3 1 3 7 1 7 4 0 5 1 5 9 9 4 0 9 8 8 6 8] Output (HW 5x5) [[0 3 2 3 1] [3 1 3 7 1] [7 4 0 5 1] [5 9 9 4 0] [9 8 8 6 8]] ---------------- Sample #2 ---------------- Input (25) [6 3 1 2 5 2 5 6 7 4 3 5 6 4 6 2 4 2 7 9 7 7 2 9 7] Output (HW 5x5) [[6 3 1 2 5] [2 5 6 7 4] [3 5 6 4 6] [2 4 2 7 9] [7 7 2 9 7]] ###Markdown As we can see, the numbers from flat input tensors have been rearranged into 5x5 matrices. Reshape with WildcardsLet's now consider a more advanced use case. Imagine you have some flattened array that represents a fixed number of columns, but the number of rows is free to vary from sample to sample. In that case, you can put a wildcard dimension by specifying its shape as `-1`. Whe using wildcards, the output is resized so that the total number of elements is the same as in the input. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example2(input_data): np.random.seed(12345) inp = fn.external_source(input_data, batch=False, dtype=types.INT32) return inp, fn.reshape(inp, shape=[-1, 5]) pipe2 = example2(lambda: np.random.randint(0, 10, size=[5*np.random.randint(3, 10)], dtype=np.int32)) pipe2.build() show_result(pipe2.run()) ###Output ---------------- Sample #0 ---------------- Input (25) [5 1 4 9 5 2 1 6 1 9 7 6 0 2 9 1 2 6 7 7 7 8 7 1 7] Output (5x5) [[5 1 4 9 5] [2 1 6 1 9] [7 6 0 2 9] [1 2 6 7 7] [7 8 7 1 7]] ---------------- Sample #1 ---------------- Input (35) [0 3 5 7 3 1 5 2 5 3 8 5 2 5 3 0 6 8 0 5 6 8 9 2 2 2 9 7 5 7 1 0 9 3 0] Output (7x5) [[0 3 5 7 3] [1 5 2 5 3] [8 5 2 5 3] [0 6 8 0 5] [6 8 9 2 2] [2 9 7 5 7] [1 0 9 3 0]] ---------------- Sample #2 ---------------- Input (30) [0 6 2 1 5 8 6 5 1 0 5 8 2 9 4 7 9 5 2 4 8 2 5 6 5 9 6 1 9 5] Output (6x5) [[0 6 2 1 5] [8 6 5 1 0] [5 8 2 9 4] [7 9 5 2 4] [8 2 5 6 5] [9 6 1 9 5]] ###Markdown Removing and Adding Unit DimensionsThere are two dedicated operators `squeeze` and `expand_dims` which can be used for removing and adding dimensions with unit extent. The following example demonstrates the removal of a redundant dimension as well as adding two new dimensions. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example_squeeze_expand(input_data): np.random.seed(4321) inp = fn.external_source(input_data, batch=False, layout="CHW", dtype=types.INT32) squeezed = fn.squeeze(inp, axes=[0]) expanded = fn.expand_dims(squeezed, axes=[0, 3], new_axis_names="FC") return inp, fn.squeeze(inp, axes=[0]), expanded def single_channel_generator(): return np.random.randint(0, 10, size=[1]+rand_shape(2, 1, 7), dtype=np.int32) pipe_squeeze_expand = example_squeeze_expand(single_channel_generator) pipe_squeeze_expand.build() show_result(pipe_squeeze_expand.run()) ###Output ---------------- Sample #0 ---------------- Input (CHW 1x6x3) [[[8 2 1] [7 5 9] [2 4 6] [0 8 6] [5 3 1] [1 6 1]]] Output (HW 6x3) [[8 2 1] [7 5 9] [2 4 6] [0 8 6] [5 3 1] [1 6 1]] Output #2 (FHWC 1x6x3x1) [[[[8] [2] [1]] [[7] [5] [9]] [[2] [4] [6]] [[0] [8] [6]] [[5] [3] [1]] [[1] [6] [1]]]] ---------------- Sample #1 ---------------- Input (CHW 1x2x2) [[[6 9] [0 9]]] Output (HW 2x2) [[6 9] [0 9]] Output #2 (FHWC 1x2x2x1) [[[[6] [9]] [[0] [9]]]] ---------------- Sample #2 ---------------- Input (CHW 1x2x6) [[[4 4 6 6 6 3] [8 2 1 7 9 7]]] Output (HW 2x6) [[4 4 6 6 6 3] [8 2 1 7 9 7]] Output #2 (FHWC 1x2x6x1) [[[[4] [4] [6] [6] [6] [3]] [[8] [2] [1] [7] [9] [7]]]] ###Markdown Rearranging DimensionsReshape allows you to swap, insert or remove dimenions. The argument `src_dims` allows you to specify which source dimension is used for a given output dimension. You can also insert a new dimension by specifying -1 as a source dimension index. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example_reorder(input_data): np.random.seed(4321) inp = fn.external_source(input_data, batch=False, dtype=types.INT32) return inp, fn.reshape(inp, src_dims=[1,0]) pipe_reorder = example_reorder(lambda: np.random.randint(0, 10, size=rand_shape(2, 1, 7), dtype=np.int32)) pipe_reorder.build() show_result(pipe_reorder.run()) ###Output ---------------- Sample #0 ---------------- Input (6x3) [[8 2 1] [7 5 9] [2 4 6] [0 8 6] [5 3 1] [1 6 1]] Output (3x6) [[8 2 1 7 5 9] [2 4 6 0 8 6] [5 3 1 1 6 1]] ---------------- Sample #1 ---------------- Input (2x2) [[6 9] [0 9]] Output (2x2) [[6 9] [0 9]] ---------------- Sample #2 ---------------- Input (2x6) [[4 4 6 6 6 3] [8 2 1 7 9 7]] Output (6x2) [[4 4] [6 6] [6 3] [8 2] [1 7] [9 7]] ###Markdown Adding and Removing DimensionsDimensions can be added or removed by specifying `src_dims` argument or by using dedicated `squeeze` and `expand_dims` operators.The following example reinterprets single-channel data from CHW to HWC layout by discarding the leading dimension and adding a new trailing dimension. It also specifies the output layout. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example_remove_add(input_data): np.random.seed(4321) inp = fn.external_source(input_data, batch=False, layout="CHW", dtype=types.INT32) return inp, fn.reshape(inp, src_dims=[1,2,-1], # select HW and add a new one at the end layout="HWC") # specify the layout string pipe_remove_add = example_remove_add(lambda: np.random.randint(0, 10, [1,4,3], dtype=np.int32)) pipe_remove_add.build() show_result(pipe_remove_add.run()) ###Output ---------------- Sample #0 ---------------- Input (CHW 1x4x3) [[[2 8 2] [1 7 5] [9 2 4] [6 0 8]]] Output (HWC 4x3x1) [[[2] [8] [2]] [[1] [7] [5]] [[9] [2] [4]] [[6] [0] [8]]] ---------------- Sample #1 ---------------- Input (CHW 1x4x3) [[[6 5 3] [1 1 6] [1 1 9] [6 9 0]]] Output (HWC 4x3x1) [[[6] [5] [3]] [[1] [1] [6]] [[1] [1] [9]] [[6] [9] [0]]] ---------------- Sample #2 ---------------- Input (CHW 1x4x3) [[[9 9 5] [4 4 6] [6 6 3] [8 2 1]]] Output (HWC 4x3x1) [[[9] [9] [5]] [[4] [4] [6]] [[6] [6] [3]] [[8] [2] [1]]] ###Markdown Relative ShapeThe output shape may be calculated in relative terms, with a new extent being a multiple of a source extent.For example, you may want to combine two subsequent rows into one - doubling the number of columns and halving the number of rows. The use of relative shape can be combined with dimension rearranging, in which case the new output extent is a multiple of a _different_ source extent.The example below reinterprets the input as having twice as many _columns_ as the input had _rows_. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example_rel_shape(input_data): np.random.seed(1234) inp = fn.external_source(input_data, batch=False, dtype=types.INT32) return inp, fn.reshape(inp, rel_shape=[0.5, 2], src_dims=[1,0]) pipe_rel_shape = example_rel_shape( lambda: np.random.randint(0, 10, [np.random.randint(1,7), 2*np.random.randint(1,5)], dtype=np.int32)) pipe_rel_shape.build() show_result(pipe_rel_shape.run()) ###Output ---------------- Sample #0 ---------------- Input (4x6) [[5 4 8 9 1 7] [9 6 8 0 5 0] [9 6 2 0 5 2] [6 3 7 0 9 0]] Output (3x8) [[5 4 8 9 1 7 9 6] [8 0 5 0 9 6 2 0] [5 2 6 3 7 0 9 0]] ---------------- Sample #1 ---------------- Input (4x6) [[3 1 3 1 3 7] [1 7 4 0 5 1] [5 9 9 4 0 9] [8 8 6 8 6 3]] Output (3x8) [[3 1 3 1 3 7 1 7] [4 0 5 1 5 9 9 4] [0 9 8 8 6 8 6 3]] ---------------- Sample #2 ---------------- Input (2x6) [[5 2 5 6 7 4] [3 5 6 4 6 2]] Output (3x4) [[5 2 5 6] [7 4 3 5] [6 4 6 2]] ###Markdown Reinterpreting Data TypeThe `reinterpret` operation can view the data as if it was of different type. When a new shape is not specified, the innermost dimension is resized accordingly. ###Code @pipeline_def(device_id=0, num_threads=4, batch_size=3) def example_reinterpret(input_data): np.random.seed(1234) inp = fn.external_source(input_data, batch=False, dtype=types.UINT8) return inp, fn.reinterpret(inp, dtype=dali.types.UINT32) pipe_reinterpret = example_reinterpret( lambda: np.random.randint(0, 255, [np.random.randint(1,7), 4*np.random.randint(1,5)], dtype=np.uint8)) pipe_reinterpret.build() def hex_bytes(x): f = f"0x{{:0{2*x.nbytes}x}}" return f.format(x) show_result(pipe_reinterpret.run(), formatter={'int':hex_bytes}) ###Output ---------------- Sample #0 ---------------- Input (4x12) [[0x35 0xdc 0x5d 0xd1 0xcc 0xec 0x0e 0x70 0x74 0x5d 0xb3 0x9c] [0x98 0x42 0x0d 0xc9 0xf9 0xd7 0x77 0xc5 0x8f 0x7e 0xac 0xc7] [0xb1 0xda 0x54 0xdc 0x17 0xa1 0xc8 0x45 0xe9 0x24 0x90 0x26] [0x9a 0x5c 0xc6 0x46 0x1e 0x20 0xd2 0x32 0xab 0x7e 0x47 0xcd]] Output (4x3) [[0xd15ddc35 0x700eeccc 0x9cb35d74] [0xc90d4298 0xc577d7f9 0xc7ac7e8f] [0xdc54dab1 0x45c8a117 0x269024e9] [0x46c65c9a 0x32d2201e 0xcd477eab]] ---------------- Sample #1 ---------------- Input (5x4) [[0x1a 0x1f 0x3d 0xe0] [0x76 0x35 0xbb 0x1d] [0xba 0xe9 0x99 0x5b] [0x78 0xe8 0x4d 0x03] [0x70 0x37 0x41 0x80]] Output (5x1) [[0xe03d1f1a] [0x1dbb3576] [0x5b99e9ba] [0x034de878] [0x80413770]] ---------------- Sample #2 ---------------- Input (5x8) [[0x50 0x6d 0xbd 0x54 0xc9 0xa3 0x73 0xb6] [0x7f 0xc9 0x79 0xcd 0xf6 0xc0 0xc8 0x5e] [0xfe 0x09 0x27 0x19 0xaf 0x8d 0xaa 0x8f] [0x32 0x96 0x55 0x0e 0xf0 0x0e 0xca 0x80] [0xfb 0x56 0x52 0x71 0x4c 0x54 0x86 0x03]] Output (5x2) [[0x54bd6d50 0xb673a3c9] [0xcd79c97f 0x5ec8c0f6] [0x192709fe 0x8faa8daf] [0x0e559632 0x80ca0ef0] [0x715256fb 0x0386544c]]
KNN.ipynb
###Markdown KNN programe Basic ###Code def main(): data = {0:[(1,12,5),(2,5,8),(3,6,9),(3,10,6),(3.5,8,2.9),(2,11,4.6),(2,9,9.5),(1,7,5)], 1:[(5,3,5.4),(3,2.7,5),(1.5,9,2.9),(7,2,2.9),(6,1,4.8),(3.8,1,5.9),(5.6,4,6),(4,2,5),(2,5,1)] } # testing point p(x,y,z) p = (2,5,8) # change co-ordinates # Number of neighbours k = 2 print("The value differentiated to point 'P' is: {}".\ format(differentiator(data, p, k))) # here we are calling a 'differentiator' a function. # that will do all calcutations of euclidean distances. # it will also store values of each point from point 'p' to another points import math def differentiator(data,p,k=2): distance = [] for group in data: print(group) for feature in data[group]: print(feature) euclidean_distance = math.sqrt((feature[0]-p[0])**2 +(feature[1]-p[1])**2 +(feature[2]-p[2])**2) distance.append((euclidean_distance,group)) distance = sorted(distance)[:k] freq1 = 0 freq2 = 0 for d in distance: if d[0] == 0: freq1 += 1 elif d[1] == 1: freq2 += 1 return 0 if freq1 > freq2 else 1 if __name__ == '__main__': main() ###Output 0 (1, 12, 5) (2, 5, 8) (3, 6, 9) (3, 10, 6) (3.5, 8, 2.9) (2, 11, 4.6) (2, 9, 9.5) (1, 7, 5) 1 (5, 3, 5.4) (3, 2.7, 5) (1.5, 9, 2.9) (7, 2, 2.9) (6, 1, 4.8) (3.8, 1, 5.9) (5.6, 4, 6) (4, 2, 5) (2, 5, 1) The value differentiated to point 'P' is: 0 ###Markdown k-nearest neighbors for Divorce Predictors Data Set The DatasetThe Dataset is from UCIMachinelearning and it provides you all the relevant information needed for the prediction of Divorce. It contains 54 features and on the basis of these features we have to predict that the couple has been divorced or not. Value 1 represent Divorced and value 0 represent not divorced. Features are as follows:1. If one of us apologizes when our discussion deteriorates, the discussion ends.2. I know we can ignore our differences, even if things get hard sometimes.3. When we need it, we can take our discussions with my spouse from the beginning and correct it.4. When I discuss with my spouse, to contact him will eventually work.5. The time I spent with my wife is special for us.6. We don't have time at home as partners.7. We are like two strangers who share the same environment at home rather than family.8. I enjoy our holidays with my wife.9. I enjoy traveling with my wife.10. Most of our goals are common to my spouse.11. I think that one day in the future, when I look back, I see that my spouse and I have been in harmony with each other.12. My spouse and I have similar values in terms of personal freedom.13. My spouse and I have similar sense of entertainment.14. Most of our goals for people (children, friends, etc.) are the same.15. Our dreams with my spouse are similar and harmonious.16. We're compatible with my spouse about what love should be.17. We share the same views about being happy in our life with my spouse18. My spouse and I have similar ideas about how marriage should be19. My spouse and I have similar ideas about how roles should be in marriage20. My spouse and I have similar values in trust.21. I know exactly what my wife likes.22. I know how my spouse wants to be taken care of when she/he sick.23. I know my spouse's favorite food.24. I can tell you what kind of stress my spouse is facing in her/his life.25. I have knowledge of my spouse's inner world.26. I know my spouse's basic anxieties.27. I know what my spouse's current sources of stress are.28. I know my spouse's hopes and wishes.29. I know my spouse very well.30. I know my spouse's friends and their social relationships.31. I feel aggressive when I argue with my spouse.32. When discussing with my spouse, I usually use expressions such as ‘you always’ or ‘you never’ .33. I can use negative statements about my spouse's personality during our discussions.34. I can use offensive expressions during our discussions.35. I can insult my spouse during our discussions.36. I can be humiliating when we discussions.37. My discussion with my spouse is not calm.38. I hate my spouse's way of open a subject.39. Our discussions often occur suddenly.40. We're just starting a discussion before I know what's going on.41. When I talk to my spouse about something, my calm suddenly breaks.42. When I argue with my spouse, ı only go out and I don't say a word.43. I mostly stay silent to calm the environment a little bit.44. Sometimes I think it's good for me to leave home for a while.45. I'd rather stay silent than discuss with my spouse.46. Even if I'm right in the discussion, I stay silent to hurt my spouse.47. When I discuss with my spouse, I stay silent because I am afraid of not being able to control my anger.48. I feel right in our discussions.49. I have nothing to do with what I've been accused of.50. I'm not actually the one who's guilty about what I'm accused of.51. I'm not the one who's wrong about problems at home.52. I wouldn't hesitate to tell my spouse about her/his inadequacy.53. When I discuss, I remind my spouse of her/his inadequacy.54. I'm not afraid to tell my spouse about her/his incompetence. Generally, logistic Machine Learning in Python has a straightforward and user-friendly implementation. It usually consists of these steps:1. Import packages, functions, and classes2. Get data to work with and, if appropriate, transform it3. Create a classification model and train (or fit) it with existing data4. Evaluate your model to see if its performance is satisfactory5. Apply your model to make predictions Import packages, functions, and classes ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn import metrics from sklearn import preprocessing from sklearn.metrics import accuracy_score from sklearn import tree ###Output _____no_output_____ ###Markdown Get data to work with and, if appropriate, transform it ###Code df = pd.read_csv('divorce.csv',sep=';') y=df.Class x_data=df.drop(columns=['Class']) df.head(10) ###Output _____no_output_____ ###Markdown Data description ###Code sns.countplot(x='Class',data=df,palette='hls') plt.show() count_no_sub = len(df[df['Class']==0]) count_sub = len(df[df['Class']==1]) pct_of_no_sub = count_no_sub/(count_no_sub+count_sub) print("percentage of no divorce is", pct_of_no_sub*100) pct_of_sub = count_sub/(count_no_sub+count_sub) print("percentage of divorce", pct_of_sub*100) ###Output _____no_output_____ ###Markdown Normalize data ###Code x = (x_data - np.min(x_data)) / (np.max(x_data) - np.min(x_data)).values x.head() ###Output _____no_output_____ ###Markdown correlation of all atribute ###Code plt.figure(figsize=(10,8)) sns.heatmap(df.corr(), cmap='viridis'); ###Output _____no_output_____ ###Markdown Split data set ###Code x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.5,random_state=100) print("x_train: ",x_train.shape) print("x_test: ",x_test.shape) print("y_train: ",y_train.shape) print("y_test: ",y_test.shape) ###Output x_train: (85, 54) x_test: (85, 54) y_train: (85,) y_test: (85,) ###Markdown Create a classification model and train (or fit) it with existing data Step 1. Import the model you want to useStep 2. Make an instance of the ModelStep 3. Training the model on the data, storing the information learned from the dataStep 4. Predict labels for new data ###Code K = 5 clfk = KNeighborsClassifier(n_neighbors=K) clfk.fit(x_train, y_train.ravel()) y_predk=clfk.predict(x_test) print("When K = {} neighnors , KNN test accuracy: {}".format(K, clfk.score(x_test, y_test))) print("When K = {} neighnors , KNN train accuracy: {}".format(K, clfk.score(x_train, y_train))) print(classification_report(y_test, clfk.predict(x_test))) print("Knn(k=5) test accuracy: ", clfk.score(x_test, y_test)) ran = np.arange(1,30) train_list = [] test_list = [] for i,each in enumerate(ran): clfk = KNeighborsClassifier(n_neighbors=each) clfk.fit(x_train, y_train.ravel()) test_list.append(clfk.score(x_test, y_test)) train_list.append(clfk.score(x_train, y_train)) print("Best test score is {} , K = {}".format(np.max(test_list), test_list.index(np.max(test_list))+1)) print("Best train score is {} , K = {}".format(np.max(train_list), train_list.index(np.max(train_list))+1)) ###Output When K = 5 neighnors , KNN test accuracy: 0.9764705882352941 When K = 5 neighnors , KNN train accuracy: 0.9764705882352941 precision recall f1-score support 0 0.95 1.00 0.98 41 1 1.00 0.95 0.98 44 accuracy 0.98 85 macro avg 0.98 0.98 0.98 85 weighted avg 0.98 0.98 0.98 85 Knn(k=5) test accuracy: 0.9764705882352941 Best test score is 0.9882352941176471 , K = 1 Best train score is 1.0 , K = 1 ###Markdown Report ###Code print(classification_report(y_test, clfk.predict(x_test))) print('Accuracy of k-nearest neighbors classifier on test set: {:.2f}'.format(clfk.score(x_test, y_test))) ###Output precision recall f1-score support 0 0.95 1.00 0.98 41 1 1.00 0.95 0.98 44 accuracy 0.98 85 macro avg 0.98 0.98 0.98 85 weighted avg 0.98 0.98 0.98 85 Accuracy of k-nearest neighbors classifier on test set: 0.98 ###Markdown Draw Figure differnt K ###Code plt.figure(figsize=[15,10]) plt.plot(ran,test_list,label='Test Score') plt.plot(ran,train_list,label = 'Train Score') plt.xlabel('Number of Neighbers') plt.ylabel('fav_number/retweet_count') plt.xticks(ran) plt.legend() print("Best test score is {} , K = {}".format(np.max(test_list), test_list.index(np.max(test_list))+1)) print("Best train score is {} , K = {}".format(np.max(train_list), train_list.index(np.max(train_list))+1)) ###Output Best test score is 0.9882352941176471 , K = 1 Best train score is 1.0 , K = 1 ###Markdown Confusion Matrix ###Code from sklearn.metrics import classification_report, confusion_matrix as cm def confusionMatrix(y_pred,title,n): plt.subplot(1,2,n) ax=sns.heatmap(cm(y_test, y_pred)/sum(sum(cm(y_test, y_pred))), annot=True ,cmap='RdBu_r', vmin=0, vmax=0.52,cbar=False, linewidths=.5) plt.title(title) plt.ylabel('Actual outputs') plt.xlabel('Prediction') b, t=ax.get_ylim() ax.set_ylim(b+.5, t-.5) plt.subplot(1,2,n+1) axx=sns.heatmap(cm(y_test, y_pred), annot=True ,cmap='plasma', vmin=0, vmax=40,cbar=False, linewidths=.5) b, t=axx.get_ylim() axx.set_ylim(b+.5, t-.5) return plt.figure(figsize=(8,6)) confusionMatrix(y_predk,'k-nearest neighbors',1) plt.show ###Output _____no_output_____ ###Markdown Nearest neighbor classificationArguably the most simplest classification method.We are given example input vectors $x_i$ and corresponding class labels $c_i$ for $i=1,\dots, N$. The collection of pairs $\{x_i, c_i\}$ for $i=1\dots N$ is called a _data set_. Just store the dataset and for a new observed point $x$, find it's nearest neighbor $i^*$ and report $c_{i^*}$ $$i^* = \arg\min_{i=1\dots N} D(x_i, x)$$ KNN: K nearest neighborsFind the $k$ nearest neighbors and do a majority voting. ###Code import numpy as np import pandas as pd import matplotlib.pylab as plt df = pd.read_csv(u'data/iris.txt',sep=' ') df X = np.hstack([ np.matrix(df.sl).T, np.matrix(df.sw).T, np.matrix(df.pl).T, np.matrix(df.pw).T]) print X[:5] # sample view c = np.matrix(df.c).T print c[:5] ###Output [[ 5.1 3.5 1.4 0.2] [ 4.9 3. 1.4 0.2] [ 4.7 3.2 1.3 0.2] [ 4.6 3.1 1.5 0.2] [ 5. 3.6 1.4 0.2]] [[1] [1] [1] [1] [1]] ###Markdown The choice of the distance function (divergence) can be important. In practice, a popular choice is the Euclidian distance but this is by no means the only one. ###Code def Divergence(x,y,p=2.): e = np.array(x) - np.array(y) if np.isscalar(p): return np.sum(np.abs(e)**p) else: return np.sum(np.matrix(e)*p*np.matrix(e).T) Divergence([0,0],[1,1],p=2) W = np.matrix(np.diag([2,1])) Divergence([0,0],[1,1],p=W) W = np.matrix([[2,1],[1,2]]) Divergence([0,0],[1,1],p=W) ###Output _____no_output_____ ###Markdown Equal distance contours ###Code %run plot_normballs.py def nearest(A,x, p=2): '''A: NxD data matrix, N - number of samples, D - the number of features x: test vector returns the distance and index of the the nearest neigbor ''' N = A.shape[0] d = np.zeros((N,1)) md = np.inf for i in range(N): d[i] = Divergence(A[i,:], x, p) if d[i]<md: md = d[i] min_idx = i return min_idx def predict(A, c, X, p=2): L = X.shape[0] return [np.asscalar(c[nearest(A, X[i,:], p=p)]) for i in range(L)] x_test = np.mat('[3.3, 2.5,5.5,1.7]') #d, idx = distance(X, x_test, p=2) cc = predict(X, c, x_test) print(cc) #float(c[idx]) def leave_one_out(A, c, p=2): N = A.shape[0] correct = 0 for j in range(N): md = np.inf for i in range(N): if i != j: d = Divergence(A[i,:], A[j,:], p=p) if d<md: md = d min_idx = i if c[min_idx] == c[j]: correct += 1 accuracy = 1.*correct/N return accuracy leave_one_out(X, c, p=np.diag([1,1,1,1])) ###Output _____no_output_____ ###Markdown http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html ###Code import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 7 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] + 0.02*np.random.randn(150,2) # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) weights='uniform' # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(figsize=(8,8)) plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.axis('equal') plt.show() ###Output _____no_output_____ ###Markdown The question is why we have used k = 14 only?Whenever we are required to tune the hyper parameters in that case we use grid search cross validation algorithm, this GSA will calculate the accuracies and based on the scores of accuracies this GSA will provide us the best kvalue to be choosen, in short whenever we are required to pass hyper parameters for any algorithm we will use GSA ###Code from pandas import read_csv import numpy as np from sklearn.model_selection import KFold from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier filename = 'pima-indians-diabetes.data.csv' names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(filename,names = names) array = dataframe.values x = array[: , 0:8] y = array[: , 8] neighbors = np.array(range(1,40)) param_grid = dict(n_neighbors = neighbors) model_grid = KNeighborsClassifier() grid = GridSearchCV(estimator = model_grid, param_grid = param_grid) grid.fit(x,y) # Identifying the best score print(grid.best_score_) print(grid.best_params_) ###Output 0.7578558696205755 {'n_neighbors': 14} ###Markdown from this we came to know that best value will be 14 Visualizing the CV results ###Code import matplotlib.pyplot as plt %matplotlib inline # for the getting of k between a range of 1 to 40 we will define a range k_range = range(1,41) # we will create one empty for appending the k scores k_scores = [] # for iterating through different k values in model we will use for loop and after iterating through each and every value the average accuracy we will be getting as a result for k in k_range: knn = KNeighborsClassifier(n_neighbors = k) scores = cross_val_score(knn, x,y, cv = 5) # By default it will consider 5 number of folds k_scores.append(scores.mean()) plt.plot(k_range, k_scores) plt.xlabel("values of K") plt.ylabel("Cross validated accuracy") ###Output _____no_output_____ ###Markdown Diabetes Study in Machine Learning This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.![Diabetes](https://cdn1.medicalnewstoday.com/content/images/articles/321/321097/a-doctor-writing-the-word-diabetes.jpg) CONTENT : The datasets consists of several medical predictor variables and one target variable, Outcome. Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and so on. Pregnancies: Number of times pregnant Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance test BloodPressure: Diastolic blood pressure (mm Hg) SkinThickness: Triceps skin fold thickness (mm) Insulin: 2 Hour serum insulin (mu U/ml) BMI: Body mass index (weight in kg/(height in m)^2) DiabetesPedigreeFunction: Diabetes pedigree function Age: Age (years) Outcome: Class variable (0 or 1) 268 of 768 are 1, the others are 0 PROBLEM STATEMENT : Can you build a machine learning model to accurately predict whether or not a patient have diabetes or not? ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import seaborn as sb diabetes = pd.read_csv('/Users/swaruptripathy/Desktop/Data Science and AI/datasets/diabetes.csv') diabetes.shape diabetes.head() ###Output _____no_output_____ ###Markdown “Outcome” is the feature we are going to predict, 0 means No diabetes, 1 means diabetes. Of these 768 data points, 500 are labeled as 0 and 268 as 1: ###Code print(diabetes.groupby('Outcome').size()) sb.countplot(diabetes['Outcome'],label="Count") diabetes.info() diabetes.describe() diabetes.groupby('Outcome').hist(figsize=(9, 9)) sb.pairplot(diabetes) diabetes.corr() sb.heatmap(diabetes.corr(),annot=True) ###Output _____no_output_____ ###Markdown k-Nearest NeighborsThe k-NN algorithm is arguably the simplest machine learning algorithm. Building the model consists only of storing the training data set. To make a prediction for a new data point, the algorithm finds the closest data points in the training data set — its “nearest neighbors.”First, Let’s investigate whether we can confirm the connection between model complexity and accuracy: ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(diabetes.loc[:, diabetes.columns != 'Outcome'], diabetes['Outcome'], stratify=diabetes['Outcome'], random_state=66) from sklearn.neighbors import KNeighborsClassifier training_accuracy = [] test_accuracy = [] # try n_neighbors from 1 to 10 neighbors_settings = range(1, 11) for i in neighbors_settings: # build the model knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) # record training set accuracy training_accuracy.append(knn.score(X_train, y_train)) # record test set accuracy test_accuracy.append(knn.score(X_test, y_test)) plt.plot(neighbors_settings, training_accuracy, label="training accuracy") plt.plot(neighbors_settings, test_accuracy, label="test accuracy") plt.ylabel("Accuracy") plt.xlabel("n_neighbors") plt.legend() ###Output _____no_output_____ ###Markdown The above plot shows the training and test set accuracy on the y-axis against the setting of n_neighbors on the x-axis. Considering if we choose one single nearest neighbor, the prediction on the training set is perfect. But when more neighbors are considered, the training accuracy drops, indicating that using the single nearest neighbor leads to a model that is too complex. The best performance is somewhere around 9 neighbors.The plot suggests that we should choose n_neighbors=9. Here we are: ###Code knn = KNeighborsClassifier(n_neighbors=9) knn.fit(X_train, y_train) knn.score(X_test, y_test) print('Accuracy of K-NN classifier on training set: {:.2f}'.format(knn.score(X_train, y_train))) print('Accuracy of K-NN classifier on test set: {:.2f}'.format(knn.score(X_test, y_test))) X_test.head() len(X_test) y_test.head() knn.predict(X_test)[0:5] knn.predict_proba(X_test)[0:5] y_pred = knn.predict(X_test) from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test,y_pred)) print(classification_report(y_test,y_pred)) ###Output [[105 20] [ 23 44]] precision recall f1-score support 0 0.82 0.84 0.83 125 1 0.69 0.66 0.67 67 micro avg 0.78 0.78 0.78 192 macro avg 0.75 0.75 0.75 192 weighted avg 0.77 0.78 0.77 192 ###Markdown Demo ###Code train = pd.read_csv('project3_dataset3_train.txt', header=None,sep='\t' ) k = int(input("Enter the k nearest neighbour :")) test = pd.read_csv('project3_dataset3_test.txt', header=None,sep='\t' ) predicted_values = knn(train, test, k) actual_values = list(test.iloc[:,-1]) Accuracy, Precision, Recall, f1_score = metrics(actual_values ,predicted_values) print("Accuracy : "+str(Accuracy)) print("Precision : "+str(Precision)) print("Recall : "+str(Recall)) print("f1_score : "+str(f1_score)) ###Output Enter the k nearest neighbour :9 Accuracy : 0.95 Precision : 0.9 Recall : 1.0 f1_score : 0.9473684210526316 ###Markdown **KNN Logic** ###Code def knn(data, pred_pt, k): distances = [] for grp in data: for point in data[grp]: dist = np.linalg.norm(np.array(pred_pt) - np.array(point)) distances.append((dist, grp)) print('All distances: ', distances) print('k nearest neighbours: ', sorted(distances)[:k]) votes = [] for i in sorted(distances)[:k]: votes.append(i[1]) print('k nearest neighbour classes: ', votes) print('The predicted class is:') return Counter(votes).most_common()[0][0] knn(data, pred_pt, 3) ###Output All distances: [(2.8284271247461903, 'H'), (5.0, 'H'), (4.47213595499958, 'H'), (5.656854249492381, 'L'), (5.0, 'L'), (2.8284271247461903, 'L')] k nearest neighbours: [(2.8284271247461903, 'H'), (2.8284271247461903, 'L'), (4.47213595499958, 'H')] k nearest neighbour classes: ['H', 'L', 'H'] The predicted class is: ###Markdown **Visualization** ###Code for i in data: for j in data[i]: plt.scatter(j[0], j[1], s=100) plt.scatter(pred_pt[0], pred_pt[1], s=100, marker='+') plt.show() ###Output _____no_output_____ ###Markdown KNN (K-Nearest-Neighbors) KNN is a simple concept: define some distance metric between the items in your dataset, and find the K closest items. You can then use those items to predict some property of a test item, by having them somehow "vote" on it.As an example, let's look at the MovieLens data. We'll try to guess the rating of a movie by looking at the 10 movies that are closest to it in terms of genres and popularity.To start, we'll load up every rating in the data set into a Pandas DataFrame: ###Code import pandas as pd r_cols = ['user_id', 'movie_id', 'rating'] ratings = pd.read_csv('ml-100k/u.data', sep='\t', names=r_cols, usecols=range(3)) ratings.head() ###Output _____no_output_____ ###Markdown Now, we'll group everything by movie ID, and compute the total number of ratings (each movie's popularity) and the average rating for every movie: ###Code import numpy as np movieProperties = ratings.groupby('movie_id').agg({'rating': [np.size, np.mean]}) movieProperties.head() ###Output _____no_output_____ ###Markdown The raw number of ratings isn't very useful for computing distances between movies, so we'll create a new DataFrame that contains the normalized number of ratings. So, a value of 0 means nobody rated it, and a value of 1 will mean it's the most popular movie there is. ###Code movieNumRatings = pd.DataFrame(movieProperties['rating']['size']) movieNormalizedNumRatings = movieNumRatings.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x))) movieNormalizedNumRatings.head() ###Output _____no_output_____ ###Markdown Now, let's get the genre information from the u.item file. The way this works is there are 19 fields, each corresponding to a specific genre - a value of '0' means it is not in that genre, and '1' means it is in that genre. A movie may have more than one genre associated with it.While we're at it, we'll put together everything into one big Python dictionary called movieDict. Each entry will contain the movie name, list of genre values, the normalized popularity score, and the average rating for each movie: ###Code movieDict = {} with open(r'ml-100k/u.item') as f: temp = '' for line in f: fields = line.rstrip('\n').split('|') movieID = int(fields[0]) name = fields[1] genres = fields[5:25] genres = map(int, genres) movieDict[movieID] = (name, genres, movieNormalizedNumRatings.loc[movieID].get('size'), movieProperties.loc[movieID].rating.get('mean')) ###Output _____no_output_____ ###Markdown For example, here's the record we end up with for movie ID 1, "Toy Story": ###Code movieDict[1] ###Output _____no_output_____ ###Markdown Now let's define a function that computes the "distance" between two movies based on how similar their genres are, and how similar their popularity is. Just to make sure it works, we'll compute the distance between movie ID's 2 and 4: ###Code from scipy import spatial def ComputeDistance(a, b): genresA = a[1] genresB = b[1] genreDistance = spatial.distance.cosine(genresA, genresB) popularityA = a[2] popularityB = b[2] popularityDistance = abs(popularityA - popularityB) return genreDistance + popularityDistance ComputeDistance(movieDict[2], movieDict[4]) ###Output _____no_output_____ ###Markdown Remember the higher the distance, the less similar the movies are. Let's check what movies 2 and 4 actually are - and confirm they're not really all that similar: ###Code print movieDict[2] print movieDict[4] ###Output ('GoldenEye (1995)', [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 0.22298456260720412, 3.2061068702290076) ('Get Shorty (1995)', [0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0.35677530017152659, 3.5502392344497609) ###Markdown Now, we just need a little code to compute the distance between some given test movie (Toy Story, in this example) and all of the movies in our data set. When the sort those by distance, and print out the K nearest neighbors: ###Code import operator def getNeighbors(movieID, K): distances = [] for movie in movieDict: if (movie != movieID): dist = ComputeDistance(movieDict[movieID], movieDict[movie]) distances.append((movie, dist)) distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(K): neighbors.append(distances[x][0]) return neighbors K = 10 avgRating = 0 neighbors = getNeighbors(1, K) for neighbor in neighbors: avgRating += movieDict[neighbor][3] print movieDict[neighbor][0] + " " + str(movieDict[neighbor][3]) avgRating /= float(K) ###Output Liar Liar (1997) 3.15670103093 Aladdin (1992) 3.81278538813 Willy Wonka and the Chocolate Factory (1971) 3.63190184049 Monty Python and the Holy Grail (1974) 4.0664556962 Full Monty, The (1997) 3.92698412698 George of the Jungle (1997) 2.68518518519 Beavis and Butt-head Do America (1996) 2.78846153846 Birdcage, The (1996) 3.44368600683 Home Alone (1990) 3.08759124088 Aladdin and the King of Thieves (1996) 2.84615384615 ###Markdown While we were at it, we computed the average rating of the 10 nearest neighbors to Toy Story: ###Code avgRating ###Output _____no_output_____ ###Markdown How does this compare to Toy Story's actual average rating? ###Code movieDict[1] ###Output _____no_output_____ ###Markdown KNN ###Code import numpy as np def euc(x, y): return np.linalg.norm(x - y) def KNN(X, y, sample, k=3): distances = [] # calculate every distance for i, x in enumerate(X): distances.append(euc(sample, x)) # get the k - smallest distances d_ord = distances d_ord.sort() neigh_dists = d_ord[:k] neighbours = [] neigh_classes = [] # get the neighbours of the sample for neigh_dist in neigh_dists: idx = distances.index(neigh_dist) neighbours.append(X[idx]) neigh_classes.append(y[idx]) print('Neighbours: ', neighbours) print('of classes: ', neigh_classes) ###Output _____no_output_____ ###Markdown Examples ###Code X = np.array([ [0.15, 0.35], [0.15, 0.28], [0.12, 0.2], [0.1, 0.32], [0.06, 0.25] ]) y = np.array([1, 2, 2, 3, 3]) sample = np.array([0.1, 0.25]) KNN(X, y, sample, k=3) KNN(X, y, sample, k=1) ###Output Neighbours: [array([0.15, 0.35])] of classes: [1] ###Markdown KNN (K-Nearest-Neighbors) KNN is a simple concept: define some distance metric between the items in your dataset, and find the K closest items. You can then use those items to predict some property of a test item, by having them somehow "vote" on it.As an example, let's look at the MovieLens data. We'll try to guess the rating of a movie by looking at the 10 movies that are closest to it in terms of genres and popularity.To start, we'll load up every rating in the data set into a Pandas DataFrame: ###Code import pandas as pd r_cols = ['user_id', 'movie_id', 'rating'] ratings = pd.read_csv('e:/sundog-consult/udemy/datascience/ml-100k/u.data', sep='\t', names=r_cols, usecols=range(3)) ratings.head() ###Output _____no_output_____ ###Markdown Now, we'll group everything by movie ID, and compute the total number of ratings (each movie's popularity) and the average rating for every movie: ###Code import numpy as np movieProperties = ratings.groupby('movie_id').agg({'rating': [np.size, np.mean]}) movieProperties.head() ###Output _____no_output_____ ###Markdown The raw number of ratings isn't very useful for computing distances between movies, so we'll create a new DataFrame that contains the normalized number of ratings. So, a value of 0 means nobody rated it, and a value of 1 will mean it's the most popular movie there is. ###Code movieNumRatings = pd.DataFrame(movieProperties['rating']['size']) movieNormalizedNumRatings = movieNumRatings.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x))) movieNormalizedNumRatings.head() ###Output _____no_output_____ ###Markdown Now, let's get the genre information from the u.item file. The way this works is there are 19 fields, each corresponding to a specific genre - a value of '0' means it is not in that genre, and '1' means it is in that genre. A movie may have more than one genre associated with it.While we're at it, we'll put together everything into one big Python dictionary called movieDict. Each entry will contain the movie name, list of genre values, the normalized popularity score, and the average rating for each movie: ###Code movieDict = {} with open(r'e:/sundog-consult/udemy/datascience/ml-100k/u.item') as f: temp = '' for line in f: #line.decode("ISO-8859-1") fields = line.rstrip('\n').split('|') movieID = int(fields[0]) name = fields[1] genres = fields[5:25] genres = map(int, genres) movieDict[movieID] = (name, np.array(list(genres)), movieNormalizedNumRatings.loc[movieID].get('size'), movieProperties.loc[movieID].rating.get('mean')) ###Output _____no_output_____ ###Markdown For example, here's the record we end up with for movie ID 1, "Toy Story": ###Code print(movieDict[1]) ###Output ('Toy Story (1995)', array([0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 0.77358490566037741, 3.8783185840707963) ###Markdown Now let's define a function that computes the "distance" between two movies based on how similar their genres are, and how similar their popularity is. Just to make sure it works, we'll compute the distance between movie ID's 2 and 4: ###Code from scipy import spatial def ComputeDistance(a, b): genresA = a[1] genresB = b[1] genreDistance = spatial.distance.cosine(genresA, genresB) popularityA = a[2] popularityB = b[2] popularityDistance = abs(popularityA - popularityB) return genreDistance + popularityDistance ComputeDistance(movieDict[2], movieDict[4]) ###Output _____no_output_____ ###Markdown Remember the higher the distance, the less similar the movies are. Let's check what movies 2 and 4 actually are - and confirm they're not really all that similar: ###Code print(movieDict[2]) print(movieDict[4]) ###Output ('GoldenEye (1995)', array([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]), 0.22298456260720412, 3.2061068702290076) ('Get Shorty (1995)', array([0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 0.35677530017152659, 3.5502392344497609) ###Markdown Now, we just need a little code to compute the distance between some given test movie (Toy Story, in this example) and all of the movies in our data set. When the sort those by distance, and print out the K nearest neighbors: ###Code import operator def getNeighbors(movieID, K): distances = [] for movie in movieDict: if (movie != movieID): dist = ComputeDistance(movieDict[movieID], movieDict[movie]) distances.append((movie, dist)) distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(K): neighbors.append(distances[x][0]) return neighbors K = 10 avgRating = 0 neighbors = getNeighbors(1, K) for neighbor in neighbors: avgRating += movieDict[neighbor][3] print (movieDict[neighbor][0] + " " + str(movieDict[neighbor][3])) avgRating /= K ###Output Liar Liar (1997) 3.15670103093 Aladdin (1992) 3.81278538813 Willy Wonka and the Chocolate Factory (1971) 3.63190184049 Monty Python and the Holy Grail (1974) 4.0664556962 Full Monty, The (1997) 3.92698412698 George of the Jungle (1997) 2.68518518519 Beavis and Butt-head Do America (1996) 2.78846153846 Birdcage, The (1996) 3.44368600683 Home Alone (1990) 3.08759124088 Aladdin and the King of Thieves (1996) 2.84615384615 ###Markdown While we were at it, we computed the average rating of the 10 nearest neighbors to Toy Story: ###Code avgRating ###Output _____no_output_____ ###Markdown How does this compare to Toy Story's actual average rating? ###Code movieDict[1] ###Output _____no_output_____ ###Markdown ###Code from google.colab import drive drive.mount('/content/gdrive') %cd /content/gdrive/My\ Drive/Colab Notebooks !ls # !pip3 install triplettorch import numpy as np import torch import time import os from torch.utils.data import DataLoader from torchvision.models import mobilenet_v2 from torchvision import transforms from torch import nn # from triplettorch import HardNegativeTripletMiner # from triplettorch import AllTripletMiner # from torch.utils.data import DataLoader # from triplettorch import TripletDataset from torchvision import transforms from torchvision import datasets import matplotlib.pyplot as plt import torch.nn as nn import numpy as np import torch import random random.seed(0); np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) torch.backends.cudnn.deterministic=True # !wget http://pdd.jinr.ru/archive_full.zip !unzip archive_full.zip -d pdd !ls pdd import numpy as np import os from torch.utils.data import Dataset from torch.utils.data import Sampler from torchvision.datasets import ImageFolder class AllCropsDataset(Dataset): def __init__(self, image_folder, subset='', transform=None, target_transform=None): self.transform = transform self.target_transform = target_transform # data subset (train, test) self.subset = subset # store each crop data self.datasets = [] self.crops = [] self.samples = [] self.imgs = [] self.classes = [] self.targets = [] self.class_to_idx = {} # iterate over all folders # with all crops for i, d in enumerate(os.listdir(image_folder)): self.crops.append(d) # full path to the folder d_path = os.path.join(image_folder, d, self.subset) # attribute name to set attribute attr_name = '%s_ds' % d.lower() print("Load '%s' data" % attr_name) # set the attribute with the specified name setattr(self, attr_name, ImageFolder(d_path)) # add the dataset to datasets list self.datasets.append(getattr(self, attr_name)) # get dataset attribute ds = getattr(self, attr_name) # add attr targets to the global targets ds_targets = [x+len(self.classes) for x in ds.targets] self.targets.extend(ds_targets) # add particular classes to the global classes' list ds_classes = [] for c in ds.classes: new_class = '__'.join([d, c]) self.class_to_idx[new_class] = len(self.classes) + ds.class_to_idx[c] ds_classes.append(new_class) self.classes.extend(ds_classes) # imgs attribute has form (file_path, target) ds_imgs, _ = zip(*ds.imgs) # images and samples are equal self.imgs.extend(list(zip(ds_imgs, ds_targets))) self.samples.extend(list(zip(ds_imgs, ds_targets))) def __len__(self): return len(self.samples) def __getitem__(self, idx): path, target = self.samples[idx] img = self.datasets[0].loader(path) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target DATA_PATH = 'pdd' def prepare_datasets(): train_ds = AllCropsDataset( DATA_PATH, subset='train', transform=transforms.Compose([ transforms.Resize(224), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), # transforms.Normalize([0.4352, 0.5103, 0.2836], [0.2193, 0.2073, 0.2047])]), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]), target_transform=torch.tensor) test_ds = AllCropsDataset( DATA_PATH, subset='test', transform=transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]), target_transform=torch.tensor) # print statistics print('Train size:', len(train_ds)) print('Test size:', len(test_ds)) print('Number of samples in the dataset:', len(train_ds)) print('Crops in the dataset:', train_ds.crops) print('Total number of classes in the dataset:', len(train_ds.classes)) print('Classes with the corresponding targets:') print(train_ds.class_to_idx) return train_ds, test_ds import numpy as np import shutil import os from glob import glob from tqdm import tqdm # from tqdm.notebook import tqdm TEST_SIZE = 0.2 RS = 42 def _remove_path_if_exists(path): if os.path.exists(path): if os.path.isfile(path): os.remove(path) else: shutil.rmtree(path) def _makedir_and_copy2(path, dirname, fnames): path_for_saving_files = os.path.join(path, dirname) os.makedirs(path_for_saving_files) for fname in fnames: shutil.copy2(fname, path_for_saving_files) def datadir_train_test_split(origin_path, test_size, random_state=0): """Splits the data in directory on train and test. # Arguments origin_path: path to the original directory test_size: the size of test data fraction # Returns Tuple of paths: `(train_path, test_path)`. """ print("\n\nSplit `%s` directory" % origin_path) print("Test size: %.2f" % test_size) print("Random state: {}".format(random_state)) train_path = os.path.join(origin_path, 'train') test_path = os.path.join(origin_path, 'test') _remove_path_if_exists(train_path) _remove_path_if_exists(test_path) try: subfolders = glob(os.path.join(origin_path, "*", "")) # if train/test split is already done if set(subfolders) == set(['train', 'test']): return (train_path, test_path) # if train/test split is required # recreate train/test folders os.makedirs(train_path) os.makedirs(test_path) for folder in tqdm(subfolders, total=len(subfolders), ncols=57): # collect all images img_fnames = [] for ext in ["*.jpg", "*.png", "*jpeg"]: img_fnames.extend( glob(os.path.join(folder, ext))) # set random state parameter rs = np.random.RandomState(random_state) # shuffle array rs.shuffle(img_fnames) # split on train and test n_test_files = int(len(img_fnames)*test_size) test_img_fnames = img_fnames[:n_test_files] train_img_fnames = img_fnames[n_test_files:] # copy train files into `train_path/folder` folder_name = os.path.basename(os.path.dirname(folder)) _makedir_and_copy2(train_path, folder_name, train_img_fnames) # copy test files into `test_path/folder` _makedir_and_copy2(test_path, folder_name, test_img_fnames) for folder in subfolders: shutil.rmtree(folder) except: _remove_path_if_exists(train_path) _remove_path_if_exists(test_path) raise return (train_path, test_path) def split_on_train_and_test(): for crop in os.listdir('pdd'): crop_path = os.path.join('pdd', crop) _ = datadir_train_test_split(crop_path, test_size=0.2, random_state=42) split_on_train_and_test() BATCH_SIZE = 16 train_ds, test_ds = prepare_datasets() train_loader = torch.utils.data.DataLoader(train_ds, pin_memory=True, batch_size=BATCH_SIZE, shuffle=True, num_workers=BATCH_SIZE) test_loader = torch.utils.data.DataLoader(test_ds, pin_memory=True, batch_size=BATCH_SIZE, shuffle=True, num_workers=BATCH_SIZE) type(train_ds) plt.imshow(train_ds[12][0].permute(1,2,0)) ###Output _____no_output_____ ###Markdown Обычная сеть 1024 фичи ###Code def simple_conv_block(in_channels, out_channels, kernel_size, stride, padding, pool_size, pool_stride): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding), nn.ReLU(), nn.BatchNorm2d(out_channels), nn.MaxPool2d(pool_size, pool_stride)) import torch.nn.functional as F class Model(nn.Module): '''Feature extractor''' def __init__(self, output_dim=1024): super(Model, self).__init__() self.output_dim = output_dim self.cnn1 = simple_conv_block(3, 32, 10, 1, 1, 2, 2) self.cnn2 = simple_conv_block(32, 64, 7, 1, 1, 2, 2) self.cnn3 = simple_conv_block(64, 128, 5, 1, 1, 2, 2) self.cnn4 = simple_conv_block(128, 256, 3, 1, 1, 2, 2) self.cnn5 = simple_conv_block(256, 512, 3, 1, 1, 2, 2) self.feature_proj = nn.Sequential( nn.Flatten(), nn.Linear(512*7*7, self.output_dim), nn.ReLU() ) self.mlp = nn.Sequential( nn.Linear(self.output_dim, 512), nn.ReLU(), nn.Linear(512,256), nn.ReLU() ) self.fc = nn.Sequential( # nn.Linear(self.output_dim, 15), nn.Linear(256, 15), nn.LogSoftmax() ) def forward(self, x): x = self.cnn1(x) x = self.cnn2(x) x = self.cnn3(x) x = self.cnn4(x) x = self.cnn5(x) x = self.feature_proj(x) x=self.mlp(x) x = self.fc(x) # print(x.shape) # x = self.cnn1(x) # x = self.cnn2(x) # x = self.cnn3(x) # x = self.cnn4(x) # x = self.cnn5(x) # print(x.shape) # x = x.view(x.size()[0], -1) # print(x.shape) # x = F.relu(self.feature_proj(x)) # print(x.shape) # x = F.log_softmax(self.fc(x), dim=1) # x = x.view(x.size()[0], -1) # # x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3)) # x = self.fc1(x) # x = self.act3(x) # x = self.fc2(x) # x = self.act4(x) # x = self.fc3(x) # x=self.sm(x) return x ###Output _____no_output_____ ###Markdown Обычная сеть 2048 фич ###Code def simple_conv_block(in_channels, out_channels, kernel_size, stride, padding, pool_size, pool_stride): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding), nn.ReLU(), nn.BatchNorm2d(out_channels), nn.MaxPool2d(pool_size, pool_stride)) import torch.nn.functional as F class Model(nn.Module): '''Feature extractor''' def __init__(self, output_dim=2048): super(Model, self).__init__() self.output_dim = output_dim self.cnn1 = simple_conv_block(3, 32, 10, 1, 1, 2, 2) self.cnn2 = simple_conv_block(32, 64, 7, 1, 1, 2, 2) self.cnn3 = simple_conv_block(64, 128, 5, 1, 1, 2, 2) self.cnn4 = simple_conv_block(128, 256, 3, 1, 1, 2, 2) self.cnn5 = simple_conv_block(256, 512, 3, 1, 1, 2, 2) self.cnn6 = simple_conv_block(512, 1024, 3, 1, 1, 2, 2) self.cnn7 = simple_conv_block(1024, output_dim, 3, 1, 1, 2, 2) # self.feature_proj = nn.Sequential( # nn.Flatten(), # nn.Linear(512*7*7, self.output_dim), # nn.ReLU() # ) # self.mlp = nn.Sequential( # nn.Linear(self.output_dim, 512), # nn.ReLU(), # nn.Linear(512,256), # nn.ReLU() # ) self.fc = nn.Sequential( # nn.Linear(1, 15), # nn.Linear(256, 15), # nn.Conv2d(self.output_dim, 15, 1, 1), # nn.ReLU(), # # nn.Linear(512*7*7, self.output_dim), nn.Flatten(), nn.Linear(self.output_dim, 15), nn.LogSoftmax(dim=1) ) def forward(self, x): x = self.cnn1(x) x = self.cnn2(x) x = self.cnn3(x) x = self.cnn4(x) x = self.cnn5(x) x = self.cnn6(x) x = self.cnn7(x) # x = self.feature_proj(x) # x=self.mlp(x) x = self.fc(x) return x ###Output _____no_output_____ ###Markdown Перенос обучения ###Code ###Output _____no_output_____ ###Markdown ###Code try: import torchbearer except: !pip install -q torchbearer import torchbearer print(torchbearer.__version__) try: import pycm except: !pip install -q pycm import pycm import torchbearer from torchbearer.callbacks import imaging inv_normalize = transforms.Normalize( mean=[-0.485/0.229, -0.456/0.224, -0.406/0.255], std=[1/0.229, 1/0.224, 1/0.255] ) make_grid = imaging.MakeGrid(torchbearer.INPUT, num_images=64, nrow=8, transform=inv_normalize) make_grid = make_grid.on_test().to_pyplot().to_file('sample.png') # model=Model() # model.state_dict=Model().load_state_dict(torch.load('CNNmodelNLLloss.pt')) # model = models.resnet50(pretrained=True) # # Disable grad for all conv layers # for param in model.parameters(): # param.requires_grad = False from torchvision import datasets, models, transforms model =models.mobilenet_v2(pretrained=True) for param in model.parameters(): param.requires_grad = False model.classifier[0] = nn.Linear(model.last_channel, 15) model.classifier[1]=nn.LogSoftmax(dim=1) from torchbearer.callbacks import EarlyStopping device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) loss = torch.nn.NLLLoss() # loss=torch.nn.BCELoss() # optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9) optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5) import torchbearer from torchbearer import Trial from torchbearer.callbacks import Best import sys # if 'tensorboardX' in sys.modules: # import tensorboardX # from torchbearer.callbacks import TensorBoard # callbacks = [TensorBoard(write_batch_metrics=True)] # else: # callbacks = [] checkpoint = Best('bestmodel.pt', monitor='val_acc', mode='max') # callbacks.append(make_grid) stopping = EarlyStopping(monitor='val_acc', patience=5, mode='max') from torchbearer.callbacks import PyCM cm = PyCM().on_val().to_pyplot( title='Confusion Matrix: {epoch}') # print_normalized_matrix() # to_pyplot(normalize=True,) # # Decay LR by a factor of 0.1 every 7 epochs # scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) from torchsummary import summary summary(model, input_size=(3, 224, 224)) help(mobilenet_v2) print(model.last_channel) trial = Trial(model, optimizer, loss, metrics=['acc', 'loss'], callbacks=[checkpoint,cm]).to(device) trial.with_train_generator(train_loader).with_val_generator(test_loader) trial.to(device) history = trial.run(epochs=70, verbose=2) ###Output _____no_output_____ ###Markdown Тест ###Code model_test1 =models.mobilenet_v2(pretrained=True) model_test1 = torch.nn.Sequential(*(list(model_test1.children())[:-1])) # model_test1.classifier[1] = nn.Linear(model_test1.last_channel, 15) for param in model_test1.parameters(): param.requires_grad = False model_test1.to(device) model_test1.eval() test_x_numpy=[] test_x1_numpy=[] with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(test_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = model_test1(inputs).detach().cpu().numpy() targets= targets.detach().cpu().numpy() if (outputs.shape[0]==16): test_x_numpy.append(outputs) test_x_numpy=np.vstack(test_x_numpy) print(test_x_numpy.shape) # model_test1.fc = nn.Sequential( # nn.Linear(1280, 15), # nn.LogSoftmax(dim=1)) model_test1 =models.mobilenet_v2(pretrained=True) # model_test1.classifier[0] = nn.Linear(model_test1.last_channel, 15) # model_test1.classifier[1]=nn.LogSoftmax(dim=1) model_test1.train() trial = Trial(model_test1, optimizer, loss, metrics=['acc', 'loss'], callbacks=[checkpoint]).to(device) trial.with_train_generator(train_loader).with_val_generator(test_loader) trial.to(device) history = trial.run(epochs=1, verbose=2) model_test1 = torch.nn.Sequential(*(list(model_test1.children())[:-1])) model_test1.eval() with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(test_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = model_test1(inputs).detach().cpu().numpy() targets= targets.detach().cpu().numpy() if (outputs.shape[0]==16): test_x1_numpy.append(outputs) test_x1_numpy=np.vstack(test_x1_numpy) print(test_x1_numpy.shape) np.testing.assert_allclose(test_x_numpy,test_x1_numpy) ###Output _____no_output_____ ###Markdown Трансфер ленинг батч норм ###Code model_test1 =models.mobilenet_v2(pretrained=True) model_test1.classifier[0] = nn.Linear(model_test1.last_channel, 15) model_test1.classifier[1]=nn.LogSoftmax(dim=1) model_test1.to(device) # model_test1.train() # trial = Trial(model_test1, optimizer, loss, metrics=['acc', 'loss'], callbacks=[checkpoint]).to(device) # trial.with_train_generator(train_loader).with_val_generator(test_loader) # trial.to(device) # history = trial.run(epochs=1, verbose=2) model_test1 = torch.nn.Sequential(*(list(model_test1.children())[:-1])) model_test1.eval() test_x_numpy=[] train_x_numpy=[] test_y_numpy=[] train_y_numpy=[] with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(train_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = model_test1(inputs).detach().cpu().numpy() targets= targets.detach().cpu().numpy() if (outputs.shape[0]==16): train_x_numpy.append(outputs) train_y_numpy.append(targets) train_x_numpy=np.vstack(train_x_numpy) train_y_numpy=np.hstack(train_y_numpy) with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(test_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = model_test1(inputs).detach().cpu().numpy() targets= targets.detach().cpu().numpy() if (outputs.shape[0]==16): test_x_numpy.append(outputs) test_y_numpy.append(targets) test_x_numpy=np.vstack(test_x_numpy) test_y_numpy=np.hstack(test_y_numpy) x_train=torch.FloatTensor(train_x_numpy) x_test=torch.FloatTensor(test_x_numpy) y_train=torch.FloatTensor(train_y_numpy) y_test=torch.FloatTensor(test_y_numpy) # classifier = nn.Sequential(OrderedDict([ # ('fc1', nn.Linear(25088, 4096)), # ('relu', nn.ReLU()), # ('fc2', nn.Linear(4096, 102)), # ('output', nn.LogSoftmax(dim=1)) # ])) # classifier = nn.Sequential( # nn.Linear(1280, 15), # nn.LogSoftmax(dim=1)) # trial.with_train_generator(train_loader).with_val_generator(test_loader) # trial.to(device) # history = trial.run(epochs=70, verbose=2) y_train = torch.tensor(y_train, dtype=torch.long) y_test = torch.tensor(y_test, dtype=torch.long) trial = Trial(cla, optimizer, loss, metrics=['acc', 'loss'], callbacks=[checkpoint]).to(device) trial.with_train_data(x_train, y_train).with_val_data(x_test,y_test) trial.to(device) history = trial.run(epochs=50, verbose=2) class cl(torch.nn.Module): def __init__(self): super(cl,self).__init__() self.fc = nn.Sequential( nn.Flatten(), nn.Linear(8960*7, 15), nn.LogSoftmax(dim=1) ) def forward(self,x): x = x.mean(3).mean(2) x = self.fc(x) return x cla=cl() cla.to(device) torch.save(model,'CNNmodelNLLloss.pt') torch.save(model.state_dict(),'CNNmodelNLLloss.pt') model=model.load_state_dict(torch.load('bestmodel.pt')) model.eval() model = torch.nn.Sequential(*(list(model.children())[:-1])) model # from torchsummary import summary # summary(model, input_size=(3, 256, 256)) # model(torch.rand(1, 3, 256, 256).to(device)).shape print(history) ###Output _____no_output_____ ###Markdown Перевод в Numpy ###Code # for img in train_ds: # print(img) # ipt=torch.FloatTensor(img) # # ipt.unsqueeze_(0) from tqdm import tqdm # from tqdm.notebook import tqdm # i=0 from sklearn import metrics from sklearn.neighbors import KNeighborsClassifier count=0 scorsum=0 train_x_numpy=[] train_y_numpy=[] with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(train_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs).detach().cpu().numpy() targets= targets.detach().cpu().numpy() if (outputs.shape[0]==16): print(outputs.shape) print(outputs.reshape(2048,16).shape) print(targets.shape) # knn=KNeighborsClassifier(n_neighbors=1) # knn.fit(outputs,targets) train_x_numpy.append(outputs.reshape(2048,16).transpose()) train_y_numpy.append(targets) test_x_numpy=[] test_y_numpy=[] with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(test_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs).detach().cpu().numpy() targets= targets.detach().cpu().numpy() # y_pred=knn.predict(outputs) # scor=metrics.accuracy_score(targets,y_pred) # scorsum=scorsum+scor # count=count+1 if (outputs.shape[0]==16): test_x_numpy.append(outputs.reshape(2048,16).transpose()) test_y_numpy.append(targets) # print(scorsum/count) # for b, batch in enumerate(train_loader): # labels, data = # data = torch.cat( [ datum for datum in data ], axis = 0 ) # labels = torch.cat( [ label for label in labels ], axis = 0 ) # embeddings = model( data.cuda( ) ).detach( ).cpu( ).numpy( ) # labels = labels.numpy( ) # test_embeddings.append( embeddings ) # test_labels.append( labels ) # while i < len(train_ds): # ipt= torch.FloatTensor(train_ds[i][0]).to(device) # ipt.unsqueeze_(0) # probs = torch.exp(model.forward(ipt)) # probsTrainNP=probs.cpu().detach().numpy() # TrainNP=np.append(TrainNP,probsTrainNP) # # print(probsTrainNP) # i=i+1 print(len(train_loader)) # type(like_x_list) # outputs.shape # outputs.reshape(1024,5).shape print(len(train_ds)) outputs.shape[0] from sklearn.preprocessing import normalize import sklearn.preprocessing train_x_numpy=normalize(np.vstack(train_x_numpy),norm='l2') train_y_numpy=np.hstack(train_y_numpy) test_y_numpy=np.hstack(test_y_numpy) test_x_numpy=normalize(np.vstack(test_x_numpy),norm='l2') print(train_y_numpy.shape) print(train_x_numpy.shape) print(test_y_numpy.shape) print(test_x_numpy.shape) # X = normalize(numpy.vstack([X_0, X_1]), norm='l2') # from numpy import array # data = [[[[11, 22], # [33, 44], # [55, 66]]]] # data=array(data) # data.shape # data.reshape(3,2).sh print(type(train_y_numpy)) print(train_y_numpy.shape) train_y_numpy # like_x_list = [train_x_numpy(BATCH_SIZE, 2048).astype('float32') for _ in range(len(train_loader))] # like_x_list = [np.random.rand(1, 1024).astype('float32') for _ in range(100)] print (train_x_numpy.shape) # print (train_x_numpy.reshape(-1,1).shape) xreshpe=train_x_numpy.reshape(-1,1) print(xreshpe.shape) from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics.pairwise import cosine_similarity # train_x_numpy=[np.random.rand(, 1024).astype('float32') for _ in range(100)] # x_train_reshape=train_x_numpy.numpy().reshape(-1,1) # x_train_reshape=train_x_numpy. # y_train_reshape=train_y_numpy.reshape(-1,1) # np.asarray(train_x_numpy).reshape(-1,1) from sklearn import metrics # k_range=range(1,26) k=1 scores={} scores_list=[] # for k in k_range: knn=KNeighborsClassifier(n_neighbors=k,metric=cosine_similarity) # knn.fit(np.asarray(train_x_numpy).reshape(-1,1),np.asarray (train_y_numpy).reshape(-1,1)) knn.fit(train_x_numpy,train_y_numpy.reshape(-1,1)) y_pred=knn.predict(test_x_numpy) scores[k]=metrics.accuracy_score(test_y_numpy,y_pred) print(scores[k]) from sklearn.neighbors import KNeighborsClassifier from scipy.spatial.distance import cosine # train_x_numpy=[np.random.rand(, 1024).astype('float32') for _ in range(100)] # x_train_reshape=train_x_numpy.numpy().reshape(-1,1) # x_train_reshape=train_x_numpy. # y_train_reshape=train_y_numpy.reshape(-1,1) # np.asarray(train_x_numpy).reshape(-1,1) from sklearn import metrics # k_range=range(1,26) k=1 scores={} scores_list=[] # for k in k_range: knn=KNeighborsClassifier(n_neighbors=k,metric=cosine) # knn.fit(np.asarray(train_x_numpy).reshape(-1,1),np.asarray (train_y_numpy).reshape(-1,1)) knn.fit(train_x_numpy,train_y_numpy) y_pred=knn.predict(test_x_numpy) scores[k]=metrics.accuracy_score(test_y_numpy,y_pred) print(scores[k]) scores from sklearn.ensemble import GradientBoostingRegressor import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.datasets import load_boston from sklearn.metrics import mean_absolute_error from sklearn.ensemble import GradientBoostingClassifier boost = GradientBoostingClassifier() boost.fit(train_x_numpy,train_y_numpy) y_pred = boost.predict(test_x_numpy) acc=metrics.accuracy_score(test_y_numpy,y_pred) print(acc) from sklearn.metrics import confusion_matrix confusion_matrix(test_y_numpy, y_pred) ###Output _____no_output_____ ###Markdown Nearest neighbor classificationArguably the most simplest classification method.We are given example input vectors $x_i$ and corresponding class labels $c_i$ for $i=1,\dots, N$. The collection of pairs $\{x_i, c_i\}$ for $i=1\dots N$ is called a _data set_. Just store the dataset and for a new observed point $x$, find it's nearest neighbor $i^*$ and report $c_{i^*}$ $$i^* = \arg\min_{i=1\dots N} D(x_i, x)$$ KNN: K nearest neighborsFind the $k$ nearest neighbors and do a majority voting. ###Code import numpy as np import pandas as pd import matplotlib.pylab as plt df = pd.read_csv(u'data/iris.txt',sep=' ') df X = np.hstack([ np.matrix(df.sl).T, np.matrix(df.sw).T, np.matrix(df.pl).T, np.matrix(df.pw).T]) print X[:5] # sample view c = np.matrix(df.c).T print c[:5] ###Output [[ 5.1 3.5 1.4 0.2] [ 4.9 3. 1.4 0.2] [ 4.7 3.2 1.3 0.2] [ 4.6 3.1 1.5 0.2] [ 5. 3.6 1.4 0.2]] [[1] [1] [1] [1] [1]] ###Markdown The choice of the distance function (divergence) can be important. In practice, a popular choice is the Euclidian distance but this is by no means the only one. ###Code def Divergence(x,y,p=2.): e = np.array(x) - np.array(y) if np.isscalar(p): return np.sum(np.abs(e)**p) else: return np.sum(np.matrix(e)*p*np.matrix(e).T) Divergence([0,0],[1,1],p=2) W = np.matrix(np.diag([2,1])) Divergence([0,0],[1,1],p=W) W = np.matrix([[2,1],[1,2]]) Divergence([0,0],[1,1],p=W) ###Output _____no_output_____ ###Markdown Equal distance contours ###Code %run plot_normballs.py def nearest(A,x, p=2): '''A: NxD data matrix, N - number of samples, D - the number of features x: test vector returns the distance and index of the the nearest neigbor ''' N = A.shape[0] d = np.zeros((N,1)) md = np.inf for i in range(N): d[i] = Divergence(A[i,:], x, p) if d[i]<md: md = d[i] min_idx = i return min_idx def predict(A, c, X, p=2): L = X.shape[0] return [np.asscalar(c[nearest(A, X[i,:], p=p)]) for i in range(L)] x_test = np.mat('[3.3, 2.5,5.5,1.7]') #d, idx = distance(X, x_test, p=2) cc = predict(X, c, x_test) print(cc) #float(c[idx]) def leave_one_out(A, c, p=2): N = A.shape[0] correct = 0 for j in range(N): md = np.inf for i in range(N): if i != j: d = Divergence(A[i,:], A[j,:], p=p) if d<md: md = d min_idx = i if c[min_idx] == c[j]: correct += 1 accuracy = 1.*correct/N return accuracy leave_one_out(X, c, p=np.diag([1,1,1,1])) ###Output _____no_output_____ ###Markdown http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html ###Code import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 3 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] + 0.02*np.random.randn(150,2) # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) weights='uniform' # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(figsize=(8,8)) plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.axis('equal') plt.show() ###Output _____no_output_____ ###Markdown Plotting a contour graph ###Code # Visualising the Training set results from matplotlib.colors import ListedColormap X_point, y_point = X_train, y_train X1, X2 = np.meshgrid(np.arange(start = X_point[:, 0].min() - 1, stop = X_point[:, 0].max() + 1, step = 0.01), np.arange(start = X_point[:, 1].min() - 1, stop = X_point[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('green', 'blue'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_point)): plt.scatter(X_point[y_point == j, 0], X_point[y_point == j, 1], c = ListedColormap(('green', 'blue'))(i), label = j) plt.title('K-NN Training set') plt.xlabel('Age') plt.ylabel('Salary') plt.legend() # Visualising the Training set results from matplotlib.colors import ListedColormap X_point, y_point = X_test, y_test X1, X2 = np.meshgrid(np.arange(start = X_point[:, 0].min() - 1, stop = X_point[:, 0].max() + 1, step = 0.01), np.arange(start = X_point[:, 1].min() - 1, stop = X_point[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('green', 'blue'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_point)): plt.scatter(X_point[y_point == j, 0], X_point[y_point == j, 1], c = ListedColormap(('green', 'blue'))(i), label = j) plt.title('K-NN Training set') plt.xlabel('Age') plt.ylabel('Salary') plt.legend() ###Output 'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points. 'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points. ###Markdown Amir Shokri St code : 9811920009 E-mail : [email protected] K-Nearest Neighbour (KNN) ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/Users/Amirsh.nll/Downloads/glass'): for filename in filenames: print(os.path.join(dirname, filename)) data = pd.read_csv('glass.csv', encoding ='latin1') data.info() data.head(20000) y = data['Type'].values y = y.reshape(-1,1) x_data = data.drop(['Type'],axis = 1) print(x_data) x = (x_data - np.min(x_data)) / (np.max(x_data) - np.min(x_data)).values x.head(20000) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.5,random_state=100) y_train = y_train.reshape(-1,1) y_test = y_test.reshape(-1,1) print("x_train: ",x_train.shape) print("x_test: ",x_test.shape) print("y_train: ",y_train.shape) print("y_test: ",y_test.shape) from sklearn.neighbors import KNeighborsClassifier K = 1 knn = KNeighborsClassifier(n_neighbors=K) knn.fit(x_train, y_train.ravel()) print("When K = {} neighnors , KNN test accuracy: {}".format(K, knn.score(x_test, y_test))) print("When K = {} neighnors , KNN train accuracy: {}".format(K, knn.score(x_train, y_train))) ran = np.arange(1,30) train_list = [] test_list = [] for i,each in enumerate(ran): knn = KNeighborsClassifier(n_neighbors=each) knn.fit(x_train, y_train.ravel()) test_list.append(knn.score(x_test, y_test)) train_list.append(knn.score(x_train, y_train)) plt.figure(figsize=[15,10]) plt.plot(ran,test_list,label='Test Score') plt.plot(ran,train_list,label = 'Train Score') plt.xlabel('Number of Neighbers') plt.ylabel('RI/Na/Mg/Al/Si/K/Ca/Ba/Fe') plt.xticks(ran) plt.legend() print("Best test score is {} and K = {}".format(np.max(test_list), test_list.index(np.max(test_list))+1)) print("Best train score is {} and K = {}".format(np.max(train_list), train_list.index(np.max(train_list))+1)) ###Output Best test score is 0.6448598130841121 and K = 1 Best train score is 1.0 and K = 1 ###Markdown KNN ClassifierDatabase from: https://www.freecodecamp.org/news/how-to-build-your-first-neural-network-to-predict-house-prices-with-keras-f8db83049159/ ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('/data/housepricedata.csv') dataset.head() X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 10].values # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # Fitting K-NN to the Training set from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2) classifier.fit(X_train, y_train) #Predicting the Test set results y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix, classification_report cm = confusion_matrix(y_test, y_pred) c = classification_report(y_test, y_pred) cm # Applying k-Fold Cross Validation from sklearn.model_selection import cross_val_score accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10) accuracies.mean() #Classification Metrics print(c) ###Output precision recall f1-score support 0 0.88 0.91 0.90 179 1 0.91 0.88 0.90 186 accuracy 0.90 365 macro avg 0.90 0.90 0.90 365 weighted avg 0.90 0.90 0.90 365 ###Markdown COMPSCI 589 HW1 Name: Haochen Wang SECTION 0: Load Libraries ###Code import sklearn.model_selection from scipy import stats import numpy as np import csv import math import matplotlib.pyplot as plt from operator import itemgetter from collections import Counter ###Output _____no_output_____ ###Markdown SECTION 1: Evaluating KNN ###Code #Load the Iris data file using python csv module knn_file = open('iris.csv') csvreader = csv.reader(knn_file) knnd = [] for row in csvreader: knnd.append(row) knndata = [] for row in knnd: c = [] c.append(float(row[0])) c.append(float(row[1])) c.append(float(row[2])) c.append(float(row[3])) c.append(row[4]) knndata.append(c) # print(knndata) # Implementing Helper functions # Normalize module def mini(col): min = col[0] for val in col: if val < min: min = val return min def maxi(col): max = col[0] for val in col: if val > max: max = val return max def normalizationall(col, max, min): newarr = [] for val in col: newarr.append((val-min)/(max-min)) return newarr def normalization(col): min = mini(col) max = maxi(col) newarr = [] for val in col: newarr.append((val-min)/(max-min)) return newarr, min, max def vote(arr): return max(set(arr), key=arr.count) # Split the Training and Testing Data def split(dat, ranumber): traknn, tesknn = sklearn.model_selection.train_test_split(dat, train_size=0.8, test_size=0.2, random_state=ranumber, shuffle=True) return traknn, tesknn # trainknn, testknn = split(knndata, 589) # Euclidean distance def edistance(a, b): a = np.array(a) b = np.array(b) s = np.linalg.norm(a - b) return s # print(edistance([1,1,1,4],[5,5,5,2])) # KD-Tree # I will do it later if I have enough time. # KNN Helpers # def seperate_d_c(data): # dat = [] # cat = [] # all = [] # for row in data: # da = [] # da.append(float(row[0])) # da.append(float(row[1])) # da.append(float(row[2])) # da.append(float(row[3])) # dat.append(da) # al = da.copy() # al.append(row[4]) # all.append(al) # cat.append(row[4]) # return dat, cat, all # trainknndata, trainknncat, ktr = seperate_d_c(trainknn) # testknndata, testknncat, kte = seperate_d_c(testknn) def transpose(dat): a = [] a.append([row[0] for row in dat]) a.append([row[1] for row in dat]) a.append([row[2] for row in dat]) a.append([row[3] for row in dat]) if len(dat[0]) > 4: a.append([row[4] for row in dat]) return a def normaltab(traindat, testdat): trainnom = [] testnom = [] i = 0 for col in traindat: trarr = [] tearr = [] if i < 4: trarr, trmin, trmax = normalization(col) tearr = normalizationall(testdat[i], trmax, trmin) trainnom.append(trarr) testnom.append(tearr) i+=1 if len(traindat) == 5: trainnom.append(traindat[4]) testnom.append(testdat[4]) return trainnom, testnom def transback(dat): ret = [] i = 0 while i < len(dat[0]): row = [] for col in dat: row.append(col[i]) ret.append(row) i+=1 return ret def distarray(normpt, normeddat): pt1 = normpt[:-1] cat1 = normpt[-1] disarray = [] for ins in normeddat: pt2 = ins[:-1] cat2 = ins[-1] dis = edistance(pt1, pt2) disarray.append([dis,cat2]) return sorted(disarray, key=itemgetter(0)) def normflow(train, test): ttrainknn = transpose(train) ttestknn = transpose(test) normttrain, normttest = normaltab(ttrainknn,ttestknn) nrmtr, nrmte = transback(normttrain), transback(normttest) return nrmtr, nrmte # we use normtr, normte. stands for normal train & normal test. #KNN def knn(k, traindat, testdat): predict = [] correct = [col[-1] for col in testdat] for datpt in testdat: distlist = distarray(datpt, traindat) catlist = [col[1] for col in distlist[:k]] predict.append(vote(catlist)) return predict, correct def knntrains(k, rand, dat): trainknn, testknn = split(dat, rand) normedtrain, normedtest =normflow(trainknn, testknn) predict, correct = knn(k, normedtrain, normedtest) return predict, correct def knntraintrain(k, rand, dat): trainknn, testknn = split(dat, rand) normedtrain, normedtest =normflow(trainknn, testknn) predict, correct = knn(k, normedtrain, normedtrain) return predict, correct def accuracy(pred, corr): i = 0 blist = [] while i < len(pred): blist.append(pred[i]==corr[i]) i+=1 return (Counter(blist)[True])/len(blist) def kaccuracytest(k, r, data): p, c = knntrains(k, r, data) acc = accuracy(p, c) return acc def kaccuracytrain(k, r, data): p, c = knntraintrain(k, r, data) acc = accuracy(p, c) return acc # print(kaccuracytest(19, 589, knndata)) # print(kaccuracytrain(19, 589, knndata)) # The Statistical Process for the kNN def statdatatest(data): k = 1 result_list = [] while k <= 51: random = 11589 alist = [] while random < 11689: alist.append(kaccuracytest(k, random, data)) random += 5 result_list.append(alist) k+=2 return np.array(result_list) def statdatatrain(data): k = 1 result_list = [] while k <= 51: random = 11589 alist = [] while random < 11689: alist.append(kaccuracytrain(k, random, data)) random += 5 result_list.append(alist) k+=2 return np.array(result_list) # narray = statdatatest(knndata) # print(narray.std(axis=1)) k = np.arange(1,52,2) narraytrain = statdatatrain(knndata) narraytest = statdatatest(knndata) acctrain = narraytrain.mean(axis=1) # print(acctrain) acctest = narraytest.mean(axis=1) stdtrain = narraytrain.std(axis=1) stdtest = narraytest.std(axis=1) # print(stdtrain) ###Output _____no_output_____ ###Markdown Q1.1 (12 Points) In the first graph, you should show the value of k on the horizontal axis, and on the vertical axis, the average accuracy of models trained over the training set, given that particular value of k. Also show, for each point in the graph, the corresponding standard deviation; you should do this by adding error bars to each point. The graph should look like the one in Figure 2 (though the “shape” of the curve you obtain may be different, of course). ###Code # Q1.1 # plt.scatter(k, acctrain) plt.errorbar(k, acctrain, yerr=stdtrain, fmt="-o", color = 'r', alpha = 0.6) plt.title("KNN using Training Data") plt.xlabel("K value") plt.ylabel("Accuracy") plt.show() ###Output _____no_output_____ ###Markdown Q1.2 (12 Points) In the second graph, you should show the value of k on the horizontal axis, and on the vertical axis, the average accuracy of models trained over the testing set, given that particular value of k. Also show, for each point in the graph, the corresponding standard deviation by adding error bars to the point. ###Code # Q1.2 # plt.scatter(k, acctest) plt.errorbar(k, acctest, yerr=stdtest, fmt="-o", color = 'blue', alpha = 0.6) plt.title("KNN using Testing Data") plt.xlabel("K value") plt.ylabel("Accuracy") plt.show() # print(acctrain,stdtrain) # print(acctest,stdtest) # ww = np.percentile(acctest, 25, interpolation = 'midpoint') # print(ww) plt.errorbar(k, acctrain, yerr=stdtrain, fmt="-o", color = 'red', alpha = 0.6, label= "Train") plt.errorbar(k, acctest, yerr=stdtest, fmt="-o", color = 'blue', alpha = 0.6, label= "Test") plt.legend() plt.title("KNN using Testing vs. Training Data") plt.xlabel("K value") plt.ylabel("Accuracy") plt.show() ###Output _____no_output_____ ###Markdown 0. Dependências ###Code import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # database from sklearn.datasets import load_iris ###Output _____no_output_____ ###Markdown 1. Introdução 2. Dados ###Code iris = load_iris() df = pd.DataFrame(data=iris.data, columns=iris.feature_names) df['class'] = iris.target df['class'] = df['class'].map({0:iris.target_names[0], 1:iris.target_names[1], 2:iris.target_names[2]}) df.head(10) df.describe() x = iris.data y = iris.target.reshape(-1, 1) print(x.shape, y.shape) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42, stratify=y) print(x_train.shape, y_train.shape) print(x_test.shape, y_test.shape) ###Output (105, 4) (105, 1) (45, 4) (45, 1) ###Markdown 3. Implementação Métricas de Distância ###Code def l1_distance(a, b): return np.sum(np.abs(a - b), axis=1) def l2_distance(a, b): return np.sqrt(np.sum((a - b)**2, axis=1)) ###Output _____no_output_____ ###Markdown Classificador ###Code class kNearestNeighbor(object): def __init__(self, n_neighbors=1, dist_func=l1_distance): self.n_neighbors = n_neighbors self.dist_func = dist_func def fit(self, x, y): self.x_train = x self.y_train = y def predict(self, x): y_pred = np.zeros((x.shape[0], 1), dtype=self.y_train.dtype) for i, x_test in enumerate(x): distances = self.dist_func(self.x_train, x_test) nn_index = np.argsort(distances) nn_pred = self.y_train[nn_index[:self.n_neighbors]].ravel() y_pred[i] = np.argmax(np.bincount(nn_pred)) return y_pred ###Output _____no_output_____ ###Markdown 4. Teste ###Code knn = kNearestNeighbor(n_neighbors=3) knn.fit(x_train, y_train) y_pred = knn.predict(x_test) print('Acurácia: {:.2f}%'.format(accuracy_score(y_test, y_pred)*100)) knn = kNearestNeighbor() knn.fit(x_train, y_train) list_res = [] for p in [1, 2]: knn.dist_func = l1_distance if p == 1 else l2_distance for k in range(1, 10, 2): knn.n_neighbors = k y_pred = knn.predict(x_test) acc = accuracy_score(y_test, y_pred)*100 list_res.append([k, 'l1_distance' if p == 1 else 'l2_distance', acc]) df = pd.DataFrame(list_res, columns=['k', 'dist. func.', 'acurácia']) df ###Output _____no_output_____ ###Markdown Comparação com o Scikit-learn ###Code from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=5, p=2) knn.fit(x_train, y_train.ravel()) list_res = [] for p in [1, 2]: knn.p = p for k in range(1, 10, 2): knn.n_neighbors = k y_pred = knn.predict(x_test) acc = accuracy_score(y_test, y_pred)*100 list_res.append([k, 'l1_distance' if p == 1 else 'l2_distance', acc]) df = pd.DataFrame(list_res, columns=['k', 'dist. func.', 'acurácia']) df ###Output _____no_output_____ ###Markdown Import Libraries ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Calculate distance ###Code def calculateEucledianDistance(data,centroidInex): dist= np.zeros((len(data),len(centroidInex))) for i in range(len(centroidInex)): for j in range (len(data)): dist[j][i]=pow(sum(pow(centroidInex[i] - data.loc[j,:],2)),1/2) return dist def calculatemanhatanDistance(data,centroidInex): dist= np.zeros((len(data),len(centroidInex))) for i in range(len(centroidInex)): for j in range (len(data)): dist[j][i]=sum(abs(centroidInex[i] - data.loc[j,:])) return dist ###Output _____no_output_____ ###Markdown Calculate Clustures ###Code def GetClustures(dist): distdf=pd.DataFrame(dist) clusture= np.zeros(len(dist)) for i in range(len(dist)): clusture[i]=distdf.loc[i,:].idxmin() return clusture ###Output _____no_output_____ ###Markdown RMSE ###Code def GetRootMeanSquareError(dist): distdf=pd.DataFrame(dist) error=distdf[:].min(axis=1).mean() return error ###Output _____no_output_____ ###Markdown Update Centroids ###Code def UpdateCentroids(data,clusture): data["centroid"]=clusture cent=data.groupby("centroid").mean() data.drop('centroid', axis=1,inplace=True) return cent.values ###Output _____no_output_____ ###Markdown Set Initial parameters here ###Code #required parameters numberOfDataPoints=500 dimensions=12 actualClustures=5 numberOfClustures=15 iterations=10 delta=0.1 ###Output _____no_output_____ ###Markdown Random data generataion from normal distribution ###Code npData=np.zeros((1,dimensions)) for i in range(actualClustures): #Generate data with different menans and standard deviations npData=np.append(npData,np.random.normal(20+i*30,5,(numberOfDataPoints//numberOfClustures,dimensions)),axis=0) #first index for shape npData=np.delete(npData,0,0) ###Output _____no_output_____ ###Markdown Data distribution ###Code data=pd.DataFrame(npData) data.describe() ###Output _____no_output_____ ###Markdown Algorithem ###Code deltaError=0 RMSE= np.zeros(numberOfClustures-1) #loop k=2 to number of clustures for m in range(2,numberOfClustures+1): #calculating clusture's centroid centroids=np.random.randint(low=data.min()[0]+10,high=data.max()[0]-10,size=(m),dtype=int) centroids.reshape(m,1) centroids=np.repeat(centroids,len(data.columns)) centroids=centroids.reshape(m,len(data.columns)) #showing plot on intial value of centroids on data print("Before:") plt.scatter(data[0],data[1]) plt.scatter(centroids[:,0],centroids[:,1]) plt.show() #convergence can be controlled via number of iterations and delta you can change value according to your requiremnts while i in range(iterations): #delete target clusture column if exist if "centroid" in data.columns: data.drop('centroid', axis=1,inplace=True) #calculating Eucleadian distance dist=calculateEucledianDistance(data,centroids) #calulating Root mean square Error error=GetRootMeanSquareError(dist) print("Iterations RMSE :", error) #find clustures clusture=GetClustures(dist) #update centroids centroids=UpdateCentroids(data,clusture.astype(int)) #there is a possiblity that centroid can be lost because of random pick I am trying to adjust into data points while(len(centroids)!=m): centroid=np.random.randint(low=data.min()[0]+10,high=data.max()[0]-10,size=(1),dtype=int) centroid=centroid.repeat(len(data.columns)) centroid=centroid.reshape(1,len(data.columns)) centroids=np.vstack((centroids,centroid)) centroid=0 #Delta stoping condtion of convergence if abs(error-deltaError)< delta: break deltaError=error #RMSE for a given value of K RMSE[m-2]=error print("RMSE :",error) #plot after centroids convergence print("After:") plt.scatter(data[0],data[1]) plt.scatter(centroids[:,0],centroids[:,1]) plt.show() plt.plot(range(2,numberOfClustures+1),RMSE) deltaError=0 RMSE= np.zeros(numberOfClustures-1) #loop k=2 to number of clustures for m in range(2,numberOfClustures+1): #calculating clusture's centroid centroids=np.random.randint(low=data.min()[0]+10,high=data.max()[0]-10,size=(m),dtype=int) centroids.reshape(m,1) centroids=np.repeat(centroids,len(data.columns)) centroids=centroids.reshape(m,len(data.columns)) #showing plot on intial value of centroids on data print("Before:") plt.scatter(data[0],data[1]) plt.scatter(centroids[:,0],centroids[:,1]) plt.show() #convergence can be controlled via number of iterations and delta you can change value according to your requiremnts while i in range(iterations): #delete target clusture column if exist if "centroid" in data.columns: data.drop('centroid', axis=1,inplace=True) #calculating Eucleadian distance dist=calculatemanhatanDistance(data,centroids) #calulating Root mean square Error dist_error=calculateEucledianDistance(data,centroids) error=GetRootMeanSquareError(dist_error) print("Iterations RMSE :", error) #find clustures clusture=GetClustures(dist) #update centroids centroids=UpdateCentroids(data,clusture.astype(int)) #there is a possiblity that centroid can be lost because of random pick I am trying to adjust into data points while(len(centroids)!=m): centroid=np.random.randint(low=data.min()[0]+10,high=data.max()[0]-10,size=(1),dtype=int) centroid=centroid.repeat(len(data.columns)) centroid=centroid.reshape(1,len(data.columns)) centroids=np.vstack((centroids,centroid)) centroid=0 #Delta stoping condtion of convergence if abs(error-deltaError)< delta: break deltaError=error #RMSE for a given value of K RMSE[m-2]=error print("RMSE :",error) #plot after centroids convergence print("After:") plt.scatter(data[0],data[1]) plt.scatter(centroids[:,0],centroids[:,1]) plt.show() ###Output Before: ###Markdown Plot RMSE vs K ###Code plt.plot(range(2,numberOfClustures+1),RMSE) ###Output _____no_output_____ ###Markdown K Nearest NeighborThis algorithm selects k nearest neighbors from a given data point and assinges labels according to the neighborhood. Advantages:* No assumption about data* Insensitive to outliersDisadvantages* Requires huge memory* Requires computationsOften it is called instance based or lazy method. It saves all the instances and searches for neighbors or closest elements. K is a very important hyper-parameter. After finding the labels of K nearest neighbor it then uses some aggreagting technique. * Majority Voting (classification)* Weighted Voting (classification)* Uniform (regression)* distance weighted (regression) Lets create a dummy dataset and see how it works ###Code import numpy as np feature_data = np.asarray([[0.0,1.0], [-0.01,1.1], [1.1,0.01], [.99,-0.01]]) labels= np.asarray([1,1,0,0]) ###Output _____no_output_____ ###Markdown Visualize the data ###Code import matplotlib.pyplot as plt plt.scatter(feature_data[:,0],feature_data[:,1], (labels+1)*15,(labels+1)*15) ###Output _____no_output_____ ###Markdown Implementation of KNN ###Code from numpy import * import operator def classifyKNN(test_x,X,y,k): # change the y label to vector y=np.reshape(y,(y.shape[0],)) dataSetSize = X.shape[0] diffMat = np.tile(test_x, (dataSetSize,1)) - X sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() classCount={} for i in range(k): voteIlabel = y[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] ###Output _____no_output_____ ###Markdown Test with a simple point ###Code classifyKNN([0.8,0],feature_data,labels,3) ###Output _____no_output_____ ###Markdown lets read a larger datasetIn this dataset there are three features and a class label. The class label has three discrete levels:* A: does not like* B: like for long period* C: like for small period Three numeric features are there. They are:* Number of frequent flyer miles earned per year* Percentage of time spent playing video games* Liters of ice cream consumed per week ###Code import pandas as pn data=pn.read_csv("https://raw.githubusercontent.com/swakkhar/MachineLearning/master/KNNDataSet.txt",sep='\t',header=None) data print(type(data)) import numpy as np data = np.asarray(data) data data_X=data[:,:-1] data_y=data[:,-1] data_X.shape print(data_y.shape) data_y=np.asarray([0 if i == 'A' else 1 if i == 'B' else 2 for i in data_y]) import matplotlib.pyplot as plt plt.scatter(data_X[:,1],data_X[:,2],data_y*15+5,data_y*15+5) plt.scatter(data_X[:,0],data_X[:,2],data_y*15+5,data_y*15+5) plt.scatter(data_X[:,0],data_X[:,1],data_y*15+5,data_y*15+5) def TestWithOutNormalization(): hoRatio = 0.10 m = data_X.shape[0] numTestVecs = int(m*hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = classifyKNN(data_X[i,:],data_X[numTestVecs:m,:],data_y[numTestVecs:m],3) #print "the classifier came back with: %d, the real answer is: %d"% (classifierResult, datingLabels[i]) if classifierResult != data_y[i]: errorCount += 1.0 print (errorCount/float(numTestVecs)) TestWithOutNormalization() ###Output 0.24 ###Markdown -1 2 3 -1 - (-1) / (3-(-1)) = 02-(-1) / 4= 0.75 ###Code def autoNorm(dataSet): minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = zeros(shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - tile(minVals, (m,1)) normDataSet = normDataSet/tile(ranges, (m,1)) return normDataSet, ranges, minVals def TestWithNormalization(): hoRatio = 0.10 m = data_X.shape[0] norm_X,r,mv=autoNorm(data_X) # first call normalization numTestVecs = int(m*hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = classifyKNN(norm_X[i,:],norm_X[numTestVecs:m,:],data_y[numTestVecs:m],3) #print "the classifier came back with: %d, the real answer is: %d"% (classifierResult, datingLabels[i]) if classifierResult != data_y[i]: errorCount += 1.0 print (errorCount/float(numTestVecs)) TestWithNormalization() ###Output 0.05 ###Markdown Work with hand written digits ###Code digits_X= pn.read_csv("https://raw.githubusercontent.com/swakkhar/MachineLearning/master/Codes/X.csv",header=None) digits_y= pn.read_csv("https://raw.githubusercontent.com/swakkhar/MachineLearning/master/Codes/Y.csv",header=None) digits_X=np.asarray(digits_X) digits_y=np.asarray(digits_y) digits_X.shape digits_y.shape import matplotlib.pyplot as plt def digitShow(x): plt.imshow(x); plt.colorbar() plt.show() roW_indeX=np.random.randint(0,5000) print(roW_indeX) digitShow((np.reshape(digits_X[roW_indeX,:],(20,20))).T) print(digits_y[roW_indeX,0]) def TestDigitData(): hoRatio = 0.10 m = digits_X.shape[0] numTestVecs = int(m*hoRatio) errorCount = 0.0 # we must randomize the data before sending it to the classifier for i in range(numTestVecs): classifierResult = classifyKNN(digits_X[i,:],digits_X[numTestVecs:m,:],digits_y[numTestVecs:m],3) #print "the classifier came back with: %d, the real answer is: %d"% (classifierResult, datingLabels[i]) if classifierResult != digits_y[i]: errorCount += 1.0 print (errorCount/float(numTestVecs)) TestDigitData() def TestDigitDataShuffled(): hoRatio = 0.10 m = digits_X.shape[0] numTestVecs = int(m*hoRatio) errorCount = 0.0 # we must randomize the data before sending it to the classifier from sklearn.utils import shuffle shuffled_X, shuffled_y = shuffle(digits_X,digits_y, random_state=0) for i in range(numTestVecs): classifierResult = classifyKNN(shuffled_X[i,:],shuffled_X[numTestVecs:m,:],shuffled_y[numTestVecs:m],3) #print "the classifier came back with: %d, the real answer is: %d"% (classifierResult, datingLabels[i]) if classifierResult != shuffled_y[i]: errorCount += 1.0 print (errorCount/float(numTestVecs)) TestDigitDataShuffled() ###Output 0.062 ###Markdown Lets play with regression problem ###Code np.random.seed(0) reg_X = np.sort(5 * np.random.rand(40, 1), axis=0) T = np.linspace(0, 5, 500)[:, np.newaxis] reg_y = np.sin(reg_X).ravel() # Add noise to targets reg_y[::5] += 1 * (0.5 - np.random.rand(8)) plt.scatter(reg_X, reg_y, color='darkorange', label='data') def regressionKNNUniform(tx,X,y,k): y=np.reshape(y,(y.shape[0],)) dataSetSize = X.shape[0] diffMat = np.tile(tx, (dataSetSize,1)) - X sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() predicted_value=0 for i in range(k): predicted_value = predicted_value+ y[sortedDistIndicies[i]] * 1 return predicted_value / k y_u = [regressionKNNUniform(t,reg_X,reg_y,3) for t in T] plt.scatter(reg_X, reg_y, color='darkorange', label='data') plt.plot(T, y_u, color='navy', label='prediction') def regressionKNNweighted(tx,X,y,k): y=np.reshape(y,(y.shape[0],)) dataSetSize = X.shape[0] diffMat = np.tile(tx, (dataSetSize,1)) - X sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() predicted_value=0 s_w = 0 for i in range(k): predicted_value = predicted_value+ y[sortedDistIndicies[i]] * (1.0/distances[sortedDistIndicies[i]]) s_w = s_w+ 1.0/distances[sortedDistIndicies[i]] return predicted_value / s_w y_u = [regressionKNNweighted(t,reg_X,reg_y,3) for t in T] plt.scatter(reg_X, reg_y, color='darkorange', label='data') plt.plot(T, y_u, color='navy', label='prediction') import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 10 # import some data to play with iris = datasets.load_iris() # we only take the first two features. We could avoid this ugly # slicing by using a two-dim dataset X = iris.data[:, :2] y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue']) cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue']) for weights in ['uniform', 'distance']: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=20) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show() ###Output _____no_output_____ ###Markdown csv 데이터 불러오기 ###Code taxi_data = pandas.DataFrame.from_csv("/Users/KYD/Downloads/refined_taxi_data_v4.csv") ###Output _____no_output_____ ###Markdown 데이터, 타겟, 트레이닝 셋, 테스트 셋 만들기 ###Code taxi_data_data = taxi_data.as_matrix(['total_amount', 'pickup_hour']) taxi_data_target = taxi_data.as_matrix(['area']) taxi_data_data_training = taxi_data_data[:710000] taxi_data_data_test = taxi_data_data[710000:-1] taxi_data_target_training = taxi_data_target[:710000] taxi_data_target_test = taxi_data_target[710000:-1] taxi_data_data ###Output _____no_output_____ ###Markdown 컬러맵 생성 ###Code cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) ###Output _____no_output_____ ###Markdown KNN 모델 만들기 ###Code n_neighbors = 15 clf = neighbors.KNeighborsClassifier(n_neighbors, weights='uniform') clf.fit(taxi_data_data_training, taxi_data_target_training.ravel()) ###Output _____no_output_____ ###Markdown 예측하기 ###Code clf.predict([12, 5]) clf.score(taxi_data_data_test, taxi_data_target_test) ###Output _____no_output_____ ###Markdown plot 만들기(경계 정하기) ###Code x_min, x_max = taxi_data_data_training[:, 0].min() - 1, taxi_data_data_training[:, 0].max() + 1 y_min, y_max = taxi_data_data_training[:, 1].min() - 1, taxi_data_data_training[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) plt.scatter(taxi_data_data_training[:, 0], taxi_data_data_training[:, 1], c=taxi_data_target_training, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification") ###Output _____no_output_____ ###Markdown K Nearest NeighborsImplementing the algorithm to train based on a set of data and return the prediction based on the 'k' nearest items Imports ###Code import numpy as np from collections import Counter ###Output _____no_output_____ ###Markdown Test dataWe're going to create some test data. Let's say we've got cats, dogs and dinosaurs with 3 measures - ear length, tail length, leg length.0 - cat, 1 - dog, 2 - dinosaur ###Code dic={0:'cat',1:'dog',2:'dinosaur'} X=np.random.rand(30,3) X[:10,0]+=0.2 X[10:20,0]+=0.5 X[:10,1]+=2 X[10:20,1]+=6 X[:10,2]+=4 X[10:20,2]+=6 X[20:,:]+=10 m,n=X.shape y=np.zeros((m,1)) y[:10]=0 y[10:20]=1 y[20:]=2 # set k k=7 # our example case example=np.array([[8,5.5,6]]) # Find distance for each case from the example X_y_distance=(np.sum((X-example)**2,1).reshape(m,1))**0.5 # Add the categorical data to the array X_y_distance=np.concatenate((X_y_distance,y),axis=1) # Sort the data by the closest to further matches X_y_distance=X_y_distance[X_y_distance[:,0].argsort()] # Create a Counter for all items to k cnt=Counter(X_y_distance[:k,1]) # print the item that has the max value for item in cnt.keys(): if cnt[item]==max(cnt.values()): print(dic[item]) print(cnt) ###Output dinosaur Counter({2.0: 4, 1.0: 3}) ###Markdown KNN as class ###Code class KNN: """K Nearest Neighbors algorithm Parameters ------------ X : numpy array Array should hold all relevant criteria. Data should be organized by case x feature y : numpy array Can be a flat array or with dimensions case x 1. Can hold categorical data as strings or integers: np.array(['a','b','a','c']) or np.array([0,1,0,2]) Available methods ------------- predict : function Used for the prediction of nearest neighbor""" def __init__(self,X,y): self.y_dic={} self.X=X self.m,self.n=X.shape self.y=self.categorize(y.reshape(self.m,1)) def categorize(self,y): m,n=y.shape new_y=np.zeros((m,1)) unique_y = np.unique(y) for i, item in enumerate(unique_y): self.y_dic[i]=item new_y[y==item]=i return new_y def predict(self,case,k): """Prediction method Parameters ------------ case : numpy array An array of features k : integer The number of nearest neighbors that should be compared. For best results use odd numbers Returns ------------ return_item : string/int Returns case classified based on K neighbors""" return_item=[] X_y_distance=(np.sum((self.X-case)**2,1).reshape(self.m,1))**0.5 X_y_distance=np.concatenate((X_y_distance,self.y),axis=1) X_y_distance=X_y_distance[X_y_distance[:,0].argsort()] cnt=Counter(X_y_distance[:k,1]) for item in cnt.keys(): if cnt[item]==max(cnt.values()): #print(self.y_dic[item]) return_item.append(self.y_dic[item]) if len(return_item)>1: print('More than one item returned. Please set k to odd') else: return_item=return_item[0] print('Nearest item: {0}'.format(return_item)) return return_item ###Output _____no_output_____ ###Markdown Testing ###Code a=KNN(X,y) a.predict(example,7) ###Output Nearest item: 2.0 ###Markdown create a function to calculate the distance between any row and the training data ###Code # function to calculate distance between two rows def distance(row1, row2): # row[:-1] beacause the label shouldn't be included distance = (row2[:-1] - row1[:-1])**2 sum = 0 for i in distance: sum += i return math.sqrt(sum) ###Output _____no_output_____ ###Markdown next will create a function to return an array containing the distances between a certain row and the whole training dataset ###Code # find the distance array between the sample row and the complete dataset # returns an array of distances def distances_array(example, dataset): distances = np.empty((0,2), int) id_ = 0 for row in dataset: distances = np.append(distances, np.array([[id_, distance(example, row)]]), axis=0) # must return id and distance id_ += 1 return distances ###Output _____no_output_____ ###Markdown to get the K-NN we need to sort the array resulting from the distances_array() and return the first K neighbors as an array ###Code # k neighbours array # outputs the nearest K neighbors to a data example # returns an array with the nearest K neighbours and their id's def k_neighbours(row, K, dataset): all_data = distances_array(row, dataset) sorted_all_data = all_data[np.argsort(all_data[:,1])] KNN = sorted_all_data[:K] return KNN ###Output _____no_output_____ ###Markdown the below predict function will use the row, and k_neighbours() to predict the outcome and return the accuracy: ###Code def predict2(row, k, dataset_train): x = k_neighbours(row, k, dataset_train) ids = np.array([int(id[0]) for id in x]) neighbors_labels = [] for example in range(len(dataset_train)): for id_ in ids: if id_ == example: neighbors_labels.append(int(dataset_train[example][-1])) true_label = row[-1] neighbors_labels_set = set(neighbors_labels) # we need to find p and accuracy # case 1: len(set(neighbour labels)) = 1 if len(neighbors_labels_set) == 1: # neigb label consists only of true label if true_label in neighbors_labels_set: p = neighbors_labels[0] accuracy = 1 return p, accuracy # same but tl is not in neigh label else: # len(neighbors_labels_set) == 1 and true_label not in neighbors_labels_set: p = neighbors_labels[0] accuracy = 0 return p, accuracy # case 2: neighbor labels are mixed values else: nominees = find_ties(neighbors_labels) max_label = max(neighbors_labels, key = neighbors_labels.count) # pred label is in the neigh labels and not in the nominees then it has the majority if true_label == max_label and max_label not in nominees: p = max_label accuracy = 1 return p, accuracy elif true_label != max_label and max_label not in nominees: p = max_label accuracy = 0 return p, accuracy # tl is in nominees elif true_label in nominees: p = nominees accuracy = 1/len(p) return p, accuracy else: p = nominees accuracy = 0 return p, accuracy ###Output _____no_output_____ ###Markdown find_ties() is a helper function, that will examine the list of k_neighbours and retun a set of ties in the outcome ###Code def find_ties(outcomes): # find number of labels in the final array unique_items, counts = np.unique(outcomes, return_counts=True) nominees = [] k = 0 for i in counts: m = 0 for j in counts: if i == j and unique_items[k] != unique_items[m]: nominees.append(unique_items[k]) m += 1 k += 1 return set(nominees) ###Output _____no_output_____ ###Markdown Start here ###Code # load our training and testing sets data_train = np.loadtxt('UCI_Dataset/pendigits_training.txt') data_test = np.loadtxt('UCI_Dataset/pendigits_test.txt') k=5 # normalize the data data_train = (data_train - np.mean(data_train))/np.std(data_train) data_test = (data_train - np.mean(data_train))/np.std(data_train) result = [] id_=0 for row in data_test[:50]: p,a = predict2(row, k, data_train) result.append([id_, row[-1], p, a]) id_ += 1 # print something to show that its working if id_%20 == 0: print('reached id: ', id_) # print results result # save output to file: with open('5nn2.txt', 'w') as f: for item in result: f.write("%s\n" % item) data_train[:-1] ###Output _____no_output_____ ###Markdown k-nearest neighbors algorithmhttps://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" # Assign colum names to the dataset names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class'] # Read dataset to pandas dataframe dataset = pd.read_csv(url, names=names) dataset.head() X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 4].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) ###Output _____no_output_____ ###Markdown http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html ###Code from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors=5) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown * https://en.wikipedia.org/wiki/Confusion_matrix* http://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/ ###Code from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) error = [] # Calculating error for K values between 1 and 40 for i in range(1, 40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) pred_i = knn.predict(X_test) error.append(np.mean(pred_i != y_test)) plt.figure(figsize=(12, 6)) plt.plot(range(1, 40), error, color='red', linestyle='dashed', marker='o', markerfacecolor='blue', markersize=10) plt.title('Error Rate K Value') plt.xlabel('K Value') plt.ylabel('Mean Error') ###Output _____no_output_____ ###Markdown KNN works on euclidean distance. Lets see the implementation of euclidean distance ###Code from math import sqrt #Creating the data points point1 = [2,4] point2 = [4,7] #euclidean distance = sqrt(summation_till_dimensions((q - p)^2)) #Example for two dimension euclidean_distance = sqrt((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2) print(euclidean_distance) ###Output 3.605551275463989 ###Markdown **KNN Algorithm** Creating manual dataset to perform knn: ###Code import numpy as np from math import sqrt from matplotlib import style import matplotlib.pyplot as plt from collections import Counter import warnings style.use('fivethirtyeight') dataset = {'g':[[1,2],[2,3],[3,1]], 'b': [[6,5],[7,7],[8,6]]} ###Output _____no_output_____ ###Markdown Below is the KNN algorithm:Initially defining the empty list of distances and then populating it with Euclidean distance and group to which distance is found. Here euclidean distance is obtained more efficiently with NumPy as below. ###Code def k_nearest_neighbors(data , predict, k=3): distances = [] for group in data: for features in data[group]: euclidean_distance = np.linalg.norm(np.array(features) - np.array(predict)) distances.append([euclidean_distance,group]) #Now getting the group in sorted order of distance for required k neighbors groups = [i[1] for i in sorted(distances)[:k]] #From the above groups picking the most common group result_group_list = Counter(groups).most_common(1)[0] result_group = result_group_list[0] return result_group ###Output _____no_output_____ ###Markdown Defining our new feature for prediction ###Code new_features = [5,7] ###Output _____no_output_____ ###Markdown Predicting the above-defined new feature with our algorithm and printing the predicted group ###Code results = k_nearest_neighbors(dataset , new_features, k=3) print(results) ###Output b ###Markdown Visualizing our predicted data with star (*) marker and the group color. ###Code [[plt.scatter(j[0],j[1], s =100, color =i) for j in dataset[i]] for i in dataset] plt.scatter(new_features[0],new_features[1],color = results,s =150,marker="*") plt.show() ###Output _____no_output_____ ###Markdown **Applying the algorithm on sklearn's breast cancer dataset** ###Code from sklearn.datasets import load_breast_cancer import pandas as pd import numpy as np import random from sklearn import preprocessing #Loading the data and forming the dataframe cancer = load_breast_cancer() df = pd.DataFrame(np.c_[cancer['data'], cancer['target']], columns= np.append(cancer['feature_names'], ['target'])) print(df) ###Output mean radius mean texture ... worst fractal dimension target 0 17.99 10.38 ... 0.11890 0.0 1 20.57 17.77 ... 0.08902 0.0 2 19.69 21.25 ... 0.08758 0.0 3 11.42 20.38 ... 0.17300 0.0 4 20.29 14.34 ... 0.07678 0.0 .. ... ... ... ... ... 564 21.56 22.39 ... 0.07115 0.0 565 20.13 28.25 ... 0.06637 0.0 566 16.60 28.08 ... 0.07820 0.0 567 20.60 29.33 ... 0.12400 0.0 568 7.76 24.54 ... 0.07039 1.0 [569 rows x 31 columns] ###Markdown Above dataset specifies various specifications regarding breast cancer and their categories, i.e., 1.0 represents the benign and 0.0 represents the malignant tumor. Applying the above KNN on the data ###Code #converting everthing to float and to list because after shuffling the data integrity remains intact full_data = df.astype(float).values.tolist() #shuffling random.shuffle(full_data) #Train test split from scratch test_size = 0.2 train_set = {0:[],1:[]} test_set = {0:[],1:[]} train_data = full_data[:-int(test_size*len(full_data)) ] #first 80% of data test_data = full_data[-int(test_size*len(full_data)): ] #Last 20% data #populating dictionary for knn function for i in train_data: train_set[i[-1]].append(i[:-1]) #It will append the values to 0 if the type of cancer specified in train data in maline i.e. 0 else in 1 for i in test_data: test_set[i[-1]].append(i[:-1]) #Now prdict will be from test set and data will be from train set in knn function correct = 0 total =0 for test in test_set: for data in test_set[test]: group = k_nearest_neighbors(train_set,data,k=5) if test == group: correct += 1 total+=1 print('Accuracy:',correct/total) ###Output _____no_output_____ ###Markdown Amir Shokri St code : 9811920009 E-mail : [email protected] K-Nearest Neighbour (KNN) ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/Users/Amirsh.nll/Downloads/KNN-AmirShokri'): for filename in filenames: print(os.path.join(dirname, filename)) data = pd.read_csv('genderclassifier.csv', encoding ='latin1') data.info() data = data.drop(['_unit_id', '_golden', '_unit_state', '_trusted_judgments', '_last_judgment_at', 'profile_yn', 'profile_yn:confidence', 'created', 'description', 'gender_gold', 'link_color', 'profile_yn_gold', 'profileimage', 'sidebar_color', 'text', 'tweet_coord', 'tweet_created', 'tweet_id', 'tweet_location', 'user_timezone', 'gender:confidence', 'gender', 'name'],axis=1) data.head(20000) y = data['tweet_count'].values y = y.reshape(-1,1) x_data = data.drop(['tweet_count'],axis = 1) print(x_data) x = (x_data - np.min(x_data)) / (np.max(x_data) - np.min(x_data)).values x.head(20000) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.5,random_state=100) y_train = y_train.reshape(-1,1) y_test = y_test.reshape(-1,1) print("x_train: ",x_train.shape) print("x_test: ",x_test.shape) print("y_train: ",y_train.shape) print("y_test: ",y_test.shape) from sklearn.neighbors import KNeighborsClassifier K = 1 knn = KNeighborsClassifier(n_neighbors=K) knn.fit(x_train, y_train.ravel()) print("When K = {} neighnors , KNN test accuracy: {}".format(K, knn.score(x_test, y_test))) print("When K = {} neighnors , KNN train accuracy: {}".format(K, knn.score(x_train, y_train))) ran = np.arange(1,30) train_list = [] test_list = [] for i,each in enumerate(ran): knn = KNeighborsClassifier(n_neighbors=each) knn.fit(x_train, y_train.ravel()) test_list.append(knn.score(x_test, y_test)) train_list.append(knn.score(x_train, y_train)) plt.figure(figsize=[15,10]) plt.plot(ran,test_list,label='Test Score') plt.plot(ran,train_list,label = 'Train Score') plt.xlabel('Number of Neighbers') plt.ylabel('fav_number/retweet_count') plt.xticks(ran) plt.legend() print("Best test score is {} and K = {}".format(np.max(test_list), test_list.index(np.max(test_list))+1)) print("Best train score is {} and K = {}".format(np.max(train_list), train_list.index(np.max(train_list))+1)) ###Output Best test score is 0.015561097256857856 and K = 1 Best train score is 0.4479800498753117 and K = 1 ###Markdown Implementation NotesKnn is straight forward algortihm. In order to classify a new data point, it finds the k nearest neighbors of that pointand classifies according to the majority label.Here are some notes regarding my Implementation: note1:I'm using the trivial Euclidean distance. That is:$$ d(x,y) = \sqrt{\sum _{i}{(x_i-y_i)^2}} $$Which is the Euclidean Norm. note2:Choosing the k-smallest elements in an array is an famous interesting issue:1. Trivial: $O(k\cdot n)$Iterate k times and pick the next minimum element2. Better: $O(n\cdot log(n))$Sort the array keeping the original indices and pick the first k.3. Best: $O(n)$This is the optimal solution Selection algorithm. Here I use numpy's partition which implements "introselect" algorithm. ###Code class kNNClassifier: def __init__(self, n_neighbors): self.n_neighbors = n_neighbors self.data = np.empty((1,1)) self.labels = np.empty((1,1)) def fit(self, X, y): self.data = X self.labels= y def _predict_one_point(self,point): dist = np.linalg.norm(self.data-point,axis=1) # note 1 k_smallets = np.argpartition(dist, self.n_neighbors)[:self.n_neighbors] #note 2 label_count = np.unique(self.labels[k_smallets],return_counts=True) return label_count[0][label_count[1].argmax()] def predict(self, X): preds = np.zeros((X.shape[0],1)) for i in range(X.shape[0]): preds[i]=self._predict_one_point(X[i]) return preds.T[0] def score(self, predictions, true_labels): return (np.count_nonzero(predictions-true_labels.astype("int"))/predictions.size) ###Output _____no_output_____ ###Markdown Here we are Testing its performence on the MNIST dataset while copmaring it to sklearn performence. Load Data ###Code mnist = fetch_openml('mnist_784', as_frame=False) data = mnist['data'] labels = mnist['target'] idx = np.random.RandomState(0).choice(70000, 11000) train = data[idx[:10000], :].astype(int) train_labels = labels[idx[:10000]] test = data[idx[10000:], :].astype(int) test_labels = labels[idx[10000:]] ###Output _____no_output_____ ###Markdown Testing accuracy ###Code X_train, Y_train = train[:1000],train_labels[:1000] accuracy_map = {"k":[], "my_classifier": [], "sklearn_classifier": []} for k in [1,2,5,10,30,60,100]: accuracy_map["k"].append(k) knn_b = kNNClassifier(k) knn_b.fit(X_train,Y_train) preds_b = knn_b.predict(test) score_b = 1-knn_b.score(preds_b,test_labels) accuracy_map["my_classifier"].append(score_b) sklearn_knn = KNeighborsClassifier(n_neighbors=k) sklearn_knn.fit(X_train,Y_train) sklearn_score = sklearn_knn.score(test,test_labels) accuracy_map["sklearn_classifier"].append(sklearn_score) accuracy_table = pd.DataFrame(accuracy_map) accuracy_table sns.lineplot(x='k', y="my_classifier", data=accuracy_table) ###Output _____no_output_____ ###Markdown Training the knn model on MSR data and evaluating on 20% of the same dataset. ###Code X_train, X_test, y_train, y_test = train_test_split(msr, y_msr, train_size=0.8, random_state=33, shuffle=True) msr_vectorizer = CountVectorizer(max_features=1000) bow_train = msr_vectorizer.fit_transform(X_train['token']) sparse_matrix_train = pd.DataFrame(bow_train.toarray(), columns = msr_vectorizer.get_feature_names()) X_train_count = concat_loc_sum(sparse_matrix_train, X_train) bow_test = msr_vectorizer.transform(X_test['token']) sparse_matrix_test = pd.DataFrame(bow_test.toarray(), columns = msr_vectorizer.get_feature_names()) X_test_count = concat_loc_sum(sparse_matrix_test, X_test) msr_model = KNeighborsClassifier(n_neighbors=20) msr_model.fit(X_train_count, y_train) preds = msr_model.predict(X_test_count) print(classification_report(y_test, preds)) print('f1', f1_score(y_test, preds)) ###Output precision recall f1-score support 0 0.77 0.95 0.85 283 1 0.93 0.71 0.80 278 accuracy 0.83 561 macro avg 0.85 0.83 0.83 561 weighted avg 0.85 0.83 0.83 561 f1 0.8032786885245903 ###Markdown Evaluating MSR model on new data ###Code new_data = pd.read_csv('data/new/raw_new_dataset.csv') y_new = new_data['class'] new = new_data.drop(columns=['class']) X_new = msr_vectorizer.transform(new['token']) sparse_matrix_new = pd.DataFrame(X_new.toarray(), columns = msr_vectorizer.get_feature_names()) X_new_count = concat_loc_sum(sparse_matrix_new, new_data) new_preds = msr_model.predict(X_new_count) print(classification_report(y_new, new_preds)) print('f1', f1_score(y_new, new_preds)) ###Output precision recall f1-score support 0 0.50 0.97 0.66 724 1 0.64 0.06 0.11 737 accuracy 0.51 1461 macro avg 0.57 0.51 0.38 1461 weighted avg 0.57 0.51 0.38 1461 f1 0.10918114143920596 ###Markdown Apredizado Supervisionado: Classificação c/ Random Forest Importando as bibliotecas ###Code import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown 1. Aquisição de dados ###Code from sklearn.datasets import fetch_openml mnist = fetch_openml('mnist_784', version=1, cache=True, as_frame=False) mnist.target = mnist.target.astype(np.int8) #transforma as labels de string para int type(mnist) mnist.details mnist.DESCR mnist.data.shape mnist.target.shape # X,y = mnist.data.values, mnist.target.to_numpy() # Converte para np arrays X,y = mnist['data'], mnist['target'] X[30000] digito = X[10999].reshape(28,28) ###Output _____no_output_____ ###Markdown 2. Visualização dos dados ###Code plt.imshow(digito, cmap = mpl.cm.binary, interpolation="nearest") plt.axis("off") plt.show() y[10999] ###Output _____no_output_____ ###Markdown 3. Pré-processamento ###Code X_train, y_train, X_test, y_test = X[:60000], y[:60000], X[60000:], y[60000:] X_test.shape y_test.shape X_train.shape y_train.shape index = np.random.permutation(60000) X_train, y_train = X_train[index], y_train[index] index = np.random.permutation(10000) X_test, y_test = X_test[index], y_test[index] ###Output _____no_output_____ ###Markdown 5. Ajustando o Modelo ###Code from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV knn = KNeighborsClassifier() knn.get_params().keys() param_grid = { 'n_neighbors': [3,5,7], 'weights' : ['uniform', 'distance'], 'n_jobs': [-1] } grid_search = GridSearchCV(knn, param_grid, cv=5, scoring='accuracy') grid_search.fit(X_train, y_train) grid_search.best_params_ grid_search.best_score_ knn_best = KNeighborsClassifier(n_neighbors= 3, weights= 'distance', n_jobs= -1) knn_best.fit(X_train,y_train) knn_predictions = knn_best.predict(X_test) acc = sum(knn_predictions == y_test)/len(knn_predictions) print(acc) ###Output 0.9717 ###Markdown 6. Avaliando o Modelo ###Code from sklearn.metrics import accuracy_score accuracy_score(knn_predictions,y_test) from sklearn.metrics import confusion_matrix confusion_matrix(y_test,knn_predictions) ###Output _____no_output_____ ###Markdown Precision Score ###Code from sklearn.metrics import precision_score, recall_score precision_score(y_test, knn_predictions, average='weighted') ###Output _____no_output_____ ###Markdown Recall Score ###Code recall_score(y_test, knn_predictions, average='weighted') ###Output _____no_output_____ ###Markdown F1-score ###Code from sklearn.metrics import f1_score f1_score(y_test,knn_predictions, average='weighted') ###Output _____no_output_____ ###Markdown 2 - Shift() ###Code from scipy.ndimage.interpolation import shift def show_images(images, titles) -> None: n: int = len(images) f = plt.figure(figsize=(10, 10)) for i in range(n): # Debug, plot figure f.add_subplot(1, n, i + 1) plt.imshow(images[i]) plt.title(titles[i]) plt.axis('off') plt.show(block=True) ###Output _____no_output_____ ###Markdown deslocando com Shift ###Code index = 7 # uma imagem aleatoria do X_train img = X_train[index].reshape(28,28) #redimensiona a imgaem para a função shift() funcionar img.shape pixels = 5 # quantidade de pixel(s) a ser deslocado (na atividade pede 1pixel) right = [0,pixels] top = [-pixels,0] left = [0,-pixels] bottom = [pixels,0] img_shifted_right = shift(img, right, cval=0, order=0) img_shifted_top = shift(img, top, cval=0, order=0) img_shifted_left = shift(img, left, cval=0, order=0) img_shifted_bottom = shift(img, bottom, cval=0, order=0) images = [img, img_shifted_right, img_shifted_top, img_shifted_left, img_shifted_bottom] titles = ['original','right', 'top', 'left', 'bottom'] show_images(images, titles) # funcção para plotar e confirmar o deslocamento test = img_shifted_right.reshape(-1) # retorna a imagem para a dimensão original (784,) print('reshape -1: ', test.shape) print('label: ',y_train[index]) new_X_train = [[]]*300000 new_y_train = [[]]*300000 def shift_img(img, lb, cont, direction): pixels = 5 # quantidade de pixel(s) a ser deslocado right = [0,pixels] top = [-pixels,0] left = [0,-pixels] bottom = [pixels,0] if direction == 'right': img_shifted_right = shift(img, right, cval=0, order=0) # desloca a quantidade de pixels definida para a direita da imagem img_shifted_right = img_shifted_right.reshape(-1) # retorna a imagem para a dimensão original (784,) new_X_train[cont] = img_shifted_right.copy() elif direction == 'left': img_shifted_left = shift(img, left, cval=0, order=0) # desloca a quantidade de pixels definida para a esquerda da imagem img_shifted_left = img_shifted_left.reshape(-1) new_X_train[cont] = img_shifted_left.copy() elif direction == 'top': img_shifted_top = shift(img, top, cval=0, order=0) # desloca a quantidade de pixels definida para o topo da imagem img_shifted_top = img_shifted_top.reshape(-1) new_X_train[cont] = img_shifted_top.copy() elif direction == 'bottom': img_shifted_bottom = shift(img, bottom, cval=0, order=0) # desloca a quantidade de pixels definida para a direita img_shifted_bottom = img_shifted_bottom.reshape(-1) new_X_train[cont] = img_shifted_bottom.copy() def main(): loop = True x = 0 # contador do X_train cont = 0 # contador da nova base c_dir = 0 # contador das direções xt = 0 # contador do X_train original while loop: directions = ['right', 'left', 'top', 'bottom'] if x < 60000: img = X_train[x].reshape(28,28) # redimensiona a imagem para a função shift() funcionar lb = y_train[x] if cont < 60000: shift_img(img, lb, cont, directions[c_dir]) # right new_y_train[cont] = lb cont+=1 x+=1 elif cont >= 60000 and cont < 120000: shift_img(img, lb, cont, directions[c_dir]) # left new_y_train[cont] = lb cont+=1 x+=1 elif cont >= 120000 and cont < 180000: shift_img(img, lb, cont, directions[c_dir]) # top new_y_train[cont] = lb cont+=1 x+=1 elif cont >= 180000 and cont < 240000: shift_img(img, lb, cont, directions[c_dir]) # bottom new_y_train[cont] = lb cont+=1 x+=1 elif cont >= 240000 and cont < 300000: new_X_train[cont] = X_train[xt].copy() new_y_train[cont] = lb cont+=1 xt+=1 else: x = 0 c_dir += 1 if cont >= 300000: loop = False # Fim do loop import time start = time.time() print('Inicio da execução') main() end = time.time() print('fim da execução') print(end - start) #s egundos new_X_train = np.array(new_X_train) new_y_train = np.array(new_y_train) type(new_X_train) type(new_y_train) print(new_X_train.shape, new_y_train.shape) print(X_train.shape, y_train.shape) num = new_X_train[40400].reshape(28,28) plt.imshow(num, cmap = mpl.cm.binary, interpolation="nearest") plt.axis("off") plt.show() print(new_y_train[40400]) param_grid = { 'n_neighbors': [3,5,7], 'weights' : ['uniform', 'distance'], 'n_jobs': [-1] } grid_search = GridSearchCV(knn, param_grid, cv=5, scoring='accuracy') knn_best = KNeighborsClassifier(n_neighbors=3, weights='distance', n_jobs=-1) knn_best.fit(new_X_train,new_y_train) knn_predictions = knn_best.predict(new_X_train) acc = sum(knn_predictions == y_test)/len(knn_predictions) print(acc) ###Output _____no_output_____ ###Markdown Matriz de confusão ###Code from sklearn.metrics import accuracy_score accuracy_score(knn_predictions,y_test) from sklearn.metrics import confusion_matrix confusion_matrix(y_test,knn_predictions) ###Output _____no_output_____ ###Markdown Precision Score ###Code from sklearn.metrics import precision_score, recall_score precision_score(y_test, knn_predictions, average='weighted') ###Output _____no_output_____ ###Markdown Recall Score ###Code recall_score(y_test, knn_predictions, average='weighted') ###Output _____no_output_____ ###Markdown F1-score ###Code from sklearn.metrics import f1_score f1_score(y_test,knn_predictions, average='weighted') ###Output _____no_output_____ ###Markdown KNN - Aplicado a Medicina84198, Daiane Estenio\85398, Luís Paulino Fonteshttps://www.komen.org/wp-content/uploads/How-Hormones-Affect-Breast-Cancer_Portuguese.pdfhttps://www.espacodevida.org.br/seu-espaco/clinico/o-que-grau-de-agressividade-do-cncerhttp://www.oncoguia.org.br/conteudo/linfonodos-e-cancer/6814/1/ ###Code # Libs import math # Math def distancia_euclidiana(p1, p2): total = 0 for i in range(len(p1)): total += (p1[i] - p2[i]) ** 2 return math.sqrt(total) def escala_normalizada(x, v_max, v_min): return (x - v_min) / (v_max - v_min) # Util def ler_arquivo(filename, keys): amostras = [] total_descarte = 0 with open(filename, "r") as dataset: # Faz a leitura do arquivo informado (precisa ter extensão) for instancia in dataset.readlines(): x = instancia.replace("\n", "").split(",") try: # Tenta adicionar a amostra amostra_normalizada = normalizar_arquivo(x, keys) amostras.append(amostra_normalizada) except ValueError: # Em caso de erro, apenas incrementa o total de descarte total_descarte += 1 with open("output.data", "w") as output: for item in amostras: item_string = str(item).replace("[","").replace("]","") output.write(f"{item_string}\n") print(f"Total amostras descartadas: {total_descarte}") # Exibe o total de amostras descartadas return amostras def normalizar_arquivo(amostra, names): amostra_normalizada = [] for indice in range(len(amostra)): itens = names[indice] # Obtém os valores possíveis para aquela chave v_min = 0 decimal = 2 normalize = 1 if type(itens) is dict: # verifica se os valores são chaves temp_itens = itens itens = temp_itens["data"] # Pega os valores para aquela chave if "remove" in temp_itens: continue if "min" in temp_itens: # se estipulado um mínimo, altera para ele invés do padrão v_min = temp_itens["min"] if "decimal" in temp_itens: # se possui decimal, usa ele invés do padrão decimal = temp_itens["decimal"] if "reverse" in temp_itens: itens.reverse() if "normalize" in temp_itens: normalize = temp_itens["normalize"] del temp_itens valor_atual = amostra[indice] # Posição atual na amostra valor = valor_atual if normalize: v_max = len(itens) - 1 # Tamanho total da lista - 1 (lista inicia em 0) item_indice = itens.index(valor_atual) # indíce do valor da amostra na lista de valores possíveis valor = escala_normalizada(item_indice, v_max, v_min) amostra_normalizada.append(arred(float(valor), decimal)) return amostra_normalizada def arred(valor, decimal = None): if decimal is None: return valor if decimal == 0: return round(valor) return round(valor, decimal) # Análise def info_dataset(amostras, classe, info=True): output1, output2 = 0,0 for amostra in amostras: if amostra[classe] == 1: output1 += 1 # Paciente sem recorrências else: output2 += 1 # Paciente com recorrências if info == True: print(f"Total de amostras................: {len(amostras)}") print(f"Total Normal (Sem recorrência)...: {output1}") print(f"Total Alterado (Com recorrência).: {output2}") return [len(amostras), output1, output2] def separar_amostras(amostras, porcentagem, classe): _, output1, output2 = info_dataset(amostras, classe) treinamento = [] teste = [] max_output1 = int(porcentagem*output1) max_output2 = int((1 - porcentagem)*output2) total_output1 = 0 total_output2 = 0 for amostra in amostras: if(total_output1 + total_output2) < (max_output1 + max_output2): # Inserir em treinamento treinamento.append(amostra) if amostra[classe] == 1 and total_output1 < max_output1: total_output1 += 1 else: total_output2 += 1 else: # Insere em teste teste.append(amostra) return [treinamento, teste] def knn(treinamento, nova_amostra, classe, k): distancias = {} tamanho_treino = len(treinamento) # Calcula distância euclidiana for i in range(tamanho_treino): d = distancia_euclidiana(treinamento[i], nova_amostra) distancias[i] = d # Obtém k-vizinhos k_vizinhos = sorted(distancias, key=distancias.get)[:k] # retorna do começo até o k-1 # Votação qtd_output1 = 0 qtd_output2 = 0 for indice in k_vizinhos: if treinamento[indice][classe] == 1: # saída normal qtd_output1 += 1 else: # saída alterada qtd_output2 += 1 if qtd_output1 > qtd_output2: return 1 else: return 0 # Definição names = { # Class 0:{ "data": ["recurrence-events", "no-recurrence-events"], "decimal": 0, "reverse": 1 }, # Age 1:{ "data": ["10-19", "20-29", "30-39", "40-49", "50-59", "60-69", "70-79", "80-89", "90-99"], "decimal": 1 }, # Menopause 2:["lt40", "ge40", "premeno"], # Tumor-size 3:{ "data": ["0-4", "5-9", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40-44", "45-49", "50-54", "55-59"], "decimal": 1 }, # Inv-nodes 4:{ "data": ["0-2", "3-5", "6-8", "9-11", "12-14", "15-17", "18-20", "21-23", "24-26", "27-29", "30-32", "33-35", "36-39"], "decimal": 1, "min": 6 }, # Node-caps 5:{ "data": ["yes", "no"], }, # Deg-malig 6:{ "data": ["1","2","3"], "normalize": 0, "decimal": 0 }, # Breast 7:{ "data": ["left","right"], "decimal": 0 }, # Breast-quad 8:{ "data": ["left_up", "left_low", "right_up", "right_low", "central"], }, # Irradiant 9:{ "data": ["yes", "no"], "decimal": 0, "reverse": 1 } } # Teste acertos = 0 pos_classe = 0 porcentagem = 0.8 k = 17 amostras = ler_arquivo("breast-cancer.data", names) treinamento, teste = separar_amostras(amostras, porcentagem, pos_classe) for amostra in teste: classe_retornada = knn(treinamento, amostra, pos_classe, k) # print(classe_retornada, amostra[pos_classe]) if amostra[pos_classe] == classe_retornada: acertos += 1 print(f"Total de treinamento..: {len(treinamento)}") print(f"Total de testes.......: {len(teste)}") print(f"Total de acertos......: {acertos}") print(f"Porcentagem de acerto.: {arred(100*acertos/len(teste), 0)} %") ###Output _____no_output_____ ###Markdown Breast Cancer Diagnosis ###Code from sklearn.datasets import load_breast_cancer dataset = load_breast_cancer() ###Output _____no_output_____ ###Markdown Part 1: Getting startedFirst off, take a look at the `data`, `target` and `feature_names` entries in the `dataset` dictionary. They contain the information we'll be working with here. Then, create a Pandas DataFrame called `df` containing the data and the targets, with the feature names as column headings. If you need help, see [here](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html) for more details on how to achieve this. * How many features do we have in this dataset? 30* What are the target classes? [0 1]* What do these target classes signify? ['malignant' 'benign']* How many participants tested `Malignant`? 212* How many participants tested `Benign`? 357 ###Code import numpy as np import pandas as pd print ("dataset features: ", dataset.data.shape[1]) print ("target classes: ", np.unique(dataset.target)) print ("target classes signify: ", dataset.target_names) print ("participants tested Malignant: ", np.sum(dataset.target == 0)) print ("participants tested Benign: ", np.sum(dataset.target == 1)) # create dataframe df df = pd.DataFrame(data= dataset.data, columns= dataset.feature_names) # add column 'targets' df['targets']=dataset.target.reshape(-1,1) # add column 'targets_type' df['targets_type']= pd.Series(['malignant' if item==0 else 'benign' for item in dataset.target]) df.head() ###Output dataset features: 30 target classes: [0 1] target classes signify: ['malignant' 'benign'] participants tested Malignant: 212 participants tested Benign: 357 ###Markdown Use `seaborn.lmplot` ([help here](https://seaborn.pydata.org/generated/seaborn.lmplot.html)) to visualize a few features of the dataset. Draw a plot where the x-axis is "mean radius", the y-axis is "mean texture," and the color of each datapoint indicates its class. Do this once again for different features for the x- and y-axis and see how the data is distributed. **[1]**Standardizing the data is often critical in machine learning. Show a plot as above, but with two features with very different scales. Standardize the data and plot those features again. What's different? Why? **[1]**It is best practice to have a training set (from which there is a rotating validation subset) and a test set. Our aim here is to (eventually) obtain the best accuracy we can on the test set (we'll do all our tuning on the training/validation sets, however). To tune `k` (our hyperparameter), we employ cross-validation ([Help](https://scikit-learn.org/stable/modules/cross_validation.html)). Cross-validation automatically selects validation subsets from the data that you provided. Split the dataset into a train and a test set **"70:30"**, use **``random_state=0``**. The test set is set aside (untouched) for final evaluation, once hyperparameter optimization is complete. **[1]**** ###Code import seaborn as sns # 'mean radius' vs 'mean texture' sns.lmplot (x='mean radius', y='mean texture', data=df, hue= 'targets_type', fit_reg= False) # 'radius error' vs 'texture error' sns.lmplot (x='mean radius', y='mean area', data=df, hue= 'targets_type', fit_reg= False) # Standardize the features stand_features= (df.iloc[:,0:30] - df.iloc[:,0:30].mean()) / df.iloc[:,0:30].std() df_stand = pd.DataFrame.copy(df) df_stand.iloc[:,0:30] = stand_features df_stand.head(5) # Plot features sns.lmplot (x='mean radius', y='mean texture', data=df_stand, hue= 'targets_type', fit_reg= False) sns.lmplot (x='mean radius', y='mean area', data=df_stand, hue= 'targets_type', fit_reg= False) # After standardization, features have mean zero and standard deviation 1, the scale range of features became smaller. # However, the points patter of scatter plots are the same. from sklearn.model_selection import train_test_split # Without standardization x_train, x_test, y_train, y_test = train_test_split(dataset.data, dataset.target, test_size=0.3, random_state=0) # With standardization x_train_stand, x_test_stand, y_train_stand, y_test_stand = train_test_split(np.array(df_stand.iloc[:,0:30]), np.array(df_stand.iloc[:,30]) , test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Part 2: KNN Classifier without Standardization Normally, standardizing data is a key step in preparing data for a KNN classifier. However, for educational purposes, let's first try to build a model without standardization. Let's create a KNN classifier to predict whether a patient has a malignant or benign tumor. Follow these steps: 1. Train a KNN Classifier using cross-validation on the dataset. Sweep `k` (number of neighbours) from 1 to 100, and show a plot of the mean cross-validation accuracy vs `k`. 2. What is the best `k`? Comment on which `k`s lead to underfitted or overfitted models. 3. Can you get the same accuracy (roughly) with fewer features using a KNN model? You're free to use trial-and-error to remove features (try at least 5 combinations), or use a more sophisticated approach like [Backward Elimination](https://towardsdatascience.com/backward-elimination-for-feature-selection-in-machine-learning-c6a3a8f8cef4). Describe your findings using a graph or table (or multiple!). 2.1 plot of the mean cross-validation accuracy vs k ###Code from sklearn import neighbors from sklearn.model_selection import cross_val_score import matplotlib.pyplot as plt # knn = neighbors.KNeighborsClassifier (n_neighbors=1) # scores = cross_val_score(knn, x_train, y_train, cv=5) # scores.mean() x = [k for k in range(1,101)] y1 = [cross_val_score(neighbors.KNeighborsClassifier (n_neighbors=k), x_train, y_train, cv=5).mean() for k in range(1,101)] plt.plot(x,y1,label="without feature selection") plt.legend() plt.xlabel("k") plt.ylabel("accuracy") plt.title ("Training data (without Standardization)") ###Output _____no_output_____ ###Markdown 2.2 find best k ###Code print ('best k=', x[y1.index(max(y1))], ', with highest accuracy') # The accuracy drops when k deacrese from it's best value, which leads to overfitted models, # The accuracy drops when k increase from it's best value, which leads to underfitted models. ###Output best k= 10 , with highest accuracy ###Markdown 2.3 feture reduction (backward elimination) ###Code # helper function 'Find_largest_pval': # find t-stat and p-val of coefficients from sklearn.linear_model import LinearRegression import statsmodels.api as sm from scipy import stats def Find_largest_pval (x,y): lm = LinearRegression() lm.fit(x,y) y_pridiction = lm.predict(x) # beta = (x'x)^-1 x'y beta = np.append(lm.intercept_, lm.coef_) # MSE = sum ((yi-yi^)^2)/ n-1-k n = x.shape[0] k = x.shape[1] MSE = (sum ((y-y_pridiction)**2) / (n-1-k)) # var(beta) = (x'x)^-1 MSE new_x = pd.DataFrame(x) new_x.insert(0,'c0',np.ones(n)) var_beta = (np.linalg.inv(new_x.T @ new_x) * MSE).diagonal() tstat = beta/np.sqrt(var_beta) pval =[2*(1-stats.t.cdf(np.abs(i),n-1-k)) for i in tstat] # create dataframe reg_result = pd.DataFrame ({"Coefficients":beta, "T statistcs":tstat, "P-value":pval}).round(decimals=4) return reg_result.sort_values(by='P-value',ascending=False) # example show output of helper function: Find_largest_pval (x_train,y_train).head() # helper function'feature_reduction': # remove non-significant features by Backward Elimination def feature_reduction (x_train, y_train, x_test): # removes the highest p-value greater than alpha alpha = 0.05 while Find_largest_pval(x_train,y_train).iloc[0,2] > alpha: # index of row who's p-value is largest i = Find_largest_pval(x_train,y_train).index[0] x_train = np.delete(x_train,i, axis=1) x_test = np.delete(x_test,i, axis=1) # output: non significant features have been removed return x_train, x_test # plot x_train_red = feature_reduction (x_train, y_train, x_test)[0] x = [k for k in range(1,101)] y2 = [cross_val_score(neighbors.KNeighborsClassifier (n_neighbors=k), x_train_red, y_train, cv=5).mean() for k in range(1,101)] plt.plot(x,y1,label="without feature selection") plt.plot(x,y2,label="with feature selection") plt.legend() plt.xlabel("k") plt.ylabel("accuracy") plt.title ("Training data (without Standardization)") # When model complexity decrease, the training error increase. That point can be demonstrated from the # following plot, the accuracy decrease after future selection. ###Output _____no_output_____ ###Markdown Part 3: Standardization Standardizing the data usually means scaling our data to have a mean of zero and a standard deviation of one. Note: When we standardize a dataset, do we care if the data points are in our training set or test set? Yes! The training set is available for us to train a model - we can use it however we want. The test set, however, represents a subset of data that is not available for us during training. For example, the test set can represent the data that someone who bought our model would use to see how the model performs (which they are not willing to share with us).Therefore, we cannot compute the mean or standard deviation of the whole dataset to standardize it - we can only calculate the mean and standard deviation of the training set. However, when we sell a model to someone, we can say what our scalers (mean and standard deviation of our training set) was. They can scale their data (test set) with our training set's mean and standard deviation. Of course, there is no guarantee that the test set would have a mean of zero and a standard deviation of one, but it should work fine.**To summarize: We fit the StandardScaler only on the training set. We transform both training and test sets with that scaler.**1. Create a KNN classifier with standardized data ([Help](https://scikit-learn.org/stable/modules/preprocessing.html)), and reproduce all steps in Part 2. 2. Does standardization lead to better model performance? Is performance better or worst? Discuss. 3.1 repeat part2 with standardized data ###Code x = [k for k in range(1,101)] y3 = [cross_val_score(neighbors.KNeighborsClassifier (n_neighbors=k), x_train_stand, y_train_stand, cv=5).mean() for k in range(1,101)] # feture reduction (backward elimination) x_train_stand_red = feature_reduction (x_train_stand, y_train_stand, x_test_stand) [0] y4 = [cross_val_score(neighbors.KNeighborsClassifier (n_neighbors=k), x_train_stand_red, y_train_stand, cv=5).mean() for k in range(1,101)] print ('without feature selection, best k=', x[y3.index(max(y3))], ', with highest accuracy') print ('with feature selection, best k=', x[y4.index(max(y4))], ', with highest accuracy') # When model complexity decrease, the training error increase. That point can be demonstrated from the # following plot, the accuracy decrease after future selection. plt.plot(x,y3,label="without feature selection") plt.plot(x,y4,label="with feature selection") plt.legend() plt.xlabel("k") plt.ylabel("accuracy") plt.title ("Training data (with Standardization)") ###Output without feature selection, best k= 12 , with highest accuracy with feature selection, best k= 14 , with highest accuracy ###Markdown 3.2 standardization lead to better model performance? ###Code plt.plot(x,y1,label="without standardization") plt.plot(x,y3,label="with standardization") plt.legend() plt.xlabel("k") plt.ylabel("accuracy") plt.title ("Training data (without future selction)") plt.plot(x,y2,label="without standardization") plt.plot(x,y4,label="with standardization") plt.legend() plt.xlabel("k") plt.ylabel("accuracy") plt.title ("Training data (with future selction)") # Standardization have improve the accuracy for data before and after future selection. ###Output _____no_output_____ ###Markdown Part 4: Test Data Now that you've created several models, pick your best one (highest accuracy) and apply it to the test dataset you had initially set aside. Discuss. ###Code # If only consider how models perform on traning data, the best model is the one with standardization # and without future selection. from sklearn.metrics import accuracy_score x_test_stand_red = feature_reduction(x_train_stand, y_train_stand, x_test_stand) [1] # model without future selction knn1 = neighbors.KNeighborsClassifier (n_neighbors=12) knn1.fit(x_train_stand, y_train_stand) print ("accuracy of model without future selction: ", accuracy_score(y_test_stand, knn1.predict(x_test_stand))) # model with future selction knn2 = neighbors.KNeighborsClassifier (n_neighbors=14) knn2.fit(x_train_stand_red, y_train_stand) print ("accuracy of model with future selction: ", accuracy_score(y_test_stand, knn2.predict(x_test_stand_red))) # However, sometimes the model with low trainging error may have high testing error. we also have # to consider how the model perform for the testing set. y5, y6 = [], [] for k in range(1,101): knn = neighbors.KNeighborsClassifier(n_neighbors=k) knn.fit(x_train_stand, y_train_stand) y5.append(accuracy_score(y_test_stand, knn.predict(x_test_stand))) knn1 = neighbors.KNeighborsClassifier(n_neighbors=k) knn1.fit(x_train_stand_red, y_train_stand) y6.append(accuracy_score(y_test_stand, knn1.predict(x_test_stand_red))) # FS means feature selection plt.plot(x,y5,label="test data without FS") plt.plot(x,y6,label="test data with FS") plt.plot(x,y3,'--',label="train data without FS") plt.plot(x,y4,'--',label="train data with FS") plt.legend() plt.xlabel("k") plt.ylabel("accuracy") plt.title ("Standardized training and testing data") # After considering the performance on testing data, the best model is still the one with standardization and # without future selection. The model with future selection may be too simple (underfitting) ###Output _____no_output_____ ###Markdown Part 5: New Dataset Find an appropriate classification dataset online and train a KNN model to make predictions.* Introduce your dataset. * Create a KNN classifier using the tools you've learned. * Present your results. Hint: you can find various datasets here: https://www.kaggle.com/datasets and here: https://scikit-learn.org/stable/datasets/index.htmltoy-datasets.To use a dataset in Colab, you can upload it in your Google drive and access it in Colab ([help here](https://medium.com/analytics-vidhya/how-to-fetch-kaggle-datasets-into-google-colab-ea682569851a)), or you can download the dataset on your local machine and upload it directly to Colab using the following script.```from google.colab import filesuploaded = files.upload()```When submitting your project on Quercus, please make sure you are also uploading your dataset so we can fully run your notebook. ###Code from sklearn.datasets import load_wine wineset = load_wine() ###Output _____no_output_____ ###Markdown 5.1 Introduce your dataset* How many features do we have in this dataset? 13* What are the target classes? [0 1 2]* What do these target classes signify? ['class_0' 'class_1' 'class_2']* How many wine tested `class_0`? 59* How many wine tested `class_1`? 71* How many wine tested `class_2`? 48 ###Code print ("dataset features: ", wineset.data.shape[1]) print ("dataset features: ", wineset.data.shape[0]) print ("target classes: ", np.unique(wineset.target)) print ("target classes signify: ", wineset.target_names) print ("participants tested 'class_0': ", np.sum(wineset.target == 0)) print ("participants tested 'class_1': ", np.sum(wineset.target == 1)) print ("participants tested 'class_2': ", np.sum(wineset.target == 2)) # create dataframe wine wine = pd.DataFrame(data= wineset.data, columns= wineset.feature_names) # add column 'targets' wine['targets']=wineset.target.reshape(-1,1) # add column 'targets_type' wine['targets_type']= pd.Series(['class_0' if item==0 else 'class_1' if item==1 else 'class_2' for item in wineset.target]) wine.head() ###Output dataset features: 13 dataset features: 178 target classes: [0 1 2] target classes signify: ['class_0' 'class_1' 'class_2'] participants tested 'class_0': 59 participants tested 'class_1': 71 participants tested 'class_2': 48 ###Markdown 5.2 Create a KNN classifier using the tools you've learned. ###Code # Standardize the features wine_stand_features= (wine.iloc[:,0:13] - wine.iloc[:,0:13].mean()) / wine.iloc[:,0:13].std() wine_stand = pd.DataFrame.copy(wine) wine_stand.iloc[:,0:13] = wine_stand_features wine_stand.head(5) # Split the dataset into a train and a test set "70:30" x_train_winestand, x_test_winestand, y_train_winestand, y_test_winestand = train_test_split(np.array(wine_stand.iloc[:,0:13]), np.array(wine_stand.iloc[:,13]) , test_size=0.3, random_state=0) # wine train set have sample 99, sweep k from 1 to 100 x = [k for k in range(1,100)] y11 = [cross_val_score(neighbors.KNeighborsClassifier (n_neighbors=k), x_train_winestand, y_train_winestand, cv=5).mean() for k in range(1,100)] # feture reduction (backward elimination) x_train_winestand_red = feature_reduction (x_train_winestand, y_train_winestand, x_test_winestand) [0] y12 = [cross_val_score(neighbors.KNeighborsClassifier (n_neighbors=k), x_train_winestand_red, y_train_winestand, cv=5).mean() for k in range(1,100)] # show a plot of the mean cross-validation accuracy vs k print ('without feature selection, best k=', x[y11.index(max(y11))], ', with highest accuracy') print ('with feature selection, best k=', x[y12.index(max(y12))], ', with highest accuracy') plt.plot(x,y11,label="without feature selection") plt.plot(x,y12,label="with feature selection") plt.legend() plt.xlabel("k") plt.ylabel("accuracy") plt.title ("Training data (with Standardization)") ###Output without feature selection, best k= 19 , with highest accuracy with feature selection, best k= 5 , with highest accuracy ###Markdown 5.3 Present your results ###Code # If only consider how models perform on traning data, the best model is the one without future selection. x_test_winestand_red = feature_reduction(x_train_winestand, y_train_winestand, x_test_winestand) [1] # model without future selction knn1 = neighbors.KNeighborsClassifier (n_neighbors=19) knn1.fit(x_train_winestand, y_train_winestand) print ("accuracy of model without future selction: ", accuracy_score(y_test_winestand, knn1.predict(x_test_winestand))) # model with future selction knn2 = neighbors.KNeighborsClassifier (n_neighbors=5) knn2.fit(x_train_winestand_red, y_train_winestand) print ("accuracy of model with future selction: ", accuracy_score(y_test_winestand, knn2.predict(x_test_winestand_red))) # However, sometimes the model with low trainging error may have high testing error. # Next, consider how the model perform for the testing set. y13, y14 = [], [] for k in range(1,100): knn = neighbors.KNeighborsClassifier(n_neighbors=k) knn.fit(x_train_winestand, y_train_winestand) y13.append(accuracy_score(y_test_winestand, knn.predict(x_test_winestand))) knn1 = neighbors.KNeighborsClassifier(n_neighbors=k) knn1.fit(x_train_winestand_red, y_train_winestand) y14.append(accuracy_score(y_test_winestand, knn1.predict(x_test_winestand_red))) # FS: feature selection plt.plot(x,y13,label="test data without FS") plt.plot(x,y14,label="test data with FS") plt.plot(x,y11,'--',label="train data without FS") plt.plot(x,y12,'--',label="train data with FS") plt.legend() plt.xlabel("k") plt.ylabel("accuracy") plt.title ("Standardized training and testing data") # After considering the performance on testing data, the best model is still the one with standardization and # without future selection. The model with future selection may be too simple (underfitting). ###Output _____no_output_____ ###Markdown Doing Data Science - Tutorial on K-Nearest Neighbors- The k-NN algorithm is a nonparametric approach to classification.- K-NN is an algorithm that can be used when you have a bunch of objects that have been classified or labeled in some way, and other similar objects that haven't gotten classified or labeled yet, and you want a way to automatically label them.- As a classification algorithm, it can be applied where 'linear-regression-with-a-threshold' cannot, such as when the labels do not take a continuous value scale like a credit score.- The intution behind k-NN is to consider the most similar other items defined in terms of their attributes, look at their labels, and give the unassigned item the majority vote. If there's a tie, you randomly select among the labels that have tied for first.**Two Decisions to be made**1. how do you define similarity or closeness?2. how many neighbors should vote? This value is *k***k-NN process overview**1. Decide on your similarity or distance metric.2. Split the original labeled dataset into training and test data.3. Pick an evaluation metric. (Misclassification rate is a good one.)4. Run k-NN a few times, changing *k* and checking the evaluation measure.5. Optimize *k* by picking the one with the best evaluation measure.6. Once you've chosen *k*, use the same training set and now create a new test set with people's ages and incomes that you have no labels for, and want to predict.**Notable similarity metrics**- Euclidean distance- Cosine similarity- Jaccard distance or similarity (Tanimoto)- Mahalanobis distance- Hamming distance- Manhattan distanceIn classification, a balance has to be struck between being *sensitive* to the reality of the data (true positive or recall) and being *specific* (true negative) to the classification with respect to the categories of the data. - Code tutorial from [here](https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/) - Data: [Iris dataset](https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data) ###Code import csv import random import math import operator ###Output _____no_output_____ ###Markdown **1. Handle Data** ###Code def loadDataset(filename, split, trainingSet, testSet): with open(filename, 'r') as csvfile: lines = csv.reader(csvfile) dataset = list(lines) # shuffle the dataset for i in range(5): random.shuffle(dataset) for x in range(len(dataset)-1): for y in range(4): dataset[x][y]= float(dataset[x][y]) if random.random() < split: trainingSet.append(dataset[x]) else: testSet.append(dataset[x]) trainingSet, testSet = [], [] loadDataset("iris.data",0.66,trainingSet,testSet) ###Output _____no_output_____ ###Markdown **2. Similarity** ###Code def euclideanDistance(instance1, instance2, length): distance = 0 for x in range(length): distance += pow((instance1[x]-instance2[x]),2) return math.sqrt(distance) # distance test data1 = [2,2,2,'a'] data2 = [4,4,4,'b'] distance = euclideanDistance(data1, data2, 3) print("Distance:",str(distance)) ###Output Distance: 3.4641016151377544 ###Markdown **3. Neighbors**The `getNeighbors()` function returns *k* most similar neighbors from the training set for a given test instance, using the already defined `euclideanDistance()`function ###Code def getNeighbors(trainingSet, testInstance, k): distances = [] length = len(testInstance)-1 for x in range(len(trainingSet)): dist = euclideanDistance(testInstance, trainingSet[x], length) distances.append((trainingSet[x], dist)) distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(k): neighbors.append(distances[x][0]) return neighbors # neighbors test trainSet = [[2,2,2,'a'],[4,4,4,'b']] testInstance = [5,5,5] k=1 neighbors = getNeighbors(trainingSet, testInstance, 1) print(neighbors) ###Output [[5.2, 4.1, 1.5, 0.1, 'Iris-setosa']] ###Markdown **4. Response**Once we have located the most similar neighbors for a test instance, the next task is to devise a predicted response based on those neighbors.We can do this by allowing each neighbor to vote for their class attribute, and take the majority vote as the prediction ###Code def getResponseMajorityVote(neighbors): classVotes = {} for x in range(len(neighbors)): response = neighbors[x][-1] if response in classVotes: classVotes[response] += 1 else: classVotes[response] = 1 sortedVotes = sorted(classVotes.items(),key=operator.itemgetter(1),reverse=True) return sortedVotes[0][0] # majority vote test neighbors = [[1,1,1,'a'],[2,2,2,'a'],[3,3,3,'b']] response = getResponseMajorityVote(neighbors) print(response) ###Output a ###Markdown **5. Accuracy**We have all teh pieces of the kNN algorithm in place. An important remaining concern is how to evaluate the accuracy of predictions.Below, the `getPredictionAccuracy()` function sums the total correct predictions and returns the accuracy as a percentage of correct classifications. ###Code def getPredictionAccuracy(testSet, predictions): correct = 0 for x in range(len(testSet)): if testSet[x][-1] == predictions[x]: correct += 1 # print("num of predictions:",len(predictions),"number correct:",correct) return (correct/float(len(testSet))) * 100.0 # accuracy test testSet = [[1,1,1,'a'],[2,2,2,'a'],[3,3,3,'b']] predictions = ['a','a','a'] accuracy = getPredictionAccuracy(testSet, predictions) print(accuracy) ###Output 66.66666666666666 ###Markdown **6. Main - putting it all together** ###Code def main(): # prepare data trainingSet = [] testSet = [] split = 0.67 loadDataset("iris.data",split,trainingSet,testSet) print("Training set:",len(trainingSet)) print("Test set:",len(testSet)) #generate predictions predictions = [] k = 1 for x in range(len(testSet)): neighbors = getNeighbors(trainingSet, testSet[x], k) result = getResponseMajorityVote(neighbors) predictions.append(result) print("> predicted=" + repr(result) + ", actual=" + repr(testSet[x][-1])) accuracy = getPredictionAccuracy(testSet, predictions) print("Accuracy:",accuracy) main() ###Output Training set: 99 Test set: 50 > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-versicolor', actual='Iris-virginica' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-virginica', actual='Iris-versicolor' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-virginica', actual='Iris-versicolor' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-virginica', actual='Iris-versicolor' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-virginica', actual='Iris-virginica' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-versicolor', actual='Iris-versicolor' > predicted='Iris-setosa', actual='Iris-setosa' > predicted='Iris-setosa', actual='Iris-setosa' Accuracy: 92.0 ###Markdown Knn is a simple concept. It defines some distance between the items in your dataset and find the K closest items. You can use those items to predict some property of a test item, and vote for it. As an example , lets look at a movie prediction system . Lets try to guess the rating of the movie by looking at the 10 movies that are closest in terms of genres and popularity. In this project, we will load up every rating in the dataset into a pandas Dataframe. ###Code import pandas as pd import numpy as np r_cols = ['user id', 'movie_id', 'rating'] ratings = pd.read_csv('C:/Users/Hamsini Sankaran/Desktop/DataScience/DataScience-Python3/ml-100k/u.data', sep='\t', names=r_cols, usecols=range(3)) ratings.head() ###Output _____no_output_____ ###Markdown grouping everything by movie ID and compute the total number of ratings(each movie's popularity) and the average rating of every movie ###Code movieProperties = ratings.groupby('movie_id').agg({'rating': [np.size, np.mean]}) movieProperties.head() #The raw number of ratings isnt very useful for computing distances between movies , so we will create a new DataFrame that contains the normalized number of ratings.So, a value of 0 means nobody rated it and a value of 1 will mean it is the most popular movie here movieNumRatings = pd.DataFrame(movieProperties['rating']['size']) movieNormalizedNumRatings = movieNumRatings.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x))) movieNormalizedNumRatings.head() #now let's get the genre information from the u.item file . The way this works is there are 19 fields, each corresponding to a specific genre - a value of 0 means , it is not in the genre and a value of 1 means that is in that genre. A movie may have more than one genre associated with it . Each is put into a big python dictionary called movieDict. Every entry contains the movie name, list of genres, normalized popularity score, the average rating of the movie movieDict = {} with open('C:/Users/Hamsini Sankaran/Desktop/DataScience/DataScience-Python3/ml-100k/u.item') as f: temp = '' for line in f: fields = line.rstrip('\\n').split('|') movieID = int(fields[0]) name = fields[1] genres = fields[5:25] genres = map(int, genres) movieDict[movieID] = (name, np.array(list(genres)), movieNormalizedNumRatings.loc[movieID].get('size'), movieProperties.loc[movieID].rating.get('mean')) movieDict[1] from scipy import spatial def ComputeDistance(a, b): genresA = a[1] genresB = b[1] genreDistance = spatial.distance.cosine(genresA, genresB) popularityA = a[2] popularityB = b[2] popularityDistance = abs(popularityA - popularityB) return genreDistance + popularityDistance ComputeDistance(movieDict[2], movieDict[4]) #The higher the distance, the less similar the movies are print (movieDict[2]) print (movieDict[4]) import operator def getNeighbors(movieID, K): distance = [] for movie in movieDict: if (movie != movieID): dist = ComputeDistance(movieDict[movieID], movieDict[movie]) distance.append((movie, dist)) distance.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(K): neighbors.append(distance[x][0]) return neighbors K = 5 avgRating = 0 neighbors = getNeighbors(1,K) for neighbor in neighbors: avgRating += movieDict[neighbor][3] print (movieDict[neighbor][0] + " " + str(movieDict[neighbor][3])) avgRating /= float(K) avgRating movieDict[1] ###Output _____no_output_____ ###Markdown KNN SETTINGS ###Code import random import numpy as np from collections import deque from sklearn.metrics.pairwise import manhattan_distances from sklearn.preprocessing import MinMaxScaler from random import randint class TradingAction(object): ETH = 0 XRP = 1 LTC = 2 XLM = 3 USD = 4 BTC = 5 class TradingEnv: def __init__(self): #Actions : 0. eth, 1. xrp, 2. ltc, 3. xlm, 4. usd, 5. btc pass def reset(self): pass def __init__(self): #Actions : 0. eth, 1. xrp, 2. ltc, 3. xlm, 4. usd, 5. btc pass def step(self, action, date): reward = 0 if action == TradingAction.ETH: reward = eth_reward[(eth_reward['T'] == date)]['Reward'] if action == TradingAction.XRP: reward = xrp_reward[(xrp_reward['T'] == date)]['Reward'] if action == TradingAction.LTC: reward = ltc_reward[(ltc_reward['T'] == date)]['Reward'] if action == TradingAction.XLM: reward = xlm_reward[(xlm_reward['T'] == date)]['Reward'] if action == TradingAction.USD: reward = usd_reward[(usd_reward['T'] == date)]['Reward'] if action == TradingAction.BTC: reward = 0 # Do nothing action return reward #Split as Train and Test data row_count = merged.shape[0] split_point = int(row_count - 60) train_data, test_data = merged[:split_point], merged[split_point:] test_data.head() #Preprocess Data scaler = MinMaxScaler() scaled_cols = ['O_eth','C_eth','H_eth','L_eth','V_eth','BV_eth','O_xrp','C_xrp','H_xrp','L_xrp','V_xrp','BV_xrp','O_ltc','C_ltc','H_ltc','L_ltc','V_ltc','BV_ltc','O_xlm','C_xlm','H_xlm','L_xlm','V_xlm','BV_xlm','O','C','H','L','V','BV'] scaler.fit(train_data[scaled_cols]) train_data.iloc[:][scaled_cols] = scaler.transform(train_data[scaled_cols]) #Use same scaler to transform test data test_data.iloc[:][scaled_cols] = scaler.transform(test_data[scaled_cols]) train_data.head() #Action selection def select_act(env, date): r0 = env.step(0, date) r1 = env.step(1, date) r2 = env.step(2, date) r3 = env.step(3, date) r4 = env.step(4, date) r5 = env.step(5, date) rewards = np.asarray([r0.item(),r1.item(),r2.item(),r3.item(),r4.item(),r5]) return rewards #KNN observation_cols = ['O_eth','C_eth','H_eth','L_eth','V_eth','BV_eth','O_xrp','C_xrp','H_xrp','L_xrp','V_xrp','BV_xrp','O_ltc','C_ltc','H_ltc','L_ltc','V_ltc','BV_ltc','O_xlm','C_xlm','H_xlm','L_xlm','V_xlm','BV_xlm','O','C','H','L','V','BV'] state_size = len(observation_cols) action_size = 6 #Actions : 0. eth, 1. xrp, 2. ltc, 3. xlm, 4. usd, 5. btc env = TradingEnv() test_reward = 0 reward_list = [] for idx in range(len(test_data)-1): state = test_data.iloc[idx][observation_cols] #state = np.reshape([state], [1, state_size]) distances = manhattan_distances(train_data[observation_cols], [state]) most_similar_index = distances.argmin() date = train_data.iloc[most_similar_index]['T'] act_vals = select_act(env, date) action = np.argmax(act_vals) reward = env.step(action, test_data.iloc[idx+1]['T']) if isinstance(reward, int) == False: reward = reward.item() test_reward = test_reward + reward reward_list.append(reward) print("Test_reward: {}" .format(test_reward)) #We get most similar neighbours with 10% error rate mscaler = MinMaxScaler() test_reward = 0 pred_reward = 0 reward_list = [] for idx in range(len(test_data)-1): state = test_data.iloc[idx][observation_cols] #state = np.reshape([state], [1, state_size]) distances = manhattan_distances(train_data[observation_cols], [state]) distances = mscaler.fit_transform(distances) most_similar_index = distances.argmin() mask = (distances[most_similar_index] + 0.1 > distances) dates = train_data[mask]['T'] total_array = np.asarray([0.0,0.0,0.0,0.0,0.0,0.0]) for date in dates: act_vals = select_act(env, date) total_array += act_vals total_array /= len(dates) pred_r = np.max(total_array) action = np.argmax(total_array) reward = env.step(action, test_data.iloc[idx+1]['T']) if isinstance(reward, int) == False: reward = reward.item() test_reward = test_reward + reward reward_list.append(reward) pred_reward += pred_r print("Test_reward: {}, Expected_reward: {}" .format(test_reward, pred_reward)) #Plot rewards import matplotlib.pyplot as plt %matplotlib inline plt.plot(np.arange(0,len(test_data)-1,1),reward_list, c='b') plt.title('Model test reward') plt.ylabel('Return %') plt.xlabel('Days') plt.show() index = -1 print(merged.iloc[index]['T']) state = merged.iloc[index][observation_cols] distances = manhattan_distances(train_data[observation_cols], [state]) most_similar_index = distances.argmin() date = train_data.iloc[most_similar_index]['T'] act_vals = select_act(env, date) action = np.argmax(act_vals) print("Predicted rewards",act_vals) print("Best action",action) #Actions : 0. eth, 1. xrp, 2. ltc, 3. xlm, 4. usd, 5. btc index = -6 print(merged.iloc[index]['T']) state = merged.iloc[index][observation_cols] distances = manhattan_distances(train_data[observation_cols], [state]) distances = mscaler.fit_transform(distances) most_similar_index = distances.argmin() mask = (distances[most_similar_index] + 0.05 > distances) dates = train_data[mask]['T'] total_array = np.asarray([0.0,0.0,0.0,0.0,0.0,0.0]) for date in dates: act_vals = select_act(env, date) total_array += act_vals total_array /= len(dates) pred_r = np.max(total_array) action = np.argmax(total_array) print("Predicted rewards",total_array) print("Predicted best reward",pred_r) print("Best action",action) #Actions : 0. eth, 1. xrp, 2. ltc, 3. xlm, 4. usd, 5. btc index = -5 print(eth_reward.iloc[index]['T']) r1 = eth_reward.iloc[index]['Reward'].item() r2 = xrp_reward.iloc[index]['Reward'].item() r3 = ltc_reward.iloc[index]['Reward'].item() r4 = xlm_reward.iloc[index]['Reward'].item() r5 = usd_reward.iloc[index]['Reward'].item() print("eth: {}, xrp: {}, ltc: {}, xlm: {}, usd: {}, btc: {}" .format(r1, r2, r3, r4, r5, 0)) ###Output 2019-05-13 eth: -3.07079807693027, xrp: -1.17298713130621, ltc: -2.05560936161441, xlm: -3.8831492696829395, usd: -4.81129072663069, btc: 0 ###Markdown We have missing data, so we need to clean. from analyzing the data, if the type is a movie and the number of episodes is unkown, then we can put 1. For OVA(Original Video Animation), these are generally one/two episode long animes. I’ve decided to fill the unknown numbers of episodes with 1 again. For all the other animes with unknown number of episodes, I’ve filled the known values with the median ###Code anime.loc[(anime["type"]=="OVA") & (anime["episodes"]=="Unknown"),"episodes"] = "1" anime.loc[(anime["type"] == "Movie") & (anime["episodes"] == "Unknown")] = "1" anime["episodes"] = anime["episodes"].map(lambda x:np.nan if x=="Unknown" else x) anime["episodes"].fillna(anime["episodes"].median(),inplace = True) anime["rating"] = anime["rating"].astype(float) anime["rating"].fillna(anime["rating"].median(),inplace = True) anime_features = pd.concat([anime["genre"].str.get_dummies(sep=","), pd.get_dummies(anime[["type"]]), anime[["rating"]],anime["episodes"]],axis=1) # you can see the features by using anime_features.columns #I used MinMaxScaler from scikit-learn as it scales the values from 0–1. min_max_scaler = MinMaxScaler() anime_features = min_max_scaler.fit_transform(anime_features) np.round(anime_features,2) # number 2 in round means two decimal points ###Output _____no_output_____ ###Markdown The scaling function (MinMaxScaler) returns a numpy array containing the features. Then we fit the KNN model from scikit learn to the data and calculate the nearest neighbors for each distances. In this case I’ve used the unsupervised NearestNeighbors method for implementing neighbor searches. ###Code nbrs = NearestNeighbors(n_neighbors=20, algorithm='ball_tree').fit(anime_features) distances, indices = nbrs.kneighbors(anime_features) # Returns the index of the anime if (given the full name) def get_index_from_name(name): return anime[anime["name"]==name].index.tolist()[0] all_anime_names = list(anime.name.values) # Prints the top K similar animes after querying def print_similar_animes(query=None): if query: found_id = get_index_from_name(query) for id in indices[found_id][1:]: print(anime.ix[id]["name"]) print("Start of KNN Recommendation") pred=print_similar_animes(query="Naruto") ###Output Start of KNN Recommendation Naruto: Shippuuden Katekyo Hitman Reborn! Dragon Ball Z Dragon Ball Kai Bleach Dragon Ball Kai (2014) Shijou Saikyou no Deshi Kenichi Rekka no Honoo Sakigake!! Otokojuku Medaka Box Abnormal Kenyuu Densetsu Yaiba Ben-To Boruto: Naruto the Movie - Naruto ga Hokage ni Natta Hi Kurokami The Animation Boruto: Naruto the Movie Naruto x UT Naruto: Shippuuden Movie 4 - The Lost Tower Naruto: Shippuuden Movie 3 - Hi no Ishi wo Tsugu Mono Virtua Fighter ###Markdown loading another dataset ###Code r_cols = ['user_id', 'item_id', 'rating'] ratings = pd.read_csv('my-data/u.data', sep='\t', names=r_cols, usecols=range(3)) ratings.head() ###Output _____no_output_____ ###Markdown Now, we'll group everything by movie ID(item_id), and compute the total number of ratings (each movie's popularity) and the average rating for every movie. The raw number of ratings isn't very useful for computing distances between movies, so we'll create a new DataFrame that contains the normalized number of ratings. So, a value of 0 means nobody rated it, and a value of 1 will mean it's the most popular movie there is. ###Code movieProperties = ratings.groupby('item_id').agg({'rating': [np.size, np.mean]}) print(movieProperties.head()) movieNumRatings = pd.DataFrame(movieProperties['rating']['size']) movieNormalizedNumRatings = movieNumRatings.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x))) movieNormalizedNumRatings.head() ###Output rating size mean item_id 1 452 3.878319 2 131 3.206107 3 90 3.033333 4 209 3.550239 5 86 3.302326 ###Markdown Now, let's get the genre information from the u.item file. The way this works is there are 19 fields, each corresponding to a specific genre - a value of '0' means it is not in that genre, and '1' means it is in that genre. A movie may have more than one genre associated with it. Then, we'll put together everything into one big Python dictionary called movieDict. Each entry will contain the movie name, list of genre values, the normalized popularity score, and the average rating for each movie. ###Code movieDict = {} with open('my-data/u.item') as f: temp = '' for line in f: fields = line.rstrip('\n').split('|') movieID = int(fields[0]) name = fields[1] genres = fields[5:25] genres = map(int, genres) movieDict[movieID] = (name, genres, movieNormalizedNumRatings.loc[movieID].get('size'), movieProperties.loc[movieID].rating.get('mean')) # For example, here's the record we end up with for movie ID 1, (Toy Story) movieDict[1] # you can change the number of movieDict[num] ###Output _____no_output_____ ###Markdown Now, let's create a function that computes the (distance) between two movies based on how similar their genres are, and how similar their popularity is. ###Code def ComputeDistance(a, b): genresA = a[1] genresB = b[1] genreDistance = spatial.distance.cosine(genresA, genresB) popularityA = a[2] popularityB = b[2] popularityDistance = abs(popularityA - popularityB) return genreDistance + popularityDistance # For example,here we compute the distance between two movies (movie id 2 and movie id 4) print(ComputeDistance(movieDict[1], movieDict[4])) # you can compute any other movies by changing the movieDict[number] print movieDict[1] print movieDict[4] ###Output 1.08419243986 ('Toy Story (1995)', [0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0.77491408934707906, 3.8783185840707963) ('Get Shorty (1995)', [0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0.35738831615120276, 3.5502392344497609) ###Markdown Now, let's compute the distance between some given test movie (Toy Story, in this example) and all of the movies in our data set. then sort those by distance, and print out the K nearest neighbors. ###Code def getNeighbors(movieID, K): distances = [] for movie in movieDict: if (movie != movieID): dist = ComputeDistance(movieDict[movieID], movieDict[movie]) distances.append((movie, dist)) distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(K): neighbors.append(distances[x][0]) return neighbors K = 10 avgRating=0 neighbors = getNeighbors(1, K) for neighbor in neighbors: print (movieDict[neighbor][0]) # we can print the average rating also by using the print bellow #print movieDict[neighbor][0] + " " + str(movieDict[neighbor][3]) avgRating /= float(K) ###Output Liar Liar (1997) Aladdin (1992) Willy Wonka and the Chocolate Factory (1971) Monty Python and the Holy Grail (1974) Full Monty, The (1997) George of the Jungle (1997) Beavis and Butt-head Do America (1996) Birdcage, The (1996) Home Alone (1990) Aladdin and the King of Thieves (1996) ###Markdown K-nearest neighbors (KNN) ###Code import numpy as np import pandas as pd from sklearn.model_selection import train_test_split,KFold from sklearn.utils import shuffle from sklearn.metrics import confusion_matrix,accuracy_score,precision_score,\ recall_score,roc_curve,auc #import expectation_reflection as ER #from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler from function import split_train_test,make_data_balance np.random.seed(1) ###Output _____no_output_____ ###Markdown First of all, the processed data are imported. ###Code #data_list = ['1paradox'] #data_list = np.loadtxt('data_list.txt',dtype='str') data_list = np.loadtxt('data_list_30sets.txt',dtype='str') #data_list = ['9coag'] print(data_list) def read_data(data_id): data_name = data_list[data_id] print('data_name:',data_name) Xy = np.loadtxt('../classification_data/%s/data_processed_median.dat'%data_name) X = Xy[:,:-1] y = Xy[:,-1] #print(np.unique(y,return_counts=True)) X,y = make_data_balance(X,y) print(np.unique(y,return_counts=True)) X, y = shuffle(X, y, random_state=1) X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.5,random_state = 1) sc = MinMaxScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) return X_train,X_test,y_train,y_test def measure_performance(X_train,X_test,y_train,y_test): model = KNeighborsClassifier(algorithm='auto') n_neighbors = [3,5,7,9,11,13,15,17] if len(y_train) <= 10: n_neighbors = [2,3,4,5,6,7] weights = ['uniform','distance'] leaf_size = np.linspace(1,10,num=10) # Create hyperparameter options hyper_parameters = dict(n_neighbors=n_neighbors, weights=weights, leaf_size=leaf_size) # Create grid search using cross validation clf = GridSearchCV(model, hyper_parameters, cv=4, iid='deprecated') # Fit grid search best_model = clf.fit(X_train, y_train) # View best hyperparameters #print('Best Penalty:', best_model.best_estimator_.get_params()['penalty']) #print('Best C:', best_model.best_estimator_.get_params()['C']) #print('Best alpha:', best_model.best_estimator_.get_params()['alpha']) #print('Best l1_ratio:', best_model.best_estimator_.get_params()['l1_ratio']) # best hyper parameters print('best_hyper_parameters:',best_model.best_params_) # performance: y_test_pred = best_model.best_estimator_.predict(X_test) acc = accuracy_score(y_test,y_test_pred) #print('Accuracy:', acc) p_test_pred = best_model.best_estimator_.predict_proba(X_test) # prob of [0,1] p_test_pred = p_test_pred[:,1] # prob of 1 fp,tp,thresholds = roc_curve(y_test, p_test_pred, drop_intermediate=False) roc_auc = auc(fp,tp) #print('AUC:', roc_auc) precision = precision_score(y_test,y_test_pred) #print('Precision:',precision) recall = recall_score(y_test,y_test_pred) #print('Recall:',recall) f1_score = 2*precision*recall/(precision+recall) return acc,roc_auc,precision,recall,f1_score n_data = len(data_list) roc_auc = np.zeros(n_data) ; acc = np.zeros(n_data) precision = np.zeros(n_data) ; recall = np.zeros(n_data) f1_score = np.zeros(n_data) #data_id = 0 for data_id in range(n_data): X_train,X_test,y_train,y_test = read_data(data_id) acc[data_id],roc_auc[data_id],precision[data_id],recall[data_id],f1_score[data_id] =\ measure_performance(X_train,X_test,y_train,y_test) print(data_id,acc[data_id],roc_auc[data_id],precision[data_id],recall[data_id],f1_score[data_id]) print('acc_mean:',acc.mean()) print('roc_mean:',roc_auc.mean()) print('precision:',precision.mean()) print('recall:',recall.mean()) print('f1_score:',f1_score.mean()) np.savetxt('result_KNN_median.dat',(roc_auc,acc,precision,recall,f1_score),fmt='%f') ###Output _____no_output_____ ###Markdown Importing all the important libraries ###Code import numpy as np # linear algebra from numpy import nan import pandas as pd # read dataframes import matplotlib.pyplot as plt # visualization import seaborn as sns # statistical visualizations import sklearn %matplotlib inline #importing label encoder from sklearn import preprocessing le = preprocessing.LabelEncoder() #libraries to handle imbalance data from imblearn.combine import SMOTETomek from imblearn.under_sampling import NearMiss #libraries to spit data into test and train from sklearn.model_selection import train_test_split #library to implement KNN from sklearn.neighbors import KNeighborsClassifier #Evaluation libraries from sklearn.metrics import classification_report,confusion_matrix from sklearn.model_selection import cross_val_score # importing the dataset df = pd.read_csv('adult.csv') ###Output _____no_output_____ ###Markdown Data Dictionary1. Categorical Attributes - Individual work category - workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked. - Individual's highest education degree - education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters,1st-4th, 10th, Doctorate, 5th-6th, Preschool. - Individual marital status - marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF- spouse. - Individual's occupation - occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. - Individual's relation in a family - relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. - Race of Individual - race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. - sex of individual - sex: Female, Male. - Individual's native country - native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands. 2. Continuous Attributes - Age of an individual - age: continuous. - The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau. - fnlwgt: final weight, continuous. - capital-gain: continuous. - capital-loss: continuous. - Individual's working hour per week - hours-per-week: continuous. Exploring the data set ###Code # exploring the dataframe df.head(5) # income is our predicor variable hence, mapping the income class into binary (0 & 1) df['income'] = df['income'].map({'<=50K': 0, '>50K': 1, '<=50K.': 0, '>50K.': 1}) df.head() ###Output _____no_output_____ ###Markdown Data cleaning ###Code # we can observe that there are some missing data as '?' # we can replace '?' with nan df=df.replace("?",nan) df.isnull().sum() # % missing values round(100*(df.isnull().sum()/len(df.index)), 2) df["occupation"].unique() df["workclass"].unique() df["native-country"].unique() # we can use mode to fix the missing values as the missing percentag is very less df['native-country'].fillna(df['native-country'].mode()[0], inplace=True) df['workclass'].fillna(df['workclass'].mode()[0], inplace=True) df['occupation'].fillna(df['occupation'].mode()[0], inplace=True) # % missing values round(100*(df.isnull().sum()/len(df.index)), 2) ###Output _____no_output_____ ###Markdown Summary ###Code df.info() # statistical summary df.describe() df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 48842 entries, 0 to 48841 Data columns (total 15 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 age 48842 non-null int64 1 workclass 48842 non-null object 2 fnlwgt 48842 non-null int64 3 education 48842 non-null object 4 educational-num 48842 non-null int64 5 marital-status 48842 non-null object 6 occupation 48842 non-null object 7 relationship 48842 non-null object 8 race 48842 non-null object 9 gender 48842 non-null object 10 capital-gain 48842 non-null int64 11 capital-loss 48842 non-null int64 12 hours-per-week 48842 non-null int64 13 native-country 48842 non-null object 14 income 48842 non-null int64 dtypes: int64(7), object(8) memory usage: 5.6+ MB ###Markdown Exploratory data analysis ###Code sns.pairplot(df) df['age'].hist(figsize=(8,8)) plt.show() ###Output _____no_output_____ ###Markdown - age is not evenly distributed there are some outliers in age group more than 70 and less than 20 ###Code df['workclass'].hist(figsize=(26,10)) plt.show() ###Output _____no_output_____ ###Markdown - Most of the people work in private sector ###Code df['hours-per-week'].hist(figsize=(8,8)) plt.show() ###Output _____no_output_____ ###Markdown - Most people work 30-40 hours per week.however there are outliers as some people work 80-100 hours and some work less than 20 ###Code fig = plt.figure(figsize=(10,10)) sns.boxplot(x="income", y="age", data=df) plt.show() ###Output _____no_output_____ ###Markdown - for income >50k the age group is 35-52 years. - for income <=50k the age group is 25-45 years ###Code fig = plt.figure(figsize=(12,12)) ax = sns.countplot(x="workclass", hue="income", data=df).set_title("workclass vs count") ###Output _____no_output_____ ###Markdown - people earning less then 50k are more then those earning 50k ###Code sns.catplot(y="education", hue="income", kind="count", palette="pastel", edgecolor=".7", data=df); ###Output _____no_output_____ ###Markdown - most people have education level as HS(high school) ###Code sns.catplot(y="marital-status", hue="gender", col="income", data=df, kind="count", height=4, aspect=.7); ###Output _____no_output_____ ###Markdown - The people with marital status as Married-civ-spouce has highest people with income more then 50k ###Code sns.countplot(y="occupation", hue="income", data=df); ###Output _____no_output_____ ###Markdown - Most of the people who have income more then 50k either have prof-speciality or exec-managerial as occupation ###Code plt.figure(figsize=(20,7)) sns.catplot(y="race", hue="income", kind="count",col="gender", data=df); ###Output _____no_output_____ ###Markdown - people with Gender male and race as white has the most people with income more then 50k ###Code # plotting heatmap for checking correlation sns.heatmap(df.corr()) ###Output _____no_output_____ ###Markdown Data processing ###Code # educational-num and fnlwgt are not important for our analysis so we can remove df=df.drop(['educational-num','fnlwgt'],axis=1) # removing outliers # min. and max age shows there are ouliers similarly there are ouliers in hours -per-week # using age interval from (20 - 60) and hours-per-week from (20-80) df=df[(df["age"] < 60)] df=df[(df["age"] > 20)] df=df[(df["hours-per-week"] < 80)] df=df[(df["hours-per-week"] > 20)] df.describe() ###Output _____no_output_____ ###Markdown Labelling the data ###Code #label encoder df = df.apply(le.fit_transform) X=df.drop(["income"],axis=1) y=df["income"] # checking for data imbalance df["income"].value_counts() # using oversampling for handling imbalanced data smk = SMOTETomek(random_state=42) X_res,y_res=smk.fit_sample(X,y) print(X_res.shape,y_res.shape) df.head(10) ###Output _____no_output_____ ###Markdown Split Train and Test data ###Code #splitting the data into test and train for evaluation # taking the test data as 30% and train data as 70% X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) ###Output _____no_output_____ ###Markdown Implementing KNN ###Code #implementing basic knn for k=1 knn = KNeighborsClassifier(n_neighbors=1) #applying knn on training data knn.fit(X_train,y_train) #predicting on test data pred = knn.predict(X_test) ###Output _____no_output_____ ###Markdown Prediction and validation ###Code # checking the confusion matrix print(confusion_matrix(y_test,pred)) # evaluation parameters print(classification_report(y_test,pred)) ###Output precision recall f1-score support 0 0.86 0.84 0.85 8513 1 0.58 0.62 0.60 3073 accuracy 0.78 11586 macro avg 0.72 0.73 0.72 11586 weighted avg 0.79 0.78 0.78 11586 ###Markdown Choosing value of K ###Code # finding the appropriate value of K using cross validation accuracy_rate = [] for i in range(1,40): knn = KNeighborsClassifier(n_neighbors=i) score=cross_val_score(knn,X,df['income'],cv=10) accuracy_rate.append(score.mean()) # accuracy vs K_value for identifying the appropriate value of K plt.figure(figsize=(10,6)) plt.plot(range(1,40),accuracy_rate,color='blue', marker='.', markerfacecolor='red', markersize=10) plt.title('accuracy_rate vs. K Value') plt.xlabel('K') plt.ylabel('accuracy_rate') ###Output _____no_output_____ ###Markdown - Highest value of accuracy is at k = 18 ###Code # implementing KNN with value of K as 18 knn = KNeighborsClassifier(n_neighbors=18) knn.fit(X_train,y_train) pred = knn.predict(X_test) print('WITH K=18') print('\n') print(confusion_matrix(y_test,pred)) print('\n') print(classification_report(y_test,pred)) ###Output WITH K=18 [[7714 799] [1414 1659]] precision recall f1-score support 0 0.85 0.91 0.87 8513 1 0.67 0.54 0.60 3073 accuracy 0.81 11586 macro avg 0.76 0.72 0.74 11586 weighted avg 0.80 0.81 0.80 11586 ###Markdown This notebook runs k-NN over 4 problem sets across 5 trials. Table 2 and Table 3 values are recorded at each iteration of the for loop. Datasets ADULT ###Code ADULT_data = pd.read_csv('adult.data.csv', names = ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'target_income' ]) ADULT_data['target_income'] = ADULT_data['target_income'].str.strip() ADULT_data['target_income'] = ADULT_data.target_income.map( {'<=50K':0 , '>50K':1} ) ADULT_one_hot_data = pd.get_dummies(ADULT_data, columns = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country'], prefix = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country'] ) ADULT_one_hot_data = ADULT_one_hot_data.drop(['workclass_ ?', 'occupation_ ?', 'native-country_ ?'], axis=1) ADULT_one_hot_data[['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']] = StandardScaler().fit_transform(ADULT_one_hot_data[['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']]) ADULT_one_hot_data ###Output _____no_output_____ ###Markdown Balance of dataset ###Code positive_labels = ADULT_data['target_income'].value_counts()[1]/ ADULT_data['target_income'].count() * 100 negative_labels = ADULT_data['target_income'].value_counts()[0]/ ADULT_data['target_income'].count() * 100 print("% of negative labels:", negative_labels) print("% of positive labels:", positive_labels) ###Output % of negative labels: 75.91904425539757 % of positive labels: 24.080955744602438 ###Markdown Unbalanced dataset COV_type data ###Code COV_type_data = pd.read_csv('covtype.data.gz', header = None) cols = [c for c in COV_type_data.columns] cols[-1] = 'forest_cover' COV_type_data.columns = cols largest_class = COV_type_data['forest_cover'].value_counts().idxmax() COV_type_data.loc[COV_type_data['forest_cover'] != largest_class, 'forest_cover'] = 0 COV_type_data.loc[COV_type_data['forest_cover'] == largest_class, 'forest_cover'] = 1 COV_type_data.iloc[:, :-1] = StandardScaler().fit_transform(COV_type_data.iloc[:, :-1]) COV_type_data ###Output _____no_output_____ ###Markdown Balance of dataset Treat largest class as positive class. The rest are negative. ###Code # positive_labels = len(COV_type_data[COV_type_data['Forest cover'] == 7])/len(COV_type_data['Forest cover']) * 100 positive_labels = COV_type_data['forest_cover'].value_counts().max()/len(COV_type_data['forest_cover']) * 100 negative_labels = len(COV_type_data[COV_type_data['forest_cover'] != COV_type_data['forest_cover'].value_counts().idxmax()])/len(COV_type_data['forest_cover']) * 100 print("% of negative labels:", negative_labels) print("% of positive labels:", positive_labels) ###Output % of negative labels: 48.75992234239568 % of positive labels: 51.240077657604324 ###Markdown LETTER ###Code LETTER_p1 = pd.read_csv('letter-recognition.data', header = None) cols = [c for c in LETTER_p1.columns] cols[0] = 'letter' LETTER_p1.columns = cols LETTER_p1.loc[:, LETTER_p1.columns != 'letter'] = StandardScaler().fit_transform(LETTER_p1.loc[:, LETTER_p1.columns != 'letter']) LETTER_p1 ###Output _____no_output_____ ###Markdown Letter.p1 - treat O as positive class, rest as negative Unbalanced dataset ###Code O_list = ['O'] LETTER_p1.loc[~LETTER_p1['letter'].isin(O_list), 'letter'] = 0 LETTER_p1.loc[LETTER_p1['letter'].isin(O_list), 'letter'] = 1 LETTER_p1['letter'].value_counts() positive_labels = len(LETTER_p1[LETTER_p1['letter'] == 1])/len(LETTER_p1['letter']) * 100 negative_labels = len(LETTER_p1[LETTER_p1['letter'] == 0])/len(LETTER_p1['letter']) * 100 print("% of negative labels:", negative_labels) print("% of positive labels:", positive_labels) ###Output % of negative labels: 96.235 % of positive labels: 3.765 ###Markdown Letter.p2 - treat A-M as positive class, rest as negative ###Code LETTER_p2 = pd.read_csv('letter-recognition.data', header = None) cols = [c for c in LETTER_p2.columns] cols[0] = 'letter' LETTER_p2.columns = cols LETTER_p2.loc[:, LETTER_p2.columns != 'letter'] = StandardScaler().fit_transform(LETTER_p2.loc[:, LETTER_p2.columns != 'letter']) pos_alphabet_list = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M'] neg_alphabet_list = sorted(list(set(string.ascii_uppercase) - set(pos_alphabet_list))) LETTER_p2.loc[LETTER_p2['letter'].isin(pos_alphabet_list), 'letter'] = 1 LETTER_p2.loc[LETTER_p2['letter'].isin(neg_alphabet_list), 'letter'] = 0 LETTER_p1["letter"] = LETTER_p1["letter"].astype(str).astype(int) LETTER_p2["letter"] = LETTER_p2["letter"].astype(str).astype(int) LETTER_p2 ###Output _____no_output_____ ###Markdown Well-balanced dataset ###Code pos_alphabet_list = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M'] neg_alphabet_list = sorted(list(set(string.ascii_uppercase) - set(pos_alphabet_list))) positive_labels = len(LETTER_p2[LETTER_p2['letter'] == 1])/len(LETTER_p2['letter']) * 100 negative_labels = len(LETTER_p2[LETTER_p2['letter'] == 0])/len(LETTER_p2['letter']) * 100 print("% of negative labels:", negative_labels) print("% of positive labels:", positive_labels) ###Output % of negative labels: 50.3 % of positive labels: 49.7 ###Markdown Experiment - KNN over 4 datasets over 5 trials ###Code def split_data(data, column): Y = data[column] X = data.drop([column], axis=1) X_train, X_test, y_train, y_test = train_test_split(X, Y, train_size=5000) return X_train, X_test, y_train, y_test from sklearn.pipeline import Pipeline from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.model_selection import StratifiedKFold from sklearn import datasets from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import f1_score, accuracy_score, roc_auc_score from sklearn.model_selection import train_test_split accuracy_metric = [] f1_score_metric = [] roc_auc_score_metric = [] ADULT_metric = [] COV_type_metric = [] LETTER_p1_metric = [] LETTER_p2_metric = [] datalist = [COV_type_data, ADULT_one_hot_data, LETTER_p1, LETTER_p2] for ind, data in enumerate(datalist): for i in range(5): print('Start of trial', i+1) # COV_type data if ind == 0: print('At COV_type_data') dataset = 'COV_type_data' X_train, X_test, y_train, y_test = split_data(data, 'forest_cover') # ADULT_data elif ind == 1: print('At ADULT_data') dataset = 'ADULT_data' X_train, X_test, y_train, y_test = split_data(data, 'target_income') # LETTER.p1 data if ind == 2: print('At LETTER_p1') dataset = 'LETTER_p1' X_train, X_test, y_train, y_test = split_data(data, 'letter') # LETTER.p2 data if ind == 3: print('At LETTER_p2') dataset = 'LETTER_p2' X_train, X_test, y_train, y_test = split_data(data, 'letter') pipe = Pipeline([('classifier', KNeighborsClassifier()) ]) search_space = [ { 'classifier': [KNeighborsClassifier(p = 2)], 'classifier__n_neighbors': list(range(1,102,4)), 'classifier__metric': ['euclidean'], 'classifier__weights': ['uniform', 'distance'] }] # Create grid search clf = GridSearchCV(pipe, search_space, cv=StratifiedKFold(n_splits=5), scoring=['accuracy', 'roc_auc', 'f1'], refit='accuracy', verbose=0, n_jobs = -1) # Fit grid search best_model = clf.fit(X_train, y_train) # Get best hyperparameters for accuracy, roc_auc score, f1_score best_acc_param = best_model.cv_results_['params'][ np.argmin(best_model.cv_results_['rank_test_accuracy'])] best_auc_param = best_model.cv_results_['params'][np.argmin(best_model.cv_results_['rank_test_roc_auc'])] best_f1_param = best_model.cv_results_['params'][np.argmin(best_model.cv_results_['rank_test_f1'])] # Train 3 models using the 5000 samples and each of the 3 best parameter settings (one model per metric) # Tuned for accuracy acc_model = best_acc_param['classifier'].fit(X_train, y_train) # Tuned for roc-auc score auc_model = best_auc_param['classifier'].fit(X_train, y_train) # Tuned for f1 score f1_model = best_f1_param['classifier'].fit(X_train, y_train) # fit a classifier using that best param on the training set, # predict the training set, and record the corresponding training set metric for the appendix tables # On Training data y_pred_acc_tr = acc_model.predict(X_train) y_pred_auc_tr = auc_model.predict(X_train) y_pred_f1_tr = f1_model.predict(X_train) print('Trial ', i+1, ' raw training scores for', dataset) # Raw train accuracy score print(accuracy_score(y_train, y_pred_acc_tr)) # Raw train roc_auc score print(roc_auc_score(y_train, y_pred_auc_tr)) # Raw train f1_score print(f1_score(y_train, y_pred_f1_tr)) # On Test data y_pred_acc = acc_model.predict(X_test) y_pred_auc = auc_model.predict(X_test) y_pred_f1 = f1_model.predict(X_test) print('Trial ', i+1, ' raw test scores for', dataset) # Raw test accuracy score print(accuracy_score(y_test, y_pred_acc)) # Raw test roc_auc score print(roc_auc_score(y_test, y_pred_auc)) # Raw test f1_score print(f1_score(y_test, y_pred_f1)) # Append raw test scores to list to generate Table 2 values accuracy_metric.append(accuracy_score(y_test, y_pred_acc)) roc_auc_score_metric.append(roc_auc_score(y_test, y_pred_auc)) f1_score_metric.append(f1_score(y_test, y_pred_f1)) # For Table 3 if ind == 0: COV_type_metric.extend([accuracy_score(y_test, y_pred_acc), roc_auc_score(y_test, y_pred_auc), f1_score(y_test, y_pred_f1)]) elif ind == 1: ADULT_metric.extend([accuracy_score(y_test, y_pred_acc), roc_auc_score(y_test, y_pred_auc), f1_score(y_test, y_pred_f1)]) elif ind == 2: LETTER_p1_metric.extend([accuracy_score(y_test, y_pred_acc), roc_auc_score(y_test, y_pred_auc), f1_score(y_test, y_pred_f1)]) elif ind == 3: LETTER_p2_metric.extend([accuracy_score(y_test, y_pred_acc), roc_auc_score(y_test, y_pred_auc), f1_score(y_test, y_pred_f1)]) print("End of Trial", i+1) print('------------------------------------------') print() ###Output Start of trial 1 At COV_type_data Trial 1 raw training scores for COV_type_data 1.0 1.0 1.0 Trial 1 raw test scores for COV_type_data 0.7773657493246668 0.7776871484457607 0.7759436434666537 End of Trial 1 ------------------------------------------ Start of trial 2 At COV_type_data Trial 2 raw training scores for COV_type_data 1.0 1.0 1.0 Trial 2 raw test scores for COV_type_data 0.7752616264938925 0.7752553645210009 0.7708221947618323 End of Trial 2 ------------------------------------------ Start of trial 3 At COV_type_data Trial 3 raw training scores for COV_type_data 1.0 1.0 1.0 Trial 3 raw test scores for COV_type_data 0.7866433338194343 0.7869815425421214 0.7853779845481091 End of Trial 3 ------------------------------------------ Start of trial 4 At COV_type_data Trial 4 raw training scores for COV_type_data 1.0 1.0 1.0 Trial 4 raw test scores for COV_type_data 0.7746661527884836 0.7754884432741864 0.7776831914824376 End of Trial 4 ------------------------------------------ Start of trial 5 At COV_type_data Trial 5 raw training scores for COV_type_data 1.0 1.0 1.0 Trial 5 raw test scores for COV_type_data 0.7766747914973994 0.7773724385257351 0.7785958933581179 End of Trial 5 ------------------------------------------ Start of trial 1 At ADULT_data Trial 1 raw training scores for ADULT_data 1.0 1.0 1.0 Trial 1 raw test scores for ADULT_data 0.8377780196654693 0.7423299210968046 0.6227322588811071 End of Trial 1 ------------------------------------------ Start of trial 2 At ADULT_data Trial 2 raw training scores for ADULT_data 1.0 1.0 1.0 Trial 2 raw test scores for ADULT_data 0.8377054533580058 0.7439800499855918 0.6255963840294635 End of Trial 2 ------------------------------------------ Start of trial 3 At ADULT_data Trial 3 raw training scores for ADULT_data 0.838 0.7463818691923787 0.632486388384755 Trial 3 raw test scores for ADULT_data 0.8369797902833714 0.7435189713183991 0.6239223235958817 End of Trial 3 ------------------------------------------ Start of trial 4 At ADULT_data Trial 4 raw training scores for ADULT_data 1.0 1.0 1.0 Trial 4 raw test scores for ADULT_data 0.8361452777475418 0.7421940897545529 0.623603933988998 End of Trial 4 ------------------------------------------ Start of trial 5 At ADULT_data Trial 5 raw training scores for ADULT_data 1.0 1.0 1.0 Trial 5 raw test scores for ADULT_data 0.8348028010594681 0.7370038986558887 0.615813011560206 End of Trial 5 ------------------------------------------ Start of trial 1 At LETTER_p1 Trial 1 raw training scores for LETTER_p1 1.0 1.0 1.0 Trial 1 raw test scores for LETTER_p1 0.9893333333333333 0.9359170166730304 0.8646362098138749 End of Trial 1 ------------------------------------------ Start of trial 2 At LETTER_p1 Trial 2 raw training scores for LETTER_p1 1.0 1.0 1.0 Trial 2 raw test scores for LETTER_p1 0.9900666666666667 0.9549933110680774 0.8723221936589546 End of Trial 2 ------------------------------------------ Start of trial 3 At LETTER_p1 Trial 3 raw training scores for LETTER_p1 1.0 1.0 1.0 Trial 3 raw test scores for LETTER_p1 0.9898666666666667 0.9507199928598129 0.8735440931780367 End of Trial 3 ------------------------------------------ Start of trial 4 At LETTER_p1 Trial 4 raw training scores for LETTER_p1 1.0 1.0 1.0 Trial 4 raw test scores for LETTER_p1 0.9913333333333333 0.9323411783247382 0.8826714801444042 End of Trial 4 ------------------------------------------ Start of trial 5 At LETTER_p1 Trial 5 raw training scores for LETTER_p1 1.0 1.0 1.0 Trial 5 raw test scores for LETTER_p1 0.9888666666666667 0.9237303792098314 0.8480436760691538 End of Trial 5 ------------------------------------------ Start of trial 1 At LETTER_p2 Trial 1 raw training scores for LETTER_p2 1.0 1.0 1.0 Trial 1 raw test scores for LETTER_p2 0.9556 0.9556005262294175 0.9556414013587319 End of Trial 1 ------------------------------------------ Start of trial 2 At LETTER_p2 Trial 2 raw training scores for LETTER_p2 1.0 1.0 1.0 Trial 2 raw test scores for LETTER_p2 0.9488666666666666 0.9488722922252363 0.9487813021702838 End of Trial 2 ------------------------------------------ Start of trial 3 At LETTER_p2 Trial 3 raw training scores for LETTER_p2 1.0 1.0 1.0 Trial 3 raw test scores for LETTER_p2 0.9537333333333333 0.9537293026414745 0.9532974427994616 End of Trial 3 ------------------------------------------ Start of trial 4 At LETTER_p2 Trial 4 raw training scores for LETTER_p2 1.0 1.0 1.0 Trial 4 raw test scores for LETTER_p2 0.9532666666666667 0.9532509464739012 0.9527213866594726 End of Trial 4 ------------------------------------------ Start of trial 5 At LETTER_p2 Trial 5 raw training scores for LETTER_p2 1.0 1.0 1.0 Trial 5 raw test scores for LETTER_p2 0.9518 0.9518224963519245 0.9517259798357482 End of Trial 5 ------------------------------------------ ###Markdown For Table 2 ###Code print('Accuracy metric values across all datasets, across 5 trials, for KNN:') print(accuracy_metric) print() print() print('F-score metric values across all datasets, across 5 trials, for KNN:') print(f1_score_metric) print() print('ROC_AUC metric values across all datasets, across 5 trials, for KNN:') print(roc_auc_score_metric) print() print('Average scores for each metric: ') print('ACC:', sum(accuracy_metric)/len(accuracy_metric)) print('FSC:', sum(f1_score_metric)/len(f1_score_metric)) print('ROC_AUC:', sum(roc_auc_score_metric)/len(roc_auc_score_metric)) with open('Table_2_p_test', 'a') as f: # using csv.writer method from CSV package write = csv.writer(f) write.writerow(accuracy_metric) write.writerow(f1_score_metric) write.writerow(roc_auc_score_metric) ###Output _____no_output_____ ###Markdown For Table 3 ###Code print('COV_type') print('Metric values across 5 trials, for KNN:') print(COV_type_metric) print() print('ADULT') print('Metric values across 5 trials, for KNN:') print(ADULT_metric) print() print('LETTER.p1') print('Metric values across 5 trials, for KNN:') print(LETTER_p1_metric) print() print('LETTER.p2') print('Metric values across 5 trials, for KNN:') print(LETTER_p2_metric) ###Output COV_type Metric values across 5 trials, for KNN: [0.7773657493246668, 0.7776871484457607, 0.7759436434666537, 0.7752616264938925, 0.7752553645210009, 0.7708221947618323, 0.7866433338194343, 0.7869815425421214, 0.7853779845481091, 0.7746661527884836, 0.7754884432741864, 0.7776831914824376, 0.7766747914973994, 0.7773724385257351, 0.7785958933581179] ADULT Metric values across 5 trials, for KNN: [0.8377780196654693, 0.7423299210968046, 0.6227322588811071, 0.8377054533580058, 0.7439800499855918, 0.6255963840294635, 0.8369797902833714, 0.7435189713183991, 0.6239223235958817, 0.8361452777475418, 0.7421940897545529, 0.623603933988998, 0.8348028010594681, 0.7370038986558887, 0.615813011560206] LETTER.p1 Metric values across 5 trials, for KNN: [0.9893333333333333, 0.9359170166730304, 0.8646362098138749, 0.9900666666666667, 0.9549933110680774, 0.8723221936589546, 0.9898666666666667, 0.9507199928598129, 0.8735440931780367, 0.9913333333333333, 0.9323411783247382, 0.8826714801444042, 0.9888666666666667, 0.9237303792098314, 0.8480436760691538] LETTER.p2 Metric values across 5 trials, for KNN: [0.9556, 0.9556005262294175, 0.9556414013587319, 0.9488666666666666, 0.9488722922252363, 0.9487813021702838, 0.9537333333333333, 0.9537293026414745, 0.9532974427994616, 0.9532666666666667, 0.9532509464739012, 0.9527213866594726, 0.9518, 0.9518224963519245, 0.9517259798357482] ###Markdown Write the 15 values for each metric to a .csv to do p-test comparisons. ###Code with open('Table_3_p_test', 'a') as f: # using csv.writer method from CSV package write = csv.writer(f) write.writerow(COV_type_metric) write.writerow(ADULT_metric) write.writerow(LETTER_p1_metric) write.writerow(LETTER_p2_metric) print('Average metric scores for each dataset across 5 trials: ') print() print('COV_type:', sum(COV_type_metric)/len(COV_type_metric)) print() print('ADULT:', sum(ADULT_metric)/len(ADULT_metric)) print() print('LETTER.p1:', sum(LETTER_p1_metric)/len(LETTER_p1_metric)) print() print('LETTER.p2:', sum(LETTER_p2_metric)/len(LETTER_p2_metric)) ###Output Average metric scores for each dataset across 5 trials: COV_type: 0.778121299923322 ADULT: 0.7336070789987166 LETTER.p1: 0.9325590798444385 LETTER.p2: 0.9525806495608212 ###Markdown ###Code import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, neighbors from matplotlib.colors import ListedColormap def knn_comparison(data, n_neighbors = 15): ''' This function finds k-NN and plots the data. ''' X = data[:, :2] y = data[:,2] # grid cell size h = .02 cmap_light = ListedColormap(['#FFAAAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#0000FF']) # the core classifier: k-NN clf = neighbors.KNeighborsClassifier(n_neighbors) clf.fit(X, y) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 # we create a mesh grid (x_min,y_min) to (x_max y_max) with 0.02 grid spaces xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # we predict the value (either 0 or 1) of each element in the grid Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # xx.ravel() will give a flatten array # np.c_ : Translates slice objects to concatenation along the second axis. # > np.c_[np.array([1,2,3]), np.array([4,5,6])] # > array([[1, 4], # [2, 5], # [3, 6]]) (source: np.c_ documentation) # convert the out back to the xx shape (we need it to plot the decission boundry) Z = Z.reshape(xx.shape) # pcolormesh will plot the (xx,yy) grid with colors according to the values of Z # it looks like decision boundry plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # scatter plot of with given points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) #defining scale on both axises plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) # set the title plt.title('K value = '+str(n_neighbors)) plt.show() ###Output _____no_output_____ ###Markdown Meshgrid explanation![title](demo_data/meshgrid_image.png)please check this link stackoverflow meshgrid explanation ###Code data = np.genfromtxt('6.overlap.csv', delimiter=',') knn_comparison(data, 1) knn_comparison(data, 5) knn_comparison(data,15) knn_comparison(data, 30) knn_comparison(data, 50) data = np.genfromtxt('1.ushape.csv', delimiter=',') knn_comparison(data, 1) knn_comparison(data, 5) knn_comparison(data,15) knn_comparison(data,30) data = np.genfromtxt('2.concerticcir1.csv', delimiter=',') knn_comparison(data, 1) knn_comparison(data, 5) knn_comparison(data,15) knn_comparison(data,30) data = np.genfromtxt('3.concertriccir2.csv', delimiter=',') knn_comparison(data, 1) knn_comparison(data, 5) knn_comparison(data, 15) data = np.genfromtxt('4.linearsep.csv', delimiter=',') knn_comparison(data, 1) knn_comparison(data, 5) knn_comparison(data) data = np.genfromtxt('5.outlier.csv', delimiter=',') knn_comparison(data,1) knn_comparison(data,5) knn_comparison(data) data = np.genfromtxt('7.xor.csv', delimiter=',') knn_comparison(data, 1) knn_comparison(data, 5) knn_comparison(data) data = np.genfromtxt('8.twospirals.csv', delimiter=',') knn_comparison(data, 1) knn_comparison(data, 5) knn_comparison(data) data = np.genfromtxt('9.random.csv', delimiter=',') knn_comparison(data, 1) knn_comparison(data, 5) knn_comparison(data) ###Output _____no_output_____ ###Markdown data_urls = ["""https://cl.lingfil.uu.se/~frewa417/english_past_tense.arff""", """https://cl.lingfil.uu.se/~frewa417/german_plural.arff"""]filenames = [url.split("/")[-1] for url in data_urls]import urllib.requestfor url, fn in zip(data_urls, filenames): urllib.request.urlretrieve(url, fn) ###Code from scipy.io.arff import loadarff loaded_data_files = [loadarff(fn) for fn in filenames] import numpy as np D = dict() for data in loaded_data_files: data_points = data[0] field_names = data[1].names() assert field_names[0] == 'frequency' assert field_names[-1] == 'class' X = list() y = list() for point in data_points: v = [field_names[i]+"_"+point[i].decode("utf-8") for i in range(1, len(point)-1)] X.extend([v]*int(point[0])) assert len(v) == len(X[0]) u = [point[-1].decode("utf-8")] y.extend([u]*int(point[0])) assert len(u) == len(y[0]) assert len(X) == np.sum(np.asarray([point[0] for point in data_points])) X_orig = np.asarray(X) y_orig = np.asarray(y).ravel() D[data[1].name] = tuple([X_orig, y_orig]) from sklearn.preprocessing import LabelEncoder label_encoder = LabelEncoder() y1 = label_encoder.fit_transform(D['plural'][1]) from sklearn.preprocessing import LabelEncoder label_encoder = LabelEncoder() y2 = label_encoder.fit_transform(D['past-tense'][1]) from sklearn.preprocessing import OneHotEncoder feature_encoder = OneHotEncoder() X1 = feature_encoder.fit_transform(D['plural'][0]) X1_names = feature_encoder.get_feature_names() from sklearn.preprocessing import OneHotEncoder feature_encoder = OneHotEncoder() X2 = feature_encoder.fit_transform(D['past-tense'][0]) X2_names = feature_encoder.get_feature_names() I1 = np.random.uniform(0, 1, size=X1.shape[0]) < .1 X1 = X1[I1, :] y1 = y1[I1] print("X1:", X1.shape, ", y1:", y1.shape) I2 = np.random.uniform(0, 1, size=X2.shape[0]) < .1 X2 = X2[I2, :] y2 = y2[I2] print("X2:", X2.shape, ", y2:", y2.shape) from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report knn = KNeighborsClassifier(n_neighbors=4) from sklearn.model_selection import train_test_split X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, train_size=.7) knn.fit(X1_train, y1_train) y1_testp=knn.predict(X1_test) y1_trainp=knn.predict(X1_train) print(classification_report(y1_test, y1_testp, target_names=None)) print(classification_report(y1_train, y1_trainp, target_names=None)) X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, train_size=.7) knn = KNeighborsClassifier(n_neighbors=4) knn.fit(X2_train, y2_train) y2_testp=knn.predict(X2_test) y2_trainp=knn.predict(X2_train) print(classification_report(y2_test, y2_testp, target_names=None)) print(classification_report(y2_train, y2_trainp, target_names=None)) from sklearn.model_selection import cross_validate import matplotlib.pyplot as plt from sklearn.model_selection import cross_val_score k_range=(1, 20) k_scores=[] for k in k_range: knn = KNeighborsClassifier(n_neighbors=k) scores = cross_val_score(knn, X1_train, y1_train, cv=5, scoring='accuracy') k_scores.append(scores.mean()) plt.plot(k_range, k_scores) plt.xlabel('Value of K for KNN') plt.ylabel('Cross-validates accuracy') plt.show() k_range=(1, 20) k_scores=[] for k in k_range: knn = KNeighborsClassifier(n_neighbors=k) scores = cross_val_score(knn, X2_test, y2_test, cv=5, scoring='accuracy') k_scores.append(scores.mean()) plt.plot(k_range, k_scores) plt.xlabel('Value of K for KNN') plt.ylabel('Cross-validates accuracy') plt.show() from sklearn.feature_selection import VarianceThreshold sel = VarianceThreshold(threshold=(.8) sel.fit_transform(X1) get_support(self, indices=False) from sklearn.feature_selection import VarianceThreshold sel = VarianceThreshold(threshold=(.8) sel.fit_transform(X1) knn = KNeighborsClassifier(n_neighbors=4) scores = cross_val_score(knn, X1_train, y1_train, cv=5, scoring='accuracy') k_scores.append(scores.mean()) plt.plot(k_range, k_scores) plt.xlabel('k=4') plt.ylabel('Cross-validates accuracy') plt.show() import numpy as np D = dict() for data in loaded_data_files: data_points = data[0] field_names = data[1].names() assert field_names[0] == 'frequency' assert field_names[-1] == 'class' X = list() y = list() for point in data_points: v = [field_names[i]+"_"+point[i].decode("utf-8") for i in range(1, len(point)-1)] X.extend([v]*int(point[0])) assert len(v) == len(X[0]) u = [point[-1].decode("utf-8")] y.extend([u]*int(point[0])) assert len(u) == len(y[0]) assert len(X) == np.sum(np.asarray([point[0] for point in data_points])) X_orig = np.asarray(X) y_orig = np.asarray(y).ravel() D[data[1].name] = tuple([X_orig, y_orig]) X1 = np.delete(D['plural'][0], [1,2,3], axis=1) y1 = np.delete(D['plural'][1], [1,2,3], axis=1) from sklearn.preprocessing import LabelEncoder label_encoder = LabelEncoder() y1 = label_encoder.fit_transform(y1) from sklearn.preprocessing import OneHotEncoder feature_encoder = OneHotEncoder() X1 = feature_encoder.fit_transform(X1) X1_names = feature_encoder.get_feature_names() I1 = np.random.uniform(0, 1, size=X1.shape[0]) < .1 X1 = X1[I1, :] y1 = y1[I1] print("X1:", X1.shape, ", y1:", y1.shape) from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report knn = KNeighborsClassifier(n_neighbors=4) from sklearn.model_selection import train_test_split X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, train_size=.7) knn.fit(X1_train, y1_train) y1_testp=knn.predict(X1_test) y1_trainp=knn.predict(X1_train) print(classification_report(y1_test, y1_testp, target_names=None)) print(classification_report(y1_train, y1_trainp, target_names=None)) ###Output _____no_output_____ ###Markdown An Introduction to KNN classifier This an example to use Amazon Sagemaker. SageMaker allows one to build a ML pipeline easily. Building, training and deploying of ML models is less cumbersome with SageMakerIn this example, I will be using a Amazon's marketplace algorithm (KNN).The purpose of the notebook is to explain the usage of sagemaker and not the modeling aspect.The data used in this is mnist and problem is framed as binary classification.Amazon SageMaker's KNN algorithm extends upon typical linear models by training many models in parallel, in a computationally efficient manner. Each model has a different set of hyperparameters, and then the algorithm finds the set that optimizes a specific criteria. This can provide substantially more accurate models than typical linear algorithms at the same, or lower, cost. Libraries used ###Code import boto3 import re import pickle import gzip import numpy as np import urllib.request import json import os import io import sagemaker import pandas as pd from sagemaker.predictor import csv_serializer, json_deserializer from sagemaker.amazon.amazon_estimator import get_image_uri import sagemaker.amazon.common as smac from sagemaker import get_execution_role import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown This notebook assumes that you have an AWS account and an IAM user setup and using the notebook instance of Amazon SageMaker. For further reference please refer to this notebook https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html Permissions and environment variables This notebook was created and tested on an ml.t2.medium notebook instance.Let's start by specifying:1. The S3 bucket and prefix that you want to use for training and model data. This should be within the same region as the Notebook Instance, training, and hosting.2. The IAM role arn used to give training and hosting access to your data. See the documentation for how to create these. ###Code bucket = 'test-karan-02' prefix = 'sagemaker_demo_knn' role = get_execution_role() ###Output _____no_output_____ ###Markdown Data ingestion Next, we read the dataset from an online URL into memory, for preprocessing prior to training. This processing could be done in situ by Amazon Athena, Apache Spark in Amazon EMR, Amazon Redshift, etc., assuming the dataset is present in the appropriate location. Then, the next step would be to transfer the data to S3 for use in training. ###Code ! wget https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data ! wget https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names iris_df = pd.read_csv("iris.data", header = None) iris_df.columns = ['sepal_length', 'sepal_width','petal_length','petal_width', 'class'] ###Output _____no_output_____ ###Markdown Data inspection Once the dataset is imported, it's typical as part of the machine learning process to inspect the data, understand the distributions, and determine what type(s) of preprocessing might be needed. ###Code iris_df.head() import seaborn as sns sns.countplot(x = "class",data=iris_df) ###Output _____no_output_____ ###Markdown Data conversion Since algorithms have particular input and output requirements, converting the dataset is also part of the process that a data scientist goes through prior to initiating training. In this particular case, the Amazon SageMaker implementation of Linear Learner takes recordIO-wrapped protobuf, where the data we have today is a pickle-ized numpy array on disk.Most of the conversion effort is handled by the Amazon SageMaker Python SDK, imported as sagemaker below ###Code iris_df['class'] = pd.Categorical(iris_df['class']) iris_df['code_class'] = iris_df['class'].cat.codes vectors = iris_df.iloc[:,:4].values.astype('float32') labels = iris_df.iloc[:,5].values.astype('float32') buf = io.BytesIO() smac.write_numpy_to_dense_tensor(buf, vectors, labels) buf.seek(0) ###Output _____no_output_____ ###Markdown Upload training data Now that we've created our recordIO-wrapped protobuf, we'll need to upload it to S3, so that Amazon SageMaker training can use it. ###Code key = 'recordio-pb-data' boto3.resource('s3').Bucket(bucket).Object(os.path.join(prefix, key)).upload_fileobj(buf) s3_train_data = 's3://{}/{}/{}'.format(bucket, prefix, key) print('uploaded training data location: {}'.format(s3_train_data)) ###Output uploaded training data location: s3://test-karan-02/sagemaker_demo_knn/recordio-pb-data ###Markdown Let's also setup an output S3 location for the model artifact that will be output as the result of training with the algorithm. ###Code output_location = 's3://{}/{}/output'.format(bucket, prefix) print('training artifacts will be uploaded to: {}'.format(output_location)) ###Output training artifacts will be uploaded to: s3://test-karan-02/sagemaker_demo_knn/output ###Markdown Training the linear model Once we have the data preprocessed and available in the correct format for training, the next step is to actually train the model using the data. Again, we'll use the Amazon SageMaker Python SDK to kick off training, and monitor status until it is completed. . Despite the dataset being small, provisioning hardware and loading the algorithm container take time upfront. ###Code container = get_image_uri(boto3.Session().region_name, 'knn') ###Output _____no_output_____ ###Markdown Next we'll kick off the base estimator, making sure to pass in the necessary hyperparameters. Notice:1. feature_dim is set to 4, which is the number of columns .2. predictor_type is set to classifier' 3. k is set to 5. It has to be tuned ###Code sess = sagemaker.Session() knn = sagemaker.estimator.Estimator(container, role, train_instance_count=1, train_instance_type='ml.c4.xlarge', output_path=output_location, sagemaker_session=sess) knn.set_hyperparameters( k = 5, predictor_type= "classifier", sample_size = 10, feature_dim= 4) knn.fit({'train': s3_train_data}) ###Output _____no_output_____ ###Markdown Sample Output1. 2020-02-26 21:07:45 Starting - Starting the training job...2. 2020-02-26 21:07:46 Starting - Launching requested ML instances......3. 2020-02-26 21:08:53 Starting - Preparing the instances for training......4. 2020-02-26 21:09:48 Downloading - Downloading input data...5. 2020-02-26 21:10:45 Training - Training image download completed. Training in progress..Docker entrypoint called with argument(s): train6. 2020-02-26 21:28:11 Uploading - Uploading generated training model7. 2020-02-26 21:28:11 Completed - Training job completed Set up hosting for the model Now that we've trained our model, we can deploy it behind an Amazon SageMaker real-time hosted endpoint. This will allow out to make predictions (or inference) from the model dyanamically. ###Code knn_predictor = knn.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge') ###Output ---------------! ###Markdown Validate the model for use Finally, we can now validate the model for use. We can pass HTTP POST requests to the endpoint to get back predictions. To make this easier, we'll again use the Amazon SageMaker Python SDK and specify how to serialize requests and deserialize responses that are specific to the algorithm. ###Code knn_predictor.content_type = 'text/csv' knn_predictor.serializer = csv_serializer knn_predictor.deserializer = json_deserializer result = knn_predictor.predict(iris_df.iloc[30,:4]) print(result) ###Output {'predictions': [{'predicted_label': 0.0}]} ###Markdown OK, a single prediction works. We see that for one record our endpoint returned some JSON which contains predictions, including the score and predicted_label. In this case, score will be a categorical value between [0,1,2] representing the class. ###Code sagemaker.Session().delete_endpoint(knn_predictor.endpoint) ###Output _____no_output_____ ###Markdown 第3章 k近邻法 ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import pprint from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter %matplotlib inline ###Output _____no_output_____ ###Markdown 手写KNN K近邻模型主要是由距离度量、k值的选择和分类决策规则决定。 距离度量(欧式距离) ![](knn.png) **distance**: $ L_{p}\left(x_{i}, x_{j}\right)=\left(\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^{p}\right)^{\frac{1}{p}}$ ###Code def distance(x, y, p=2): #定义距离(其中,p=1是曼哈顿距离,p=2是欧氏距离,p为正无穷时,它是各个坐标距离的最大值) """计算两点之间的距离P. input: x: N*M 矩阵. y: 1*M 矩阵. p: 距离类型 output: N*1 x与y之间的距离的矩阵形式. """ try: dis = np.power(np.sum(np.power(np.abs((x - y)), p), 1), 1/p) except: dis = np.power(np.sum(np.power(np.abs((x - y)), p)), 1/p) return dis ###Output _____no_output_____ ###Markdown 注意:由不同距离度量所确定的最近近邻点是不同的! ###Code # 这里使用经典的鸢尾花数据 iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] df.head(100) df.describe() # 作图 plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend() # X, y data = np.array(df.iloc[:100, [0, 1, -1]]) X, y = data[:,:-1], data[:,-1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) class KNN: """ KNN这个算法玩的就是暴力. """ def __init__(self, X_train, y_train, n_neighbors=1, p=2): """ n_neighbors: k p: type of distance """ self.k = n_neighbors self.p = p self.X_train = X_train self.y_train = y_train def predict(self, X): diss = distance(self.X_train, X, self.p) diss_idx = np.argsort(diss) # return sorted index top_k_idx = diss_idx[:self.k] top_k_diss = diss[top_k_idx] top_k_points = self.X_train[top_k_idx] top_k_diss = diss[top_k_idx] top_k_y = self.y_train[top_k_idx] counter = Counter(top_k_y) label = counter.most_common()[0][0] return label, top_k_points, top_k_diss def score(self, X_test, y_test): right_count = 0 for X, y in zip(X_test, y_test): label = self.predict(X)[0] if label == y: right_count += 1 return right_count / len(X_test) clf = KNN(X_train, y_train) #train clf.score(X_test, y_test) # 在测试集上验证效果 # 对单一一个点test test_point = [6, 2.7] clf.predict(test_point) plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1') plt.plot(test_point[0], test_point[1], 'bo', label='test_point') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend() ###Output _____no_output_____ ###Markdown 分类效果还行 scikitlearn 的KNN ###Code from sklearn.neighbors import KNeighborsClassifier clf_sk = KNeighborsClassifier() clf_sk.fit(X_train, y_train) clf_sk.score(X_test, y_test) clf_sk.fit(X_train,y_train) ###Output _____no_output_____ ###Markdown kd树 构建kd树 ###Code # 算法 平衡kd树 class KdTree: """ build kdtree recursively along axis, split on median point. k: k dimensions method: alternate/variance, 坐标轴轮替或最大方差轴 """ def __init__(self, k=2, method='alternate'): self.k = k self.method = method def build(self, points, depth=0): n = len(points) if n <= 0: return None if self.method == 'alternate': axis = depth % self.k elif self.method == 'variance': axis = np.argmax(np.var(points, axis=0), axis=0) sorted_points = sorted(points, key=lambda point: point[axis]) return { 'point': sorted_points[n // 2], 'left': self.build(sorted_points[:n//2], depth+1), 'right': self.build(sorted_points[n//2+1:], depth+1) } ###Output _____no_output_____ ###Markdown 例3.2 ###Code data = np.array([[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]) kd1 = KdTree(k=2, method='alternate') tree1 = kd1.build(data) kd2 = KdTree(k=2, method='variance') tree2 = kd2.build(data) # friendly print pp = pprint.PrettyPrinter(indent=4) pp.pprint(tree1) # equal to figure. 3.4 《统计学习方法》 pp.pprint(tree2) # 在该数据集上两种方法结果一样 ###Output _____no_output_____ ###Markdown 查找kd树 ###Code class SearchKdTree: """ 查找最近点 """ def __init__(self, k=2): self.k = k def __closer_distance(self, pivot, p1, p2): if p1 is None: return p2 if p2 is None: return p1 d1 = distance(pivot, p1) d2 = distance(pivot, p2) if d1 < d2: return p1 else: return p2 def fit(self, root, point, depth=0): if root is None: return None axis = depth % self.k next_branch = None opposite_branch = None if point[axis] < root['point'][axis]: next_branch = root['left'] opposite_branch = root['right'] else: next_branch = root['right'] opposite_branch = root['left'] best = self.__closer_distance(point, self.fit(next_branch, point, depth+1), root['point']) if distance(point, best) > abs(point[axis] - root['point'][axis]): best = self.__closer_distance(point, self.fit(opposite_branch, point, depth+1), best) return best # test point = [3.,4.5] search = SearchKdTree() best = search.fit(tree1, point, depth=0) print(best) # force computing def force(points, point): dis = np.power(np.sum(np.power(np.abs((points - point)), 2), 1), 1/2) idx = np.argmin(dis, axis=0) return points[idx] print(force(data, point)) ###Output _____no_output_____ ###Markdown 看上去,相比于在大量的数据点中寻找与目标最近的点,kd树不需要一个个查找,O(n)的复杂的,效率提高了。 比较下 force和KD树之间运算所需的时间 ###Code from time import time # 创建个数据集 N = 500000 K = 5 points = np.random.randint(15, size=(N, K)) points.shape # generate一个kd数 kd_tree = KdTree(k=K, method='alternate') tree = kd_tree.build(points) # generate测试点 test_point = np.random.randint(10, size=(K)) t_point = [8.,5.,1.,2.,2.] # KD树找点 start = time() seah = SearchKdTree() best = seah.fit(tree, t_point, depth=0) end = time() dist = distance(t_point, best) print('best point:{}, distance:{}, time cost:{}'.format(best, dist, end - start)) # force时间 start = time() best = force(points, t_point) end = time() dist = distance(t_point, best) print('best point:{}, distance:{}, time cost:{}'.format(best, dist, end - start)) ###Output _____no_output_____ ###Markdown Context and ContentA company which is active in Big Data and Data Science wants to hire data scientists among people who successfully pass some courses which conduct by the company. Many people signup for their training. Company wants to know which of these candidates are really wants to work for the company after training or looking for a new employment because it helps to reduce the cost and time as well as the quality of training or planning the courses and categorization of candidates. Information related to demographics, education, experience are in hands from candidates signup and enrollment.This dataset designed to understand the factors that lead a person to leave current job for HR researches too. By model(s) that uses the current credentials,demographics,experience data you will predict the probability of a candidate to look for a new job or will work for the company, as well as interpreting affected factors on employee decision.The whole data divided to train and test . Target isn't included in test but the test target values data file is in hands for related tasks. A sample submission correspond to enrollee_id of test set provided too with columns : enrollee _id , targetNote:The dataset is imbalanced.Most features are categorical (Nominal, Ordinal, Binary), some with high cardinality.Missing imputation can be a part of your pipeline as well.Featuresenrollee_id : Unique ID for candidatecity: City codecity_ development _index : Developement index of the city (scaled)gender: Gender of candidaterelevent_experience: Relevant experience of candidateenrolled_university: Type of University course enrolled if anyeducation_level: Education level of candidatemajor_discipline :Education major discipline of candidateexperience: Candidate total experience in yearscompany_size: No of employees in current employer's companycompany_type : Type of current employerlastnewjob: Difference in years between previous job and current jobtraining_hours: training hours completedtarget: 0 – Not looking for job change, 1 – Looking for a job change ###Code df= pd.read_csv('C:/Users/Fabian/Documents/dh/contenido/ds_blend_students_2020/TP3/data/aug_train.csv') #C:/Users/Administrador.000/Documents/DH/Contenidook/ds_blend_students_2020/Desafio3/aug_train df.shape df.info() df.target.value_counts(normalize=True) df.gender.value_counts(normalize=True) df.head() df.relevent_experience.value_counts() df.experience.value_counts() df.training_hours.value_counts() df.enrolled_university.value_counts() df.education_level.value_counts() df.major_discipline.value_counts() df.company_type.value_counts() df.company_size.value_counts() df.last_new_job.value_counts() df.city.value_counts() df.city_development_index.value_counts() #El indice es un atributo de la ciudad por ende se puede eliminar check_corr=df.groupby("city")["city_development_index"].nunique() #check_corr.mean() check_corr sns.pairplot(df) #no hay duplicados duplicated = df.duplicated(subset=["enrollee_id"]) any(duplicated) df_clean=df.drop(["enrollee_id"],axis=1) #no hay duplicados duplicated1 = df_clean.duplicated() any(duplicated1) duplicated1.sum() df_unique = df_clean.drop_duplicates(keep="first") df_unique.shape df_unique = df_unique.dropna(subset=["enrolled_university","education_level","experience","last_new_job"],axis = 0) df_unique.shape CT=df_unique.company_type.fillna("Not defined") CS=df_unique.company_size.fillna("Not defined") Sex=df_unique.gender.fillna("Not defined") MD= df_unique.major_discipline.fillna("STEM") df_unique["gender"]=Sex df_unique['major_discipline']=MD df_unique['company_size']=CS df_unique['company_type']=CT df_unique.isnull().sum()/df_unique.shape[0] df_unique.target.value_counts(normalize=True) #falta hot encoder, separar en train/test,escalar #Separamos en Train/test X = df_unique.drop('target', axis = 1) Y = df_unique[['target']] X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3, random_state = 1237,stratify=Y) #Hot encoder para columnas categóricas (crear dummies) categorical_columns = [col for col in df_unique.columns if df[col].dtypes == 'object'] encoder_categories = [] for col in categorical_columns: col_categories = df_unique[col].unique() encoder_categories.append(col_categories) encoder = OneHotEncoder(categories = encoder_categories, sparse=False) encoder = encoder.fit(X_train[categorical_columns]) X_train_encoded = encoder.transform(X_train[categorical_columns]) X_train_categorical = pd.DataFrame(X_train_encoded, columns = encoder.get_feature_names(categorical_columns)) #X_train_categorical.sample(5) X_test_encoded = encoder.transform(X_test[categorical_columns]) X_test_categorical = pd.DataFrame(X_test_encoded, columns = encoder.get_feature_names(categorical_columns)) X_test_categorical.head() #Escalar columnas no categóricas o numéricas non_categorical_columns = [col for col in X_train.columns if col not in categorical_columns] non_categorical_columns std_sclr = StandardScaler() std_sclr_trained = std_sclr.fit(X_train[non_categorical_columns]) X_train_numerical = std_sclr_trained.transform(X_train[non_categorical_columns]) X_train_numerical_scaled = pd.DataFrame(X_train_numerical, columns = non_categorical_columns) #X_train_numerical_scaled.head() X_test_numerical = std_sclr_trained.transform(X_test[non_categorical_columns]) X_test_numerical_scaled = pd.DataFrame(X_test_numerical, columns = non_categorical_columns) X_test_numerical_scaled.head() #Unir nuevamente las columnas categóricas y las numéricas X_train_transf = pd.concat([X_train_categorical, X_train_numerical_scaled], axis = 1) print(X_train_categorical.shape) print(X_train_numerical_scaled.shape) print(X_train_transf.shape) #Unir nuevamente las columnas categóricas y las numéricas X_test_transf = pd.concat([X_test_categorical, X_test_numerical_scaled], axis = 1) print(X_test_categorical.shape) print(X_test_numerical_scaled.shape) print(X_test_transf.shape) Total=12575+5390 Total Y_train=np.ravel(Y_train) Y_test=np.ravel(Y_test) # Importamos la clase KNeighborsClassifier de módulo neighbors from sklearn.neighbors import KNeighborsClassifier # Instanciamos el modelo especificando el valor deseado de k con el argumento n_neighbors knn = KNeighborsClassifier(n_neighbors=5, weights= 'distance') # Ajustamos a los datos de entrenamiento knn.fit(X_train_transf, Y_train); # Predecimos etiquetas para los datos de test y_pred = knn.predict(X_test_transf) from sklearn.metrics import accuracy_score accuracy_score(Y_test, y_pred) # Vamos a querer graficar los distintos valores del score de cross validation # en función del hiperparámetro n_neighbors. Para esto generamos una lista de # diccionarios que después se puede convertir fácilmente en DataFrame. # Probamos todos los enteros desde el 1 hasta el 20 # como posibles valores de n_neighbors a explorar. # Definimos la estrategia de validación cruzada from sklearn.model_selection import cross_val_score, KFold kf = KFold(n_splits=5, shuffle=True, random_state=12) scores_para_df = [] for i in range(1, 21): # En cada iteración, instanciamos el modelo con un hiperparámetro distinto model = KNeighborsClassifier(n_neighbors=i) # cross_val_scores nos devuelve un array de 5 resultados, # uno por cada partición que hizo automáticamente CV cv_scores = cross_val_score(model, X_train_transf, Y_train, cv=kf) # Para cada valor de n_neighbours, creamos un diccionario con el valor # de n_neighbours y la media y el desvío de los scores dict_row_score = {'score_medio':np.mean(cv_scores), 'score_std':np.std(cv_scores), 'n_neighbors':i} # Guardamos cada uno en la lista de diccionarios scores_para_df.append(dict_row_score) # Creamos el DataFrame a partir de la lista de diccionarios df_scores = pd.DataFrame(scores_para_df) df_scores.head() # Identificamos el score máximo df_scores.loc[df_scores.score_medio == df_scores.score_medio.max()] # Instanciamos el modelo especificando el valor deseado de k con el argumento n_neighbors knn = KNeighborsClassifier(n_neighbors=19, weights= 'distance') # Ajustamos a los datos de entrenamiento knn.fit(X_train_transf, Y_train); # Predecimos etiquetas para los datos de test y_pred = knn.predict(X_test_transf) from sklearn.metrics import accuracy_score accuracy_score(Y_test, y_pred) # Obtenemos la matriz de confusión from sklearn.metrics import confusion_matrix cm = confusion_matrix(Y_test, y_pred) cm # Graficamos la matriz de confusión para visualizarla mejor sns.heatmap(cm, annot=True,fmt="d") plt.ylabel('Etiquetas reales') plt.xlabel('Etiquetas predichas'); from sklearn.metrics import recall_score print(recall_score(Y_test, y_pred)) confusion=confusion_matrix(Y_test, y_pred) TP = confusion[1, 1] TN = confusion[0, 0] FP = confusion[0, 1] FN = confusion[1, 0] specificity = TN / (TN + FP) print(specificity) from sklearn.metrics import precision_score print(precision_score(Y_test, y_pred)) from sklearn.metrics import f1_score print(f1_score(Y_test,y_pred)) from sklearn.metrics import roc_curve y_pred_proba = knn.predict_proba(X_test_transf) fpr_log,tpr_log,thr_log = roc_curve(Y_test, y_pred_proba[:,1]) df = pd.DataFrame(dict(fpr=fpr_log, tpr=tpr_log, thr = thr_log)) plt.axis([0, 1.01, 0, 1.01]) plt.xlabel('1 - Specificty') plt.ylabel('TPR / Sensitivity') plt.title('ROC Curve') plt.plot(df['fpr'],df['tpr']) plt.plot(np.arange(0,1, step =0.01), np.arange(0,1, step =0.01)) plt.show() from sklearn.metrics import auc print('AUC=', auc(fpr_log, tpr_log)) df_scores.columns neig=df_scores.n_neighbors scores=df_scores.score_medio knn_range=range(1, 21) plt.plot(neig, scores) plt.xlabel('Value of K for KNN') plt.ylabel('Cross-Validated Accuracy'); from sklearn.model_selection import GridSearchCV k_range = list(range(1, 31)) weight_options = ['uniform', 'distance'] param_grid = dict(n_neighbors=k_range, weights=weight_options) print(param_grid) folds=StratifiedKFold(n_splits=10, random_state=19, shuffle=True) grid = GridSearchCV(knn, param_grid, cv=folds, scoring='average_precision') grid.fit(X_train_transf, Y_train) print(grid.best_estimator_) print(grid.best_score_) print(grid.best_params_) # Instanciamos el modelo especificando el valor deseado de k con el argumento n_neighbors knn = KNeighborsClassifier(n_neighbors=30, weights= 'uniform') # Ajustamos a los datos de entrenamiento knn.fit(X_train_transf, Y_train); # Predecimos etiquetas para los datos de test y_pred_30 = knn.predict(X_test_transf) from sklearn.metrics import accuracy_score accuracy_score(Y_test, y_pred_30) print(recall_score(Y_test, y_pred_30)) print(precision_score(Y_test, y_pred_30)) print(f1_score(Y_test,y_pred_30)) # Instanciamos el modelo especificando el valor deseado de k con el argumento n_neighbors knn = KNeighborsClassifier(n_neighbors=150, weights= 'uniform') # Ajustamos a los datos de entrenamiento knn.fit(X_train_transf, Y_train); # Predecimos etiquetas para los datos de test y_pred_150 = knn.predict(X_test_transf) from sklearn.metrics import accuracy_score print(accuracy_score(Y_test, y_pred_150)) print(recall_score(Y_test, y_pred_150)) print(precision_score(Y_test, y_pred_150)) print(f1_score(Y_test,y_pred_150)) ###Output 0.7929499072356215 0.491307634164777 0.5946935041171089 0.5380794701986755 ###Markdown KNN Importando bibliotecas ###Code %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.model_selection import KFold, cross_val_score from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import LeaveOneOut from sklearn.model_selection import KFold plt.style.use('ggplot') pd.set_option('display.max_columns', 500) def report_teste(predictions, alg_name): print('Resultados para o classificador {0}:'.format(alg_name)) print(classification_report(y_teste, predictions), print ("Acurácia para o treino é ", accuracy_score(y_teste,predictions))) def report_treino(predictions, alg_name): print('Resultados para o classificador {0}:'.format(alg_name)) print(classification_report(y_treino, predictions), print ("Acurácia para o treino é ", accuracy_score(y_treino,predictions))) ###Output _____no_output_____ ###Markdown Dados ###Code dataset = pd.read_csv('C:\\Users\\Fabiel Fernando\\Desktop\\PROVA\\classificacao_Q4.csv') #Verificando a existência de missings #dataset.apply(lambda x: x.isnull().sum()) dataset.head(5) print("Dimensão dos nossos dados:\n", dataset.shape) #print("Tipo de variáveis:\n", # dataset.dtypes) ###Output Dimensão dos nossos dados: (1500, 101) ###Markdown Pocentagem da variável resposta ###Code resposta = dataset['target'] count = pd.DataFrame(resposta.value_counts()) percent = pd.DataFrame(resposta.value_counts(normalize = True)*100) table = pd.concat([count, percent], axis = 1) table.columns = ['# target', '% target'] table #Descritiva de algumas variáveis #dataset.describe() ###Output _____no_output_____ ###Markdown Treino e Teste ###Code feature_space = dataset.iloc[:, dataset.columns != 'target'] feature_class = dataset.iloc[:, dataset.columns == 'target'] X_treino, X_teste, y_treino, y_teste = train_test_split(feature_space, feature_class, test_size = 0.30, random_state = 42) # Limpar conjuntos de teste para evitar futuras mensagens de aviso y_treino = y_treino.values.ravel() y_teste = y_teste.values.ravel() ###Output _____no_output_____ ###Markdown Ajustando KNN ###Code classifier = KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=1) classifier.fit(X_treino, y_treino) ###Output _____no_output_____ ###Markdown Precisão do classificador ###Code pred_test = classifier.predict(X_teste) pred_train = classifier.predict(X_treino) ###Output _____no_output_____ ###Markdown Tabela com cálculo de vária métricas conjunto treino ###Code report_treino(pred_train,'KNN') ###Output Resultados para o classificador KNN: Acurácia para o treino é 0.7285714285714285 precision recall f1-score support 0.0 0.71 0.74 0.72 103 1.0 0.64 0.82 0.72 98 2.0 0.69 0.64 0.66 111 3.0 0.89 0.79 0.84 105 4.0 0.77 0.74 0.75 104 5.0 0.67 0.55 0.60 97 6.0 0.65 0.64 0.65 98 7.0 0.76 0.73 0.75 111 8.0 0.84 0.76 0.80 106 9.0 0.70 0.85 0.77 117 avg / total 0.73 0.73 0.73 1050 None ###Markdown Tabela com cálculo de vária métricas conjunto teste ###Code report_teste(pred_test,'KNN') ###Output Resultados para o classificador KNN: Acurácia para o treino é 0.5977777777777777 precision recall f1-score support 0.0 0.63 0.62 0.62 47 1.0 0.58 0.69 0.63 51 2.0 0.41 0.50 0.45 42 3.0 0.75 0.57 0.65 47 4.0 0.72 0.61 0.66 46 5.0 0.63 0.53 0.57 51 6.0 0.60 0.49 0.54 51 7.0 0.56 0.56 0.56 36 8.0 0.70 0.66 0.68 47 9.0 0.49 0.81 0.61 32 avg / total 0.61 0.60 0.60 450 None ###Markdown Ajustando o classificador com Grid Search ###Code fit_knn = KNeighborsClassifier() np.random.seed(42) cv_kfold = KFold(10, shuffle = False) param_grid = {"n_neighbors": range(1, 50), "weights": ["uniform", "distance"], "metric": ["euclidean", "manhattan"]} #"chebyshev", "minkowski" cv_knn = GridSearchCV(fit_knn, cv = cv_kfold, param_grid = param_grid, n_jobs = 3) cv_knn.fit(X_treino, y_treino) cv_knn.best_params_ fit_knn.set_params(n_neighbors = 7, metric = 'manhattan', weights = 'distance') fit_knn.fit(X_treino, y_treino) ###Output _____no_output_____ ###Markdown Resultados Conjunto Treino ###Code pred_train2 = fit_knn.predict(X_treino) report_treino(pred_train2, 'KNN com Grid Search') ###Output Resultados para o classificador KNN com Grid Search: Acurácia para o treino é 1.0 precision recall f1-score support 0.0 1.00 1.00 1.00 103 1.0 1.00 1.00 1.00 98 2.0 1.00 1.00 1.00 111 3.0 1.00 1.00 1.00 105 4.0 1.00 1.00 1.00 104 5.0 1.00 1.00 1.00 97 6.0 1.00 1.00 1.00 98 7.0 1.00 1.00 1.00 111 8.0 1.00 1.00 1.00 106 9.0 1.00 1.00 1.00 117 avg / total 1.00 1.00 1.00 1050 None ###Markdown Resultados conjunto teste ###Code predictions_fit_knn = fit_knn.predict(X_teste) report_teste(predictions_fit_knn, 'KNN com Grid Search') predictions_knn = fit_knn.predict(X_teste) print(confusion_matrix(y_teste, predictions_knn)) accuracy_knn = fit_knn.score(X_teste, y_teste) print("Aqui está a nossa precisão média no conjunto de testes: {0:.3f}".format(accuracy_knn)) test_error_rate_knn = 1 - accuracy_knn print("A taxa de erro de teste para o nosso modelo é: {0: .3f}" .format(test_error_rate_knn)) ###Output A taxa de erro de teste para o nosso modelo é: 0.347 ###Markdown Curva ROC ###Code predictions_prob = fit_knn.predict_proba(X_teste)[:, 1] fpr2, tpr2, _ = roc_curve(y_teste, predictions_prob, pos_label = 1) auc_knn = auc(fpr2, tpr2) plt.figure() lw = 2 plt.plot(fpr2, tpr2, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % auc_knn) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Taxa de Falso Positivo') plt.ylabel('Taxa de Verdadeiro Positivo') plt.title('Receiver operating characteristic ') plt.legend(loc="lower right") plt.show() report_teste(predictions_knn, 'KNN') ###Output Resultados para o classificador KNN: Acurácia para o treino é 0.6533333333333333 precision recall f1-score support 0.0 0.79 0.64 0.71 47 1.0 0.62 0.63 0.62 51 2.0 0.52 0.52 0.52 42 3.0 0.79 0.66 0.72 47 4.0 0.68 0.61 0.64 46 5.0 0.70 0.61 0.65 51 6.0 0.71 0.59 0.65 51 7.0 0.60 0.75 0.67 36 8.0 0.67 0.79 0.73 47 9.0 0.50 0.81 0.62 32 avg / total 0.67 0.65 0.65 450 None ###Markdown Validação Cruzada K - fold ###Code X = dataset.iloc[:, 0:100].values y = dataset['target'].astype('category') from sklearn import model_selection kfold = model_selection.KFold(n_splits=10, random_state=42) model = KNeighborsClassifier() scoring = 'accuracy' results = model_selection.cross_val_score(model, X, y, cv=kfold, scoring=scoring) results.mean(), results.std() ###Output _____no_output_____ ###Markdown LOOCV ###Code model = KNeighborsClassifier() accuracies = cross_val_score(model, X=X, y=y, cv=LeaveOneOut()) accuracies.mean() ###Output _____no_output_____ ###Markdown Repeat CV ###Code from sklearn.model_selection import RepeatedKFold cv_repeat = RepeatedKFold(n_splits=6, n_repeats=3, random_state=42) model = KNeighborsClassifier() accuracies = cross_val_score(model, X=X, y=y, cv=cv_repeat) accuracies.mean() ###Output _____no_output_____ ###Markdown Separando as k primeiras observações para treino e o restante para teste ###Code X_treino = dataset.iloc[0:499, 0:99].values y_treino = dataset.iloc[0:499, 100].values X_teste = dataset.iloc[500:1500, 0:99].values y_teste = dataset.iloc[500:1500, 100].values clf = KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=1) clf.fit(X_treino, y_treino) ###Output _____no_output_____ ###Markdown Precisão do classificador no Decision Tree ###Code pred_teste = clf.predict(X_teste) pred_treino = clf.predict(X_treino) ###Output _____no_output_____ ###Markdown Métricas Treino ###Code report_treino(pred_treino, 'KNN') ###Output Resultados para o classificador KNN: Acurácia para o treino é 0.751503006012024 precision recall f1-score support 0.0 0.73 0.80 0.77 55 1.0 0.62 0.85 0.72 48 2.0 0.61 0.56 0.58 45 3.0 0.87 0.78 0.82 58 4.0 0.81 0.71 0.76 48 5.0 0.88 0.63 0.73 46 6.0 0.67 0.64 0.65 47 7.0 0.81 0.69 0.74 51 8.0 0.86 0.88 0.87 41 9.0 0.75 0.93 0.83 60 avg / total 0.76 0.75 0.75 499 None ###Markdown Métricas Teste ###Code report_teste(pred_teste, 'KNN') ###Output Resultados para o classificador KNN: Acurácia para o treino é 0.562 precision recall f1-score support 0.0 0.49 0.77 0.60 95 1.0 0.46 0.58 0.52 101 2.0 0.51 0.49 0.50 108 3.0 0.72 0.45 0.55 94 4.0 0.63 0.52 0.57 102 5.0 0.68 0.37 0.48 102 6.0 0.49 0.46 0.48 102 7.0 0.60 0.53 0.56 96 8.0 0.76 0.60 0.67 111 9.0 0.52 0.89 0.66 89 avg / total 0.59 0.56 0.56 1000 None ###Markdown KNN Algorithm and implementation using heart.csv file ###Code # Initialization import pandas as pd import numpy as np heart = pd.read_csv("heart.csv"); heart.head(5) def calculateDistance(targetRow, rows, columns): result = [] for i in range(0, len(rows)): sumArr = [] for column in columns: sumArr.append(abs(targetRow[column] - rows.iloc[i][column])) result.append({ "sum": np.sum(sumArr), "indice": i }) return result h_train = heart.drop(columns=["target"]) h_train.head(5) # for i in range(0, len(h_train)): # print(sorted(calculateDistance(h_train.iloc[i], h_train, h_train.columns), key=lambda k: k["sum"])[0:k]) def getKNNTargets(test, train, k = 3): target = [] for i in range(0, len(test)): # calculate distances for first k rows srtArr = sorted(calculateDistance(test.iloc[i], train, test.columns), key=lambda k: k["sum"])[:k] indices = list(map(lambda x: x["indice"], srtArr)) # first k labels kTargetLabels = [train.iloc[x]["target"] for x in indices]; # We take mode cause our target label is in discrete form (classification) mode = max(set(kTargetLabels), key=kTargetLabels.count) # pick index of the most frequent (mode) label labelIndex = kTargetLabels.index(mode) print(f"Mode: {mode}") # print(kTargetLabels) res = { "row": i, "target": train.iloc[indices[labelIndex]]["target"] # use the label of most frequent target label } print(res) target.append(res) return target testRange = int(len(heart)/2) KNN = getKNNTargets(heart.drop(columns=["target"]).iloc[:testRange], heart.iloc[testRange:]) KNNResultWTarger = heart.iloc[testRange:] correct = 0 for i in range(0, len(KNN)): if KNN[i]["target"] == KNNResultWTarger.iloc[i]["target"]: correct += 1 accuracy = correct/len(KNN) from math import ceil print(f"Accuracy: {(ceil(accuracy*100))}%") ###Output Accuracy: 85% ###Markdown 18bce084Kaushal JaniPractical 5 ###Code import sklearn from sklearn import neighbors,datasets,metrics from sklearn.metrics import mean_absolute_error,mean_squared_error import numpy as np X,Y=datasets.load_iris(return_X_y=True) #loading iris dataset xtrain = X[range(0,150,2),:] ytrain = Y[range(0,150,2)] xtest = X[range(1,150,2),:] ytest = Y[range(0,150,2)] k=3 x=int(input(" enter limit value of k for knn classification ")) # enter stopping value of k print() if x<=xtrain.shape[0]: if x%2==0: k=x-1 else: k=x for i in range(3,k+2,2): clf=neighbors.KNeighborsClassifier(i,'uniform') clf.fit(xtrain,ytrain) ypred=clf.predict(xtest) print("For K = ",i) print("accuracy is",metrics.accuracy_score(ytest,ypred)) print("MAE is ",metrics.mean_absolute_error(ytest,ypred)) print("MSE is ",metrics.mean_squared_error(ytest,ypred)) print() ###Output enter limit value of k for knn classification 17 For K = 3 accuracy is 0.96 MAE is 0.04 MSE is 0.04 For K = 5 accuracy is 0.9866666666666667 MAE is 0.013333333333333334 MSE is 0.013333333333333334 For K = 7 accuracy is 0.9866666666666667 MAE is 0.013333333333333334 MSE is 0.013333333333333334 For K = 9 accuracy is 0.9866666666666667 MAE is 0.013333333333333334 MSE is 0.013333333333333334 For K = 11 accuracy is 0.92 MAE is 0.08 MSE is 0.08 For K = 13 accuracy is 0.9466666666666667 MAE is 0.05333333333333334 MSE is 0.05333333333333334 For K = 15 accuracy is 0.92 MAE is 0.08 MSE is 0.08 For K = 17 accuracy is 0.92 MAE is 0.08 MSE is 0.08 ###Markdown Custom Implementation of KNN with cosine similarity as distance metric ###Code X,Y=datasets.load_iris(return_X_y=True) xtrain=np.append(np.append(X[0:44,:],X[50:94,:],axis=0),X[100:144,:],axis=0) ytrain=np.append(np.append(Y[0:44],Y[50:94],axis=0),Y[100:144],axis=0) xtest=np.append(np.append(X[45:50,:],X[95:100,:],axis=0),X[145:150,:],axis=0) ytest=np.append(np.append(Y[45:50],Y[95:100],axis=0),Y[145:150],axis=0) #print(ytest.shape) print(xtrain.shape) def sim(test,row): return test @ row/(np.linalg.norm(test) * np.linalg.norm(row)) def custom_knn(k): print("For {0}nn".format(k)) result=[] li=[] # to store value of cosine similarity temp={} # for stoirng first N result for i in range(0,k): temp[i]=0 #print(temp) t=temp.copy() for i in xtest: li=list() count=0 temp=t.copy() for j in range(0,132) : li.append([sim(i,xtrain[j,:]),ytrain[j]]) # append cosine similarity of each input li.sort(reverse=True) for s in range(0,k): # adds the the first n result with respect to their class temp[li[s][1]]=li[s][0]+temp[li[s][1]] result.append([i,max(temp,key=temp.get)]) ypred=[] for j in result: ypred.append(j[1]) print("accuracy",metrics.accuracy_score(ytest,ypred)) print("MAE",metrics.mean_absolute_error(ytest,ypred)) print("MSE",metrics.mean_squared_error(ytest,ypred)) print("Actual class",ytest) print("Predicted class",ypred) for j in result: print("example is ",j[0],"predicted class is",j[1]) print("--------------------------------------------------------------------") print() ############################################################ k=3 x=int(input(" enter limit value of k for knn classification ")) # enter stopping value of k print() if x<=xtrain.shape[0]: if x%2==0: k=x-1 else: k=x for i in range(3,k+2,2): custom_knn(i) ###Output enter limit value of k for knn classification 5 For 3nn accuracy 1.0 MAE 0.0 MSE 0.0 Actual class [0 0 0 0 0 1 1 1 1 1 2 2 2 2 2] Predicted class [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2] example is [4.8 3. 1.4 0.3] predicted class is 0 example is [5.1 3.8 1.6 0.2] predicted class is 0 example is [4.6 3.2 1.4 0.2] predicted class is 0 example is [5.3 3.7 1.5 0.2] predicted class is 0 example is [5. 3.3 1.4 0.2] predicted class is 0 example is [5.7 3. 4.2 1.2] predicted class is 1 example is [5.7 2.9 4.2 1.3] predicted class is 1 example is [6.2 2.9 4.3 1.3] predicted class is 1 example is [5.1 2.5 3. 1.1] predicted class is 1 example is [5.7 2.8 4.1 1.3] predicted class is 1 example is [6.7 3. 5.2 2.3] predicted class is 2 example is [6.3 2.5 5. 1.9] predicted class is 2 example is [6.5 3. 5.2 2. ] predicted class is 2 example is [6.2 3.4 5.4 2.3] predicted class is 2 example is [5.9 3. 5.1 1.8] predicted class is 2 -------------------------------------------------------------------- For 5nn accuracy 1.0 MAE 0.0 MSE 0.0 Actual class [0 0 0 0 0 1 1 1 1 1 2 2 2 2 2] Predicted class [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2] example is [4.8 3. 1.4 0.3] predicted class is 0 example is [5.1 3.8 1.6 0.2] predicted class is 0 example is [4.6 3.2 1.4 0.2] predicted class is 0 example is [5.3 3.7 1.5 0.2] predicted class is 0 example is [5. 3.3 1.4 0.2] predicted class is 0 example is [5.7 3. 4.2 1.2] predicted class is 1 example is [5.7 2.9 4.2 1.3] predicted class is 1 example is [6.2 2.9 4.3 1.3] predicted class is 1 example is [5.1 2.5 3. 1.1] predicted class is 1 example is [5.7 2.8 4.1 1.3] predicted class is 1 example is [6.7 3. 5.2 2.3] predicted class is 2 example is [6.3 2.5 5. 1.9] predicted class is 2 example is [6.5 3. 5.2 2. ] predicted class is 2 example is [6.2 3.4 5.4 2.3] predicted class is 2 example is [5.9 3. 5.1 1.8] predicted class is 2 -------------------------------------------------------------------- ###Markdown KNN implementation for Breast Cancer Classification**Mamello Maseko(fill me :)) and Sandile Shongwe(1236067)** ###Code import pandas as pd import numpy as np from sklearn.preprocessing import normalize %xmode plain df = pd.read_csv('data.csv') df = df.loc[:, ~df.columns.str.contains('^Unnamed')] #drop unnamed column df_xtrain = df.drop(['id','diagnosis'], axis=1) x_train = df_xtrain.values # Note: Makes M = 1, B=0 df['diagnosis'] = np.unique(df['diagnosis'], return_index=True, return_inverse=True)[2] y_train = df['diagnosis'].values x_train, y_train; # #normalizing the data # x_train = normalize(x_train, norm='l1', axis=1) # print(x_train[0]) # mean = x_train.mean(axis=1) # std = x_train.std(axis = 1) # x_train = (x_train-mean[:,np.newaxis]) / std[:, np.newaxis] #both normalization techniques seem to lower accuracy of the classifier #splitting data set into training and testing sets using a 70 - 30 split length = len(x_train) x_test = x_train[int(np.floor(length*0.7)+1): length , :] y_test = y_train[int(np.floor(length*0.7)+1): length] x_train = x_train[0:int(np.floor(length*0.7))+1, :] y_train = y_train[0:int(np.floor(length*0.7))+1] y_train[y_train == 0] = -1; y_test[y_test == 0] = -1; ##KNN using Euclidean distance def KNN_E(x_train, y_train, query_point, K): dist = np.sqrt(np.sum((x_train - query_point)**2, axis = 1)) idx = np.argsort(dist) s = np.sum(y_train[idx[np.arange(K)]]) if(s > 0): return 1 else: return -1 def KNN_M(x_train, y_train, query_point, K): dist = np.abs(np.sum((x_train - query_point), axis = 1)) idx = np.argsort(dist) s = np.sum(y_train[idx[np.arange(K)]]) if(s > 0.0): return 1 else: return -1 # KNN training using Euclidean Distance def KNN_Elearn(x_train, y_train, x_test, y_test): error = 100000000 min_k = 1000 for K in range(1, 250): tmp = error diff_error = KNN_error_e(K, x_train, y_train, x_train, y_train) - KNN_error_e(K, x_train, y_train,x_test, y_test) error = min(error, abs(diff_error)) if tmp != error: min_k = K return min_k def KNN_error_e(K, x_train, y_train, x_query, y_query): h = np.zeros((x_query.shape[0])) for i in range(x_query.shape[0]): h[i] = KNN_E(x_train, y_train, x_query[i,:], K) e = np.sum(h != y_query*1.0)/(y_query.shape[0]*1.0) return e # KNN training using Manhattan Distance def KNN_Mlearn(x_train, y_train, x_test, y_test): error = 100000000 min_k = 1000 for K in range(1, 250): tmp = error diff_error = KNN_error_m(K, x_train, y_train, x_train, y_train) - KNN_error_m(K, x_train, y_train,x_test, y_test) error = min(error, abs(diff_error)) if tmp != error: min_k = K return min_k def KNN_error_m(K, x_train, y_train, x_query, y_query): h = np.zeros((x_query.shape[0])) for i in range(x_query.shape[0]): h[i] = KNN_M(x_train, y_train, x_query[i,:], K) e = np.sum(h != y_query*1.0)/(y_query.shape[0]*1.0) return e opt_k_e = KNN_Elearn(x_train, y_train, x_test, y_test) opt_k_m = KNN_Mlearn(x_train, y_train, x_test, y_test) out_ye = [KNN_E(x_train, y_train, x_test[i], opt_k_e) for i in range(170)] out_ym = [KNN_E(x_train, y_train, x_test[i], opt_k_m) for i in range(170)] acc = np.sum(out_ye == y_test*1.0)/y_test.shape[0]; print('The accuracy using Euclidean Distance: {:.2f}'.format(acc*100)) acc = np.sum(out_ym == y_test*1.0)/y_test.shape[0]; print('The accuracy using Manhattan Distance: {:.2f}'.format(acc*100)) ###Output The accuracy using Euclidean Distance: 94.12 The accuracy using Manhattan Distance: 95.29 ###Markdown Introdução Para entendermos os passos a serem seguidos diante de um problema de classificação por regressão, devemos antes sabermos como funciona o algorítmo do KNN (K-Nearest Neighbor), uma tradução mais aproximada para o português seria: K - Vizinho mais Próximo. Explicando como esse algoritmo funciona Dado um conjunto de dados, é possivel estabelecer padrões de cada classe, com isso, podemos então verificar por uma distância euclidiana se um elemento $*$ é mais $O$ do que $X$, ou vice-versa, e assim podemos agrupar esses elementos nessas categorias. Em geral, esse algoritmo é bastante semelhante a outros algorítmos de clustering, como é o caso do K-Means, que também segrega em um grupo de K instâncias os elementos da base de dados. A principal diferença para os dois é o método para classificar os grupos e sua utilização, visto que o K-means é um aprendizado de máquina *não supervisionado* e o KNN é um aprendizado de máquina *supervisionado* Vamos começar importando algumas bibliotecas e pacotes conhecidos dessas bibliotecas ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import neighbors, metrics from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder data = pd.read_csv('car_.data') #Lendo o arquivo.data data.dropna(how = 'all') #Comando dropna, muito utilizado quando se quer remover atributos faltantes data.head() #Exibindo dataset ###Output _____no_output_____ ###Markdown Uma parte importando quando se quer segregar seus atributos em classes é transformar essas classes que são de tipo string para classes do tipo inteiro, esse processo se chama: encodar, então iremos encodar a coluna class, que será nossa coluna Y (output) ###Code data_by = data["class"] #Definindo variável que irá receber a coluna "Class" data_by.head(10) #Dividindo a classe em duas partes, em uma coluna encodada e outra categorizada (o tipo padrão) data_by_encoded, data_categories = data_by.factorize() data_by_encoded #Exibindo a coluna encodada data_categories #exibindo a coluna categorica data.info() #É importante verificar o tipo de sua base de dados, vemos aqui que todos os atributos sao objetos #Isso é algo ruim quando se quer ter um histograma ou análise gráfica de seu dataset. #Entretanto, essa não é a proposta deste notebook ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 1728 entries, 0 to 1727 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 buying 1728 non-null object 1 maint 1728 non-null object 2 doors 1728 non-null object 3 persons 1728 non-null object 4 lug_boot 1728 non-null object 5 safety 1728 non-null object 6 class 1728 non-null object dtypes: object(7) memory usage: 94.6+ KB ###Markdown Agora, vamos encodar varias colunas ao mesmo tempo, é um processo muito interessante e útil para nosso modelo do KNN ###Code X = data[['buying', 'maint','safety']].values X #Convertendo as colunas para dados em números com a função LabelEncoder() da scikit #Coluna X Le = LabelEncoder() for i in range (len(X[0])): X[:,i] = Le.fit_transform(X[:,i]) print(X) ###Output [[3 3 1] [3 3 2] [3 3 0] ... [1 1 1] [1 1 2] [1 1 0]] ###Markdown Agora, finalmente poderemos aplicar nossos atributos a um classificador KNN. para isso iremos importar a KNN e logo em seguida dividir nossa base de dados em partes de teste e treino, respectivamente para valores de X (atributos) e para Y (saída). Caso esteja um pouco perdido nessa parte, recomendo o Notebook sobre Linear Regression, postado anteriomente: https://github.com/IuryChagas25/Machine-Learning-Prediction-Heart-Attacks ###Code knn = neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform') X_train, X_test, y_train, y_test = train_test_split(X,data_by_encoded, test_size = 0.2) #data_by_encoded é o nosso Y knn.fit(X_train,y_train) #knn.fit atribui a regressão ao conjunto de dados de treinamento X e Y prediction = knn.predict(X_test) #knn.predict chama uma coluna X_test (20% da nossa base de dados de X) para testar accuracy = metrics.accuracy_score(y_test,prediction) #Baseando-se na saída real (y_test) é comparado com a previsão #daí é produzido uma acurácia print('Previsão: \n',prediction) #Exibindo a previsão de saída de todo o conjunto de dados print('Acuracia: \n',accuracy) #Exibindo a acurácia obtida #Representação de um algoritmo de regressão pela KNN, note que os pontos de previsão confluem em varios pontos #Sendo assim, consegue ser preciso em suas estimativas obtendo um restultado interessante de 71% de acurácia plt.plot(X_test,y_test,'blue') plt.plot(X_test,prediction,'ro') ###Output _____no_output_____ ###Markdown Por fim, vamos chamar um índice do nosso dataset e comparar seu valor real com a previsão pelo KNN ###Code aux = 2 print('Valor Atual: ',data_by_encoded[aux]) print('Valor Previsto: ',knn.predict(X)[aux]) ###Output Valor Atual: 0 Valor Previsto: 0 ###Markdown Ejemplo trivial KNN con cross validation (CV) ###Code from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsRegressor import numpy as np #preparo set de datos X = np.array([[0., 0.], [1., 1.], [-1., -1.], [2., 2.],[0., 0.], [1., 1.], [-1., -1.], [2., 2.],[0., 0.], [1., 1.], [-1., -1.], [2., 2.],[0., 0.], [1., 1.], [-1., -1.], [2., 2.]]) y = np.array([0, 1, 2, 3,0, 1, 2, 3,0, 1, 2, 3,0, 1, 2, 3]) neigh = KNeighborsRegressor(n_neighbors=2,n_jobs=-1) #preparo lista de scores scores = [] #spliteo en set de entrenamiento y de prueba X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3 ) # al asignarle random_state devuelve siempre lo mismo #entreno el set y veo el puntaje que tiene sobre el test reg=neigh.fit(X_train, y_train) print (X_test) #prediccion=reg.predict(X_test) #print (prediccion) print (y_test) print (reg.score(X_test,y_test)) ###Output [[-1. -1.] [ 2. 2.] [ 0. 0.] [ 1. 1.] [-1. -1.]] [2 3 0 1 2] 1.0 ###Markdown CV varias veces en ejemplo anterior ###Code from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsRegressor import numpy as np #preparo set de datos X = np.array([[0., 0.], [1., 1.], [-1., -1.], [2., 2.],[0., 0.], [1., 1.], [-1., -1.], [2., 2.],[0., 0.], [1., 1.], [-1., -1.], [2., 2.],[0., 0.], [1., 1.], [-1., -1.], [2., 2.]]) y = np.array([0, 1, 2, 3,0, 1, 2, 3,0, 1, 2, 3,0, 1, 2, 3]) neigh = KNeighborsRegressor(n_neighbors=2,n_jobs=-1) #preparo lista de scores scores = [] for i in range(0,10): # lo pruebo varias veces #spliteo en set de entrenamiento y de prueba X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5 ) # al asignarle random_state devuelve siempre lo mismo #entreno el set y veo el puntaje que tiene sobre el test reg=neigh.fit(X_train, y_train) scores.append(reg.score(X_train,y_train)) print(scores) print(np.mean(scores)) ###Output [0.86842105263157898, 0.8666666666666667, 1.0, 0.89873417721518989, 0.96825396825396826, 0.75, 0.91578947368421049, 1.0, 0.97894736842105268, 1.0] 0.924681270687 ###Markdown Plot de los diferentes puntajes segun K ###Code from sklearn.model_selection import validation_curve import matplotlib.pyplot as plt #preparo set de datos X = np.array([[0., 0.], [1., 1.], [-1., -1.], [2., 2.],[0., 0.], [1., 1.], [-1., -1.], [2., 2.],[0., 0.], [1., 1.], [-1., -1.], [2., 2.],[0., 0.], [1., 1.], [-1., -1.], [2., 2.]]) y = np.array([0, 1, 2, 3,0, 1, 2, 3,0, 1, 2, 3,0, 1, 2, 3]) param_range=range(1,5) train_scores, test_scores = validation_curve( KNeighborsRegressor(), X, y, param_name="n_neighbors",param_range=param_range, cv=2, n_jobs=-1) train_scores_mean = np.mean(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) plt.title("Validation Curve with KNN") plt.xlabel("K") plt.ylabel("Score") plt.plot(param_range, train_scores_mean, label="Training score", color="darkorange") plt.plot(param_range, test_scores_mean, label="Cross-validation score", color="navy") plt.legend(loc="best") plt.show() ###Output _____no_output_____ ###Markdown Training vs CV score ###Code from sklearn.model_selection import validation_curve import matplotlib.pyplot as plt from sklearn.preprocessing import Imputer from sklearn.neighbors import KNeighborsRegressor #preparo set de datos X = zip(properati['dist_a_subte'],properati['dist_a_subte']) y = properati['price_per_m2'] param_range=range(1,10,2) train_scores, test_scores = validation_curve( KNeighborsRegressor(), X, y, param_name="n_neighbors",param_range=param_range, cv=2,scoring="r2" ,n_jobs=-1) train_scores_mean = np.mean(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) plt.title("Validation Curve with KNN") plt.xlabel("K") plt.ylabel("Score") plt.plot(param_range, train_scores_mean, label="Training score", color="darkorange",marker="o") plt.plot(param_range, test_scores_mean, label="Cross-validation score", color="navy",marker="o") plt.legend(loc="best") plt.show() ###Output _____no_output_____ ###Markdown Probe escalando los datos, y tampoco funciona ###Code %%notify from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsRegressor import numpy as np from sklearn.preprocessing import StandardScaler from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score #preparo set de datos X = zip(properati['surface_total_in_m2'],\ properati['surface_covered_in_m2'],properati["property_type"],properati['state_name'],properati['place_name']) y = properati['price_aprox_usd'] neigh = KNeighborsRegressor(n_jobs=-1) n_neighbors = np.arange(10,200,10) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2) param_grid = {"n_neighbors":n_neighbors} search = GridSearchCV(neigh, param_grid=param_grid ,cv=5) #refit deja el estimador fiteado con los mejores hiperparametros start = time() search.fit(X_train, y_train) print("GridSearchCV duro %.2f segundos para %d candidatos a hiper-parametros." % (time() - start, len(search.cv_results_['params']))) print("") score.report_single(search.cv_results_) ###Output GridSearchCV duro 269.70 segundos para 19 candidatos a hiper-parametros. Puesto: 1 Promedio training score: 0.551 (std: 0.054) Promedio validation score: 0.552 (std: 0.130) Promedio fit time: 0.198s Hiper-parametros: {'n_neighbors': 20} Puesto: 2 Promedio training score: 0.532 (std: 0.053) Promedio validation score: 0.549 (std: 0.131) Promedio fit time: 0.198s Hiper-parametros: {'n_neighbors': 30} Puesto: 3 Promedio training score: 0.596 (std: 0.052) Promedio validation score: 0.546 (std: 0.134) Promedio fit time: 0.192s Hiper-parametros: {'n_neighbors': 10} Puesto: 4 Promedio training score: 0.519 (std: 0.051) Promedio validation score: 0.543 (std: 0.128) Promedio fit time: 0.191s Hiper-parametros: {'n_neighbors': 40} Puesto: 5 Promedio training score: 0.510 (std: 0.052) Promedio validation score: 0.540 (std: 0.125) Promedio fit time: 0.190s Hiper-parametros: {'n_neighbors': 50} Puesto: 6 Promedio training score: 0.504 (std: 0.051) Promedio validation score: 0.537 (std: 0.121) Promedio fit time: 0.190s Hiper-parametros: {'n_neighbors': 60} Puesto: 7 Promedio training score: 0.500 (std: 0.050) Promedio validation score: 0.534 (std: 0.119) Promedio fit time: 0.184s Hiper-parametros: {'n_neighbors': 70} Puesto: 8 Promedio training score: 0.497 (std: 0.049) Promedio validation score: 0.530 (std: 0.115) Promedio fit time: 0.190s Hiper-parametros: {'n_neighbors': 80} Puesto: 9 Promedio training score: 0.495 (std: 0.048) Promedio validation score: 0.527 (std: 0.115) Promedio fit time: 0.176s Hiper-parametros: {'n_neighbors': 90} Puesto: 10 Promedio training score: 0.492 (std: 0.048) Promedio validation score: 0.526 (std: 0.114) Promedio fit time: 0.174s Hiper-parametros: {'n_neighbors': 100} ###Markdown K-Nearest Neighbors (KNN)KNN is an example of memory based learning (or instance based learning). Instead of training a classifier you simply memorize all of the data and find the K closest examples to the training data. You need some kind of distance metric (this is a hyperparameter). You choose the distance metric based on your application, by default people use Euclidean distance. $$p(y=c \mid x, \mathcal{D}, K) = \frac{1}{K} \sum_{i \in N_K(x,\mathcal{D})} \mathbb{I}(y_i=c)$$where $N_K(x,\mathcal{D})$ are the indices of the K nearest points to N in $\mathcal{D}$ (e.g. $i=\{44, 61, 2\}$), and $\mathbb{I}(e)$ is the indicator function defined as $$ \mathbb{I}(e) = \begin{cases} 1 & \text{if $e$ is true} \\ 0 & \text{if $e$ is false} \end{cases}$$ ###Code import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.model_selection import train_test_split np.random.seed(42) % matplotlib inline X, y = make_blobs(centers=4, n_samples=1000) print(f'shape of dataset: {X.shape}') fig = plt.figure(figsize=(8,6)) plt.scatter(X[:,0], X[:,1], c=y) plt.title("dataset with 4 clusters") plt.xlabel("first feature") plt.ylabel("second feature") plt.show() X_train, X_test, y_train, y_test = train_test_split(X, y) class KNN(): def __init__(self, distance_metric='euclidean'): assert distance_metric in ['euclidean'] self.distance_metric = distance_metric def fit(self, X, y): self.data = X self.labels = y def closest_k_distances(self, X, k): # make all arrays n_examples x n_dimensions (i.e. 2d arrays) if X.ndim == 1: X = np.expand_dims(X, axis=0) n_samples, n_dimensions = X.shape if self.distance_metric == 'euclidean': distances = [np.sqrt(np.sum(np.square(self.data - X[i]), axis=1)) for i in range(n_samples)] # find the k closest points N_k_list = np.argsort(distances)[:, :k] return N_k_list def predict(self, X, k=1): # find the indices of the k-nearest points N_k N_k_list = self.closest_k_distances(X, k) p_list = [] for N_k in N_k_list: # calculate the predictive distribution over the labels p = {} count = 0 for c in set(self.labels): p_c = np.sum([self.labels[i] == c for i in N_k]) / float(k) p[str(c)] = p_c p_list.append(p) return p_list clf = KNN() clf.fit(X_train, y_train) predictions = clf.predict(X_test, 100) accuracy = [] for prediction,label in zip(predictions, y_test): key_max = max(prediction.keys(), key=(lambda k: prediction[k])) accuracy.append(int(key_max) == label) accuracy = np.sum(accuracy) / float(len(accuracy)) print('test accuracy = {}'.format(accuracy)) predictions y_test[:5] accuracy ###Output _____no_output_____ ###Markdown Read CSV and basic data cleaning ###Code exoplanet = pd.read_csv('Resources/exoplanet_data.csv') # Drop the null columns where all values are null exoplanet = exoplanet.dropna(axis='columns', how='all') # Drop the null rows exoplanet = exoplanet.dropna() exoplanet ###Output _____no_output_____ ###Markdown Select X and y Values ###Code #assign all columns except koi_disposition to X, koi_disposition to y X = exoplanet.drop(columns = 'koi_disposition') y = exoplanet['koi_disposition'] print(X.shape, y.shape) ###Output (6991, 40) (6991,) ###Markdown Train Test Split ###Code #train, test, split from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) ###Output _____no_output_____ ###Markdown Pre-processing ###Code #fit scaled data with MinMax Scaler from sklearn.preprocessing import MinMaxScaler X_scaler = MinMaxScaler().fit(X_train) #tranform scaled data X_train_scaled = X_scaler.transform(X_train) X_test_scaled = X_scaler.transform(X_test) #Encode Labels from sklearn.preprocessing import LabelEncoder label_encoder = LabelEncoder() label_encoder.fit(y_train) encoded_y_train = label_encoder.transform(y_train) encoded_y_test = label_encoder.transform(y_test) #One-hot encoding from keras.utils import to_categorical y_train_categorical = to_categorical(encoded_y_train) y_test_categorical = to_categorical(encoded_y_test) y_train_categorical ###Output _____no_output_____ ###Markdown Train the model ###Code ## Create a KNN model and fit it to the scaled training data from sklearn.neighbors import KNeighborsClassifier # Loop through different k values to see which has the highest accuracy train_scores = [] test_scores = [] for k in range(1, 20, 2): knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train_scaled, y_train_categorical) train_score = knn.score(X_train_scaled, y_train_categorical) test_score = knn.score(X_test_scaled, y_test_categorical) train_scores.append(train_score) test_scores.append(test_score) print(f"k: {k}, Train/Test Score: {train_score:.3f}/{test_score:.3f}") #plot KNN train and test data plt.plot(range(1, 20, 2), train_scores, marker='o') plt.plot(range(1, 20, 2), test_scores, marker="x") plt.xlabel("k neighbors") plt.ylabel("Testing accuracy Score") plt.show() #Select best K value to fit and score data - visually K=7 appears to be at elbow knn = KNeighborsClassifier(n_neighbors=7) knn.fit(X_train_scaled, y_train_categorical) #print train and test scores print('k=7 Train Acc: %.3f' % knn.score(X_train_scaled, y_train_categorical)) print('k=7 Test Acc: %.3f' % knn.score(X_test_scaled, y_test_categorical)) ###Output k=7 Train Acc: 0.866 k=7 Test Acc: 0.823 ###Markdown Hyperparameter Tuning ###Code # Create the GridSearch estimator along with a parameter object containing the values to adjust from sklearn.model_selection import GridSearchCV param_grid = {'n_neighbors': [1, 3, 5, 7, 9 , 11, 13, 15, 17, 19], 'weights': ['uniform', 'distance'], 'metric': ['euclidean', 'manhattan']} grid = GridSearchCV(knn, param_grid, verbose=3) grid.get_params().keys() # Fit the model using the grid search grid.fit(X_train_scaled, y_train_categorical) # List the best parameters for this dataset print(grid.best_params_) print(grid.best_score_) # Make predictions with the hypertuned model predictions = grid.predict(X_train_scaled) print('Train Acc: %.3f' % grid.score(X_train_scaled, y_train_categorical)) print('Test Acc: %.3f' % grid.score(X_test_scaled, y_test_categorical)) import joblib filename = 's_heavner_knn.sav' joblib.dump(knn, filename) ###Output _____no_output_____ ###Markdown Load and clean the data ###Code filename = path.join(".", "data", "exoplanet_data.csv") df = pd.read_csv(filename) # Drop the null columns where all values are null df = df.dropna(axis='columns', how='all') # Drop the null rows df = df.dropna() df.head() # Use the seven most important features identified in the random forest model target = df['koi_disposition'] data = df[['koi_fpflag_co', 'koi_fpflag_nt', 'koi_fpflag_ss', 'koi_model_snr', 'koi_prad', 'koi_prad_err2', 'koi_duration_err2']] data.head() ###Output _____no_output_____ ###Markdown Split and scale the data ###Code # Split the data into train/test from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(data, target, train_size=0.8, random_state=12) # Scale the data from sklearn.preprocessing import MinMaxScaler X_scaler = MinMaxScaler().fit(X_train) X_train_scaled = X_scaler.transform(X_train) X_test_scaled = X_scaler.transform(X_test) ###Output _____no_output_____ ###Markdown Find the best K ###Code train_scores = [] test_scores = [] for k in range(1, 18, 2): knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train_scaled, y_train) train_score = knn.score(X_train_scaled, y_train) test_score = knn.score(X_test_scaled, y_test) train_scores.append(train_score) test_scores.append(test_score) print(f"k: {k}, Train/Test Score: {train_score:.3f}/{test_score:.3f}") knn = KNeighborsClassifier(n_neighbors=17) knn.fit(X_train_scaled, y_train) print('k=17 Test Acc: %.3f' % knn.score(X_test_scaled, y_test)) ###Output k=17 Test Acc: 0.866 ###Markdown Tune the model with GridSearchCV ###Code # https://medium.com/@erikgreenj/k-neighbors-classifier-with-gridsearchcv-basics-3c445ddeb657 from sklearn.model_selection import GridSearchCV param_grid = {'n_neighbors': [3,9,31,51], 'weights': ['uniform', 'distance'], 'metric': ['euclidean', 'manhattan']} # grid = GridSearchCV(KNeighborsClassifier(), param_grid, verbose=1) grid = GridSearchCV(knn, param_grid, verbose=1) gs = grid.fit(X_train, y_train) gs.best_score_ gs.best_estimator_ gs.best_params_ predictions = gs.predict(X_test) from sklearn.metrics import classification_report print(classification_report(y_test, predictions)) ###Output precision recall f1-score support CANDIDATE 0.74 0.66 0.70 339 CONFIRMED 0.68 0.81 0.74 363 FALSE POSITIVE 0.93 0.88 0.91 697 accuracy 0.81 1399 macro avg 0.78 0.78 0.78 1399 weighted avg 0.82 0.81 0.81 1399 ###Markdown name ###Code name df = pd.concat([df,name],axis=1) df.head() df.drop(['species'],axis = 1,inplace = True) df.head() x = df[['sepal_length','sepal_width','petal_length','petal_width']] y = df[['Iris-setosa','Iris-versicolor','Iris-virginica']] x_train,x_test,y_train,y_test = train_test_split(x,y,random_state =99 , test_size = 0.3) import math math.sqrt(len(y_test)) classifier = KNeighborsClassifier(n_neighbors = 7 , p=2,metric = 'euclidean') classifier.fit(x_train,y_train) predictions = classifier.predict(x_test) predictions accuracy_score(y_test,predictions)*100 ###Output _____no_output_____ ###Markdown ###Code #Importing import random from scipy.spatial import distance def dist(x , y): # To Calculate the spatial distance between given two points return distance.euclidean(x, y) def closest(row): # Returns the index of the least distance in the row best_dist = row[0] best_index = 0 for i in range(1 ,len(row)): if row[i] < best_dist: best_dist = row[i] best_index = i return best_index # Classifier class KNN(): rows_in_distances = [] distances =[] labels = [] last_Y=[] def init(self): pass def fit(self , Train_X , Train_Y): # To train the model , literally saves all the training data. self.X = Train_X self.Y = Train_Y def predict(self , Test_X): # Returns the predictions of the model/classifier for i in range(len(Test_X)): for j in range(len(self.X)): self.rows_in_distances.append( dist ( Test_X[i] , self.X[j] ) ) self.labels.append(closest(self.rows_in_distances)) self.rows_in_distances = [] for i in self.labels: self.last_Y.append(self.Y[i]) return self.last_Y #Pipeline import numpy as np classifier = KNN() predictions = [] X_Train = [1, 3, 4, 8, 6, 5] Y_Train = [0, 0, 0, 1, 1, 1] X_Test = [2, 7, 5] Y_Test = [0, 1 , 1] classifier.fit(X_Train , Y_Train) predictions = classifier.predict(X_Test) print("Predictions are :",predictions) print("Labels are:",Y_Test) ###Output Predictions are : [0, 1, 1] Labels are: [0, 1, 1] Values are: [0, 0, 0, 1, 1, 1] ###Markdown ###Code from google.colab import drive drive.mount('/content/drive') import pandas as pd df = pd.read_csv("/content/drive/MyDrive/dos_dataset/clean_2.csv") df.info() df=df.drop(' Source IP',axis=1) df=df.drop(' Flow Duration',axis=1) #df=df.drop(' Total Fwd Packets',axis=1) #df=df.drop(' Total Backward Packets',axis=1) df=df.drop(' Total Length of Bwd Packets',axis=1) df=df.drop(' Fwd Packet Length Std',axis=1) df=df.drop(' Flow IAT Max',axis=1) df=df.drop(' Flow IAT Min',axis=1) #df=df.drop('Fwd IAT Total',axis=1) df=df.drop(' Fwd IAT Max',axis=1) df=df.drop(' Fwd IAT Min',axis=1) df=df.drop('Bwd IAT Total',axis=1) df=df.drop(' Bwd IAT Mean',axis=1) df=df.drop(' Bwd IAT Std',axis=1) df=df.drop(' Bwd IAT Max',axis=1) df=df.drop(' Bwd IAT Min',axis=1) #df=df.drop(' Fwd Header Length',axis=1) df=df.drop(' Bwd Header Length',axis=1) df=df.drop(' Bwd Packets/s',axis=1) df=df.drop(' SYN Flag Count',axis=1) df=df.drop(' Down/Up Ratio',axis=1) df=df.drop(' Fwd Header Length.1',axis=1) df=df.drop('Subflow Fwd Packets',axis=1) df=df.drop(' Subflow Bwd Packets',axis=1) df=df.drop(' Subflow Bwd Bytes',axis=1) df=df.drop(' act_data_pkt_fwd',axis=1) df=df.drop(' min_seg_size_forward',axis=1) df=df.drop('Active Mean',axis=1) df=df.drop(' Active Std',axis=1) df=df.drop(' Active Max',axis=1) df=df.drop(' Active Min',axis=1) df=df.drop('Idle Mean',axis=1) df=df.drop(' Idle Max',axis=1) df=df.drop(' Idle Min',axis=1) df = df.drop(' Packet Length Std',axis=1) df = df.drop('Flow Bytes/s',axis=1) df = df.drop(' Flow Packets/s',axis=1) df=df.drop('Unnamed: 0',axis=1) df=df.drop('Unnamed: 0.1',axis=1) df=df.drop('Unnamed: 0.1.1',axis=1) df=df.drop(' Source Port',axis=1) df=df.drop(' Destination IP',axis=1) df=df.drop(' Destination Port',axis=1) df.info() #df=df.drop('Unnamed: 0.1',axis=1) x=df.iloc[:,df.columns != 'Label'] y=df.iloc[:,-1] print("x\n",x.info()) y = pd.DataFrame(y) print('y\n',y.info()) #normalized_df=(df-df.mean())/df.std() #normalized_x=normalized_df.iloc[:,normalized_df.columns != 'Label'] #y=pd.DataFrame(y) df.head() normalized_df=(df-df.mean())/df.std() y=pd.DataFrame(y) normalized_x=normalized_df.iloc[:,normalized_df.columns != 'Label'] normalized_df.describe() normalized_x.info() y.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 1245798 entries, 0 to 1245797 Data columns (total 1 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Label 1245798 non-null int64 dtypes: int64(1) memory usage: 9.5 MB ###Markdown KNN Classifier ###Code from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score models = [LogisticRegression(), KNeighborsClassifier(n_neighbors=3),MLPClassifier(alpha=0.005),DecisionTreeClassifier()] classifiers = ["LR", "KNN","MLP","DecisionTree"] scores = [] #checks whether there are NaN values in the normalizex_x dataframe #np.any(np.isnan(normalized_x)) #fills NaN values with the mean value #normalized_x = normalized_x.fillna(X.mean()) from sklearn.model_selection import train_test_split import numpy as np X_train, X_test, y_train, y_test = train_test_split(normalized_x, y, test_size=0.25, random_state=42) y_train = np.array(y_train) from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=8) model.fit(X_train, y_train) from sklearn import metrics y_pred = model.predict(X_test) print("Accuracy =", metrics.accuracy_score(y_test, y_pred)) #from sklearn import metrics from sklearn.metrics import f1_score print('K Nearest Neighbour Classifier') print('Accuracy = ', metrics.accuracy_score(y_test, y_pred)*100) print("Confusion Matrix =\n", metrics.confusion_matrix(y_test, y_pred, labels=None, sample_weight=None)) print("Recall =", metrics.recall_score(y_test, y_pred, labels=None, pos_label=1, average='weighted', sample_weight=None)) print("Classification Report =\n", metrics.classification_report(y_test, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, output_dict=False)) print("F1 Score = ",f1_score(y_test, y_pred, average='macro')) for model in models: model.fit(X_train,y_train) y_pred = model.predict(X_test) score = accuracy_score(y_test, y_pred)*100 scores.append(score) print("Accuracy of the model is: ", score) conf_matrix = confusion_matrix(y_test,y_pred) report = classification_report(y_test,y_pred) print("Confusion Matrix:\n",conf_matrix) print("Report:\n",report) print("\n==============***===============") ###Output _____no_output_____ ###Markdown Naive Bayes ###Code from sklearn.naive_bayes import GaussianNB model = GaussianNB() model.fit(X_train, y_train) pred = model.predict(X_test) from sklearn import metrics from sklearn.metrics import f1_score print('Naive Bayes') print('Accuracy = ', metrics.accuracy_score(y_test, pred)*100) print("Confusion Matrix =\n", metrics.confusion_matrix(y_test, y_pred, labels=None, sample_weight=None)) print("Recall =", metrics.recall_score(y_test, y_pred, labels=None, pos_label=1, average='weighted', sample_weight=None)) print("Classification Report =\n", metrics.classification_report(y_test, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, output_dict=False)) print("F1 Score = ",f1_score(y_test, y_pred, average='macro')) ###Output _____no_output_____ ###Markdown KNN (K-Nearest-Neighbors) KNN is a simple concept: define some distance metric between the items in your dataset, and find the K closest items. You can then use those items to predict some property of a test item, by having them somehow "vote" on it.As an example, let's look at the MovieLens data. We'll try to guess the rating of a movie by looking at the 10 movies that are closest to it in terms of genres and popularity.To start, we'll load up every rating in the data set into a Pandas DataFrame: ###Code import pandas as pd r_cols = ['user_id', 'movie_id', 'rating'] ratings = pd.read_csv('C:/Users/Lucian-PC/Desktop/DataScience/DataScience-Python3/ml-100k/u.data', sep='\t', names=r_cols, usecols=range(3)) ratings.head() ###Output _____no_output_____ ###Markdown Now, we'll group everything by movie ID, and compute the total number of ratings (each movie's popularity) and the average rating for every movie: ###Code import numpy as np movieProperties = ratings.groupby('movie_id').agg({'rating': [np.size, np.mean]}) movieProperties.head() ###Output _____no_output_____ ###Markdown The raw number of ratings isn't very useful for computing distances between movies, so we'll create a new DataFrame that contains the normalized number of ratings. So, a value of 0 means nobody rated it, and a value of 1 will mean it's the most popular movie there is. ###Code movieNumRatings = pd.DataFrame(movieProperties['rating']['size']) movieNormalizedNumRatings = movieNumRatings.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x))) movieNormalizedNumRatings.head() ###Output _____no_output_____ ###Markdown Now, let's get the genre information from the u.item file. The way this works is there are 19 fields, each corresponding to a specific genre - a value of '0' means it is not in that genre, and '1' means it is in that genre. A movie may have more than one genre associated with it.While we're at it, we'll put together everything into one big Python dictionary called movieDict. Each entry will contain the movie name, list of genre values, the normalized popularity score, and the average rating for each movie: ###Code movieDict = {} with open(r'C:/Users/Lucian-PC/Desktop/DataScience/DataScience-Python3/ml-100k/u.item') as f: temp = '' for line in f: #line.decode("ISO-8859-1") fields = line.rstrip('\n').split('|') movieID = int(fields[0]) name = fields[1] genres = fields[5:25] genres = map(int, genres) movieDict[movieID] = (name, np.array(list(genres)), movieNormalizedNumRatings.loc[movieID].get('size'), movieProperties.loc[movieID].rating.get('mean')) ###Output _____no_output_____ ###Markdown For example, here's the record we end up with for movie ID 1, "Toy Story": ###Code print(movieDict[1]) ###Output ('Toy Story (1995)', array([0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 0.77358490566037741, 3.8783185840707963) ###Markdown Now let's define a function that computes the "distance" between two movies based on how similar their genres are, and how similar their popularity is. Just to make sure it works, we'll compute the distance between movie ID's 2 and 4: ###Code from scipy import spatial def ComputeDistance(a, b): genresA = a[1] genresB = b[1] genreDistance = spatial.distance.chebyshev(genresA, genresB) popularityA = a[2] popularityB = b[2] popularityDistance = abs(popularityA - popularityB) return genreDistance + popularityDistance ComputeDistance(movieDict[2], movieDict[4]) ###Output _____no_output_____ ###Markdown Remember the higher the distance, the less similar the movies are. Let's check what movies 2 and 4 actually are - and confirm they're not really all that similar: ###Code print(movieDict[2]) print(movieDict[4]) ###Output ('GoldenEye (1995)', array([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]), 0.22298456260720412, 3.2061068702290076) ('Get Shorty (1995)', array([0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 0.35677530017152659, 3.5502392344497609) ###Markdown Now, we just need a little code to compute the distance between some given test movie (Toy Story, in this example) and all of the movies in our data set. When the sort those by distance, and print out the K nearest neighbors: ###Code import operator def getNeighbors(movieID, K): distances = [] for movie in movieDict: if (movie != movieID): dist = ComputeDistance(movieDict[movieID], movieDict[movie]) distances.append((movie, dist)) distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(K): neighbors.append(distances[x][0]) return neighbors K = 20 avgRating = 0 neighbors = getNeighbors(1, K) for neighbor in neighbors: avgRating += movieDict[neighbor][3] print (movieDict[neighbor][0] + " " + str(movieDict[neighbor][3])) avgRating /= K ###Output Aladdin and the King of Thieves (1996) 2.84615384615 Air Force One (1997) 3.63109048724 Independence Day (ID4) (1996) 3.43822843823 Scream (1996) 3.44142259414 English Patient, The (1996) 3.65696465696 Raiders of the Lost Ark (1981) 4.25238095238 Liar Liar (1997) 3.15670103093 Godfather, The (1972) 4.28329297821 Return of the Jedi (1983) 4.00788954635 Fargo (1996) 4.15551181102 Contact (1997) 3.80353634578 Pulp Fiction (1994) 4.06091370558 Twelve Monkeys (1995) 3.79846938776 Silence of the Lambs, The (1991) 4.28974358974 Jerry Maguire (1996) 3.7109375 Rock, The (1996) 3.69312169312 Empire Strikes Back, The (1980) 4.20652173913 Star Trek: First Contact (1996) 3.6602739726 Back to the Future (1985) 3.83428571429 Titanic (1997) 4.24571428571 ###Markdown While we were at it, we computed the average rating of the 10 nearest neighbors to Toy Story: ###Code avgRating ###Output _____no_output_____ ###Markdown How does this compare to Toy Story's actual average rating? ###Code movieDict[1] ###Output _____no_output_____ ###Markdown Not too bad! Activity Our choice of 10 for K was arbitrary - what effect do different K values have on the results?Our distance metric was also somewhat arbitrary - we just took the cosine distance between the genres and added it to the difference between the normalized popularity scores. Can you improve on that? ###Code Chebyshev ###Output _____no_output_____ ###Markdown Implementação e aplicação do algoritmo KNN para predição Função para dividir o dataset entre dados para treino e dados que serão usados para realizar as predições ###Code from sklearn import datasets import pandas as pd import random import numpy as np import operator import math import matplotlib.pyplot as plt import pylab as pl from sklearn.preprocessing import StandardScaler from sklearn.metrics import classification_report, confusion_matrix def init(data, target, split): x_treino = [] x_test = [] y_treino = [] y_test = [] for i in range(data.shape[0]): if random.random() < split: x_treino.append(data[i]) y_treino.append(target[i]) else: x_test.append(data[i]) y_test.append(target[i]) return x_treino, x_test, y_treino, y_test ###Output _____no_output_____ ###Markdown Métrica usada para calcular a distância entre duas instâncias ###Code def distancia_euclidiana(instanceA, instanceB): ans = 0 for i in range(len(instanceA)): ans += (instanceA[i] - instanceB[i]) ** 2 return math.sqrt(ans) ###Output _____no_output_____ ###Markdown Função que retorna os K vizinhos mais próximos de uma instância ###Code def get_nearest_neighbors(x_treino, y_treino, instance_test, k): distancias = [] for i in range(len(x_treino)): dist = distancia_euclidiana(x_treino[i], instance_test) distancias.append((dist, y_treino[i])) distancias.sort(key=operator.itemgetter(0)) neighbors = [] for i in range(k): neighbors.append(distancias[i][1]) return neighbors def target_k_neighbors(vizinhos): ans = {} for i in vizinhos: if i in ans: ans[i] += 1 else: ans[i] = 1 qtd = 0 for i, j in ans.items(): if qtd < j: qtd = j best = i return best ###Output _____no_output_____ ###Markdown Taxa de erro de uma predição ###Code def getPrecision(instanceA, instanceB): erros = 0 for i in range(len(instanceA)): if instanceA[i] != instanceB[i]: erros += 1 return erros / len(instanceA) ###Output _____no_output_____ ###Markdown Função KNNEssa função retorna um vetor indicando a predição feita para cada caso de teste ###Code def knn(x_treino, y_treino, x_test, K): # scaler = StandardScaler() # scaler.fit(x_treino) # x_treino = scaler.transform(x_treino) # x_test = scaler.transform(x_test) y_pred = [] for i in range(len(x_test)): vizinhos = get_nearest_neighbors(x_treino, y_treino, x_test[i], K) ans = target_k_neighbors(vizinhos) y_pred.append(ans) return y_pred ###Output _____no_output_____ ###Markdown Experimentos utilizando a base de dados IRIS ###Code K = 5 iris = datasets.load_iris() x_treino, x_test, y_treino, y_test = init(iris.data, iris.target, 0.6) y_pred = knn(x_treino, y_treino, x_test, K) ###Output _____no_output_____ ###Markdown Resultados da predições usando aproximadamente 60% da base para treino e com parâmetro K = 5 ###Code for i in range(len(y_pred)): print('Original:' + iris.target_names[y_test[i]] + ' Predito:' + iris.target_names[y_pred[i]]) print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) ###Output [[18 0 0] [ 0 16 1] [ 0 1 20]] precision recall f1-score support 0 1.00 1.00 1.00 18 1 0.94 0.94 0.94 17 2 0.95 0.95 0.95 21 micro avg 0.96 0.96 0.96 56 macro avg 0.96 0.96 0.96 56 weighted avg 0.96 0.96 0.96 56 ###Markdown Resultado obtido com aproximadamente 60% dos dados para treino e parâmetro K = 5 ###Code error = [] for i in range(1,30): y_pred = knn(x_treino, y_treino, x_test, i) ans = getPrecision(y_test, y_pred) error.append(ans) plt.figure(figsize=(12, 6)) plt.plot(range(1, 30), error, color='red', linestyle='dashed', marker='o', markerfacecolor='blue', markersize=10) plt.title('Error Rate K Value') plt.xlabel('K Value') plt.ylabel('Mean Error') plt.show() ###Output _____no_output_____ ###Markdown O gráfico acima mostra o erro médio obtido variando o parâmetro K entre 1 e 30. Experimentos utilizando a base de dados Boston ###Code plt.hist(boston.target) plt.xlabel('Preço mediano das residências (em 1000$)') plt.ylabel('Frequência') plt.title('Distribuição do target da base de dados Boston') ###Output _____no_output_____ ###Markdown A partir do histograma acima, é possível perceber que os valores do target da base de dados boston está distribuido em valores reais entre 5 e 50, o que é um intervalo muita grande de valores para se realizar uma predição usando o KNN. Sendo assim, vamos dividir esses dados em 4 classes. A primeira classe será as instâncias com valores no intervalo (0, 12.5], segunga classe instâncias com valores entre (12.5,25.0], terceira classe (25.0,37.5] e por fim a ultima classe conterá as intâncias com valores no intervalo (35.5,50]. ###Code target = [] classes = [12.5, 25.0, 37.5, 50.0] for i in range(len(boston.target)): for j in range(len(classes)): if boston.target[i] <= classes[j]: target.append(j) break K = 5 boston = datasets.load_boston() x_treino, x_test, y_treino, y_test = init(boston.data, target, 0.7) y_pred = knn(x_treino, y_treino, x_test, K) print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) ###Output [[ 9 6 0 0] [ 8 84 8 0] [ 0 13 14 0] [ 0 9 4 1]] precision recall f1-score support 0 0.53 0.60 0.56 15 1 0.75 0.84 0.79 100 2 0.54 0.52 0.53 27 3 1.00 0.07 0.13 14 micro avg 0.69 0.69 0.69 156 macro avg 0.70 0.51 0.50 156 weighted avg 0.71 0.69 0.67 156 ###Markdown Usando todas as 13 caracteristicas, 70% dos dados para treino e parâmetro K = 5, o algoritmo obteve uma precisão de quase 70% nas predições das classes dos valores medianos das residências.O próximo passo de nossos experimentos é usar apenas as caracteristicas quem possuem uma relação linear com o target da base de dados. ###Code plt.scatter(boston.data[:,0], boston.target, color='black') plt.xlabel(boston.feature_names[0]) plt.ylabel('Preço') plt.scatter(boston.data[:,2], boston.target, color='black') plt.xlabel(boston.feature_names[2]) plt.ylabel('Preço') plt.scatter(boston.data[:,4], boston.target, color='black') plt.xlabel(boston.feature_names[4]) plt.ylabel('Preço') ###Output _____no_output_____ ###Markdown Taxa de erro na predição usando por 60% dos dados para treinamento e com o parâmetro K = 5 ###Code plt.scatter(boston.data[:,5], boston.target, color='black') plt.xlabel(boston.feature_names[5]) plt.ylabel('Preço') plt.scatter(boston.data[:,7], boston.target, color='black') plt.xlabel(boston.feature_names[7]) plt.ylabel('Preço') plt.scatter(boston.data[:,10], boston.target, color='black') plt.xlabel(boston.feature_names[10]) plt.ylabel('Preço') plt.scatter(boston.data[:,2], boston.data[:,4], color='black') plt.xlabel(boston.feature_names[2]) plt.ylabel(boston.feature_names[4]) plt.ylabel('Preço') ###Output _____no_output_____ ###Markdown Analisando os gráficos de disperssão acima, é possivel avaliar que a taxa de criminalidade (CRIM), o numero médiode quartos nas resiências (RM) e a distância média das residências para cinco centros de emprego de Boston (DIS),são os fatores que possuem maior co-relação com o preço das residências, apesar de alguns outliers. Portanto vamos utilizar agora apenas essas 3 caracteristicas para fazer a predição das classes. ###Code caracteristicas = [0, 5, 7] dataset = np.zeros((len(boston.data), len(caracteristicas))) for i in range(len(boston.data)): for j in range(len(caracteristicas)): dataset[i][j] = boston.data[i][caracteristicas[j]]; K = 5 boston = datasets.load_boston() x_treino, x_test, y_treino, y_test = init(dataset, target, 0.7) y_pred = knn(x_treino, y_treino, x_test, K) print(getPrecision(y_pred, y_test)) print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) ###Output [[ 6 4 0 0] [ 2 59 1 1] [ 0 6 18 1] [ 0 1 0 7]] precision recall f1-score support 0 0.75 0.60 0.67 10 1 0.84 0.94 0.89 63 2 0.95 0.72 0.82 25 3 0.78 0.88 0.82 8 micro avg 0.85 0.85 0.85 106 macro avg 0.83 0.78 0.80 106 weighted avg 0.85 0.85 0.85 106 ###Markdown Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. ###Code import sklearn import pandas as pd from sklearn.datasets import load_iris iris=load_iris() #load the data iris.keys() print(iris.keys()) df=pd.DataFrame(iris['data']) print(df) print(iris) print(iris['target_names']) print(iris['feature_names']) iris['target'] len(iris['target']) ###Output _____no_output_____ ###Markdown Note: Now we need a target and data so that we can train the modelAs we know that we have to find out the class from the features we haveWith this logic,our target is classes (0,1,2) and data is in df. ###Code X=df y=iris['target'] ###Output _____no_output_____ ###Markdown Splitting DataThe data is split so that with some data we can train the model and from the remaining data we can test the model and can check how well our model isTo do this we have an inbuilt function in sklearn ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) ###Output _____no_output_____ ###Markdown Note: It will split our 33% data into testing data and remaining data is our training data KNN Classifier and Training of the Model ###Code from sklearn.neighbors import KNeighborsClassifier knn=KNeighborsClassifier(n_neighbors=3) ###Output _____no_output_____ ###Markdown Note: It implements the concepts of KNN. Here we have taken number of neighbors (K)= 3.First, it will calculate the distance with all the training points to the test point and then select the three lowest distance points.And test data point is classify to the class most common in among three. ###Code knn.fit(X_train,y_train) ###Output _____no_output_____ ###Markdown Note:- Training the model with features values (data) and target values (target) Prediction and AccuracyDemo: Here I want to show you just by taking one data pointwe have a data point x_new Note: As you can see in confusion matrix only one prediction is wrong , and also our accuracy is 0.98 (98%). ###Code import numpy as np x_new=np.array([[5,2.9,1,0.2]]) prediction=knn.predict(x_new) iris['target_names'][prediction] print(prediction) ###Output [0] ###Markdown Note: As we can see that our point belongs to class (0 or setosa class), this demo is just for understanding ###Code from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report y_pred=knn.predict(X_test) cm=confusion_matrix(y_test,y_pred) print(cm) print(" correct predicition",accuracy_score(y_test,y_pred)) print(" worng predicition",(1-accuracy_score(y_test,y_pred))) ###Output [[19 0 0] [ 0 15 0] [ 0 1 15]] correct predicition 0.98 worng predicition 0.020000000000000018 ###Markdown KNNThis notebook contains an implementaion of K-nearest neighbor algorithm using numpy, with some visualization functionalities. Imports, setup, and functions defenitions ###Code import numpy as np import matplotlib.pyplot as plt from collections import defaultdict from sklearn import datasets # set the default figure size from IPython.core.pylabtools import figsize figsize(14, 7) # fix the random seed seed = 1004 np.random.seed(seed) def generate_syntheatic_data(size, n_classes=2, plot=True): ''' A function to geenrate syntheatic data to test the learning algorithm. size: number of samples ''' redish = '#d73027' orangeish = '#fc8d59' blueish = '#4575b4' colormap = np.array([redish,blueish,orangeish]) X, Y = datasets.make_classification(size, 2, 2, 0, n_classes=n_classes ,random_state=seed, n_clusters_per_class=1, class_sep=1) if plot: figure = plt.figure(figsize=(10, 5)) scatter = plt.scatter(X[:, 0], X[:, 1], c=colormap[Y]) return X, Y n_classes = 3 X, Y = generate_syntheatic_data(500, plot=True, n_classes=n_classes) def split_valid(X, Y, split_ratio=0.1): ''' split_valid(X, Y, split_ratio=0.1) This function data to a training set and a validation set. X: inputs features. Y: target outputs. split_ratio: perecntage between the size of the validation set and the size of the training set. return x_train, y_train, x_valid, y_valid ''' data_size = X.shape[0] valid_length = int(data_size * split_ratio) # shuffle the data before splitting inds = np.random.choice(range(data_size), data_size, replace=False) X = X[inds] Y = Y[inds] x_valid = X[: valid_length] y_valid = Y[: valid_length] x_train = X[valid_length: ] y_train = Y[valid_length: ] return x_train, y_train, x_valid, y_valid # visualize the predictions # the code is taken from https://www.tvhahn.com/posts/beautiful-plots-decision-boundary/ def visualize(model, x, y): # define the mesh x0 = x[:, 0] x1 = x[:, 1] PAD = 1.0 x0_min, x0_max = np.round(x0.min())-PAD, np.round(x0.max()+PAD) x1_min, x1_max = np.round(x1.min())-PAD, np.round(x1.max()+PAD) # create the mesh points with step size H H = 0.1 # mesh stepsize x0_axis_range = np.arange(x0_min,x0_max, H) x1_axis_range = np.arange(x1_min,x1_max, H) # create the mesh-grid xx0, xx1 = np.meshgrid(x0_axis_range, x1_axis_range) # change the shape of the meshgrid to the same as the data input xx = np.reshape(np.stack((xx0.ravel(),xx1.ravel()),axis=1),(-1,2)) preds, probs = model.predict(xx, n_classes=n_classes) # the size of each probability dot yy_size = np.max(probs, axis=1) PROB_DOT_SCALE = 40 # modifier to scale the probability dots PROB_DOT_SCALE_POWER = 3 # exponential used to increase/decrease size of prob dots TRUE_DOT_SIZE = 50 # size of the true labels # make figure plt.style.use('seaborn-whitegrid') # set style because it looks nice fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8,6), dpi=150) redish = '#d73027' orangeish = '#fc8d59' yellowish = '#fee090' blueish = '#4575b4' colormap = np.array([redish,blueish,orangeish]) ax.scatter(xx[:,0], xx[:,1], c=colormap[preds], alpha=0.4, s=PROB_DOT_SCALE*yy_size**PROB_DOT_SCALE_POWER, linewidths=0,) ###Output _____no_output_____ ###Markdown Model definition, training, and results visulization ###Code class KNN: ''' KNN(k) This class implements K-nearest neighbor algorithm using NumPy. k: Number of clusters. ''' def __init__(self, k=1): self.k = k def fit(self, x, y): ''' fitting a KNN is just to memorize the data ''' self.x = x self.y = y def predict(self, x, n_classes=2): assert not (self.x is None and self.y is None), "No data has been passed to the fit function" data_size = self.x.shape[0] num_tests = 1 if len(x.shape) == 1 else x.shape[0] preds = [] preds_probs = [] for j in range(num_tests): distances = defaultdict(lambda : 0) for i in range(data_size): dis = self.distance(x[j], self.x[i]) # print(self.y) distances[dis] = self.y[i] sorted_dis = sorted(distances) top_k = [] for i in range(self.k): top_k.append(distances[sorted_dis[i]]) top_k = np.array(top_k) classes_probs = [] for i in range(n_classes): classes_probs.extend([np.sum(top_k == i) / self.k]) preds_probs.append(classes_probs) pred = np.argmax(np.bincount(top_k)) preds.append(pred) preds = np.array(preds) preds_probs = np.array(preds_probs) return preds, preds_probs def distance(self, x1, x2): return (np.sum((x1 - x2)**2))**0.5 def accuracy(self, x, y, n_classes): preds, probs = self.predict(x, n_classes) return 100 * (np.sum(preds == y) / len(y)) # create a KNN model. model = KNN(1) # save the data. model.fit(X, Y) # fit and calculate the model accuracy. model.accuracy(X, Y, n_classes) # Visualize the results visualize(model, X, Y) ###Output _____no_output_____ ###Markdown Finding value of k ###Code x_axis = [] y_axis = [] for i in range(1,26,2): clf = KNeighborsClassifier(n_neighbors = i) score = cross_val_score(clf, X_train, Y_train) x_axis.append(i) y_axis.append(score.mean()) import matplotlib.pyplot as plt plt.plot(x_axis, y_axis) plt.show() ## have to find out whick k value is better 7 or 9 ###Output _____no_output_____ ###Markdown cross_val_score ###Code from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold iris = datasets.load_iris() clf1 = LinearRegression() cross_val_score(clf1, iris.data, iris.target, cv = KFold(3, True, 0)) ###Output _____no_output_____ ###Markdown Algo implementation ###Code def train(x,y): # doesnt do anything return def predict_one(x_train,y_train,x_row,k): distances = list() for j in range(len(x_train)): distances.append([((x_train[j,:] - x_row) ** 2).sum(),j]) distances = sorted(distances) target = list() for i in range(k): target.append(y_train[distances[i][1]]) return Counter(target).most_common(1)[0][0] def predict(x_train,y_train,x_data,k): predictions = list() for x in x_data: predictions.append(predict_one(x_train,y_train,x,k)) return predictions y_pred = predict(X_train,Y_train,X_test,7) accuracy_score(Y_test,y_pred) # use of Counter a = [1,0,1,1,1,1,0, 2] Counter(a).most_common(1)[0][0] ###Output _____no_output_____ ###Markdown Image segmentation with k-NN ###Code import cv2; #import OpenCV – computer vision functions import numpy as np; #handle arrays/matrices import matplotlib.pyplot as plt; #for plotting graphs and showing images import random; import math; k=7; #k= 7 orgimg=cv2.imread('pyramid2.jpeg')#training image img=cv2.cvtColor(orgimg,cv2.COLOR_BGR2RGB); orgimg_label=cv2.imread('pyramid2_label.jpeg')#training labels img_label=cv2.cvtColor(orgimg_label,cv2.COLOR_BGR2RGB); org_test_img=cv2.imread('pyramid1.jpeg')#test image img_test=cv2.cvtColor(org_test_img,cv2.COLOR_BGR2RGB); plt.subplot(131);plt.imshow(img);plt.title('training');plt.axis('off') plt.subplot(132);plt.imshow(img_label);plt.title('labels');plt.axis('off'); plt.subplot(133);plt.imshow(img_test);plt.title('testing');plt.axis('off'); plt.show() #load the training data width=img.shape[1];height=img.shape[0]; No_training_samples=100; training_data=np.zeros([No_training_samples,3]); training_label=np.zeros(No_training_samples); for i in range(No_training_samples): rx=int(random.random()*width); ry=int(random.random()*height); training_data[i]=img[ry,rx]; training_label[i]=0; if (img_label[ry,rx,0]>200): training_label[i]=0; elif(img_label[ry,rx,1]>200):training_label[i]=1; else:training_label[i]=2; def distance(v1, v2):#Euclidean distance between 2 vectors dist=0.0; for i in range(len(v1)): dist += ((v1[i] - v2[i])**2); return math.sqrt(dist); def firstvariable(listitem): return listitem[0];#sort the list based on the 1st variable def find_nearest_k(training,label,no_training,testdata,k,no_classes): distlist = list(); for i in range(no_training): dist=distance(testdata,training[i]); distlist.append([dist,label[i]]);#add both the dist and the label distlist.sort(key=firstvariable);#sort the distance list classvote=np.zeros(no_classes); for i in range(k): #find the k-nearest neigbhours classvote[int(distlist[i][1])]+=1;#get the votes for each class #find the class with the majority of votes maxclass=-99999; result=0; for i in range(no_classes): if (classvote[i]>maxclass): maxclass=classvote[i]; result=i; return result; def kNNSegmentation():#segment the image based on k-NN algorithm resultimg=img_test.copy(); for y in range(height): for x in range(width): label=find_nearest_k(training_data,training_label,No_training_samples,img_test[y,x],k,3); if (label==0): resultimg[y,x,0]=255;resultimg[y,x,1]=0;resultimg[y,x,2]=0; elif (label==1): resultimg[y,x,1]=255;resultimg[y,x,0]=0;resultimg[y,x,2]=0; else: resultimg[y,x,2]=255;resultimg[y,x,1]=0;resultimg[y,x,0]=0; return resultimg; resultimg=kNNSegmentation(); plt.imshow(img_test);plt.title('origin');plt.axis('off');plt.show(); plt.imshow(resultimg);plt.title('segmented');plt.axis('off');plt.show() ###Output _____no_output_____ ###Markdown ***Import Required Libraries*** ###Code import numpy as np import struct from sklearn.decomposition import PCA from keras.datasets import mnist ###Output Using TensorFlow backend. ###Markdown ***Load data***Although we can find MNIST dataset from Yann LeCun's official site, I chose a more convenient way to find the dataset from Keras. Also, from the code below, we can show that the MNIST database contains 60,000 training and 10,000 testing images, which have $28\times28$ pixels with only greyscale. ###Code (train_data_ori, train_label), (test_data_ori, test_label) = mnist.load_data() print ("mnist data loaded") print ("original training data shape:",train_data_ori.shape) print ("original testing data shape:",test_data_ori.shape) ###Output Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz 11493376/11490434 [==============================] - 1s 0us/step mnist data loaded original training data shape: (60000, 28, 28) original testing data shape: (10000, 28, 28) ###Markdown For the convenience of training, linearize each image from $28\times28$ into an array of size $1\times784$, so that the training and test datasets are converted into 2-dimensional vectors of size $60000\times784$ and $10000\times784$, respectively. ###Code train_data=train_data_ori.reshape(60000,784) test_data=test_data_ori.reshape(10000,784) print ("training data shape after reshape:",train_data.shape) print ("testing data shape after reshape:",test_data.shape) ###Output training data shape after reshape: (60000, 784) testing data shape after reshape: (10000, 784) ###Markdown ***Dimension Reduction using PCA*** For this case, the pixels of the image will be the features used to build our predictive model. In this way, implementing KNN clustering is to calculate the norms in a 784-dimensional space. However, calculating norms in this 784-dimensional space is far from easy and efficient. Intuitively, we can perform some dimention reduction before going to KNN and calculate those norms, so that we can become more efficient. The way to do dimension reduction here is PCA mentioned in the lecture. I don't dig deep into PCA here, and use APIs from sklearn to implement PCA instead. I reduce the feature space from 784 dimensions into 100 dimensions. Talk is cheap, here's the code. ###Code pca = PCA(n_components = 100) pca.fit(train_data) #fit PCA with training data instead of the whole dataset train_data_pca = pca.transform(train_data) test_data_pca = pca.transform(test_data) print("PCA completed with 100 components") print ("training data shape after PCA:",train_data_pca.shape) print ("testing data shape after PCA:",test_data_pca.shape) ###Output PCA completed with 100 components training data shape after PCA: (60000, 100) testing data shape after PCA: (10000, 100) ###Markdown From the result above, we can know that the training and test datasets become two vectors of size $60000\times100$ and $10000\times100$, respectively. At this point, the datasets are ready. ***Code up KNN*** Here's the code to K Nearest Neighbor clustering algorithm. This function takes in the image to cluster, training dataset, training labels, the value of K and the sort of norm to calculate distance(*i.e.* the value of $p$ in $l_p$ norm). Under the most circumstance, we use Euclidean norm to calculate distace, thus $p=2$. This function returns the class most common among the test data's K nearest neighbors, where K is the parameter mentioned above. ###Code def KNN(test_data1,train_data_pca,train_label,k,p): subMat = train_data_pca - np.tile(test_data1,(60000,1)) subMat = np.abs(subMat) distance = subMat**p distance = np.sum(distance,axis=1) distance = distance**(1.0/p) distanceIndex = np.argsort(distance) classCount = [0,0,0,0,0,0,0,0,0,0] for i in range(k): label = train_label[distanceIndex[i]] classCount[label] = classCount[label] + 1 return np.argmax(classCount) ###Output _____no_output_____ ###Markdown ***Define the test function*** This function takes in the value of K and the value of $p$ in $l_p$ norm mentioned above, and returns the accuracy of KNN clustering on the test dataset, along with the confusion matrix. ###Code def test(k,p): print("testing with K= %d and lp norm p=%d"%(k,p)) m,n = np.shape(test_data_pca) correctCount = 0 M = np.zeros((10,10),int) for i in range(m): test_data1 = test_data_pca[i,:] predict_label = KNN(test_data1,train_data_pca,train_label, k, p) true_label = test_label[i] M[true_label][predict_label] += 1 # print("predict:%d,true:%d" % (predict_label,true_label)) if true_label == predict_label: correctCount += 1 print("The accuracy is: %f" % (float(correctCount)/m)) print("Confusion matrix:",M) ###Output _____no_output_____ ###Markdown ***Test result*** Here's the precision of the KNN clustering algorithm with argument K=3 and Euclidean norm, along with the confusion matrix. ###Code test(3,2) ###Output testing with K= 3 and lp norm p=2 The accuracy is: 0.973500 Confusion matrix: [[ 974 1 1 0 0 1 2 1 0 0] [ 0 1131 3 0 0 0 1 0 0 0] [ 7 4 1004 1 1 0 0 13 2 0] [ 1 1 4 979 1 9 0 7 5 3] [ 2 5 0 0 949 0 4 3 0 19] [ 4 1 0 10 2 865 3 1 2 4] [ 4 3 0 0 2 4 945 0 0 0] [ 0 17 6 0 2 0 0 996 0 7] [ 5 1 4 17 5 10 5 3 921 3] [ 5 5 2 8 8 2 1 6 1 971]] ###Markdown **KNN** ###Code import matplotlib.pyplot as plt import numpy as np %matplotlib inline from sklearn import datasets iris=datasets.load_iris() X=iris.data y=iris.target from sklearn.model_selection import train_test_split X_train, X_test,y_train,y_test=train_test_split(X,y,test_size=20) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train=scaler.transform(X_train) X_test=scaler.transform(X_test) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors=5) classifier.fit(X_train,y_train) y_pred=classifier.predict(X_test) from sklearn.metrics import confusion_matrix,classification_report print(confusion_matrix(y_test,y_pred)) print(classification_report(y_test,y_pred)) ###Output precision recall f1-score support 0 1.00 1.00 1.00 6 1 0.67 0.40 0.50 5 2 0.73 0.89 0.80 9 accuracy 0.80 20 macro avg 0.80 0.76 0.77 20 weighted avg 0.79 0.80 0.78 20 ###Markdown Cross validation ###Code seed= 1000 np.random.seed(seed) X_train, X_test, y_train, y_test = train_test_split(x_standardized_features,y, test_size=0.30) len(X_train) ###Output _____no_output_____ ###Markdown Applying KNN model ###Code from sklearn.neighbors import KNeighborsClassifier np.random.seed(seed) KNN = KNeighborsClassifier(n_neighbors=1, metric='euclidean') KNN.fit(X_train,y_train) pred = KNN.predict(X_test) ###Output _____no_output_____ ###Markdown Prediction and evaluation ###Code from sklearn.metrics import classification_report,confusion_matrix print(confusion_matrix(y_test,pred)) print(classification_report(y_test,pred)) ###Output precision recall f1-score support 0 0.93 0.91 0.92 151 1 0.91 0.93 0.92 149 accuracy 0.92 300 macro avg 0.92 0.92 0.92 300 weighted avg 0.92 0.92 0.92 300 ###Markdown Choosing K ###Code error_rate = [] for i in range(1,50): KNN = KNeighborsClassifier(n_neighbors=i,metric='euclidean') KNN.fit(X_train,y_train) pred_i = KNN.predict(X_test) error_rate.append(np.mean(pred_i != y_test)) plt.figure(figsize=(10,6)) plt.plot(range(1,50),error_rate,color='blue', linestyle='dashed', marker='o', markerfacecolor='red', markersize=10) plt.title('Error Rate vs. K Value') plt.xlabel('K') plt.ylabel('Error Rate') KNN = KNeighborsClassifier(n_neighbors=1,metric='euclidean') KNN.fit(X_train,y_train) pred = KNN.predict(X_test) print('WITH K=1') print('\n') print(confusion_matrix(y_test,pred)) print('\n') print(classification_report(y_test,pred)) from sklearn.metrics import classification_report,confusion_matrix np.random.seed(seed) KNN = KNeighborsClassifier(n_neighbors=5,metric='euclidean') KNN.fit(X_train,y_train) y_pred = KNN.predict(X_test) print('\n') print(confusion_matrix(y_test,y_pred)) print('\n') print(classification_report(y_test,y_pred)) from sklearn import metrics Scores = [] for k in range(1, 51): KNN = KNeighborsClassifier(n_neighbors=k,metric='euclidean') KNN.fit(X_train, y_train) y_pred = KNN.predict(X_test) Scores.append(metrics.accuracy_score(y_test, y_pred)) Scores plt.figure(figsize=(10,8)) plt.plot(range(1, 51), Scores) plt.xlabel('K Values') plt.ylabel('Testing Accuracy') plt.title('K Determination Using KNN', fontsize=20) ###Output _____no_output_____ ###Markdown K-Nearest Neighbors Da mesma forma que podemos classificar modelos como _supervisionados_ ou _não-supervisionados_, podemos classificar modelos como **paramétricos** ou **não-paramétricos**Os paramétricos têm um número fixo de paramêtros, e em geral são mais rápidos, mas fazem suposições mais fortes sobre a natureza dos dados e sua distribuição. Por outro lado, nos modelos não-paramétricos, o número de variáveis cresce com a quantidade de dados.Veremos aqui, como exemplo de um modelo não-paramétrico, um classificador chamado __K-Nearest Neighbors__ (KNN). O seu algoritmo é bem simples: compare o novo dado $X$ a ser classificado com os **K** pontos mais 'próximos' (há que se definir o que isso significa) e atribua a classe mais provável (a classe da maioria dos K comparados). Formalizando: $$p(y=c|x,\mathcal{D},K) = \frac{1}{K}\sum_{i \in N_{K}(x,\mathcal{D})} \mathbb{I}(y_{i}=c)$$ Onde $N_{k}(x,\mathcal{D})$ calcula os índices dos K vizinhos mais próximos a $x$, e $\mathbb{I}$ é **função indicador**:$$\mathbb{I}(e)=\left\{ \begin{array}{ll} 1 & \text{se $e$ é verdadeiro}\\ 0 & \text{if $e$ é falso} \end{array} \right.$$ Assim o KNN efetivamente **divide** o espaço de _features_ com uma granularidade **K**se K=1, o modelo terá erro zero ao treinar (visto que apenas retornamos os pontos originais de treino), mas terá muito pouco valor explicativo ao ser utilizado.Ao aumentar K, as divisões do espaço vão ficando mais suaves, até que em K=N, é um classificador que chuta sempre a classe majoritária da massa de dados.A escolha de K nos coloca em um ponto entre o mínimo e o máximo de generalização. No Free Lunch Theorem Cunhado por Wolpert (1966), diz que não há um único modelo que dê resultados ótimos para todo tipo de problema. Um conjunto de pressupostos que dão resultado bom para um problema podem não funcionar bem em outro (ou com outros dados). Assim, diferentes modelos são criados em resposta a diferentes problemas e dados do mundo real, e diferentes algoritmos podem ser usados para treinar cada modelo, que por sua vez terão diferentes desempehos nas dimensões **velocidade-acurácia-precisão**. Código 1) para calcular a proximidade entre os pontos, preciso de uma métrica de distância exitem várias: Jaccard, City-Block, Coseno ...para começar podemos usar a Euclideana:para dois vetores de _features_: $X=(x_1,x_2,...,x_n)$ e $Y=(y_1,y_2,...,y_n)$$$ d=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+...+(x_n-y_n)^2}$$OBS: Vale observar que valores nominais não darão certo com esta escolha de métrica ...como resolver? (dummy coding, Jaccard) ###Code import math ##################################################################################### # d = sqrt((a1-b1)^2 + (a2-b2)^2+(a3-b3)^2+(a4-b4)^2) ##################################################################################### def euclidean_dist(data1, data2): # transformo [a1,a2,...,an] e [b1,b2,...,bn] em (a1,b1),(a2,b2),...(an,bn) points = zip(data1, data2) # quadrado das diferenças, dimensão por dimensão diffs_squared_distance = [pow(a - b, 2) for (a, b) in points if a is not None and b is not None] # retorno a raiz da soma return math.sqrt(sum(diffs_squared_distance)) ###Output _____no_output_____ ###Markdown 2) Agora criaremos uma função que calcula a distância entre cada item do gabarito e um item novo a ser julgado ###Code from operator import itemgetter ##################################################################################### # olho os vizinhos 1 a 1 e guardo os k mais próximos ##################################################################################### def get_neighbours(training_set, test_instance, k): # calculo a distância do item a ser julgado de cada outro ponto # distances tem a forma: [(item1,d1), (item2,d2), ...] # onde d1 é a distância entre item1 e test_instance, # d2 é a distância entre item2 e test_instance ...e assim por diante distances = [_get_tuple_distance(training_instance, test_instance) for training_instance in training_set] # reordeno a lista de items da menor distância para a maior sorted_distances = sorted(distances, key=itemgetter(1)) # não guardo as distâncias, só os items, uma vez ordenados sorted_training_instances = [x[0] for x in sorted_distances] # retorno os primeiros k items da lista ordenada return sorted_training_instances[:k] ##################################################################################### # aplico a minha função de distância entre dois itens. ##################################################################################### def _get_tuple_distance(training_instance, test_instance): return (training_instance, euclidean_dist(test_instance, training_instance[0])) ###Output _____no_output_____ ###Markdown 3) Uma vez que temos os vizinhos mais próximos, precisamos contar a classe de cada um, para saber o que responder ###Code from collections import Counter def get_majority_vote(neighbours): # presumo aqui que a neighbours tem o formato # [(item,classe), (item,classe)...] classes = [neighbour[1] for neighbour in neighbours] count = Counter(classes) return count.most_common()[0][0] ###Output _____no_output_____ ###Markdown agora vamos brincar... ###Code ############################################################# def run(dataset, item, K): neighbours = get_neighbours(dataset, item, K) guess = get_majority_vote(neighbours) print 'I think this guy likes:',guess ############################################################# def generate_random_data(): for _ in range(30): item = [] for i in range(10): item.append(random.randint(1,5)) bucket = '' cl = random.randint(0,8) if cl < 3: bucket = 'action' elif cl < 6: bucket = 'drama' else: bucket = 'comedy' data.append( (item,bucket) ) print data ############################################################# import random if __name__ == '__main__': # generate_random_data() K = 5 data = [([4, 2, 5, 3, 3, 3, 5, 3, 4, 2], 'action'), ([5, 3, 4, 2, 2, 5, 5, 2, 3, 2], 'comedy'), ([2, 5, 3, 3, 4, 4, 5, 1, 3, 5], 'action'), ([1, 3, 3, 5, 3, 1, 2, 5, 1, 3], 'action'), ([5, 3, 2, 4, 3, 1, 4, 3, 3, 4], 'drama'), ([5, 5, 1, 3, 1, 3, 3, 4, 3, 3], 'action'), ([1, 2, 3, 3, 2, 3, 2, 3, 5, 4], 'drama'), ([3, 5, 1, 3, 4, 1, 4, 2, 3, 4], 'drama'), ([1, 1, 1, 2, 1, 3, 3, 4, 5, 1], 'comedy'), ([5, 3, 4, 2, 5, 2, 4, 1, 3, 2], 'comedy'), ([4, 2, 3, 5, 1, 3, 1, 5, 3, 5], 'drama'), ([1, 2, 3, 1, 3, 2, 4, 4, 4, 5], 'drama'), ([3, 2, 1, 1, 2, 3, 1, 4, 2, 4], 'comedy'), ([4, 5, 5, 3, 5, 3, 5, 1, 3, 4], 'drama'), ([4, 4, 3, 3, 3, 2, 1, 5, 3, 4], 'comedy'), ([4, 1, 2, 5, 4, 4, 5, 4, 1, 4], 'comedy'), ([2, 2, 1, 3, 1, 5, 1, 3, 5, 1], 'comedy'), ([2, 3, 1, 1, 2, 5, 2, 2, 4, 2], 'comedy'), ([5, 2, 2, 4, 5, 3, 4, 5, 4, 2], 'comedy'), ([1, 1, 4, 4, 2, 2, 4, 4, 3, 1], 'comedy'), ([3, 3, 2, 2, 5, 1, 5, 3, 5, 2], 'comedy'), ([5, 4, 1, 2, 1, 5, 1, 5, 1, 5], 'comedy'), ([4, 1, 5, 5, 1, 3, 1, 5, 4, 1], 'comedy'), ([3, 4, 2, 1, 1, 2, 5, 4, 3, 5], 'action'), ([4, 5, 2, 1, 1, 1, 1, 2, 2, 2], 'drama'), ([3, 3, 1, 5, 1, 1, 5, 2, 1, 2], 'action'), ([1, 5, 2, 4, 1, 2, 1, 2, 3, 2], 'drama'), ([5, 3, 3, 5, 1, 3, 1, 2, 1, 3], 'drama'), ([1, 1, 4, 4, 4, 5, 2, 2, 1, 5], 'action'), ([3, 1, 5, 2, 1, 1, 5, 1, 5, 1], 'drama'), ([4, 2, 3, 4, 3, 2, 5, 4, 1, 3], 'comedy'), ([3, 2, 5, 3, 2, 4, 2, 2, 5, 4], 'drama'), ([1, 3, 1, 2, 5, 4, 2, 4, 4, 3], 'action'), ([4, 3, 4, 5, 1, 2, 2, 1, 1, 2], 'drama'), ([3, 3, 3, 1, 4, 3, 5, 2, 4, 5], 'action'), ([2, 5, 1, 2, 3, 3, 1, 3, 5, 1], 'action'), ([2, 4, 2, 1, 4, 2, 2, 4, 1, 1], 'action'), ([3, 2, 3, 3, 3, 3, 4, 2, 2, 1], 'comedy'), ([2, 5, 1, 5, 2, 5, 1, 1, 4, 5], 'action'), ([5, 2, 4, 1, 2, 5, 5, 3, 3, 4], 'comedy'), ([3, 5, 1, 3, 3, 5, 2, 1, 3, 1], 'action'), ([4, 1, 4, 1, 5, 2, 3, 5, 5, 3], 'drama'), ([3, 4, 2, 2, 4, 2, 1, 4, 1, 5], 'drama'), ([3, 3, 5, 3, 3, 3, 3, 4, 1, 4], 'comedy'), ([2, 3, 2, 1, 3, 1, 3, 2, 1, 4], 'comedy'), ([3, 5, 1, 1, 2, 4, 1, 5, 1, 2], 'comedy'), ([2, 2, 4, 1, 3, 4, 2, 3, 3, 5], 'comedy'), ([5, 3, 4, 5, 1, 5, 2, 4, 1, 1], 'drama'), ([4, 2, 5, 2, 3, 1, 2, 3, 2, 2], 'action'), ([1, 3, 3, 5, 3, 3, 2, 5, 4, 2], 'drama'), ([3, 4, 2, 1, 4, 2, 1, 4, 1, 3], 'drama'), ([3, 1, 3, 4, 5, 5, 5, 2, 1, 3], 'drama'), ([4, 4, 4, 2, 2, 1, 1, 2, 2, 1], 'action'), ([1, 3, 3, 4, 4, 4, 3, 5, 1, 2], 'drama'), ([3, 3, 3, 3, 2, 2, 1, 5, 5, 4], 'comedy'), ([2, 5, 4, 2, 4, 1, 2, 4, 1, 5], 'drama'), ([3, 1, 1, 1, 5, 1, 2, 3, 1, 1], 'action'), ([1, 3, 4, 3, 3, 2, 1, 4, 3, 5], 'action'), ([3, 2, 3, 1, 4, 5, 4, 3, 5, 2], 'action'), ([5, 1, 3, 2, 3, 2, 4, 3, 4, 2], 'action') ] run(data, [5,5,5,1,1,1,5,1,1,1], K) ###Output I think this guy likes: action
experiments/experiments_qNNC.ipynb
###Markdown Set the specification for the model ###Code # Change version to change the qnnc model version = 1 # Change to change the dataset dataset = "iris01" # model required variable tot_qubit = 2 output_shape = 2 ###Output _____no_output_____ ###Markdown Training of the modelWe train the qSLP model starting from given starting points ###Code model_name = f"qNNC_v{version}" #function that returns the best parameters for a given model starting_points = get_params(model_name, dataset, "starting_points", "../results/training/file_result.txt") ###Output _____no_output_____ ###Markdown Obtain the datasetThe dataset is processed through the use a PCA in order to use only two high descriptive features. ###Code X_train, X_test, Y_train, Y_test = get_dataset(dataset) ###Output [0.90539269 0.07445563] 98.0% of total variance is explained by 2 principal components ###Markdown Set the optimizer and the quantum instance ###Code optimizer = COBYLA(maxiter=max_iter, tol=0.01, disp=False) qinstance = QuantumInstance(Aer.get_backend('aer_simulator'),seed_simulator=seed,seed_transpiler=seed, shots=1024) qinstance.backend.set_option("seed_simulator", seed) ###Output _____no_output_____ ###Markdown The model Build the model with the chosen parameters. ###Code feature_map, ansatz = get_qNNC(1) interpreter = parity qc = QuantumCircuit(tot_qubit) qc.append(feature_map, range(tot_qubit)) qc.append(ansatz, range(tot_qubit)) objective_func_vals = [] def callback_values(weights, obj_func_eval): objective_func_vals.append(obj_func_eval) circuit_qnn = CircuitQNN(circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, interpret=interpreter, output_shape=output_shape, quantum_instance=qinstance) circuit_classifier = NeuralNetworkClassifier(neural_network=circuit_qnn, optimizer=optimizer, callback=callback_values, warm_start=True, initial_point = starting_points ) ###Output _____no_output_____ ###Markdown Training ###Code circuit_classifier.fit(X_train, Y_train) train_score = circuit_classifier.score(X_train, Y_train) test_score = circuit_classifier.score(X_test, Y_test) print(train_score) print(test_score) ending_points = circuit_classifier._fit_result[0] get_params(model_name, dataset, "ending_points", "../results/training/file_result.txt") ending_points ###Output _____no_output_____
code/ch05/ch05.ipynb
###Markdown [Sebastian Raschka](http://sebastianraschka.com), 2015https://github.com/rasbt/python-machine-learning-book Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -u -d -v -p numpy,scipy,matplotlib,scikit-learn # to install watermark just uncomment the following line: #%install_ext https://raw.githubusercontent.com/rasbt/watermark/master/watermark.py ###Output _____no_output_____ ###Markdown Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1-–-separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2-–-separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis ###Code Image(filename='./images/05_01.png', width=400) import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code from sklearn.cross_validation import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.transform(X_test)` instead of `X_test_std = sc.fit_transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt %matplotlib inline plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train==l, 0], X_train_pca[y_train==l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:,0], X_train_pca[:,1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis ###Code Image(filename='./images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1,4): mean_vecs.append(np.mean(X_train_std[y_train==label], axis=0)) print('MV %s: %s\n' %(label, mean_vecs[label-1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label,mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X[y == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row-mv).dot((row-mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label,mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train==label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i,mean_vec in enumerate(mean_vecs): n = X[y==i+1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.0707 -0.3778] [ 0.0359 -0.2223] [-0.0263 -0.3813] [ 0.1875 0.2955] [-0.0033 0.0143] [ 0.2328 0.0151] [-0.7719 0.2149] [-0.0803 0.0726] [ 0.0896 0.1767] [ 0.1815 -0.2909] [-0.0631 0.2376] [-0.3794 0.0867] [-0.3355 -0.586 ]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train==l, 0], X_train_lda[y_train==l, 1], c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='upper right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.lda import LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='./images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N,N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y==0, 0], X[y==0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y==1, 0], X[y==1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_spca[y==0, 0], X_spca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y==1, 0], X_spca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y==0, 0], X[y==0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y==1, 0], X[y==1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_spca[y==0, 0], X_spca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y==1, 0], X_spca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y==0, 0], np.zeros((500,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y==1, 0], np.zeros((500,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((500,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((500,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N,N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:,-i] for i in range(1,n_components+1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1,n_components+1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new-row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y==0, 0], np.zeros((50)), color='red', marker='^',alpha=0.5) plt.scatter(alphas[y==1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y==0, 0], X_skernpca[y==0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y==1, 0], X_skernpca[y==1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Copyright (c) 2015, 2016 [Sebastian Raschka](sebastianraschka.com)https://github.com/rasbt/python-machine-learning-book[MIT License](https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -u -d -v -p numpy,scipy,matplotlib,scikit-learn ###Output Sebastian Raschka last updated: 2016-07-26 CPython 3.5.1 IPython 5.0.0 numpy 1.11.1 scipy 0.17.1 matplotlib 1.5.1 scikit-learn 0.17.1 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1-–-separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2-–-separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis ###Code Image(filename='./images/05_01.png', width=400) import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code from sklearn.cross_validation import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) # Note: I added the `key=lambda k: k[0]` in the sort call above # just like I used it further below in the LDA section. # This is to avoid problems if there are ties in the eigenvalue # arrays (i.e., the sorting algorithm will only regard the # first element of the tuples, now). w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[ 0.14669811 0.50417079] [-0.24224554 0.24216889] [-0.02993442 0.28698484] [-0.25519002 -0.06468718] [ 0.12079772 0.22995385] [ 0.38934455 0.09363991] [ 0.42326486 0.01088622] [-0.30634956 0.01870216] [ 0.30572219 0.03040352] [-0.09869191 0.54527081] [ 0.30032535 -0.27924322] [ 0.36821154 -0.174365 ] [ 0.29259713 0.36315461]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the the Matrix W with its signs flipped. E.g., the matrix shown in the book was printed as:```[[ 0.14669811 0.50417079][-0.24224554 0.24216889][-0.02993442 0.28698484][-0.25519002 -0.06468718][ 0.12079772 0.22995385][ 0.38934455 0.09363991][ 0.42326486 0.01088622][-0.30634956 0.01870216][ 0.30572219 0.03040352][-0.09869191 0.54527081]```Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma(-v) = -\Sigma v = -\lambda v = \lambda(-v).$$ ###Code X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis ###Code Image(filename='./images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.0662 -0.3797] [ 0.0386 -0.2206] [-0.0217 -0.3816] [ 0.184 0.3018] [-0.0034 0.0141] [ 0.2326 0.0234] [-0.7747 0.1869] [-0.0811 0.0696] [ 0.0875 0.1796] [ 0.185 -0.284 ] [-0.066 0.2349] [-0.3805 0.073 ] [-0.3285 -0.5971]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.lda import LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='./images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[-1] x_new x_proj = alphas[-1] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X[:-1, :], gamma=15, n_components=1) def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_new = X[-1] x_reproj = project_x(x_new, X[:-1], gamma=15, alphas=alphas, lambdas=lambdas) plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='some point [1.8713, 0.0093]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output /Users/Sebastian/miniconda3/lib/python3.5/site-packages/ipykernel/__main__.py:1: VisibleDeprecationWarning: boolean index did not match indexed array along dimension 0; dimension is 99 but corresponding boolean dimension is 100 if __name__ == '__main__': /Users/Sebastian/miniconda3/lib/python3.5/site-packages/ipykernel/__main__.py:3: VisibleDeprecationWarning: boolean index did not match indexed array along dimension 0; dimension is 99 but corresponding boolean dimension is 100 app.launch_new_instance() ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown *Python Machine Learning 2nd Edition* by [Sebastian Raschka](https://sebastianraschka.com), Packt Publishing Ltd. 2017Code Repository: https://github.com/rasbt/python-machine-learning-book-2nd-editionCode License: [MIT License](https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a "Sebastian Raschka" -u -d -p numpy,scipy,matplotlib,sklearn ###Output Sebastian Raschka last updated: 2018-07-02 numpy 1.14.5 scipy 1.1.0 matplotlib 2.2.2 sklearn 0.19.1 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [The main steps behind principal component analysis](The-main-steps-behind-principal-component-analysis) - [Extracting the principal components step-by-step](Extracting-the-principal-components-step-by-step) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Principal component analysis versus linear discriminant analysis](Principal-component-analysis-versus-linear-discriminant-analysis) - [The inner workings of linear discriminant analysis](The-inner-workings-of-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1:-Separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2:-Separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis The main steps behind principal component analysis ###Code Image(filename='images/05_01.png', width=400) ###Output _____no_output_____ ###Markdown Extracting the principal components step-by-step ###Code import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) # if the Wine dataset is temporarily unavailable from the # UCI machine learning repository, un-comment the following line # of code to load the dataset from a local path: # df_wine = pd.read_csv('wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [4.84274532 2.41602459 1.54845825 0.96120438 0.84166161 0.6620634 0.51828472 0.34650377 0.3131368 0.10754642 0.21357215 0.15362835 0.1808613 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal component index') plt.legend(loc='best') plt.tight_layout() # plt.savefig('images/05_02.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[-0.13724218 0.50303478] [ 0.24724326 0.16487119] [-0.02545159 0.24456476] [ 0.20694508 -0.11352904] [-0.15436582 0.28974518] [-0.39376952 0.05080104] [-0.41735106 -0.02287338] [ 0.30572896 0.09048885] [-0.30668347 0.00835233] [ 0.07554066 0.54977581] [-0.32613263 -0.20716433] [-0.36861022 -0.24902536] [-0.29669651 0.38022942]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the Matrix W with its signs flipped. Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma \cdot (-v) = -\Sigma v = -\lambda v = \lambda \cdot (-v).$$ ###Code X_train_std[0].dot(w) X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_03.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn **NOTE**The following four code cells has been added in addition to the content to the book, to illustrate how to replicate the results from our own PCA implementation in scikit-learn: ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap(idx), edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_04.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_05.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis Principal component analysis versus linear discriminant analysis ###Code Image(filename='images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown The inner workings of linear discriminant analysis Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516 0.5416 0.2338 0.5897 0.6563 1.2075] MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946 0.0703 -0.8286 0.3144 0.3608 -0.7253] MV 3: [ 0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287 -0.7795 0.9649 -1.209 -1.3622 -0.4013] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in descending order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in descending order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('images/05_07.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.1481 -0.4092] [ 0.0908 -0.1577] [-0.0168 -0.3537] [ 0.1484 0.3223] [-0.0163 -0.0817] [ 0.1913 0.0842] [-0.7338 0.2823] [-0.075 -0.0102] [ 0.0018 0.0907] [ 0.294 -0.2152] [-0.0328 0.2747] [-0.3547 -0.0124] [-0.3915 -0.5958]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0], X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('images/05_08.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_09.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_10.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # scipy.linalg.eigh returns them in ascending order eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, i] for i in range(n_components))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('images/05_12.png', dpi=300) plt.show() from sklearn.decomposition import PCA scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_13.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_14.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('images/05_15.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_16.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_17.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ alphas: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # scipy.linalg.eigh returns them in ascending order eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, i] for i in range(n_components))) # Collect the corresponding eigenvalues lambdas = [eigvals[i] for i in range(n_components)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('images/05_18.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('images/05_19.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Summary ... ---Readers may ignore the next cell. ###Code ! python ../.convert_notebook_to_script.py --input ch05.ipynb --output ch05.py ###Output [NbConvertApp] Converting notebook ch05.ipynb to script [NbConvertApp] Writing 27741 bytes to ch05.py ###Markdown Copyright (c) 2015, 2016 [Sebastian Raschka](sebastianraschka.com)https://github.com/rasbt/python-machine-learning-book[MIT License](https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -u -d -v -p numpy,scipy,matplotlib,sklearn ###Output Sebastian Raschka last updated: 2016-09-29 CPython 3.5.2 IPython 5.1.0 numpy 1.11.1 scipy 0.18.1 matplotlib 1.5.1 sklearn 0.18 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1-–-separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2-–-separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline # Added version check for recent scikit-learn 0.18 checks from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis ###Code Image(filename='./images/05_01.png', width=400) import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code if Version(sklearn_version) < '0.18': from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) # Note: I added the `key=lambda k: k[0]` in the sort call above # just like I used it further below in the LDA section. # This is to avoid problems if there are ties in the eigenvalue # arrays (i.e., the sorting algorithm will only regard the # first element of the tuples, now). w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[ 0.14669811 0.50417079] [-0.24224554 0.24216889] [-0.02993442 0.28698484] [-0.25519002 -0.06468718] [ 0.12079772 0.22995385] [ 0.38934455 0.09363991] [ 0.42326486 0.01088622] [-0.30634956 0.01870216] [ 0.30572219 0.03040352] [-0.09869191 0.54527081] [ 0.30032535 -0.27924322] [ 0.36821154 -0.174365 ] [ 0.29259713 0.36315461]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the the Matrix W with its signs flipped. E.g., the matrix shown in the book was printed as:```[[ 0.14669811 0.50417079][-0.24224554 0.24216889][-0.02993442 0.28698484][-0.25519002 -0.06468718][ 0.12079772 0.22995385][ 0.38934455 0.09363991][ 0.42326486 0.01088622][-0.30634956 0.01870216][ 0.30572219 0.03040352][-0.09869191 0.54527081]```Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma(-v) = -\Sigma v = -\lambda v = \lambda(-v).$$ ###Code X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis ###Code Image(filename='./images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.0662 -0.3797] [ 0.0386 -0.2206] [-0.0217 -0.3816] [ 0.184 0.3018] [-0.0034 0.0141] [ 0.2326 0.0234] [-0.7747 0.1869] [-0.0811 0.0696] [ 0.0875 0.1796] [ 0.185 -0.284 ] [-0.066 0.2349] [-0.3805 0.073 ] [-0.3285 -0.5971]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code if Version(sklearn_version) < '0.18': from sklearn.lda import LDA else: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='./images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[-1] x_new x_proj = alphas[-1] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X[:-1, :], gamma=15, n_components=1) def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_new = X[-1] x_reproj = project_x(x_new, X[:-1], gamma=15, alphas=alphas, lambdas=lambdas) plt.scatter(alphas[y[:-1] == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y[:-1] == 1, 0], np.zeros((49)), color='blue', marker='o', alpha=0.5) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.scatter(alphas[y[:-1] == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y[:-1] == 1, 0], np.zeros((49)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='some point [1.8713, 0.0093]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Copyright (c) 2015, 2016 [Sebastian Raschka](sebastianraschka.com)https://github.com/rasbt/python-machine-learning-book[MIT License](https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -u -d -v -p numpy,scipy,matplotlib,scikit-learn ###Output Sebastian Raschka last updated: 2016-03-25 CPython 3.5.1 IPython 4.0.3 numpy 1.10.4 scipy 0.17.0 matplotlib 1.5.1 scikit-learn 0.17.1 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1-–-separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2-–-separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis ###Code Image(filename='./images/05_01.png', width=400) import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code from sklearn.cross_validation import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.33051429 0.08414846 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) # Note: I added the `key=lambda k: k[0]` in the sort call above # just like I used it further below in the LDA section. # This is to avoid problems if there are ties in the eigenvalue # arrays (i.e., the sorting algorithm will only regard the # first element of the tuples, now). w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[-0.14669811 0.50417079] [ 0.24224554 0.24216889] [ 0.02993442 0.28698484] [ 0.25519002 -0.06468718] [-0.12079772 0.22995385] [-0.38934455 0.09363991] [-0.42326486 0.01088622] [ 0.30634956 0.01870216] [-0.30572219 0.03040352] [ 0.09869191 0.54527081] [-0.30032535 -0.27924322] [-0.36821154 -0.174365 ] [-0.29259713 0.36315461]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the the Matrix W with its signs flipped. E.g., the matrix shown in the book was printed as:```[[ 0.14669811 0.50417079][-0.24224554 0.24216889][-0.02993442 0.28698484][-0.25519002 -0.06468718][ 0.12079772 0.22995385][ 0.38934455 0.09363991][ 0.42326486 0.01088622][-0.30634956 0.01870216][ 0.30572219 0.03040352][-0.09869191 0.54527081]```Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma(-v) = -\Sigma v = -\lambda v = \lambda(-v).$$ ###Code X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis ###Code Image(filename='./images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[ 0.0662 -0.3797] [-0.0386 -0.2206] [ 0.0217 -0.3816] [-0.184 0.3018] [ 0.0034 0.0141] [-0.2326 0.0234] [ 0.7747 0.1869] [ 0.0811 0.0696] [-0.0875 0.1796] [-0.185 -0.284 ] [ 0.066 0.2349] [ 0.3805 0.073 ] [ 0.3285 -0.5971]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.lda import LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='./images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown 5장. 차원 축소를 사용한 데이터 압축 **아래 링크를 통해 이 노트북을 주피터 노트북 뷰어(nbviewer.jupyter.org)로 보거나 구글 코랩(colab.research.google.com)에서 실행할 수 있습니다.** 주피터 노트북 뷰어로 보기 구글 코랩(Colab)에서 실행하기 `watermark`는 주피터 노트북에 사용하는 파이썬 패키지를 출력하기 위한 유틸리티입니다. `watermark` 패키지를 설치하려면 다음 셀의 주석을 제거한 뒤 실행하세요. ###Code #!pip install watermark %load_ext watermark %watermark -u -d -p numpy,scipy,matplotlib,sklearn ###Output last updated: 2019-12-29 numpy 1.16.3 scipy 1.4.1 matplotlib 3.0.3 sklearn 0.22 ###Markdown 주성분 분석을 통한 비지도 차원 축소 주성분 추출 단계 ###Code import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) # UCI 머신 러닝 저장소에서 Wine 데이터셋을 다운로드할 수 없을 때 # 다음 주석을 해제하고 로컬 경로에서 데이터셋을 적재하세요. # df_wine = pd.read_csv('wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown 70%는 훈련 세트로 30%는 테스트 세트로 나눕니다. ###Code from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) ###Output _____no_output_____ ###Markdown 데이터를 표준화합니다. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown 공분산 행렬의 고윳값 분해 ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\n고윳값 \n%s' % eigen_vals) ###Output 고윳값 [4.84274532 2.41602459 1.54845825 0.96120438 0.84166161 0.6620634 0.51828472 0.34650377 0.3131368 0.10754642 0.21357215 0.15362835 0.1808613 ] ###Markdown 총분산과 설명된 분산 ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal component index') plt.legend(loc='best') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 특성 변환 ###Code # (고윳값, 고유벡터) 튜플의 리스트를 만듭니다 eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # 높은 값에서 낮은 값으로 (고윳값, 고유벡터) 튜플을 정렬합니다 eigen_pairs.sort(key=lambda k: k[0], reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('투영 행렬 W:\n', w) X_train_std[0].dot(w) X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 사이킷런의 주성분 분석 **노트**이어지는 네 개의 셀은 책에 없는 내용입니다. 사이킷런에서 앞의 PCA 구현 결과를 재현하기 위해 추가했습니다: ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # 마커와 컬러맵을 준비합니다 markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # 결정 경계를 그립니다 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # 클래스 샘플을 표시합니다 for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap.colors[idx], edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown 처음 두 개의 주성분을 사용하여 로지스틱 회귀 분류기를 훈련합니다. ###Code from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) lr = LogisticRegression(solver='liblinear', multi_class='auto') lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown 선형 판별 분석을 통한 지도방식의 데이터 압축 산포 행렬 계산 각 클래스이 평균 벡터를 계산합니다: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516 0.5416 0.2338 0.5897 0.6563 1.2075] MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946 0.0703 -0.8286 0.3144 0.3608 -0.7253] MV 3: [ 0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287 -0.7795 0.9649 -1.209 -1.3622 -0.4013] ###Markdown 클래스 내 산포 행렬을 계산합니다: ###Code d = 13 # 특성의 수 S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('클래스 내의 산포 행렬: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output 클래스 내의 산포 행렬: 13x13 ###Markdown 클래스가 균일하게 분포되어 있지 않기 때문에 공분산 행렬을 사용하는 것이 더 낫습니다: ###Code print('클래스 레이블 분포: %s' % np.bincount(y_train)[1:]) d = 13 # 특성의 수 S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T, bias=True) S_W += class_scatter print('스케일 조정된 클래스 내의 산포 행렬: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output 스케일 조정된 클래스 내의 산포 행렬: 13x13 ###Markdown 클래스 간 산포 행렬을 계산합니다: ###Code mean_overall = np.mean(X_train_std, axis=0) mean_overall = mean_overall.reshape(d, 1) # 열 벡터로 만들기 d = 13 # 특성의 수 S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # 열 벡터로 만들기 S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('클래스 간의 산포 행렬: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output 클래스 간의 산포 행렬: 13x13 ###Markdown 새로운 특성 부분 공간을 위해 선형 판별 벡터 선택하기 행렬 $S_W^{-1}S_B$의 일반적인 고윳값 분해 문제를 풉니다: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown 고윳값의 역순으로 고유 벡터를 정렬합니다: ###Code # (고윳값, 고유벡터) 튜플의 리스트를 만듭니다. eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # (고윳값, 고유벡터) 튜플을 큰 값에서 작은 값 순서대로 정렬합니다. eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # 고윳값의 역순으로 올바르게 정렬되었는지 확인합니다. print('내림차순의 고윳값:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('행렬 W:\n', w) ###Output 행렬 W: [[-0.1484 -0.4093] [ 0.091 -0.1583] [-0.0168 -0.3536] [ 0.1487 0.322 ] [-0.0165 -0.0813] [ 0.1912 0.0841] [-0.7333 0.2828] [-0.0751 -0.0099] [ 0.002 0.0902] [ 0.2953 -0.2168] [-0.0327 0.274 ] [-0.3539 -0.0133] [-0.3918 -0.5954]] ###Markdown 새로운 특성 공간으로 샘플 투영하기 ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0], X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression(solver='liblinear', multi_class='auto') lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 역주 ###Code y_uniq, y_count = np.unique(y_train, return_counts=True) priors = y_count / X_train_std.shape[0] priors ###Output _____no_output_____ ###Markdown $\sigma_{jk} = \frac{1}{n} \sum_{i=1}^n (x_j^{(i)}-\mu_j)(x_k^{(i)}-\mu_k)$$m = \sum_{i=1}^c \frac{n_i}{n} m_i$$S_W = \sum_{i=1}^c \frac{n_i}{n} S_i = \sum_{i=1}^c \frac{n_i}{n} \Sigma_i$ ###Code s_w = np.zeros((X_train_std.shape[1], X_train_std.shape[1])) for i, label in enumerate(y_uniq): # 1/n로 나눈 공분산 행렬을 얻기 위해 bias=True로 지정합니다. s_w += priors[i] * np.cov(X_train_std[y_train == label].T, bias=True) ###Output _____no_output_____ ###Markdown $ S_B = S_T-S_W = \sum_{i=1}^{c}\frac{n_i}{n}(m_i-m)(m_i-m)^T $ ###Code s_b = np.zeros((X_train_std.shape[1], X_train_std.shape[1])) for i, mean_vec in enumerate(mean_vecs): n = X_train_std[y_train == i + 1].shape[0] mean_vec = mean_vec.reshape(-1, 1) s_b += priors[i] * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) import scipy ei_val, ei_vec = scipy.linalg.eigh(s_b, s_w) ei_vec = ei_vec[:, np.argsort(ei_val)[::-1]] ei_vec /= np.linalg.norm(ei_vec, axis=0) lda_eigen = LDA(solver='eigen') lda_eigen.fit(X_train_std, y_train) # 클래스 내의 산포 행렬은 covariance_ 속성에 저장되어 있습니다. np.allclose(s_w, lda_eigen.covariance_) Sb = np.cov(X_train_std.T, bias=True) - lda_eigen.covariance_ np.allclose(Sb, s_b) np.allclose(lda_eigen.scalings_[:, :2], ei_vec[:, :2]) np.allclose(lda_eigen.transform(X_test_std), np.dot(X_test_std, ei_vec[:, :2])) ###Output _____no_output_____ ###Markdown 커널 PCA를 사용하여 비선형 매핑하기 파이썬으로 커널 PCA 구현하기 ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF 커널 PCA 구현 매개변수 ------------ X: {넘파이 ndarray}, shape = [n_samples, n_features] gamma: float RBF 커널 튜닝 매개변수 n_components: int 반환할 주성분 개수 반환값 ------------ X_pc: {넘파이 ndarray}, shape = [n_samples, k_features] 투영된 데이터셋 """ # MxN 차원의 데이터셋에서 샘플 간의 유클리디안 거리의 제곱을 계산합니다. sq_dists = pdist(X, 'sqeuclidean') # 샘플 간의 거리를 정방 대칭 행렬로 변환합니다. mat_sq_dists = squareform(sq_dists) # 커널 행렬을 계산합니다. K = exp(-gamma * mat_sq_dists) # 커널 행렬을 중앙에 맞춥니다. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # 중앙에 맞춰진 커널 행렬의 고윳값과 고유벡터를 구합니다. # scipy.linalg.eigh 함수는 오름차순으로 반환합니다. eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # 최상위 k 개의 고유벡터를 선택합니다(결과값은 투영된 샘플입니다). X_pc = np.column_stack([eigvecs[:, i] for i in range(n_components)]) return X_pc ###Output _____no_output_____ ###Markdown 예제 1: 반달 모양 구분하기 ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() plt.show() from sklearn.decomposition import PCA scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() ###Output /home/haesun/anaconda3/envs/python-ml/lib/python3.7/site-packages/ipykernel_launcher.py:33: DeprecationWarning: scipy.exp is deprecated and will be removed in SciPy 2.0.0, use numpy.exp instead ###Markdown 예제 2: 동심원 분리하기 ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() ###Output /home/haesun/anaconda3/envs/python-ml/lib/python3.7/site-packages/ipykernel_launcher.py:33: DeprecationWarning: scipy.exp is deprecated and will be removed in SciPy 2.0.0, use numpy.exp instead ###Markdown 새로운 데이터 포인트 투영하기 ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF 커널 PCA 구현 매개변수 ------------ X: {넘파이 ndarray}, shape = [n_samples, n_features] gamma: float RBF 커널 튜닝 매개변수 n_components: int 반환할 주성분 개수 Returns ------------ alphas: {넘파이 ndarray}, shape = [n_samples, k_features] 투영된 데이터셋 lambdas: list 고윳값 """ # MxN 차원의 데이터셋에서 샘플 간의 유클리디안 거리의 제곱을 계산합니다. sq_dists = pdist(X, 'sqeuclidean') # 샘플 간의 거리를 정방 대칭 행렬로 변환합니다. mat_sq_dists = squareform(sq_dists) # 커널 행렬을 계산합니다. K = exp(-gamma * mat_sq_dists) # 커널 행렬을 중앙에 맞춥니다. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # 중앙에 맞춰진 커널 행렬의 고윳값과 고유 벡터를 구합니다. # scipy.linalg.eigh 함수는 오름차순으로 반환합니다. eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # 최상위 k 개의 고유 벡터를 선택합니다(투영 결과). alphas = np.column_stack([eigvecs[:, i] for i in range(n_components)]) # 고유 벡터에 상응하는 고윳값을 선택합니다. lambdas = [eigvals[i] for i in range(n_components)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # 원본 투영 x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # 새로운 데이터포인트를 투영합니다. x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 사이킷런의 커널 PCA ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Copyright (c) 2015-2017 [Sebastian Raschka](sebastianraschka.com)https://github.com/rasbt/python-machine-learning-book[MIT License](https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -u -d -p numpy,scipy,matplotlib,sklearn ###Output Sebastian Raschka last updated: 2017-03-10 numpy 1.12.0 scipy 0.18.1 matplotlib 2.0.0 sklearn 0.18.1 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1:-Separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2:-Separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline # Added version check for recent scikit-learn 0.18 checks from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis ###Code Image(filename='./images/05_01.png', width=400) import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code if Version(sklearn_version) < '0.18': from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) # Note: I added the `key=lambda k: k[0]` in the sort call above # just like I used it further below in the LDA section. # This is to avoid problems if there are ties in the eigenvalue # arrays (i.e., the sorting algorithm will only regard the # first element of the tuples, now). w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[ 0.14669811 0.50417079] [-0.24224554 0.24216889] [-0.02993442 0.28698484] [-0.25519002 -0.06468718] [ 0.12079772 0.22995385] [ 0.38934455 0.09363991] [ 0.42326486 0.01088622] [-0.30634956 0.01870216] [ 0.30572219 0.03040352] [-0.09869191 0.54527081] [ 0.30032535 -0.27924322] [ 0.36821154 -0.174365 ] [ 0.29259713 0.36315461]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the the Matrix W with its signs flipped. E.g., the matrix shown in the book was printed as:```[[ 0.14669811 0.50417079][-0.24224554 0.24216889][-0.02993442 0.28698484][-0.25519002 -0.06468718][ 0.12079772 0.22995385][ 0.38934455 0.09363991][ 0.42326486 0.01088622][-0.30634956 0.01870216][ 0.30572219 0.03040352][-0.09869191 0.54527081]```Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma(-v) = -\Sigma v = -\lambda v = \lambda(-v).$$ ###Code X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap(idx), edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis ###Code Image(filename='./images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.0662 -0.3797] [ 0.0386 -0.2206] [-0.0217 -0.3816] [ 0.184 0.3018] [-0.0034 0.0141] [ 0.2326 0.0234] [-0.7747 0.1869] [-0.0811 0.0696] [ 0.0875 0.1796] [ 0.185 -0.284 ] [-0.066 0.2349] [-0.3805 0.073 ] [-0.3285 -0.5971]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code if Version(sklearn_version) < '0.18': from sklearn.lda import LDA else: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='./images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from numpy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.linalg.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[-1] x_new x_proj = alphas[-1] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X[:-1, :], gamma=15, n_components=1) def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_new = X[-1] x_reproj = project_x(x_new, X[:-1], gamma=15, alphas=alphas, lambdas=lambdas) plt.scatter(alphas[y[:-1] == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y[:-1] == 1, 0], np.zeros((49)), color='blue', marker='o', alpha=0.5) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.scatter(alphas[y[:-1] == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y[:-1] == 1, 0], np.zeros((49)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='some point [1.8713, 0.0093]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Copyright (c) 2015, 2016 [Sebastian Raschka](http://sebastianraschka.com/)[Li-Yi Wei](http://liyiwei.org/)https://github.com/1iyiwei/pyml[MIT License](https://github.com/1iyiwei/pyml/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality ReductionPrinciple component analysis (PCA)* unsupervisedLinear discriminant analysis (LDA)* supervisedKernel PCA* non-linear mapping Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a '' -u -d -v -p numpy,scipy,matplotlib,sklearn ###Output last updated: 2016-10-12 CPython 3.5.2 IPython 4.2.0 numpy 1.11.1 scipy 0.17.1 matplotlib 1.5.1 sklearn 0.18 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview- [Unsupervised dimensionality reduction via principal component analysis](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1-–-separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2-–-separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis PCA is a common way to reduce dimensionality of a given dataset.It can also be considered as a unsupervised learning method.Given the input data matrix $\mathbf{X}$ Goal: find a transformation matrix $\mathbf{W}$ that will project each row $\mathbf{x}$ of $\mathbf{X}$ into a lower dimensional vector $\mathbf{z}$ so that the variances of the projected components are maximized:$$\mathbf{z} = \mathbf{x} \mathbf{W}$$$\mathbf{X}$: size $n \times d$ where $n$ is the number of data samples and $d$ is the input data dimensionality $\mathbf{W}$: size $d \times k$$\mathbf{z}$ and $\mathbf{x}$ are both row vectors with dimensionality $k$ and $d$, usually $k << d$.In this 2D example, we want to project the dataset into 1D. We will pick the first principle component (PC1) as it maximizes variance among projected samples. With $\mathbf{W}$, we can project the entire input $\mathbf{X}$ into a lower dimensional space data set as:$$\mathbf{Z} = \mathbf{X} \mathbf{W}$$<!--The total projected dataset $\mathbf{Z}$ can be computed from the total original dataset $\mathbf{X}$:$$\mathbf{Z} = \mathbf{X} \mathbf{W}$$-->$\mathbf{Z}$: size $n \times k$We can also recover an approximated version $\mathbf{X'}$ of $\mathbf{X}$ from $\mathbf{Z}$ and $\mathbf{W}$ as:$$\mathbf{X'} = \mathbf{Z} \mathbf{W}^T$$It can be shown that $\mathbf{X'}$ is the best approximation of $\mathbf{X}$, i.e. minimizing$$||\mathbf{X'} - \mathbf{X}||^2$$ Algorithm$$\mathbf{Z} = \mathbf{X} \mathbf{W}$$$\mathbf{W}$ can be computed from $\mathbf{X}$ as follows.First, compute the $d \times d$ covariance matrix $\Sigma$ from the columns (i.e. features) of $\mathbf{X}$:$$\begin{align}\Sigma_{ij} = \frac{1}{n} \left(\mathbf{x_{(i)}} - \mu_i\right)^T \left(\mathbf{x_{(j)}} - \mu_j\right) \end{align}$$, where * $\Sigma_{ij}$ is the $(i, j)$th component of $\Sigma$.* $\mathbf{x_{(i)}}$ is the $i^{th}$ column/feature of $\mathbf{X}$ and $\mu_i$ its mean (a scalar). Alternatively we can compute $\Sigma$ by summing the covariance matrices of each individual sample $x^{(i)}$ (rows of $\mathbf{X}$):$$\begin{align}\Sigma = \frac{1}{n} \sum_i \left(\mathbf{x^{(i)}} - \mu\right)^T \left( \mathbf{x^{(i)} - \mu}\right)\end{align}$$, where $\mu$ is the (vector) mean of all rows of $\mathbf{X}$. We then compute the eigen-values/vectors of $\Sigma$.Recall $\mathbf{v}$ is an eigen-vector of a matrix $\Sigma$ with eigen-value $\lambda$ if$$\lambda \mathbf{v} = \Sigma \mathbf{v}$$That is, an eigen-vector remains itself after transforming by the matrix. $\mathbf{W}$ can be constructed by horizontally stacking (as columns) the eigen-vectors of $\Sigma$ with the $k$ largest eigen-values (which we assume are all non-negative) as columns.These columns are called the principle components, and thus the name principle component analysis (PCA). MathLet's try to find the first principle component $\mathbf{w_1}$ so that when the input vector $\mathbf{x}$ is projected into $\mathbf{z}$ its variance is maximized:$$\mathbf{z} = \mathbf{w_1}^T \mathbf{x}$$$\mathbf{x}$ differnt rows of the matrix $\mathbf{X}$ verticalized as columns. Consider $\mathbf{x}$ as a random vector that can take values from $\mathbf{X}$:<!--(Machine learning can be understood via a probabilistic approach from ground up, but I prefer the non-probabilistic approach to reduce potential confusion for beginners.)-->$$\begin{align}Var(\mathbf{z}) &= E\left( \left(\mathbf{w_1}^T (\mathbf{x} - \mu)\right)^2 \right)\\&= E\left( \mathbf{w_1}^T (\mathbf{x} - \mu) (\mathbf{x} - \mu)^T \mathbf{w_1} \right)\\&= \mathbf{w_1}^T \Sigma \mathbf{w_1}\end{align}$$ We want to find $\mathbf{w_1}$ to maximize $Var(\mathbf{z})$ subject to the unit vector constraint $|\mathbf{w_1}| = 1$.Using Lagrangian multiplier we want to maximize:$$\mathbf{w_1}^T \Sigma \mathbf{w_1} - \alpha(\mathbf{w_1}^T\mathbf{w_1}-1)$$Take derivative of the above with $\mathbf{w_1}$ and set it to zero we have:$$\Sigma \mathbf{w_1} = \alpha \mathbf{w_1}$$ And thus$$\mathbf{w_1}^T \Sigma \mathbf{w_1} = \alpha \mathbf{w_1}^T \mathbf{w_1} = \alpha$$Which means we want to maximize $\alpha$, and thus it should be the largest eigen-value of $\Sigma$ and $\mathbf{w_1}$ the corresponding eigen-vector.We can continue the same trick to find the rest of the principle components by making sure each new one is orthogonal to all existing ones. Code example for the math aboveUse the wine data set as it has 13 features for dimensionality reduction ###Code import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/1iyiwei/pyml/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version if Version(sklearn_version) < '0.18': from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix: ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformationNow let's apply PCA ... ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) # Note: I added the `key=lambda k: k[0]` in the sort call above # just like I used it further below in the LDA section. # This is to avoid problems if there are ties in the eigenvalue # arrays (i.e., the sorting algorithm will only regard the # first element of the tuples, now). w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[ 0.14669811 0.50417079] [-0.24224554 0.24216889] [-0.02993442 0.28698484] [-0.25519002 -0.06468718] [ 0.12079772 0.22995385] [ 0.38934455 0.09363991] [ 0.42326486 0.01088622] [-0.30634956 0.01870216] [ 0.30572219 0.03040352] [-0.09869191 0.54527081] [ 0.30032535 -0.27924322] [ 0.36821154 -0.174365 ] [ 0.29259713 0.36315461]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the the Matrix W with its signs flipped. E.g., the matrix shown in the book was printed as:```[[ 0.14669811 0.50417079][-0.24224554 0.24216889][-0.02993442 0.28698484][-0.25519002 -0.06468718][ 0.12079772 0.22995385][ 0.38934455 0.09363991][ 0.42326486 0.01088622][-0.30634956 0.01870216][ 0.30572219 0.03040352][-0.09869191 0.54527081]```Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma(-v) = -\Sigma v = -\lambda v = \lambda(-v).$$ ###Code X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Notice the nicely formed clusters, even though PCA does not consider class labels (unsupervised). ###Code X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown What happens if we use the last two eigen-vectors? ###Code w_tail = np.hstack((eigen_pairs[-1][1][:, np.newaxis], eigen_pairs[-2][1][:, np.newaxis])) print('Matrix W (tail end):\n', w_tail) X_train_pca = X_train_std.dot(w_tail) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC -1') plt.ylabel('PC -2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Notice the badly formed clusters! Principal component analysis in scikit-learnPCA is actually part of scikit-learn, so we can use it directly instead of going through the code above. ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysisPCA* unsupervised (no class information)* project data into dimensions that maximize variance/spreadLDA* supervised (with class information)* project data into dimensions to (1) maximize inter-class spread, (2) minimize intra-class spread. ExerciseUnder what circumstances would PCA and LDA produce very different results? Provide some intuitive examples. AlgorithmSimilar to PCA, given a data matrix $\mathbf{X}$, we want to calculate a projection matrix $\mathbf{W}$ which separates the projected vectors as much as possible.Unlike PCA which is unsupervised, for LDA we have the class information.Thus, the goal is to spread out different classes while cluster each individual classes via projection $\mathbf{W}$.Assume we have $K$ classes, each with center $\mu_{i}$ as computed from the mean of all $n_i$ samples within class $i$.$\mu$ is the mean of all samples across all classes.Below, each $\mu$ and $\mathbf{x}$ is a row vector, and the transpose $T$ is a column vector.We first compute the between-class scatter matrix:$$\mathbf{S_B} = \sum_{i=1}^K n_i (\mu_i - \mu)^T (\mu_i - \mu)$$And the within-class scatter matrix:$$\begin{align}\mathbf{S_i} & = \sum_{\mathbf{x} \in C_i} (\mathbf{x} - \mu_i)^T (\mathbf{x} - \mu_i) \\\mathbf{S_W} & = \sum_{i=1}^K \mathbf{S_i}\end{align}$$Note: these scatter matrices are very similar to the covariance matrices except for scaling constants. We then perform eigen decomposition of $$\mathbf{S_W}^{-1}\mathbf{S_B}$$And construct $\mathbf{W}$ from the first $k$ eigen-vectors with the largest eigen-values.This step is similar to PCA, except that we use the above matrix instead of $\Sigma$, the covariance matrix of all input data $\mathbf{X}$.Intuitively, since we want to maximize the spread with $\mathbf{S_B}$ and minimize the spread with $\mathbf{S_W}$, we want to perform the eigen decomposition via $\mathbf{S_W}^{-1}\mathbf{S_B}$. MathBelow, we first discuss how to compute such inter and intra class spreads, followed by how to optimize $\mathbf{W}$. The between/inter-class spread can be computed as the scatter/covariance of the projected class centers weighted by the class sizes:$$\sum_{i=1}^K n_i \left(\mathbf{W}^T (\mu_i - \mu) \right)^2 = \mathbf{W}^T \left( \sum_{i=1}^K n_i (\mu_i - \mu)^T (\mu_i - \mu) \right) \mathbf{W} = \mathbf{W}^T \mathbf{S_B}\mathbf{W}$$ The within/intra-class spread of each projected class $i$ can be computed analogously:$$\sum_{\mathbf{x} \in C_i} \left(\mathbf{W}^T (\mathbf{x}-\mu_i)\right)^2 = \mathbf{W}^T \mathbf{S_i} \mathbf{W}$$And thus the total within/intra-class spread is:$$\sum_{i=1}^K \mathbf{W}^T \mathbf{S_i} \mathbf{W} = \mathbf{W}^T \mathbf{S_W} \mathbf{W}$$ The goal of maximize/minimize inter/intra-class spread can be formulated as maximizing the ratio of determinants:$$J(\mathbf{W}) = \frac{\left|\mathbf{W}^T \mathbf{S_B} \mathbf{W}\right|}{\left|\mathbf{W}^T \mathbf{S_W} \mathbf{W}\right|}$$Recall that the determinant of a matrix is the product of its eigen-values.Linear algebra can show that constructing $\mathbf{W}$ from the largest eigen-vectors of $\mathbf{S_W}^{-1}\mathbf{S_B}$ can maximize $J(\mathbf{W})$ above. Code exampleComputing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.0662 -0.3797] [ 0.0386 -0.2206] [-0.0217 -0.3816] [ 0.184 0.3018] [-0.0034 0.0141] [ 0.2326 0.0234] [-0.7747 0.1869] [-0.0811 0.0696] [ 0.0875 0.1796] [ 0.185 -0.284 ] [-0.066 0.2349] [-0.3805 0.073 ] [-0.3285 -0.5971]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code #from sklearn.lda import LDA # deprecated from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappingsPCA/LDA problematic for non-linearly separable dataIdea:1. elevate the dimension of the input data (similar to kernel SVM)2. reduce the dimension (similar to PCA)Projected data becomes linearly separableThus:* the projected data can then be handled by linear classifiers* why it make sense to increase dimension before reduce itNote: PCA is unsupervised, but it matters whether the projected data is suitable for further classification. AlgorithmLet $\mathbf{X}$ be the usual matrix of the input data set, with size $n \times d$, where $n$ is the number of data vectors and $d$ is their dimensionality.Similar to kernel SVM, we want to elevate each data vector into a higher $k$-dimensional space via a function $\phi$ (usually $k >> d$).Specifically, we denote $\phi(\mathbf{X})$ as the matrix for which the ith row is $\phi(X^{(i)})$. Ordinary PCA performs eigen analysis of the covariance matrix of $\mathbf{X}$:$$\Sigma = \frac{1}{n} \mathbf{X}^T \mathbf{X} $$Kernel PCA performs eigen analysis of the elevated covariance matrix:$$\Sigma = \frac{1}{n} \phi(\mathbf{X})^T \phi(\mathbf{X})$$ Now $\Sigma$ is of size $k \times k$, which is very large and thus expensive to compute.Fortunately, all we need to know is to1. compute its eigen vectors2. project all input vectors into the lower dimensional space formed by the selected eigen vectors (with largest eigen values similar to traditional PCA)That is, we actually never need to know the eigen vectors explicitly, only their dot products with the input vectors.This is where the kernel trick comes in, by replacing high dimensional dot products with fast kernel evaluations. Specifically, we just need to compute $$\mathbf{K} = \phi(\mathbf{X}) \phi(\mathbf{X})^T$$, a $n \times n$ matrix, much smaller than $\Sigma$, via kernel trick.The projection of $\phi(\mathbf{X})$ into $m$-dimension can be found from the $m$ largest eigen-vectors of $\mathbf{K}$. Math$$\Sigma = \frac{1}{n} \phi(\mathbf{X})^T \phi(\mathbf{X})$$Let $\mathbf{v}$ be an eigen vector of $\Sigma$ with eigen value $\lambda$:$$\Sigma \mathbf{v} = \lambda \mathbf{v}$$And for the elevated data matrix $\phi(\mathbf{X})$, we just need to know its projection with $\mathbf{v}$:$$\mathbf{a} = \phi(\mathbf{X}) \mathbf{v}$$ Note that$$\begin{align}\mathbf{a} &= \phi(\mathbf{X}) \mathbf{v} \\&= \frac{1}{\lambda} \phi(\mathbf{X}) \Sigma \mathbf{v} \\&= \frac{1}{\lambda n} \phi(\mathbf{X}) \phi(\mathbf{X})^T \phi(\mathbf{X}) \mathbf{v} \\&= \frac{1}{\lambda n} \phi(\mathbf{X}) \phi(\mathbf{X})^T \mathbf{a}\end{align}$$ If we denote$$\mathbf{K} = \phi(\mathbf{X}) \phi(\mathbf{X})^T$$we have$$\lambda \mathbf{a} = \frac{\mathbf{K}}{n} \mathbf{a}$$Note: $\Sigma$ and $\frac{\mathbf{K}}{n}$ have the same eigen values Thus, $\mathbf{a}$ can be computed as an eigen vector of $\frac{\mathbf{K}}{n}$, where $\mathbf{K}$, the similarity (kernel) matrix, has size $n \times n$ is thus much smaller than $\Sigma$ with size $k \times k$.Furthermore, each entry of $\mathbf{K}$ can be computed via fast kernel evaluation$$\mathbf{K}_{ij} = \mathbf{k}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$$instead of the original dot product between two $k$-dimensional vectors $$\mathbf{K}_{ij} = \phi\left(\mathbf{x^{(i)}})^T \phi(\mathbf{x^{(j)}}\right)$$This so called kernel trick, of approximating high dimensional dot products with fast kernel evaluatioin, shows up again, after what we have seen in the kernel SVM part. Mean shiftRecall that in (ordinary) PCA, each entry of $\Sigma$ is a covariance:$$\Sigma_{ij} = \frac{1}{n} (\mathbf{x_{(i)}} - \mathbf{\mu_i})^T (\mathbf{x_{(j)}} - \mathbf{\mu_j})$$, where $\mathbf{\mu}$ is the mean of all $\mathbf{x}$, i.e. the rows of $\mathbf{X}$.For kernel PCA, we need to perform a similar mean shift for $\mathbf{K}$.Specifically, since $\mathbf{K}$ is the covariance matrix of $\phi(\mathbf{x})$, we have$$\mathbf{\mu} = \frac{1}{n} \sum_{k=1}^n \phi(x^{(k)})$$And each entry of the mean-shifted $\mathbf{K'}$ is:$$\begin{align}\mathbf{K'}_{ij} & = \left(\phi(\mathbf{x^{(i)}}) - \mathbf{\mu}\right) \left(\phi(\mathbf{x^{(j)}}) - \mathbf{\mu}\right)^T \\& = \phi(\mathbf{x^{(i)}}) \phi(\mathbf{x^{(j)}})^T - \mathbf{\mu} \phi(\mathbf{x^{(j)}})^T - \phi(\mathbf{x^{(i)}}) \mathbf{\mu}^T + \mathbf{\mu} \mathbf{\mu}^T \\& = \mathbf{k}(\mathbf{x^{(i)}}, \mathbf{x^{(j)}}) - \frac{1}{n} \sum_{i=1}^n \mathbf{k}(\mathbf{x^{(i)}}, \mathbf{x^{(j)}}) - \frac{1}{n} \sum_{j=1}^n \mathbf{k}(\mathbf{x^{(i)}}, \mathbf{x^{(j)}}) \\&+ \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \mathbf{k}(\mathbf{x^{(i)}}, \mathbf{x^{(j)}})\end{align}$$Coalescing all entries $\mathbf{K'_{ij}}$ into $\mathbf{K'}$ we have$$\mathbf{K'} = \mathbf{K} - \mathbf{1_n} \mathbf{K} - \mathbf{K} \mathbf{1_n} + \mathbf{1_n} \mathbf{K} \mathbf{1_n}$$where $\mathbf{1_n}$ is a matrix of the same size as $\mathbf{K}$ with all entries equal to $\frac{1}{n}$. New data setIn the above we perform kernel PCA for a given dataset $\mathbf{X}$.How about a new dataset, such as a test data $\mathbf{X'}$, which is not part of $\mathbf{X}$?In ordinary PCA, we can simply project $\mathbf{X'}$ through $\mathbf{W}$, the matrix whose columns are the (selected) eigen-vectors of $\Sigma$:$$\mathbf{X'} \mathbf{W}$$ However, for kernel PCA, we only compute the eigen-vectors of the (mean-shifted) kernel matrix $\mathbf{K}$, not the original covariance matrix $\Sigma$.Fortunately, we can accomplish our goal via smart math tricks, as follows.First, let's express each eigen-vector $\mathbf{v}$ of $\Sigma$ via the eigen-vectors $\mathbf{A}$ of $\mathbf{K}$.Recall$$\begin{align}\mathbf{v} &= \frac{1}{\lambda} \Sigma \mathbf{v} \\&= \frac{1}{n \lambda} \phi(\mathbf{X})^T \phi(\mathbf{X}) \mathbf{v} \\&= \frac{1}{n \lambda} \phi(\mathbf{X})^T \mathbf{a}\\&=\frac{1}{n \lambda} \sum_{i=1}^n \mathbf{a^{(i)}} \phi(\mathbf{x}^{(i)})\end{align}$$ Thus, to project a new sample $\mathbf{x'}$ with an eigen vector $\mathbf{v}$, we can use the kernel trick again with the already computed $\mathbf{a}$ vectors:$$\begin{align}\phi(\mathbf{x'})^T \mathbf{v} &=\frac{1}{n \lambda} \sum_{i=1}^n \mathbf{a}^{(i)} \phi(\mathbf{x'})^T \phi(\mathbf{x}^{(i)})\\&=\frac{1}{n \lambda} \sum_{i=1}^n \mathbf{a^{(i)}} \mathbf{k}(\mathbf{x'}, \mathbf{x^{(i)}})\end{align}$$ Implementing a kernel principal component analysis in PythonCode the math above ... ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data pointsNote the code below computes eigen values of $\mathbf{K}$ instead of $\frac{\mathbf{K}}{n}$, and thus the eigen values will be $n \times$ scaled. ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) select_new = -1 x_new = X[select_new] x_new x_proj = alphas[select_new] # original projection # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) # should be the same print(x_proj) print(x_reproj) plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() X, y = make_moons(n_samples=100, random_state=123) X_1, y_1 = X[:-1, :], y[:-1] alphas, lambdas = rbf_kernel_pca(X_1, gamma=15, n_components=1) # projection of the "new" datapoint x_new = X[-1, :] x_reproj = project_x(x_new, X_1, gamma=15, alphas=alphas, lambdas=lambdas) plt.scatter(alphas[y_1 == 0, 0], np.zeros((np.sum(y_1 == 0))), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y_1 == 1, 0], np.zeros((np.sum(y_1 == 1))), color='blue', marker='o', alpha=0.5) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.scatter(alphas[y_1 == 0, 0], np.zeros((np.sum(y_1 == 0))), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y_1 == 1, 0], np.zeros((np.sum(y_1 == 1))), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='some point [1.8713, 0.0093]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learnKernel PCA is part of the scikit-learn library and can be direclty used ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown *Python Machine Learning 2nd Edition* by [Sebastian Raschka](https://sebastianraschka.com), Packt Publishing Ltd. 2017Code Repository: https://github.com/rasbt/python-machine-learning-book-2nd-editionCode License: [MIT License](https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a "Sebastian Raschka" -u -d -p numpy,scipy,matplotlib,sklearn ###Output Sebastian Raschka last updated: 2018-07-02 numpy 1.14.5 scipy 1.1.0 matplotlib 2.2.2 sklearn 0.19.1 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [The main steps behind principal component analysis](The-main-steps-behind-principal-component-analysis) - [Extracting the principal components step-by-step](Extracting-the-principal-components-step-by-step) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Principal component analysis versus linear discriminant analysis](Principal-component-analysis-versus-linear-discriminant-analysis) - [The inner workings of linear discriminant analysis](The-inner-workings-of-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1:-Separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2:-Separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis The main steps behind principal component analysis ###Code Image(filename='images/05_01.png', width=400) ###Output _____no_output_____ ###Markdown Extracting the principal components step-by-step ###Code import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) # if the Wine dataset is temporarily unavailable from the # UCI machine learning repository, un-comment the following line # of code to load the dataset from a local path: # df_wine = pd.read_csv('wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [4.84274532 2.41602459 1.54845825 0.96120438 0.84166161 0.6620634 0.51828472 0.34650377 0.3131368 0.10754642 0.21357215 0.15362835 0.1808613 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal component index') plt.legend(loc='best') plt.tight_layout() # plt.savefig('images/05_02.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[-0.13724218 0.50303478] [ 0.24724326 0.16487119] [-0.02545159 0.24456476] [ 0.20694508 -0.11352904] [-0.15436582 0.28974518] [-0.39376952 0.05080104] [-0.41735106 -0.02287338] [ 0.30572896 0.09048885] [-0.30668347 0.00835233] [ 0.07554066 0.54977581] [-0.32613263 -0.20716433] [-0.36861022 -0.24902536] [-0.29669651 0.38022942]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the Matrix W with its signs flipped. Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma \cdot (-v) = -\Sigma v = -\lambda v = \lambda \cdot (-v).$$ ###Code X_train_std[0].dot(w) X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_03.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn **NOTE**The following four code cells has been added in addition to the content to the book, to illustrate how to replicate the results from our own PCA implementation in scikit-learn: ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap(idx), edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_04.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_05.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis Principal component analysis versus linear discriminant analysis ###Code Image(filename='images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown The inner workings of linear discriminant analysis Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516 0.5416 0.2338 0.5897 0.6563 1.2075] MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946 0.0703 -0.8286 0.3144 0.3608 -0.7253] MV 3: [ 0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287 -0.7795 0.9649 -1.209 -1.3622 -0.4013] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in descending order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in descending order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('images/05_07.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.1481 -0.4092] [ 0.0908 -0.1577] [-0.0168 -0.3537] [ 0.1484 0.3223] [-0.0163 -0.0817] [ 0.1913 0.0842] [-0.7338 0.2823] [-0.075 -0.0102] [ 0.0018 0.0907] [ 0.294 -0.2152] [-0.0328 0.2747] [-0.3547 -0.0124] [-0.3915 -0.5958]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0], X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('images/05_08.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_09.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_10.png', dpi=300) plt.show() ###Output *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all points. *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all points. /tmp/ipykernel_31117/442015021.py:23: UserWarning: You passed a edgecolor/edgecolors ('black') for an unfilled marker ('x'). Matplotlib is ignoring the edgecolor in favor of the facecolor. This behavior may change in the future. plt.scatter(x=X[y == cl, 0], *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all points. ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # scipy.linalg.eigh returns them in ascending order eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, i] for i in range(n_components))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('images/05_12.png', dpi=300) plt.show() from sklearn.decomposition import PCA scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_13.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_14.png', dpi=300) plt.show() ###Output /tmp/ipykernel_31117/2033738109.py:34: DeprecationWarning: scipy.exp is deprecated and will be removed in SciPy 2.0.0, use numpy.exp instead K = exp(-gamma * mat_sq_dists) /tmp/ipykernel_31117/2033738109.py:47: FutureWarning: arrays to stack must be passed as a "sequence" type such as list or tuple. Support for non-sequence iterables such as generators is deprecated as of NumPy 1.16 and will raise an error in the future. X_pc = np.column_stack((eigvecs[:, i] ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('images/05_15.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_16.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_17.png', dpi=300) plt.show() ###Output /tmp/ipykernel_31117/2033738109.py:34: DeprecationWarning: scipy.exp is deprecated and will be removed in SciPy 2.0.0, use numpy.exp instead K = exp(-gamma * mat_sq_dists) /tmp/ipykernel_31117/2033738109.py:47: FutureWarning: arrays to stack must be passed as a "sequence" type such as list or tuple. Support for non-sequence iterables such as generators is deprecated as of NumPy 1.16 and will raise an error in the future. X_pc = np.column_stack((eigvecs[:, i] ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ alphas: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # scipy.linalg.eigh returns them in ascending order eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, i] for i in range(n_components))) # Collect the corresponding eigenvalues lambdas = [eigvals[i] for i in range(n_components)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('images/05_18.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('images/05_19.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Summary ... ---Readers may ignore the next cell. ###Code ! python ../.convert_notebook_to_script.py --input ch05.ipynb --output ch05.py ###Output [NbConvertApp] Converting notebook ch05.ipynb to script [NbConvertApp] Writing 27741 bytes to ch05.py ###Markdown 5장. 차원 축소를 사용한 데이터 압축 **아래 링크를 통해 이 노트북을 주피터 노트북 뷰어(nbviewer.jupyter.org)로 보거나 구글 코랩(colab.research.google.com)에서 실행할 수 있습니다.** 주피터 노트북 뷰어로 보기 구글 코랩(Colab)에서 실행하기 `watermark`는 주피터 노트북에 사용하는 파이썬 패키지를 출력하기 위한 유틸리티입니다. `watermark` 패키지를 설치하려면 다음 셀의 주석을 제거한 뒤 실행하세요. ###Code #!pip install watermark %load_ext watermark %watermark -u -d -p numpy,scipy,matplotlib,sklearn ###Output last updated: 2020-05-22 numpy 1.18.4 scipy 1.4.1 matplotlib 3.2.1 sklearn 0.23.1 ###Markdown 주성분 분석을 통한 비지도 차원 축소 주성분 추출 단계 ###Code import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) # UCI 머신 러닝 저장소에서 Wine 데이터셋을 다운로드할 수 없을 때 # 다음 주석을 해제하고 로컬 경로에서 데이터셋을 적재하세요. # df_wine = pd.read_csv('wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown 70%는 훈련 세트로 30%는 테스트 세트로 나눕니다. ###Code from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) ###Output _____no_output_____ ###Markdown 데이터를 표준화합니다. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown 공분산 행렬의 고윳값 분해 ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\n고윳값 \n%s' % eigen_vals) ###Output 고윳값 [4.84274532 2.41602459 1.54845825 0.96120438 0.84166161 0.6620634 0.51828472 0.34650377 0.3131368 0.10754642 0.21357215 0.15362835 0.1808613 ] ###Markdown 총분산과 설명된 분산 ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal component index') plt.legend(loc='best') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 특성 변환 ###Code # (고윳값, 고유벡터) 튜플의 리스트를 만듭니다 eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # 높은 값에서 낮은 값으로 (고윳값, 고유벡터) 튜플을 정렬합니다 eigen_pairs.sort(key=lambda k: k[0], reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('투영 행렬 W:\n', w) X_train_std[0].dot(w) X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 사이킷런의 주성분 분석 **노트**이어지는 네 개의 셀은 책에 없는 내용입니다. 사이킷런에서 앞의 PCA 구현 결과를 재현하기 위해 추가했습니다: ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # 마커와 컬러맵을 준비합니다 markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # 결정 경계를 그립니다 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # 클래스 샘플을 표시합니다 for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap.colors[idx], edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown 처음 두 개의 주성분을 사용하여 로지스틱 회귀 분류기를 훈련합니다. ###Code from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) lr = LogisticRegression(solver='liblinear', multi_class='auto') lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown 선형 판별 분석을 통한 지도방식의 데이터 압축 산포 행렬 계산 각 클래스이 평균 벡터를 계산합니다: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516 0.5416 0.2338 0.5897 0.6563 1.2075] MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946 0.0703 -0.8286 0.3144 0.3608 -0.7253] MV 3: [ 0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287 -0.7795 0.9649 -1.209 -1.3622 -0.4013] ###Markdown 클래스 내 산포 행렬을 계산합니다: ###Code d = 13 # 특성의 수 S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('클래스 내의 산포 행렬: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output 클래스 내의 산포 행렬: 13x13 ###Markdown 클래스가 균일하게 분포되어 있지 않기 때문에 공분산 행렬을 사용하는 것이 더 낫습니다: ###Code print('클래스 레이블 분포: %s' % np.bincount(y_train)[1:]) d = 13 # 특성의 수 S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T, bias=True) S_W += class_scatter print('스케일 조정된 클래스 내의 산포 행렬: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output 스케일 조정된 클래스 내의 산포 행렬: 13x13 ###Markdown 클래스 간 산포 행렬을 계산합니다: ###Code mean_overall = np.mean(X_train_std, axis=0) mean_overall = mean_overall.reshape(d, 1) # 열 벡터로 만들기 d = 13 # 특성의 수 S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # 열 벡터로 만들기 S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('클래스 간의 산포 행렬: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output 클래스 간의 산포 행렬: 13x13 ###Markdown 새로운 특성 부분 공간을 위해 선형 판별 벡터 선택하기 행렬 $S_W^{-1}S_B$의 일반적인 고윳값 분해 문제를 풉니다: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown 고윳값의 역순으로 고유 벡터를 정렬합니다: ###Code # (고윳값, 고유벡터) 튜플의 리스트를 만듭니다. eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # (고윳값, 고유벡터) 튜플을 큰 값에서 작은 값 순서대로 정렬합니다. eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # 고윳값의 역순으로 올바르게 정렬되었는지 확인합니다. print('내림차순의 고윳값:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('행렬 W:\n', w) ###Output 행렬 W: [[-0.1484 -0.4093] [ 0.091 -0.1583] [-0.0168 -0.3536] [ 0.1487 0.322 ] [-0.0165 -0.0813] [ 0.1912 0.0841] [-0.7333 0.2828] [-0.0751 -0.0099] [ 0.002 0.0902] [ 0.2953 -0.2168] [-0.0327 0.274 ] [-0.3539 -0.0133] [-0.3918 -0.5954]] ###Markdown 새로운 특성 공간으로 샘플 투영하기 ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0], X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression(solver='liblinear', multi_class='auto') lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 역주 ###Code y_uniq, y_count = np.unique(y_train, return_counts=True) priors = y_count / X_train_std.shape[0] priors ###Output _____no_output_____ ###Markdown $\sigma_{jk} = \frac{1}{n} \sum_{i=1}^n (x_j^{(i)}-\mu_j)(x_k^{(i)}-\mu_k)$$m = \sum_{i=1}^c \frac{n_i}{n} m_i$$S_W = \sum_{i=1}^c \frac{n_i}{n} S_i = \sum_{i=1}^c \frac{n_i}{n} \Sigma_i$ ###Code s_w = np.zeros((X_train_std.shape[1], X_train_std.shape[1])) for i, label in enumerate(y_uniq): # 1/n로 나눈 공분산 행렬을 얻기 위해 bias=True로 지정합니다. s_w += priors[i] * np.cov(X_train_std[y_train == label].T, bias=True) ###Output _____no_output_____ ###Markdown $ S_B = S_T-S_W = \sum_{i=1}^{c}\frac{n_i}{n}(m_i-m)(m_i-m)^T $ ###Code s_b = np.zeros((X_train_std.shape[1], X_train_std.shape[1])) for i, mean_vec in enumerate(mean_vecs): n = X_train_std[y_train == i + 1].shape[0] mean_vec = mean_vec.reshape(-1, 1) s_b += priors[i] * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) import scipy ei_val, ei_vec = scipy.linalg.eigh(s_b, s_w) ei_vec = ei_vec[:, np.argsort(ei_val)[::-1]] lda_eigen = LDA(solver='eigen') lda_eigen.fit(X_train_std, y_train) # 클래스 내의 산포 행렬은 covariance_ 속성에 저장되어 있습니다. np.allclose(s_w, lda_eigen.covariance_) Sb = np.cov(X_train_std.T, bias=True) - lda_eigen.covariance_ np.allclose(Sb, s_b) np.allclose(lda_eigen.scalings_[:, :2], ei_vec[:, :2]) np.allclose(lda_eigen.transform(X_test_std), np.dot(X_test_std, ei_vec[:, :2])) ###Output _____no_output_____ ###Markdown 커널 PCA를 사용하여 비선형 매핑하기 파이썬으로 커널 PCA 구현하기 ###Code from scipy.spatial.distance import pdist, squareform from numpy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF 커널 PCA 구현 매개변수 ------------ X: {넘파이 ndarray}, shape = [n_samples, n_features] gamma: float RBF 커널 튜닝 매개변수 n_components: int 반환할 주성분 개수 반환값 ------------ X_pc: {넘파이 ndarray}, shape = [n_samples, k_features] 투영된 데이터셋 """ # MxN 차원의 데이터셋에서 샘플 간의 유클리디안 거리의 제곱을 계산합니다. sq_dists = pdist(X, 'sqeuclidean') # 샘플 간의 거리를 정방 대칭 행렬로 변환합니다. mat_sq_dists = squareform(sq_dists) # 커널 행렬을 계산합니다. K = exp(-gamma * mat_sq_dists) # 커널 행렬을 중앙에 맞춥니다. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # 중앙에 맞춰진 커널 행렬의 고윳값과 고유벡터를 구합니다. # scipy.linalg.eigh 함수는 오름차순으로 반환합니다. eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # 최상위 k 개의 고유벡터를 선택합니다(결과값은 투영된 샘플입니다). X_pc = np.column_stack([eigvecs[:, i] for i in range(n_components)]) return X_pc ###Output _____no_output_____ ###Markdown 예제 1: 반달 모양 구분하기 ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() plt.show() from sklearn.decomposition import PCA scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 예제 2: 동심원 분리하기 ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 새로운 데이터 포인트 투영하기 ###Code from scipy.spatial.distance import pdist, squareform from numpy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF 커널 PCA 구현 매개변수 ------------ X: {넘파이 ndarray}, shape = [n_samples, n_features] gamma: float RBF 커널 튜닝 매개변수 n_components: int 반환할 주성분 개수 Returns ------------ alphas: {넘파이 ndarray}, shape = [n_samples, k_features] 투영된 데이터셋 lambdas: list 고윳값 """ # MxN 차원의 데이터셋에서 샘플 간의 유클리디안 거리의 제곱을 계산합니다. sq_dists = pdist(X, 'sqeuclidean') # 샘플 간의 거리를 정방 대칭 행렬로 변환합니다. mat_sq_dists = squareform(sq_dists) # 커널 행렬을 계산합니다. K = exp(-gamma * mat_sq_dists) # 커널 행렬을 중앙에 맞춥니다. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # 중앙에 맞춰진 커널 행렬의 고윳값과 고유 벡터를 구합니다. # scipy.linalg.eigh 함수는 오름차순으로 반환합니다. eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # 최상위 k 개의 고유 벡터를 선택합니다(투영 결과). alphas = np.column_stack([eigvecs[:, i] for i in range(n_components)]) # 고유 벡터에 상응하는 고윳값을 선택합니다. lambdas = [eigvals[i] for i in range(n_components)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # 원본 투영 x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # 새로운 데이터포인트를 투영합니다. x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 사이킷런의 커널 PCA ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 5장. 차원 축소를 사용한 데이터 압축 **아래 링크를 통해 이 노트북을 주피터 노트북 뷰어(nbviewer.jupyter.org)로 보거나 구글 코랩(colab.research.google.com)에서 실행할 수 있습니다.** 주피터 노트북 뷰어로 보기 구글 코랩(Colab)에서 실행하기 `watermark`는 주피터 노트북에 사용하는 파이썬 패키지를 출력하기 위한 유틸리티입니다. `watermark` 패키지를 설치하려면 다음 셀의 주석을 제거한 뒤 실행하세요. ###Code #!pip install watermark %load_ext watermark %watermark -u -d -p numpy,scipy,matplotlib,sklearn ###Output last updated: 2019-05-27 numpy 1.16.3 scipy 1.2.1 matplotlib 3.0.3 sklearn 0.21.1 ###Markdown 주성분 분석을 통한 비지도 차원 축소 주성분 추출 단계 ###Code import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) # UCI 머신 러닝 저장소에서 Wine 데이터셋을 다운로드할 수 없을 때 # 다음 주석을 해제하고 로컬 경로에서 데이터셋을 적재하세요. # df_wine = pd.read_csv('wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown 70%는 훈련 세트로 30%는 테스트 세트로 나눕니다. ###Code from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) ###Output _____no_output_____ ###Markdown 데이터를 표준화합니다. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown 공분산 행렬의 고윳값 분해 ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\n고윳값 \n%s' % eigen_vals) ###Output 고윳값 [4.84274532 2.41602459 1.54845825 0.96120438 0.84166161 0.6620634 0.51828472 0.34650377 0.3131368 0.10754642 0.21357215 0.15362835 0.1808613 ] ###Markdown 총분산과 설명된 분산 ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal component index') plt.legend(loc='best') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 특성 변환 ###Code # (고윳값, 고유벡터) 튜플의 리스트를 만듭니다 eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # 높은 값에서 낮은 값으로 (고윳값, 고유벡터) 튜플을 정렬합니다 eigen_pairs.sort(key=lambda k: k[0], reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('투영 행렬 W:\n', w) X_train_std[0].dot(w) X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 사이킷런의 주성분 분석 **노트**이어지는 네 개의 셀은 책에 없는 내용입니다. 사이킷런에서 앞의 PCA 구현 결과를 재현하기 위해 추가했습니다: ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # 마커와 컬러맵을 준비합니다 markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # 결정 경계를 그립니다 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # 클래스 샘플을 표시합니다 for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap.colors[idx], edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown 처음 두 개의 주성분을 사용하여 로지스틱 회귀 분류기를 훈련합니다. ###Code from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) lr = LogisticRegression(solver='liblinear', multi_class='auto') lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown 선형 판별 분석을 통한 지도방식의 데이터 압축 산포 행렬 계산 각 클래스이 평균 벡터를 계산합니다: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516 0.5416 0.2338 0.5897 0.6563 1.2075] MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946 0.0703 -0.8286 0.3144 0.3608 -0.7253] MV 3: [ 0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287 -0.7795 0.9649 -1.209 -1.3622 -0.4013] ###Markdown 클래스 내 산포 행렬을 계산합니다: ###Code d = 13 # 특성의 수 S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('클래스 내의 산포 행렬: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output 클래스 내의 산포 행렬: 13x13 ###Markdown 클래스가 균일하게 분포되어 있지 않기 때문에 공분산 행렬을 사용하는 것이 더 낫습니다: ###Code print('클래스 레이블 분포: %s' % np.bincount(y_train)[1:]) d = 13 # 특성의 수 S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T, bias=True) S_W += class_scatter print('스케일 조정된 클래스 내의 산포 행렬: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output 스케일 조정된 클래스 내의 산포 행렬: 13x13 ###Markdown 클래스 간 산포 행렬을 계산합니다: ###Code mean_overall = np.mean(X_train_std, axis=0) mean_overall = mean_overall.reshape(d, 1) # 열 벡터로 만들기 d = 13 # 특성의 수 S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # 열 벡터로 만들기 S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('클래스 간의 산포 행렬: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output 클래스 간의 산포 행렬: 13x13 ###Markdown 새로운 특성 부분 공간을 위해 선형 판별 벡터 선택하기 행렬 $S_W^{-1}S_B$의 일반적인 고윳값 분해 문제를 풉니다: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown 고윳값의 역순으로 고유 벡터를 정렬합니다: ###Code # (고윳값, 고유벡터) 튜플의 리스트를 만듭니다. eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # (고윳값, 고유벡터) 튜플을 큰 값에서 작은 값 순서대로 정렬합니다. eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # 고윳값의 역순으로 올바르게 정렬되었는지 확인합니다. print('내림차순의 고윳값:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('행렬 W:\n', w) ###Output 행렬 W: [[-0.1484 -0.4093] [ 0.091 -0.1583] [-0.0168 -0.3536] [ 0.1487 0.322 ] [-0.0165 -0.0813] [ 0.1912 0.0841] [-0.7333 0.2828] [-0.0751 -0.0099] [ 0.002 0.0902] [ 0.2953 -0.2168] [-0.0327 0.274 ] [-0.3539 -0.0133] [-0.3918 -0.5954]] ###Markdown 새로운 특성 공간으로 샘플 투영하기 ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0], X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression(solver='liblinear', multi_class='auto') lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 역주 ###Code y_uniq, y_count = np.unique(y_train, return_counts=True) priors = y_count / X_train_std.shape[0] priors ###Output _____no_output_____ ###Markdown $\sigma_{jk} = \frac{1}{n} \sum_{i=1}^n (x_j^{(i)}-\mu_j)(x_k^{(i)}-\mu_k)$$m = \sum_{i=1}^c \frac{n_i}{n} m_i$$S_W = \sum_{i=1}^c \frac{n_i}{n} S_i = \sum_{i=1}^c \frac{n_i}{n} \Sigma_i$ ###Code s_w = np.zeros((X_train_std.shape[1], X_train_std.shape[1])) for i, label in enumerate(y_uniq): # 1/n로 나눈 공분산 행렬을 얻기 위해 bias=True로 지정합니다. s_w += priors[i] * np.cov(X_train_std[y_train == label].T, bias=True) ###Output _____no_output_____ ###Markdown $ S_B = S_T-S_W = \sum_{i=1}^{c}\frac{n_i}{n}(m_i-m)(m_i-m)^T $ ###Code s_b = np.zeros((X_train_std.shape[1], X_train_std.shape[1])) for i, mean_vec in enumerate(mean_vecs): n = X_train_std[y_train == i + 1].shape[0] mean_vec = mean_vec.reshape(-1, 1) s_b += priors[i] * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) import scipy ei_val, ei_vec = scipy.linalg.eigh(s_b, s_w) ei_vec = ei_vec[:, np.argsort(ei_val)[::-1]] ei_vec /= np.linalg.norm(ei_vec, axis=0) lda_eigen = LDA(solver='eigen') lda_eigen.fit(X_train_std, y_train) # 클래스 내의 산포 행렬은 covariance_ 속성에 저장되어 있습니다. np.allclose(s_w, lda_eigen.covariance_) Sb = np.cov(X_train_std.T, bias=True) - lda_eigen.covariance_ np.allclose(Sb, s_b) np.allclose(lda_eigen.scalings_[:, :2], ei_vec[:, :2]) np.allclose(lda_eigen.transform(X_test_std), np.dot(X_test_std, ei_vec[:, :2])) ###Output _____no_output_____ ###Markdown 커널 PCA를 사용하여 비선형 매핑하기 파이썬으로 커널 PCA 구현하기 ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF 커널 PCA 구현 매개변수 ------------ X: {넘파이 ndarray}, shape = [n_samples, n_features] gamma: float RBF 커널 튜닝 매개변수 n_components: int 반환할 주성분 개수 반환값 ------------ X_pc: {넘파이 ndarray}, shape = [n_samples, k_features] 투영된 데이터셋 """ # MxN 차원의 데이터셋에서 샘플 간의 유클리디안 거리의 제곱을 계산합니다. sq_dists = pdist(X, 'sqeuclidean') # 샘플 간의 거리를 정방 대칭 행렬로 변환합니다. mat_sq_dists = squareform(sq_dists) # 커널 행렬을 계산합니다. K = exp(-gamma * mat_sq_dists) # 커널 행렬을 중앙에 맞춥니다. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # 중앙에 맞춰진 커널 행렬의 고윳값과 고유벡터를 구합니다. # scipy.linalg.eigh 함수는 오름차순으로 반환합니다. eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # 최상위 k 개의 고유벡터를 선택합니다(결과값은 투영된 샘플입니다). X_pc = np.column_stack([eigvecs[:, i] for i in range(n_components)]) return X_pc ###Output _____no_output_____ ###Markdown 예제 1: 반달 모양 구분하기 ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() plt.show() from sklearn.decomposition import PCA scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 예제 2: 동심원 분리하기 ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 새로운 데이터 포인트 투영하기 ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF 커널 PCA 구현 매개변수 ------------ X: {넘파이 ndarray}, shape = [n_samples, n_features] gamma: float RBF 커널 튜닝 매개변수 n_components: int 반환할 주성분 개수 Returns ------------ alphas: {넘파이 ndarray}, shape = [n_samples, k_features] 투영된 데이터셋 lambdas: list 고윳값 """ # MxN 차원의 데이터셋에서 샘플 간의 유클리디안 거리의 제곱을 계산합니다. sq_dists = pdist(X, 'sqeuclidean') # 샘플 간의 거리를 정방 대칭 행렬로 변환합니다. mat_sq_dists = squareform(sq_dists) # 커널 행렬을 계산합니다. K = exp(-gamma * mat_sq_dists) # 커널 행렬을 중앙에 맞춥니다. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # 중앙에 맞춰진 커널 행렬의 고윳값과 고유 벡터를 구합니다. # scipy.linalg.eigh 함수는 오름차순으로 반환합니다. eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # 최상위 k 개의 고유 벡터를 선택합니다(투영 결과). alphas = np.column_stack([eigvecs[:, i] for i in range(n_components)]) # 고유 벡터에 상응하는 고윳값을 선택합니다. lambdas = [eigvals[i] for i in range(n_components)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # 원본 투영 x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # 새로운 데이터포인트를 투영합니다. x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 사이킷런의 커널 PCA ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown *Python Machine Learning 2nd Edition* by [Sebastian Raschka](https://sebastianraschka.com), Packt Publishing Ltd. 2017Code Repository: https://github.com/rasbt/python-machine-learning-book-2nd-editionCode License: [MIT License](https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a "Sebastian Raschka" -u -d -p numpy,scipy,matplotlib,sklearn ###Output Sebastian Raschka last updated: 2017-09-03 numpy 1.12.1 scipy 0.19.1 matplotlib 2.0.2 sklearn 0.19.0 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [The main steps behind principal component analysis](The-main-steps-behind-principal-component-analysis) - [Extracting the principal components step-by-step](Extracting-the-principal-components-step-by-step) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Principal component analysis versus linear discriminant analysis](Principal-component-analysis-versus-linear-discriminant-analysis) - [The inner workings of linear discriminant analysis](The-inner-workings-of-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1:-Separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2:-Separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis The main steps behind principal component analysis ###Code Image(filename='images/05_01.png', width=400) ###Output _____no_output_____ ###Markdown Extracting the principal components step-by-step ###Code import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) # if the Wine dataset is temporarily unavailable from the # UCI machine learning repository, un-comment the following line # of code to load the dataset from a local path: # df_wine = pd.read_csv('wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.84274532 2.41602459 1.54845825 0.96120438 0.84166161 0.6620634 0.51828472 0.34650377 0.3131368 0.10754642 0.21357215 0.15362835 0.1808613 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal component index') plt.legend(loc='best') plt.tight_layout() # plt.savefig('images/05_02.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[-0.13724218 0.50303478] [ 0.24724326 0.16487119] [-0.02545159 0.24456476] [ 0.20694508 -0.11352904] [-0.15436582 0.28974518] [-0.39376952 0.05080104] [-0.41735106 -0.02287338] [ 0.30572896 0.09048885] [-0.30668347 0.00835233] [ 0.07554066 0.54977581] [-0.32613263 -0.20716433] [-0.36861022 -0.24902536] [-0.29669651 0.38022942]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the Matrix W with its signs flipped. Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma \cdot (-v) = -\Sigma v = -\lambda v = \lambda \cdot (-v).$$ ###Code X_train_std[0].dot(w) X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_03.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn **NOTE**The following four code cells has been added in addition to the content to the book, to illustrate how to replicate the results from our own PCA implementation in scikit-learn: ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap(idx), edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_04.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_05.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis Principal component analysis versus linear discriminant analysis ###Code Image(filename='images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown The inner workings of linear discriminant analysis Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516 0.5416 0.2338 0.5897 0.6563 1.2075] MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946 0.0703 -0.8286 0.3144 0.3608 -0.7253] MV 3: [ 0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287 -0.7795 0.9649 -1.209 -1.3622 -0.4013] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in descending order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in descending order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('images/05_07.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.1481 -0.4092] [ 0.0908 -0.1577] [-0.0168 -0.3537] [ 0.1484 0.3223] [-0.0163 -0.0817] [ 0.1913 0.0842] [-0.7338 0.2823] [-0.075 -0.0102] [ 0.0018 0.0907] [ 0.294 -0.2152] [-0.0328 0.2747] [-0.3547 -0.0124] [-0.3915 -0.5958]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0], X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('images/05_08.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_09.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('images/05_10.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # scipy.linalg.eigh returns them in ascending order eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, i] for i in range(n_components))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('images/05_12.png', dpi=300) plt.show() from sklearn.decomposition import PCA scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_13.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_14.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('images/05_15.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_16.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('images/05_17.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # scipy.linalg.eigh returns them in ascending order eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, i] for i in range(n_components))) # Collect the corresponding eigenvalues lambdas = [eigvals[i] for i in range(n_components)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('images/05_18.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('images/05_19.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Summary ... ---Readers may ignore the next cell. ###Code ! python ../.convert_notebook_to_script.py --input ch05.ipynb --output ch05.py ###Output [NbConvertApp] Converting notebook ch05.ipynb to script [NbConvertApp] Writing 27719 bytes to ch05.py ###Markdown Copyright (c) 2015, 2016 [Sebastian Raschka](sebastianraschka.com)https://github.com/rasbt/python-machine-learning-book[MIT License](https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -u -d -v -p numpy,scipy,matplotlib,sklearn ###Output Sebastian Raschka last updated: 2016-09-29 CPython 3.5.2 IPython 5.1.0 numpy 1.11.1 scipy 0.18.1 matplotlib 1.5.1 sklearn 0.18 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1:-Separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2:-Separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline # Added version check for recent scikit-learn 0.18 checks from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis ###Code Image(filename='./images/05_01.png', width=400) import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code if Version(sklearn_version) < '0.18': from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) # Note: I added the `key=lambda k: k[0]` in the sort call above # just like I used it further below in the LDA section. # This is to avoid problems if there are ties in the eigenvalue # arrays (i.e., the sorting algorithm will only regard the # first element of the tuples, now). w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[ 0.14669811 0.50417079] [-0.24224554 0.24216889] [-0.02993442 0.28698484] [-0.25519002 -0.06468718] [ 0.12079772 0.22995385] [ 0.38934455 0.09363991] [ 0.42326486 0.01088622] [-0.30634956 0.01870216] [ 0.30572219 0.03040352] [-0.09869191 0.54527081] [ 0.30032535 -0.27924322] [ 0.36821154 -0.174365 ] [ 0.29259713 0.36315461]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the the Matrix W with its signs flipped. E.g., the matrix shown in the book was printed as:```[[ 0.14669811 0.50417079][-0.24224554 0.24216889][-0.02993442 0.28698484][-0.25519002 -0.06468718][ 0.12079772 0.22995385][ 0.38934455 0.09363991][ 0.42326486 0.01088622][-0.30634956 0.01870216][ 0.30572219 0.03040352][-0.09869191 0.54527081]```Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma(-v) = -\Sigma v = -\lambda v = \lambda(-v).$$ ###Code X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis ###Code Image(filename='./images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.0662 -0.3797] [ 0.0386 -0.2206] [-0.0217 -0.3816] [ 0.184 0.3018] [-0.0034 0.0141] [ 0.2326 0.0234] [-0.7747 0.1869] [-0.0811 0.0696] [ 0.0875 0.1796] [ 0.185 -0.284 ] [-0.066 0.2349] [-0.3805 0.073 ] [-0.3285 -0.5971]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code if Version(sklearn_version) < '0.18': from sklearn.lda import LDA else: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='./images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[-1] x_new x_proj = alphas[-1] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X[:-1, :], gamma=15, n_components=1) def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_new = X[-1] x_reproj = project_x(x_new, X[:-1], gamma=15, alphas=alphas, lambdas=lambdas) plt.scatter(alphas[y[:-1] == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y[:-1] == 1, 0], np.zeros((49)), color='blue', marker='o', alpha=0.5) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.scatter(alphas[y[:-1] == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y[:-1] == 1, 0], np.zeros((49)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='some point [1.8713, 0.0093]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Copyright (c) 2015-2017 [Sebastian Raschka](sebastianraschka.com)https://github.com/rasbt/python-machine-learning-book[MIT License](https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -u -d -p numpy,scipy,matplotlib,sklearn ###Output Sebastian Raschka last updated: 2017-03-10 numpy 1.12.0 scipy 0.18.1 matplotlib 2.0.0 sklearn 0.18.1 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1:-Separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2:-Separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline # Added version check for recent scikit-learn 0.18 checks from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis ###Code Image(filename='./images/05_01.png', width=400) import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code if Version(sklearn_version) < '0.18': from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) # Note: I added the `key=lambda k: k[0]` in the sort call above # just like I used it further below in the LDA section. # This is to avoid problems if there are ties in the eigenvalue # arrays (i.e., the sorting algorithm will only regard the # first element of the tuples, now). w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[ 0.14669811 0.50417079] [-0.24224554 0.24216889] [-0.02993442 0.28698484] [-0.25519002 -0.06468718] [ 0.12079772 0.22995385] [ 0.38934455 0.09363991] [ 0.42326486 0.01088622] [-0.30634956 0.01870216] [ 0.30572219 0.03040352] [-0.09869191 0.54527081] [ 0.30032535 -0.27924322] [ 0.36821154 -0.174365 ] [ 0.29259713 0.36315461]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the the Matrix W with its signs flipped. E.g., the matrix shown in the book was printed as:```[[ 0.14669811 0.50417079][-0.24224554 0.24216889][-0.02993442 0.28698484][-0.25519002 -0.06468718][ 0.12079772 0.22995385][ 0.38934455 0.09363991][ 0.42326486 0.01088622][-0.30634956 0.01870216][ 0.30572219 0.03040352][-0.09869191 0.54527081]```Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma(-v) = -\Sigma v = -\lambda v = \lambda(-v).$$ ###Code X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap(idx), edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis ###Code Image(filename='./images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.0662 -0.3797] [ 0.0386 -0.2206] [-0.0217 -0.3816] [ 0.184 0.3018] [-0.0034 0.0141] [ 0.2326 0.0234] [-0.7747 0.1869] [-0.0811 0.0696] [ 0.0875 0.1796] [ 0.185 -0.284 ] [-0.066 0.2349] [-0.3805 0.073 ] [-0.3285 -0.5971]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code if Version(sklearn_version) < '0.18': from sklearn.lda import LDA else: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='./images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[-1] x_new x_proj = alphas[-1] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X[:-1, :], gamma=15, n_components=1) def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_new = X[-1] x_reproj = project_x(x_new, X[:-1], gamma=15, alphas=alphas, lambdas=lambdas) plt.scatter(alphas[y[:-1] == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y[:-1] == 1, 0], np.zeros((49)), color='blue', marker='o', alpha=0.5) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.scatter(alphas[y[:-1] == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y[:-1] == 1, 0], np.zeros((49)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='some point [1.8713, 0.0093]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown 5장. 차원 축소를 사용한 데이터 압축 **아래 링크를 통해 이 노트북을 주피터 노트북 뷰어(nbviewer.jupyter.org)로 보거나 구글 코랩(colab.research.google.com)에서 실행할 수 있습니다.** 주피터 노트북 뷰어로 보기 구글 코랩(Colab)에서 실행하기 `watermark`는 주피터 노트북에 사용하는 파이썬 패키지를 출력하기 위한 유틸리티입니다. `watermark` 패키지를 설치하려면 다음 셀의 주석을 제거한 뒤 실행하세요. ###Code #!pip install watermark %load_ext watermark %watermark -u -d -p numpy,scipy,matplotlib,sklearn ###Output last updated: 2020-05-22 numpy 1.18.4 scipy 1.4.1 matplotlib 3.2.1 sklearn 0.23.1 ###Markdown 주성분 분석을 통한 비지도 차원 축소 주성분 추출 단계 ###Code import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) # UCI 머신 러닝 저장소에서 Wine 데이터셋을 다운로드할 수 없을 때 # 다음 주석을 해제하고 로컬 경로에서 데이터셋을 적재하세요. # df_wine = pd.read_csv('wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown 70%는 훈련 세트로 30%는 테스트 세트로 나눕니다. ###Code from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) ###Output _____no_output_____ ###Markdown 데이터를 표준화합니다. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown 공분산 행렬의 고윳값 분해 ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\n고윳값 \n%s' % eigen_vals) ###Output 고윳값 [4.84274532 2.41602459 1.54845825 0.96120438 0.84166161 0.6620634 0.51828472 0.34650377 0.3131368 0.10754642 0.21357215 0.15362835 0.1808613 ] ###Markdown 총분산과 설명된 분산 ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal component index') plt.legend(loc='best') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 특성 변환 ###Code # (고윳값, 고유벡터) 튜플의 리스트를 만듭니다 eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # 높은 값에서 낮은 값으로 (고윳값, 고유벡터) 튜플을 정렬합니다 eigen_pairs.sort(key=lambda k: k[0], reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('투영 행렬 W:\n', w) X_train_std[0].dot(w) X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 사이킷런의 주성분 분석 **노트**이어지는 네 개의 셀은 책에 없는 내용입니다. 사이킷런에서 앞의 PCA 구현 결과를 재현하기 위해 추가했습니다: ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # 마커와 컬러맵을 준비합니다 markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # 결정 경계를 그립니다 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # 클래스 샘플을 표시합니다 for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap.colors[idx], edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown 처음 두 개의 주성분을 사용하여 로지스틱 회귀 분류기를 훈련합니다. ###Code from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) lr = LogisticRegression(solver='liblinear', multi_class='auto') lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown 선형 판별 분석을 통한 지도방식의 데이터 압축 산포 행렬 계산 각 클래스이 평균 벡터를 계산합니다: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516 0.5416 0.2338 0.5897 0.6563 1.2075] MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946 0.0703 -0.8286 0.3144 0.3608 -0.7253] MV 3: [ 0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287 -0.7795 0.9649 -1.209 -1.3622 -0.4013] ###Markdown 클래스 내 산포 행렬을 계산합니다: ###Code d = 13 # 특성의 수 S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('클래스 내의 산포 행렬: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output 클래스 내의 산포 행렬: 13x13 ###Markdown 클래스가 균일하게 분포되어 있지 않기 때문에 공분산 행렬을 사용하는 것이 더 낫습니다: ###Code print('클래스 레이블 분포: %s' % np.bincount(y_train)[1:]) d = 13 # 특성의 수 S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T, bias=True) S_W += class_scatter print('스케일 조정된 클래스 내의 산포 행렬: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output 스케일 조정된 클래스 내의 산포 행렬: 13x13 ###Markdown 클래스 간 산포 행렬을 계산합니다: ###Code mean_overall = np.mean(X_train_std, axis=0) mean_overall = mean_overall.reshape(d, 1) # 열 벡터로 만들기 d = 13 # 특성의 수 S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # 열 벡터로 만들기 S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('클래스 간의 산포 행렬: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output 클래스 간의 산포 행렬: 13x13 ###Markdown 새로운 특성 부분 공간을 위해 선형 판별 벡터 선택하기 행렬 $S_W^{-1}S_B$의 일반적인 고윳값 분해 문제를 풉니다: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown 고윳값의 역순으로 고유 벡터를 정렬합니다: ###Code # (고윳값, 고유벡터) 튜플의 리스트를 만듭니다. eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # (고윳값, 고유벡터) 튜플을 큰 값에서 작은 값 순서대로 정렬합니다. eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # 고윳값의 역순으로 올바르게 정렬되었는지 확인합니다. print('내림차순의 고윳값:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('행렬 W:\n', w) ###Output 행렬 W: [[-0.1484 -0.4093] [ 0.091 -0.1583] [-0.0168 -0.3536] [ 0.1487 0.322 ] [-0.0165 -0.0813] [ 0.1912 0.0841] [-0.7333 0.2828] [-0.0751 -0.0099] [ 0.002 0.0902] [ 0.2953 -0.2168] [-0.0327 0.274 ] [-0.3539 -0.0133] [-0.3918 -0.5954]] ###Markdown 새로운 특성 공간으로 샘플 투영하기 ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0], X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression(solver='liblinear', multi_class='auto') lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 역주 ###Code y_uniq, y_count = np.unique(y_train, return_counts=True) priors = y_count / X_train_std.shape[0] priors ###Output _____no_output_____ ###Markdown $\sigma_{jk} = \frac{1}{n} \sum_{i=1}^n (x_j^{(i)}-\mu_j)(x_k^{(i)}-\mu_k)$$m = \sum_{i=1}^c \frac{n_i}{n} m_i$$S_W = \sum_{i=1}^c \frac{n_i}{n} S_i = \sum_{i=1}^c \frac{n_i}{n} \Sigma_i$ ###Code s_w = np.zeros((X_train_std.shape[1], X_train_std.shape[1])) for i, label in enumerate(y_uniq): # 1/n로 나눈 공분산 행렬을 얻기 위해 bias=True로 지정합니다. s_w += priors[i] * np.cov(X_train_std[y_train == label].T, bias=True) ###Output _____no_output_____ ###Markdown $ S_B = S_T-S_W = \sum_{i=1}^{c}\frac{n_i}{n}(m_i-m)(m_i-m)^T $ ###Code s_b = np.zeros((X_train_std.shape[1], X_train_std.shape[1])) for i, mean_vec in enumerate(mean_vecs): n = X_train_std[y_train == i + 1].shape[0] mean_vec = mean_vec.reshape(-1, 1) s_b += priors[i] * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) import scipy ei_val, ei_vec = scipy.linalg.eigh(s_b, s_w) ei_vec = ei_vec[:, np.argsort(ei_val)[::-1]] ei_vec /= np.linalg.norm(ei_vec, axis=0) lda_eigen = LDA(solver='eigen') lda_eigen.fit(X_train_std, y_train) # 클래스 내의 산포 행렬은 covariance_ 속성에 저장되어 있습니다. np.allclose(s_w, lda_eigen.covariance_) Sb = np.cov(X_train_std.T, bias=True) - lda_eigen.covariance_ np.allclose(Sb, s_b) np.allclose(lda_eigen.scalings_[:, :2], ei_vec[:, :2]) np.allclose(lda_eigen.transform(X_test_std), np.dot(X_test_std, ei_vec[:, :2])) ###Output _____no_output_____ ###Markdown 커널 PCA를 사용하여 비선형 매핑하기 파이썬으로 커널 PCA 구현하기 ###Code from scipy.spatial.distance import pdist, squareform from numpy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF 커널 PCA 구현 매개변수 ------------ X: {넘파이 ndarray}, shape = [n_samples, n_features] gamma: float RBF 커널 튜닝 매개변수 n_components: int 반환할 주성분 개수 반환값 ------------ X_pc: {넘파이 ndarray}, shape = [n_samples, k_features] 투영된 데이터셋 """ # MxN 차원의 데이터셋에서 샘플 간의 유클리디안 거리의 제곱을 계산합니다. sq_dists = pdist(X, 'sqeuclidean') # 샘플 간의 거리를 정방 대칭 행렬로 변환합니다. mat_sq_dists = squareform(sq_dists) # 커널 행렬을 계산합니다. K = exp(-gamma * mat_sq_dists) # 커널 행렬을 중앙에 맞춥니다. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # 중앙에 맞춰진 커널 행렬의 고윳값과 고유벡터를 구합니다. # scipy.linalg.eigh 함수는 오름차순으로 반환합니다. eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # 최상위 k 개의 고유벡터를 선택합니다(결과값은 투영된 샘플입니다). X_pc = np.column_stack([eigvecs[:, i] for i in range(n_components)]) return X_pc ###Output _____no_output_____ ###Markdown 예제 1: 반달 모양 구분하기 ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() plt.show() from sklearn.decomposition import PCA scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 예제 2: 동심원 분리하기 ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 새로운 데이터 포인트 투영하기 ###Code from scipy.spatial.distance import pdist, squareform from numpy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF 커널 PCA 구현 매개변수 ------------ X: {넘파이 ndarray}, shape = [n_samples, n_features] gamma: float RBF 커널 튜닝 매개변수 n_components: int 반환할 주성분 개수 Returns ------------ alphas: {넘파이 ndarray}, shape = [n_samples, k_features] 투영된 데이터셋 lambdas: list 고윳값 """ # MxN 차원의 데이터셋에서 샘플 간의 유클리디안 거리의 제곱을 계산합니다. sq_dists = pdist(X, 'sqeuclidean') # 샘플 간의 거리를 정방 대칭 행렬로 변환합니다. mat_sq_dists = squareform(sq_dists) # 커널 행렬을 계산합니다. K = exp(-gamma * mat_sq_dists) # 커널 행렬을 중앙에 맞춥니다. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # 중앙에 맞춰진 커널 행렬의 고윳값과 고유 벡터를 구합니다. # scipy.linalg.eigh 함수는 오름차순으로 반환합니다. eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # 최상위 k 개의 고유 벡터를 선택합니다(투영 결과). alphas = np.column_stack([eigvecs[:, i] for i in range(n_components)]) # 고유 벡터에 상응하는 고윳값을 선택합니다. lambdas = [eigvals[i] for i in range(n_components)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # 원본 투영 x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # 새로운 데이터포인트를 투영합니다. x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 사이킷런의 커널 PCA ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 5장. 차원 축소를 사용한 데이터 압축 **아래 링크를 통해 이 노트북을 주피터 노트북 뷰어(nbviewer.jupyter.org)로 보거나 구글 코랩(colab.research.google.com)에서 실행할 수 있습니다.** 주피터 노트북 뷰어로 보기 구글 코랩(Colab)에서 실행하기 `watermark`는 주피터 노트북에 사용하는 파이썬 패키지를 출력하기 위한 유틸리티입니다. `watermark` 패키지를 설치하려면 다음 셀의 주석을 제거한 뒤 실행하세요. ###Code #!pip install watermark %load_ext watermark %watermark -u -d -p numpy,scipy,matplotlib,sklearn ###Output last updated: 2019-04-26 numpy 1.16.3 scipy 1.2.1 matplotlib 3.0.3 sklearn 0.20.3 ###Markdown 주성분 분석을 통한 비지도 차원 축소 주성분 추출 단계 ###Code import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) # UCI 머신 러닝 저장소에서 Wine 데이터셋을 다운로드할 수 없을 때 # 다음 주석을 해제하고 로컬 경로에서 데이터셋을 적재하세요. # df_wine = pd.read_csv('wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown 70%는 훈련 세트로 30%는 테스트 세트로 나눕니다. ###Code from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) ###Output _____no_output_____ ###Markdown 데이터를 표준화합니다. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown 공분산 행렬의 고윳값 분해 ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\n고윳값 \n%s' % eigen_vals) ###Output 고윳값 [4.84274532 2.41602459 1.54845825 0.96120438 0.84166161 0.6620634 0.51828472 0.34650377 0.3131368 0.10754642 0.21357215 0.15362835 0.1808613 ] ###Markdown 총분산과 설명된 분산 ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal component index') plt.legend(loc='best') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 특성 변환 ###Code # (고윳값, 고유벡터) 튜플의 리스트를 만듭니다 eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # 높은 값에서 낮은 값으로 (고윳값, 고유벡터) 튜플을 정렬합니다 eigen_pairs.sort(key=lambda k: k[0], reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('투영 행렬 W:\n', w) X_train_std[0].dot(w) X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 사이킷런의 주성분 분석 **노트**이어지는 네 개의 셀은 책에 없는 내용입니다. 사이킷런에서 앞의 PCA 구현 결과를 재현하기 위해 추가했습니다: ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # 마커와 컬러맵을 준비합니다 markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # 결정 경계를 그립니다 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # 클래스 샘플을 표시합니다 for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap.colors[idx], edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown 처음 두 개의 주성분을 사용하여 로지스틱 회귀 분류기를 훈련합니다. ###Code from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) lr = LogisticRegression(solver='liblinear', multi_class='auto') lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown 선형 판별 분석을 통한 지도방식의 데이터 압축 산포 행렬 계산 각 클래스이 평균 벡터를 계산합니다: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516 0.5416 0.2338 0.5897 0.6563 1.2075] MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946 0.0703 -0.8286 0.3144 0.3608 -0.7253] MV 3: [ 0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287 -0.7795 0.9649 -1.209 -1.3622 -0.4013] ###Markdown 클래스 내 산포 행렬을 계산합니다: ###Code d = 13 # 특성의 수 S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('클래스 내의 산포 행렬: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output 클래스 내의 산포 행렬: 13x13 ###Markdown 클래스가 균일하게 분포되어 있지 않기 때문에 공분산 행렬을 사용하는 것이 더 낫습니다: ###Code print('클래스 레이블 분포: %s' % np.bincount(y_train)[1:]) d = 13 # 특성의 수 S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T, bias=True) S_W += class_scatter print('스케일 조정된 클래스 내의 산포 행렬: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output 스케일 조정된 클래스 내의 산포 행렬: 13x13 ###Markdown 클래스 간 산포 행렬을 계산합니다: ###Code mean_overall = np.mean(X_train_std, axis=0) mean_overall = mean_overall.reshape(d, 1) # 열 벡터로 만들기 d = 13 # 특성의 수 S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # 열 벡터로 만들기 S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('클래스 간의 산포 행렬: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output 클래스 간의 산포 행렬: 13x13 ###Markdown 새로운 특성 부분 공간을 위해 선형 판별 벡터 선택하기 행렬 $S_W^{-1}S_B$의 일반적인 고윳값 분해 문제를 풉니다: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown 고윳값의 역순으로 고유 벡터를 정렬합니다: ###Code # (고윳값, 고유벡터) 튜플의 리스트를 만듭니다. eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # (고윳값, 고유벡터) 튜플을 큰 값에서 작은 값 순서대로 정렬합니다. eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # 고윳값의 역순으로 올바르게 정렬되었는지 확인합니다. print('내림차순의 고윳값:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('행렬 W:\n', w) ###Output 행렬 W: [[-0.1484 -0.4093] [ 0.091 -0.1583] [-0.0168 -0.3536] [ 0.1487 0.322 ] [-0.0165 -0.0813] [ 0.1912 0.0841] [-0.7333 0.2828] [-0.0751 -0.0099] [ 0.002 0.0902] [ 0.2953 -0.2168] [-0.0327 0.274 ] [-0.3539 -0.0133] [-0.3918 -0.5954]] ###Markdown 새로운 특성 공간으로 샘플 투영하기 ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0], X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression(solver='liblinear', multi_class='auto') lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 역주 ###Code y_uniq, y_count = np.unique(y_train, return_counts=True) priors = y_count / X_train_std.shape[0] priors ###Output _____no_output_____ ###Markdown $\sigma_{jk} = \frac{1}{n} \sum_{i=1}^n (x_j^{(i)}-\mu_j)(x_k^{(i)}-\mu_k)$$m = \sum_{i=1}^c \frac{n_i}{n} m_i$$S_W = \sum_{i=1}^c \frac{n_i}{n} S_i = \sum_{i=1}^c \frac{n_i}{n} \Sigma_i$ ###Code s_w = np.zeros((X_train_std.shape[1], X_train_std.shape[1])) for i, label in enumerate(y_uniq): # 1/n로 나눈 공분산 행렬을 얻기 위해 bias=True로 지정합니다. s_w += priors[i] * np.cov(X_train_std[y_train == label].T, bias=True) ###Output _____no_output_____ ###Markdown $ S_B = S_T-S_W = \sum_{i=1}^{c}\frac{n_i}{n}(m_i-m)(m_i-m)^T $ ###Code s_b = np.zeros((X_train_std.shape[1], X_train_std.shape[1])) for i, mean_vec in enumerate(mean_vecs): n = X_train_std[y_train == i + 1].shape[0] mean_vec = mean_vec.reshape(-1, 1) s_b += priors[i] * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) import scipy ei_val, ei_vec = scipy.linalg.eigh(s_b, s_w) ei_vec = ei_vec[:, np.argsort(ei_val)[::-1]] ei_vec /= np.linalg.norm(ei_vec, axis=0) lda_eigen = LDA(solver='eigen') lda_eigen.fit(X_train_std, y_train) # 클래스 내의 산포 행렬은 covariance_ 속성에 저장되어 있습니다. np.allclose(s_w, lda_eigen.covariance_) Sb = np.cov(X_train_std.T, bias=True) - lda_eigen.covariance_ np.allclose(Sb, s_b) np.allclose(lda_eigen.scalings_[:, :2], ei_vec[:, :2]) np.allclose(lda_eigen.transform(X_test_std), np.dot(X_test_std, ei_vec[:, :2])) ###Output _____no_output_____ ###Markdown 커널 PCA를 사용하여 비선형 매핑하기 파이썬으로 커널 PCA 구현하기 ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF 커널 PCA 구현 매개변수 ------------ X: {넘파이 ndarray}, shape = [n_samples, n_features] gamma: float RBF 커널 튜닝 매개변수 n_components: int 반환할 주성분 개수 반환값 ------------ X_pc: {넘파이 ndarray}, shape = [n_samples, k_features] 투영된 데이터셋 """ # MxN 차원의 데이터셋에서 샘플 간의 유클리디안 거리의 제곱을 계산합니다. sq_dists = pdist(X, 'sqeuclidean') # 샘플 간의 거리를 정방 대칭 행렬로 변환합니다. mat_sq_dists = squareform(sq_dists) # 커널 행렬을 계산합니다. K = exp(-gamma * mat_sq_dists) # 커널 행렬을 중앙에 맞춥니다. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # 중앙에 맞춰진 커널 행렬의 고윳값과 고유벡터를 구합니다. # scipy.linalg.eigh 함수는 오름차순으로 반환합니다. eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # 최상위 k 개의 고유벡터를 선택합니다(결과값은 투영된 샘플입니다). X_pc = np.column_stack([eigvecs[:, i] for i in range(n_components)]) return X_pc ###Output _____no_output_____ ###Markdown 예제 1: 반달 모양 구분하기 ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() plt.show() from sklearn.decomposition import PCA scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 예제 2: 동심원 분리하기 ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 새로운 데이터 포인트 투영하기 ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF 커널 PCA 구현 매개변수 ------------ X: {넘파이 ndarray}, shape = [n_samples, n_features] gamma: float RBF 커널 튜닝 매개변수 n_components: int 반환할 주성분 개수 Returns ------------ alphas: {넘파이 ndarray}, shape = [n_samples, k_features] 투영된 데이터셋 lambdas: list 고윳값 """ # MxN 차원의 데이터셋에서 샘플 간의 유클리디안 거리의 제곱을 계산합니다. sq_dists = pdist(X, 'sqeuclidean') # 샘플 간의 거리를 정방 대칭 행렬로 변환합니다. mat_sq_dists = squareform(sq_dists) # 커널 행렬을 계산합니다. K = exp(-gamma * mat_sq_dists) # 커널 행렬을 중앙에 맞춥니다. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # 중앙에 맞춰진 커널 행렬의 고윳값과 고유 벡터를 구합니다. # scipy.linalg.eigh 함수는 오름차순으로 반환합니다. eigvals, eigvecs = eigh(K) eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1] # 최상위 k 개의 고유 벡터를 선택합니다(투영 결과). alphas = np.column_stack([eigvecs[:, i] for i in range(n_components)]) # 고유 벡터에 상응하는 고윳값을 선택합니다. lambdas = [eigvals[i] for i in range(n_components)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # 원본 투영 x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # 새로운 데이터포인트를 투영합니다. x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown 사이킷런의 커널 PCA ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Copyright (c) 2015, 2016 [Sebastian Raschka](sebastianraschka.com)https://github.com/rasbt/python-machine-learning-book[MIT License](https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -u -d -v -p numpy,scipy,matplotlib,scikit-learn ###Output Sebastian Raschka last updated: 2016-03-25 CPython 3.5.1 IPython 4.0.3 numpy 1.10.4 scipy 0.17.0 matplotlib 1.5.1 scikit-learn 0.17.1 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1-–-separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2-–-separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis ###Code Image(filename='./images/05_01.png', width=400) import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code from sklearn.cross_validation import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.33051429 0.08414846 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[-0.14669811 0.50417079] [ 0.24224554 0.24216889] [ 0.02993442 0.28698484] [ 0.25519002 -0.06468718] [-0.12079772 0.22995385] [-0.38934455 0.09363991] [-0.42326486 0.01088622] [ 0.30634956 0.01870216] [-0.30572219 0.03040352] [ 0.09869191 0.54527081] [-0.30032535 -0.27924322] [-0.36821154 -0.174365 ] [-0.29259713 0.36315461]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the the Matrix W with its signs flipped. E.g., the matrix shown in the book was printed as:```[[ 0.14669811 0.50417079][-0.24224554 0.24216889][-0.02993442 0.28698484][-0.25519002 -0.06468718][ 0.12079772 0.22995385][ 0.38934455 0.09363991][ 0.42326486 0.01088622][-0.30634956 0.01870216][ 0.30572219 0.03040352][-0.09869191 0.54527081]```Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma(-v) = -\Sigma v = -\lambda v = \lambda(-v).$$ ###Code X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis ###Code Image(filename='./images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[ 0.0662 -0.3797] [-0.0386 -0.2206] [ 0.0217 -0.3816] [-0.184 0.3018] [ 0.0034 0.0141] [-0.2326 0.0234] [ 0.7747 0.1869] [ 0.0811 0.0696] [-0.0875 0.1796] [-0.185 -0.284 ] [ 0.066 0.2349] [ 0.3805 0.073 ] [ 0.3285 -0.5971]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.lda import LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='./images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown [Sebastian Raschka](http://sebastianraschka.com), 2015https://github.com/rasbt/python-machine-learning-book Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -u -d -v -p numpy,scipy,matplotlib,scikit-learn # to install watermark just uncomment the following line: #%install_ext https://raw.githubusercontent.com/rasbt/watermark/master/watermark.py ###Output _____no_output_____ ###Markdown Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1-–-separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2-–-separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis ###Code Image(filename='./images/05_01.png', width=400) import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code from sklearn.cross_validation import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.33051429 0.08414846 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[-0.14669811 0.50417079] [ 0.24224554 0.24216889] [ 0.02993442 0.28698484] [ 0.25519002 -0.06468718] [-0.12079772 0.22995385] [-0.38934455 0.09363991] [-0.42326486 0.01088622] [ 0.30634956 0.01870216] [-0.30572219 0.03040352] [ 0.09869191 0.54527081] [-0.30032535 -0.27924322] [-0.36821154 -0.174365 ] [-0.29259713 0.36315461]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the the Matrix W with its signs flipped. E.g., the matrix shown in the book was printed as:```[[ 0.14669811 0.50417079][-0.24224554 0.24216889][-0.02993442 0.28698484][-0.25519002 -0.06468718][ 0.12079772 0.22995385][ 0.38934455 0.09363991][ 0.42326486 0.01088622][-0.30634956 0.01870216][ 0.30572219 0.03040352][-0.09869191 0.54527081]```Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma(-v) = -\Sigma v = -\lambda v = \lambda(-v).$$ ###Code X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis ###Code Image(filename='./images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[ 0.0662 -0.3797] [-0.0386 -0.2206] [ 0.0217 -0.3816] [-0.184 0.3018] [ 0.0034 0.0141] [-0.2326 0.0234] [ 0.7747 0.1869] [ 0.0811 0.0696] [-0.0875 0.1796] [-0.185 -0.284 ] [ 0.066 0.2349] [ 0.3805 0.073 ] [ 0.3285 -0.5971]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code from sklearn.lda import LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='./images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] x_new x_proj = alphas[25] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Copyright (c) 2015, 2016 [Sebastian Raschka](sebastianraschka.com)https://github.com/rasbt/python-machine-learning-book[MIT License](https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt) Python Machine Learning - Code Examples Chapter 5 - Compressing Data via Dimensionality Reduction Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -u -d -p numpy,scipy,matplotlib,sklearn ###Output Sebastian Raschka last updated: 2017-03-06 numpy 1.12.0 scipy 0.18.1 matplotlib 2.0.0 sklearn 0.18.1 ###Markdown *The use of `watermark` is optional. You can install this IPython extension via "`pip install watermark`". For more information, please see: https://github.com/rasbt/watermark.* Overview - [Unsupervised dimensionality reduction via principal component analysis 128](Unsupervised-dimensionality-reduction-via-principal-component-analysis-128) - [Total and explained variance](Total-and-explained-variance) - [Feature transformation](Feature-transformation) - [Principal component analysis in scikit-learn](Principal-component-analysis-in-scikit-learn)- [Supervised data compression via linear discriminant analysis](Supervised-data-compression-via-linear-discriminant-analysis) - [Computing the scatter matrices](Computing-the-scatter-matrices) - [Selecting linear discriminants for the new feature subspace](Selecting-linear-discriminants-for-the-new-feature-subspace) - [Projecting samples onto the new feature space](Projecting-samples-onto-the-new-feature-space) - [LDA via scikit-learn](LDA-via-scikit-learn)- [Using kernel principal component analysis for nonlinear mappings](Using-kernel-principal-component-analysis-for-nonlinear-mappings) - [Kernel functions and the kernel trick](Kernel-functions-and-the-kernel-trick) - [Implementing a kernel principal component analysis in Python](Implementing-a-kernel-principal-component-analysis-in-Python) - [Example 1 – separating half-moon shapes](Example-1:-Separating-half-moon-shapes) - [Example 2 – separating concentric circles](Example-2:-Separating-concentric-circles) - [Projecting new data points](Projecting-new-data-points) - [Kernel principal component analysis in scikit-learn](Kernel-principal-component-analysis-in-scikit-learn)- [Summary](Summary) ###Code from IPython.display import Image %matplotlib inline # Added version check for recent scikit-learn 0.18 checks from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version ###Output _____no_output_____ ###Markdown Unsupervised dimensionality reduction via principal component analysis ###Code Image(filename='./images/05_01.png', width=400) import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Note:If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at [./../datasets/wine/wine.data](./../datasets/wine/wine.data).Or you could fetch it via ###Code df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine.head() ###Output _____no_output_____ ###Markdown Splitting the data into 70% training and 30% test subsets. ###Code if Version(sklearn_version) < '0.18': from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Standardizing the data. ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ###Output _____no_output_____ ###Markdown ---**Note**Accidentally, I wrote `X_test_std = sc.fit_transform(X_test)` instead of `X_test_std = sc.transform(X_test)`. In this case, it wouldn't make a big difference since the mean and standard deviation of the test set should be (quite) similar to the training set. However, as remember from Chapter 3, the correct way is to re-use parameters from the training set if we are doing any kind of transformation -- the test set should basically stand for "new, unseen" data.My initial typo reflects a common mistake is that some people are *not* re-using these parameters from the model training/building and standardize the new data "from scratch." Here's simple example to explain why this is a problem.Let's assume we have a simple training set consisting of 3 samples with 1 feature (let's call this feature "length"):- train_1: 10 cm -> class_2- train_2: 20 cm -> class_2- train_3: 30 cm -> class_1mean: 20, std.: 8.2After standardization, the transformed feature values are- train_std_1: -1.21 -> class_2- train_std_2: 0 -> class_2- train_std_3: 1.21 -> class_1Next, let's assume our model has learned to classify samples with a standardized length value < 0.6 as class_2 (class_1 otherwise). So far so good. Now, let's say we have 3 unlabeled data points that we want to classify:- new_4: 5 cm -> class ?- new_5: 6 cm -> class ?- new_6: 7 cm -> class ?If we look at the "unstandardized "length" values in our training datast, it is intuitive to say that all of these samples are likely belonging to class_2. However, if we standardize these by re-computing standard deviation and and mean you would get similar values as before in the training set and your classifier would (probably incorrectly) classify samples 4 and 5 as class 2.- new_std_4: -1.21 -> class 2- new_std_5: 0 -> class 2- new_std_6: 1.21 -> class 1However, if we use the parameters from your "training set standardization," we'd get the values:- sample5: -18.37 -> class 2- sample6: -17.15 -> class 2- sample7: -15.92 -> class 2The values 5 cm, 6 cm, and 7 cm are much lower than anything we have seen in the training set previously. Thus, it only makes sense that the standardized features of the "new samples" are much lower than every standardized feature in the training set.--- Eigendecomposition of the covariance matrix. ###Code import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ###Output Eigenvalues [ 4.8923083 2.46635032 1.42809973 1.01233462 0.84906459 0.60181514 0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212 0.2399553 ] ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Total and explained variance ###Code tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Feature transformation ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True) # Note: I added the `key=lambda k: k[0]` in the sort call above # just like I used it further below in the LDA section. # This is to avoid problems if there are ties in the eigenvalue # arrays (i.e., the sorting algorithm will only regard the # first element of the tuples, now). w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) ###Output Matrix W: [[ 0.14669811 0.50417079] [-0.24224554 0.24216889] [-0.02993442 0.28698484] [-0.25519002 -0.06468718] [ 0.12079772 0.22995385] [ 0.38934455 0.09363991] [ 0.42326486 0.01088622] [-0.30634956 0.01870216] [ 0.30572219 0.03040352] [-0.09869191 0.54527081] [ 0.30032535 -0.27924322] [ 0.36821154 -0.174365 ] [ 0.29259713 0.36315461]] ###Markdown **Note**Depending on which version of NumPy and LAPACK you are using, you may obtain the the Matrix W with its signs flipped. E.g., the matrix shown in the book was printed as:```[[ 0.14669811 0.50417079][-0.24224554 0.24216889][-0.02993442 0.28698484][-0.25519002 -0.06468718][ 0.12079772 0.22995385][ 0.38934455 0.09363991][ 0.42326486 0.01088622][-0.30634956 0.01870216][ 0.30572219 0.03040352][-0.09869191 0.54527081]```Please note that this is not an issue: If $v$ is an eigenvector of a matrix $\Sigma$, we have$$\Sigma v = \lambda v,$$where $\lambda$ is our eigenvalue,then $-v$ is also an eigenvector that has the same eigenvalue, since$$\Sigma(-v) = -\Sigma v = -\lambda v = \lambda(-v).$$ ###Code X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() X_train_std[0].dot(w) ###Output _____no_output_____ ###Markdown Principal component analysis in scikit-learn ###Code from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap(idx), edgecolor='black', marker=markers[idx], label=cl) ###Output _____no_output_____ ###Markdown Training logistic regression classifier using the first 2 principal components. ###Code from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown Supervised data compression via linear discriminant analysis ###Code Image(filename='./images/05_06.png', width=400) ###Output _____no_output_____ ###Markdown Computing the scatter matrices Calculate the mean vectors for each class: ###Code np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) ###Output MV 1: [ 0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306 0.5354 0.2209 0.4855 0.798 1.2017] MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164 0.1095 -0.8796 0.4392 0.2776 -0.7016] MV 3: [ 0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436 -0.7652 0.979 -1.1698 -1.3007 -0.3912] ###Markdown Compute the within-class scatter matrix: ###Code d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Within-class scatter matrix: 13x13 ###Markdown Better: covariance matrix since classes are not equally distributed: ###Code print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) ###Output Scaled within-class scatter matrix: 13x13 ###Markdown Compute the between-class scatter matrix: ###Code mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ###Output Between-class scatter matrix: 13x13 ###Markdown Selecting linear discriminants for the new feature subspace Solve the generalized eigenvalue problem for the matrix $S_W^{-1}S_B$: ###Code eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) ###Output _____no_output_____ ###Markdown **Note**: Above, I used the [`numpy.linalg.eig`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html) function to decompose the symmetric covariance matrix into its eigenvalues and eigenvectors. >>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) This is not really a "mistake," but probably suboptimal. It would be better to use [`numpy.linalg.eigh`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html) in such cases, which has been designed for [Hermetian matrices](https://en.wikipedia.org/wiki/Hermitian_matrix). The latter always returns real eigenvalues; whereas the numerically less stable `np.linalg.eig` can decompose nonsymmetric square matrices, you may find that it returns complex eigenvalues in certain cases. (S.R.) Sort eigenvectors in decreasing order of the eigenvalues: ###Code # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ###Output Matrix W: [[-0.0662 -0.3797] [ 0.0386 -0.2206] [-0.0217 -0.3816] [ 0.184 0.3018] [-0.0034 0.0141] [ 0.2326 0.0234] [-0.7747 0.1869] [-0.0811 0.0696] [ 0.0875 0.1796] [ 0.185 -0.284 ] [-0.066 0.2349] [-0.3805 0.073 ] [-0.3285 -0.5971]] ###Markdown Projecting samples onto the new feature space ###Code X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown LDA via scikit-learn ###Code if Version(sklearn_version) < '0.18': from sklearn.lda import LDA else: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Using kernel principal component analysis for nonlinear mappings ###Code Image(filename='./images/05_11.png', width=500) ###Output _____no_output_____ ###Markdown Implementing a kernel principal component analysis in Python ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ###Output _____no_output_____ ###Markdown Example 1: Separating half-moon shapes ###Code import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Example 2: Separating concentric circles ###Code from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Projecting new data points ###Code from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[-1] x_new x_proj = alphas[-1] # original projection x_proj def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) x_reproj plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X[:-1, :], gamma=15, n_components=1) def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_new = X[-1] x_reproj = project_x(x_new, X[:-1], gamma=15, alphas=alphas, lambdas=lambdas) plt.scatter(alphas[y[:-1] == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y[:-1] == 1, 0], np.zeros((49)), color='blue', marker='o', alpha=0.5) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.scatter(alphas[y[:-1] == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y[:-1] == 1, 0], np.zeros((49)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='some point [1.8713, 0.0093]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='new point [ 100.0, 100.0]', marker='x', s=500) plt.legend(scatterpoints=1) plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Kernel principal component analysis in scikit-learn ###Code from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show() ###Output _____no_output_____
Extract/get_coordinates.ipynb
###Markdown Galsim is a simulation software that allows to reproduce astronomical scenes of the deep sky. For this it uses analytical profiles, but also models of galaxies built from real images of the COSMOS fields. The good news is that all of our AGN images are from the COSMOS fields too!Galsim uses a catalog of galaxies and allows user to draw images for these galaxies on a pixel grid, but also allows to draw their PSFs. Be sure to download the catalog here: [https://github.com/GalSim-developers/GalSim/wiki/RealGalaxy%20Data](https://github.com/GalSim-developers/GalSim/wiki/RealGalaxy%20Data)and to install galsim. ###Code i=2 #Index of files start at 2 ras = [] decs = [] #Stores ra and dec coordinates of HST AGNs for f in files: ra, dec = f.split('_')[1:3] if f.split('_')[-1] == 'sci.fits': #print(ra, dec) ras.append(np.float(ra)) decs.append(np.float(dec)) i+=1 #Now arrays ras and decs contain the ra-dec coordinates of the centers of all the HST AGN images #Coordinates of all the galaxies in the galsim COSMOS sample gal_ra, gal_dec = [], [] for g in galsim_cat: ra, dec = g[1], g[2] gal_ra.append(ra) gal_dec.append(dec) #Positions of AGN and galsim sources plt.figure(figsize = (15,15)) plt.title('Position of galsim galaxies and AGNs', fontsize = '30') plt.plot(np.array(gal_ra), np.array(gal_dec), 'o', label = 'galsim galaxies') plt.plot(np.array(ras), np.array(decs), 'o', label = 'AGN positions') plt.xlabel('Ra', fontsize = 20) plt.ylabel('Dec', fontsize = 20) plt.legend() plt.show() print(i-2) def galsim_psf_picker(index, catalog): """ A function that extract the psf of a galsim galaxy Paramters --------- index: int index of the galsim galaxy for which we want to extract the psf catalog: list list of galsim object from a galsim catalog returns ------- psf: array image of the psf for galsim image at index `index` """ gal_cat = galsim.RealGalaxyCatalog(file_name=catalog) psf = gal_cat.getPSF(index).drawImage(nx=51, ny=51, scale=0.03, method='real_space', offset = (-1,-1)) return psf.array # Example of how the psf picker works: # Show the psf for the first galaxy in the galsim catalog: psf0 = galsim_psf_picker(0, galsim_file) print(np.where(psf0 == np.max(psf0))) plt.title('psf') plt.imshow(psf0, cmap = 'gist_stern')#Use np.log10(psf0) to reveal seemingly hidden features. plt.axis('off') #Remove the indexation of the x and y axes plt.show() ###Output (array([25]), array([25])) ###Markdown What we want is to extract the HST PSF for each AGN (orange point on the first plot).To do so, we use galsim images. Galsim has a set of PSF modeled for each galaxy in the COSMOS sample. catalog `gal_cat` contains a list of galaxies, the coordinates of which are represented in blue in the first plot and stored in variables `gal_ra` and `gal_dec`.For each AGN, we will find the closest galaxy in the galsim sample and record its index. then we will use the function `galsim_psf_picker` to extract the psf from this galaxy and we will use it a psf for the corresponding AGN. To do so, we will save the psf as a file that has the following name: `'index_ra_dec_HST_psf.fits'`. In the name ra and dec should be replaced by the value of the coordinates of the psf and index should be the index of the AGN to which this PSF corresponds.Make sure you understand what every variable contains. Doing a print of the variables that you are not sure about helps.You can save images as fits files using instructions found here [https://docs.astropy.org/en/stable/io/fits/creating-a-new-fits-file](https://docs.astropy.org/en/stable/io/fits/creating-a-new-fits-file) ###Code # Your turn now! # We need a psf for each AGN galaxy in our sample # This requires finding for each AGN galaxy the closest galsim galaxy. # We will start by creating an array of size 2*N (N: the number of galaxies in our sample) that contains the coordinates of the AGN galaxies. #Note, at the moment, these coordinates are in arrays `ras` and `decs` of size N each coord = np.array([ras, decs]).T indAgn = 2 for c in coord: #c should be a coordinate point of size 2 with the ra,dec coordinates of an AGN galaxy #Now compute the distance between c and each point of the galsim catalog d = np.sqrt( ((c[0]-gal_ra)**2)+(c[1]-gal_dec)**2) # print(c[0], c[1]) # print(gal_ra[:10], gal_dec[:10]) # find the index of the closest galsim galaxy to `c` ind = np.where(d == np.min(d))[0][0] #Exctract the psf for the galsim galaxy at index `ind` psf = galsim_psf_picker(ind, galsim_file) #Save the PSF in a fits file which name starts with the index of the AGN galaxy (be careful, it's not the index of the galsim galaxy) hdu = pf.PrimaryHDU(psf) hdul = pf.HDUList([hdu]) #The final name of your files should look something like '2-psf-HST-COSMOS.fits', '3-psf-HST-COSMOS.fits', etc hdul.writeto(f'HST_psfs/{indAgn}-psf-HST-COSMOS.fits') indAgn+=1 ###Output _____no_output_____
G2_data_analysis.ipynb
###Markdown G2 - Grado di soddisfazione della vita ###Code # Import librerie per analisi dati (Pandas) e dati Istat import os import pandas as pd import numpy as np from IPython.core.display import HTML import istat import jsonstat # cache dir per velocizzare analisi in locale cache_dir = os.path.abspath(os.path.join("..", "tmp/od_la_grande_fuga", "istat_cached")) istat.cache_dir(cache_dir) istat.lang(0) # lingua italiano print("cache_dir is '{}'".format(istat.cache_dir())) # Directory dir_df = os.path.join(os.path.abspath(''),'stg') # AREA -> Opinioni dei cittadini e soddisfazione per la vita: 15 istat_area_sodd = istat.area(15) istat_area_sodd.datasets() # DATASET -> Soddisfazione per la vita istat_dataset_soddisfazione = istat_area_sodd.dataset('DCCV_AVQ_PERSONE') istat_dataset_soddisfazione # istat_dataset_soddisfazione.dimensions() spec = { #"Territorio":1, "Tipo dato":1079, "Misura":3, "Sesso":3, "Classe di età":259, "Titolo di studio":12, "Condizione e posizione nella professione":12, "Tempo e frequenza":2186 } collection = istat_dataset_soddisfazione.getvalues(spec) ds = collection.dataset(0) ds df = ds.to_data_frame('Territorio') df.reset_index(level=0, inplace=True) df=df[(df['Territorio']=='Italia') | (df['Territorio']=='Nord') | (df['Territorio']=='Sud')] df.head() df_filename = r'df_soddisfazione.pkl' df_fullpath = os.path.join(dir_df, df_filename) df.to_pickle(df_fullpath) ###Output _____no_output_____ ###Markdown Calcolo Dataset: Soddisfazione Vita | Reddito | Popolazione ###Code df_g1_filename = r'df_g1.pkl' df_g1_fullpath = os.path.join(dir_df, df_g1_filename) df_g1 = pd.read_pickle(df_g1_fullpath) result = pd.merge(df_g1, df, on='Territorio') result.drop(['Speranza di vita alla nascita'], axis=1, inplace=True) result.rename(columns={'Value': 'Gradio di soddisfazione per la vita'}, inplace=True) result result_filename = r'df_g2.pkl' result_fullpath = os.path.join(dir_df, result_filename) result.to_pickle(result_fullpath) ###Output _____no_output_____
notebooks/convolutional-neural-networks/mnist-mlp/mnist_mlp_exercise.ipynb
###Markdown Multi-Layer Perceptron, MNIST---In this notebook, we will train an MLP to classify images from the [MNIST database](http://yann.lecun.com/exdb/mnist/) hand-written digit database.The process will be broken down into the following steps:>1. Load and visualize the data2. Define a neural network3. Train the model4. Evaluate the performance of our trained model on a test dataset!Before we begin, we have to import the necessary libraries for working with data and PyTorch. ###Code # import libraries import torch import numpy as np ###Output _____no_output_____ ###Markdown --- Load and Visualize the [Data](http://pytorch.org/docs/stable/torchvision/datasets.html)Downloading may take a few moments, and you should see your progress as the data is loading. You may also choose to change the `batch_size` if you want to load more data at a time.This cell will create DataLoaders for each of our datasets. ###Code # The MNIST datasets are hosted on yann.lecun.com that has moved under CloudFlare protection # Run this script to enable the datasets download # Reference: https://github.com/pytorch/vision/issues/1938 from six.moves import urllib opener = urllib.request.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] urllib.request.install_opener(opener) from torchvision import datasets import torchvision.transforms as transforms # number of subprocesses to use for data loading num_workers = 0 # how many samples per batch to load batch_size = 20 # convert data to torch.FloatTensor transform = transforms.ToTensor() # choose the training and test datasets train_data = datasets.MNIST(root='data', train=True, download=True, transform=transform) test_data = datasets.MNIST(root='data', train=False, download=True, transform=transform) # prepare data loaders train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=num_workers) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers) ###Output _____no_output_____ ###Markdown Visualize a Batch of Training DataThe first step in a classification task is to take a look at the data, make sure it is loaded in correctly, then make any initial observations about patterns in that data. ###Code import matplotlib.pyplot as plt %matplotlib inline # obtain one batch of training images dataiter = iter(train_loader) images, labels = dataiter.next() images = images.numpy() # plot the images in the batch, along with the corresponding labels fig = plt.figure(figsize=(25, 4)) for idx in np.arange(20): ax = fig.add_subplot(2, 20/2, idx+1, xticks=[], yticks=[]) ax.imshow(np.squeeze(images[idx]), cmap='gray') # print out the correct label for each image # .item() gets the value contained in a Tensor ax.set_title(str(labels[idx].item())) ###Output <ipython-input-9-731dd270b2c2>:12: MatplotlibDeprecationWarning: Passing non-integers as three-element position specification is deprecated since 3.3 and will be removed two minor releases later. ax = fig.add_subplot(2, 20/2, idx+1, xticks=[], yticks=[]) ###Markdown View an Image in More Detail ###Code img = np.squeeze(images[1]) fig = plt.figure(figsize = (12,12)) ax = fig.add_subplot(111) ax.imshow(img, cmap='gray') width, height = img.shape thresh = img.max()/2.5 for x in range(width): for y in range(height): val = round(img[x][y],2) if img[x][y] !=0 else 0 ax.annotate(str(val), xy=(y,x), horizontalalignment='center', verticalalignment='center', color='white' if img[x][y]<thresh else 'black') ###Output _____no_output_____ ###Markdown --- Define the Network [Architecture](http://pytorch.org/docs/stable/nn.html)The architecture will be responsible for seeing as input a 784-dim Tensor of pixel values for each image, and producing a Tensor of length 10 (our number of classes) that indicates the class scores for an input image. This particular example uses two hidden layers and dropout to avoid overfitting. ###Code import torch.nn as nn import torch.nn.functional as F ## TODO: Define the NN architecture class Net(nn.Module): def __init__(self): super(Net, self).__init__() # linear layer (784 -> 1 hidden node) self.fc1 = nn.Linear(28 * 28, 560) self.fc2 = nn.Linear(560, 160) self.fc3 = nn.Linear(160, 10) self.dropout = nn.Dropout(p=0.2) def forward(self, x): # flatten image input x = x.view(-1, 28 * 28) # add hidden layer, with relu activation function x = F.relu(self.fc1(x)) x = self.dropout(x) x = F.relu(self.fc2(x)) x = self.dropout(x) x = F.log_softmax(self.fc3(x), dim=1) return x # initialize the NN model = Net() print(model) ###Output Net( (fc1): Linear(in_features=784, out_features=560, bias=True) (fc2): Linear(in_features=560, out_features=160, bias=True) (fc3): Linear(in_features=160, out_features=10, bias=True) (dropout): Dropout(p=0.2, inplace=False) ) ###Markdown Specify [Loss Function](http://pytorch.org/docs/stable/nn.htmlloss-functions) and [Optimizer](http://pytorch.org/docs/stable/optim.html)It's recommended that you use cross-entropy loss for classification. If you look at the documentation (linked above), you can see that PyTorch's cross entropy function applies a softmax funtion to the output layer *and* then calculates the log loss. ###Code ## TODO: Specify loss and optimization functions # specify loss function criterion = nn.NLLLoss() # specify optimizer optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9) ###Output _____no_output_____ ###Markdown --- Train the NetworkThe steps for training/learning from a batch of data are described in the comments below:1. Clear the gradients of all optimized variables2. Forward pass: compute predicted outputs by passing inputs to the model3. Calculate the loss4. Backward pass: compute gradient of the loss with respect to model parameters5. Perform a single optimization step (parameter update)6. Update average training lossThe following loop trains for 30 epochs; feel free to change this number. For now, we suggest somewhere between 20-50 epochs. As you train, take a look at how the values for the training loss decrease over time. We want it to decrease while also avoiding overfitting the training data. ###Code # number of epochs to train the model n_epochs = 3 # suggest training between 20-50 epochs model.train() # prep model for training for epoch in range(n_epochs): # monitor training loss train_loss = 0.0 ################### # train the model # ################### for data, target in train_loader: # clear the gradients of all optimized variables optimizer.zero_grad() # forward pass: compute predicted outputs by passing inputs to the model output = model(data) # calculate the loss loss = criterion(output, target) # backward pass: compute gradient of the loss with respect to model parameters loss.backward() # perform a single optimization step (parameter update) optimizer.step() # update running training loss train_loss += loss.item()*data.size(0) # print training statistics # calculate average loss over an epoch train_loss = train_loss/len(train_loader.dataset) print('Epoch: {} \tTraining Loss: {:.6f}'.format( epoch+1, train_loss )) ###Output Epoch: 1 Training Loss: 0.084479 Epoch: 2 Training Loss: 0.066627 Epoch: 3 Training Loss: 0.054749 ###Markdown --- Test the Trained NetworkFinally, we test our best model on previously unseen **test data** and evaluate it's performance. Testing on unseen data is a good way to check that our model generalizes well. It may also be useful to be granular in this analysis and take a look at how this model performs on each class as well as looking at its overall loss and accuracy. `model.eval()``model.eval(`) will set all the layers in your model to evaluation mode. This affects layers like dropout layers that turn "off" nodes during training with some probability, but should allow every node to be "on" for evaluation! ###Code # initialize lists to monitor test loss and accuracy test_loss = 0.0 class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) model.eval() # prep model for *evaluation* for data, target in test_loader: # forward pass: compute predicted outputs by passing inputs to the model output = model(data) # calculate the loss loss = criterion(output, target) # update test loss test_loss += loss.item()*data.size(0) # convert output probabilities to predicted class _, pred = torch.max(output, 1) # compare predictions to true label correct = np.squeeze(pred.eq(target.data.view_as(pred))) # calculate test accuracy for each object class for i in range(batch_size): label = target.data[i] class_correct[label] += correct[i].item() class_total[label] += 1 # calculate and print avg test loss test_loss = test_loss/len(test_loader.dataset) print('Test Loss: {:.6f}\n'.format(test_loss)) for i in range(10): if class_total[i] > 0: print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % ( str(i), 100 * class_correct[i] / class_total[i], class_correct[i], class_total[i])) else: print('Test Accuracy of %5s: N/A (no training examples)' % (classes[i])) print('\nTest Accuracy (Overall): %2d%% (%2d/%2d)' % ( 100. * np.sum(class_correct) / np.sum(class_total), np.sum(class_correct), np.sum(class_total))) ###Output _____no_output_____ ###Markdown Visualize Sample Test ResultsThis cell displays test images and their labels in this format: `predicted (ground-truth)`. The text will be green for accurately classified examples and red for incorrect predictions. ###Code # obtain one batch of test images dataiter = iter(test_loader) images, labels = dataiter.next() # get sample outputs output = model(images) # convert output probabilities to predicted class _, preds = torch.max(output, 1) # prep images for display images = images.numpy() # plot the images in the batch, along with predicted and true labels fig = plt.figure(figsize=(25, 4)) for idx in np.arange(20): ax = fig.add_subplot(2, 20/2, idx+1, xticks=[], yticks=[]) ax.imshow(np.squeeze(images[idx]), cmap='gray') ax.set_title("{} ({})".format(str(preds[idx].item()), str(labels[idx].item())), color=("green" if preds[idx]==labels[idx] else "red")) ###Output _____no_output_____
examples/Advanced_Lane_Finding.ipynb
###Markdown Advanced Lane Finding ProjectThe goals / steps of this project are the following:* Compute the camera calibration matrix and distortion coefficients given a set of chessboard images.* Apply a distortion correction to raw images.* Use color transforms, gradients, etc., to create a thresholded binary image.* Apply a perspective transform to rectify binary image ("birds-eye view").* Detect lane pixels and fit to find the lane boundary.* Determine the curvature of the lane and vehicle position with respect to center.* Warp the detected lane boundaries back onto the original image.* Output visual display of the lane boundaries and numerical estimation of lane curvature and vehicle position. ###Code import numpy as np import cv2 import glob import matplotlib.pyplot as plt import matplotlib.image as mpimg import os from moviepy.editor import VideoFileClip from IPython.display import HTML #import Advanced_Lane_Finding %matplotlib qt ###Output _____no_output_____ ###Markdown 1.Camera CalibrationIn the Advanced_Lane_Finding module, there is a class called **cameraCalibration** with the arguments followed:1. A list of calibration images(Chessboard images) will pass through class cameraCalibration2. Number of corners in X Coordinate3. Number of corners in Y Coordinate ###Code # we can try it with single image images = glob.glob('camera_cal/calibration*.jpg') img = cv2.imread('camera_cal/calibration1.jpg') # Arrays to store object points and image points from all the image objpoints = [] # 3D points in real world space imgpoints = [] # 2D points in image plane # Prepare object points, like (0, 0, 0), (1, 0, 0), (2, 0, 0),..., (7, 5, 0) objp = np.zeros((9*6, 3), np.float32) objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1, 2) # x, y coordinates for idx, file_name in enumerate(images): # read in each image img = cv2.imread(file_name) # Convert image to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (9, 6), None) if ret: objpoints.append(objp) imgpoints.append(corners) #image_size = (img.shape[1],img.shape[0]) ret1, mtx, dist, rvecs, tvecs = cv2.calibrateCamera( objpoints, imgpoints, img.shape[1::-1], None, None) dist = cv2.undistort(img, mtx, dist, None, mtx) # Display both distorted and undistorted images plt.figure(figsize=(10,5)) plt.subplot(1, 2, 1) plt.axis('off') plt.title('Distorted Image') plt.imshow(distorted_image) plt.subplot(1, 2, 2) plt.imshow(undistorted_image) plt.axis('off') plt.title('Undistorted Image') plt.show() ###Output _____no_output_____ ###Markdown Advanced Lane Finding ProjectThe goals / steps of this project are the following:* Compute the camera calibration matrix and distortion coefficients given a set of chessboard images.* Apply a distortion correction to raw images.* Use color transforms, gradients, etc., to create a thresholded binary image.* Apply a perspective transform to rectify binary image ("birds-eye view").* Detect lane pixels and fit to find the lane boundary.* Determine the curvature of the lane and vehicle position with respect to center.* Warp the detected lane boundaries back onto the original image.* Output visual display of the lane boundaries and numerical estimation of lane curvature and vehicle position.--- Import Relevant Packages ###Code import numpy as np import cv2 import glob import matplotlib.pyplot as plt import matplotlib.image as mpimg %matplotlib qt ###Output _____no_output_____ ###Markdown Define Helper Functions as Needed ###Code #Calibrates Camera based on images taken in chessboard size def camera_calibrate(load,save): # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((6*9,3), np.float32) objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images images = glob.glob(load) # Step through the list an d search for chessboard corners for index, fname in enumerate (images): img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (9,6),None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners cv2.drawChessboardCorners(img, (9,6), corners, ret) save_file_name = save +'corners_found'+str(index + 1)+'.jpg' cv2.imwrite(save_file_name, img) return objpoints,imgpoints #Undistorting an image # performs the camera calibration, image distortion correction and # returns the undistorted image def cal_undistort(img, objpoints, imgpoints): ret, mtx, dist, rvecs, tvecs =cv2.calibrateCamera(objpoints,imgpoints,img.shape[1::-1], None, None) undst = cv2.undistort(img, mtx, dist, None, mtx) return undst ###Output _____no_output_____ ###Markdown Camera Calibration and Undistorting Image ###Code load = 'camera_cal/calibration*.jpg' save = 'camera_cal' objpoints = [] imgpoints = [] objpoints,imgpoints = camera_calibrate(load,save) image = mpimg.imread('camera_cal/calibration1.jpg') undst_image = cal_undistort(image,objpoints,imgpoints) f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10)) ax1.imshow(image) ax1.set_title('Original Image') ax2.imshow(undst_image) ax2.set_title('Undistorted Image') ###Output _____no_output_____
Prakhar_Gurawa_Q_learning_Frozen_Lake.ipynb
###Markdown Learning Frozen Lake problem using Q learningIn this work, we will try to learn policy for an agent using a Temporal Difference learning algorithm called **Q-Learning**.We will create an environement of 5*5 size and add few manual hole in it for which the agent tries to reach its destination location which is at bottom right cell of the environment from the start position which is top left cell.Also this work considers frozen lake problem as a determinsitic problem, not considering other varient of this problem known as slippery frozen lake where actions are not deterministic. In determinsitic case like ours, if we move "right" the agent always moves "right" and not to any other direction.**Note:** We wont be using any other library to simulate environment and agents like OpenAI Gym. Rather code from scratch all the classes like Agent, States and Environment.![maxresdefault.jpg]() Importing necessary libraries ###Code import numpy as np import random import seaborn as sn import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Defining global variables for environment ###Code BOARD_ROWS = 5 # Number of rows of frozen lake BOARD_COLS = 5 # Number of cols of frozen lake WIN_STATE = (4, 4) # Agent want to reach bottom right corner START = (0, 0) # Agent will start from top left corner HOLES = [(1,0),(1,3),(3,1),(4,2)] # Manually adding few hole in the environment ###Output _____no_output_____ ###Markdown Defining hyperparameters ###Code total_episodes = 10000 # Total episodes learning_rate = 0.5 # Learning rate max_steps = 99 # Max steps per episode gamma = 0.9 # Discounting rate epsilon = 0.1 # Exploration rate # Uncomment bellow hyperameters to decrease exploration rate wrt time # max_epsilon = 1.0 # Exploration probability at start # min_epsilon = 0.01 # Minimum exploration probability # decay_rate = 0.005 # Exponential decay rate for exploration prob ###Output _____no_output_____ ###Markdown Defining State ###Code class State: def __init__(self,x,y): # Initialize state with provided coordinates self.cordinates = (x,y) self.isEnd = False def getCoordinates(self): return self.cordinates def getReward(self): if self.cordinates == WIN_STATE: # Rward at win state is 10 return 10 elif self.cordinates in HOLES: # Reward for failing in any hole is -5 ie punishment return -5 else: # Reward for each transition to a non terminal state is -1 return -1 def isEndFunc(self): if (self.cordinates == WIN_STATE): self.isEnd = True def conversion(self): # Function to convert a cell location (2d space) to 1d space for q learning table return BOARD_COLS*self.cordinates[0]+self.cordinates[1] def nxtCordinates(self, action): # Provides next coordinates based on action provides if action == "up": nxtState = (self.cordinates[0] - 1, self.cordinates[1]) elif action == "down": nxtState = (self.cordinates[0] + 1, self.cordinates[1]) elif action == "left": nxtState = (self.cordinates[0], self.cordinates[1] - 1) else: nxtState = (self.cordinates[0], self.cordinates[1] + 1) if (nxtState[0] >= 0) and (nxtState[0] <= BOARD_ROWS-1): if (nxtState[1] >= 0) and (nxtState[1] <= BOARD_COLS-1): return nxtState # if next state legal return self.cordinates # Any move off the grid leaves state unchanged ###Output _____no_output_____ ###Markdown Defining EnvironmentThe agent interacts with environment to learn anoptimal policy using some learning algorithms like Q learning,SARSA etc.![reinforcement-learning-fig1-700.jpg]() ###Code class Environment: def __init__(self,length,width): self.BOARD_ROWS = length self.BOARD_COLS = width # Setters and Getters to define winning state/location , start state/location and holes in the environment/lake def setWinState(self,x,y): self.WIN_STATE = (x,y) def setStart(self,x,y): self.START = (x,y) def setHoles(self,holesarray): self.HOLES = holesarray def getWinState(self): return self.WIN_STATE def getStart(self): return self.START def getHoles(self): return self.HOLES def getSize(self): return self.BOARD_ROWS,self.BOARD_COLS ###Output _____no_output_____ ###Markdown Defining AgentThe agent works on the Q learning equation which is defined below:![qlearneq.png]()Also, the agent uses epsilon greedy method to deal with exploration-exploitation tradeoff:![q-learning-epsilon-greedy-1.png]() ###Code class Agent: def __init__(self): self.actions = ["up", "down", "left", "right"] # Four possible movement for agent self.env = Environment(BOARD_ROWS,BOARD_COLS) # Defining environment for agent self.env.setWinState(WIN_STATE[0],WIN_STATE[1]) self.env.setStart(START[0],START[1]) self.env.setHoles(HOLES) self.state_size,self.action_size = BOARD_ROWS*BOARD_COLS,len(self.actions) # Defining state and action space self.qtable = np.zeros((self.state_size,self.action_size)) # Defining Q table for policy learning self.rewards = [] # To store rewards per episode def printTable(self): # Utility fucntion to print Q learning table print("------------------- Q LEARNING TABLE ------------------") print(self.qtable) print("-------------------------------------------------------") def printPath(self): rows,cols = self.env.getSize() data = np.ones((rows,cols))*150 # Create a matrix to display in heatmap for hole in self.env.getHoles(): data[hole[0],hole[1]] = 300 # Mark all the holes to represent in heatmap START = self.env.getStart() state = State(START[0],START[1]) while True: print("::: ",state.getCoordinates()) coerd = state.getCoordinates() data[coerd[0],coerd[1]] = 50 # Mark the movement path to represent in heatmap if state.getCoordinates()[0]==self.env.getWinState()[0] and state.getCoordinates()[1]==self.env.getWinState()[1]: break old_state = state.conversion() action = np.argmax(self.qtable[old_state, :]) # Perform action which gives maximum Q value nextstate = state.nxtCordinates(self.actions[action]) # Get coordinates of next state state = State(nextstate[0],nextstate[1]) # Update the state for next cycle hm = sn.heatmap(data = data,linewidths=1,linecolor="black",cmap='Blues',cbar=False) plt.show() # displaying the plotted heatmap def q_learning(self): # Q-learning, which is said to be an off-policy temporal difference (TD) control algorithm START = self.env.getStart() # reset the environment for episode in range(total_episodes): state = State(START[0],START[1]) total_rewards = 0 # total reward collected per episode for step in range(max_steps): exp_exp_tradeoff = random.uniform(0, 1) # First we randomize a number old_state = state.conversion() if exp_exp_tradeoff > epsilon: # If this number > greater than epsilon --> exploitation (taking the biggest Q value for this state) action = np.argmax(self.qtable[old_state,:]) else: # Else doing a random choice --> exploration action = random.randint(0,len(self.actions)-1) nextState = state.nxtCordinates(self.actions[action]) new_state = State(nextState[0],nextState[1]).conversion() reward = state.getReward() total_rewards += reward # Capture reard collected in this step in overall reward of episode # Update Q(s,a):= Q(s,a) + lr [R(s,a) + gamma * max Q(s',a') - Q(s,a)] : Q learning equation self.qtable[old_state, action] = self.qtable[old_state, action] + learning_rate * (reward + gamma * np.max(self.qtable[new_state, :]) - self.qtable[old_state, action]) state = State(nextState[0],nextState[1]) # Update the state #epsilon = min_epsilon + (max_epsilon - min_epsilon)*np.exp(-decay_rate*episode) # Epsilon can be resuce with time to reduce exploration and focus on exploitation self.rewards.append(total_rewards) def plotReward(self): # Utility function to plot Reward collected wrt to episodes plt.figure(figsize=(12,5)) plt.plot(range(total_episodes),self.rewards,color='red') plt.xlabel('Episodes') plt.ylabel('Total Reward per Epidode') plt.show() ###Output _____no_output_____ ###Markdown Learn Q Values and display them ###Code ag = Agent() ag.q_learning() ag.printTable() ###Output ------------------- Q LEARNING TABLE ------------------ [[ 32.61625379 33.7513931 32.61625379 37.3513931 ] [ 37.3513931 42.612659 32.61625379 42.612659 ] [ 36.50233035 48.45851 37.3513931 42.22485186] [ 15.47584594 50.93707266 -2.21097188 -2.29187813] [ -2.26219063 46.10034375 -2.18453438 -2.26219063] [ 28.55093884 38.6116049 29.74702129 38.612659 ] [ 37.3513931 48.45851 33.7513931 48.45851 ] [ 42.55658871 54.9539 42.60177656 51.35389251] [ -5.3875 58.171 38.36354 42.6345 ] [ 11.79312187 70.19 24.86445 55.9892888 ] [ 33.75137587 36.57684747 41.91148947 48.45851 ] [ 42.612659 51.3539 42.612659 54.9539 ] [ 48.45851 62.171 48.45851 62.171 ] [ 51.3539 70.19 54.9539 70.19 ] [ 62.171 79.1 62.171 70.19 ] [ 42.61256306 1.40807818 17.73717535 -3.125 ] [ 44.45851 54.931 33.29255777 58.171 ] [ 54.9539 66.59 51.3539 70.19 ] [ 62.171 79.1 62.171 79.1 ] [ 70.19 89. 70.19 79.1 ] [ 28.10236456 -2.26219063 1.33059381 -2.54190922] [ 22.60582499 55.02157623 6.76307184 66.59 ] [ 58.17099953 62.59 54.93099988 75.1 ] [ 70.19 79.1 66.59 89. ] [ 90.1 100. 90.1 100. ]] ------------------------------------------------------- ###Markdown Display the learned path by the agent ###Code ag.printPath() # The below heatmap represent the path of agent to reach destination from source. # The dark blue cells represents hole with light blue as ice, the white cell represnts path of agent ###Output ::: (0, 0) ::: (0, 1) ::: (1, 1) ::: (2, 1) ::: (2, 2) ::: (3, 2) ::: (3, 3) ::: (4, 3) ::: (4, 4) ###Markdown Plot of Rewards vs Episodes ###Code ag.plotReward() ###Output _____no_output_____
R/35_Cell_Segmentation.ipynb
###Markdown Cell Segmentation Segmentation of cells in fluorescent microscopy is a relatively common imagecharacterisation task with variations that are dependent on the specifics of fluorescentmarkers for a given experiment. A typical procedure might include1. Histogram-based threshold estimation to produce a binary image.1. Cell splitting (separating touching cells) using distance transforms and a watershed transform.1. Refinement of initial segmentation using information from other channels.1. Cell counting/characterisation.This example demonstrates the procedure on a 3 channel fluorescent microscopy image. The blue channelis a DNA marker (DAPI) that stains all cells, the red channel is a marker of cell death (Ph3)while the green channel is a marker of cell proliferation (Ki67). A typical experiment might count thenumber of cells and measure size in the different states, where states are determined by presenceof Ph3 and Ki67, various times after treatment with a drug candidate. AcknowledgementsThe image used in this example is part of the data distributed with the [Fiji training notes](http://imagej.net/User_Guides) by C. Nowell and was contributed by Steve Williams, Peter MacCallum Cancer Centre. Cell segmentation and splitting Histogram-based threshold estimation is performed by the segChannel function, listed below.It applies light smoothing followed by the Lithreshold estimator, one of a range of threshold estimation options availablein SimpleITK. A cell splitting procedure usingdistance transforms and a marker-based watershed (implemented by segBlobs, also listed below) was then applied tothe resulting mask. Distance transforms replace each foreground pixel with the distance to theclosest background pixel, producing a cone-shaped brightness profile for each circular object. Touchingcells can then be separated using the peaks of the cones as markers in a watershed transform.A marker image is created by identifying peaks in the distance transform and applying a connected-component labelling.The inverted distance transform is used as the control image for the watershed transform. Load and displayMicroscopes use many variants of the tiff format. This one is recognised as 3D by the SimpleITK readers so we extractslices and recompose as a color image. ###Code library(SimpleITK) ## set up viewing tools source("viewing.R") # Utility method that either downloads data from the Girder repository or # if already downloaded returns the file name for reading from disk (cached data). source("downloaddata.R") # this is to do with size of display in Jupyter notebooks if (!exists("default.options")) { default.options <- options() } cntrl <- ReadImage(fetch_data("Control.tif")) ## Extract the channels red <- cntrl[ , , 1] green <- cntrl[ , , 2] blue <- cntrl[ , , 3] cntrl.colour <- Compose(red, green, blue) ###Output _____no_output_____ ###Markdown Display the image ###Code show_inline(cntrl.colour, Dwidth=grid::unit(15, "cm")) ###Output _____no_output_____ ###Markdown Set up the functions that do segmentation and blob splitting for a channel (i.e. separately for red,green blue) ###Code segChannel <- function(dapi, dtsmooth=3, osmooth=0.5) { # Smoothing dapi.smooth <- SmoothingRecursiveGaussian(dapi, osmooth) # A thresholding filter - note the class/method interface th <- LiThresholdImageFilter() th$SetOutsideValue(1) th$SetInsideValue(0) B <- th$Execute(dapi.smooth) # Call blob splitting with the thresholded image g <- splitBlobs(B, dtsmooth) return(list(thresh=B, labels=g$labels, peaks=g$peaks, dist=g$dist)) } splitBlobs <- function(mask, smooth=1) { # Distance transform - replaces each voxel # in a binary image with the distance to the nearest # voxel of the other class. Circular objects # end up with a conical brightness profile, with # the brightest point in the center. DT <- DanielssonDistanceMapImageFilter() DT$UseImageSpacingOn() distim <- DT$Execute(!mask) # Smooth the distance transform to avoid peaks being # broken into pieces. distimS <- SmoothingRecursiveGaussian(distim, smooth, TRUE) distim <- distimS * Cast(distim > 0, 'sitkFloat32') # Find the peaks of the distance transform. peakF <- RegionalMaximaImageFilter() peakF$SetForegroundValue(1) peakF$FullyConnectedOn() peaks <- peakF$Execute(distim) # Label the peaks to use as markers in the watershed transform. markers <- ConnectedComponent(peaks, TRUE) # Apply the watershed transform from markers to the inverted distance # transform. WS <- MorphologicalWatershedFromMarkers(-1 * distim, markers, TRUE, TRUE) # Mask the result of watershed (which labels every pixel) with the nonzero # parts of the distance transform. WS <- WS * Cast(distim > 0, WS$GetPixelID()) return(list(labels=WS, dist=distimS, peaks=peaks)) } ###Output _____no_output_____ ###Markdown Segment each channel ###Code dapi.cells <- segChannel(blue, 3) ph3.cells <- segChannel(red, 3) Ki67.cells <- segChannel(green, 3) ###Output _____no_output_____ ###Markdown The DAPI channel provides consistent staining, while the other stains may only occupy parts of a nucleus. We therefore combine DAPI information with Ph3 and Ki67 to produce good segmentations of cells with those markers. ###Code # Create a mask of DAPI stain - cells are likely to be reliably segmented. dapi.mask <- dapi.cells$labels !=0 # Mask of cells from other channels, which are likely to be less reliable. ph3.markers <- ph3.cells$thresh * dapi.mask Ki67.markers <- Ki67.cells$thresh * dapi.mask # Perform a geodesic reconstruction using the unreliable channels as seeds. ph3.recon <- BinaryReconstructionByDilation(ph3.markers, dapi.mask) Ki67.recon <- BinaryReconstructionByDilation(Ki67.markers, dapi.mask) ###Output _____no_output_____ ###Markdown Now we view the results ###Code sx <- 1:550 sy <- 1450:2000 r1 <- red[sx, sy] g1 <- green[sx, sy] b1 <- blue[sx, sy] colsub <- Compose(r1, g1, b1) dapisub <- dapi.cells$thresh[sx, sy] == 0 dapisplit <- dapi.cells$labels[sx, sy] == 0 ###Output _____no_output_____ ###Markdown A subset of the original - note speckled pattern of red stain in some cells ###Code show_inline(colsub, pad=TRUE) ###Output _____no_output_____ ###Markdown Segmentation of DAPI channel without splitting - note touching cells on mid right that get separated by splitting process. ###Code show_inline(dapisub, pad=TRUE) show_inline(dapisplit, pad=TRUE) ###Output _____no_output_____ ###Markdown Lets check the segmentation of the Ph3 (red) channel. Note that the simple segmentation does not always include complete cells (see lower right) ###Code show_inline(ph3.cells$thresh[sx, sy]==0, pad=TRUE) ###Output _____no_output_____ ###Markdown After geodesic reconstruction the incomplete cells match the DAPI channel segmentation. ###Code ph3sub <- ph3.recon[sx, sy]==0 show_inline(ph3sub, pad=TRUE) ###Output _____no_output_____ ###Markdown Characterization and countingImage segmentations can lead to quantitative measures such as counts and shape statistics(e.g., area, perimeter etc). Such measures can be biased by edge effects, so it is useful toknow whether the objects are touching the image edge. The classes used for these steps inSimpleITK are ConnectedComponentImageFilter and LabelShapeStatisticsImageFilter.The former produces a _labelled_ image, in which each binary connected component is givena different integer voxel value. Label images are used in many segmentation contexts, includingthe cell splitting function illustrated earlier. The latter produces shape measures perconnected component. The function below illustrates extraction of centroids, areas andedge touching measures.Cell counts are also available from the table dimensions. ###Code # Function to extract the relevant statistics from the labelled images getCellStats <- function(labelledim) { # create a statistics filter to measure characteristics of # each labelled object StatsFilt <- LabelShapeStatisticsImageFilter() StatsFilt$Execute(labelledim) objs <- StatsFilt$GetNumberOfLabels() ## create vectors of each measure areas <- sapply(1:objs, StatsFilt$GetPhysicalSize) boundarycontact <- sapply(1:objs, StatsFilt$GetNumberOfPixelsOnBorder) centroid <- t(sapply(1:objs, StatsFilt$GetCentroid)) # place results in a data frame result <- data.frame(Area=areas, TouchingImageBoundary=boundarycontact, Cx=centroid[, 1], Cy=centroid[, 2]) return(result) } ## Label the cell masks ph3.recon.labelled <- ConnectedComponent(ph3.recon) Ki67.recon.labelled <- ConnectedComponent(Ki67.recon) ## Collect the measures dapistats <- getCellStats(dapi.cells$labels) ph3stats <- getCellStats(ph3.recon.labelled) ki67stats <- getCellStats(Ki67.recon.labelled) ## begin creating a data frame for plotting dapistats$Stain <- "dapi" ph3stats$Stain <- "ph3" ki67stats$Stain <- "ki67" # Put the data frames together cellstats <- rbind(dapistats, ph3stats, ki67stats) cellstats$Stain <- factor(cellstats$Stain) # Remove cells touching the image boundary cellstats.no.boundary <- subset(cellstats, TouchingImageBoundary == 0) ###Output _____no_output_____ ###Markdown Once the data has been collected it can be used for plotting, statistical tests, etc: ###Code # Reset the plot options after dealing with images. options(default.options) library(ggplot2) ggplot(cellstats.no.boundary, aes(x=Area, group=Stain, colour=Stain, fill=Stain)) + geom_histogram(position="identity", alpha=0.4, bins=30) + ylab("Cell count") + xlab("Nucleus area") ###Output _____no_output_____ ###Markdown Cell Segmentation Segmentation of cells in fluorescent microscopy is a relatively common imagecharacterisation task with variations that are dependent on the specifics of fluorescentmarkers for a given experiment. A typical procedure might include1. Histogram-based threshold estimation to produce a binary image.1. Cell splitting (separating touching cells) using distance transforms and a watershed transform.1. Refinement of initial segmentation using information from other channels.1. Cell counting/characterisation.This example demonstrates the procedure on a 3 channel fluorescent microscopy image. The blue channelis a DNA marker (DAPI) that stains all cells, the red channel is a marker of cell death (Ph3)while the green channel is a marker of cell proliferation (Ki67). A typical experiment might count thenumber of cells and measure size in the different states, where states are determined by presenceof Ph3 and Ki67, various times after treatment with a drug candidate. AcknowledgementsThe image used in this example is part of the data distributed with the [Fiji training notes](http://imagej.net/User_Guides) by C. Nowell and was contributed by Steve Williams, Peter MacCallum Cancer Centre. Cell segmentation and splitting Histogram-based threshold estimation is performed by the segChannel function, listed below.It applies light smoothing followed by the Lithreshold estimator, one of a range of threshold estimation options availablein SimpleITK. A cell splitting procedure usingdistance transforms and a marker-based watershed (implemented by segBlobs, also listed below) was then applied tothe resulting mask. Distance transforms replace each foreground pixel with the distance to theclosest background pixel, producing a cone-shaped brightness profile for each circular object. Touchingcells can then be separated using the peaks of the cones as markers in a watershed transform.A marker image is created by identifying peaks in the distance transform and applying a connected-component labelling.The inverted distance transform is used as the control image for the watershed transform. Load and displayMicroscopes use many variants of the tiff format. This one is recognised as 3D by the SimpleITK readers so we extractslices and recompose as a color image. ###Code library(SimpleITK) ## set up viewing tools source("viewing.R") # Utility method that either downloads data from the MIDAS repository or # if already downloaded returns the file name for reading from disk (cached data). source("downloaddata.R") # this is to do with size of display in Jupyter notebooks if (!exists("default.options")) { default.options <- options() } cntrl <- ReadImage(fetch_data("Control.tif")) ## Extract the channels red <- cntrl[ , , 1] green <- cntrl[ , , 2] blue <- cntrl[ , , 3] cntrl.colour <- Compose(red, green, blue) ###Output _____no_output_____ ###Markdown Display the image ###Code show_inline(cntrl.colour, Dwidth=grid::unit(15, "cm")) ###Output _____no_output_____ ###Markdown Set up the functions that do segmentation and blob splitting for a channel (i.e. separately for red,green blue) ###Code segChannel <- function(dapi, dtsmooth=3, osmooth=0.5) { # Smoothing dapi.smooth <- SmoothingRecursiveGaussian(dapi, osmooth) # A thresholding filter - note the class/method interface th <- LiThresholdImageFilter() th$SetOutsideValue(1) th$SetInsideValue(0) B <- th$Execute(dapi.smooth) # Call blob splitting with the thresholded image g <- splitBlobs(B, dtsmooth) return(list(thresh=B, labels=g$labels, peaks=g$peaks, dist=g$dist)) } splitBlobs <- function(mask, smooth=1) { # Distance transform - replaces each voxel # in a binary image with the distance to the nearest # voxel of the other class. Circular objects # end up with a conical brightness profile, with # the brightest point in the center. DT <- DanielssonDistanceMapImageFilter() DT$UseImageSpacingOn() distim <- DT$Execute(!mask) # Smooth the distance transform to avoid peaks being # broken into pieces. distimS <- SmoothingRecursiveGaussian(distim, smooth, TRUE) distim <- distimS * Cast(distim > 0, 'sitkFloat32') # Find the peaks of the distance transform. peakF <- RegionalMaximaImageFilter() peakF$SetForegroundValue(1) peakF$FullyConnectedOn() peaks <- peakF$Execute(distim) # Label the peaks to use as markers in the watershed transform. markers <- ConnectedComponent(peaks, TRUE) # Apply the watershed transform from markers to the inverted distance # transform. WS <- MorphologicalWatershedFromMarkers(-1 * distim, markers, TRUE, TRUE) # Mask the result of watershed (which labels every pixel) with the nonzero # parts of the distance transform. WS <- WS * Cast(distim > 0, WS$GetPixelID()) return(list(labels=WS, dist=distimS, peaks=peaks)) } ###Output _____no_output_____ ###Markdown Segment each channel ###Code dapi.cells <- segChannel(blue, 3) ph3.cells <- segChannel(red, 3) Ki67.cells <- segChannel(green, 3) ###Output _____no_output_____ ###Markdown The DAPI channel provides consistent staining, while the other stains may only occupy parts of a nucleus. We therefore combine DAPI information with Ph3 and Ki67 to produce good segmentations of cells with those markers. ###Code # Create a mask of DAPI stain - cells are likely to be reliably segmented. dapi.mask <- dapi.cells$labels !=0 # Mask of cells from other channels, which are likely to be less reliable. ph3.markers <- ph3.cells$thresh * dapi.mask Ki67.markers <- Ki67.cells$thresh * dapi.mask # Perform a geodesic reconstruction using the unreliable channels as seeds. ph3.recon <- BinaryReconstructionByDilation(ph3.markers, dapi.mask) Ki67.recon <- BinaryReconstructionByDilation(Ki67.markers, dapi.mask) ###Output _____no_output_____ ###Markdown Now we view the results ###Code sx <- 1:550 sy <- 1450:2000 r1 <- red[sx, sy] g1 <- green[sx, sy] b1 <- blue[sx, sy] colsub <- Compose(r1, g1, b1) dapisub <- dapi.cells$thresh[sx, sy] == 0 dapisplit <- dapi.cells$labels[sx, sy] == 0 ###Output _____no_output_____ ###Markdown A subset of the original - note speckled pattern of red stain in some cells ###Code show_inline(colsub, pad=TRUE) ###Output _____no_output_____ ###Markdown Segmentation of DAPI channel without splitting - note touching cells on mid right that get separated by splitting process. ###Code show_inline(dapisub, pad=TRUE) show_inline(dapisplit, pad=TRUE) ###Output _____no_output_____ ###Markdown Lets check the segmentation of the Ph3 (red) channel. Note that the simple segmentation does not always include complete cells (see lower right) ###Code show_inline(ph3.cells$thresh[sx, sy]==0, pad=TRUE) ###Output _____no_output_____ ###Markdown After geodesic reconstruction the incomplete cells match the DAPI channel segmentation. ###Code ph3sub <- ph3.recon[sx, sy]==0 show_inline(ph3sub, pad=TRUE) ###Output _____no_output_____ ###Markdown Characterization and countingImage segmentations can lead to quantitative measures such as counts and shape statistics(e.g., area, perimeter etc). Such measures can be biased by edge effects, so it is useful toknow whether the objects are touching the image edge. The classes used for these steps inSimpleITK are ConnectedComponentImageFilter and LabelShapeStatisticsImageFilter.The former produces a _labelled_ image, in which each binary connected component is givena different integer voxel value. Label images are used in many segmentation contexts, includingthe cell splitting function illustrated earlier. The latter produces shape measures perconnected component. The function below illustrates extraction of centroids, areas andedge touching measures.Cell counts are also available from the table dimensions. ###Code # Function to extract the relevant statistics from the labelled images getCellStats <- function(labelledim) { # create a statistics filter to measure characteristics of # each labelled object StatsFilt <- LabelShapeStatisticsImageFilter() StatsFilt$Execute(labelledim) objs <- StatsFilt$GetNumberOfLabels() ## create vectors of each measure areas <- sapply(1:objs, StatsFilt$GetPhysicalSize) boundarycontact <- sapply(1:objs, StatsFilt$GetNumberOfPixelsOnBorder) centroid <- t(sapply(1:objs, StatsFilt$GetCentroid)) # place results in a data frame result <- data.frame(Area=areas, TouchingImageBoundary=boundarycontact, Cx=centroid[, 1], Cy=centroid[, 2]) return(result) } ## Label the cell masks ph3.recon.labelled <- ConnectedComponent(ph3.recon) Ki67.recon.labelled <- ConnectedComponent(Ki67.recon) ## Collect the measures dapistats <- getCellStats(dapi.cells$labels) ph3stats <- getCellStats(ph3.recon.labelled) ki67stats <- getCellStats(Ki67.recon.labelled) ## begin creating a data frame for plotting dapistats$Stain <- "dapi" ph3stats$Stain <- "ph3" ki67stats$Stain <- "ki67" # Put the data frames together cellstats <- rbind(dapistats, ph3stats, ki67stats) cellstats$Stain <- factor(cellstats$Stain) # Remove cells touching the image boundary cellstats.no.boundary <- subset(cellstats, TouchingImageBoundary == 0) ###Output _____no_output_____ ###Markdown Once the data has been collected it can be used for plotting, statistical tests, etc: ###Code # Reset the plot options after dealing with images. options(default.options) library(ggplot2) ggplot(cellstats.no.boundary, aes(x=Area, group=Stain, colour=Stain, fill=Stain)) + geom_histogram(position="identity", alpha=0.4, bins=30) + ylab("Cell count") + xlab("Nucleus area") ###Output _____no_output_____
keras/keras_basic_cnn_visualization.ipynb
###Markdown CNN for Digit Recognition **Run with theano backend for keras** modify keras.json as https://keras.io/backend/ 1. load data ###Code from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split digit = load_digits() data_x = digit.data data_y = digit.target x_train, x_test, y_train, y_test = train_test_split(data_x, data_y, test_size=0.2, random_state=42) ###Output _____no_output_____ ###Markdown 2. data preprocess ###Code import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Activation from keras.layers import Convolution2D as Conv2D from keras.layers import MaxPooling2D from keras import backend as K batch_size = 128 num_classes = 10 epochs = 1 # input image dimensions img_rows, img_cols = 8, 8 if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') ###Output x_train shape: (1437, 8, 8, 1) 1437 train samples 360 test samples ###Markdown 3. CNN model ###Code # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), input_shape=input_shape)) convout1 = Activation('relu') model.add(convout1) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) ###Output _____no_output_____ ###Markdown 4. train & test ###Code model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ###Output Train on 1437 samples, validate on 360 samples Epoch 1/1 1437/1437 [==============================] - 462s - loss: 2.3010 - acc: 0.1287 - val_loss: 2.3000 - val_acc: 0.3056 Test loss: 2.30000511805 Test accuracy: 0.305555555556 ###Markdown 6. parameter visualize 6.1 Visualize Conv layer conv-kernel weights ###Code # Visualize weights import numpy as np W = model.layers[0].kernel.get_value(borrow=True) W = np.squeeze(W) print("W shape : ", W.shape) ###Output W shape : (3, 3, 32) ###Markdown ** 32 pictures with 3x3 matrix ** ###Code W[:,:,0]# image 0 %matplotlib inline import matplotlib.pyplot as plt for i in range(32): sub = plt.subplot(4,8,i+1) plt.axis('off') sub.imshow(W[:,:,i], cmap=plt.cm.gray) ###Output _____no_output_____ ###Markdown 6.2 Visualize Conv layer output ###Code convout1_f = theano.function(model.inputs, [convout1.output]) C1 = convout1_f([x_train[0]]) C1 = np.squeeze(C1) print("C1 shape : ", C1.shape) ###Output C1 shape : (6, 6, 32) ###Markdown **32 pics with 6x6 matrix** ###Code %matplotlib inline import matplotlib.pyplot as plt for i in range(32): sub = plt.subplot(4,8,i+1) plt.axis('off') sub.imshow(C1[:,:,i], cmap=plt.cm.gray) ###Output _____no_output_____
Modelo Inicial No Usar/3. Credit Risk Modeling - Monitoring - With Comments.ipynb
###Markdown Import Libraries ###Code import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown Import Data ###Code # Import Train and Test Data. loan_data_inputs_train = pd.read_csv('loan_data_inputs_train.csv', index_col = 0) loan_data_targets_train = pd.read_csv('loan_data_targets_train.csv', index_col = 0, header = None) loan_data_inputs_test = pd.read_csv('loan_data_inputs_test.csv', index_col = 0) loan_data_targets_test = pd.read_csv('loan_data_targets_test.csv', index_col = 0, header = None) # Here we import the new data. loan_data_backup = pd.read_csv('loan_data_2015.csv') ###Output _____no_output_____ ###Markdown Explore Data ###Code loan_data = loan_data_backup.copy() pd.options.display.max_columns = None #pd.options.display.max_rows = None # Sets the pandas dataframe options to display all columns/ rows. loan_data.head() loan_data.info() ###Output _____no_output_____ ###Markdown *** Population Stability Index: Preprocessing >>> The code from here to the other line starting with '>>>' is copied from the Data Preparation notebook, with minor adjustments. We have to perform the exact same data preprocessing, fine-classing, and coarse classing on the new data, in order to be able to calculate statistics for the exact same variables to the ones we used for training and testing the PD model. Preprocessing few continuous variables General Preprocessing ###Code loan_data['emp_length'].unique() loan_data['emp_length_int'] = loan_data['emp_length'].str.replace('\+ years', '') loan_data['emp_length_int'] = loan_data['emp_length_int'].str.replace('< 1 year', str(0)) loan_data['emp_length_int'] = loan_data['emp_length_int'].str.replace('n/a', str(0)) loan_data['emp_length_int'] = loan_data['emp_length_int'].str.replace(' years', '') loan_data['emp_length_int'] = loan_data['emp_length_int'].str.replace(' year', '') type(loan_data['emp_length_int'][0]) loan_data['emp_length_int'] = pd.to_numeric(loan_data['emp_length_int']) type(loan_data['emp_length_int'][0]) ###Output _____no_output_____ ###Markdown Earliest credit line ###Code loan_data['earliest_cr_line'] loan_data['earliest_cr_line_date'] = pd.to_datetime(loan_data['earliest_cr_line'], format = '%b-%y') type(loan_data['earliest_cr_line_date'][0]) pd.to_datetime('2018-12-01') - loan_data['earliest_cr_line_date'] # Assume we are now in December 2017 loan_data['mths_since_earliest_cr_line'] = round(pd.to_numeric((pd.to_datetime('2018-12-01') - loan_data['earliest_cr_line_date']) / np.timedelta64(1, 'M'))) loan_data['mths_since_earliest_cr_line'].describe() # Dates from 1969 and before are not being converted well, i.e., they have become 2069 and similar, and negative differences are being calculated. # There are 2303 such values. loan_data.loc[: , ['earliest_cr_line', 'earliest_cr_line_date', 'mths_since_earliest_cr_line']][loan_data['mths_since_earliest_cr_line'] < 0] # We set all these negative differences to the maximum. loan_data['mths_since_earliest_cr_line'][loan_data['mths_since_earliest_cr_line'] < 0] = loan_data['mths_since_earliest_cr_line'].max() min(loan_data['mths_since_earliest_cr_line']) ###Output _____no_output_____ ###Markdown Term ###Code loan_data['term'] loan_data['term'].describe() loan_data['term_int'] = loan_data['term'].str.replace(' months', '') loan_data['term_int'] type(loan_data['term_int']) type(loan_data['term_int'][25]) loan_data['term_int'] = pd.to_numeric(loan_data['term'].str.replace(' months', '')) loan_data['term_int'] type(loan_data['term_int'][0]) ###Output _____no_output_____ ###Markdown Time since the loan was funded ###Code loan_data['issue_d'] # Assume we are now in December 2017 loan_data['issue_d_date'] = pd.to_datetime(loan_data['issue_d'], format = '%b-%y') loan_data['mths_since_issue_d'] = round(pd.to_numeric((pd.to_datetime('2018-12-01') - loan_data['issue_d_date']) / np.timedelta64(1, 'M'))) loan_data['mths_since_issue_d'].describe() ###Output _____no_output_____ ###Markdown Data preparation: preprocessing discrete variables ###Code loan_data.info() # loan_data['grade_factor'] = loan_data['grade'].astype('category') #grade #sub_grade #home_ownership #verification_status #loan_status #purpose #addr_state #initial_list_status pd.get_dummies(loan_data['grade'], prefix = 'grade', prefix_sep = ':') loan_data_dummies = [pd.get_dummies(loan_data['grade'], prefix = 'grade', prefix_sep = ':'), pd.get_dummies(loan_data['sub_grade'], prefix = 'sub_grade', prefix_sep = ':'), pd.get_dummies(loan_data['home_ownership'], prefix = 'home_ownership', prefix_sep = ':'), pd.get_dummies(loan_data['verification_status'], prefix = 'verification_status', prefix_sep = ':'), pd.get_dummies(loan_data['loan_status'], prefix = 'loan_status', prefix_sep = ':'), pd.get_dummies(loan_data['purpose'], prefix = 'purpose', prefix_sep = ':'), pd.get_dummies(loan_data['addr_state'], prefix = 'addr_state', prefix_sep = ':'), pd.get_dummies(loan_data['initial_list_status'], prefix = 'initial_list_status', prefix_sep = ':')] loan_data_dummies = pd.concat(loan_data_dummies, axis = 1) type(loan_data_dummies) loan_data_dummies.shape loan_data_dummies.info() loan_data = pd.concat([loan_data, loan_data_dummies], axis = 1) loan_data.columns.values ###Output _____no_output_____ ###Markdown Data preparation: check for missing values and clean ###Code loan_data.isnull() pd.options.display.max_rows = None loan_data.isnull().sum() pd.options.display.max_rows = 100 # loan_data$total_rev_hi_lim - There are 70276 missing values here. # 'Total revolving high credit/credit limit', so it makes sense that the missing values are equal to funded_amnt. # loan_data$acc_now_delinq # loan_data$total_acc # loan_data$pub_rec # loan_data$open_acc # loan_data$inq_last_6mths # loan_data$delinq_2yrs # loan_data$mths_since_earliest_cr_line # - There are 29 missing values in all of these columns. They are likely the same observations. # An eyeballing examination of the dataset confirms that. # All of these are with loan_status 'Does not meet the credit policy. Status:Fully Paid'. # We impute these values. # loan_data$annual_inc # - There are 4 missing values in all of these columns. # loan_data$mths_since_last_record # loan_data$mths_since_last_delinq # 'Total revolving high credit/credit limit', so it makes sense that the missing values are equal to funded_amnt. loan_data['total_rev_hi_lim'].fillna(loan_data['funded_amnt'], inplace=True) loan_data['mths_since_earliest_cr_line'].fillna(0, inplace=True) loan_data['acc_now_delinq'].fillna(0, inplace=True) loan_data['total_acc'].fillna(0, inplace=True) loan_data['pub_rec'].fillna(0, inplace=True) loan_data['open_acc'].fillna(0, inplace=True) loan_data['inq_last_6mths'].fillna(0, inplace=True) loan_data['delinq_2yrs'].fillna(0, inplace=True) loan_data['emp_length_int'].fillna(0, inplace=True) loan_data['annual_inc'].fillna(loan_data['annual_inc'].mean(), inplace=True) ###Output _____no_output_____ ###Markdown PD model: Data preparation: Good/ Bad (DV for the PD model) ###Code loan_data['loan_status'].unique() loan_data['loan_status'].value_counts() loan_data['loan_status'].value_counts() / loan_data['loan_status'].count() # Good/ Bad Definition loan_data['good_bad'] = np.where(loan_data['loan_status'].isin(['Charged Off', 'Default', 'Does not meet the credit policy. Status:Charged Off', 'Late (31-120 days)']), 0, 1) #loan_data['good_bad'].sum()/loan_data['loan_status'].count() loan_data['good_bad'] ###Output _____no_output_____ ###Markdown PD model: Data Preparation: Splitting Data ###Code # loan_data_inputs_train, loan_data_inputs_test, loan_data_targets_train, loan_data_targets_test from sklearn.model_selection import train_test_split # Here we don't split data into training and test #train_test_split(loan_data.drop('good_bad', axis = 1), loan_data['good_bad']) #loan_data_inputs_train, loan_data_inputs_test, loan_data_targets_train, loan_data_targets_test = train_test_split(loan_data.drop('good_bad', axis = 1), loan_data['good_bad']) #loan_data_inputs_train.shape #loan_data_targets_train.shape #loan_data_inputs_test.shape #loan_data_targets_test.shape #loan_data_inputs_train, loan_data_inputs_test, loan_data_targets_train, loan_data_targets_test = train_test_split(loan_data.drop('good_bad', axis = 1), loan_data['good_bad'], test_size = 0.2, random_state = 42) #loan_data_inputs_train.shape #loan_data_targets_train.shape #loan_data_inputs_test.shape #loan_data_targets_test.shape ###Output _____no_output_____ ###Markdown PD model: Data Preparation: Discrete Variables ###Code loan_data.drop('good_bad', axis = 1) loan_data['good_bad'] ##### df_inputs_prepr = loan_data.drop('good_bad', axis = 1) df_targets_prepr = loan_data['good_bad'] ##### #df_inputs_prepr = loan_data_inputs_test ##df_targets_prepr = loan_data_targets_test df_inputs_prepr['grade'].unique() df1 = pd.concat([df_inputs_prepr['grade'], df_targets_prepr], axis = 1) df1.head() df1.groupby(df1.columns.values[0], as_index = False)[df1.columns.values[1]].count() df1.groupby(df1.columns.values[0], as_index = False)[df1.columns.values[1]].mean() df1 = pd.concat([df1.groupby(df1.columns.values[0], as_index = False)[df1.columns.values[1]].count(), df1.groupby(df1.columns.values[0], as_index = False)[df1.columns.values[1]].mean()], axis = 1) df1 df1 = df1.iloc[:, [0, 1, 3]] df1 df1.columns = [df1.columns.values[0], 'n_obs', 'prop_good'] df1 df1['prop_n_obs'] = df1['n_obs'] / df1['n_obs'].sum() df1 df1['n_good'] = df1['prop_good'] * df1['n_obs'] df1['n_bad'] = (1 - df1['prop_good']) * df1['n_obs'] df1 df1['prop_n_good'] = df1['n_good'] / df1['n_good'].sum() df1['prop_n_bad'] = df1['n_bad'] / df1['n_bad'].sum() df1 df1['WoE'] = np.log(df1['prop_n_good'] / df1['prop_n_bad']) df1 df1 = df1.sort_values(['WoE']) df1 = df1.reset_index(drop = True) df1 df1['diff_prop_good'] = df1['prop_good'].diff().abs() df1['diff_WoE'] = df1['WoE'].diff().abs() df1 df1['IV'] = (df1['prop_n_good'] - df1['prop_n_bad']) * df1['WoE'] df1['IV'] = df1['IV'].sum() df1 # WoE function for discrete unordered variables def woe_discrete(df, discrete_variabe_name, good_bad_variable_df): df = pd.concat([df[discrete_variabe_name], good_bad_variable_df], axis = 1) df = pd.concat([df.groupby(df.columns.values[0], as_index = False)[df.columns.values[1]].count(), df.groupby(df.columns.values[0], as_index = False)[df.columns.values[1]].mean()], axis = 1) df = df.iloc[:, [0, 1, 3]] df.columns = [df.columns.values[0], 'n_obs', 'prop_good'] df['prop_n_obs'] = df['n_obs'] / df['n_obs'].sum() df['n_good'] = df['prop_good'] * df['n_obs'] df['n_bad'] = (1 - df['prop_good']) * df['n_obs'] df['prop_n_good'] = df['n_good'] / df['n_good'].sum() df['prop_n_bad'] = df['n_bad'] / df['n_bad'].sum() df['WoE'] = np.log(df['prop_n_good'] / df['prop_n_bad']) df = df.sort_values(['WoE']) df = df.reset_index(drop = True) df['diff_prop_good'] = df['prop_good'].diff().abs() df['diff_WoE'] = df['WoE'].diff().abs() df['IV'] = (df['prop_n_good'] - df['prop_n_bad']) * df['WoE'] df['IV'] = df['IV'].sum() return df # 'grade', 'home_ownership', 'verification_status', # 'purpose', 'addr_state', 'initial_list_status' # 'grade' df_temp = woe_discrete(df_inputs_prepr, 'grade', df_targets_prepr) df_temp import matplotlib.pyplot as plt import seaborn as sns sns.set() def plot_by_woe(df_WoE, rotation_of_x_axis_labels = 0): #x = df_WoE.iloc[:, 0] x = np.array(df_WoE.iloc[:, 0].apply(str)) y = df_WoE['WoE'] plt.figure(figsize=(18, 6)) plt.plot(x, y, marker = 'o', linestyle = '--', color = 'k') plt.xlabel(df_WoE.columns[0]) plt.ylabel('Weight of Evidence') plt.title(str('Weight of Evidence by ' + df_WoE.columns[0])) plt.xticks(rotation = rotation_of_x_axis_labels) plot_by_woe(df_temp) # Leave as is. # 'G' will be the reference category. # 'home_ownership' df_temp = woe_discrete(df_inputs_prepr, 'home_ownership', df_targets_prepr) df_temp plot_by_woe(df_temp) # There are many categories with very few observations and many categories with very different "good" %. # Therefore, we create a new discrete variable where we combine some of the categories. # 'OTHERS' and 'NONE' are riskiest but are very few. 'RENT' is the next riskiest. # 'ANY' are least risky but are too few. Conceptually, they belong to the same category. Also, their inclusion would not change anything. # We combine them in one category, 'RENT_OTHER_NONE_ANY'. # We end up with 3 categories: 'RENT_OTHER_NONE_ANY', 'OWN', 'MORTGAGE'. df_inputs_prepr['home_ownership:RENT_OTHER_NONE_ANY'] = sum([df_inputs_prepr['home_ownership:RENT'], df_inputs_prepr['home_ownership:OTHER'], df_inputs_prepr['home_ownership:NONE'],df_inputs_prepr['home_ownership:ANY']]) # 'RENT_OTHER_NONE_ANY' will be the reference category. # Alternatively: #loan_data.loc['home_ownership' in ['RENT', 'OTHER', 'NONE', 'ANY'], 'home_ownership:RENT_OTHER_NONE_ANY'] = 1 #loan_data.loc['home_ownership' not in ['RENT', 'OTHER', 'NONE', 'ANY'], 'home_ownership:RENT_OTHER_NONE_ANY'] = 0 #loan_data.loc['loan_status' not in ['OWN'], 'home_ownership:OWN'] = 1 #loan_data.loc['loan_status' not in ['OWN'], 'home_ownership:OWN'] = 0 #loan_data.loc['loan_status' not in ['MORTGAGE'], 'home_ownership:MORTGAGE'] = 1 #loan_data.loc['loan_status' not in ['MORTGAGE'], 'home_ownership:MORTGAGE'] = 0 loan_data['home_ownership'].unique() df_inputs_prepr['home_ownership:RENT_OTHER_NONE_ANY'] = sum([df_inputs_prepr['home_ownership:RENT'], df_inputs_prepr['home_ownership:ANY']]) # 'addr_state' df_inputs_prepr['addr_state'].unique() #df_inputs_prepr['addr_state:ND'] = 0 if ['addr_state:ND'] in df_inputs_prepr.columns.values: pass else: df_inputs_prepr['addr_state:ND'] = 0 if ['addr_state:ID'] in df_inputs_prepr.columns.values: pass else: df_inputs_prepr['addr_state:ID'] = 0 if ['addr_state:IA'] in df_inputs_prepr.columns.values: pass else: df_inputs_prepr['addr_state:IA'] = 0 df_temp = woe_discrete(df_inputs_prepr, 'addr_state', df_targets_prepr) df_temp plot_by_woe(df_temp) plot_by_woe(df_temp.iloc[2: -2, : ]) plot_by_woe(df_temp.iloc[6: -6, : ]) df_inputs_prepr.columns.values # We create the following categories: # 'ND' 'NE' 'IA' NV' 'FL' 'HI' 'AL' # 'NM' 'VA' # 'NY' # 'OK' 'TN' 'MO' 'LA' 'MD' 'NC' # 'CA' # 'UT' 'KY' 'AZ' 'NJ' # 'AR' 'MI' 'PA' 'OH' 'MN' # 'RI' 'MA' 'DE' 'SD' 'IN' # 'GA' 'WA' 'OR' # 'WI' 'MT' # 'TX' # 'IL' 'CT' # 'KS' 'SC' 'CO' 'VT' 'AK' 'MS' # 'WV' 'NH' 'WY' 'DC' 'ME' 'ID' # 'IA_NV_HI_ID_AL_FL' will be the reference category. df_inputs_prepr['addr_state:ND_NE_IA_NV_FL_HI_AL'] = sum([df_inputs_prepr['addr_state:ND'], df_inputs_prepr['addr_state:NE'], df_inputs_prepr['addr_state:IA'], df_inputs_prepr['addr_state:NV'], df_inputs_prepr['addr_state:FL'], df_inputs_prepr['addr_state:HI'], df_inputs_prepr['addr_state:AL']]) df_inputs_prepr['addr_state:NM_VA'] = sum([df_inputs_prepr['addr_state:NM'], df_inputs_prepr['addr_state:VA']]) df_inputs_prepr['addr_state:OK_TN_MO_LA_MD_NC'] = sum([df_inputs_prepr['addr_state:OK'], df_inputs_prepr['addr_state:TN'], df_inputs_prepr['addr_state:MO'], df_inputs_prepr['addr_state:LA'], df_inputs_prepr['addr_state:MD'], df_inputs_prepr['addr_state:NC']]) df_inputs_prepr['addr_state:UT_KY_AZ_NJ'] = sum([df_inputs_prepr['addr_state:UT'], df_inputs_prepr['addr_state:KY'], df_inputs_prepr['addr_state:AZ'], df_inputs_prepr['addr_state:NJ']]) df_inputs_prepr['addr_state:AR_MI_PA_OH_MN'] = sum([df_inputs_prepr['addr_state:AR'], df_inputs_prepr['addr_state:MI'], df_inputs_prepr['addr_state:PA'], df_inputs_prepr['addr_state:OH'], df_inputs_prepr['addr_state:MN']]) df_inputs_prepr['addr_state:RI_MA_DE_SD_IN'] = sum([df_inputs_prepr['addr_state:RI'], df_inputs_prepr['addr_state:MA'], df_inputs_prepr['addr_state:DE'], df_inputs_prepr['addr_state:SD'], df_inputs_prepr['addr_state:IN']]) df_inputs_prepr['addr_state:GA_WA_OR'] = sum([df_inputs_prepr['addr_state:GA'], df_inputs_prepr['addr_state:WA'], df_inputs_prepr['addr_state:OR']]) df_inputs_prepr['addr_state:WI_MT'] = sum([df_inputs_prepr['addr_state:WI'], df_inputs_prepr['addr_state:MT']]) df_inputs_prepr['addr_state:IL_CT'] = sum([df_inputs_prepr['addr_state:IL'], df_inputs_prepr['addr_state:CT']]) df_inputs_prepr['addr_state:KS_SC_CO_VT_AK_MS'] = sum([df_inputs_prepr['addr_state:KS'], df_inputs_prepr['addr_state:SC'], df_inputs_prepr['addr_state:CO'], df_inputs_prepr['addr_state:VT'], df_inputs_prepr['addr_state:AK'], df_inputs_prepr['addr_state:MS']]) df_inputs_prepr['addr_state:WV_NH_WY_DC_ME_ID'] = sum([df_inputs_prepr['addr_state:WV'], df_inputs_prepr['addr_state:NH'], df_inputs_prepr['addr_state:WY'], df_inputs_prepr['addr_state:DC'], df_inputs_prepr['addr_state:ME'], df_inputs_prepr['addr_state:ID']]) # 'verification_status' df_temp = woe_discrete(df_inputs_prepr, 'verification_status', df_targets_prepr) df_temp plot_by_woe(df_temp) # Leave as is. # 'Verified' will be the reference category. # 'purpose' df_temp = woe_discrete(df_inputs_prepr, 'purpose', df_targets_prepr) df_temp #plt.figure(figsize=(15, 5)) #sns.pointplot(x = 'purpose', y = 'WoE', data = df_temp, figsize = (5, 15)) plot_by_woe(df_temp, 90) # We combine 'educational', 'small_business', 'wedding', 'renewable_energy', 'moving', 'house' in one category: 'educ__sm_b__wedd__ren_en__mov__house'. # We combine 'other', 'medical', 'vacation' in one category: 'oth__med__vacation'. # We combine 'major_purchase', 'car', 'home_improvement' in one category: 'major_purch__car__home_impr'. # We leave 'debt_consolidtion' in a separate category. # We leave 'credit_card' in a separate category. # 'educ__sm_b__wedd__ren_en__mov__house' will be the reference category. df_inputs_prepr['purpose:educ__sm_b__wedd__ren_en__mov__house'] = sum([df_inputs_prepr['purpose:educational'], df_inputs_prepr['purpose:small_business'], df_inputs_prepr['purpose:wedding'], df_inputs_prepr['purpose:renewable_energy'], df_inputs_prepr['purpose:moving'], df_inputs_prepr['purpose:house']]) df_inputs_prepr['purpose:oth__med__vacation'] = sum([df_inputs_prepr['purpose:other'], df_inputs_prepr['purpose:medical'], df_inputs_prepr['purpose:vacation']]) df_inputs_prepr['purpose:major_purch__car__home_impr'] = sum([df_inputs_prepr['purpose:major_purchase'], df_inputs_prepr['purpose:car'], df_inputs_prepr['purpose:home_improvement']]) # 'initial_list_status' df_temp = woe_discrete(df_inputs_prepr, 'initial_list_status', df_targets_prepr) df_temp plot_by_woe(df_temp) # Leave as is. # 'f' will be the reference category. ###Output _____no_output_____ ###Markdown PD model: Data Preparation: Continuous Variables, Part 1 ###Code # WoE function for ordered discrete and continuous variables def woe_ordered_continuous(df, discrete_variabe_name, good_bad_variable_df): df = pd.concat([df[discrete_variabe_name], good_bad_variable_df], axis = 1) df = pd.concat([df.groupby(df.columns.values[0], as_index = False)[df.columns.values[1]].count(), df.groupby(df.columns.values[0], as_index = False)[df.columns.values[1]].mean()], axis = 1) df = df.iloc[:, [0, 1, 3]] df.columns = [df.columns.values[0], 'n_obs', 'prop_good'] df['prop_n_obs'] = df['n_obs'] / df['n_obs'].sum() df['n_good'] = df['prop_good'] * df['n_obs'] df['n_bad'] = (1 - df['prop_good']) * df['n_obs'] df['prop_n_good'] = df['n_good'] / df['n_good'].sum() df['prop_n_bad'] = df['n_bad'] / df['n_bad'].sum() df['WoE'] = np.log(df['prop_n_good'] / df['prop_n_bad']) #df = df.sort_values(['WoE']) #df = df.reset_index(drop = True) df['diff_prop_good'] = df['prop_good'].diff().abs() df['diff_WoE'] = df['WoE'].diff().abs() df['IV'] = (df['prop_n_good'] - df['prop_n_bad']) * df['WoE'] df['IV'] = df['IV'].sum() return df # term df_inputs_prepr['term_int'].unique() # There are only two unique values, 36 and 60. df_temp = woe_ordered_continuous(df_inputs_prepr, 'term_int', df_targets_prepr) df_temp plot_by_woe(df_temp) # Leave as is. # '60' will be the reference category. df_inputs_prepr['term:36'] = np.where((df_inputs_prepr['term_int'] == 36), 1, 0) df_inputs_prepr['term:60'] = np.where((df_inputs_prepr['term_int'] == 60), 1, 0) # emp_length_int df_inputs_prepr['emp_length_int'].unique() # Has only 11 levels: from 0 to 10. Hence, we turn it into a factor with 11 levels. df_temp = woe_ordered_continuous(df_inputs_prepr, 'emp_length_int', df_targets_prepr) df_temp plot_by_woe(df_temp) # We create the following categories: '0', '1', '2 - 4', '5 - 6', '7 - 9', '10' # '0' will be the reference category df_inputs_prepr['emp_length:0'] = np.where(df_inputs_prepr['emp_length_int'].isin([0]), 1, 0) df_inputs_prepr['emp_length:1'] = np.where(df_inputs_prepr['emp_length_int'].isin([1]), 1, 0) df_inputs_prepr['emp_length:2-4'] = np.where(df_inputs_prepr['emp_length_int'].isin(range(2, 5)), 1, 0) df_inputs_prepr['emp_length:5-6'] = np.where(df_inputs_prepr['emp_length_int'].isin(range(5, 7)), 1, 0) df_inputs_prepr['emp_length:7-9'] = np.where(df_inputs_prepr['emp_length_int'].isin(range(7, 10)), 1, 0) df_inputs_prepr['emp_length:10'] = np.where(df_inputs_prepr['emp_length_int'].isin([10]), 1, 0) df_inputs_prepr['mths_since_issue_d'].unique() df_inputs_prepr['mths_since_issue_d_factor'] = pd.cut(df_inputs_prepr['mths_since_issue_d'], 50) df_inputs_prepr['mths_since_issue_d_factor'] # mths_since_issue_d df_temp = woe_ordered_continuous(df_inputs_prepr, 'mths_since_issue_d_factor', df_targets_prepr) df_temp # !!!!!!!!! #df_temp['mths_since_issue_d_factor'] = np.array(df_temp.mths_since_issue_d_factor.apply(str)) #df_temp['mths_since_issue_d_factor'] = list(df_temp.mths_since_issue_d_factor.apply(str)) #df_temp['mths_since_issue_d_factor'] = tuple(df_temp.mths_since_issue_d_factor.apply(str)) plot_by_woe(df_temp) plot_by_woe(df_temp, 90) plot_by_woe(df_temp.iloc[3: , : ], 90) # We create the following categories: # < 38, 38 - 39, 40 - 41, 42 - 48, 49 - 52, 53 - 64, 65 - 84, > 84. df_inputs_prepr['mths_since_issue_d:<38'] = np.where(df_inputs_prepr['mths_since_issue_d'].isin(range(38)), 1, 0) df_inputs_prepr['mths_since_issue_d:38-39'] = np.where(df_inputs_prepr['mths_since_issue_d'].isin(range(38, 40)), 1, 0) df_inputs_prepr['mths_since_issue_d:40-41'] = np.where(df_inputs_prepr['mths_since_issue_d'].isin(range(40, 42)), 1, 0) df_inputs_prepr['mths_since_issue_d:42-48'] = np.where(df_inputs_prepr['mths_since_issue_d'].isin(range(42, 49)), 1, 0) df_inputs_prepr['mths_since_issue_d:49-52'] = np.where(df_inputs_prepr['mths_since_issue_d'].isin(range(49, 53)), 1, 0) df_inputs_prepr['mths_since_issue_d:53-64'] = np.where(df_inputs_prepr['mths_since_issue_d'].isin(range(53, 65)), 1, 0) df_inputs_prepr['mths_since_issue_d:65-84'] = np.where(df_inputs_prepr['mths_since_issue_d'].isin(range(65, 85)), 1, 0) df_inputs_prepr['mths_since_issue_d:>84'] = np.where(df_inputs_prepr['mths_since_issue_d'].isin(range(85, int(df_inputs_prepr['mths_since_issue_d'].max()))), 1, 0) # int_rate df_inputs_prepr['int_rate_factor'] = pd.cut(df_inputs_prepr['int_rate'], 50) df_temp = woe_ordered_continuous(df_inputs_prepr, 'int_rate_factor', df_targets_prepr) df_temp plot_by_woe(df_temp, 90) # '< 9.548', '9.548 - 12.025', '12.025 - 15.74', '15.74 - 20.281', '> 20.281' #loan_data.loc[loan_data['int_rate'] < 5.8, 'int_rate:<5.8'] = 1 #(loan_data['int_rate'] > 5.8) & (loan_data['int_rate'] <= 8.64) #loan_data['int_rate:<5.8'] = np.where(loan_data['int_rate'] < 5.8, 1, 0) #loan_data[(loan_data['int_rate'] > 5.8) & (loan_data['int_rate'] <= 8.64)] #loan_data['int_rate'][(np.where((loan_data['int_rate'] > 5.8) & (loan_data['int_rate'] <= 8.64)))] #loan_data.loc[(loan_data['int_rate'] > 5.8) & (loan_data['int_rate'] <= 8.64), 'int_rate:<5.8'] = 1 df_inputs_prepr['int_rate:<9.548'] = np.where((df_inputs_prepr['int_rate'] <= 9.548), 1, 0) df_inputs_prepr['int_rate:9.548-12.025'] = np.where((df_inputs_prepr['int_rate'] > 9.548) & (df_inputs_prepr['int_rate'] <= 12.025), 1, 0) df_inputs_prepr['int_rate:12.025-15.74'] = np.where((df_inputs_prepr['int_rate'] > 12.025) & (df_inputs_prepr['int_rate'] <= 15.74), 1, 0) df_inputs_prepr['int_rate:15.74-20.281'] = np.where((df_inputs_prepr['int_rate'] > 15.74) & (df_inputs_prepr['int_rate'] <= 20.281), 1, 0) df_inputs_prepr['int_rate:>20.281'] = np.where((df_inputs_prepr['int_rate'] > 20.281), 1, 0) ###Output _____no_output_____ ###Markdown PD model: Data Preparation: Continuous Variables, Part 1: Homework ###Code # mths_since_earliest_cr_line df_inputs_prepr['mths_since_earliest_cr_line_factor'] = pd.cut(df_inputs_prepr['mths_since_earliest_cr_line'], 50) df_temp = woe_ordered_continuous(df_inputs_prepr, 'mths_since_earliest_cr_line_factor', df_targets_prepr) df_temp plot_by_woe(df_temp, 90) plot_by_woe(df_temp.iloc[6: , : ], 90) # We create the following categories: # < 140, # 141 - 164, # 165 - 247, # 248 - 270, # 271 - 352, # > 352 df_inputs_prepr['mths_since_earliest_cr_line:<140'] = np.where(df_inputs_prepr['mths_since_earliest_cr_line'].isin(range(140)), 1, 0) df_inputs_prepr['mths_since_earliest_cr_line:141-164'] = np.where(df_inputs_prepr['mths_since_earliest_cr_line'].isin(range(140, 165)), 1, 0) df_inputs_prepr['mths_since_earliest_cr_line:165-247'] = np.where(df_inputs_prepr['mths_since_earliest_cr_line'].isin(range(165, 248)), 1, 0) df_inputs_prepr['mths_since_earliest_cr_line:248-270'] = np.where(df_inputs_prepr['mths_since_earliest_cr_line'].isin(range(248, 271)), 1, 0) df_inputs_prepr['mths_since_earliest_cr_line:271-352'] = np.where(df_inputs_prepr['mths_since_earliest_cr_line'].isin(range(271, 353)), 1, 0) df_inputs_prepr['mths_since_earliest_cr_line:>352'] = np.where(df_inputs_prepr['mths_since_earliest_cr_line'].isin(range(353, int(df_inputs_prepr['mths_since_earliest_cr_line'].max()))), 1, 0) # REFERENCE CATEGORY!!! # delinq_2yrs df_temp = woe_ordered_continuous(df_inputs_prepr, 'delinq_2yrs', df_targets_prepr) df_temp plot_by_woe(df_temp) # Categories: 0, 1-3, >=4 df_inputs_prepr['delinq_2yrs:0'] = np.where((df_inputs_prepr['delinq_2yrs'] == 0), 1, 0) df_inputs_prepr['delinq_2yrs:1-3'] = np.where((df_inputs_prepr['delinq_2yrs'] >= 1) & (df_inputs_prepr['delinq_2yrs'] <= 3), 1, 0) df_inputs_prepr['delinq_2yrs:>=4'] = np.where((df_inputs_prepr['delinq_2yrs'] >= 9), 1, 0) # inq_last_6mths df_temp = woe_ordered_continuous(df_inputs_prepr, 'inq_last_6mths', df_targets_prepr) df_temp plot_by_woe(df_temp) # Categories: 0, 1 - 2, 3 - 6, > 6 df_inputs_prepr['inq_last_6mths:0'] = np.where((df_inputs_prepr['inq_last_6mths'] == 0), 1, 0) df_inputs_prepr['inq_last_6mths:1-2'] = np.where((df_inputs_prepr['inq_last_6mths'] >= 1) & (df_inputs_prepr['inq_last_6mths'] <= 2), 1, 0) df_inputs_prepr['inq_last_6mths:3-6'] = np.where((df_inputs_prepr['inq_last_6mths'] >= 3) & (df_inputs_prepr['inq_last_6mths'] <= 6), 1, 0) df_inputs_prepr['inq_last_6mths:>6'] = np.where((df_inputs_prepr['inq_last_6mths'] > 6), 1, 0) # open_acc df_temp = woe_ordered_continuous(df_inputs_prepr, 'open_acc', df_targets_prepr) df_temp plot_by_woe(df_temp, 90) plot_by_woe(df_temp.iloc[ : 40, :], 90) # Categories: '0', '1-3', '4-12', '13-17', '18-22', '23-25', '26-30', '>30' df_inputs_prepr['open_acc:0'] = np.where((df_inputs_prepr['open_acc'] == 0), 1, 0) df_inputs_prepr['open_acc:1-3'] = np.where((df_inputs_prepr['open_acc'] >= 1) & (df_inputs_prepr['open_acc'] <= 3), 1, 0) df_inputs_prepr['open_acc:4-12'] = np.where((df_inputs_prepr['open_acc'] >= 4) & (df_inputs_prepr['open_acc'] <= 12), 1, 0) df_inputs_prepr['open_acc:13-17'] = np.where((df_inputs_prepr['open_acc'] >= 13) & (df_inputs_prepr['open_acc'] <= 17), 1, 0) df_inputs_prepr['open_acc:18-22'] = np.where((df_inputs_prepr['open_acc'] >= 18) & (df_inputs_prepr['open_acc'] <= 22), 1, 0) df_inputs_prepr['open_acc:23-25'] = np.where((df_inputs_prepr['open_acc'] >= 23) & (df_inputs_prepr['open_acc'] <= 25), 1, 0) df_inputs_prepr['open_acc:26-30'] = np.where((df_inputs_prepr['open_acc'] >= 26) & (df_inputs_prepr['open_acc'] <= 30), 1, 0) df_inputs_prepr['open_acc:>=31'] = np.where((df_inputs_prepr['open_acc'] >= 31), 1, 0) # pub_rec df_temp = woe_ordered_continuous(df_inputs_prepr, 'pub_rec', df_targets_prepr) df_temp plot_by_woe(df_temp, 90) # Categories '0-2', '3-4', '>=5' df_inputs_prepr['pub_rec:0-2'] = np.where((df_inputs_prepr['pub_rec'] >= 0) & (df_inputs_prepr['pub_rec'] <= 2), 1, 0) df_inputs_prepr['pub_rec:3-4'] = np.where((df_inputs_prepr['pub_rec'] >= 3) & (df_inputs_prepr['pub_rec'] <= 4), 1, 0) df_inputs_prepr['pub_rec:>=5'] = np.where((df_inputs_prepr['pub_rec'] >= 5), 1, 0) # total_acc df_inputs_prepr['total_acc_factor'] = pd.cut(df_inputs_prepr['total_acc'], 50) df_temp = woe_ordered_continuous(df_inputs_prepr, 'total_acc_factor', df_targets_prepr) df_temp plot_by_woe(df_temp, 90) # Categories: '<=27', '28-51', '>51' df_inputs_prepr['total_acc:<=27'] = np.where((df_inputs_prepr['total_acc'] <= 27), 1, 0) df_inputs_prepr['total_acc:28-51'] = np.where((df_inputs_prepr['total_acc'] >= 28) & (df_inputs_prepr['total_acc'] <= 51), 1, 0) df_inputs_prepr['total_acc:>=52'] = np.where((df_inputs_prepr['total_acc'] >= 52), 1, 0) # acc_now_delinq df_temp = woe_ordered_continuous(df_inputs_prepr, 'acc_now_delinq', df_targets_prepr) df_temp plot_by_woe(df_temp) # Categories: '0', '>=1' df_inputs_prepr['acc_now_delinq:0'] = np.where((df_inputs_prepr['acc_now_delinq'] == 0), 1, 0) df_inputs_prepr['acc_now_delinq:>=1'] = np.where((df_inputs_prepr['acc_now_delinq'] >= 1), 1, 0) # total_rev_hi_lim df_inputs_prepr['total_rev_hi_lim_factor'] = pd.cut(df_inputs_prepr['total_rev_hi_lim'], 2000) df_temp = woe_ordered_continuous(df_inputs_prepr, 'total_rev_hi_lim_factor', df_targets_prepr) df_temp plot_by_woe(df_temp.iloc[: 50, : ], 90) # Categories # '<=5K', '5K-10K', '10K-20K', '20K-30K', '30K-40K', '40K-55K', '55K-95K', '>95K' df_inputs_prepr['total_rev_hi_lim:<=5K'] = np.where((df_inputs_prepr['total_rev_hi_lim'] <= 5000), 1, 0) df_inputs_prepr['total_rev_hi_lim:5K-10K'] = np.where((df_inputs_prepr['total_rev_hi_lim'] > 5000) & (df_inputs_prepr['total_rev_hi_lim'] <= 10000), 1, 0) df_inputs_prepr['total_rev_hi_lim:10K-20K'] = np.where((df_inputs_prepr['total_rev_hi_lim'] > 10000) & (df_inputs_prepr['total_rev_hi_lim'] <= 20000), 1, 0) df_inputs_prepr['total_rev_hi_lim:20K-30K'] = np.where((df_inputs_prepr['total_rev_hi_lim'] > 20000) & (df_inputs_prepr['total_rev_hi_lim'] <= 30000), 1, 0) df_inputs_prepr['total_rev_hi_lim:30K-40K'] = np.where((df_inputs_prepr['total_rev_hi_lim'] > 30000) & (df_inputs_prepr['total_rev_hi_lim'] <= 40000), 1, 0) df_inputs_prepr['total_rev_hi_lim:40K-55K'] = np.where((df_inputs_prepr['total_rev_hi_lim'] > 40000) & (df_inputs_prepr['total_rev_hi_lim'] <= 55000), 1, 0) df_inputs_prepr['total_rev_hi_lim:55K-95K'] = np.where((df_inputs_prepr['total_rev_hi_lim'] > 55000) & (df_inputs_prepr['total_rev_hi_lim'] <= 95000), 1, 0) df_inputs_prepr['total_rev_hi_lim:>95K'] = np.where((df_inputs_prepr['total_rev_hi_lim'] > 95000), 1, 0) ###Output _____no_output_____ ###Markdown PD model: Data Preparation: Continuous Variables, Part 2 ###Code # annual_inc df_inputs_prepr['annual_inc_factor'] = pd.cut(df_inputs_prepr['annual_inc'], 50) df_temp = woe_ordered_continuous(df_inputs_prepr, 'annual_inc_factor', df_targets_prepr) df_temp df_inputs_prepr['annual_inc_factor'] = pd.cut(df_inputs_prepr['annual_inc'], 100) df_temp = woe_ordered_continuous(df_inputs_prepr, 'annual_inc_factor', df_targets_prepr) df_temp # Initial examination shows that there are too few individuals with large income and too many with small income. # Hence, we are going to have one category for more than 150K, and we are going to apply our approach to determine # the categories of everyone with 140k or less. df_inputs_prepr_temp = df_inputs_prepr.loc[df_inputs_prepr['annual_inc'] <= 140000, : ] #loan_data_temp = loan_data_temp.reset_index(drop = True) #df_inputs_prepr_temp #pd.options.mode.chained_assignment = None df_inputs_prepr_temp["annual_inc_factor"] = pd.cut(df_inputs_prepr_temp['annual_inc'], 50) df_temp = woe_ordered_continuous(df_inputs_prepr_temp, 'annual_inc_factor', df_targets_prepr[df_inputs_prepr_temp.index]) df_temp plot_by_woe(df_temp, 90) # WoE is monotonically decreasing with income, so we split income in 10 equal categories, each with width of 15k. df_inputs_prepr['annual_inc:<20K'] = np.where((df_inputs_prepr['annual_inc'] <= 20000), 1, 0) df_inputs_prepr['annual_inc:20K-30K'] = np.where((df_inputs_prepr['annual_inc'] > 20000) & (df_inputs_prepr['annual_inc'] <= 30000), 1, 0) df_inputs_prepr['annual_inc:30K-40K'] = np.where((df_inputs_prepr['annual_inc'] > 30000) & (df_inputs_prepr['annual_inc'] <= 40000), 1, 0) df_inputs_prepr['annual_inc:40K-50K'] = np.where((df_inputs_prepr['annual_inc'] > 40000) & (df_inputs_prepr['annual_inc'] <= 50000), 1, 0) df_inputs_prepr['annual_inc:50K-60K'] = np.where((df_inputs_prepr['annual_inc'] > 50000) & (df_inputs_prepr['annual_inc'] <= 60000), 1, 0) df_inputs_prepr['annual_inc:60K-70K'] = np.where((df_inputs_prepr['annual_inc'] > 60000) & (df_inputs_prepr['annual_inc'] <= 70000), 1, 0) df_inputs_prepr['annual_inc:70K-80K'] = np.where((df_inputs_prepr['annual_inc'] > 70000) & (df_inputs_prepr['annual_inc'] <= 80000), 1, 0) df_inputs_prepr['annual_inc:80K-90K'] = np.where((df_inputs_prepr['annual_inc'] > 80000) & (df_inputs_prepr['annual_inc'] <= 90000), 1, 0) df_inputs_prepr['annual_inc:90K-100K'] = np.where((df_inputs_prepr['annual_inc'] > 90000) & (df_inputs_prepr['annual_inc'] <= 100000), 1, 0) df_inputs_prepr['annual_inc:100K-120K'] = np.where((df_inputs_prepr['annual_inc'] > 100000) & (df_inputs_prepr['annual_inc'] <= 120000), 1, 0) df_inputs_prepr['annual_inc:120K-140K'] = np.where((df_inputs_prepr['annual_inc'] > 120000) & (df_inputs_prepr['annual_inc'] <= 140000), 1, 0) df_inputs_prepr['annual_inc:>140K'] = np.where((df_inputs_prepr['annual_inc'] > 140000), 1, 0) # dti df_inputs_prepr['dti_factor'] = pd.cut(df_inputs_prepr['dti'], 100) df_temp = woe_ordered_continuous(df_inputs_prepr, 'dti_factor', df_targets_prepr) df_temp plot_by_woe(df_temp, 90) # Similarly to income, initial examination shows that most values are lower than 200. # Hence, we are going to have one category for more than 35, and we are going to apply our approach to determine # the categories of everyone with 150k or less. df_inputs_prepr_temp = df_inputs_prepr.loc[df_inputs_prepr['dti'] <= 35, : ] df_inputs_prepr_temp['dti_factor'] = pd.cut(df_inputs_prepr_temp['dti'], 50) df_temp = woe_ordered_continuous(df_inputs_prepr_temp, 'dti_factor', df_targets_prepr[df_inputs_prepr_temp.index]) df_temp plot_by_woe(df_temp, 90) # Categories: df_inputs_prepr['dti:<=1.4'] = np.where((df_inputs_prepr['dti'] <= 1.4), 1, 0) df_inputs_prepr['dti:1.4-3.5'] = np.where((df_inputs_prepr['dti'] > 1.4) & (df_inputs_prepr['dti'] <= 3.5), 1, 0) df_inputs_prepr['dti:3.5-7.7'] = np.where((df_inputs_prepr['dti'] > 3.5) & (df_inputs_prepr['dti'] <= 7.7), 1, 0) df_inputs_prepr['dti:7.7-10.5'] = np.where((df_inputs_prepr['dti'] > 7.7) & (df_inputs_prepr['dti'] <= 10.5), 1, 0) df_inputs_prepr['dti:10.5-16.1'] = np.where((df_inputs_prepr['dti'] > 10.5) & (df_inputs_prepr['dti'] <= 16.1), 1, 0) df_inputs_prepr['dti:16.1-20.3'] = np.where((df_inputs_prepr['dti'] > 16.1) & (df_inputs_prepr['dti'] <= 20.3), 1, 0) df_inputs_prepr['dti:20.3-21.7'] = np.where((df_inputs_prepr['dti'] > 20.3) & (df_inputs_prepr['dti'] <= 21.7), 1, 0) df_inputs_prepr['dti:21.7-22.4'] = np.where((df_inputs_prepr['dti'] > 21.7) & (df_inputs_prepr['dti'] <= 22.4), 1, 0) df_inputs_prepr['dti:22.4-35'] = np.where((df_inputs_prepr['dti'] > 22.4) & (df_inputs_prepr['dti'] <= 35), 1, 0) df_inputs_prepr['dti:>35'] = np.where((df_inputs_prepr['dti'] > 35), 1, 0) # mths_since_last_delinq # We have to create one category for missing values and do fine and coarse classing for the rest. #loan_data_temp = loan_data[np.isfinite(loan_data['mths_since_last_delinq'])] df_inputs_prepr_temp = df_inputs_prepr[pd.notnull(df_inputs_prepr['mths_since_last_delinq'])] #sum(loan_data_temp['mths_since_last_delinq'].isnull()) df_inputs_prepr_temp['mths_since_last_delinq_factor'] = pd.cut(df_inputs_prepr_temp['mths_since_last_delinq'], 50) df_temp = woe_ordered_continuous(df_inputs_prepr_temp, 'mths_since_last_delinq_factor', df_targets_prepr[df_inputs_prepr_temp.index]) df_temp plot_by_woe(df_temp, 90) # Categories: Missing, 0-3, 4-30, 31-56, >=57 df_inputs_prepr['mths_since_last_delinq:Missing'] = np.where((df_inputs_prepr['mths_since_last_delinq'].isnull()), 1, 0) df_inputs_prepr['mths_since_last_delinq:0-3'] = np.where((df_inputs_prepr['mths_since_last_delinq'] >= 0) & (df_inputs_prepr['mths_since_last_delinq'] <= 3), 1, 0) df_inputs_prepr['mths_since_last_delinq:4-30'] = np.where((df_inputs_prepr['mths_since_last_delinq'] >= 4) & (df_inputs_prepr['mths_since_last_delinq'] <= 30), 1, 0) df_inputs_prepr['mths_since_last_delinq:31-56'] = np.where((df_inputs_prepr['mths_since_last_delinq'] >= 31) & (df_inputs_prepr['mths_since_last_delinq'] <= 56), 1, 0) df_inputs_prepr['mths_since_last_delinq:>=57'] = np.where((df_inputs_prepr['mths_since_last_delinq'] >= 57), 1, 0) # mths_since_last_record # We have to create one category for missing values and do fine and coarse classing for the rest. df_inputs_prepr_temp = df_inputs_prepr[pd.notnull(df_inputs_prepr['mths_since_last_record'])] #sum(loan_data_temp['mths_since_last_record'].isnull()) df_inputs_prepr_temp['mths_since_last_record_factor'] = pd.cut(df_inputs_prepr_temp['mths_since_last_record'], 50) df_temp = woe_ordered_continuous(df_inputs_prepr_temp, 'mths_since_last_record_factor', df_targets_prepr[df_inputs_prepr_temp.index]) df_temp plot_by_woe(df_temp, 90) # Categories: 'Missing', '0-2', '3-20', '21-31', '32-80', '81-86', '>86' df_inputs_prepr['mths_since_last_record:Missing'] = np.where((df_inputs_prepr['mths_since_last_record'].isnull()), 1, 0) df_inputs_prepr['mths_since_last_record:0-2'] = np.where((df_inputs_prepr['mths_since_last_record'] >= 0) & (df_inputs_prepr['mths_since_last_record'] <= 2), 1, 0) df_inputs_prepr['mths_since_last_record:3-20'] = np.where((df_inputs_prepr['mths_since_last_record'] >= 3) & (df_inputs_prepr['mths_since_last_record'] <= 20), 1, 0) df_inputs_prepr['mths_since_last_record:21-31'] = np.where((df_inputs_prepr['mths_since_last_record'] >= 21) & (df_inputs_prepr['mths_since_last_record'] <= 31), 1, 0) df_inputs_prepr['mths_since_last_record:32-80'] = np.where((df_inputs_prepr['mths_since_last_record'] >= 32) & (df_inputs_prepr['mths_since_last_record'] <= 80), 1, 0) df_inputs_prepr['mths_since_last_record:81-86'] = np.where((df_inputs_prepr['mths_since_last_record'] >= 81) & (df_inputs_prepr['mths_since_last_record'] <= 86), 1, 0) df_inputs_prepr['mths_since_last_record:>=86'] = np.where((df_inputs_prepr['mths_since_last_record'] >= 86), 1, 0) df_inputs_prepr['mths_since_last_delinq:Missing'].sum() # display inputs_train, inputs_test # funded_amnt df_inputs_prepr['funded_amnt_factor'] = pd.cut(df_inputs_prepr['funded_amnt'], 50) df_temp = woe_ordered_continuous(df_inputs_prepr, 'funded_amnt_factor', df_targets_prepr) df_temp plot_by_woe(df_temp, 90) # WON'T USE because there is no clear trend, even if segments of the whole range are considered. # installment df_inputs_prepr['installment_factor'] = pd.cut(df_inputs_prepr['installment'], 50) df_temp = woe_ordered_continuous(df_inputs_prepr, 'installment_factor', df_targets_prepr) df_temp plot_by_woe(df_temp, 90) # WON'T USE because there is no clear trend, even if segments of the whole range are considered. ###Output _____no_output_____ ###Markdown Preprocessing the test dataset ###Code ##### #loan_data_inputs_train = df_inputs_prepr ##### #loan_data_inputs_test = df_inputs_prepr ###### loan_data_inputs_2015 = df_inputs_prepr loan_data_targets_2015 = df_targets_prepr #loan_data_inputs_train.columns.values #loan_data_inputs_test.columns.values #loan_data_inputs_train.shape #loan_data_targets_train.shape #loan_data_inputs_test.shape #loan_data_targets_test.shape loan_data_inputs_2015.columns.values loan_data_inputs_2015.shape loan_data_targets_2015.shape #loan_data_inputs_train.to_csv('loan_data_inputs_train.csv') #loan_data_targets_train.to_csv('loan_data_targets_train.csv') #loan_data_inputs_test.to_csv('loan_data_inputs_test.csv') #loan_data_targets_test.to_csv('loan_data_targets_test.csv') loan_data_inputs_2015.to_csv('loan_data_inputs_2015.csv') loan_data_targets_2015.to_csv('loan_data_targets_2015.csv') ###Output _____no_output_____ ###Markdown >>> The code up to here, from the other line starting with '>>>' is copied from the Data Preparation notebook, with minor adjustments. *** ###Code inputs_train_with_ref_cat = pd.read_csv('inputs_train_with_ref_cat.csv', index_col = 0) # We import the dataset with old data, i.e. "expected" data. # From the dataframe with new, "actual" data, we keep only the relevant columns. inputs_2015_with_ref_cat = loan_data_inputs_2015.loc[: , ['grade:A', 'grade:B', 'grade:C', 'grade:D', 'grade:E', 'grade:F', 'grade:G', 'home_ownership:RENT_OTHER_NONE_ANY', 'home_ownership:OWN', 'home_ownership:MORTGAGE', 'addr_state:ND_NE_IA_NV_FL_HI_AL', 'addr_state:NM_VA', 'addr_state:NY', 'addr_state:OK_TN_MO_LA_MD_NC', 'addr_state:CA', 'addr_state:UT_KY_AZ_NJ', 'addr_state:AR_MI_PA_OH_MN', 'addr_state:RI_MA_DE_SD_IN', 'addr_state:GA_WA_OR', 'addr_state:WI_MT', 'addr_state:TX', 'addr_state:IL_CT', 'addr_state:KS_SC_CO_VT_AK_MS', 'addr_state:WV_NH_WY_DC_ME_ID', 'verification_status:Not Verified', 'verification_status:Source Verified', 'verification_status:Verified', 'purpose:educ__sm_b__wedd__ren_en__mov__house', 'purpose:credit_card', 'purpose:debt_consolidation', 'purpose:oth__med__vacation', 'purpose:major_purch__car__home_impr', 'initial_list_status:f', 'initial_list_status:w', 'term:36', 'term:60', 'emp_length:0', 'emp_length:1', 'emp_length:2-4', 'emp_length:5-6', 'emp_length:7-9', 'emp_length:10', 'mths_since_issue_d:<38', 'mths_since_issue_d:38-39', 'mths_since_issue_d:40-41', 'mths_since_issue_d:42-48', 'mths_since_issue_d:49-52', 'mths_since_issue_d:53-64', 'mths_since_issue_d:65-84', 'mths_since_issue_d:>84', 'int_rate:<9.548', 'int_rate:9.548-12.025', 'int_rate:12.025-15.74', 'int_rate:15.74-20.281', 'int_rate:>20.281', 'mths_since_earliest_cr_line:<140', 'mths_since_earliest_cr_line:141-164', 'mths_since_earliest_cr_line:165-247', 'mths_since_earliest_cr_line:248-270', 'mths_since_earliest_cr_line:271-352', 'mths_since_earliest_cr_line:>352', 'inq_last_6mths:0', 'inq_last_6mths:1-2', 'inq_last_6mths:3-6', 'inq_last_6mths:>6', 'acc_now_delinq:0', 'acc_now_delinq:>=1', 'annual_inc:<20K', 'annual_inc:20K-30K', 'annual_inc:30K-40K', 'annual_inc:40K-50K', 'annual_inc:50K-60K', 'annual_inc:60K-70K', 'annual_inc:70K-80K', 'annual_inc:80K-90K', 'annual_inc:90K-100K', 'annual_inc:100K-120K', 'annual_inc:120K-140K', 'annual_inc:>140K', 'dti:<=1.4', 'dti:1.4-3.5', 'dti:3.5-7.7', 'dti:7.7-10.5', 'dti:10.5-16.1', 'dti:16.1-20.3', 'dti:20.3-21.7', 'dti:21.7-22.4', 'dti:22.4-35', 'dti:>35', 'mths_since_last_delinq:Missing', 'mths_since_last_delinq:0-3', 'mths_since_last_delinq:4-30', 'mths_since_last_delinq:31-56', 'mths_since_last_delinq:>=57', 'mths_since_last_record:Missing', 'mths_since_last_record:0-2', 'mths_since_last_record:3-20', 'mths_since_last_record:21-31', 'mths_since_last_record:32-80', 'mths_since_last_record:81-86', 'mths_since_last_record:>=86', ]] inputs_train_with_ref_cat.shape inputs_2015_with_ref_cat.shape df_scorecard = pd.read_csv('df_scorecard.csv', index_col = 0) # We import the scorecard. df_scorecard inputs_train_with_ref_cat_w_intercept = inputs_train_with_ref_cat inputs_train_with_ref_cat_w_intercept.insert(0, 'Intercept', 1) # We insert a column in the dataframe, with an index of 0, that is, in the beginning of the dataframe. # The name of that column is 'Intercept', and its values are 1s. inputs_train_with_ref_cat_w_intercept = inputs_train_with_ref_cat_w_intercept[df_scorecard['Feature name'].values] # Here, from the 'inputs_train_with_ref_cat_w_intercept' dataframe, we keep only the columns with column names, # exactly equal to the row values of the 'Feature name' column from the 'df_scorecard' dataframe. inputs_train_with_ref_cat_w_intercept.head() inputs_2015_with_ref_cat_w_intercept = inputs_2015_with_ref_cat inputs_2015_with_ref_cat_w_intercept.insert(0, 'Intercept', 1) # We insert a column in the dataframe, with an index of 0, that is, in the beginning of the dataframe. # The name of that column is 'Intercept', and its values are 1s. inputs_2015_with_ref_cat_w_intercept = inputs_2015_with_ref_cat_w_intercept[df_scorecard['Feature name'].values] # Here, from the 'inputs_train_with_ref_cat_w_intercept' dataframe, we keep only the columns with column names, # exactly equal to the row values of the 'Feature name' column from the 'df_scorecard' dataframe. inputs_2015_with_ref_cat_w_intercept.head() scorecard_scores = df_scorecard['Score - Final'] scorecard_scores = scorecard_scores.values.reshape(102, 1) y_scores_train = inputs_train_with_ref_cat_w_intercept.dot(scorecard_scores) # Here we multiply the values of each row of the dataframe by the values of each column of the variable, # which is an argument of the 'dot' method, and sum them. It's essentially the sum of the products. y_scores_train.head() y_scores_2015 = inputs_2015_with_ref_cat_w_intercept.dot(scorecard_scores) # Here we multiply the values of each row of the dataframe by the values of each column of the variable, # which is an argument of the 'dot' method, and sum them. It's essentially the sum of the products. y_scores_2015.head() inputs_train_with_ref_cat_w_intercept = pd.concat([inputs_train_with_ref_cat_w_intercept, y_scores_train], axis = 1) inputs_2015_with_ref_cat_w_intercept = pd.concat([inputs_2015_with_ref_cat_w_intercept, y_scores_2015], axis = 1) # Here we concatenate the scores we calculated with the rest of the variables in the two dataframes: # the one with old ("expected") data and the one with new ("actual") data. inputs_train_with_ref_cat_w_intercept.columns.values[inputs_train_with_ref_cat_w_intercept.shape[1] - 1] = 'Score' inputs_2015_with_ref_cat_w_intercept.columns.values[inputs_2015_with_ref_cat_w_intercept.shape[1] - 1] = 'Score' # Here we rename the columns containing scores to "Score" in both dataframes. inputs_2015_with_ref_cat_w_intercept.head() inputs_train_with_ref_cat_w_intercept['Score:300-350'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 300) & (inputs_train_with_ref_cat_w_intercept['Score'] < 350), 1, 0) inputs_train_with_ref_cat_w_intercept['Score:350-400'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 350) & (inputs_train_with_ref_cat_w_intercept['Score'] < 400), 1, 0) inputs_train_with_ref_cat_w_intercept['Score:400-450'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 400) & (inputs_train_with_ref_cat_w_intercept['Score'] < 450), 1, 0) inputs_train_with_ref_cat_w_intercept['Score:450-500'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 450) & (inputs_train_with_ref_cat_w_intercept['Score'] < 500), 1, 0) inputs_train_with_ref_cat_w_intercept['Score:500-550'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 500) & (inputs_train_with_ref_cat_w_intercept['Score'] < 550), 1, 0) inputs_train_with_ref_cat_w_intercept['Score:550-600'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 550) & (inputs_train_with_ref_cat_w_intercept['Score'] < 600), 1, 0) inputs_train_with_ref_cat_w_intercept['Score:600-650'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 600) & (inputs_train_with_ref_cat_w_intercept['Score'] < 650), 1, 0) inputs_train_with_ref_cat_w_intercept['Score:650-700'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 650) & (inputs_train_with_ref_cat_w_intercept['Score'] < 700), 1, 0) inputs_train_with_ref_cat_w_intercept['Score:700-750'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 700) & (inputs_train_with_ref_cat_w_intercept['Score'] < 750), 1, 0) inputs_train_with_ref_cat_w_intercept['Score:750-800'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 750) & (inputs_train_with_ref_cat_w_intercept['Score'] < 800), 1, 0) inputs_train_with_ref_cat_w_intercept['Score:800-850'] = np.where((inputs_train_with_ref_cat_w_intercept['Score'] >= 800) & (inputs_train_with_ref_cat_w_intercept['Score'] <= 850), 1, 0) # We create dummy variables for score intervals in the dataframe with old ("expected"). inputs_2015_with_ref_cat_w_intercept['Score:300-350'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 300) & (inputs_2015_with_ref_cat_w_intercept['Score'] < 350), 1, 0) inputs_2015_with_ref_cat_w_intercept['Score:350-400'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 350) & (inputs_2015_with_ref_cat_w_intercept['Score'] < 400), 1, 0) inputs_2015_with_ref_cat_w_intercept['Score:400-450'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 400) & (inputs_2015_with_ref_cat_w_intercept['Score'] < 450), 1, 0) inputs_2015_with_ref_cat_w_intercept['Score:450-500'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 450) & (inputs_2015_with_ref_cat_w_intercept['Score'] < 500), 1, 0) inputs_2015_with_ref_cat_w_intercept['Score:500-550'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 500) & (inputs_2015_with_ref_cat_w_intercept['Score'] < 550), 1, 0) inputs_2015_with_ref_cat_w_intercept['Score:550-600'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 550) & (inputs_2015_with_ref_cat_w_intercept['Score'] < 600), 1, 0) inputs_2015_with_ref_cat_w_intercept['Score:600-650'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 600) & (inputs_2015_with_ref_cat_w_intercept['Score'] < 650), 1, 0) inputs_2015_with_ref_cat_w_intercept['Score:650-700'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 650) & (inputs_2015_with_ref_cat_w_intercept['Score'] < 700), 1, 0) inputs_2015_with_ref_cat_w_intercept['Score:700-750'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 700) & (inputs_2015_with_ref_cat_w_intercept['Score'] < 750), 1, 0) inputs_2015_with_ref_cat_w_intercept['Score:750-800'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 750) & (inputs_2015_with_ref_cat_w_intercept['Score'] < 800), 1, 0) inputs_2015_with_ref_cat_w_intercept['Score:800-850'] = np.where((inputs_2015_with_ref_cat_w_intercept['Score'] >= 800) & (inputs_2015_with_ref_cat_w_intercept['Score'] <= 850), 1, 0) # We create dummy variables for score intervals in the dataframe with new ("actual"). ###Output _____no_output_____ ###Markdown Population Stability Index: Calculation and Interpretation ###Code PSI_calc_train = inputs_train_with_ref_cat_w_intercept.sum() / inputs_train_with_ref_cat_w_intercept.shape[0] # We create a dataframe with proportions of observations for each dummy variable for the old ("expected") data. PSI_calc_2015 = inputs_2015_with_ref_cat_w_intercept.sum() / inputs_2015_with_ref_cat_w_intercept.shape[0] # We create a dataframe with proportions of observations for each dummy variable for the new ("actual") data. PSI_calc = pd.concat([PSI_calc_train, PSI_calc_2015], axis = 1) # We concatenate the two dataframes along the columns. PSI_calc = PSI_calc.reset_index() # We reset the index of the dataframe. The index becomes from 0 to the total number of rows less one. # The old index, which is the dummy variable name, becomes a column, named 'index'. PSI_calc['Original feature name'] = PSI_calc['index'].str.split(':').str[0] # We create a new column, called 'Original feature name', which contains the value of the 'Feature name' column, # up to the column symbol. PSI_calc.columns = ['index', 'Proportions_Train', 'Proportions_New', 'Original feature name'] # We change the names of the columns of the dataframe. PSI_calc = PSI_calc[np.array(['index', 'Original feature name', 'Proportions_Train', 'Proportions_New'])] PSI_calc PSI_calc = PSI_calc[(PSI_calc['index'] != 'Intercept') & (PSI_calc['index'] != 'Score')] # We remove the rows with values in the 'index' column 'Intercept' and 'Score'. PSI_calc['Contribution'] = np.where((PSI_calc['Proportions_Train'] == 0) | (PSI_calc['Proportions_New'] == 0), 0, (PSI_calc['Proportions_New'] - PSI_calc['Proportions_Train']) * np.log(PSI_calc['Proportions_New'] / PSI_calc['Proportions_Train'])) # We calculate the contribution of each dummy variable to the PSI of each original variable it comes from. # If either the proportion of old data or the proportion of new data are 0, the contribution is 0. # Otherwise, we apply the PSI formula for each contribution. PSI_calc PSI_calc.groupby('Original feature name')['Contribution'].sum() # Finally, we sum all contributions for each original independent variable and the 'Score' variable. ###Output _____no_output_____
src/Keras_Fashion_MNIST_TPU_Example.ipynb
###Markdown ###Code %%capture !pip install watermark %load_ext watermark %watermark -p tensorflow,numpy -m ###Output tensorflow 1.12.0 numpy 1.14.6 compiler : GCC 8.2.0 system : Linux release : 4.14.79+ machine : x86_64 processor : x86_64 CPU cores : 2 interpreter: 64bit ###Markdown (Adapted from https://github.com/tensorflow/tpu/blob/master/tools/colab/fashion_mnist.ipynb) Fashion MNIST with Keras and TPUsLet's try out using `tf.keras` and Cloud TPUs to train a model on the fashion MNIST dataset.First, let's grab our dataset using `tf.keras.datasets`. ###Code import os import tensorflow as tf import numpy as np import pandas as pd from sklearn.model_selection import StratifiedShuffleSplit (x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data() # add empty color dimension x_train = np.expand_dims(x_train, -1) x_test = np.expand_dims(x_test, -1) ###Output Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz 32768/29515 [=================================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz 26427392/26421880 [==============================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz 8192/5148 [===============================================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz 4423680/4422102 [==============================] - 0s 0us/step ###Markdown Value distribution of X: ###Code pd.set_option('display.float_format', lambda x: '%.3f' % x) pd.Series(x_train.reshape(-1)).describe() ###Output _____no_output_____ ###Markdown Value distribution of Y: ###Code pd.Series(y_train.reshape(-1)).describe() ###Output _____no_output_____ ###Markdown Create a validation set ###Code sss = StratifiedShuffleSplit(n_splits=5, random_state=0, test_size=1/6) train_index, valid_index = next(sss.split(x_train, y_train)) x_valid, y_valid = x_train[valid_index], y_train[valid_index] x_train, y_train = x_train[train_index], y_train[train_index] print(x_train.shape, x_valid.shape, x_test.shape) ###Output (50000, 28, 28, 1) (10000, 28, 28, 1) (10000, 28, 28, 1) ###Markdown Defining our modelWe will use a standard conv-net for this example. We have 3 layers with drop-out and batch normalization between each layer. ###Code model = tf.keras.models.Sequential() model.add(tf.keras.layers.BatchNormalization(input_shape=x_train.shape[1:])) model.add(tf.keras.layers.Conv2D(64, (5, 5), padding='same', activation='elu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2,2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.BatchNormalization(input_shape=x_train.shape[1:])) model.add(tf.keras.layers.Conv2D(128, (5, 5), padding='same', activation='elu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.BatchNormalization(input_shape=x_train.shape[1:])) model.add(tf.keras.layers.Conv2D(256, (5, 5), padding='same', activation='elu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2,2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(256)) model.add(tf.keras.layers.Activation('elu')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(10)) model.add(tf.keras.layers.Activation('softmax')) model.summary() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= batch_normalization (BatchNo (None, 28, 28, 1) 4 _________________________________________________________________ conv2d (Conv2D) (None, 28, 28, 64) 1664 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 14, 14, 64) 0 _________________________________________________________________ dropout (Dropout) (None, 14, 14, 64) 0 _________________________________________________________________ batch_normalization_1 (Batch (None, 14, 14, 64) 256 _________________________________________________________________ conv2d_1 (Conv2D) (None, 14, 14, 128) 204928 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 7, 7, 128) 0 _________________________________________________________________ dropout_1 (Dropout) (None, 7, 7, 128) 0 _________________________________________________________________ batch_normalization_2 (Batch (None, 7, 7, 128) 512 _________________________________________________________________ conv2d_2 (Conv2D) (None, 7, 7, 256) 819456 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 3, 3, 256) 0 _________________________________________________________________ dropout_2 (Dropout) (None, 3, 3, 256) 0 _________________________________________________________________ flatten (Flatten) (None, 2304) 0 _________________________________________________________________ dense (Dense) (None, 256) 590080 _________________________________________________________________ activation (Activation) (None, 256) 0 _________________________________________________________________ dropout_3 (Dropout) (None, 256) 0 _________________________________________________________________ dense_1 (Dense) (None, 10) 2570 _________________________________________________________________ activation_1 (Activation) (None, 10) 0 ================================================================= Total params: 1,619,470 Trainable params: 1,619,084 Non-trainable params: 386 _________________________________________________________________ ###Markdown Training on the TPUWe're ready to train! We first construct our model on the TPU, and compile it.Here we demonstrate that we can use a generator function and `fit_generator` to train the model. You can also pass in `x_train` and `y_train` to `tpu_model.fit()` instead. ###Code tpu_model = tf.contrib.tpu.keras_to_tpu_model( model, strategy=tf.contrib.tpu.TPUDistributionStrategy( tf.contrib.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR']) ) ) tpu_model.compile( optimizer=tf.train.AdamOptimizer(learning_rate=1e-3, ), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['sparse_categorical_accuracy'] ) %%time def train_gen(batch_size): while True: offset = np.random.randint(0, x_train.shape[0] - batch_size) yield x_train[offset:offset+batch_size], y_train[offset:offset + batch_size] tpu_model.fit_generator( train_gen(512), epochs=15, steps_per_epoch=100, validation_data=(x_valid, y_valid) ) ###Output Epoch 1/15 INFO:tensorflow:New input shapes; (re-)compiling: mode=train (# of cores 8), [TensorSpec(shape=(64,), dtype=tf.int32, name='core_id0'), TensorSpec(shape=(64, 28, 28, 1), dtype=tf.float32, name='batch_normalization_input_10'), TensorSpec(shape=(64, 1), dtype=tf.float32, name='activation_1_target_10')] INFO:tensorflow:Overriding default placeholder. INFO:tensorflow:Remapping placeholder for batch_normalization_input INFO:tensorflow:Started compiling INFO:tensorflow:Finished compiling. Time elapsed: 3.1950180530548096 secs INFO:tensorflow:Setting weights on TPU model. 99/100 [============================>.] - ETA: 0s - loss: 0.9384 - sparse_categorical_accuracy: 0.7172INFO:tensorflow:New input shapes; (re-)compiling: mode=eval (# of cores 8), [TensorSpec(shape=(64,), dtype=tf.int32, name='core_id_10'), TensorSpec(shape=(64, 28, 28, 1), dtype=tf.float32, name='batch_normalization_input_10'), TensorSpec(shape=(64, 1), dtype=tf.float32, name='activation_1_target_10')] INFO:tensorflow:Overriding default placeholder. INFO:tensorflow:Remapping placeholder for batch_normalization_input INFO:tensorflow:Started compiling INFO:tensorflow:Finished compiling. Time elapsed: 1.434025526046753 secs INFO:tensorflow:New input shapes; (re-)compiling: mode=eval (# of cores 8), [TensorSpec(shape=(34,), dtype=tf.int32, name='core_id_10'), TensorSpec(shape=(34, 28, 28, 1), dtype=tf.float32, name='batch_normalization_input_10'), TensorSpec(shape=(34, 1), dtype=tf.float32, name='activation_1_target_10')] INFO:tensorflow:Overriding default placeholder. INFO:tensorflow:Remapping placeholder for batch_normalization_input INFO:tensorflow:Started compiling INFO:tensorflow:Finished compiling. Time elapsed: 2.0235393047332764 secs 100/100 [==============================] - 18s 180ms/step - loss: 0.9345 - sparse_categorical_accuracy: 0.7179 - val_loss: 1.0746 - val_sparse_categorical_accuracy: 0.6738 Epoch 2/15 100/100 [==============================] - 7s 69ms/step - loss: 0.4890 - sparse_categorical_accuracy: 0.8298 - val_loss: 0.8284 - val_sparse_categorical_accuracy: 0.7191 Epoch 3/15 100/100 [==============================] - 7s 68ms/step - loss: 0.3926 - sparse_categorical_accuracy: 0.8628 - val_loss: 0.4900 - val_sparse_categorical_accuracy: 0.8290 Epoch 4/15 100/100 [==============================] - 7s 68ms/step - loss: 0.3340 - sparse_categorical_accuracy: 0.8806 - val_loss: 0.3220 - val_sparse_categorical_accuracy: 0.8829 Epoch 5/15 100/100 [==============================] - 7s 71ms/step - loss: 0.2931 - sparse_categorical_accuracy: 0.8940 - val_loss: 0.3302 - val_sparse_categorical_accuracy: 0.8822 Epoch 6/15 100/100 [==============================] - 7s 66ms/step - loss: 0.2733 - sparse_categorical_accuracy: 0.9012 - val_loss: 0.2330 - val_sparse_categorical_accuracy: 0.9173 Epoch 7/15 100/100 [==============================] - 7s 69ms/step - loss: 0.2486 - sparse_categorical_accuracy: 0.9093 - val_loss: 0.2219 - val_sparse_categorical_accuracy: 0.9204 Epoch 8/15 100/100 [==============================] - 7s 68ms/step - loss: 0.2291 - sparse_categorical_accuracy: 0.9148 - val_loss: 0.2171 - val_sparse_categorical_accuracy: 0.9224 Epoch 9/15 100/100 [==============================] - 7s 67ms/step - loss: 0.2036 - sparse_categorical_accuracy: 0.9242 - val_loss: 0.2227 - val_sparse_categorical_accuracy: 0.9209 Epoch 10/15 100/100 [==============================] - 7s 67ms/step - loss: 0.2049 - sparse_categorical_accuracy: 0.9248 - val_loss: 0.2335 - val_sparse_categorical_accuracy: 0.9183 Epoch 11/15 100/100 [==============================] - 7s 69ms/step - loss: 0.1808 - sparse_categorical_accuracy: 0.9319 - val_loss: 0.2162 - val_sparse_categorical_accuracy: 0.9263 Epoch 12/15 100/100 [==============================] - 7s 67ms/step - loss: 0.1715 - sparse_categorical_accuracy: 0.9362 - val_loss: 0.2197 - val_sparse_categorical_accuracy: 0.9226 Epoch 13/15 100/100 [==============================] - 7s 69ms/step - loss: 0.1580 - sparse_categorical_accuracy: 0.9418 - val_loss: 0.2136 - val_sparse_categorical_accuracy: 0.9255 Epoch 14/15 100/100 [==============================] - 7s 68ms/step - loss: 0.1388 - sparse_categorical_accuracy: 0.9485 - val_loss: 0.2360 - val_sparse_categorical_accuracy: 0.9221 Epoch 15/15 100/100 [==============================] - 7s 68ms/step - loss: 0.1440 - sparse_categorical_accuracy: 0.9463 - val_loss: 0.2203 - val_sparse_categorical_accuracy: 0.9283 CPU times: user 19.2 s, sys: 3.28 s, total: 22.5 s Wall time: 1min 53s ###Markdown Checking our results (inference)Now that we're done training, let's see how well we can predict fashion categories! Keras/TPU prediction isn't working due to a small bug (fixed in TF 1.12!), but we can predict on the CPU to see how our results look. ###Code LABEL_NAMES = ['t_shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle_boots'] cpu_model = tpu_model.sync_to_cpu() from matplotlib import pyplot %matplotlib inline def plot_predictions(images, predictions, true_labels): n = images.shape[0] nc = int(np.ceil(n / 4)) fig = pyplot.figure(figsize=(4,3)) # axes = fig.add_subplot(nc, 4) f, axes = pyplot.subplots(nc, 4) f.tight_layout() for i in range(nc * 4): y = i // 4 x = i % 4 axes[x, y].axis('off') label = LABEL_NAMES[np.argmax(predictions[i])] confidence = np.max(predictions[i]) if i > n: continue axes[x, y].imshow(images[i]) pred_label = np.argmax(predictions[i]) axes[x, y].set_title("{} ({})\n {:.3f}".format( LABEL_NAMES[pred_label], LABEL_NAMES[true_labels[i]], confidence ), color=("green" if true_labels[i] == pred_label else "red")) pyplot.gcf().set_size_inches(8, 8) plot_predictions( np.squeeze(x_test[:16]), cpu_model.predict(x_test[:16]), y_test[:16] ) %%time # Evaluate the model on valid set score = cpu_model.evaluate(x_valid, y_valid, verbose=0) # Print test accuracy print('\n', 'Valid accuracy:', score[1]) %%time # Evaluate the model on test set score = cpu_model.evaluate(x_test, y_test, verbose=0) # Print test accuracy print('\n', 'Test accuracy:', score[1]) ###Output Test accuracy: 0.9194 CPU times: user 445 ms, sys: 31.3 ms, total: 476 ms Wall time: 3.42 s
machine learning.ipynb
###Markdown Load file sampled from data in auth.txt.gz so that number of fails is similar to the number of successes. ###Code df=pd.read_csv('md/msample1.csv', header=None) len(df) df[8].value_counts() ###Output _____no_output_____ ###Markdown Creating clsssification label ###Code Y=(df[8]=='Success') ###Output _____no_output_____ ###Markdown Creating features for machine learning First I define a function that works with source_user and destination_user from columns 1 and 2. This function maps strips users that start with 'C' and 'U' all the numbers that follow after the first symbol. I hoping that this will be a useful classification for the users. ###Code def map_user(x): if x.startswith('C'): return 'C' elif x.startswith('U'): return 'U' else: return x ###Output _____no_output_____ ###Markdown Creating features for machine learning:columns 5-7 from df for authentication type, logon type and authentication orientation are expanded to include all labels from the columns as new expanded columns holding 1(True) if the label applies and 0 (False) otherwise.Columns 1-4 contain a lot of unique labels. The number of labels is on the scale of 30,000. Therefore I do not want to apply the same procedure I used for columns 5-7 as the number of my features will explode. And I have no evidence that these features are useful. Many of the labels here come in the form of C+{number} or U+{number}, which probably mean some ordering and labeling for different computers and users in the lab. My goal is to create fewer more informative features. So I take columns 1 and 2 and split them into new columns that separately track source user, source domain, destination user, destination domain. I classify users with more general labels replacing C-labels and U-labels with just the first letter. I later convert these new labels into features just as I did for columns 5-7. I also do comparisons between data derived from columns 1-4 to see if source and destination computer are the same, source user is same as source computer, etc. ###Code df["source_user"], df["source_domain"] = zip(*df[1].str.split('@').tolist()) df["source_user"]=df["source_user"].str.rstrip('$') df["destination_user"], df["destination_domain"] = zip(*df[2].str.split('@').tolist()) df["destination_user"]=df["destination_user"].str.rstrip('$') df['source_class']=df['source_user'].map(map_user) df['destination_class']=df['destination_user'].map(map_user) X=pd.DataFrame.from_items([('time', (df[0]%(24*60*60)).astype(int))]) X['same_user']= (df['destination_user']==df['source_user']) X['same_domain']=(df['destination_domain']==df['source_domain']) X['source_user_comp_same']=(df[3]==df['source_user']) X['destination_user_comp_same']=(df['destination_user']==df[4]) X['same_comp']=(df[3]==df[4]) X['source_domain_comp_same']=(df[3]==df['source_domain']) X['destination_domain_comp_same']=(df['destination_domain']==df[4]) for j in [5,6, 7]: for label in sorted(df[j].unique()): if label=='?': if j==5: X['?_authentication type']=(df[j]==label) elif j==6: X['?_logon type']=(df[j]==label) else: X[label]=(df[j]==label) for cl in ['source_class', 'destination_class']: for label in df[cl].unique(): if cl=='source_class': X['source_'+label]=(df[cl]==label) else: X['destination_'+label]=(df[cl]==label) X ###Output _____no_output_____ ###Markdown Separate current dataset into train and test data ###Code n=int(len(X)*.7) Xtrain=X[:n] Ytrain=Y[:n] Xtest=X[n:] Ytest=Y[n:] ###Output _____no_output_____ ###Markdown Logistic regression ###Code from sklearn import linear_model, datasets logreg = linear_model.LogisticRegression(C=1e5).fit(Xtrain, Ytrain) print logreg.score(Xtrain, Ytrain), logreg.score(Xtest, Ytest) from sklearn.metrics import confusion_matrix trainPred=logreg.predict(Xtrain) testPred=logreg.predict(Xtest) print confusion_matrix(Ytrain, trainPred) confusion_matrix(Ytest, testPred) ###Output [[ 98017 27581] [ 15614 139002]] ###Markdown Coefficients for logistic regression should tell which parameters are important ###Code logreg.coef_ X.columns ###Output _____no_output_____ ###Markdown Try L1 penanlty ###Code clf_l1_LR = linear_model.LogisticRegression(C=1000, penalty='l1', tol=0.001).fit(Xtrain, Ytrain) print clf_l1_LR.score(Xtrain, Ytrain), clf_l1_LR.score(Xtest, Ytest) ###Output 0.93957118488 0.94798154748 ###Markdown Try L2 penalty ###Code clf_l2_LR = linear_model.LogisticRegression(C=1000, penalty='l2', tol=0.001).fit(Xtrain, Ytrain) print clf_l2_LR.score(Xtrain, Ytrain), clf_l2_LR.score(Xtest, Ytest) ###Output 0.551781852441 0.380091929521 ###Markdown Gradient Boosting ###Code from sklearn.ensemble import GradientBoostingClassifier clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.05, max_depth=1, random_state=0).fit(Xtrain, Ytrain) print clf.score(Xtrain, Ytrain), clf.score(Xtest, Ytest) ###Output 0.889084770925 0.880649835126 ###Markdown Analysis From the results I just got, I can see that Logistic regression with L1 penalty works better than Gradient Boosting than logistic regression without any normalization than logistic regression with L2 penalty.Lasso logistic regression (L1 penalty) works really well for correlated features, whereas L2 penalty fails badly when features are correlated. Given how I constructed my features, they can easily turn out to be correlated, but I probably want spent more time on understanding correlations between features as Lasso gives really good accuracy score. At this point, I do not know if I should trust my result as I tested it on a very small subset of data from auth.txt.gz. I'd like to get more independent randomly sampled subsets to see how well my results hold on. ###Code clf_l1_LR.coef_ pd.DataFrame.from_items([("feature",X.columns), ("LR contribution",clf_l1_LR.coef_[0]*100)]) ###Output _____no_output_____ ###Markdown Load file sampled from data in auth.txt.gz so that number of fails is similar to the number of successes. ###Code df=pd.read_csv('md/msample1.csv', header=None) len(df) df[8].value_counts() ###Output _____no_output_____ ###Markdown Creating clsssification label ###Code Y=(df[8]=='Success') ###Output _____no_output_____ ###Markdown Creating features for machine learning First I define a function that works with source_user and destination_user from columns 1 and 2. This function maps strips users that start with 'C' and 'U' all the numbers that follow after the first symbol. I hoping that this will be a useful classification for the users. ###Code def map_user(x): if x.startswith('C'): return 'C' elif x.startswith('U'): return 'U' else: return x ###Output _____no_output_____ ###Markdown Creating features for machine learning:columns 5-7 from df for authentication type, logon type and authentication orientation are expanded to include all labels from the columns as new expanded columns holding 1(True) if the label applies and 0 (False) otherwise.Columns 1-4 contain a lot of unique labels. The number of labels is on the scale of 30,000. Therefore I do not want to apply the same procedure I used for columns 5-7 as the number of my features will explode. And I have no evidence that these features are useful. Many of the labels here come in the form of C+{number} or U+{number}, which probably mean some ordering and labeling for different computers and users in the lab. My goal is to create fewer more informative features. So I take columns 1 and 2 and split them into new columns that separately track source user, source domain, destination user, destination domain. I classify users with more general labels replacing C-labels and U-labels with just the first letter. I later convert these new labels into features just as I did for columns 5-7. I also do comparisons between data derived from columns 1-4 to see if source and destination computer are the same, source user is same as source computer, etc. ###Code df["source_user"], df["source_domain"] = zip(*df[1].str.split('@').tolist()) df["source_user"]=df["source_user"].str.rstrip('$') df["destination_user"], df["destination_domain"] = zip(*df[2].str.split('@').tolist()) df["destination_user"]=df["destination_user"].str.rstrip('$') df['source_class']=df['source_user'].map(map_user) df['destination_class']=df['destination_user'].map(map_user) X=pd.DataFrame.from_items([('time', (df[0]%(24*60*60)).astype(int))]) X['same_user']= (df['destination_user']==df['source_user']) X['same_domain']=(df['destination_domain']==df['source_domain']) X['source_user_comp_same']=(df[3]==df['source_user']) X['destination_user_comp_same']=(df['destination_user']==df[4]) X['same_comp']=(df[3]==df[4]) X['source_domain_comp_same']=(df[3]==df['source_domain']) X['destination_domain_comp_same']=(df['destination_domain']==df[4]) for j in [5,6, 7]: for label in sorted(df[j].unique()): if label=='?': if j==5: X['?_authentication type']=(df[j]==label) elif j==6: X['?_logon type']=(df[j]==label) else: X[label]=(df[j]==label) for cl in ['source_class', 'destination_class']: for label in df[cl].unique(): if cl=='source_class': X['source_'+label]=(df[cl]==label) else: X['destination_'+label]=(df[cl]==label) X ###Output _____no_output_____ ###Markdown Separate current dataset into train and test data ###Code n=int(len(X)*.7) Xtrain=X[:n] Ytrain=Y[:n] Xtest=X[n:] Ytest=Y[n:] ###Output _____no_output_____ ###Markdown Logistic regression ###Code from sklearn import linear_model, datasets logreg = linear_model.LogisticRegression(C=1e5).fit(Xtrain, Ytrain) print logreg.score(Xtrain, Ytrain), logreg.score(Xtest, Ytest) from sklearn.metrics import confusion_matrix trainPred=logreg.predict(Xtrain) testPred=logreg.predict(Xtest) print confusion_matrix(Ytrain, trainPred) confusion_matrix(Ytest, testPred) ###Output [[ 98017 27581] [ 15614 139002]] ###Markdown Coefficients for logistic regression should tell which parameters are important ###Code logreg.coef_ X.columns ###Output _____no_output_____ ###Markdown Try L1 penanlty ###Code clf_l1_LR = linear_model.LogisticRegression(C=1000, penalty='l1', tol=0.001).fit(Xtrain, Ytrain) print clf_l1_LR.score(Xtrain, Ytrain), clf_l1_LR.score(Xtest, Ytest) ###Output 0.93957118488 0.94798154748 ###Markdown Try L2 penalty ###Code clf_l2_LR = linear_model.LogisticRegression(C=1000, penalty='l2', tol=0.001).fit(Xtrain, Ytrain) print clf_l2_LR.score(Xtrain, Ytrain), clf_l2_LR.score(Xtest, Ytest) ###Output 0.551781852441 0.380091929521 ###Markdown Gradient Boosting ###Code from sklearn.ensemble import GradientBoostingClassifier clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.05, max_depth=1, random_state=0).fit(Xtrain, Ytrain) print clf.score(Xtrain, Ytrain), clf.score(Xtest, Ytest) ###Output 0.889084770925 0.880649835126 ###Markdown Analysis From the results I just got, I can see that Logistic regression with L1 penalty works better than Gradient Boosting than logistic regression without any normalization than logistic regression with L2 penalty.Lasso logistic regression (L1 penalty) works really well for correlated features, whereas L2 penalty fails badly when features are correlated. Given how I constructed my features, they can easily turn out to be correlated, but I probably want spent more time on understanding correlations between features as Lasso gives really good accuracy score. At this point, I do not know if I should trust my result as I tested it on a very small subset of data from auth.txt.gz. I'd like to get more independent randomly sampled subsets to see how well my results hold on. ###Code clf_l1_LR.coef_ pd.DataFrame.from_items([("feature",X.columns), ("LR contribution",clf_l1_LR.coef_[0]*100)]) ###Output _____no_output_____ ###Markdown **Customer Personality Prediction or Analysis![824-8247150_click-happy-customers-cartoon.png]()** Import what we neeed for this work :: ###Code import os, sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates from datetime import datetime import seaborn as sns import scipy import random import math import dabl from scipy.stats.mstats import winsorize from tqdm import tqdm from sklearn import preprocessing from sklearn.metrics import matthews_corrcoef from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.kernel_ridge import KernelRidge from sklearn.model_selection import train_test_split from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import fbeta_score, make_scorer from sklearn import svm import plotly.graph_objects as go import plotly.express as px import plotly.figure_factory as ff %matplotlib inline from IPython.display import clear_output !pip install dabl clear_output() import dabl import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from IPython.display import clear_output !pip install dabl clear_output() ###Output _____no_output_____ ###Markdown ``` This is formatted as code```**Add Google Drive in colab :**--- ###Code from google.colab import drive drive.mount('/content/drive') ###Output Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). ###Markdown Adding CSV data file from google drive : ###Code data = pd.read_csv('/content/drive/MyDrive/machine learning Lab Project/customer.csv') data_copy = data.copy() ###Output _____no_output_____ ###Markdown Reading that CSV file : ###Code data ###Output _____no_output_____ ###Markdown Showing Head of data file : ###Code data.head() ###Output _____no_output_____ ###Markdown Showing Tail of CSV data : ###Code data.tail() ###Output _____no_output_____ ###Markdown Seeing Data information : ###Code data.info() data.columns data.describe().T ###Output _____no_output_____ ###Markdown Data Clearing Work : ###Code data.isnull().sum() dabl_data=dabl.clean(data, verbose=1 ) types = dabl.detect_types(dabl_data) types Target ="Response" ID="ID" X = data.drop([ID,Target],axis=1) Y = data[Target] data.head() data.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 2240 entries, 0 to 2239 Data columns (total 29 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 ID 2240 non-null int64 1 Year_Birth 2240 non-null int64 2 Education 2240 non-null object 3 Marital_Status 2240 non-null object 4 Income 2216 non-null float64 5 Kidhome 2240 non-null int64 6 Teenhome 2240 non-null int64 7 Dt_Customer 2240 non-null object 8 Recency 2240 non-null int64 9 MntWines 2240 non-null int64 10 MntFruits 2240 non-null int64 11 MntMeatProducts 2240 non-null int64 12 MntFishProducts 2240 non-null int64 13 MntSweetProducts 2240 non-null int64 14 MntGoldProds 2240 non-null int64 15 NumDealsPurchases 2240 non-null int64 16 NumWebPurchases 2240 non-null int64 17 NumCatalogPurchases 2240 non-null int64 18 NumStorePurchases 2240 non-null int64 19 NumWebVisitsMonth 2240 non-null int64 20 AcceptedCmp3 2240 non-null int64 21 AcceptedCmp4 2240 non-null int64 22 AcceptedCmp5 2240 non-null int64 23 AcceptedCmp1 2240 non-null int64 24 AcceptedCmp2 2240 non-null int64 25 Complain 2240 non-null int64 26 Z_CostContact 2240 non-null int64 27 Z_Revenue 2240 non-null int64 28 Response 2240 non-null int64 dtypes: float64(1), int64(25), object(3) memory usage: 507.6+ KB ###Markdown Model Train here : ###Code X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.4, random_state=45,stratify=Y) print(X_train.shape,X_test.shape) print(Y_train.shape,Y_test.shape) train = pd.concat([X_train,Y_train], axis=1) train.head() ###Output _____no_output_____ ###Markdown Data Testing : ###Code Test = dabl.SimpleClassifier(random_state=42).fit(train, target_col=Target) Test.current_best_ dabl.explain(Test) Test.est_ ###Output _____no_output_____ ###Markdown Data Visualization ###Code data = data.set_index('ID') data['Age'] = int(pd.datetime.now().year) - data['Year_Birth'] data_copy['Age'] = int(pd.datetime.now().year) - data_copy['Year_Birth'] print("Columns with string datatype are:") for col in data.columns: if data[col].dtypes == object: print(col) data_Edu = pd.DataFrame(data['Education'].value_counts()).reset_index() data_Edu.columns = ['Education', 'Count'] data['Education'] = np.where(data['Education'] == '2n Cycle', 'Master', data['Education']) data_Edu = pd.DataFrame(data['Education'].value_counts()).reset_index() data_Edu.columns = ['Education', 'Count'] fig = px.bar(data_Edu, x='Education', y='Count', color='Education') fig.update_layout(width=800, height=400, title='Education ') fig.show() fig = plt.figure(figsize=(10,6)) plt.hist(data.Year_Birth, color='#adc987') plt.ylabel('Number of Person') plt.xlabel('Birth Years') plt.title('Customers Birth Year Distrubiton') data_Mar = pd.DataFrame(data['Marital_Status'].value_counts()).reset_index() data_Mar.columns = ['Marital_Status', 'Count'] data_Mar mar_stat = ['Single', 'Widow', 'Alone', 'Absurd', 'YOLO'] data['Marital_Status'] = np.where(data['Marital_Status'].isin(mar_stat), 'Single', data['Marital_Status']) data['Marital_Status'] = np.where(data['Marital_Status'].isin(['Married', 'Together']), 'Relationship', 'Single') data_Mar = pd.DataFrame(data['Marital_Status'].value_counts()).reset_index() data_Mar.columns = ['Marital_Status', 'Count'] data_Mar data_Edu = pd.DataFrame(data['Marital_Status'].value_counts()).reset_index() data_Edu.columns = ['Marital_Status', 'Count'] fig = px.bar(data_Edu, x='Marital_Status', y='Count', color='Marital_Status') fig.update_layout(width=800, height=400, title='Relation ') fig.show() data['Dt_Customer'] = pd.to_datetime(data['Dt_Customer'], utc=False) print(f"The youngest customer is {data['Age'].min()} years old and oldest customer is {data['Age'].max()} years old") data.isna().sum()[lambda x: x>0] data['Income'] = data['Income'].fillna(data['Income'].mean()) age_data = data.groupby(by = ['Year_Birth']).agg({'Income':'mean'}).reset_index() age_data['Year_Birth'] = 2021 - age_data['Year_Birth'] fig = px.bar(age_data, x = 'Year_Birth', y = 'Income') fig.update_layout(height=400, width=700, title_text="Age Vs Average Income") fig.show() ###Output _____no_output_____ ###Markdown Shopping Products Selling Prediction : ###Code from plotly.subplots import make_subplots import plotly.graph_objects as go def create_interval_column(age_data, interval): inter = [] interval = interval j = 0 while (j<100): j = j + interval inter.append(j) interval_column = [] for i in age_data['Year_Birth']: for j in range(len(inter)-1): if inter[j]<i <=inter[j+1]: interval_column.append(str(inter[j]) + '-' + str(inter[j+1])) break return interval_column interval_you_want_to_plot = 10 columns_to_be_analyzed = ['MntWines', 'MntFruits' ,'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds'] age_data = data.groupby(by = ['Year_Birth']).agg({'MntWines':'sum','MntFruits':'sum' ,'MntMeatProducts':'sum', 'MntFishProducts':'sum', 'MntSweetProducts':'sum', 'MntGoldProds':'sum' }).reset_index() age_data['Year_Birth'] = 2021 - age_data['Year_Birth'] age_data.drop([0,1,2], axis = 0, inplace=True) interval_column = create_interval_column(age_data, interval=interval_you_want_to_plot )# Creating interval of 5 age_data['Interval_column'] = interval_column fig = make_subplots(rows = 3, cols = 3, subplot_titles=columns_to_be_analyzed) cnt = 0 for i in range(2): for j in range(3): fig.add_trace(go.Bar(x = age_data['Interval_column'].to_numpy(), y = age_data[columns_to_be_analyzed[cnt]].to_numpy()), row = i+1, col=j+1 ) cnt+=1 fig.update_layout( title = 'Columns Vs Amount of quantity',font=dict( family="Courier New, monospace", size=12, color="#7f7f7f"), showlegend=False,autosize=True, width=1200, height=800) fig.show() Edu_data = data.groupby(by = ['Education']).agg({'MntWines':'sum','MntFruits':'sum' ,'MntMeatProducts':'sum', 'MntFishProducts':'sum', 'MntSweetProducts':'sum', 'MntGoldProds':'sum' }).reset_index() fig = make_subplots(rows = 3, cols = 3, subplot_titles=columns_to_be_analyzed) cnt = 0 for i in range(2): for j in range(3): fig.add_trace(go.Bar(x = Edu_data['Education'].to_numpy(), y = Edu_data[columns_to_be_analyzed[cnt]].to_numpy()), row = i+1, col=j+1 ) cnt+=1 fig.update_layout( title = 'Columns Vs Amount of quantity',font=dict( family="Courier New, monospace", size=12, color="#7f7f7f"), showlegend=False,autosize=True,width=1200,height=800) fig.show() Marital_data = data.groupby(by = ['Marital_Status']).agg({'MntWines':'sum','MntFruits':'sum' ,'MntMeatProducts':'sum', 'MntFishProducts':'sum', 'MntSweetProducts':'sum', 'MntGoldProds':'sum' }).reset_index() fig = make_subplots(rows = 3, cols = 3, subplot_titles=columns_to_be_analyzed) cnt = 0 for i in range(2): for j in range(3): fig.add_trace(go.Bar(x = Marital_data['Marital_Status'].to_numpy(), y = Marital_data[columns_to_be_analyzed[cnt]].to_numpy()), row = i+1, col=j+1 ) cnt+=1 fig.update_layout( title = 'Columns Vs Amount of quantity',font=dict( family="Courier New, monospace", size=12, color="#7f7f7f"), showlegend=False,autosize=True,width=1200,height=800) fig.show() interval_you_want_to_plot = 10 columns_to_be_analyzed = ['NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth'] age_data = data.groupby(by = ['Year_Birth']).agg({'NumDealsPurchases':'sum','NumWebPurchases':'sum' ,'NumCatalogPurchases':'sum', 'NumStorePurchases':'sum', 'NumWebVisitsMonth':'sum' }).reset_index() age_data['Year_Birth'] = 2021 - age_data['Year_Birth'] age_data.drop([0,1,2], axis = 0, inplace=True) interval_column = create_interval_column(age_data, interval=interval_you_want_to_plot )# Creating interval of 5 age_data['Interval_column'] = interval_column fig = make_subplots(rows = 2, cols = 3, subplot_titles=columns_to_be_analyzed) cnt = 0 for i in range(2): for j in range(3): if cnt == 5 : break fig.add_trace(go.Bar(x = age_data['Interval_column'].to_numpy(), y = age_data[columns_to_be_analyzed[cnt]].to_numpy()), row = i+1, col=j+1 ) cnt+=1 fig.update_layout( title = 'Columns Vs Number of Purchase',font=dict( family="Courier New, monospace",size=12,color="#7f7f7f"),showlegend=False,autosize=True,width=1200,height=800) fig.show() Edu_data = data.groupby(by = ['Education']).agg({'NumDealsPurchases':'sum','NumWebPurchases':'sum' ,'NumCatalogPurchases':'sum', 'NumStorePurchases':'sum', 'NumWebVisitsMonth':'sum' }).reset_index() fig = make_subplots(rows = 2, cols = 3, subplot_titles=columns_to_be_analyzed) cnt = 0 for i in range(2): for j in range(3): if cnt == 5 : break fig.add_trace(go.Bar(x = Edu_data['Education'].to_numpy(), y = Edu_data[columns_to_be_analyzed[cnt]].to_numpy()), row = i+1, col=j+1 ) cnt+=1 fig.update_layout( title = 'Columns Vs Number of Purchase',font=dict( family="Courier New, monospace",size=12,color="#7f7f7f"),showlegend=False,autosize=True,width=1200,height=800) fig.show() PALETTE = sns.color_palette("Set2") num = data.filter(regex='Num[^Deals].+Purchases').sum(axis=0) sizes = dict(num) plt.figure(figsize=(12, 8)) plt.title("Shopping types proportions") plt.pie(sizes.values(), labels=['Website', 'Catalog', 'Store'], autopct="%.1f%%", pctdistance=0.85, shadow=True, colors=PALETTE) plt.legend(title="Purchased at", labels=['Website', 'Catalog', 'Store'], bbox_to_anchor=(1, 1)) plt.show() fig = plt.figure(figsize=(10,6)) plt.scatter(data.Age, data.NumWebPurchases, color='#88c999', alpha=0.4, label='Web Buys') plt.scatter(data.Age, data.NumStorePurchases, color='#5f79c9', alpha=0.4, label='Store Buys') plt.legend() plt.ylabel('Web and Store Purchases') plt.xlabel('Customers Age') plt.title('Web vs Store Pruchases According to Age') ###Output _____no_output_____ ###Markdown Customer Offer Acceptance Prediction ###Code # imports import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as se import warnings from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.metrics import classification_report,plot_confusion_matrix warnings.filterwarnings('ignore') from sklearn.preprocessing import MinMaxScaler from sklearn.svm import LinearSVC # Selected Columns features=['Income', 'Kidhome', 'Teenhome', 'Recency', 'MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds', 'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2', 'Education', 'Marital_Status'] target='Response' # X & Y X=data[features] Y=data[target] # Data Cleaning def NullClearner(value): if(isinstance(value, pd.Series) and (value.dtype in ['float64','int64'])): value.fillna(value.mean(),inplace=True) return value elif(isinstance(value, pd.Series)): value.fillna(value.mode()[0],inplace=True) return value else:return value x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) Y=NullClearner(Y) # Handling AlphaNumeric Features X=pd.get_dummies(X) f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() columns=X.columns X=MinMaxScaler().fit_transform(X) X=pd.DataFrame(data = X,columns = columns) X.head() # Data split for training and testing X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=123) #Model Parameters param={'C': 1, 'loss': 'squared_hinge', 'tol': 0.05092207964551096, 'penalty': 'l2'} # Model Initialization model=LinearSVC(**param) model.fit(X_train,Y_train) # Confusion Matrix plot_confusion_matrix(model,X_test,Y_test,cmap=plt.cm.Blues) # Classification Report print(classification_report(Y_test,model.predict(X_test))) ###Output _____no_output_____ ###Markdown ###Code !apt-get http://download.tensorflow.org/models/object_detection/faster_rcnn_nas_coco_2018_01_28.tar.gz !tar -zxvf /content/faster_rcnn_nas_coco_2018_01_28.tar.gz !rm -rf $OUTPUT_PATH !python -m object_detection.model_main \ --pipeline_config_path=/content/faster_rcnn_nas_coco_2018_01_28/pipeline.config \ --model_dir=$OUTPUT_PATH \ --num_train_steps=$NUM_TRAIN_STEPS \ --num_eval_steps=100 !cp /content/models/research/object_detection/protos /usr/local/lib/python3.6/dist-packages/object_detection/ -r import tf_slim as slim ###Output Requirement already satisfied: tf_slim in /usr/local/lib/python3.6/dist-packages (1.1.0) Requirement already satisfied: absl-py>=0.2.2 in /usr/local/lib/python3.6/dist-packages (from tf_slim) (0.9.0) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from absl-py>=0.2.2->tf_slim) (1.15.0) ###Markdown Logistic Regression ###Code log_model = LogisticRegression(solver='liblinear', penalty='l2', random_state=42, C=10) log_model.fit(x_train, y_train) log_train_predictions = log_model.predict(x_train) log_accuracy_train = accuracy_score(y_train, log_train_predictions) log_predictions = log_model.predict(x_cv) log_accuracy_cv = accuracy_score(y_cv, log_predictions) print(f"[Logistic Regression] Training Accuracy: {log_accuracy_train * 100}") print(f"[Logistic Regresion] Cross-Validation Accuracy: {log_accuracy_cv * 100}") log_report = classification_report(y_cv, log_predictions) print(log_report) train_sizes, train_scores, test_scores = learning_curve(log_model, x_norm, y_, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.ylabel('Score') plt.legend(loc="lower right") plt.grid() log_cm = confusion_matrix(y_cv, log_predictions) sns.heatmap(log_cm, annot=True, linewidths=0.1) plt.xlabel('Predicted label') plt.ylabel('True label') plt.show() log_test_preds = log_model.predict(x_test_norm) log_test_accuracy = accuracy_score(y_test, log_test_preds) print(f"[Logistic Regression] Test data accuracy: {log_test_accuracy * 100}") log_test_cm = confusion_matrix(y_test, log_test_preds) sns.heatmap(log_test_cm, annot=True, linewidths=0.1) plt.xlabel('Predicted label') plt.ylabel('True label') plt.show() ###Output _____no_output_____ ###Markdown Decision Trees ###Code #tree_model = DecisionTreeClassifier(criterion='gini', max_depth=2, max_leaf_nodes=2, min_samples_leaf=1, min_samples_split=2) tree_model = DecisionTreeClassifier(max_leaf_nodes=10, random_state=42, criterion='entropy', max_depth=7)# max_depth=7 tree_model.fit(x_train, y_train) tree_training_predictions = tree_model.predict(x_train) tree_training_accuracy = accuracy_score(y_train, tree_training_predictions) tree_predictions = tree_model.predict(x_cv) tree_accuracy = accuracy_score(y_cv, tree_predictions) print(f"[Decision Tree] Training Accuracy: {tree_training_accuracy * 100}") print(f"[Decision Tree] Cross-Validation Accuracy: {tree_accuracy * 100}") train_sizes, train_scores, test_scores = learning_curve(tree_model, x_norm, y_, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.ylabel('Score') plt.legend(loc="lower right") plt.grid() tree_report = classification_report(y_cv, tree_predictions) print(tree_report) tree_cm = confusion_matrix(y_cv, tree_predictions) sns.heatmap(tree_cm, annot=True, linewidths=0.1) plt.xlabel('Predicted label') plt.ylabel('True label') plt.show() tree_testing_preds = tree_model.predict(x_test_norm) tree_testing_acc = accuracy_score(y_test, tree_testing_preds) print(f"[Decision Tree] Testing Data Accuracy: {tree_testing_acc * 100}") tree_test_cm = confusion_matrix(y_test, tree_testing_preds) sns.heatmap(tree_test_cm, annot=True, linewidths=0.1) plt.xlabel('Predicted label') plt.ylabel('True label') plt.show() plt.figure(figsize=(25, 20)) plot_tree(tree_model, feature_names=df.keys()[:-1], class_names=['0', '1'], filled=True) plt.show() ###Output _____no_output_____ ###Markdown KNN ###Code knn_model = KNeighborsClassifier(n_neighbors=15, p=3, weights='uniform', leaf_size=1) knn_model.fit(x_train, y_train) knn_train_preds = knn_model.predict(x_train) knn_train_acc = accuracy_score(y_train, knn_train_preds) knn_preds = knn_model.predict(x_cv) knn_acc = accuracy_score(y_cv, knn_preds) print(f"[KNN] Training Accuracy: {knn_train_acc * 100}") print(f"[KNN] Cross-Validation Accuracy: {knn_acc * 100}") train_sizes, train_scores, test_scores = learning_curve(knn_model, x_norm, y_, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.ylabel('Score') plt.legend(loc="lower right") plt.grid() knn_report = classification_report(y_cv, knn_preds) print(knn_report) knn_cm = confusion_matrix(y_cv, knn_preds) sns.heatmap(knn_cm, annot=True, linewidths=0.1) plt.xlabel('Predicted label') plt.ylabel('True label') plt.show() knn_testing_preds = knn_model.predict(x_test_norm) knn_testing_acc = accuracy_score(y_test, knn_testing_preds) print(f"[KNN] Testing Accuracy: {knn_testing_acc * 100}") knn_test_cm = confusion_matrix(y_test, knn_testing_preds) sns.heatmap(knn_test_cm, annot=True, linewidths=0.1) plt.xlabel('Predicted label') plt.ylabel('True label') plt.show() ###Output _____no_output_____ ###Markdown Random Forest Classification ###Code forest_model = RandomForestClassifier(max_depth=7, random_state=42) forest_model.fit(x_train, y_train) forest_training_preds = forest_model.predict(x_train) forest_training_acc = accuracy_score(y_train, forest_training_preds) forest_preds = forest_model.predict(x_cv) forest_acc = accuracy_score(y_cv, forest_preds) print(f"[Random Forest Classification] Training Accuracy: {forest_training_acc * 100}") print(f"[Random Forest Classification] Cross-validation Accuracy: {forest_acc * 100}") train_sizes, train_scores, test_scores = learning_curve(forest_model, x_norm, y_, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.ylabel('Score') plt.legend(loc="upper right") plt.grid() forest_report = classification_report(y_cv, forest_preds) print(forest_report) forest_cm = confusion_matrix(y_cv, forest_preds) sns.heatmap(forest_cm, annot=True, linewidths=0.1) plt.xlabel('Predicted label') plt.ylabel('True label') plt.show() forest_testing_preds = forest_model.predict(x_test_norm) forest_testing_acc = accuracy_score(y_test, forest_testing_preds) print(f"[Random Forest Classification] Testing Accuracy: {forest_testing_acc * 100}") forest_test_cm = confusion_matrix(y_test, forest_testing_preds) sns.heatmap(forest_test_cm, annot=True, linewidths=0.1) plt.xlabel('Predicted label') plt.ylabel('True label') plt.show() log_all_scores = [log_accuracy_train, log_accuracy_cv, log_test_accuracy] tree_all_scores = [tree_training_accuracy, tree_accuracy, tree_testing_acc] knn_all_scores = [knn_train_acc, knn_acc, knn_testing_acc] forest_all_scores = [forest_training_acc, forest_acc, forest_testing_acc] column_titles = ['Training', 'Cross_validation', 'Testing'] rows_titles = ['Logisitc_regression', 'Decision_tree', 'K-Nearest Neighbor (KNN)', 'Random Forest Classifier'] scores_df = pd.DataFrame(data=np.row_stack((log_all_scores, tree_all_scores, knn_all_scores, forest_all_scores)), index=rows_titles, columns=column_titles) scores_df ###Output _____no_output_____
Compare1.ipynb
###Markdown Compare1.eps instruction This file is to compare model with regime switching and model without regime switching. The model with regime switching is calculated by our pricing formula with two sets of parameters as per below(Regime_vs, discreet). The model without regime switching is calculated by equating regime two to regime one (Regime_vs2,discreet).The first set of parameters is corresponding to the 'good' economic status (State I) with higher interest rate, mean reverted rate and jump itensity. We call it 'good' because it will lead to a higer variance and consequetly, higher fair strike price. The second set of paramters is obtained by equating two regime status with the 'poor' economic status (State II). Two equivalent inputs will eliminate the effects of regime and our model will degerate to the SVJ model without cosideration of regime switching. The 'poor' economic status is compared in this programme. As a result, we can see from figure that with the coaction of two regimes status, the fair strike price will be decreased. ###Code # Parameter of the 'good' economic status (Benchmark) from IPython.display import Image Image("set1.png") # parameters of 'poor' economic status. !!!Benchmark from IPython.display import Image Image("set2.png") def Phi1(T,AF,Q,Delta,Stock1,Stock2,Regime,Jump1,Jump2): ############################################################################### # PARAMETER INPUT # ############################################################################### #Stock1 = Stock(100,0.087**2,AF,0.06,0.14,3.46,0.006704,T,-0.82) #Stock2 = Stock(100,0.087**2,AF,0.03,0.14,3.46,0.002852,T,-0.82) #Regime = Regime2(Q); #S0, y0, AF, r, sigma, a, b, N, rho, mu,sigma_J,lambda_ #Jump1 = Jump_Merton(100,0.087**2,AF,0.06,0.14,3.46,0.006704,T,-0.82,0.05,0.086,0.) #Jump2 = Jump_Merton(100,0.087**2,AF,0.03,0.14,3.46,0.002852,T,-0.82,0.06,0.086,0.3) ##################################################################################### # ###############################Numerical Integration######################## n = 10 # time step of integration X = np.linspace(T-Delta,T,n+1) phi1_1_2j = [];phi1_1_1j = [];phi1_1_0j = []; phi1_2_2j = [];phi1_2_1j = [];phi1_2_0j = []; for i in range(len(X)): x1 = Jump1.L(-2j,X[i]); x2=Jump1.L(-1j,X[i]);x3=Jump1.L(0,X[i]); phi1_1_2j.append(x1); phi1_1_1j.append(x2); phi1_1_0j.append(x3); y1 = Jump2.L(-2j,X[i]); y2=Jump2.L(-1j,X[i]);y3=Jump2.L(0,X[i]); phi1_2_2j.append(y1); phi1_2_1j.append(y2);phi1_2_0j.append(y3); phI1_1_2j = np.trapz(phi1_1_2j,dx=Delta/n);phI1_2_2j = np.trapz(phi1_2_2j,dx=Delta/n); phI1_1_1j = np.trapz(phi1_1_1j,dx=Delta/n);phI1_2_1j = np.trapz(phi1_2_1j,dx=Delta/n); phI1_1_0j = np.trapz(phi1_1_0j,dx=Delta/n);phI1_2_0j = np.trapz(phi1_2_0j,dx=Delta/n); #################################Diagonal Matrix######################################### phi1_Matrix_2j = np.diag(np.array([phI1_1_2j,phI1_2_2j])); phi1_Matrix_1j = np.diag(np.array([phI1_1_1j,phI1_2_1j])); phi1_Matrix_0j = np.diag(np.array([phI1_1_0j,phI1_2_0j])); #######################Phi1_characteristic function##################################### Phi1_2j = Regime.character(phi1_Matrix_2j,T-Delta,T); Phi1_1j = Regime.character(phi1_Matrix_1j,T-Delta,T); Phi1_0j = Regime.character(phi1_Matrix_0j,T-Delta,T); return Phi1_2j, Phi1_1j, Phi1_0j def Phi2(T,AF,Q,Delta,Stock1,Stock2,Regime): ############################################################################### # PARAMETER INPUT # ############################################################################### # #Stock1 = Stock(100,0.087**2,AF,0.06,0.14,3.46,0.006704,T,-0.82)# S0, y0, AF, r, sigma, a, b, N, rho #Stock2 = Stock(100,0.087**2,AF,0.03,0.14,3.46,0.002852,T,-0.82) #Regime = Regime2(Q); # ############################################################################### n = 10 # time step of integration X = np.linspace(0,T-Delta,n+1) phi2_1_2j = [];phi2_2_2j = []; for i in range(len(X)): H1 = Stock1.H(X[i]);H2 = Stock2.H(X[i]); x = Stock1.a*Stock1.b*H1;y = Stock2.a*Stock2.b*H2; phi2_1_2j.append(x);phi2_2_2j.append(y); #print(H1,X[i],T-Delta) phI2_1_2j = np.trapz(phi2_1_2j,dx=(T-Delta)/n);phI2_2_2j = np.trapz(phi2_2_2j,dx=(T-Delta)/n); phi2_Matrix = np.diag(np.array([phI2_1_2j,phI2_2_2j])) Phi2 = Regime.character(phi2_Matrix,0,T-Delta) return Phi2,Stock1.H(0) def regime_VS(AF): ############################################################################### # PARAMETER INPUT # ############################################################################### Delta = 1/AF Q = np.array([[-0.1,0.1],[0.4,-0.4]])#transition matrix #Stock1 = Stock(100,0.087**2,252,0.06,0.14,3.46,0.006704,1,-0.82)# S0, y0, AF, r, sigma, a, b, T, rho #Stock2 = Stock(100,0.087**2,252,0.03,0.14,3.46,0.002852,1,-0.82) #S0, y0, AF, r, sigma, a, b, N, rho, mu,sigma_J,lambda_ #Jump1 = Jump_Merton(100,0.087**2,252,0.06,0.14,3.46,0.006704,1,-0.82,0.05,0.086,0.) #Jump2 = Jump_Merton(100,0.087**2,252,0.03,0.14,3.46,0.002852,1,-0.82,0.06,0.086,0.3) Regime = Regime2(Q); ################################################################################ U = np.array([0,0])#initialize T = 1 for k in range(0,AF*T): t_k = (k+1)*Delta Stock1 = Stock(1,0.05,AF,0.05,0.1,2,0.075,t_k,-0.4)# S0, y0, AF, r, sigma, a, b, T, rho Stock2 = Stock(1,0.05,AF,0.03,0.14,3.46,0.002852,t_k,-0.82) Jump1 = Jump_Merton(1,0.05,AF,0.05,0.1,2,0.075,t_k,-0.4,0.03,0.086,0.3) Jump2 = Jump_Merton(1,0.05,AF,0.03,0.14,3.46,0.002852,t_k,-0.82,0.05,0.086,0.) R = np.diag([np.exp(Stock1.r*Delta),np.exp(Stock2.r*Delta)])# matrix of interest rate Phi1_2j,Phi1_1j,Phi1_0j = Phi1(t_k,AF,Q,Delta,Stock1,Stock2,Regime,Jump1,Jump2) Phi2_,H1 = Phi2(t_k,AF,Q,Delta,Stock1,Stock2,Regime) if t_k == Delta: M = Stock1.M(-2j,0) uk = Phi1_2j[1]*np.exp(M*Stock1.y0)-2*Phi1_1j[1]+Phi1_0j[1] #Uk = np.matmul(R,uk) Uk = uk else: uk = np.multiply(Phi1_2j[1],Phi2_[1])*np.exp(H1*Stock1.y0)-2*Phi1_1j[1]+Phi1_0j[1] #Uk = np.matmul(R,uk) Uk = uk U = U+Uk K = (U/T)*10000 return K def discrete(AF): Kvar = [] for t in AF: K = regime_VS(t) Kvar.append(K) return(Kvar) def regime_VS2(AF): ############################################################################### # PARAMETER INPUT # ############################################################################### Delta = 1/AF Q = np.array([[-0.1,0.1],[0.4,-0.4]])#transition matrix #Stock1 = Stock(100,0.087**2,252,0.06,0.14,3.46,0.006704,1,-0.82)# S0, y0, AF, r, sigma, a, b, T, rho #Stock2 = Stock(100,0.087**2,252,0.03,0.14,3.46,0.002852,1,-0.82) #S0, y0, AF, r, sigma, a, b, N, rho, mu,sigma_J,lambda_ #Jump1 = Jump_Merton(100,0.087**2,252,0.06,0.14,3.46,0.006704,1,-0.82,0.05,0.086,0.) #Jump2 = Jump_Merton(100,0.087**2,252,0.03,0.14,3.46,0.002852,1,-0.82,0.06,0.086,0.3) Regime = Regime2(Q); ################################################################################ U = np.array([0,0])#initialize T = 1 for k in range(0,AF*T): t_k = (k+1)*Delta Stock1 = Stock(1,0.05,AF,0.05,0.1,2,0.075,t_k,-0.4)# S0, y0, AF, r, sigma, a, b, T, rho Stock2 = Stock1 Jump1 = Jump_Merton(1,0.05,AF,0.05,0.1,2,0.075,t_k,-0.4,0.03,0.086,0.3) Jump2 = Jump1 R = np.diag([np.exp(Stock1.r*Delta),np.exp(Stock2.r*Delta)])# matrix of interest rate Phi1_2j,Phi1_1j,Phi1_0j = Phi1(t_k,AF,Q,Delta,Stock1,Stock2,Regime,Jump1,Jump2) Phi2_,H1 = Phi2(t_k,AF,Q,Delta,Stock1,Stock2,Regime) if t_k == Delta: M = Stock1.M(-2j,0) uk = Phi1_2j[1]*np.exp(M*Stock1.y0)-2*Phi1_1j[1]+Phi1_0j[1] #Uk = np.matmul(R,uk) Uk = uk else: uk = np.multiply(Phi1_2j[1],Phi2_[1])*np.exp(H1*Stock1.y0)-2*Phi1_1j[1]+Phi1_0j[1] #Uk = np.matmul(R,uk) Uk = uk U = U+Uk K = (U/T)*10000 return K def discrete2(AF): Kvar = [] for t in AF: K = regime_VS2(t) Kvar.append(K) return(Kvar) # final main() from VS_class2 import Stock, Regime2, Jump_Merton, Jump_Kou import matplotlib.pyplot as plt import numpy as np import math from scipy import linalg AF = range(5,251,5) X = np.linspace(5,250,50) # calculate discrete sols based AF Kvar_d = discrete(AF) K_d = list(zip(*Kvar_d)) # calculate discrete sols based AF Kvar_d1 = discrete2(AF) K_d1 = list(zip(*Kvar_d1)) # calculate continuous sols and copy to len(AF) # K = Continuous() # Kvar_c = [K[:] for i in range(len(AF))] # K_c = list(zip(*Kvar_c)) # graph and compare discrete and continuous sols fig = plt.figure() # an empty figure with no axes fig, ax = plt.subplots(1) ax.plot(X, K_d[0], color='darkblue', marker='o', fillstyle='top',\ linestyle='solid', linewidth=2,ms=5,label='Regime Switching Model with Jump') #ax.plot(X, K_c[0], color='green',label='Continuous Kvar without jump') #ax.plot(X, K_d[1], color='darkblue', marker='o', fillstyle='top',linestyle='solid', \ # linewidth=1,ms=5,label='Model with Regime Switching') #ax.plot(X, K_c[0], color='green',label='Continuous Kvar without jump') ax.plot(X, K_d1[1], color='violet', marker='v', fillstyle='top',linestyle='solid', \ linewidth=2,ms=3,label='Jump diffusion model without Regime Switching') #ax.plot(X, K_c[1], color='cyan',label='Continuous Kvar without jump') #ax.set_xlim(20, 250) #ax.set_ylim(105, 130) plt.xlabel('Observation Frequency', fontsize=13) plt.ylabel('Kvar', fontsize=13) ax.legend(fancybox=True, framealpha=0.5) #plt.title("Simple Plot") # print(K_d1) # print(K_d) #plt.savefig('Compare1.pdf', format='pdf', dpi=1000) Outfile=open('Kvar_regime1.txt','a+') Outfile.write(str(K_d)) Outfile.close() Outfile=open('Kvar_noregime.txt','a+') Outfile.write(str(K_d1)) Outfile.close() plt.show() import numpy as np X = np.linspace(5,250,50) print (X) AF = range(5,251,5) print(AF) print(K_d1) for i in AF: print (i) ###Output _____no_output_____
01_Binary-Classification/Binary-Classification.ipynb
###Markdown Binary Classification Task 1: Logistic Regression Importing the libraries ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Loading the dataset ###Code X_train_fpath = './data/X_train' y_train_fpath = './data/Y_train' X_test_fpath = './data/X_test' output_fpath = './output_{}.csv' # parse the csv files to numpy array with open(X_train_fpath) as f: next(f) X_train = np.array([line.strip('\n').split(',')[1:] for line in f], dtype=float) with open(y_train_fpath) as f: next(f) y_train = np.array([line.strip('\n').split(',')[1] for line in f], dtype=float) with open(X_test_fpath) as f: next(f) X_test = np.array([line.strip('\n').split(',')[1:] for line in f], dtype=float) print(X_train.shape) print(y_train.shape) print(X_test.shape) ###Output (54256, 510) (54256,) (27622, 510) ###Markdown Defining data preprocessing functions ###Code def _normalize(X, train=True, specified_column=None, X_mean=None, X_std=None): """ This function normalizes specific columns of X. The mean and standard variance of training data will be reused when processing testing data. Arguments: X: data to be processed. train: 'True' when processing training data. 'False' when processing testing data. specified_column: indexes of the columns that will be normalized. If 'None', all columns will be normalized. X_mean: mean value of the training data, used when train='False'. X_std: standard deviation of the training data, used when train='False'. Outputs: X: normalized data. X_mean: computed mean value of the training data. X_std: computed standard deviation of the training data. """ if specified_column == None: specified_column = np.arange(X.shape[1]) if train: X_mean = np.mean(X[:, specified_column], 0).reshape(1, -1) X_std = np.std(X[:, specified_column], 0).reshape(1, -1) X[:, specified_column] = (X[:, specified_column] - X_mean) / (X_std + 1e-8) return X, X_mean, X_std def _train_dev_split(X, y, dev_ratio=0.25): """ This function spilts data into training set and development set. """ train_size = int(len(X) * (1 - dev_ratio)) return X[:train_size], y[:train_size], X[train_size:], y[train_size:] ###Output _____no_output_____ ###Markdown Data preprocessing ###Code # Normalizing the training and testing data X_train, X_mean, X_std = _normalize(X_train, train=True) X_test, _, _ = _normalize(X_test, train=False, specified_column=None, X_mean=X_mean, X_std=X_std) # Spliting the data into training and development set dev_ratio = 0.1 X_train, y_train, X_dev, y_dev = _train_dev_split(X_train, y_train, dev_ratio=dev_ratio) train_size = X_train.shape[0] dev_size = X_dev.shape[0] test_size = X_test.shape[0] data_dim = X_train.shape[1] print('Size of the training set: {}'.format(train_size)) print('Size of the development set: {}'.format(dev_size)) print('Size of the testing set: {}'.format(test_size)) print('Size of the data dimension: {}'.format(data_dim)) ###Output Size of the training set: 48830 Size of the development set: 5426 Size of the testing set: 27622 Size of the data dimension: 510 ###Markdown Defining some useful functions- Some functions that will be repeatedly used when iteratively updating the parameters. ###Code def _shuffle(X, y): """ This function shuffles two equal-length list/array, X and Y, together. """ randomize = np.arange(len(X)) np.random.shuffle(randomize) return (X[randomize], y[randomize]) def _sigmoid(z): """ Sigmoid function can be used to calculate probability. To avoid overflow, minimum/maximum output value is set. """ return np.clip(1 / (1.0 + np.exp(-z)), 1e-8, 1-(1e-8)) def _f(X, w, b): """ This is the logistic regression function, parameterized by w and b. Arguments: X: input data, shape=[batch_size, data_dimension] w: weight vector, shape=[data_dimension] b: bias, scalar Output: predicted probability of each row of X being postively labeled, shape=[batch_size, ] """ return _sigmoid(np.matmul(X, w) + b) def _predict(X, w, b): """ This function returns a truth value prediction for each row of X by rounding the result of logistic regression function. """ return np.round(_f(X, w, b)).astype(np.int) def _accuracy(y_pred, y_label): """ This function calculates prediction accuracy """ acc = 1 - np.mean(np.abs(y_pred - y_label)) return acc ###Output _____no_output_____ ###Markdown Functions about gradient and loss ###Code def _cross_entropy_loss(y_pred, y_label): """ This function computes the cross entropy. Arguments: y_pred: probabilistic predictions, float vector. y_label: ground truth labels, bool vector. Outputs: cross entropy, scalar. """ cross_entropy = -np.dot(y_label, np.log(y_pred)) - np.dot((1 - y_label), np.log(1 - y_pred)) return cross_entropy def _gradient(X, y_label, w, b): """ This function computes the gradient of cross entropy loss with respect to weight w and bias b. """ y_pred = _f(X, w, b) pred_error = y_label - y_pred w_grad = -np.sum(pred_error * X.T, 1) b_grad = -np.sum(pred_error) return w_grad, b_grad ###Output _____no_output_____ ###Markdown Training the model - We'll use the gradient descent method with small batches for training.- The training data is divided into many small batches. For each small batch, we calculate the gradient and loss separately. Then, update the model parameters according to the batch.- When a loop is completed, that is, after all the small batches of the entire training set have been used **once**, we will break up all the training data and re-divide them into new small batches. Then, proceed to the next loop until finishing all loops. ###Code # zero initialization for weights and bias w = np.zeros((data_dim, )) b = np.zeros((1, )) # some parameters for training max_iter = 10 batch_size = 8 learning_rate = 0.2 # keep the loss and accuracy for plotting train_loss = [] dev_loss = [] train_acc = [] dev_acc = [] # calculate the number of parameter updates step = 1 # iterative training for epoch in range(max_iter): # random shuffle at the beginning of each epoch X_train, y_train = _shuffle(X_train, y_train) # Mini-batch training for idx in range(int(np.floor(train_size / batch_size))): X = X_train[idx * batch_size : (idx + 1) * batch_size] y = y_train[idx * batch_size : (idx + 1) * batch_size] # compute the gradient w_grad, b_grad = _gradient(X, y, w, b) # gradient descent updates # learning rate decay with time w = w - learning_rate / np.sqrt(step) * w_grad b = b - learning_rate / np.sqrt(step) * b_grad step += 1 # compute the loss and accuracy of the training set and development set y_train_pred = _f(X_train, w, b) # float Y_train_pred = np.round(y_train_pred) # bool train_acc.append(_accuracy(Y_train_pred, y_train)) train_loss.append(_cross_entropy_loss(y_train_pred, y_train) / train_size) y_dev_pred = _f(X_dev, w, b) # float Y_dev_pred = np.round(y_dev_pred) # bool dev_acc.append(_accuracy(Y_dev_pred, y_dev)) dev_loss.append(_cross_entropy_loss(y_dev_pred, y_dev) / dev_size) print('Training loss: {}'.format(train_loss[-1])) print('Development loss: {}'.format(dev_loss[-1])) print('Training accuracy: {}'.format(train_acc[-1])) print('Development accuracy: {}'.format(dev_acc[-1])) ###Output Training loss: 0.272853645611585 Development loss: 0.29365746202333487 Training accuracy: 0.8830841695678886 Development accuracy: 0.8744931809804645 ###Markdown Plotting loss and accuracy curve ###Code # loss curve plt.plot(train_loss) plt.plot(dev_loss) plt.title('Loss') plt.legend(['train', 'dev']) plt.savefig('loss.png') plt.show() # accuracy curve plt.plot(train_acc) plt.plot(dev_acc) plt.title('Accuracy') plt.legend(['train', 'dev']) plt.savefig('acc.png') plt.show() ###Output _____no_output_____ ###Markdown Predicting the testing labels ###Code import csv predictions = _predict(X_test, w, b) with open('output_logistic.csv', mode='w', newline='') as submit_file: csv_writer = csv.writer(submit_file) header = ['id', 'label'] print(header) csv_writer.writerow(header) for i in range(len(predictions)): row = [str(i+1), predictions[i]] csv_writer.writerow(row) print(row) print() # Print out the most significant weights ind = np.argsort(np.abs(w))[::-1] # Arrange the array in an ascending order and take it from the end to the front with open(X_test_fpath) as f: content = f.readline().strip('\n').split(',') features = np.array(content) for i in ind[0 : 10]: print(features[i], w[i]) ###Output ;, 0] [&#39;26687&#39;, 1] [&#39;26688&#39;, 1] [&#39;26689&#39;, 0] [&#39;26690&#39;, 0] [&#39;26691&#39;, 0] [&#39;26692&#39;, 0] [&#39;26693&#39;, 1] [&#39;26694&#39;, 0] [&#39;26695&#39;, 0] [&#39;26696&#39;, 0] [&#39;26697&#39;, 0] [&#39;26698&#39;, 0] [&#39;26699&#39;, 1] [&#39;26700&#39;, 0] [&#39;26701&#39;, 0] [&#39;26702&#39;, 0] [&#39;26703&#39;, 1] [&#39;26704&#39;, 0] [&#39;26705&#39;, 0] [&#39;26706&#39;, 0] [&#39;26707&#39;, 0] [&#39;26708&#39;, 0] [&#39;26709&#39;, 0] [&#39;26710&#39;, 0] [&#39;26711&#39;, 0] [&#39;26712&#39;, 0] [&#39;26713&#39;, 0] [&#39;26714&#39;, 0] [&#39;26715&#39;, 0] [&#39;26716&#39;, 0] [&#39;26717&#39;, 0] [&#39;26718&#39;, 1] [&#39;26719&#39;, 0] [&#39;26720&#39;, 0] [&#39;26721&#39;, 0] [&#39;26722&#39;, 0] [&#39;26723&#39;, 0] [&#39;26724&#39;, 0] [&#39;26725&#39;, 0] [&#39;26726&#39;, 0] [&#39;26727&#39;, 0] [&#39;26728&#39;, 0] [&#39;26729&#39;, 0] [&#39;26730&#39;, 0] [&#39;26731&#39;, 0] [&#39;26732&#39;, 1] [&#39;26733&#39;, 0] [&#39;26734&#39;, 0] [&#39;26735&#39;, 0] [&#39;26736&#39;, 0] [&#39;26737&#39;, 0] [&#39;26738&#39;, 0] [&#39;26739&#39;, 0] [&#39;26740&#39;, 0] [&#39;26741&#39;, 0] [&#39;26742&#39;, 0] [&#39;26743&#39;, 0] [&#39;26744&#39;, 0] [&#39;26745&#39;, 1] [&#39;26746&#39;, 0] [&#39;26747&#39;, 0] [&#39;26748&#39;, 0] [&#39;26749&#39;, 0] [&#39;26750&#39;, 0] [&#39;26751&#39;, 0] [&#39;26752&#39;, 0] [&#39;26753&#39;, 0] [&#39;26754&#39;, 0] [&#39;26755&#39;, 1] [&#39;26756&#39;, 0] [&#39;26757&#39;, 0] [&#39;26758&#39;, 0] [&#39;26759&#39;, 0] [&#39;26760&#39;, 0] [&#39;26761&#39;, 1] [&#39;26762&#39;, 0] [&#39;26763&#39;, 0] [&#39;26764&#39;, 0] [&#39;26765&#39;, 0] [&#39;26766&#39;, 0] [&#39;26767&#39;, 1] [&#39;26768&#39;, 0] [&#39;26769&#39;, 0] [&#39;26770&#39;, 0] [&#39;26771&#39;, 0] [&#39;26772&#39;, 0] [&#39;26773&#39;, 1] [&#39;26774&#39;, 0] [&#39;26775&#39;, 0] [&#39;26776&#39;, 0] [&#39;26777&#39;, 0] [&#39;26778&#39;, 1] [&#39;26779&#39;, 0] [&#39;26780&#39;, 0] [&#39;26781&#39;, 0] [&#39;26782&#39;, 0] [&#39;26783&#39;, 1] [&#39;26784&#39;, 0] [&#39;26785&#39;, 0] [&#39;26786&#39;, 0] [&#39;26787&#39;, 1] [&#39;26788&#39;, 0] [&#39;26789&#39;, 0] [&#39;26790&#39;, 0] [&#39;26791&#39;, 0] [&#39;26792&#39;, 0] [&#39;26793&#39;, 0] [&#39;26794&#39;, 0] [&#39;26795&#39;, 0] [&#39;26796&#39;, 1] [&#39;26797&#39;, 0] [&#39;26798&#39;, 0] [&#39;26799&#39;, 1] [&#39;26800&#39;, 0] [&#39;26801&#39;, 0] [&#39;26802&#39;, 0] [&#39;26803&#39;, 0] [&#39;26804&#39;, 1] [&#39;26805&#39;, 0] [&#39;26806&#39;, 0] [&#39;26807&#39;, 0] [&#39;26808&#39;, 0] [&#39;26809&#39;, 0] [&#39;26810&#39;, 0] [&#39;26811&#39;, 1] [&#39;26812&#39;, 0] [&#39;26813&#39;, 1] [&#39;26814&#39;, 1] [&#39;26815&#39;, 0] [&#39;26816&#39;, 0] [&#39;26817&#39;, 0] [&#39;26818&#39;, 0] [&#39;26819&#39;, 0] [&#39;26820&#39;, 1] [&#39;26821&#39;, 0] [&#39;26822&#39;, 0] [&#39;26823&#39;, 0] [&#39;26824&#39;, 0] [&#39;26825&#39;, 1] [&#39;26826&#39;, 0] [&#39;26827&#39;, 0] [&#39;26828&#39;, 1] [&#39;26829&#39;, 1] [&#39;26830&#39;, 1] [&#39;26831&#39;, 0] [&#39;26832&#39;, 0] [&#39;26833&#39;, 1] [&#39;26834&#39;, 0] [&#39;26835&#39;, 1] [&#39;26836&#39;, 0] [&#39;26837&#39;, 0] [&#39;26838&#39;, 1] [&#39;26839&#39;, 0] [&#39;26840&#39;, 0] [&#39;26841&#39;, 0] [&#39;26842&#39;, 0] [&#39;26843&#39;, 0] [&#39;26844&#39;, 0] [&#39;26845&#39;, 0] [&#39;26846&#39;, 0] [&#39;26847&#39;, 0] [&#39;26848&#39;, 1] [&#39;26849&#39;, 1] [&#39;26850&#39;, 1] [&#39;26851&#39;, 0] [&#39;26852&#39;, 0] [&#39;26853&#39;, 0] [&#39;26854&#39;, 0] [&#39;26855&#39;, 0] [&#39;26856&#39;, 0] [&#39;26857&#39;, 0] [&#39;26858&#39;, 0] [&#39;26859&#39;, 0] [&#39;26860&#39;, 1] [&#39;26861&#39;, 0] [&#39;26862&#39;, 0] [&#39;26863&#39;, 0] [&#39;26864&#39;, 0] [&#39;26865&#39;, 0] [&#39;26866&#39;, 0] [&#39;26867&#39;, 0] [&#39;26868&#39;, 1] [&#39;26869&#39;, 0] [&#39;26870&#39;, 0] [&#39;26871&#39;, 0] [&#39;26872&#39;, 0] [&#39;26873&#39;, 0] [&#39;26874&#39;, 0] [&#39;26875&#39;, 0] [&#39;26876&#39;, 0] [&#39;26877&#39;, 0] [&#39;26878&#39;, 0] [&#39;26879&#39;, 0] [&#39;26880&#39;, 0] [&#39;26881&#39;, 0] [&#39;26882&#39;, 0] [&#39;26883&#39;, 0] [&#39;26884&#39;, 0] [&#39;26885&#39;, 0] [&#39;26886&#39;, 1] [&#39;26887&#39;, 1] [&#39;26888&#39;, 0] [&#39;26889&#39;, 0] [&#39;26890&#39;, 0] [&#39;26891&#39;, 0] [&#39;26892&#39;, 0] [&#39;26893&#39;, 0] [&#39;26894&#39;, 0] [&#39;26895&#39;, 0] [&#39;26896&#39;, 1] [&#39;26897&#39;, 0] [&#39;26898&#39;, 0] [&#39;26899&#39;, 0] [&#39;26900&#39;, 0] [&#39;26901&#39;, 0] [&#39;26902&#39;, 0] [&#39;26903&#39;, 0] [&#39;26904&#39;, 1] [&#39;26905&#39;, 0] [&#39;26906&#39;, 0] [&#39;26907&#39;, 0] [&#39;26908&#39;, 1] [&#39;26909&#39;, 0] [&#39;26910&#39;, 0] [&#39;26911&#39;, 1] [&#39;26912&#39;, 0] [&#39;26913&#39;, 0] [&#39;26914&#39;, 0] [&#39;26915&#39;, 0] [&#39;26916&#39;, 1] [&#39;26917&#39;, 0] [&#39;26918&#39;, 0] [&#39;26919&#39;, 0] [&#39;26920&#39;, 0] [&#39;26921&#39;, 0] [&#39;26922&#39;, 0] [&#39;26923&#39;, 1] [&#39;26924&#39;, 0] [&#39;26925&#39;, 0] [&#39;26926&#39;, 0] [&#39;26927&#39;, 0] [&#39;26928&#39;, 1] [&#39;26929&#39;, 0] [&#39;26930&#39;, 0] [&#39;26931&#39;, 0] [&#39;26932&#39;, 1] [&#39;26933&#39;, 0] [&#39;26934&#39;, 0] [&#39;26935&#39;, 0] [&#39;26936&#39;, 0] [&#39;26937&#39;, 1] [&#39;26938&#39;, 0] [&#39;26939&#39;, 0] [&#39;26940&#39;, 0] [&#39;26941&#39;, 0] [&#39;26942&#39;, 0] [&#39;26943&#39;, 0] [&#39;26944&#39;, 0] [&#39;26945&#39;, 0] [&#39;26946&#39;, 1] [&#39;26947&#39;, 0] [&#39;26948&#39;, 0] [&#39;26949&#39;, 1] [&#39;26950&#39;, 0] [&#39;26951&#39;, 0] [&#39;26952&#39;, 0] [&#39;26953&#39;, 0] [&#39;26954&#39;, 1] [&#39;26955&#39;, 0] [&#39;26956&#39;, 0] [&#39;26957&#39;, 1] [&#39;26958&#39;, 0] [&#39;26959&#39;, 0] [&#39;26960&#39;, 0] [&#39;26961&#39;, 1] [&#39;26962&#39;, 0] [&#39;26963&#39;, 0] [&#39;26964&#39;, 0] [&#39;26965&#39;, 0] [&#39;26966&#39;, 1] [&#39;26967&#39;, 0] [&#39;26968&#39;, 0] [&#39;26969&#39;, 0] [&#39;26970&#39;, 0] [&#39;26971&#39;, 0] [&#39;26972&#39;, 0] [&#39;26973&#39;, 0] [&#39;26974&#39;, 0] [&#39;26975&#39;, 0] [&#39;26976&#39;, 1] [&#39;26977&#39;, 0] [&#39;26978&#39;, 0] [&#39;26979&#39;, 0] [&#39;26980&#39;, 0] [&#39;26981&#39;, 0] [&#39;26982&#39;, 0] [&#39;26983&#39;, 0] [&#39;26984&#39;, 0] [&#39;26985&#39;, 0] [&#39;26986&#39;, 1] [&#39;26987&#39;, 0] [&#39;26988&#39;, 0] [&#39;26989&#39;, 0] [&#39;26990&#39;, 0] [&#39;26991&#39;, 0] [&#39;26992&#39;, 0] [&#39;26993&#39;, 0] [&#39;26994&#39;, 0] [&#39;26995&#39;, 1] [&#39;26996&#39;, 1] [&#39;26997&#39;, 0] [&#39;26998&#39;, 0] [&#39;26999&#39;, 1] [&#39;27000&#39;, 0] [&#39;27001&#39;, 0] [&#39;27002&#39;, 0] [&#39;27003&#39;, 1] [&#39;27004&#39;, 0] [&#39;27005&#39;, 0] [&#39;27006&#39;, 0] [&#39;27007&#39;, 0] [&#39;27008&#39;, 0] [&#39;27009&#39;, 0] [&#39;27010&#39;, 0] [&#39;27011&#39;, 0] [&#39;27012&#39;, 0] [&#39;27013&#39;, 0] [&#39;27014&#39;, 0] [&#39;27015&#39;, 0] [&#39;27016&#39;, 0] [&#39;27017&#39;, 1] [&#39;27018&#39;, 0] [&#39;27019&#39;, 1] [&#39;27020&#39;, 0] [&#39;27021&#39;, 0] [&#39;27022&#39;, 0] [&#39;27023&#39;, 0] [&#39;27024&#39;, 0] [&#39;27025&#39;, 0] [&#39;27026&#39;, 0] [&#39;27027&#39;, 0] [&#39;27028&#39;, 1] [&#39;27029&#39;, 0] [&#39;27030&#39;, 0] [&#39;27031&#39;, 0] [&#39;27032&#39;, 0] [&#39;27033&#39;, 0] [&#39;27034&#39;, 0] [&#39;27035&#39;, 0] [&#39;27036&#39;, 0] [&#39;27037&#39;, 1] [&#39;27038&#39;, 0] [&#39;27039&#39;, 0] [&#39;27040&#39;, 0] [&#39;27041&#39;, 0] [&#39;27042&#39;, 0] [&#39;27043&#39;, 1] [&#39;27044&#39;, 0] [&#39;27045&#39;, 0] [&#39;27046&#39;, 0] [&#39;27047&#39;, 0] [&#39;27048&#39;, 1] [&#39;27049&#39;, 0] [&#39;27050&#39;, 0] [&#39;27051&#39;, 0] [&#39;27052&#39;, 1] [&#39;27053&#39;, 0] [&#39;27054&#39;, 0] [&#39;27055&#39;, 0] [&#39;27056&#39;, 1] [&#39;27057&#39;, 0] [&#39;27058&#39;, 0] [&#39;27059&#39;, 0] [&#39;27060&#39;, 0] [&#39;27061&#39;, 1] [&#39;27062&#39;, 0] [&#39;27063&#39;, 0] [&#39;27064&#39;, 0] [&#39;27065&#39;, 0] [&#39;27066&#39;, 0] [&#39;27067&#39;, 0] [&#39;27068&#39;, 0] [&#39;27069&#39;, 1] [&#39;27070&#39;, 0] [&#39;27071&#39;, 0] [&#39;27072&#39;, 0] [&#39;27073&#39;, 0] [&#39;27074&#39;, 0] [&#39;27075&#39;, 0] [&#39;27076&#39;, 1] [&#39;27077&#39;, 0] [&#39;27078&#39;, 0] [&#39;27079&#39;, 0] [&#39;27080&#39;, 1] [&#39;27081&#39;, 0] [&#39;27082&#39;, 0] [&#39;27083&#39;, 0] [&#39;27084&#39;, 0] [&#39;27085&#39;, 0] [&#39;27086&#39;, 0] [&#39;27087&#39;, 0] [&#39;27088&#39;, 0] [&#39;27089&#39;, 0] [&#39;27090&#39;, 0] [&#39;27091&#39;, 0] [&#39;27092&#39;, 0] [&#39;27093&#39;, 0] [&#39;27094&#39;, 0] [&#39;27095&#39;, 0] [&#39;27096&#39;, 1] [&#39;27097&#39;, 1] [&#39;27098&#39;, 0] [&#39;27099&#39;, 0] [&#39;27100&#39;, 0] [&#39;27101&#39;, 0] [&#39;27102&#39;, 0] [&#39;27103&#39;, 0] [&#39;27104&#39;, 0] [&#39;27105&#39;, 0] [&#39;27106&#39;, 0] [&#39;27107&#39;, 0] [&#39;27108&#39;, 0] [&#39;27109&#39;, 0] [&#39;27110&#39;, 0] [&#39;27111&#39;, 1] [&#39;27112&#39;, 1] [&#39;27113&#39;, 0] [&#39;27114&#39;, 0] [&#39;27115&#39;, 0] [&#39;27116&#39;, 0] [&#39;27117&#39;, 1] [&#39;27118&#39;, 0] [&#39;27119&#39;, 0] [&#39;27120&#39;, 0] [&#39;27121&#39;, 1] [&#39;27122&#39;, 0] [&#39;27123&#39;, 0] [&#39;27124&#39;, 1] [&#39;27125&#39;, 1] [&#39;27126&#39;, 0] [&#39;27127&#39;, 0] [&#39;27128&#39;, 0] [&#39;27129&#39;, 1] [&#39;27130&#39;, 0] [&#39;27131&#39;, 0] [&#39;27132&#39;, 0] [&#39;27133&#39;, 0] [&#39;27134&#39;, 0] [&#39;27135&#39;, 0] [&#39;27136&#39;, 0] [&#39;27137&#39;, 0] [&#39;27138&#39;, 0] [&#39;27139&#39;, 1] [&#39;27140&#39;, 0] [&#39;27141&#39;, 0] [&#39;27142&#39;, 0] [&#39;27143&#39;, 0] [&#39;27144&#39;, 1] [&#39;27145&#39;, 1] [&#39;27146&#39;, 0] [&#39;27147&#39;, 0] [&#39;27148&#39;, 0] [&#39;27149&#39;, 0] [&#39;27150&#39;, 0] [&#39;27151&#39;, 0] [&#39;27152&#39;, 1] [&#39;27153&#39;, 1] [&#39;27154&#39;, 0] [&#39;27155&#39;, 0] [&#39;27156&#39;, 0] [&#39;27157&#39;, 1] [&#39;27158&#39;, 1] [&#39;27159&#39;, 0] [&#39;27160&#39;, 0] [&#39;27161&#39;, 0] [&#39;27162&#39;, 1] [&#39;27163&#39;, 0] [&#39;27164&#39;, 0] [&#39;27165&#39;, 1] [&#39;27166&#39;, 1] [&#39;27167&#39;, 0] [&#39;27168&#39;, 0] [&#39;27169&#39;, 0] [&#39;27170&#39;, 0] [&#39;27171&#39;, 0] [&#39;27172&#39;, 0] [&#39;27173&#39;, 0] [&#39;27174&#39;, 0] [&#39;27175&#39;, 0] [&#39;27176&#39;, 1] [&#39;27177&#39;, 0] [&#39;27178&#39;, 0] [&#39;27179&#39;, 0] [&#39;27180&#39;, 0] [&#39;27181&#39;, 0] [&#39;27182&#39;, 0] [&#39;27183&#39;, 0] [&#39;27184&#39;, 0] [&#39;27185&#39;, 0] [&#39;27186&#39;, 0] [&#39;27187&#39;, 1] [&#39;27188&#39;, 0] [&#39;27189&#39;, 1] [&#39;27190&#39;, 0] [&#39;27191&#39;, 0] [&#39;27192&#39;, 0] [&#39;27193&#39;, 0] [&#39;27194&#39;, 0] [&#39;27195&#39;, 1] [&#39;27196&#39;, 0] [&#39;27197&#39;, 0] [&#39;27198&#39;, 0] [&#39;27199&#39;, 1] [&#39;27200&#39;, 0] [&#39;27201&#39;, 0] [&#39;27202&#39;, 0] [&#39;27203&#39;, 0] [&#39;27204&#39;, 0] [&#39;27205&#39;, 0] [&#39;27206&#39;, 1] [&#39;27207&#39;, 0] [&#39;27208&#39;, 0] [&#39;27209&#39;, 0] [&#39;27210&#39;, 0] [&#39;27211&#39;, 0] [&#39;27212&#39;, 0] [&#39;27213&#39;, 0] [&#39;27214&#39;, 0] [&#39;27215&#39;, 0] [&#39;27216&#39;, 0] [&#39;27217&#39;, 0] [&#39;27218&#39;, 0] [&#39;27219&#39;, 0] [&#39;27220&#39;, 0] [&#39;27221&#39;, 0] [&#39;27222&#39;, 1] [&#39;27223&#39;, 0] [&#39;27224&#39;, 0] [&#39;27225&#39;, 0] [&#39;27226&#39;, 1] [&#39;27227&#39;, 1] [&#39;27228&#39;, 0] [&#39;27229&#39;, 0] [&#39;27230&#39;, 0] [&#39;27231&#39;, 0] [&#39;27232&#39;, 0] [&#39;27233&#39;, 0] [&#39;27234&#39;, 1] [&#39;27235&#39;, 0] [&#39;27236&#39;, 0] [&#39;27237&#39;, 0] [&#39;27238&#39;, 1] [&#39;27239&#39;, 0] [&#39;27240&#39;, 0] [&#39;27241&#39;, 0] [&#39;27242&#39;, 1] [&#39;27243&#39;, 0] [&#39;27244&#39;, 0] [&#39;27245&#39;, 1] [&#39;27246&#39;, 0] [&#39;27247&#39;, 0] [&#39;27248&#39;, 0] [&#39;27249&#39;, 0] [&#39;27250&#39;, 0] [&#39;27251&#39;, 1] [&#39;27252&#39;, 0] [&#39;27253&#39;, 0] [&#39;27254&#39;, 0] [&#39;27255&#39;, 0] [&#39;27256&#39;, 0] [&#39;27257&#39;, 0] [&#39;27258&#39;, 0] [&#39;27259&#39;, 1] [&#39;27260&#39;, 0] [&#39;27261&#39;, 0] [&#39;27262&#39;, 0] [&#39;27263&#39;, 1] [&#39;27264&#39;, 0] [&#39;27265&#39;, 1] [&#39;27266&#39;, 0] [&#39;27267&#39;, 0] [&#39;27268&#39;, 0] [&#39;27269&#39;, 0] [&#39;27270&#39;, 0] [&#39;27271&#39;, 1] [&#39;27272&#39;, 0] [&#39;27273&#39;, 0] [&#39;27274&#39;, 0] [&#39;27275&#39;, 0] [&#39;27276&#39;, 0] [&#39;27277&#39;, 0] [&#39;27278&#39;, 0] [&#39;27279&#39;, 0] [&#39;27280&#39;, 0] [&#39;27281&#39;, 0] [&#39;27282&#39;, 0] [&#39;27283&#39;, 1] [&#39;27284&#39;, 0] [&#39;27285&#39;, 0] [&#39;27286&#39;, 0] [&#39;27287&#39;, 0] [&#39;27288&#39;, 0] [&#39;27289&#39;, 0] [&#39;27290&#39;, 0] [&#39;27291&#39;, 1] [&#39;27292&#39;, 0] [&#39;27293&#39;, 0] [&#39;27294&#39;, 0] [&#39;27295&#39;, 1] [&#39;27296&#39;, 0] [&#39;27297&#39;, 0] [&#39;27298&#39;, 0] [&#39;27299&#39;, 1] [&#39;27300&#39;, 0] [&#39;27301&#39;, 0] [&#39;27302&#39;, 0] [&#39;27303&#39;, 0] [&#39;27304&#39;, 0] [&#39;27305&#39;, 0] [&#39;27306&#39;, 1] [&#39;27307&#39;, 0] [&#39;27308&#39;, 0] [&#39;27309&#39;, 0] [&#39;27310&#39;, 0] [&#39;27311&#39;, 0] [&#39;27312&#39;, 0] [&#39;27313&#39;, 0] [&#39;27314&#39;, 0] [&#39;27315&#39;, 0] [&#39;27316&#39;, 1] [&#39;27317&#39;, 0] [&#39;27318&#39;, 0] [&#39;27319&#39;, 0] [&#39;27320&#39;, 0] [&#39;27321&#39;, 0] [&#39;27322&#39;, 0] [&#39;27323&#39;, 0] [&#39;27324&#39;, 0] [&#39;27325&#39;, 1] [&#39;27326&#39;, 0] [&#39;27327&#39;, 0] [&#39;27328&#39;, 0] [&#39;27329&#39;, 0] [&#39;27330&#39;, 0] [&#39;27331&#39;, 0] [&#39;27332&#39;, 0] [&#39;27333&#39;, 0] [&#39;27334&#39;, 1] [&#39;27335&#39;, 1] [&#39;27336&#39;, 0] [&#39;27337&#39;, 0] [&#39;27338&#39;, 0] [&#39;27339&#39;, 1] [&#39;27340&#39;, 0] [&#39;27341&#39;, 0] [&#39;27342&#39;, 1] [&#39;27343&#39;, 0] [&#39;27344&#39;, 1] [&#39;27345&#39;, 0] [&#39;27346&#39;, 0] [&#39;27347&#39;, 0] [&#39;27348&#39;, 0] [&#39;27349&#39;, 1] [&#39;27350&#39;, 0] [&#39;27351&#39;, 1] [&#39;27352&#39;, 0] [&#39;27353&#39;, 0] [&#39;27354&#39;, 0] [&#39;27355&#39;, 0] [&#39;27356&#39;, 0] [&#39;27357&#39;, 1] [&#39;27358&#39;, 0] [&#39;27359&#39;, 0] [&#39;27360&#39;, 0] [&#39;27361&#39;, 0] [&#39;27362&#39;, 1] [&#39;27363&#39;, 1] [&#39;27364&#39;, 0] [&#39;27365&#39;, 1] [&#39;27366&#39;, 0] [&#39;27367&#39;, 0] [&#39;27368&#39;, 0] [&#39;27369&#39;, 0] [&#39;27370&#39;, 1] [&#39;27371&#39;, 0] [&#39;27372&#39;, 0] [&#39;27373&#39;, 0] [&#39;27374&#39;, 0] [&#39;27375&#39;, 0] [&#39;27376&#39;, 0] [&#39;27377&#39;, 0] [&#39;27378&#39;, 0] [&#39;27379&#39;, 0] [&#39;27380&#39;, 0] [&#39;27381&#39;, 0] [&#39;27382&#39;, 0] [&#39;27383&#39;, 1] [&#39;27384&#39;, 0] [&#39;27385&#39;, 0] [&#39;27386&#39;, 1] [&#39;27387&#39;, 0] [&#39;27388&#39;, 0] [&#39;27389&#39;, 0] [&#39;27390&#39;, 1] [&#39;27391&#39;, 0] [&#39;27392&#39;, 0] [&#39;27393&#39;, 1] [&#39;27394&#39;, 1] [&#39;27395&#39;, 0] [&#39;27396&#39;, 1] [&#39;27397&#39;, 1] [&#39;27398&#39;, 0] [&#39;27399&#39;, 0] [&#39;27400&#39;, 0] [&#39;27401&#39;, 0] [&#39;27402&#39;, 0] [&#39;27403&#39;, 0] [&#39;27404&#39;, 0] [&#39;27405&#39;, 0] [&#39;27406&#39;, 0] [&#39;27407&#39;, 0] [&#39;27408&#39;, 0] [&#39;27409&#39;, 0] [&#39;27410&#39;, 0] [&#39;27411&#39;, 0] [&#39;27412&#39;, 0] [&#39;27413&#39;, 0] [&#39;27414&#39;, 0] [&#39;27415&#39;, 0] [&#39;27416&#39;, 0] [&#39;27417&#39;, 1] [&#39;27418&#39;, 0] [&#39;27419&#39;, 0] [&#39;27420&#39;, 0] [&#39;27421&#39;, 0] [&#39;27422&#39;, 0] [&#39;27423&#39;, 1] [&#39;27424&#39;, 0] [&#39;27425&#39;, 0] [&#39;27426&#39;, 0] [&#39;27427&#39;, 0] [&#39;27428&#39;, 0] [&#39;27429&#39;, 0] [&#39;27430&#39;, 1] [&#39;27431&#39;, 0] [&#39;27432&#39;, 1] [&#39;27433&#39;, 0] [&#39;27434&#39;, 0] [&#39;27435&#39;, 1] [&#39;27436&#39;, 0] [&#39;27437&#39;, 0] [&#39;27438&#39;, 0] [&#39;27439&#39;, 0] [&#39;27440&#39;, 0] [&#39;27441&#39;, 0] [&#39;27442&#39;, 0] [&#39;27443&#39;, 1] [&#39;27444&#39;, 0] [&#39;27445&#39;, 0] [&#39;27446&#39;, 0] [&#39;27447&#39;, 0] [&#39;27448&#39;, 0] [&#39;27449&#39;, 0] [&#39;27450&#39;, 0] [&#39;27451&#39;, 0] [&#39;27452&#39;, 0] [&#39;27453&#39;, 0] [&#39;27454&#39;, 0] [&#39;27455&#39;, 1] [&#39;27456&#39;, 0] [&#39;27457&#39;, 0] [&#39;27458&#39;, 0] [&#39;27459&#39;, 0] [&#39;27460&#39;, 0] [&#39;27461&#39;, 0] [&#39;27462&#39;, 0] [&#39;27463&#39;, 0] [&#39;27464&#39;, 0] [&#39;27465&#39;, 1] [&#39;27466&#39;, 0] [&#39;27467&#39;, 0] [&#39;27468&#39;, 0] [&#39;27469&#39;, 0] [&#39;27470&#39;, 0] [&#39;27471&#39;, 0] [&#39;27472&#39;, 0] [&#39;27473&#39;, 1] [&#39;27474&#39;, 0] [&#39;27475&#39;, 0] [&#39;27476&#39;, 0] [&#39;27477&#39;, 0] [&#39;27478&#39;, 0] [&#39;27479&#39;, 0] [&#39;27480&#39;, 0] [&#39;27481&#39;, 0] [&#39;27482&#39;, 0] [&#39;27483&#39;, 0] [&#39;27484&#39;, 0] [&#39;27485&#39;, 0] [&#39;27486&#39;, 0] [&#39;27487&#39;, 0] [&#39;27488&#39;, 0] [&#39;27489&#39;, 0] [&#39;27490&#39;, 0] [&#39;27491&#39;, 0] [&#39;27492&#39;, 0] [&#39;27493&#39;, 0] [&#39;27494&#39;, 0] [&#39;27495&#39;, 1] [&#39;27496&#39;, 1] [&#39;27497&#39;, 1] [&#39;27498&#39;, 0] [&#39;27499&#39;, 0] [&#39;27500&#39;, 0] [&#39;27501&#39;, 0] [&#39;27502&#39;, 0] [&#39;27503&#39;, 1] [&#39;27504&#39;, 0] [&#39;27505&#39;, 0] [&#39;27506&#39;, 0] [&#39;27507&#39;, 0] [&#39;27508&#39;, 0] [&#39;27509&#39;, 0] [&#39;27510&#39;, 0] [&#39;27511&#39;, 1] [&#39;27512&#39;, 0] [&#39;27513&#39;, 0] [&#39;27514&#39;, 0] [&#39;27515&#39;, 0] [&#39;27516&#39;, 0] [&#39;27517&#39;, 0] [&#39;27518&#39;, 0] [&#39;27519&#39;, 1] [&#39;27520&#39;, 0] [&#39;27521&#39;, 0] [&#39;27522&#39;, 0] [&#39;27523&#39;, 1] [&#39;27524&#39;, 0] [&#39;27525&#39;, 0] [&#39;27526&#39;, 0] [&#39;27527&#39;, 0] [&#39;27528&#39;, 0] [&#39;27529&#39;, 0] [&#39;27530&#39;, 0] [&#39;27531&#39;, 0] [&#39;27532&#39;, 0] [&#39;27533&#39;, 0] [&#39;27534&#39;, 0] [&#39;27535&#39;, 0] [&#39;27536&#39;, 0] [&#39;27537&#39;, 0] [&#39;27538&#39;, 0] [&#39;27539&#39;, 0] [&#39;27540&#39;, 0] [&#39;27541&#39;, 0] [&#39;27542&#39;, 0] [&#39;27543&#39;, 0] [&#39;27544&#39;, 1] [&#39;27545&#39;, 0] [&#39;27546&#39;, 0] [&#39;27547&#39;, 0] [&#39;27548&#39;, 0] [&#39;27549&#39;, 1] [&#39;27550&#39;, 0] [&#39;27551&#39;, 1] [&#39;27552&#39;, 0] [&#39;27553&#39;, 0] [&#39;27554&#39;, 0] [&#39;27555&#39;, 0] [&#39;27556&#39;, 1] [&#39;27557&#39;, 0] [&#39;27558&#39;, 1] [&#39;27559&#39;, 0] [&#39;27560&#39;, 0] [&#39;27561&#39;, 0] [&#39;27562&#39;, 0] [&#39;27563&#39;, 1] [&#39;27564&#39;, 0] [&#39;27565&#39;, 0] [&#39;27566&#39;, 0] [&#39;27567&#39;, 0] [&#39;27568&#39;, 0] [&#39;27569&#39;, 0] [&#39;27570&#39;, 0] [&#39;27571&#39;, 0] [&#39;27572&#39;, 0] [&#39;27573&#39;, 0] [&#39;27574&#39;, 0] [&#39;27575&#39;, 0] [&#39;27576&#39;, 0] [&#39;27577&#39;, 0] [&#39;27578&#39;, 0] [&#39;27579&#39;, 0] [&#39;27580&#39;, 0] [&#39;27581&#39;, 0] [&#39;27582&#39;, 0] [&#39;27583&#39;, 0] [&#39;27584&#39;, 0] [&#39;27585&#39;, 0] [&#39;27586&#39;, 0] [&#39;27587&#39;, 0] [&#39;27588&#39;, 0] [&#39;27589&#39;, 0] [&#39;27590&#39;, 0] [&#39;27591&#39;, 0] [&#39;27592&#39;, 0] [&#39;27593&#39;, 1] [&#39;27594&#39;, 0] [&#39;27595&#39;, 0] [&#39;27596&#39;, 1] [&#39;27597&#39;, 0] [&#39;27598&#39;, 0] [&#39;27599&#39;, 0] [&#39;27600&#39;, 0] [&#39;27601&#39;, 0] [&#39;27602&#39;, 0] [&#39;27603&#39;, 0] [&#39;27604&#39;, 0] [&#39;27605&#39;, 0] [&#39;27606&#39;, 0] [&#39;27607&#39;, 0] [&#39;27608&#39;, 0] [&#39;27609&#39;, 0] [&#39;27610&#39;, 0] [&#39;27611&#39;, 0] [&#39;27612&#39;, 0] [&#39;27613&#39;, 0] [&#39;27614&#39;, 0] [&#39;27615&#39;, 1] [&#39;27616&#39;, 0] [&#39;27617&#39;, 0] [&#39;27618&#39;, 0] [&#39;27619&#39;, 0] [&#39;27620&#39;, 1] [&#39;27621&#39;, 0] [&#39;27622&#39;, 0] Child 18+ ever marr Not in a subfamily -5.782176465923575 Ecuador -2.8707286542081873 Iran -1.98172355006101 Ecuador -1.8666016702909662 Vietnam -1.590774267693511 Alabama -1.4712455468856531 Philippines -1.3303691602915284 Unemployed full-time 1.1478789357340293 2 -0.8389458377729352 High school graduate -0.8368910242736142 ###Markdown Task 2: Porbabilistic generative model- Implement a binary classifier based on a generative model Loading the dataset ###Code with open(X_train_fpath) as f: next(f) X_train = np.array([line.strip('\n').split(',')[1:] for line in f], dtype=float) with open(y_train_fpath) as f: next(f) y_train = np.array([line.strip('\n').split(',')[1] for line in f], dtype=float) with open(X_test_fpath) as f: next(f) X_test = np.array([line.strip('\n').split(',')[1:] for line in f], dtype=float) ###Output _____no_output_____ ###Markdown Data preprocessing ###Code # Normalizing the training and testing data X_train, X_mean, X_std = _normalize(X_train, train=True) X_test, _, _ = _normalize(X_test, train=False, specified_column=None, X_mean=X_mean, X_std=X_std) ###Output _____no_output_____ ###Markdown Calculating the Mean and Covariance- In the generative model, we need to calculate the average and covariance of the data in the two categories separately. ###Code # compute in-class mean X_train_0 = np.array([x for x, y in zip(X_train, y_train) if y == 0]) X_train_1 = np.array([x for x, y in zip(X_train, y_train) if y == 1]) mean_0 = np.mean(X_train_0, axis=0) mean_1 = np.mean(X_train_1, axis=0) # compute the in-class covariance cov_0 = np.zeros((data_dim, data_dim)) cov_1 = np.zeros((data_dim, data_dim)) for x in X_train_0: # np.transpose([x - mean_0]).shape -> (510, 1) # [x - mean_0].shape -> (1, 510) # np.dot(np.transpose([x - mean_0]), [x - mean_0]).shape -> (510, 510) cov_0 += np.dot(np.transpose([x - mean_0]), [x - mean_0]) / X_train_0.shape[0] for x in X_train_1: cov_1 += np.dot(np.transpose([x - mean_0]), [x - mean_0]) / X_train_1.shape[0] # Shared covariance is taken as a weighted average of individual in-class covariance. cov = (cov_0 * X_train_0.shape[0] + cov_1 * X_train_1.shape[0]) / (X_train_0.shape[0] + X_train_1.shape[0]) ###Output _____no_output_____ ###Markdown Computing weights and bias- The weight matrix and deviation vector can be directly calculated. ###Code # Compute the inverse of covariance matrix # Since the covariance matrix may be nearly singular, np.linalg.inv() may give a large numerical error # Via SVD decomposition, one can get matrix inverse efficiently and accurately u, s, v = np.linalg.svd(cov, full_matrices=False) inv = np.matmul(v.T * 1 / s, u.T) # Directly compute weights and bias w = np.dot(inv, mean_0 - mean_1) b = -0.5 * np.dot(mean_0, np.dot(inv, mean_0)) + 0.5 * np.dot(mean_1, np.dot(inv, mean_1)) \ + np.log(float(X_train_0.shape[0]) / X_train_1.shape[0]) # Compute accuracy on training set y_train_pred = 1 - _predict(X_train, w, b) print('Training accuracy: {}'.format(_accuracy(y_train_pred, y_train))) ###Output Training accuracy: 0.8548363314656444 ###Markdown Predicting testing labels ###Code import csv predictions = _predict(X_test, w, b) with open('output_generative.csv', mode='w', newline='') as submit_file: csv_writer = csv.writer(submit_file) header = ['id', 'label'] print(header) csv_writer.writerow(header) for i in range(len(predictions)): row = [str(i+1), predictions[i]] csv_writer.writerow(row) print(row) print() # Print out the most significant weights ind = np.argsort(np.abs(w))[::-1] # Arrange the array in an ascending order and take it from the end to the front with open(X_test_fpath) as f: content = f.readline().strip('\n').split(',') features = np.array(content) for i in ind[0 : 10]: print(features[i], w[i]) ###Output &#39;26688&#39;, 0] [&#39;26689&#39;, 1] [&#39;26690&#39;, 1] [&#39;26691&#39;, 1] [&#39;26692&#39;, 1] [&#39;26693&#39;, 1] [&#39;26694&#39;, 1] [&#39;26695&#39;, 1] [&#39;26696&#39;, 1] [&#39;26697&#39;, 1] [&#39;26698&#39;, 1] [&#39;26699&#39;, 1] [&#39;26700&#39;, 1] [&#39;26701&#39;, 1] [&#39;26702&#39;, 1] [&#39;26703&#39;, 0] [&#39;26704&#39;, 1] [&#39;26705&#39;, 1] [&#39;26706&#39;, 1] [&#39;26707&#39;, 1] [&#39;26708&#39;, 1] [&#39;26709&#39;, 1] [&#39;26710&#39;, 1] [&#39;26711&#39;, 1] [&#39;26712&#39;, 1] [&#39;26713&#39;, 1] [&#39;26714&#39;, 1] [&#39;26715&#39;, 1] [&#39;26716&#39;, 1] [&#39;26717&#39;, 1] [&#39;26718&#39;, 1] [&#39;26719&#39;, 1] [&#39;26720&#39;, 1] [&#39;26721&#39;, 1] [&#39;26722&#39;, 1] [&#39;26723&#39;, 1] [&#39;26724&#39;, 1] [&#39;26725&#39;, 0] [&#39;26726&#39;, 1] [&#39;26727&#39;, 1] [&#39;26728&#39;, 1] [&#39;26729&#39;, 1] [&#39;26730&#39;, 1] [&#39;26731&#39;, 1] [&#39;26732&#39;, 0] [&#39;26733&#39;, 1] [&#39;26734&#39;, 1] [&#39;26735&#39;, 1] [&#39;26736&#39;, 1] [&#39;26737&#39;, 1] [&#39;26738&#39;, 1] [&#39;26739&#39;, 1] [&#39;26740&#39;, 1] [&#39;26741&#39;, 1] [&#39;26742&#39;, 1] [&#39;26743&#39;, 1] [&#39;26744&#39;, 1] [&#39;26745&#39;, 0] [&#39;26746&#39;, 1] [&#39;26747&#39;, 1] [&#39;26748&#39;, 1] [&#39;26749&#39;, 1] [&#39;26750&#39;, 1] [&#39;26751&#39;, 1] [&#39;26752&#39;, 1] [&#39;26753&#39;, 0] [&#39;26754&#39;, 1] [&#39;26755&#39;, 1] [&#39;26756&#39;, 1] [&#39;26757&#39;, 1] [&#39;26758&#39;, 1] [&#39;26759&#39;, 1] [&#39;26760&#39;, 1] [&#39;26761&#39;, 1] [&#39;26762&#39;, 1] [&#39;26763&#39;, 1] [&#39;26764&#39;, 0] [&#39;26765&#39;, 1] [&#39;26766&#39;, 1] [&#39;26767&#39;, 0] [&#39;26768&#39;, 1] [&#39;26769&#39;, 1] [&#39;26770&#39;, 1] [&#39;26771&#39;, 1] [&#39;26772&#39;, 1] [&#39;26773&#39;, 0] [&#39;26774&#39;, 1] [&#39;26775&#39;, 1] [&#39;26776&#39;, 1] [&#39;26777&#39;, 1] [&#39;26778&#39;, 0] [&#39;26779&#39;, 1] [&#39;26780&#39;, 1] [&#39;26781&#39;, 0] [&#39;26782&#39;, 1] [&#39;26783&#39;, 0] [&#39;26784&#39;, 1] [&#39;26785&#39;, 1] [&#39;26786&#39;, 1] [&#39;26787&#39;, 1] [&#39;26788&#39;, 1] [&#39;26789&#39;, 1] [&#39;26790&#39;, 1] [&#39;26791&#39;, 1] [&#39;26792&#39;, 1] [&#39;26793&#39;, 1] [&#39;26794&#39;, 1] [&#39;26795&#39;, 1] [&#39;26796&#39;, 1] [&#39;26797&#39;, 1] [&#39;26798&#39;, 1] [&#39;26799&#39;, 0] [&#39;26800&#39;, 1] [&#39;26801&#39;, 1] [&#39;26802&#39;, 1] [&#39;26803&#39;, 1] [&#39;26804&#39;, 0] [&#39;26805&#39;, 1] [&#39;26806&#39;, 1] [&#39;26807&#39;, 1] [&#39;26808&#39;, 1] [&#39;26809&#39;, 1] [&#39;26810&#39;, 1] [&#39;26811&#39;, 1] [&#39;26812&#39;, 1] [&#39;26813&#39;, 1] [&#39;26814&#39;, 1] [&#39;26815&#39;, 1] [&#39;26816&#39;, 1] [&#39;26817&#39;, 1] [&#39;26818&#39;, 1] [&#39;26819&#39;, 1] [&#39;26820&#39;, 1] [&#39;26821&#39;, 1] [&#39;26822&#39;, 1] [&#39;26823&#39;, 1] [&#39;26824&#39;, 1] [&#39;26825&#39;, 0] [&#39;26826&#39;, 1] [&#39;26827&#39;, 1] [&#39;26828&#39;, 1] [&#39;26829&#39;, 0] [&#39;26830&#39;, 1] [&#39;26831&#39;, 1] [&#39;26832&#39;, 1] [&#39;26833&#39;, 1] [&#39;26834&#39;, 1] [&#39;26835&#39;, 0] [&#39;26836&#39;, 1] [&#39;26837&#39;, 1] [&#39;26838&#39;, 1] [&#39;26839&#39;, 1] [&#39;26840&#39;, 1] [&#39;26841&#39;, 1] [&#39;26842&#39;, 1] [&#39;26843&#39;, 1] [&#39;26844&#39;, 1] [&#39;26845&#39;, 1] [&#39;26846&#39;, 1] [&#39;26847&#39;, 1] [&#39;26848&#39;, 0] [&#39;26849&#39;, 1] [&#39;26850&#39;, 0] [&#39;26851&#39;, 1] [&#39;26852&#39;, 1] [&#39;26853&#39;, 1] [&#39;26854&#39;, 1] [&#39;26855&#39;, 1] [&#39;26856&#39;, 1] [&#39;26857&#39;, 1] [&#39;26858&#39;, 1] [&#39;26859&#39;, 1] [&#39;26860&#39;, 0] [&#39;26861&#39;, 1] [&#39;26862&#39;, 1] [&#39;26863&#39;, 0] [&#39;26864&#39;, 1] [&#39;26865&#39;, 1] [&#39;26866&#39;, 1] [&#39;26867&#39;, 1] [&#39;26868&#39;, 1] [&#39;26869&#39;, 1] [&#39;26870&#39;, 1] [&#39;26871&#39;, 1] [&#39;26872&#39;, 1] [&#39;26873&#39;, 1] [&#39;26874&#39;, 1] [&#39;26875&#39;, 1] [&#39;26876&#39;, 1] [&#39;26877&#39;, 1] [&#39;26878&#39;, 1] [&#39;26879&#39;, 1] [&#39;26880&#39;, 1] [&#39;26881&#39;, 1] [&#39;26882&#39;, 1] [&#39;26883&#39;, 1] [&#39;26884&#39;, 1] [&#39;26885&#39;, 1] [&#39;26886&#39;, 1] [&#39;26887&#39;, 0] [&#39;26888&#39;, 1] [&#39;26889&#39;, 1] [&#39;26890&#39;, 1] [&#39;26891&#39;, 1] [&#39;26892&#39;, 1] [&#39;26893&#39;, 1] [&#39;26894&#39;, 1] [&#39;26895&#39;, 1] [&#39;26896&#39;, 0] [&#39;26897&#39;, 1] [&#39;26898&#39;, 1] [&#39;26899&#39;, 1] [&#39;26900&#39;, 1] [&#39;26901&#39;, 1] [&#39;26902&#39;, 1] [&#39;26903&#39;, 1] [&#39;26904&#39;, 0] [&#39;26905&#39;, 1] [&#39;26906&#39;, 1] [&#39;26907&#39;, 1] [&#39;26908&#39;, 1] [&#39;26909&#39;, 1] [&#39;26910&#39;, 1] [&#39;26911&#39;, 1] [&#39;26912&#39;, 1] [&#39;26913&#39;, 1] [&#39;26914&#39;, 1] [&#39;26915&#39;, 1] [&#39;26916&#39;, 0] [&#39;26917&#39;, 1] [&#39;26918&#39;, 1] [&#39;26919&#39;, 1] [&#39;26920&#39;, 1] [&#39;26921&#39;, 1] [&#39;26922&#39;, 1] [&#39;26923&#39;, 0] [&#39;26924&#39;, 1] [&#39;26925&#39;, 1] [&#39;26926&#39;, 1] [&#39;26927&#39;, 1] [&#39;26928&#39;, 0] [&#39;26929&#39;, 1] [&#39;26930&#39;, 1] [&#39;26931&#39;, 1] [&#39;26932&#39;, 0] [&#39;26933&#39;, 1] [&#39;26934&#39;, 1] [&#39;26935&#39;, 1] [&#39;26936&#39;, 1] [&#39;26937&#39;, 0] [&#39;26938&#39;, 1] [&#39;26939&#39;, 1] [&#39;26940&#39;, 1] [&#39;26941&#39;, 1] [&#39;26942&#39;, 1] [&#39;26943&#39;, 1] [&#39;26944&#39;, 1] [&#39;26945&#39;, 1] [&#39;26946&#39;, 1] [&#39;26947&#39;, 1] [&#39;26948&#39;, 1] [&#39;26949&#39;, 0] [&#39;26950&#39;, 1] [&#39;26951&#39;, 1] [&#39;26952&#39;, 1] [&#39;26953&#39;, 1] [&#39;26954&#39;, 0] [&#39;26955&#39;, 1] [&#39;26956&#39;, 1] [&#39;26957&#39;, 0] [&#39;26958&#39;, 1] [&#39;26959&#39;, 1] [&#39;26960&#39;, 1] [&#39;26961&#39;, 0] [&#39;26962&#39;, 1] [&#39;26963&#39;, 1] [&#39;26964&#39;, 1] [&#39;26965&#39;, 1] [&#39;26966&#39;, 0] [&#39;26967&#39;, 1] [&#39;26968&#39;, 1] [&#39;26969&#39;, 1] [&#39;26970&#39;, 1] [&#39;26971&#39;, 1] [&#39;26972&#39;, 1] [&#39;26973&#39;, 1] [&#39;26974&#39;, 1] [&#39;26975&#39;, 1] [&#39;26976&#39;, 0] [&#39;26977&#39;, 1] [&#39;26978&#39;, 1] [&#39;26979&#39;, 1] [&#39;26980&#39;, 1] [&#39;26981&#39;, 1] [&#39;26982&#39;, 1] [&#39;26983&#39;, 1] [&#39;26984&#39;, 1] [&#39;26985&#39;, 1] [&#39;26986&#39;, 0] [&#39;26987&#39;, 1] [&#39;26988&#39;, 1] [&#39;26989&#39;, 1] [&#39;26990&#39;, 1] [&#39;26991&#39;, 1] [&#39;26992&#39;, 1] [&#39;26993&#39;, 1] [&#39;26994&#39;, 1] [&#39;26995&#39;, 0] [&#39;26996&#39;, 1] [&#39;26997&#39;, 1] [&#39;26998&#39;, 1] [&#39;26999&#39;, 1] [&#39;27000&#39;, 1] [&#39;27001&#39;, 1] [&#39;27002&#39;, 1] [&#39;27003&#39;, 0] [&#39;27004&#39;, 1] [&#39;27005&#39;, 1] [&#39;27006&#39;, 1] [&#39;27007&#39;, 1] [&#39;27008&#39;, 1] [&#39;27009&#39;, 1] [&#39;27010&#39;, 1] [&#39;27011&#39;, 1] [&#39;27012&#39;, 1] [&#39;27013&#39;, 1] [&#39;27014&#39;, 1] [&#39;27015&#39;, 1] [&#39;27016&#39;, 1] [&#39;27017&#39;, 1] [&#39;27018&#39;, 1] [&#39;27019&#39;, 1] [&#39;27020&#39;, 1] [&#39;27021&#39;, 1] [&#39;27022&#39;, 1] [&#39;27023&#39;, 1] [&#39;27024&#39;, 1] [&#39;27025&#39;, 1] [&#39;27026&#39;, 1] [&#39;27027&#39;, 1] [&#39;27028&#39;, 1] [&#39;27029&#39;, 1] [&#39;27030&#39;, 1] [&#39;27031&#39;, 1] [&#39;27032&#39;, 1] [&#39;27033&#39;, 1] [&#39;27034&#39;, 1] [&#39;27035&#39;, 1] [&#39;27036&#39;, 1] [&#39;27037&#39;, 0] [&#39;27038&#39;, 1] [&#39;27039&#39;, 1] [&#39;27040&#39;, 1] [&#39;27041&#39;, 1] [&#39;27042&#39;, 1] [&#39;27043&#39;, 1] [&#39;27044&#39;, 1] [&#39;27045&#39;, 1] [&#39;27046&#39;, 1] [&#39;27047&#39;, 1] [&#39;27048&#39;, 0] [&#39;27049&#39;, 1] [&#39;27050&#39;, 1] [&#39;27051&#39;, 1] [&#39;27052&#39;, 0] [&#39;27053&#39;, 1] [&#39;27054&#39;, 1] [&#39;27055&#39;, 1] [&#39;27056&#39;, 1] [&#39;27057&#39;, 1] [&#39;27058&#39;, 1] [&#39;27059&#39;, 1] [&#39;27060&#39;, 1] [&#39;27061&#39;, 0] [&#39;27062&#39;, 1] [&#39;27063&#39;, 1] [&#39;27064&#39;, 1] [&#39;27065&#39;, 1] [&#39;27066&#39;, 1] [&#39;27067&#39;, 1] [&#39;27068&#39;, 1] [&#39;27069&#39;, 1] [&#39;27070&#39;, 1] [&#39;27071&#39;, 1] [&#39;27072&#39;, 1] [&#39;27073&#39;, 1] [&#39;27074&#39;, 1] [&#39;27075&#39;, 1] [&#39;27076&#39;, 1] [&#39;27077&#39;, 1] [&#39;27078&#39;, 1] [&#39;27079&#39;, 1] [&#39;27080&#39;, 0] [&#39;27081&#39;, 1] [&#39;27082&#39;, 1] [&#39;27083&#39;, 1] [&#39;27084&#39;, 1] [&#39;27085&#39;, 1] [&#39;27086&#39;, 1] [&#39;27087&#39;, 1] [&#39;27088&#39;, 1] [&#39;27089&#39;, 1] [&#39;27090&#39;, 1] [&#39;27091&#39;, 1] [&#39;27092&#39;, 1] [&#39;27093&#39;, 1] [&#39;27094&#39;, 1] [&#39;27095&#39;, 1] [&#39;27096&#39;, 0] [&#39;27097&#39;, 1] [&#39;27098&#39;, 1] [&#39;27099&#39;, 1] [&#39;27100&#39;, 1] [&#39;27101&#39;, 1] [&#39;27102&#39;, 1] [&#39;27103&#39;, 1] [&#39;27104&#39;, 1] [&#39;27105&#39;, 1] [&#39;27106&#39;, 1] [&#39;27107&#39;, 1] [&#39;27108&#39;, 1] [&#39;27109&#39;, 1] [&#39;27110&#39;, 1] [&#39;27111&#39;, 0] [&#39;27112&#39;, 1] [&#39;27113&#39;, 0] [&#39;27114&#39;, 1] [&#39;27115&#39;, 1] [&#39;27116&#39;, 1] [&#39;27117&#39;, 0] [&#39;27118&#39;, 1] [&#39;27119&#39;, 1] [&#39;27120&#39;, 1] [&#39;27121&#39;, 1] [&#39;27122&#39;, 1] [&#39;27123&#39;, 1] [&#39;27124&#39;, 0] [&#39;27125&#39;, 1] [&#39;27126&#39;, 1] [&#39;27127&#39;, 1] [&#39;27128&#39;, 1] [&#39;27129&#39;, 0] [&#39;27130&#39;, 1] [&#39;27131&#39;, 1] [&#39;27132&#39;, 1] [&#39;27133&#39;, 1] [&#39;27134&#39;, 1] [&#39;27135&#39;, 1] [&#39;27136&#39;, 1] [&#39;27137&#39;, 1] [&#39;27138&#39;, 1] [&#39;27139&#39;, 1] [&#39;27140&#39;, 1] [&#39;27141&#39;, 1] [&#39;27142&#39;, 1] [&#39;27143&#39;, 1] [&#39;27144&#39;, 1] [&#39;27145&#39;, 1] [&#39;27146&#39;, 1] [&#39;27147&#39;, 1] [&#39;27148&#39;, 1] [&#39;27149&#39;, 1] [&#39;27150&#39;, 0] [&#39;27151&#39;, 1] [&#39;27152&#39;, 1] [&#39;27153&#39;, 0] [&#39;27154&#39;, 1] [&#39;27155&#39;, 1] [&#39;27156&#39;, 1] [&#39;27157&#39;, 0] [&#39;27158&#39;, 1] [&#39;27159&#39;, 1] [&#39;27160&#39;, 1] [&#39;27161&#39;, 1] [&#39;27162&#39;, 1] [&#39;27163&#39;, 1] [&#39;27164&#39;, 1] [&#39;27165&#39;, 0] [&#39;27166&#39;, 0] [&#39;27167&#39;, 1] [&#39;27168&#39;, 1] [&#39;27169&#39;, 1] [&#39;27170&#39;, 1] [&#39;27171&#39;, 1] [&#39;27172&#39;, 0] [&#39;27173&#39;, 1] [&#39;27174&#39;, 1] [&#39;27175&#39;, 1] [&#39;27176&#39;, 0] [&#39;27177&#39;, 1] [&#39;27178&#39;, 1] [&#39;27179&#39;, 1] [&#39;27180&#39;, 1] [&#39;27181&#39;, 1] [&#39;27182&#39;, 1] [&#39;27183&#39;, 1] [&#39;27184&#39;, 1] [&#39;27185&#39;, 1] [&#39;27186&#39;, 1] [&#39;27187&#39;, 0] [&#39;27188&#39;, 1] [&#39;27189&#39;, 0] [&#39;27190&#39;, 1] [&#39;27191&#39;, 1] [&#39;27192&#39;, 1] [&#39;27193&#39;, 1] [&#39;27194&#39;, 1] [&#39;27195&#39;, 1] [&#39;27196&#39;, 1] [&#39;27197&#39;, 1] [&#39;27198&#39;, 1] [&#39;27199&#39;, 0] [&#39;27200&#39;, 1] [&#39;27201&#39;, 1] [&#39;27202&#39;, 1] [&#39;27203&#39;, 1] [&#39;27204&#39;, 1] [&#39;27205&#39;, 1] [&#39;27206&#39;, 0] [&#39;27207&#39;, 1] [&#39;27208&#39;, 1] [&#39;27209&#39;, 1] [&#39;27210&#39;, 1] [&#39;27211&#39;, 1] [&#39;27212&#39;, 1] [&#39;27213&#39;, 1] [&#39;27214&#39;, 1] [&#39;27215&#39;, 1] [&#39;27216&#39;, 1] [&#39;27217&#39;, 1] [&#39;27218&#39;, 1] [&#39;27219&#39;, 1] [&#39;27220&#39;, 1] [&#39;27221&#39;, 1] [&#39;27222&#39;, 0] [&#39;27223&#39;, 1] [&#39;27224&#39;, 1] [&#39;27225&#39;, 1] [&#39;27226&#39;, 1] [&#39;27227&#39;, 0] [&#39;27228&#39;, 1] [&#39;27229&#39;, 1] [&#39;27230&#39;, 1] [&#39;27231&#39;, 1] [&#39;27232&#39;, 1] [&#39;27233&#39;, 1] [&#39;27234&#39;, 1] [&#39;27235&#39;, 1] [&#39;27236&#39;, 1] [&#39;27237&#39;, 1] [&#39;27238&#39;, 0] [&#39;27239&#39;, 1] [&#39;27240&#39;, 0] [&#39;27241&#39;, 1] [&#39;27242&#39;, 1] [&#39;27243&#39;, 1] [&#39;27244&#39;, 1] [&#39;27245&#39;, 1] [&#39;27246&#39;, 1] [&#39;27247&#39;, 1] [&#39;27248&#39;, 1] [&#39;27249&#39;, 1] [&#39;27250&#39;, 1] [&#39;27251&#39;, 0] [&#39;27252&#39;, 1] [&#39;27253&#39;, 1] [&#39;27254&#39;, 1] [&#39;27255&#39;, 1] [&#39;27256&#39;, 1] [&#39;27257&#39;, 1] [&#39;27258&#39;, 1] [&#39;27259&#39;, 1] [&#39;27260&#39;, 1] [&#39;27261&#39;, 1] [&#39;27262&#39;, 1] [&#39;27263&#39;, 1] [&#39;27264&#39;, 1] [&#39;27265&#39;, 0] [&#39;27266&#39;, 1] [&#39;27267&#39;, 1] [&#39;27268&#39;, 1] [&#39;27269&#39;, 0] [&#39;27270&#39;, 1] [&#39;27271&#39;, 0] [&#39;27272&#39;, 1] [&#39;27273&#39;, 1] [&#39;27274&#39;, 1] [&#39;27275&#39;, 1] [&#39;27276&#39;, 1] [&#39;27277&#39;, 1] [&#39;27278&#39;, 1] [&#39;27279&#39;, 1] [&#39;27280&#39;, 1] [&#39;27281&#39;, 1] [&#39;27282&#39;, 1] [&#39;27283&#39;, 0] [&#39;27284&#39;, 1] [&#39;27285&#39;, 1] [&#39;27286&#39;, 1] [&#39;27287&#39;, 1] [&#39;27288&#39;, 1] [&#39;27289&#39;, 1] [&#39;27290&#39;, 1] [&#39;27291&#39;, 0] [&#39;27292&#39;, 1] [&#39;27293&#39;, 1] [&#39;27294&#39;, 0] [&#39;27295&#39;, 0] [&#39;27296&#39;, 1] [&#39;27297&#39;, 1] [&#39;27298&#39;, 1] [&#39;27299&#39;, 0] [&#39;27300&#39;, 1] [&#39;27301&#39;, 1] [&#39;27302&#39;, 1] [&#39;27303&#39;, 1] [&#39;27304&#39;, 1] [&#39;27305&#39;, 1] [&#39;27306&#39;, 0] [&#39;27307&#39;, 1] [&#39;27308&#39;, 1] [&#39;27309&#39;, 1] [&#39;27310&#39;, 1] [&#39;27311&#39;, 1] [&#39;27312&#39;, 1] [&#39;27313&#39;, 1] [&#39;27314&#39;, 1] [&#39;27315&#39;, 1] [&#39;27316&#39;, 1] [&#39;27317&#39;, 1] [&#39;27318&#39;, 1] [&#39;27319&#39;, 1] [&#39;27320&#39;, 1] [&#39;27321&#39;, 1] [&#39;27322&#39;, 1] [&#39;27323&#39;, 1] [&#39;27324&#39;, 1] [&#39;27325&#39;, 0] [&#39;27326&#39;, 1] [&#39;27327&#39;, 1] [&#39;27328&#39;, 1] [&#39;27329&#39;, 1] [&#39;27330&#39;, 1] [&#39;27331&#39;, 1] [&#39;27332&#39;, 1] [&#39;27333&#39;, 1] [&#39;27334&#39;, 1] [&#39;27335&#39;, 0] [&#39;27336&#39;, 1] [&#39;27337&#39;, 1] [&#39;27338&#39;, 1] [&#39;27339&#39;, 0] [&#39;27340&#39;, 1] [&#39;27341&#39;, 1] [&#39;27342&#39;, 1] [&#39;27343&#39;, 1] [&#39;27344&#39;, 0] [&#39;27345&#39;, 1] [&#39;27346&#39;, 1] [&#39;27347&#39;, 1] [&#39;27348&#39;, 1] [&#39;27349&#39;, 1] [&#39;27350&#39;, 1] [&#39;27351&#39;, 0] [&#39;27352&#39;, 1] [&#39;27353&#39;, 1] [&#39;27354&#39;, 1] [&#39;27355&#39;, 1] [&#39;27356&#39;, 1] [&#39;27357&#39;, 0] [&#39;27358&#39;, 1] [&#39;27359&#39;, 1] [&#39;27360&#39;, 1] [&#39;27361&#39;, 1] [&#39;27362&#39;, 0] [&#39;27363&#39;, 1] [&#39;27364&#39;, 1] [&#39;27365&#39;, 1] [&#39;27366&#39;, 1] [&#39;27367&#39;, 1] [&#39;27368&#39;, 1] [&#39;27369&#39;, 1] [&#39;27370&#39;, 1] [&#39;27371&#39;, 1] [&#39;27372&#39;, 1] [&#39;27373&#39;, 1] [&#39;27374&#39;, 1] [&#39;27375&#39;, 1] [&#39;27376&#39;, 1] [&#39;27377&#39;, 1] [&#39;27378&#39;, 1] [&#39;27379&#39;, 0] [&#39;27380&#39;, 1] [&#39;27381&#39;, 1] [&#39;27382&#39;, 1] [&#39;27383&#39;, 0] [&#39;27384&#39;, 1] [&#39;27385&#39;, 1] [&#39;27386&#39;, 0] [&#39;27387&#39;, 1] [&#39;27388&#39;, 1] [&#39;27389&#39;, 1] [&#39;27390&#39;, 0] [&#39;27391&#39;, 1] [&#39;27392&#39;, 1] [&#39;27393&#39;, 1] [&#39;27394&#39;, 0] [&#39;27395&#39;, 1] [&#39;27396&#39;, 0] [&#39;27397&#39;, 0] [&#39;27398&#39;, 1] [&#39;27399&#39;, 1] [&#39;27400&#39;, 1] [&#39;27401&#39;, 1] [&#39;27402&#39;, 1] [&#39;27403&#39;, 1] [&#39;27404&#39;, 1] [&#39;27405&#39;, 1] [&#39;27406&#39;, 1] [&#39;27407&#39;, 1] [&#39;27408&#39;, 1] [&#39;27409&#39;, 1] [&#39;27410&#39;, 1] [&#39;27411&#39;, 1] [&#39;27412&#39;, 1] [&#39;27413&#39;, 1] [&#39;27414&#39;, 1] [&#39;27415&#39;, 1] [&#39;27416&#39;, 1] [&#39;27417&#39;, 1] [&#39;27418&#39;, 1] [&#39;27419&#39;, 1] [&#39;27420&#39;, 1] [&#39;27421&#39;, 1] [&#39;27422&#39;, 1] [&#39;27423&#39;, 1] [&#39;27424&#39;, 1] [&#39;27425&#39;, 1] [&#39;27426&#39;, 1] [&#39;27427&#39;, 1] [&#39;27428&#39;, 1] [&#39;27429&#39;, 1] [&#39;27430&#39;, 0] [&#39;27431&#39;, 1] [&#39;27432&#39;, 0] [&#39;27433&#39;, 1] [&#39;27434&#39;, 1] [&#39;27435&#39;, 0] [&#39;27436&#39;, 1] [&#39;27437&#39;, 1] [&#39;27438&#39;, 1] [&#39;27439&#39;, 1] [&#39;27440&#39;, 1] [&#39;27441&#39;, 1] [&#39;27442&#39;, 1] [&#39;27443&#39;, 0] [&#39;27444&#39;, 1] [&#39;27445&#39;, 1] [&#39;27446&#39;, 1] [&#39;27447&#39;, 1] [&#39;27448&#39;, 1] [&#39;27449&#39;, 1] [&#39;27450&#39;, 1] [&#39;27451&#39;, 1] [&#39;27452&#39;, 1] [&#39;27453&#39;, 0] [&#39;27454&#39;, 1] [&#39;27455&#39;, 0] [&#39;27456&#39;, 1] [&#39;27457&#39;, 1] [&#39;27458&#39;, 1] [&#39;27459&#39;, 1] [&#39;27460&#39;, 1] [&#39;27461&#39;, 1] [&#39;27462&#39;, 1] [&#39;27463&#39;, 1] [&#39;27464&#39;, 1] [&#39;27465&#39;, 1] [&#39;27466&#39;, 1] [&#39;27467&#39;, 1] [&#39;27468&#39;, 1] [&#39;27469&#39;, 1] [&#39;27470&#39;, 1] [&#39;27471&#39;, 1] [&#39;27472&#39;, 1] [&#39;27473&#39;, 1] [&#39;27474&#39;, 1] [&#39;27475&#39;, 1] [&#39;27476&#39;, 1] [&#39;27477&#39;, 1] [&#39;27478&#39;, 1] [&#39;27479&#39;, 0] [&#39;27480&#39;, 1] [&#39;27481&#39;, 1] [&#39;27482&#39;, 1] [&#39;27483&#39;, 1] [&#39;27484&#39;, 1] [&#39;27485&#39;, 1] [&#39;27486&#39;, 1] [&#39;27487&#39;, 1] [&#39;27488&#39;, 0] [&#39;27489&#39;, 1] [&#39;27490&#39;, 1] [&#39;27491&#39;, 1] [&#39;27492&#39;, 1] [&#39;27493&#39;, 1] [&#39;27494&#39;, 1] [&#39;27495&#39;, 1] [&#39;27496&#39;, 1] [&#39;27497&#39;, 0] [&#39;27498&#39;, 1] [&#39;27499&#39;, 1] [&#39;27500&#39;, 1] [&#39;27501&#39;, 1] [&#39;27502&#39;, 1] [&#39;27503&#39;, 0] [&#39;27504&#39;, 1] [&#39;27505&#39;, 1] [&#39;27506&#39;, 1] [&#39;27507&#39;, 1] [&#39;27508&#39;, 1] [&#39;27509&#39;, 1] [&#39;27510&#39;, 1] [&#39;27511&#39;, 0] [&#39;27512&#39;, 1] [&#39;27513&#39;, 1] [&#39;27514&#39;, 1] [&#39;27515&#39;, 1] [&#39;27516&#39;, 1] [&#39;27517&#39;, 1] [&#39;27518&#39;, 1] [&#39;27519&#39;, 1] [&#39;27520&#39;, 1] [&#39;27521&#39;, 1] [&#39;27522&#39;, 1] [&#39;27523&#39;, 0] [&#39;27524&#39;, 1] [&#39;27525&#39;, 1] [&#39;27526&#39;, 1] [&#39;27527&#39;, 1] [&#39;27528&#39;, 1] [&#39;27529&#39;, 1] [&#39;27530&#39;, 1] [&#39;27531&#39;, 1] [&#39;27532&#39;, 1] [&#39;27533&#39;, 1] [&#39;27534&#39;, 1] [&#39;27535&#39;, 1] [&#39;27536&#39;, 1] [&#39;27537&#39;, 1] [&#39;27538&#39;, 1] [&#39;27539&#39;, 1] [&#39;27540&#39;, 1] [&#39;27541&#39;, 1] [&#39;27542&#39;, 1] [&#39;27543&#39;, 1] [&#39;27544&#39;, 1] [&#39;27545&#39;, 1] [&#39;27546&#39;, 1] [&#39;27547&#39;, 1] [&#39;27548&#39;, 1] [&#39;27549&#39;, 0] [&#39;27550&#39;, 1] [&#39;27551&#39;, 0] [&#39;27552&#39;, 1] [&#39;27553&#39;, 1] [&#39;27554&#39;, 1] [&#39;27555&#39;, 1] [&#39;27556&#39;, 1] [&#39;27557&#39;, 1] [&#39;27558&#39;, 0] [&#39;27559&#39;, 1] [&#39;27560&#39;, 1] [&#39;27561&#39;, 1] [&#39;27562&#39;, 1] [&#39;27563&#39;, 0] [&#39;27564&#39;, 1] [&#39;27565&#39;, 1] [&#39;27566&#39;, 1] [&#39;27567&#39;, 1] [&#39;27568&#39;, 1] [&#39;27569&#39;, 1] [&#39;27570&#39;, 1] [&#39;27571&#39;, 1] [&#39;27572&#39;, 1] [&#39;27573&#39;, 1] [&#39;27574&#39;, 1] [&#39;27575&#39;, 1] [&#39;27576&#39;, 1] [&#39;27577&#39;, 1] [&#39;27578&#39;, 1] [&#39;27579&#39;, 1] [&#39;27580&#39;, 1] [&#39;27581&#39;, 1] [&#39;27582&#39;, 1] [&#39;27583&#39;, 1] [&#39;27584&#39;, 1] [&#39;27585&#39;, 1] [&#39;27586&#39;, 1] [&#39;27587&#39;, 1] [&#39;27588&#39;, 1] [&#39;27589&#39;, 1] [&#39;27590&#39;, 1] [&#39;27591&#39;, 1] [&#39;27592&#39;, 1] [&#39;27593&#39;, 1] [&#39;27594&#39;, 1] [&#39;27595&#39;, 1] [&#39;27596&#39;, 0] [&#39;27597&#39;, 1] [&#39;27598&#39;, 1] [&#39;27599&#39;, 1] [&#39;27600&#39;, 1] [&#39;27601&#39;, 1] [&#39;27602&#39;, 1] [&#39;27603&#39;, 1] [&#39;27604&#39;, 1] [&#39;27605&#39;, 1] [&#39;27606&#39;, 1] [&#39;27607&#39;, 1] [&#39;27608&#39;, 1] [&#39;27609&#39;, 1] [&#39;27610&#39;, 1] [&#39;27611&#39;, 1] [&#39;27612&#39;, 1] [&#39;27613&#39;, 1] [&#39;27614&#39;, 1] [&#39;27615&#39;, 0] [&#39;27616&#39;, 1] [&#39;27617&#39;, 1] [&#39;27618&#39;, 1] [&#39;27619&#39;, 1] [&#39;27620&#39;, 0] [&#39;27621&#39;, 1] [&#39;27622&#39;, 1] Manufacturing-nondurable goods -1.073486328125 37 -1.04461669921875 31 0.96826171875 Armed Forces 0.88555908203125 Group Quarters- Secondary individual -0.827392578125 Holand-Netherlands -0.8167724609375 Ireland 0.784332275390625 Wholesale trade 0.73870849609375 Grandchild &lt;18 ever marr not in subfamily 0.708740234375 Not in universe -0.674560546875
Finbert_Sentinment_Analysis.ipynb
###Markdown Sentiment Analysis with Transformers: The HuggingFace Transformers library is presently the most advanced and accessible library for building and using transformer models. As such, it will be what we primarily use throughout these notebooks.To apply sentiment analysis using the transformers library, we first need to decide on a model to use - as we will be applying a pretrained model, rather than starting from scratch. The list of models available can be found at:* https://huggingface.co/ProsusAI/finbert ![huggingface.png]() FinBERT is a pre-trained NLP model to analyze sentiment of financial text. It is built by further training the BERT language model in the finance domain, using a large financial corpus and thereby fine-tuning it for financial sentiment classification. Financial PhraseBank by Malo et al. (2014) is used for fine-tuning. For more details, please see the paper FinBERT: Financial Sentiment Analysis with Pre-trained Language Models and our related blog post on Medium.The model will give softmax outputs for three labels: positive, negative or neutral.* https://huggingface.co/ProsusAI/finbert ###Code model_name = "ProsusAI/finbert" ###Output _____no_output_____ ###Markdown The typical flow of information through a sentiment classification model consists of four steps:* Raw text data is tokenized (converted into numerical IDs that map that word to a vector representation of the same word)* Token IDs are fed into the sentiment model* A set of values are output, each value represents a class, and the value represents probability of that being the correct sentiment class, from zero (definitely not) to one (definitely yes).* The argmax of this output array is taken to give us our winning sentiment classification.We do not always have the three outputs classes [positive, negative, and neutal], often we will find models that predict just [positive, negative], or models that are more granular [very positive, somewhat positive, neutral, somewhat negative, very negative]. We can change the number of outputs classes (step 3) to fit to the correct number of classes. Install transformer library: ###Code !pip install transformers from transformers import BertForSequenceClassification model = BertForSequenceClassification.from_pretrained(model_name) ###Output _____no_output_____ ###Markdown Initialize Tokenizer: ###Code from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained(model_name) text = "Japan’s biggest brokerage will stop offering cash prime-brokerage services in the US and Europe, and has given some clients about six months to find a new provider, according to people familiar with the matter, who asked not to be identified discussing the private information. A spokesman for Nomura declined to comment. The pullback comes after Nomura notched up some of the biggest losses from the implosion of the US. family office built by Bill Hwang." text_2 = "Stock market regulator Securities and Exchange Board of India (Sebi) has banned Authum promoter director Sanjay Dangi and his associates including Alpana Dangi, a promoter director in Authum, along with promoters of four companies from dealing in the equity markets following allegations of price manipulation more than a decade ago." print(text) print() print(text_2) tokens_1 = tokenizer.encode_plus(text, max_length=512, truncation=True, padding='max_length', add_special_tokens=True, return_tensors='pt') tokens_2 = tokenizer.encode_plus(text, max_length=512, truncation=True, padding='max_length', add_special_tokens=True, return_tensors='pt') ###Output _____no_output_____ ###Markdown Bert Special Tokens:* [CLS] = 101, The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.* [SEP] = 102, The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.* [MASK] = 103, The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.* [UNK] = 100, The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.* [PAD] = 0, The token used for padding, for example when batching sequences of different lengths. ###Code tokens_1 ###Output _____no_output_____ ###Markdown Pass tokens to model as keyword arguments: ###Code output_1 = model(**tokens_1) output_2 = model(**tokens_2) output_1 output_1[0] ###Output _____no_output_____ ###Markdown Predictions: ###Code import torch.nn.functional as funct probs_1 = funct.softmax(output_1[0], dim=-1) probs_2 = funct.softmax(output_2[0], dim=-1) probs_1 import torch preds_1 = torch.argmax(probs_1) preds_2 = torch.argmax(probs_2) print(preds_1.item()) print(preds_2.item()) ###Output _____no_output_____
vqt_qmhl.ipynb
###Markdown Copyright 2020 The TensorFlow Quantum Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown VQT in TFQ Author : Antonio J. MartinezContributors : Guillaume VerdonCreated : 2020-Feb-06Last updated : 2020-Mar-06 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/tensorflow/quantum/blob/research/vqt_qmhl/vqt_qmhl.ipynb) In this notebook, you will explore the combination of quantum computing and classical energy-based models with TensorFlow Quantum. The system under study is the [2D Heisenberg model](https://en.wikipedia.org/wiki/Heisenberg_model_(quantum)). You will apply the Variational Quantum Thermalizer (VQT) to produce approximate thermal states of this model. VQT was first proposed in the paper [here.](https://arxiv.org/abs/1910.02071) Install and import dependencies ###Code !pip install --upgrade tensorflow==2.1.0 !pip install tensorflow-quantum %%capture import cirq import itertools import numpy as np import random from scipy import linalg import seaborn import sympy import tensorflow as tf import tensorflow_probability as tfp import tensorflow_quantum as tfq # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 2D Heisenberg model Hamiltonian definition This Hamiltonian is supported on a rectangular lattice of qubits:$$\hat{H}_{\text{heis}} = \sum_{\langle ij\rangle_h} J_{h} \hat{S}_i \cdot \hat{S}_j + \sum_{\langle ij\rangle_v} J_{v} \hat{S}_i \cdot \hat{S}_j,$$where $h$ ($v$) denote horizontal (vertical) bonds, while $\langle \cdot \rangle $ represent nearest-neighbor pairings. You can build this Hamiltonian using Cirq `PauliString` and `PauliSum` objects: ###Code def get_qubit_grid(rows, cols): """Rectangle of qubits returned as a nested list.""" qubits = [] for r in range(rows): qubits.append([]) for c in range(cols): qubits[-1].append(cirq.GridQubit(r, c)) return qubits def get_bond(q0, q1): """Given two Cirq qubits, return the PauliSum that bonds them.""" return cirq.PauliSum.from_pauli_strings([ cirq.PauliString(cirq.X(q0), cirq.X(q1)), cirq.PauliString(cirq.Y(q0), cirq.Y(q1)), cirq.PauliString(cirq.Z(q0), cirq.Z(q1))]) def get_heisenberg_hamiltonian(qubits, jh, jv): """Returns the 2D Heisenberg Hamiltonian over the given grid of qubits.""" heisenberg = cirq.PauliSum() # Apply horizontal bonds for r in qubits: for q0, q1 in zip(r, r[1::]): heisenberg += jh * get_bond(q0, q1) # Apply vertical bonds for r0, r1 in zip(qubits, qubits[1::]): for q0, q1 in zip(r0, r1): heisenberg += jv * get_bond(q0, q1) return heisenberg ###Output _____no_output_____ ###Markdown For visualization and verification purposes, the following function recovers an explicit matrix from a Cirq `PauliSum` given a linear ordering of the qubits which support it: ###Code def pauli_sum_to_matrix(qubits, pauli_sum): """Unpacks each pauli string in the pauli sum into a matrix and sums them.""" matrix = np.zeros((2**len(qubits), 2**len(qubits)), dtype=np.complex128) for pauli_string in pauli_sum: coeff = pauli_string.coefficient bare_string = pauli_string/coeff matrix += coeff*bare_string.dense(qubits)._unitary_() return matrix ###Output _____no_output_____ ###Markdown Target density matrix Here you define the parameters of the system to be learned. The 2D Heisenberg model is defined by the number of rows and columns in the qubit lattice, the bond strengths in the horizontal and vertical directions, and the inverse temperature $\beta$. Here, we use the same parameters as in the associated paper: ###Code num_rows = 2 num_cols = 2 jh = 1 jv = 0.6 beta = 2.6 # Get the grid of qubits. all_qubits = get_qubit_grid(num_rows, num_cols) all_qubits_flat = [q for r in all_qubits for q in r] ###Output _____no_output_____ ###Markdown Given a Hamiltonian $\hat{H}$ and an inverse temperature $\beta$, the thermal state $\rho_T$ is given by$$\rho_T = e^{-\beta \hat{H}}.$$Since our target system is small, you can compute this matrix exponential directly, using the `PauliSum`-to-matrix converter defined above: ###Code num_H = pauli_sum_to_matrix( all_qubits_flat, get_heisenberg_hamiltonian(all_qubits, jh, jv)) heisenberg_exp = linalg.expm(-beta*num_H) exact_thermal_state = np.true_divide(heisenberg_exp, np.trace(heisenberg_exp)) seaborn.heatmap(abs(exact_thermal_state)) ###Output _____no_output_____ ###Markdown Recall that any density matrix $\rho$ [can be written as](https://en.wikipedia.org/wiki/Density_matrixDefinition)$$\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|,$$where $|\psi_i\rangle$ is a pure state and $p_i$ is the classical probability of encoutering that state in the mixture. Since TFQ is a pure state simulator, we will emulate density matrices by outputting pure states according to their probabilities $p_i$, which by the equation above is equivalent to outputting the full density matrix. We define here a function that converts such a list of pure states into the associated density matrix: ###Code def pure_state_list_to_density_matrix(pure_states): """Return the uniform mixture of the given list of pure states.""" dim = len(pure_states[0].numpy()) n_s = pure_states.shape[0] thermal_state = np.zeros((dim, dim), dtype=np.complex128) for i in range(n_s): psi = pure_states[i].numpy() thermal_state += np.outer(psi, psi) return np.true_divide(thermal_state, n_s) ###Output _____no_output_____ ###Markdown Finally, to track the performance of our models, we need a measure of the distance of our estimated density matrix $\tilde{\rho}$ from the target density matrix $\rho_T$. One common metric is the [fidelity](https://en.wikipedia.org/wiki/Fidelity_of_quantum_states), which is defined as$$F(\tilde{\rho}, \rho_T) = \text{tr}\left[\sqrt{\sqrt{\tilde{\rho}}\rho_T\sqrt{\tilde{\rho}}}\right]^2.$$This is tractable to compute because our model system is small. Below we define a function that computes this quantity: ###Code def fidelity(dm1, dm2): """Calculate the fidelity between the two given density matrices.""" dm1_sqrt = linalg.sqrtm(dm1) return abs(np.trace(linalg.sqrtm( np.matmul(dm1_sqrt, np.matmul(dm2, dm1_sqrt))))) ** 2 ###Output _____no_output_____ ###Markdown Energy based models Energy based models are a type of machine learning ansatze inspired by physics and exponential families. The advantage of using energy based models for probabilistic modeling is that fair samples can be drawn from the distributions they define without requiring computation of their partition functions.One specific class of EBM is the Boltzmann machine. The energy of a spin configuration $x \in \{-1, 1\}^n$ in this model is defined as:$$E(x) = -\sum_{i, j}w_{ij} x_i x_j - \sum_i b_i x_i.$$This classical model can be easily converted into a quantum mechanical Ising model by replacing each bit with the Pauli $Z$ operator, and considering the usual mapping of the spin to qubit pictures 1 -> $|0\rangle$ and $-1$ -> $|1\rangle$.In the special case where the connection weights $w_{ij}$ are all zero, the Boltzmann machine is reduced to a product of independent Bernoulli distributions over the set of qubits. This "Bernoulli EBM" has many simplifying properties, and hence you will explore this EBM first in the examples below. Later in the notebook, you will apply the full Boltzmann EBM to VQT. Energy functions Here we define functions which compute the energy of a Boltzmann or Bernoulli EBM given the weight, biases, and bitstrings: ###Code def bitstring_to_spin_config(bitstring): """Implements the mapping from the qubit to the spin picture.""" return [-1 if b == 1 else 1 for b in bitstring] def spin_config_to_bitstring(spin_config): """Implements the mapping from the spin to the qubit picture.""" return [0 if s == 1 else 1 for s in spin_config] def ebm_energy(spin_config, biases, weights=None): """Given a rank-2 tensor representing the weight matrix and a rank-1 tensor representing the biases, calculate the energy of the spin configuration.""" energy = 0 if weights is not None: for w_row, xi in zip(weights.numpy(), spin_config): for wij, xj in zip(w_row, spin_config): energy -= wij*xi*xj for bi, xi in zip(biases.numpy(), spin_config): energy -= bi*xi return energy def ebm_energy_avg(spin_config_list, biases, weights=None): """Average energy over a set of spin configuration samples.""" energy_avg = 0 for spin_config in spin_config_list: energy_avg += ebm_energy(spin_config, biases, weights) energy_avg /= len(spin_config_list) return energy_avg ###Output _____no_output_____ ###Markdown We also define functions which initialize TF Variables for our weights and biases. Initializing all weights and biases near 0 means we begin near the uniform distribution, which can also be thought of as starting with a high temperature prior: ###Code def get_initialized_ebm_biases(num_units): return tf.Variable( tf.random.uniform(minval=-0.1, maxval=0.1, shape=[num_units], dtype=tf.float32), dtype=tf.float32) def get_initialized_ebm_weights(num_units): return tf.Variable( tf.random.uniform(minval=-0.1, maxval=0.1, shape=[num_units, num_units],dtype=tf.float32), dtype=tf.float32) ###Output _____no_output_____ ###Markdown EBM derivatives The derivative of an EBM given a bitstring is easy to compute. In fact, the derivatives are independent of the weights and biases:$$\nabla_{w_{ij}}E(x) = -x_ix_j\quad \text{and}\quad \nabla_{b_{i}}E(x) = -x_i.$$Information about the weights and biases enters by averaging these derivates over samples from the EBM. ###Code def ebm_weights_derivative(spin_config): w_deriv = np.zeros((len(spin_config), len(spin_config))) for i, x_i in enumerate(spin_config): for j, x_j in enumerate(spin_config): w_deriv[i][j] = -x_i*x_j return w_deriv def ebm_biases_derivative(spin_config): b_deriv = np.zeros(len(spin_config)) for i, x_i in enumerate(spin_config): b_deriv[i] = -x_i return b_deriv def ebm_weights_derivative_avg(spin_config_list): w_deriv = np.zeros((len(spin_config_list[0]), len(spin_config_list[0]))) for spin_config in spin_config_list: w_deriv += ebm_weights_derivative(spin_config) return np.true_divide(w_deriv, len(spin_config_list)) def ebm_biases_derivative_avg(spin_config_list): b_deriv = np.zeros(len(spin_config_list[0])) for spin_config in spin_config_list: b_deriv += ebm_biases_derivative(spin_config) return np.true_divide(b_deriv, len(spin_config_list)) ###Output _____no_output_____ ###Markdown Classical VQT loss gradients As discussed in the paper, the gradient of the VQT loss function can be calculated without computing entropies or partition functions. For example, the gradient of the VQT free energy loss with respect to the classical model parameters can be writtent as:$$\partial_{\theta} \mathcal{L}_{\text{fe}} =\mathbb{E}_{x\sim p_{\theta}(x)}[(E_{\theta}(x)-\beta H_{\phi}(x) ) \nabla_{\theta}E_{\theta}(x) ]-(\mathbb{E}_{x\sim p_{\theta}(x)}[E_{\theta}(x)-\beta H_{\phi}(x)]) ( \mathbb{E}_{y\sim p_{\theta}(y)}[\nabla_{\theta}E_{\theta}(y)] ).$$Below these gradients are defined for the general Boltzmann EBM. In the VQT gradients, each entry in `bitstring_list` corresponds to the entry with the same index in `energy_losses`, where for each bitstring $x$, we compute the product $\beta\langle x|H|x\rangle$. The list of bitstrings is assumed to be sampled from the EBM. ###Code def get_vqt_weighted_weights_grad_product( energy_losses, spin_config_list, biases, weights): """Implements the first term in the derivative of the FE loss, for the weights of a Boltzmann EBM.""" w_deriv = np.zeros((len(spin_config_list[0]), len(spin_config_list[0]))) for e_loss, spin_config in zip(energy_losses, spin_config_list): w_deriv = w_deriv + ( ebm_energy(spin_config, biases, weights) - e_loss )*ebm_weights_derivative(spin_config) return np.true_divide(w_deriv, len(energy_losses)) def get_vqt_weighted_biases_grad_product( energy_losses, spin_config_list, biases, weights=None): """Implements the first term in the derivative of the FE loss, for the biases of a Boltzmann EBM.""" b_deriv = np.zeros(len(spin_config_list[0])) for e_loss, spin_config in zip(energy_losses, spin_config_list): b_deriv = b_deriv + ( ebm_energy(spin_config, biases, weights) - e_loss )*ebm_biases_derivative(spin_config) return np.true_divide(b_deriv, len(energy_losses)) def get_vqt_factored_weights_grad_product( energy_losses, spin_config_list, biases, weights): """Implements the second term in the derivative of the FE loss, for the weights of a Boltzmann EBM.""" energy_losses_avg = tf.reduce_mean(energy_losses) classical_energy_avg = ebm_energy_avg(spin_config_list, biases, weights) energy_diff_avg = classical_energy_avg - energy_losses_avg return energy_diff_avg*ebm_weights_derivative_avg(spin_config_list) def get_vqt_factored_biases_grad_product( energy_losses, spin_config_list, biases, weights=None): """Implements the second term in the derivative of the FE loss, for the biases of a Boltzmann EBM.""" energy_losses_avg = tf.reduce_mean(energy_losses) classical_energy_avg = ebm_energy_avg(spin_config_list, biases, weights) energy_diff_avg = classical_energy_avg - energy_losses_avg return energy_diff_avg*ebm_biases_derivative_avg(spin_config_list) ###Output _____no_output_____ ###Markdown Model components Ansatz unitary The parameterized unitary ansatz you will use consists of alternating layers of general single qubit rotations and nearest-neighbor entangling gates: ###Code def get_rotation_1q(q, a, b, c): """General single qubit rotation.""" return cirq.Circuit(cirq.X(q) ** a, cirq.Y(q) ** b, cirq.Z(q) ** c) def get_rotation_2q(q0, q1, a): """Exponent of entangling CNOT gate.""" return cirq.Circuit(cirq.CNotPowGate(exponent=a)(q0, q1)) def get_layer_1q(qubits, layer_num, name): """Apply single qubit rotations to all the given qubits.""" layer_symbols = [] circuit = cirq.Circuit() for n, q in enumerate(qubits): a, b, c = sympy.symbols( "a{2}_{0}_{1} b{2}_{0}_{1} c{2}_{0}_{1}".format(layer_num, n, name)) layer_symbols += [a, b, c] circuit += get_rotation_1q(q, a, b, c) return circuit, layer_symbols def get_layer_2q(qubits, layer_num, name): """Apply CNOT gates to all pairs of nearest-neighbor qubits.""" layer_symbols = [] circuit = cirq.Circuit() for n, (q0, q1) in enumerate(zip(qubits[::2], qubits[1::2])): a = sympy.symbols("a{2}_{0}_{1}".format(layer_num, n, name)) layer_symbols += [a] circuit += get_rotation_2q(q0, q1, a) shifted_qubits = qubits[1::]+[qubits[0]] for n, (q0, q1) in enumerate(zip(shifted_qubits[::2], shifted_qubits[1::2])): a = sympy.symbols("a{2}_{0}_{1}".format(layer_num, n+1, name)) layer_symbols += [a] circuit += get_rotation_2q(q0, q1, a) return circuit, layer_symbols def get_one_full_layer(qubits, layer_num, name): """Stack the one- and two-qubit parameterized circuits.""" circuit = cirq.Circuit() all_symbols = [] new_circ, new_symb = get_layer_1q(qubits, layer_num, name) circuit += new_circ all_symbols += new_symb new_circ, new_symb = get_layer_2q(qubits, layer_num + 1, name) circuit += new_circ all_symbols += new_symb return circuit, all_symbols def get_model_unitary(qubits, num_layers, name=""): """Build our full parameterized model unitary.""" circuit = cirq.Circuit() all_symbols = [] for i in range(num_layers): new_circ, new_symb = get_one_full_layer(qubits, 2*i, name) circuit += new_circ all_symbols += new_symb return circuit, all_symbols ###Output _____no_output_____ ###Markdown Bitstring injector You also need a way to feed bitstrings into the quantum model. These bitstrings can be prepared by applying an X gate to every qubit that should be excited. The following function returns a parameterized circuit which prepares any given bitstring: ###Code def get_bitstring_circuit(qubits): """Returns wall of parameterized X gates and the bits used to turn them on.""" circuit = cirq.Circuit() all_symbols = [] for n, q in enumerate(qubits): new_bit = sympy.Symbol("bit_{}".format(n)) circuit += cirq.X(q) ** new_bit all_symbols.append(new_bit) return circuit, all_symbols ###Output _____no_output_____ ###Markdown Factorized latent state Bernoulli EBM The Bernoulli EBM can be used to parameterize a factorized latent state. The probability of sampling a 1 from a unit with bias $b$ is:$$p = \frac{e^b}{e^b + e^{-b}}$$Since the units of a Bernoulli EBM are independent, the probability of a given spin configuration is simply the product of the individual unit probabilities:$$p(x) = \prod_i\frac{e^{x_ib_i}}{e^{b_i} + e^{-b_i}}$$This distribution is easy to sample from. ###Code def bernoulli_spin_p1(b): return np.exp(b)/(np.exp(b) + np.exp(-b)) def sample_spins_bernoulli(num_samples, biases): prob_list = [] for bias in biases.numpy(): prob_list.append(bernoulli_spin_p1(bias)) # The `probs` keyword specifies the probability of a 1 event latent_dist = tfp.distributions.Bernoulli(probs=prob_list, dtype=tf.float32) bit_samples = latent_dist.sample(num_samples).numpy() spin_samples = [] for sample in bit_samples: spin_samples.append([]) for bit in sample: if bit == 0: spin_samples[-1].append(-1) else: spin_samples[-1].append(1) return spin_samples ###Output _____no_output_____ ###Markdown The entropy of a single unit with bias $b$ in our Bernoulli EBM is:$S = \frac{be^{b} - be^{-b}}{e^{b} + e^{-b}}- \log[e^{b} + e^{-b}]$For a factorized latent distribution, the entropy is simply the sum of the entropies of the individual factors. ###Code def bernoulli_factor_partition(b): return np.exp(b) + np.exp(-b) def bernoulli_partition(biases): partition = 1 for bias in biases.numpy(): partition *= bernoulli_factor_partition(bias) return partition def bernoulli_factor_entropy(b): Z = bernoulli_factor_partition(b) return (b*np.exp(b) - b*np.exp(-b))/Z - np.log(Z) def bernoulli_entropy(biases): entropy = 0 for bias in biases.numpy(): entropy += bernoulli_factor_entropy(bias) return entropy ###Output _____no_output_____ ###Markdown Finally we define a function for converting the classical Bernoulli distribution into an Ising model whose expectation values can be simulated in the TFQ ops: ###Code def bernoulli_ebm_to_ising(qubits, biases, bare=False): pauli_s_list = [] for i, bi in enumerate(biases.numpy()): if bare: coeff = 1.0 else: coeff = bi pauli_s_list.append(cirq.PauliString(coeff, cirq.Z(qubits[i]))) if bare: return pauli_s_list return cirq.PauliSum.from_pauli_strings(pauli_s_list) ###Output _____no_output_____ ###Markdown VQT Build and view our unitary model and set up the TFQ Expectation Op inputs: ###Code # Number of bitstring samples from our classical model to average over num_samples = 300 # Number of rotations-plus-entanglement layers to stack. # Note that the depth required to reach a given fidelity increases depending on # the temperature and Hamiltonian parameters. num_layers = 4 # Build the model unitary and visible state circuits U, model_symbols = get_model_unitary(all_qubits_flat, num_layers) V, bit_symbols = get_bitstring_circuit(all_qubits_flat) visible_state = tfq.convert_to_tensor([V + U]) # Make a copy of the visible state for each bitstring we will sample tiled_visible_state = tf.tile(visible_state, [num_samples]) # Upconvert symbols to tensors vqt_symbol_names = tf.identity(tf.convert_to_tensor( [str(s) for s in bit_symbols + model_symbols], dtype=tf.dtypes.string)) # Build and tile the Hamiltonian H = get_heisenberg_hamiltonian(all_qubits, jh, jv) tiled_H = tf.tile(tfq.convert_to_tensor([[H]]), [num_samples, 1]) # Get the expectation op with a differentiator attached expectation = tfq.differentiators.ForwardDifference().generate_differentiable_op( analytic_op=tfq.get_expectation_op()) SVGCircuit(U) ###Output _____no_output_____ ###Markdown We can use gradient descent on the model parameters thanks to TFQ, and our classical model parameters are tractable due to our use of an energy based model. The factorized nature of our latent space also allows us to efficiently obtain a loss function. ###Code optimizer = tf.keras.optimizers.Adam(learning_rate=0.03) # Initialize our model variables vqt_model_params = tf.Variable( tf.random.uniform(minval=-0.1, maxval=0.1, shape=[len(model_symbols)], dtype=tf.float32), dtype=tf.float32) # Keep track of metrics during training vqt_loss_history = [] vqt_fidelity_history = [] vqt_model_params_history = [] vqt_bias_history = [] vqt_density_matrix_history = [] # Initialize our EBM variables vqt_biases = get_initialized_ebm_biases(len(all_qubits_flat)) # The innermost training step, where gradients are taken and applied def vqt_train_step(): # Sample from our EBM spin_config_list = sample_spins_bernoulli(num_samples, vqt_biases) bitstring_list = [spin_config_to_bitstring(s) for s in spin_config_list] bitstring_tensor = tf.convert_to_tensor(bitstring_list, dtype=tf.float32) # Use the samples to find gradient of the loss w.r.t. model parameters. with tf.GradientTape() as tape: tiled_vqt_model_params = tf.tile([vqt_model_params], [num_samples, 1]) sampled_expectations = expectation( tiled_visible_state, vqt_symbol_names, tf.concat([bitstring_tensor, tiled_vqt_model_params], 1), tiled_H) energy_losses = beta*sampled_expectations energy_losses_avg = tf.reduce_mean(energy_losses) vqt_model_gradients = tape.gradient(energy_losses_avg, [vqt_model_params]) # Build the classical model gradients weighted_biases_grad = get_vqt_weighted_biases_grad_product( energy_losses, spin_config_list, vqt_biases) factored_biases_grad = get_vqt_factored_biases_grad_product( energy_losses, spin_config_list, vqt_biases) biases_grad = tf.subtract(weighted_biases_grad, factored_biases_grad) # Apply the gradients optimizer.apply_gradients(zip([vqt_model_gradients[0], biases_grad], [vqt_model_params, vqt_biases])) # Sample pure states to build the current estimate of the density matrix many_states = tfq.layers.State()( tiled_visible_state, symbol_names=vqt_symbol_names, symbol_values=tf.concat([bitstring_tensor, tiled_vqt_model_params], 1) ) vqt_density_matrix_history.append(pure_state_list_to_density_matrix(many_states)) # Record the history vqt_loss_history.append((energy_losses_avg - bernoulli_entropy(vqt_biases)).numpy()) vqt_fidelity_history.append( fidelity(vqt_density_matrix_history[-1], exact_thermal_state)) vqt_model_params_history.append(vqt_model_params.numpy()) vqt_bias_history.append(vqt_biases.numpy()) print("Current loss:") print(vqt_loss_history[-1]) print("Current fidelity to optimal state:") print(vqt_fidelity_history[-1]) print("Current estimated density matrix:") plt.figure() seaborn.heatmap(abs(vqt_density_matrix_history[-1])) plt.show() ###Output _____no_output_____ ###Markdown With setup complete, we can now optimize our Heisenberg VQT. ###Code def vqt_train(epochs): for epoch in range(epochs): vqt_train_step() print ('Epoch {} finished'.format(epoch + 1)) vqt_train(100) ###Output _____no_output_____ ###Markdown We plot our metrics and visualize the motion of the parameters during training: ###Code plt.plot(vqt_loss_history) plt.xlabel('Epoch #') plt.ylabel('Loss [free energy]') plt.plot(vqt_fidelity_history) plt.xlabel('Epoch #') plt.ylabel('Fidelity with exact state') ###Output _____no_output_____ ###Markdown Classically correlated latent state Boltzmann machine EBM The Bernoulli distribution is only able to inject entropy into our density matrix. To encode classical correlations, we need to move beyond a factorized latent state. This can be accomplished by allowing the weights of our Boltzmann machine to be non-zero.Now that there are correlations, sampling from the model becomes non-trivial. The probability of bitstring $x$ is:$P(x) = \frac{\exp(-E(x))}{\sum_{y\in\{-1, 1\}^n} \exp(-E(y))}$In general this function is intractable to compute directly; however, we can still obtain samples from the distribution efficiently. Markov chain Monte Carlo (MCMC) is one family of procedures for this efficient sampling. Here, we use the simplest example of MCMC, the [Metropolis-Hastings](https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm) algorithm: ###Code def make_proposal(y): """Flip spins in y to generate a new sample.""" coin = tfp.distributions.Bernoulli(probs=[0.75]*len(y)) samples = coin.sample(1).numpy()[0] x = [] for s_i, y_i in zip(samples, y): if s_i: x.append(y_i) else: if y_i == 1: x.append(-1) else: x.append(1) return x def sample_boltzmann(burn_in, num_samples, skip, initial_state, biases, weights): """Walk towards and sample from regions of high probability.""" current_state = initial_state all_samples = [] for i in range(burn_in + skip*num_samples): proposal = make_proposal(current_state) proposal_energy = ebm_energy(proposal, biases, weights) current_energy = ebm_energy(current_state, biases, weights) acceptance = min(np.exp(-proposal_energy)/np.exp(-current_energy), 1) threshold = random.random() if threshold <= acceptance: current_state = proposal if i >= burn_in: if (i - burn_in)%skip == 0: all_samples.append(current_state) return all_samples ###Output _____no_output_____ ###Markdown Since there are now correlations between the bits, the partition function and entropy can no longer be computed in a scalable way. However, for the small system size considered here, these quantities can be illustrative. ###Code def boltzmann_partition(biases, weights): partition_value = 0 for spin_config in itertools.product([-1, 1], repeat=biases.shape[0]): partition_value += np.exp(-ebm_energy(spin_config, biases, weights)) return partition_value def boltzmann_entropy(biases, weights): Z = boltzmann_partition(biases, weights) Z_log = np.log(Z) unnormalized = 0 for spin_config in itertools.product([-1, 1], repeat=biases.shape[0]): this_energy = ebm_energy(spin_config, biases, weights) unnormalized += np.exp(-this_energy)*(-this_energy - Z_log) return -unnormalized/Z ###Output _____no_output_____ ###Markdown Finally we define a function for converting the classical Boltzmann machine into an Ising model whose expectation values can be simulated in the TFQ ops: ###Code def boltzmann_ebm_to_ising(qubits, biases, weights, bare=False): pauli_s_list = [] for i, w_row in enumerate(weights.numpy()): for j, wij in enumerate(w_row): init_list = [cirq.Z(q) for qi, q in enumerate(qubits) if qi == i or qi == j] if bare: coeff = 1.0 else: coeff = wij pauli_s_list.append(cirq.PauliString(coeff, init_list)) for i, bi in enumerate(biases.numpy()): if bare: coeff = 1.0 else: coeff = bi pauli_s_list.append(cirq.PauliString(coeff, cirq.Z(qubits[i]))) if bare: return pauli_s_list return cirq.PauliSum.from_pauli_strings(pauli_s_list) ###Output _____no_output_____ ###Markdown VQT ###Code # Initialize our model variables vqt_model_params = tf.Variable( tf.random.uniform(minval=-0.1, maxval=0.1, shape=[len(model_symbols)], dtype=tf.float32), dtype=tf.float32) # Define the learning hyperparameters burn_in = 100 skip = 7 optimizer = tf.keras.optimizers.Adam(learning_rate=0.025) # Keep track of metrics during training vqt_loss_history = [] vqt_fidelity_history = [] vqt_model_params_history = [] vqt_weights_history = [] vqt_bias_history = [] vqt_density_matrix_history = [] # Initialize our EBM variables vqt_weights = get_initialized_ebm_weights(len(all_qubits_flat)) vqt_biases = get_initialized_ebm_biases(len(all_qubits_flat)) # The innermost training step, where gradients are taken and applied def vqt_train_step(): # Sample from our EBM spin_config_list = sample_boltzmann(burn_in, num_samples, skip, vqt_train_step.initial_state, vqt_biases, vqt_weights) vqt_train_step.initial_state = spin_config_list[-1] bitstring_list = [spin_config_to_bitstring(s) for s in spin_config_list] bitstring_tensor = tf.convert_to_tensor(bitstring_list, dtype=tf.float32) # Use the samples to find gradient of the loss w.r.t. model parameters. with tf.GradientTape() as tape: tiled_vqt_model_params = tf.tile([vqt_model_params], [num_samples, 1]) sampled_expectations = expectation( tiled_visible_state, vqt_symbol_names, tf.concat([bitstring_tensor, tiled_vqt_model_params], 1), tiled_H) energy_losses = beta*sampled_expectations energy_losses_avg = tf.reduce_mean(energy_losses) vqt_model_gradients = tape.gradient(energy_losses_avg, [vqt_model_params]) # Build the classical model gradients weighted_biases_grad = get_vqt_weighted_biases_grad_product( energy_losses, spin_config_list, vqt_biases, vqt_weights) factored_biases_grad = get_vqt_factored_biases_grad_product( energy_losses, spin_config_list, vqt_biases, vqt_weights) biases_grad = tf.subtract(weighted_biases_grad, factored_biases_grad) weighted_weights_grad = get_vqt_weighted_weights_grad_product( energy_losses, spin_config_list, vqt_weights, vqt_weights) factored_weights_grad = get_vqt_factored_weights_grad_product( energy_losses, spin_config_list, vqt_weights, vqt_weights) weights_grad = tf.subtract(weighted_weights_grad, factored_weights_grad) # Apply the gradients optimizer.apply_gradients( zip([vqt_model_gradients[0], weights_grad, biases_grad], [vqt_model_params, vqt_weights, vqt_biases])) # Sample pure states to build the current estimate of the density matrix many_states = tfq.layers.State()( tiled_visible_state, symbol_names=vqt_symbol_names, symbol_values=tf.concat([bitstring_tensor, tiled_vqt_model_params], 1) ) vqt_density_matrix_history.append(pure_state_list_to_density_matrix(many_states)) # Record the history vqt_loss_history.append( (energy_losses_avg - boltzmann_entropy(vqt_biases, vqt_weights)).numpy()) vqt_fidelity_history.append( fidelity(vqt_density_matrix_history[-1], exact_thermal_state)) vqt_model_params_history.append(vqt_model_params.numpy()) vqt_weights_history.append(vqt_weights.numpy()) vqt_bias_history.append(vqt_biases.numpy()) print("Current loss:") print(vqt_loss_history[-1]) print("Current fidelity to optimal state:") print(vqt_fidelity_history[-1]) print("Current estimated density matrix:") plt.figure() seaborn.heatmap(abs(vqt_density_matrix_history[-1])) plt.show() vqt_train_step.initial_state = [1]*len(bit_symbols) def vqt_train(epochs): for epoch in range(epochs): vqt_train_step() print ('Epoch {} finished'.format(epoch + 1)) vqt_train(100) plt.plot(vqt_loss_history) plt.xlabel('Epoch #') plt.ylabel('Loss [free energy]') plt.plot(vqt_fidelity_history) plt.xlabel('Epoch #') plt.ylabel('Fidelity with exact state') ###Output _____no_output_____
interview-cake/temperature-tracker.ipynb
###Markdown [You decide to test if your oddly-mathematical heating company is fulfilling its All-Time Max, Min, Mean and Mode Temperature Guarantee™.](https://www.interviewcake.com/question/python/temperature-tracker) ###Code import operator class TempTracker: def __init__(self): self.min = None self.max = None self.mean = None self.mode = None self.mode_qnt = 0 self.sum = 0.0 self.qnt = 0 self.dict = {} def insert(self, temperature): # set min temperature if self.min is None or self.min > temperature: self.min = temperature # set max temperature if self.max is None or self.max < temperature: self.max = temperature # set mean temperature self.qnt += 1 self.sum += temperature self.mean = self.sum / self.qnt # set mode temperature if temperature in self.dict.keys(): self.dict[temperature] += 1 else: self.dict[temperature] = 1 if self.mode_qnt < self.dict[temperature]: self.mode = temperature def get_max(self): return self.max def get_min(self): return self.min def get_mean(self): return self.mean def get_mode(self): return self.mode tracker = TempTracker() tracker.insert(1) tracker.insert(2) tracker.insert(1) tracker.insert(3) tracker.get_min() tracker.get_max() tracker.get_mode() tracker.get_mean() ###Output _____no_output_____
machine-learning-notebooks/transfer-learning-custom-azureml/4.Convert_to_OpenVINO.ipynb
###Markdown Copyright (c) Microsoft Corporation.Licensed under the MIT License. 4. OpenVINO ConversionIMPORTANT: The conversion command within this notebook is to be run with Intel's OpenVINO Toolkit docker container.In this notebook we will:- Convert the TensorFlow model to OpenVINO format Prerequisites- Trained TensorFlow model (frozen graph format) downloaded from the experiment from following `3.Train_with_AzureML.ipynb`More information on OpenVINO toolkit installation can be found at [install and set up the OpenVINO Toolkit](https://docs.openvinotoolkit.org/latest/installation_guides.html). Convert the model from frozen graph to an intermediate representation and then to a blob format The following script to be run in the docker container, will convert the TensorFlow frozen graph to the OpenVINO IR format and then to `blob`. ###Code %%writefile experiment_outputs/compile.sh #!/bin/bash # OpenVINO compilation script cd experiment_outputs source /opt/intel/openvino_2021/bin/setupvars.sh python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo_tf.py \ --input_model frozen_inference_graph.pb \ --tensorflow_object_detection_api_pipeline_config ../project_files/ssdlite_mobilenet_retrained.config \ --transformations_config \ /opt/intel/openvino_2021/deployment_tools/model_optimizer/extensions/front/tf/ssd_v2_support.json \ --reverse_input_channels > openvino_log1.txt /opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64/myriad_compile -m \ frozen_inference_graph.xml \ -o ssdlite_mobilenet_v2.blob \ -VPU_NUMBER_OF_SHAVES 8 \ -VPU_NUMBER_OF_CMX_SLICES 8 -ip U8 -op FP32 > openvino_log2.txt ###Output _____no_output_____ ###Markdown Here we will use the OpenVINO to leverage the OpenVINO model converters and optimizer. You may need to replace `$(pwd)` with your current working directory path. The `xLinkUsb` error in the logs file is expected and should be ignored. ###Code ! docker run --rm --privileged -v $(pwd):/working -w /working openvino/ubuntu18_dev:2021.1 bash experiment_outputs/compile.sh ###Output _____no_output_____